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“The world of the future will be an even more demanding struggle against the

limitations of our intelligence, not a comfortable hammock in which we can lie down
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—- Norbert Wiener, The Human Use Of Human Beings: Cybernetics And Society
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Abstract

In the mechanical engineering field of robotics, bilateral teleoperation is a classic but

still increasing research topic. In bilateral teleoperation, a human operator moves the

master manipulator, and a slave manipulator is controlled to follow the motion of

the master in a remote, potentially hostile environment. This dissertation focuses on

kinesthetic perception analysis in teleoperation systems. Design of the controllers of

the systems is studied as the influential factor of this issue. The controllers that can

provide different force tracking capability are compared using the same experimental

protocol. A 6 DOF teleoperation system is configured as the system testbed. An

innovative master manipulator is developed and a 7 DOF redundant manipulator

is used as the slave robot. A singularity avoidance inverse kinematics algorithm

is developed to resolve the redundancy of the slave manipulator. An experimental

protocol is addressed and three dynamics attributes related to kineshtetic feedback are

investigated: weight, center of gravity and inertia. The results support our hypothesis:

the controller that can bring a better force feedback can improve the performance in

the experiments.
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Chapter 1

Introduction

1.1 Motivation

There are many hostile work environments where it is impossible for humans to

be present, for example, outer space, deep ocean or high nuclear radiation areas.

Researchers from all over the world have been working for years to develop and

improve telerobotic systems to replace humans, as shown in Fig. 1.1, or at least

isolate them from hostile environments. For example, Oak Ridge National Laboratory

developed several teleoperators to clean up contaminated waste tanks and other

facilities to keep the operator away from radioactive materials. Another important

telerobotics application is the deep sea exploration, for example, the opening scene

in the movie Titanic, where a dual arm robotic submersible explored the wreckage

of Titanic. This makes remote environment exploration a very important robotics

research area.

Haptics research has a long history and has gained increasing attention recently.

There are three types of haptics: human haptics, machine haptics and computer

haptics. Human haptics is the study of human sensing and is generally considered a

psychological study. In those studies, subjects are usually asked to directly perceive

objects, for example, touch or lift them. The subjects then answer questions about

1



Figure 1.1: Teleoperation*
*Images courtesy of NASA Johnson Space Center

certain properties of the objects, such as their weight, inertia, texture and so on.

These studies provide an understanding of the process of haptics exploration. Machine

haptics is about design and optimization of the machines that replace or augment

human touch. Force/position tracking errors are often used as the performance index

for the controller design. Computer haptics is a newly emerging area which deals with

software and algorithms to render virtual objects that mimic certain real things. High

performance computers provide the possibility of running simulation models made up

of millions of nodes.

Haptics sensation can also be categorized either as “kinesthetic” or “tactile.”

Kinesthetic sensation is about the motion and forces the body experiences during

a haptics interaction. Kinesthesia has been considered in teleoperation research with

force reflection. Tactile sensation usually refers to the interaction between objects and

the fingers or skin; it covers temperature, pressure, texture and many other areas.

2
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Space

Figure 1.2: Haptics Teleoperation Research Area Structure

A variety of experimental equipment has been built to investigate the tactile sensing

capabilities of humans.

1.2 Summary

This dissertation focuses on a generalized theory of kinesthetic haptics exploration

of an unknown remote environment using a full-size teleoperation system. Human

haptics research methodology is used to guide and evaluate the design of the

teleoperator.

The philosophy adopted is that the human should remain in direct control of the

whole system. When interaction between the teleoperator and environment occurs,

the teleoperator should provide feedback that is as close to the actual interaction

as possible. Since a kinesthetic teleoperator provides force feedback, force tracking

is very important in providing appropriate feedback. The ideal case of exploration

through a teleoperator is that the performance is as good as direct interaction between

the operator and the slave work environment. This falls into the area of transparency

analysis in telerobotics research. In this way, the influence of human factors in a

teleoperator can be fully investigated.

3



1.3 Outline

This dissertation is organized as follows: chapter two discusses previous related

literature, chapter three proposes the research methodology used in our research,

chapter four summarizes the fundamental contributions of this project, chapter five

describes the system testbed configured for the experiments, chapter six reviews all

the experiment assessments carried out during the course of this research project,

chapter seven gives the conclusions of the dissertation and chapter eight provides a

perspective of future work.
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Chapter 2

Literature Review

2.1 Introduction

A bilateral teleoperation system is a robotic system with two robots: a slave and

a master, as shown in Fig. 2.1. The human operator operates the master robot

and the master robot sends commands to the slave robot through a communication

network; the slave robot then mimics the motion of the master robot. The slave also

sends feedback to the master robot. Force interaction between the slave robot and

the remote environment can be reflected to the human operator through the master

robot. The workspace and the capability of a human operator can be extended and

the operator can be isolated from the hostile environment. As pointed out in [43],

there are two primary means to improve the performance of a teleoperation system:

(1) increasing the transparency of the system and (2) adding task automation to make

the system more time efficient. We will focus on the first method.

The first bilateral kinesthetic teleoperation system was built by Dr. Goertz in

the 1950s [23].The slave and the master robots were connected using rigid mechanical

linkages and the operator had to look directly at the slave workspace to get visual

feedback. In the 1970s and 80s, electrical servos replaced mechanical linkages and

camera-monitor based vision systems replaced direct visual feedback. Numerous
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bilateral teleoperation systems were developed by various laboratories [39] and utilized

for handling radioactive materials in Oak Ridge National Laboratory.

2.2 Generalized Teleoperation Systems

The very first teleoperation system built by Dr. Goertz [23] consisted of two

manipulators with similar kinematics. Later electrical servo teleoperation systems

also adopted this design method. The advantage of this method is that the controller

design is simple, as joint angles of the master manipulator can be sent to the slave

without having to go through any computation or transformation. However this

method poses serious limitations on the design of the manipulators.

Later, another type of teleoperation systems, the generalized teleoperation

systems, were developed [10, 9, 16], in which the master and slave manipulators do

not have to have a similar mechanism. Their controllers have to have kinematics and

inverse kinematics algorithms. The joint angles of the master manipulators need to be

converted to the master manipulator position in Cartesian space and then transformed

into the desired slave manipulator position and orientation. The communication

network passes this information on to the slave robot. Then the slave manipulator

controller needs to convert the desired position and orientation into the desired joint

angles. If the teleoperation system has feedback, then the original information from

the slave environment needs to be transmitted and transformed to the master space.

Recently, a new research area called trilateral teleoperation emerged [34, 37, 36].

In [37, 36], a redundant slave manipulator is considered and the two master

manipulators control different spaces of the slave motion: one for the null space and

another one for the solution space. In [34], the trilateral haptics collaboration system

is modeled as a six port control system, and its passivity condition is considered.
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2.3 Transparency and Stability in Controller Design

of Teleoperation Systems

The controller design of a teleoperation system plays a vital role in its performance.

Reducing position tracking error is one of the first goals considered by teleoperation

researchers; feedforward controllers are used to cancel the dynamics of the manipu-

lators, but they usually suffer from the noise brought on by the differentiation of the

position signals and the inaccuracy of the dynamics modeling.

Improving transparency and maintaining stability are the two primary tasks for

teleoperator system design. Previously, kinesthetic force feedback was computed using

the PID controllers. This brought about a problem: a small position tracking error

could result in a very low force feedback. For this reason, force direct measurement

and feedback are now used. In [29], Dr. Lawrence systematically analyzed the efficacy

of this type of controller and proposed the well-known four channel transparent

control architecture. Psychophysics experiments are largely used in teleoperation

control design [54]. Dynamics feedforward has been used, but it is notorious for

amplifying the noise [33] and an accurate modeling of the robot is required. Hannaford

summarized all possible control architectures and analyzed their transparency based

on their transmitted impedance [41]. Even though these analyses provided significant

theoretical results, they have not been connected with the direct hand kinesthetic

exploration tasks. Also, these transparency studies all focus on single degree of

freedom systems and the theories lack actual application potential. This dissertation

considers a 6 DOF teleoperation system, which is commonly used in various remote

handling tasks.

Stability is also very important in that it affects the safety of the system. Time

delay in the communication network could harm the systemâĂŹs stability [2, 52].

Control algorithms considering time delay have been proposed in various papers [29,

48, 25]. In [25], Dr. Hannaford presented a novel passivity based haptics interface
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Figure 2.1: General Framework of a Teleoperation System

control algorithm. All of these publications focus on improving stability or reducing

tracking errors. None of them considered human factors in teleoperation tasks. In

this thesis we investigate the effect of control algorithms on the performance of the

system.

2.4 Haptics and Teleoperation

As mentioned above, haptics exploration consists of two major fields: tactile and

kinesthetic. Most of the existing haptics exploration research is about tactile sensing

[30, 8, 28, 44]. In [30], the natural procedure of a human exploring an unknown object

is discussed, and potential guidelines to improve teleoperation system are given. An

H2 based control architectural analysis is provided in [8], where the ability of reflecting

the change of compliance of the object is considered the primary fidelity of the system.

[44] used a robotic finger to explore the features of an object. All of these papers focus

on tactile sensing and exploration; research about kinesthetic exploration is needed.

Kinesthetic feedback was considered in [26], where the teleoperation system is

modeled as a two port system. The limitation of this work is obvious: the system is

modeled as a one degree of freedom, linear system. In an actual teleoperation system

application, most of the equipments are 6 DOF.

Teleoperators with kinesthetic feedback have seen applications in many areas, for

example, outer space, deep ocean or high nuclear radioactive environments [38, 12,

24, 43]. Teleoperation systems can extend the reach of human operators but they also

compromise the sense of immersion. In other words, the teleoperation systems are not

transparent enough for humans to perceive as perfectly as they could in direct contact

exploration. Issues about internet-based teleoperations are discussed in [24]. In [43],

8



the weight perception limitation is determined to be 3 lb (1.36 kg). An example of

a force feedback teleoperation system is presented in [12]. A solution to improve the

kinesthetic feedback in nuclear clean-up is proposed in [38].

2.5 Performance Evaluation

Evaluation of the performance of a haptic device divides into two major streams. The

first one focuses on the mechanical or control engineering properties of the system

[62, 19]. The second one addresses this issue based on psychology evaluations [64,

51, 58]. In [64, 51], the effect of time delay on haptics performance is discussed. The

experiment is based on haptics devices interacting with a virtual environment and

response time is used as the major haptics performance index. In [58], haptic feedback

provides a great advantage in surgical training for physicians. But none of the papers

mentioned uses non-linear, multi-dimension, full size bilateral teleoperation systems.

A variety of haptics performance indexes will be used.

2.6 Redundant Manipulators

A manipulator requires 6 joints to place the end-effector in an arbitrary position with

an arbitrary orientation. Most industrial robots are 6 DOF, such as PUMA560, ABB

IRB series. Any manipulator that has more than six joints is redundant. There are

many methods that use this redundancy to provide better performance of the robot

[6, 17, 15, 18, 53]. [6] provides a comprehensive analysis on the design of kinematic

redundant robot. [18] focuses on the design and analysis of an innovative parallel

manipulator. [53] provides a tutorial report of the literature on kinematics control

of redundant robot manipulators. [17] proposes a computational efficient gradient

projection optimization scheme for a 7 DOF redundant robot. A controller based on

task performance measures is discussed in [15].
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2.7 Direct Contact Kinesthetic Exploration

Previous research in experimental psychology has been conducted regarding the

weight perception [1]. Some methods and testing protocols are used in this

dissertation and extended to the teleoperation scenario in an effort to bridge the

gap between these two areas [66]. There has been some research about the

psychophysical evaluation of teleoperation systems [40] and [54], where researchers

consider environment as a virtual wall with stiffness and damping. Haptics refers

to the sense of touch, including weight, temperature, inertia, stiffness perceptions

and so on. It is one of the most classic research areas in experimental psychology.

Haptics has two major sub-areas: kinesthetic [1] and tactile [31]. Kinesthetics sensing

is about the motion and force of muscles and joints while tactile sensing is about the

touch between the fingers and objects. Therefore, kinesthetic sensing in experimental

psychology is very important to the teleoperation research. One of the first kinesthetic

sensing tasks used in experiments was the weight and inertia perception. We adopted

these experimental protocols as our major testing method. In teleoperation, many

performance indices were proposed in the previous literature [57]. Most of them

are task dependent which is difficult to generalize into other applications. Draper

categorizes all the indices into two major categories in his human factor analysis

paper [14].

Weight perception is a very important research area in experimental psychology

[1, 61, 30]. The earliest studies dated back to 1834 when Ernest Weber proposed

his famous Weber’s law. The roles of the size and inertia of objects in weight

perception are investigated. [61] provided a comprehensive review of the recent

haptics psychology research. In [1], the patterns of objectsâĂŹ inertia tensor and

their eigenvalue and eigenvectors were analyzed.
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Figure 2.2: Weight Perception Object [1]

2.8 Master Controller Design

A haptic device with 6 DOF force feedback is essential in providing exact and complete

kinesthetic feedback. There are several off-the-shelf haptics devices with 6 DOF of

force feedback [13, 47, 21]. Force Dimension offers several haptic devices with 6

active joints. A product called “Sigma 7” even has a seventh active grasping joint to

mimic the motion of a pair of scissors [13]. Geomagic provides a haptic device called

“Phantom Premium” which can provide a fairly large workspace and force capacity

[21]. Another notable product called “Haptic Wand” is also available from Quanser, a

research equipment company [47]. It offers five active degrees of freedom and a sixth

joint which is passive. All of them are quite expensive for many research groups. So

a lot of researchers have designed their own 6 DOF haptic devices for their projects.

There are two ways of building a 6 DOF haptic device: 1) designing and building
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the whole system from scratch [60, 65, 59, 63] or 2) integrating existing, off-the-shelf

haptics products with fewer degrees of freedom and coordinating them to provide a

higher degrees of freedom force feedback.

Examples of the first method were presented in [60, 65]. This method makes the

developing process lengthy and costly. Researchers have to deal with the issue of

machining all the parts and interfacing with the motors. It could also take a long

time to calibrate and adjust the design. On the other hand, building an advanced

haptic device based on the off-the-shelf haptic devices can be very cost effective.

Novint Falcon is developed and used widely as a haptics research device and computer

gaming equipment. Many researchers have integrated multiple Falcons together to

develop new haptic devices with higher degrees of freedom. Instructions about how to

build a novel haptic device using two Falcons were provided in [50]. A similar device

has seen application in device calibration for fingernail imaging [35].

2.9 Summary

Force reflection of the teleoperation system is very important in kinesthetic ex-

ploration tasks. Previous research on teleoperation systems has provided valuable

results. The general structures of the controller of the teleoperation systems are

constantly being modified and upgraded to enhance their performance. In haptics

and human factors analysis, many experiments have been conducted to explore the

human perception capability. However, most of the analysis focused on a one degree

of freedom system, which lacked application potential. Also, there have not been

sufficient attempts to connect the engineering side of the problem to the perception

side of the research.
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Chapter 3

Research Methodology

3.1 Overview

There are many factors that contribute to the efficacy of the teleoperation systems,

such as the hardware, the level of training of the operators and the controller design.

In this dissertation, we focus on the influence of the controller design.

The earliest teleoperation systems used two channel position to position con-

trollers. In this type of control system, the master controller sends its position to

the slave, and the slave sends its position back to the master. The slave and master

both compute control effort to compensate for position errors; the most simple and

widely used example is the PID controller. This type of controller provides good

position convergence, but its kinesthetic perception is poor.

In a direct contact kinesthetic perception case, the operator interacts with the

unknown object directly; he/she perceives the exact position and force information of

the object. When an operator operates a teleoperation system through a master

controller, such as a joystick, a haptic device, etc., he/she senses the position

of his/her arm through the muscles and nerves in his/her arm as before, so the

operators know the exact position of the desired master controller. Since the position

tracking functions very well in most of the teleoperation systems, the position
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Figure 3.1: Three-channel Control Architecture of Bilateral Teleoperation Systems
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error information is not significant in kinesthetic perception, while force is. During

operation, the operator should be expecting an interaction force between the object

and the slave robot, but he/she perceives the force feedback, fh, from the devices.

In other words, we model the human perception as a “flow source”. Flow is a

generalized term in engineering. In dynamics, flow refers to velocity, while in electrical

engineering it refers to current. Flow source means that humans can inject velocity

commands into the system and the system responds with effort. Effort is also a

generalized engineering term, referring to force or torque in dynamics and voltage

in electrical engineering. Flow times effort equals power. Force tracking is essential

to transparency because of the nature of kinesthetic perception. Hampered force

feedback makes it difficult for the operator to determine the dynamic attributes

of the object that the system is handling, which diminishes the haptics sensation.

Previously, impedance, the ratio between force and velocity was commonly used to

analyze the transparency of a teleoperation system. However, it is an engineering term

that may be confusing to non-engineers taking part in human factor experiments.

Therefore analyzing and improving the force instead of perceived impedance is a

better choice.

The force feedback fh that the operator perceives is different from the actual

interacting force f ∗e between the slave robot and the object, as shown in Fig. 2.1.

The slave manipulator in our system is a redundant robot. That is to say, instead

of having one solution for the inverse kinematics of the robot, the system can provide

an infinite number of solutions that all lead to the same end-effector position and

orientation. In order to improve the kinesthetic perception in the experiments,

one of the configurations has to be chosen as the desired configuration of the slave

manipulator.
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3.2 Preliminary

3.2.1 Environment Modeling

Previous research considers the environment as a stiffness/damping virtual wall. The

environment considered in this project is modeled as a pure inertia component. This

is to assume that the robot is holding a rigid object firmly in the end-effector and the

object has exactly the same orientation, position and velocity as the end-effector. So

the ideal kinesthetic feedback should provide a force/torque feedback that matches

exactly the effort needed to accelerate a rigid body. A pure inertia component is a

linear component, so if the robot works in the configurations that are relatively close

to a certain configuration, frequency domain analysis can be applied around that

linear operation point.

The inertial parameters of any rigid body in a three dimensional space is fully

defined by the following constant symmetric positive-definite 3 by 3 matrix:

I =


Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz


Because of the symmetry, there are only six independent constants in the matrix; these

six constants are the parameters that the operator tries to determine and evaluate

during the haptics exploration task. The equation of motion of a general rigid body

is given by:

fd = ma+mg (3.1)

τd = Iα + ωT I × ω + τg(θ) (3.2)

Where fd, a, g, ω and α are all 3×1 vectors. Human kinesthetic perception is the

process of combining and analyzing information of f , ω, α and τ and tries to estimate
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I, m, τg(θ). The ideal teleoperation system should be able to provide exactly the same

feedback fd, τd that the environment provides.

3.2.2 Robot Dynamics, Gravitational compensation and PD

controllers

The dynamic model of a robotic arm is given by:

M(θ∗)θ̈∗ + C(θ∗, θ̇∗)θ̇∗ +G(θ∗) = τ∗ ∗ = s,m (3.3)

where θ is the configuration of the robot, M(θ) is the inertia matrix, C(θ, θ̇) is the

Coriolis matrix, G(θ) is gravity and τ is the torque applied at the joints. Eq. 3.3

is based on two commonly accepted assumptions: 1) the torque τ ’s is applied at the

joint and 2) the links of the robot under investigation are all rigid bodies.

The most commonly used controller for a bilateral teleoperation system is the PD

controller. This control architecture will be used as a comparison group in our project

to show the superiority of our novel methods.

τ∗ = Kp
∗ (θ̃∗ − θ∗) +Kd

∗ (
˙̃θ∗ − θ̇∗) ∗ = s,m (3.4)

Therefore, the combined dynamics of the manipulator is given by

M(θ∗)θ̈∗ + C(θ∗, θ̇∗)θ̇∗ +G(θ∗) = Kp
s (θ̃∗ − θ∗) +Kd

∗ (
˙̃θ∗ − θ̇∗) + J−1(θ∗)F∗ (3.5)

∗ = s,m

Gravitational compensation is commonly used to reduce the tracking error of a

teleoperation system and to improve the haptics sensation. The basic idea is to

predict the control effort to compensate for gravity based on the desired position

and known system parameters. If there is no such effort, then the operator has to

provide the force to lift both the manipulator and the object in the gripper of the
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robot. This would hamper kinesthetic perception . The challenge in using this kind of

controller is that it heavily depends on system modeling. Therefore, the manufacturer

of our robot, the WAM (Whole Arm Manipulator), provided a special program called

“bt-wam-gravitycal” to control the robot through nine configurations, measure the

torque applied at the joints and compute the inertia parameters of the arm. These

parameters were saved in a file and used whenever gravity compensation was enabled.

Force and position scaling is commonly used in teleoperation systems to reduce

fatigue or increase dexterity where:

fdm = kffs xdm = kxxs (3.6)

fds =
fm
kf

xds =
xm
kx

(3.7)

Where kf is the force scaling factor and kx is the position scaling factor. There are

three special cases for scaling factors. If kx = 1, then the human operator experiences

the same motion as the slave robot. If kf = 1, then the human operator experiences

the same force feedback as the slave robot. If kx = kf , then the human operator

experiences the same impedance/admittance as the slave robot.

3.3 Singularity Avoidance of a Redundant Robotic

Arm

To improve the transparency of a robot, we have to overcome the singularity issue of

the robotic arm. Given our specific application, wrist singularities are studied and

wrist singularity avoidance is considered in the inverse kinematics of our robotic arm.

3.3.1 Singularity of Non-redundant robot

A robot arm requires at least six joints to place the end-effector at a given

configuration in its workspace; however, a 6 DOF manipulator may have singularity
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Figure 3.2: Coordinate Frames of WAM

issues when the arm is at some particular configuration and lose the capability to

move in certain directions. When a robotic arm is in a singular configuration, it

may have a sudden motion that completely hampers the kinesthetic feedback or even

causes a safety threat.
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To demonstrate this argument, the geometric inverse kinematics method explained

in Appendix C.1 is used; joint three is locked to turn WAM into an anthropomorphic

robotic arm. Since WAM has a spherical wrist, its Jocabian matrix is can be written

as:

J(θ) =

J11 0

J12 J22

 (3.8)

Where J11 is the linear velocity matrix, J22 is the wrist angular velocity matrix and

J12 is the arm angular velocity matrix. The upper right corner of the matrix is zero

because the spherical wrist joints do not have any effect on the linear velocity of the

robot.

J22 = R(θ1, θ2, θ3, θ4)


0 −s5 c5s6

−1 0 −c6
0 c5 s5s6

 (3.9)

Where R(θ1, θ2, θ3, θ4) is the transformation can be found in Appendix. C.1. Take

the determinant of Eq. 3.9

|J22| = |R(θ1, θ2, θ3, θ4)| × | − sin(θ6)| (3.10)

= − sin(θ6) (3.11)

This simplification is possible because R(θ1, θ2, θ3, θ4) is a rotational matrix and its

determinant is 1. From Eq. 3.11, we can see that the wrist singularity happens when

joint six is zero and axis five and seven are parallel to each other; therefore it is

important to keep joint six away from zero. The results from simulation, as shown

in Fig. 3.3 demonstrate the effect of singularity; those sharp turns show that there is

dramatic change in the slave robot at joints five and seven.
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Figure 3.3: Wrist Singularity of An Anthropomorphic Arm
The sharp turns at 0.4, 0.5, 0.6 and 0.8 are all caused by the wrist singularity.

3.3.2 Redundant Robot

When computing the inverse kinematics of a robotic arm, if the manipulator has more

degrees of freedom than the constraints, then there is redundancy in the system.

For example, a three dimensional space only requires six independent coordinates

to fully define the configuration (position, orientation) of the end-effector, and if the

manipulator has seven joints, then it has (7-6)=1 degree of redundancy. This mapping

is defined by.

U : x ∈ Re6 → θ ∈ Re7 (3.12)

This means that an infinite set of robot joint angles can bring exactly the same

end-effector configuration. This can provide the controller with extra flexibility to

achieve extra performance indicators, for example, response speed, stability region,

load capacity and so on. In our project, the redundancy is used to avoid singularities.
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There are several types of singularity for robots. In our experiment, due to the specific

workspace of the arm, the elbow and base pitch joint stay significantly away from their

singular positions. Therefore, the only singularity issue we have to consider is the

wrist joint singularity. This type of singularity occurs when a pitching joint goes to a

zero angle, making the two neighboring rolling joints align with each other and hence

losing one degree of freedom. Since our robot has only one more degree of freedom

than required, the redundancy can be resolved by imposing one extra constraint. The

detailed equations can be found in Appendix C.2.

3.4 Kinesthetic Perception with Teleoperation Sys-

tems

3.4.1 Performance

Simple PD controllers result in poor haptics feedback. The manipulator inertia gets

reflected to the operator, which completely hampers the kinesthetic perception. This

is because the manipulators are usually at least three to four times heavier than

the objects in their end-effectors. The operator experiences a lot of force feedback

caused by the manipulatorâĂŹs weight rather than the interaction force between the

environment and the manipulator. The force feedback of a teleoperation system can

22



Master

Manipulator

Dynamics

Slave 

Manipulator

Controller

Force/Torque

Sensor

Communication 

Networks

Master

Manipulator

Controller

Slave

Work

Environment

Interaction Force

Slave Robot Configuraition

Master Robot Configuration

Force

Feedback

Figure 3.5: Model for Human Kinesthetic Perception with Bilateral Teleoperation
Systems

be modeled as in Fig. 3.5. Therefore the force feedback can be computed using Eq.

3.13. The first term represents the dynamics of the master robot. Operators need to

provide the force to manipulate it to generate the desired position for the slave robot;

therefore that force is added on top of the system force feedback. The second term is

the force feedback from the direct force measurement from the slave robot. Since the

signal is usually noisy, as defined in Eq. 3.14, the signal is filtered using a first order

low pass filter. The third and fourth terms show the PID controllers to enforce the

position tracking, where xs and vs stand for the master robot configuration, and xd,

vd stands for the slave robot configuration. This equation shows only one degree of

freedom force feedback. All 6 DOF share the same type of force/torque feedback.

Ferror =(Ms2 + bs)xs +G+
1

1 + τs
F̃ext

+ kp(xs − xd) + kd(vs − vd)− Fext (3.13)

F̃ext = Fext + ef (3.14)

The goal of our control is to minimize this force error. There are three parameters

that we can change: τ as the cutoff frequency of the first order low pass filter, kp,the

proportional gain and kd, the derivative gain. Previous research shows that human

motion usually has a frequency lower than 5Hz, so τ is picked so that all components

greater than 5Hz are eliminated. Given the force capability given by the haptic device,
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we keep the kp and kd to make room for the Fext, because that is what the operator

needs to feel.

3.5 Design of An Innovative 6 DOF Master Con-

troller

The kinesthetic teleoeperation exploration tasks we proposed require 6 DOF force

and torque feedback. Our current Omni only has 3 DOF force feedback. Also, its

pen shaped handle is not very commonly used in teleoperation tasks. Therefore, we

designed and built an innovative master controller.

Our master controller is integrated from four off-the-shelf haptic devices. The

Phantom haptics device is the most widely used commercially available haptic device.

It provides 3 DOF force feedback to the operator. It has 6 joints, of which the first

three joints are actuated and the last three joints are passive. We integrated them into

a 6 DOF force feedback haptic device and manufactured a handle with 3D printing

technology.

The challenge of our work is that the system we build has actuation and kinematic

redundancy. All Phantom Omnis devices return position information of their end-

effectors; the system needs to compute the handles’ position and orientation based on

this information. This includes coordinate transformation and vector computation.

The force feedback from the devices also needs to be coordinated to ensure precision

while minimizing the total load of the system.

The advantages of our system include: low cost, greater force/torque feedback,

more degrees of freedom in feedback and better position resolution. One Phantom

Omni costs $1500. So the total cost of our systemâĂŹs hardware is less than $6100,

which is very affordable. The force feedback provided by the new system is the

summation of four individual Omnis together, so the maximum force feedback is four

times the original device’s. Also, the devices are configured in such a way that torque
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feedback can be provided to the operator, which is critical in many applications. For

example, in a case in which an operator is teleoperating a robot with an impact

wrench as its end-effector, the resistive torque provided to the operator can provide

him/her with ample information. Details are discussed in Sec. 5.2.1.

However there are also some limitations to the proposed master controller. First,

since this manipulator is based on haptic devices, its workspace is limited to that

of the original devices. Second, the maximum force feedback is limited by the force

capacity of the original devices. Last but not least, the new device only provides

kinesthetic feedback and lacks a tactile sensation component.

3.6 Stability Analysis

Stability is one of the most important factors in the design of a control system. Here

we prove that our system is stable using the Lyapunov theory and Hilbert network;

this method is very similar to [3].

3.6.1 Hilbert Network

The Hilbert network is a model that can transform a mechanical system into an

electrical system that is easier to analyze. It is made up of four types of passive

circuit elements: inertia, damping, stiffness and transfer. These elements correspond

to similar components on the mechanical engineering side. An inertia component can

be modeled as an inductor, where

fi =
d

dt
(Mivi) (3.15)

The damping components can be viewed as a resistor, where

fi = Bivi (3.16)
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The stiffness component is where potential energy is stored, and therefore is equivalent

to the capacitive element, where

fi = Kixi (3.17)

3.6.2 Teleoperation System Stability

The stability is proved by applying the Hilbert network properties to the Lyapunove

function of the teleoperation system. Define xm and xs as the composite stiffness

position vector for the master and slave manipulator. In the actual PD controller,

they are the position errors between the master and the slave systems. Define the vm

and vs as the master and slave system velocity. Define kp and kf as the position and

force scaling factor. Define the following function as the Lyapunove function of the

teleoperation system:

L(x, v) =
1

2
kpkf (||xm||2km + ||vm||2mm) +

1

2
(||xs||ks + ||vs||ms) (3.18)

Take its derivative:

L̇(x, v) = kpkf (< xm, vm >km + < vm, v̇m >mm) + (< xs, vs >ks + < vs, v̇s >ms)

(3.19)

= kpkf (< fm, vm >km + < vm, fm >mm) + (< fs, vs >ks + < vs, fs >ms)

(3.20)

Applying Property 1

L̇(x, v) = kpkf (< fbm, vbm >bm + < vm, fm >mm) + (< fbs, vbs >bs + < vs, fs >ms)

(3.21)
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Figure 3.6: Single loop representation of the general teleoperator system[29]

Apply the definition of position and velocity,

L̇(x, v) = −kpkf < fbm, vbm >bm − < fbs, vbs >bs≤ 0 (3.22)

Therefore, the system is passive.

3.6.3 Stability of the System for Three-Channel Controller

In order to analyze the stability of a teleoperation system with three communication

channels (Two velocity and one force/torque), the four-channel architecture proposed

by Dr. Lawrence needs to be transformed into Fig. 3.6. This figure is adopted from

[29], the only difference is that we didn’t use the force/torque feedforward channel

from master to slave, so C3 in the original diagram is eliminated.

Fce = (Zs + Ze + Cs)Ve (3.23)

= −F ∗e + C1Vh (3.24)

Fch = (Zm + Zh + Cm)Vh (3.25)

= −C2F
∗
e + F ∗h − (C4 + C2Ze)Ve (3.26)
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Denote:

S1 = (C4 + C2Ze)(Zs + Ze + Cs)
−1(C1 − C3Zh) (3.27)

S2 = (Zm + Zh + Cm)−1 (3.28)

According to theorem 1 of [29], the sufficient condition to ensure the system stability

is:

a) S1 is a strictly positive real transfer function (exponentially stable, and S1(jω) +

ST1 (−jω) uniformly positive definite over all frequencies ω).

b)S2 is a strictly positive real transfer function (S1(jω) + ST1 (−jω) positive semi-

definite over all frequencies ω).

c) The transfer functions (C4 + C2Ze)(Zs + Ze + C2)
−1,Zs + Ze + Cs)

−1, and

(C1 − C3Zh)(Zm + Ze + Cm)−1 are stable.

In our system, we don’t use the force/torque measurement and feedback from

master to slave, so C3 is zero for both PD and the three-channel controllers. For the

PD case, there is no force/torque signal send from the slave to master, so

C2 = 0 (3.29)

So the S1 becomes

S1 = C4(Zs + Ze + Cs)
−1C1Zh (3.30)

and S2 is the same as in Eq. 3.28. The S1 is obviously strictly proper, because

C1 = K1
d +

K1
p

s
(3.31)

C4 = K4
d +

K4
p

s
(3.32)

28



The C1 and C4 are the controllers for velocity signals, so Eq. 3.31 and Eq. 3.32 are

PD controllers for position signals. Therefore, S1 is

(K4
d +

K4
p

s
)

1

Zs + Ze + Cs
(K1

d +
K1
p

s
)Zh (3.33)

Zs, Ze are both second order component, and Cs is a first order component. Therefore

S1 is positive real.

For the three-channel controller case, the C2 channel is added, which is the

force/torque feedback from slave to master and it is equal to the force scaling

coefficient.

C2 = Kf (3.34)

So,

S1 = (KfZe + C4)(K
4
d +

K4
p

s
)

1

Zs + Ze + Cs
(K1

d +
K1
p

s
)Zh (3.35)

Therefore, as we can see S1 is still strictly proper because the Ze is the impedance of

the objects, which is a second order system. The denominator still have higher order

than the numerator, but their order difference reduced. In other words, the stability

of Eq. 3.33 is better than Eq. 3.35.
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Chapter 4

Fundamental Contributions

Bilateral coupling between the master and the slave manipulators provides kinesthetic

feedback to the human operator. The operator then takes proper action based on

the feedback he/she receives. Providing accurate kinesthetic feedback is therefore

important. The ideal kinesthetic feedback occurs when the system provides a force

feedback that is exactly the same as in the interaction between the environment and

the slave robot. This means the fundamental goal of designing a robot controller

is to provide feedback that is as close to the ideal case as possible. Therefore, the

fundamental contributions of this dissertation can be summarized into the following

three points:

4.1 Improved Force Tracking to Improve Kinesthetic

Feedback

Position to position control architecture has been used by many 6 DOF teleoperation

systems. It can enforce position tracking but compromises the kinesthetic feedback.

A three channel controller is developed and implemented on a 6 DOF teleoperation

system to improve force tracking. An additional wrist force/torque sensor is used to
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generate feedback to the master robot. The performance of our system supports our

hypothesis.

4.2 Developed Wrist Singularities Avoidance Algo-

rithm to Improve Kinesthetic Feedback

A redundant manipulator provides the control engineers with extra flexibility. This

advantage has been used in singularity avoidance, collision avoidance and control

effort optimization. In this project, we developed a singularity avoidance algorithm

for the wrist. This algorithm is completely geometrical; every intermediate step has

specific physical meanings. It is also minimizes computation as compared to the

psudo-inverse of the Jacobian matrix.

4.3 Developed An Innovative Master Manipulator

for the Teleoperation Systems

The kinesthetic perception we studied requires 6 DOF force and torque feedback to

the operator. We developed an innovative manipulator that functions as the master

of the system and provides the necessary feedback to the operators.

4.4 Developed An Experimental Framework for Study-

ing the Efficacy of Kinesthetics Feedback in

Haptics Exploration

Any experiments using human subjects require a standard experimental protocol to

ensure that the results are general and objective. We developed an experimental

framework that enabled us to investigate the relative weight, center of gravity
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and inertia between the objects. The system setup, examiner’s behavior during

the experiments and the testing objects were all regularized. The experimental

protocol also enabled us to compare the direct contact and the teleoperation haptics

exploration performances.
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Chapter 5

System TestBed

5.1 System Overview

The previously described research methodology was tested on a bilateral teleoperation

system. This chapter begins with the hardware set up of the experimental

teleoperation system. Computers are used as controllers to the manipulators. An

Ethernet is setup as the communication network. The systemâĂŹs software is also

covered in this chapter.

5.2 Hardware

The teleoperation system used in this project is a bilateral teleoperation system with

one master and one slave manipulator. Its structure is shown in Fig. 5.1. The master

manipulator consists of four haptic devices and can provide 6 DOF force feedback

to the operator. High performance computers ensure the computation power for

both the control loop and the graphic interface. The phantoms are connected in a

cascade style on a Firewire network. The two Firewire ports on the master control

computer are used. The master control computer is connected to an Ethernet switch

through an Ethernet cable. The slave manipulator computer, with a real time Linux

operating system, is connected to the same switch. The CAN bus port on the slave
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Figure 5.1: Hardware Schematics

manipulator computer is used to connect the WAMmanipulator, the remote or “slave”

manipulator.

5.2.1 Master Manipulator

Phantom Omnis, designed by Sensable Inc., have been used as the master robots in

many research projects [45]. They have low inertia [7], low friction, high position and

force reflection resolution [46], all of which are important merits for a master robot.

They are very transparent, since the low inertia makes them easy to manipulate and

there is very low gravitational force even without gravity compensation. Also, they
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Figure 5.2: Illustration of Redundancy of WAM

have a universal connection, which enables a fast update rate. They can measure

6 DOF (three rotational and three translational) motion and provide 3 DOF force

feedback. In the system testbed, four of them are combined together to form a master

controller that can provide 6 DOF force feedback.

System Design and Kinematics In this section, the general design of the

proposed controller is presented. Its mechanism and capacity are discussed.

Mechanism Four Phantom Omni devices were used in our system as shown

in Fig. 5.3. All of them were fixed onto the 80/20 aluminum frame with fasteners

that are not shown in the figure. The original handles on the Omnis were removed.

A new “integrating” handle we built was attached to the end links. The Omnis are

electronically connected in cascade style using Firewire. Two Omnis are used in each

cascade, so there are two cascades in total. According to the manual, each cascade
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Figure 5.3: Innovative Master Manipulator

can have a maximum of 20 haptic devices, so the amount of devices we used was far

below the capacity and therefore the update rate would not be affected.

Range of Motion and Force Capacity The haptic devices are placed to

maximize the range of motion of the new master controller. The range of motion of

the Phantom Omni is 6.4"× 4.8" × 2.8" (160 × 120 × 70mm) [49]. The definition

of the coordinate system for an Omni is shown in Fig. 5.4. If the new device travels

along the vertical axis, all the Omnis reach their maximum and minimum Y-axis

values simultaneously, so the range of motion on the Y-axis is the same as on the

original Omni specifications. As shown in Fig. 5.3, two Omni devices, P1 and P4,

were placed sideways to the other two. The range of motion on the horizontal plane

is limited by the Z-axis motion of P1 and P4. Therefore, the range of motion of

the new system is smaller than the Phantom Omni: 2.8’× 4.8’ × 2.8’ (70 × 120
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Figure 5.4: World Coordinate of An Phantom Omni

× 70mm). When in the center of the workspace, the rotational range of motion of

the new system is the same as the original Phantom Omni. However, it should be

noted that when close to the boundary of the workspace, significant rotational range

of motion was lost.

The maximum exertable force of a Phantom Omni is 0.75 lbf (3.3 N)[49]. The

maximum force feedback that can be offered by the proposed system is the sum of

the force feedback from the four Omnis, and therefore 3 lbf (13.2 N).

Handle The handle of the new system was designed to connect the four Omnis

together. It has four holes which fit tightly with each haptic device. In order to reduce

its weight, the handle is hollow. The light weight is essential because the gravity of

haptic devices is added on top of the force feedback provided by the active joints.

Any extra weight hampers kinesthetic perception. 3-D printing has shown great

potential in new equipment prototyping. The flexibility of 3-D printing has brought

about significant gains in engineering. Parts created in this way are lightweight and

comparatively sturdy. The handle was printed using a Stratsys Fortus 250mc 3D

printer.

Kinematics The general control architecture of the proposed device is shown in

Fig. 5.5. The purpose of this section is to present the solution for the “Kinematic

coordinate transformation” and “Kinematic” block of that figure.
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Figure 5.5: Control System of the Novel 6 DOF Haptic Device

Kinematics of Phantom Omni Each Omni can measure the position of its

end link with respect to its own world frame. We use that as the position of the

corner of the handle, O1, O2, O3 and O4. Each of the coordinates corresponds to one

Omni in Fig. 5.3; all four Omni’s needed to be transformed into the common world

frame first according to Eq. 5.1 and Eq. 5.2.

O
1 P = o

1R
1
1P

O
2 P = o

2R
2
2P (5.1)

O
3 P = o

3R
3
3P

O
4 P = o

4R
4
4P (5.2)

Since the Omnis are rigidly attached to the aluminum frame, all the coordinate

transformation terms in Eq. 5.5 are constant homogeneous transformations.
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o
1R =


0 0 1 −L

2

0 1 0 −L
2

−1 0 0 L
2

0 0 0 1


o
2R =


1 0 0 −L

2

0 1 0 L
2

0 0 1 −L
2

0 0 0 1

 (5.3)

o
3R =


1 0 0 L

2

0 1 0 −L
2

0 0 1 −L
2

0 0 0 1


o
4R =


0 0 −1 L

2

0 1 0 L
2

1 0 0 L
2

0 0 0 1

 (5.4)

The position and orientation of the handle with respect to the center of the home

position can be determined using Eq. 5.5. This summation and average process also

reduces the position error [55].

o
hP =

1

4
(11P + 2

2P + 3
3P + 4

4P ) (5.5)

Where i
iP ’s are the positions of each Omni given in their own frame, and o

iR’s are the

coordinate transformation between their world frames and the common world frame.

Their values are shown in Eqs. 5.3 and 5.4.

39



Kinematics The orientation of the controller is derived using Eqs. 5.7, 5.8 and 5.9.

All the position data (p1−4) are in the common world coordinate. Therefore, only the

position data from each Omni is used to derive the orientation of the handle. Those

position data are derived from the waist, shoulder and elbow joint angles. Thus the

singularity problem that usually happens at the last three passive joints is avoided.

Denote:

v = [vx, vy, vz] (5.6)

Then,

vx = vy × vz (5.7)

vy =
(O4 P − O

2 P )× (O3 P − O
1 P )

||(O4 P − O
2 P )× (O3 P − O

1 P )||2
(5.8)

vz =
(O3 P − O

2 P )× (O4 P − O
1 P )

||(O3 P − O
2 P )× (O4 P − O

1 P )||2
(5.9)

The results of Eq. 5.7, 5.8 and 5.9 are the three unit vectors along the handle

coordinate system with respect to the common world frame.

Force Feedback This section addresses the “Actuation Redundancy Resolution” in

Fig. 5.5. The actuation redundancy issue is formulated into a convex optimization

problem and a solution is provided.

Force Coordinate Transformation When computing the command force for

each device, the desired force and torque is first represented in the frame located

at the center of the handle, as shown in Fig. 5.6; the rest of the coordinates

represent the force each Omni exerted on the handle. The reason why we selected

this coordinate frame is that the leverage for each force exerted on the handle would

be constant based on the chosen coordinate frame. This simplifies the optimization
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of the distribution of the load. After the optimization process, the computed force

vector will be transformed into world frames of each haptic device respectively.

Actuation Redundancy The four haptic devices have three actuated joints

each. Therefore, there are twelve DOF of actuation in the system, but the

force/torque feedback requires only 6 degrees of freedom.

This actuation redundancy allocation problem is formulated as an optimization

problem. The objective function is the squared sum of the torque applied on each

joint. The justification for this objective function is that the torques are proportional

to the current for each motor, and therefore to the power consumption of the haptic

device. Minimizing the sum of the torques is the same as minimizing the force

feedback of the whole control system. The constraints, as shown from Eq. 5.10

to Eq. 5.15, for this optimization problem are the desired torque and force feedback

to the operator.

Desired Force Feedback The desired force and torque at the new handle are

given by the following equations. The subscripts stand for the index of haptic devices,

the superscripts stand for the axis of the corresponding device. The terms from Eq.

5.10 to Eq. 5.15 are defined in the free body diagram of the handle, Fig. 5.6.

h
dF

x =h
1F

z + h
2F

x + h
3F

x − h
4F

z (5.10)

h
dF

y =h
1F

y + h
2F

y + h
3F

y + h
4F

y (5.11)

h
dF

z =− h
1F

x + h
2F

z + h
3F

z + h
4F

x (5.12)

h
dT

x =
L

2
(h1F

x − h
1F

y) +
L

2
(h2F

y + h
2F

z)

+
L

2
(h3F

y − h
3F

z) +
L

2
(h4F

x − h
4F

y) (5.13)
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h
dT

y =
L

2
(−h1F x + h

1F
z) +

L

2
(−h2F x + h

2F
z)

+
L

2
(−h3F x − h

3F
z) +

L

2
(−h4F x − h

4F
z) (5.14)

h
dT

z =
L

2
(−h2F y + h

3F
z) +

L

2
(−h2F x − h

2F
y)

+
L

2
(+h

3F
x + h

3F
y) +

L

2
(h4F

y + h
4F

z) (5.15)

Each of the four Phantoms provides 3 DOF force feedback, so the number of unknowns

here is twelve. There are a total of six constraints on them, from Eq. 5.10 to Eq. 5.15.

Motors in the haptic devices provide the force feedback, and forces are proportional to

the currents passing through the motors. In order to minimize the power consumption

of the system, we proposed the following objective function:

minΣ4
i=1((

h
i F

x)2 + (hi F
y)2 + (hi F

z)2) =
1

2
F TPF (5.16)

where

F =[h1F
x, h1F

y, h1F
z, h2F

x, h2F
y, h2F

z, (5.17)

h
3F

x, h3F
y, h3F

z, h4F
x, h4F

y, h4F
z]T

This function is the sum of the squares of the norm of the force feedback vectors

provided by the four Omnis.

P =



2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2


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Putting Eq. 5.10 through Eq. 5.15 into matrix form and denoting:

b = [hdF
x, hdF

y, hdF
z, hdT

x, hdT
y, hdT

z]T (5.18)

we can get Eq. 5.19, where J is shown in Eq. 5.20. This matrix is the Jacobian

matrix of the system. Since the output of each Omni is force, and the output of our

new system is force and torque, the first three lines of the matrix are unitless, and

the remaining three lines have the dimension of length.

JF = b (5.19)

After deriving F , all the force components have to be transformed into the form with

respect to the ground frame of the Omnis.

i
iF = i

hR
h
i F i = 1, 2, 3, 4 (5.21)

where i
hR represents the transformation matrix between the handle frame and the

ground frames.
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Convex Optimization Methods

We applied the “Karush-Kuhn-Tucker”(KKT) condition to solve the optimization

problem. The generalized KKT condition for

minimize f0(x) (5.22)

subject to fi(x) ≤ 0, i = 1, . . . ,m (5.23)

hi(x) ≤ 0, i = 1, . . . , p (5.24)

is

fi(x∗) ≤ 0, i = 1, . . . ,m

hi(x∗) = 0, i = 1, . . . , p

λ∗i ≥ 0, i = 1, . . . ,m (5.25)

λ∗i fi(x∗) = 0, i = 1, . . . ,m

5f0(x∗) + Σm
i=1λ ∗i5fi(x∗) + Σp

i=1vi ∗ 5hi(x∗) = 0

Where on the condition that the objective function f0(x), inequality constraint

functions fi(x∗) and equality constraint functions hi(x∗) are all differentiable. If

the objective function is quadratic, all the equality constraints are linear and there

are no inequality constraints, the problem can be simplified into:

minimize
1

2
xTPx+ qTx+ r (5.26)

subject to Ax = b (5.27)

The KKT condition is simplified into

Ax∗ = b (5.28)

Px ∗+q + ATv∗ = 0 (5.29)
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Eq. 5.26 and Eq. 5.27 are exact matches to our problem; therefore, Eq. 5.28 and

Eq. 5.29 are the answers to our optimization algorithm. Given the objective function

in Eq. 5.16, and linear equality constraints in Eq. 5.19, then applying the KKT

condition [5], we have Eq. 5.30.

P JT

J 0

 F ∗

v∗

 =

 −q
b

 (5.30)

The matrix on the left side of Eq. 5.30 is invertible by inspection, so the optimal

value can be found by directly taking the matrix inverse. Since this is a constant

matrix, matrix inversion doesn’t have to be processed for every iteration. It can be

computed offline and stored in the computerâĂŹs memory.

v∗ = −2(JJT )−1b (5.31)

F ∗ = JT (JJT )−1b (5.32)

Where F ∗ is the optimal solution for the haptic devicesâĂŹ desired force defined in

Eq. 5.17 and v∗ is the optimal value of the dual problem [5].

5.2.2 Slave Manipulator

The slave robot used is the WAM. It is widely known that a manipulator requires six

joints to go to an arbitrary position and orientation in its workspace. WAM has seven

joints, which means it is a redundant robot; its kinematics are given in Appendix B.

The redundancy is shown in Fig 5.7, where several WAM pictures are superimposed

together. All of the different configurations take the end-effector to the same position

and orientation. This redundancy can be used to avoid singularities, collisions or joint

limits. Every joint of WAM is powered by an electric motor. They are controlled by a

compact controller called the “puck.” Each puck has temperature, torque and position

sensors. All of the “puck” are connected in parallel on a CANbusTM(Controller
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Figure 5.7: Whole Arm Manipulator (WAM)

Area Network). The robot can be controlled in two ways: internal and external

modes. During internal mode, the computer inside the base of the robot is used.

A wireless router on the robot base gives off wireless signals. Any computer with

wifi connection capability can connect to it and control it. In external mode, the

internal computer relinquishes its control to an external computer that is connected

to the CANbusTMconnector on the back of the robot. It can be controlled in position

mode or torque mode. Position mode is mostly used in supervisory control when it

is easy to implement safety measures that can constraints the maximum velocity and

position. In torque control mode, the controller can send direct torque commands to

each joint through CANbusTM. This offers greater flexibility to the controller.
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Figure 5.8: Barrett Hand

5.2.3 End-Effector

The end effector used in this project is a three finger robotic hand made by Barrett

Technology. The robotic hand is controlled by four pucks. Each finger is controlled

by one puck; the fourth one controls the spread motion of the fingers. Every finger

has two joints, and in free space, the bottom joint is activated and the top joint is

locked. When the bottom link applies pressure on the object that it is grasping,

a locking mechanism activates the top joint and locks the bottom joint. There are

tactile sensors on every finger and on the palm of the hand. A 1 DOF finger torque

sensor is also installed on every finger. In this project, those sensors are not used.

5.2.4 Force Torque Sensor

A force torque sensor is installed between the end-effector and the WAM. This sensor

can provide 3 DOF force and 3 DOF torque measurement. The data provided by

this sensor is the force/torque applied on the hand by the arm. There are two
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Figure 5.10: Zoom-In View of the Frequency Spectrum of the Force Torque Sensor
Data

portions of this force: the force that moves the hand around and the force that

moves the object around. Therefore, when sending this force as a signal back to the

operator, the hand portion data should be subtracted. So before every experiment,

there will be a calibration process where there would be no object in the hand and the

controller remembers the sensor reading as the “hand force”; then this “hand force”

will be subtracted from later sensor readings to derive the force associated with the

object. This sensor is strain gauge based and therefore sensitive to temperature, so

it is necessary to perform calibration before every experiment. Also, the sensor data

includes high frequency noise that is eliminated using a low pass filter, as is shown in

Fig. 5.9 and Fig. 5.10.
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Figure 5.11: Experiment Software Schematics

5.2.5 Ethernet Switch

An intranet is set up between the master and slave control computer. Communication

protocol is a commonly used internet protocol. A sixteen port Ethernet switch is used

as the central hub. Static IP addresses are assigned to the computers. The number

of ports available at the Ethernet switch makes the system very flexible for future

expansions. The size of the Ethernet packet from the master to the slave is 28 bytes

and the size of the package from slave to master is 56 bytes. The system has an

update rate of 500 Hz; therefore, the total data transmission rate is:

(28 + 56)× 500 = 336kbps (5.33)

a lot lower than the 100mpbs maximum transfer rate of the switch. Therefore, the

information currently transferred on this network is relatively small compared to the

hardware capability.
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Figure 5.12: Simulation Software Schematics

5.3 Software

Various types of software are used in this project. Simulation software such as

MATALBTMand RoboworksTMare used to test the algorithms before application to

the robot in order to ensure safety and to visualize the algorithm’s performance.

Visual Studio 2005 is the main programming software. RoboTalkTMis an interface

library that communicates between the visual studio and RoboworksTM. Phantom

software and LibbarrettTM, provided by the hardware manufacturers, function as the

interface between WAM and a Linux computer. The general software architectures

are shown in Fig. 5.12 and Fig. 5.11.

5.3.1 MATLABTMand Robot Toolbox

MATLABTMis a commonly used computation software with various toolboxes

developed by users to expand its capabilities. Dr. Corke developed a robotics

simulation tool box decades ago [11]. After being upgraded for more than two decades,

the current version is applicable to our application. It provides most of the forward

kinematic and conventional D-H modeling functions required for robotics research.
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A plot function is also included to visualize the configuration of the robot. Both

kinematics and dynamics of the robotics can be simulated. Also, there is a C/C++

version of this toolbox that can be imported into Visual Studio.

5.3.2 RoboWorksTMand RoboTalkTM

RoboWorksTMand RoboTalkTMare two robotic simulation software packages devel-

oped by Newtonium [42]. The lower arm with four joints was built by a former

member of our lab and is available for download from Newtonium’s company

website. The three wrist joints were built from the SolidworksTMmodel provided

by Barrett. RoboWorkTMallows visualization of the robot in an animated graphic

dialog; engineers can input the configuration in a window and see the pose of

the robot. RoboTalkTMprovides an interface between the RoboWorksTMand other

software packages. It can interact with other programs through TCP/IP protocol.

Another program can send configuration data to RoboWorksTMto simulate the robot

under control. The purpose of using this type of simulation is to ensure the safety of

our equipment. Any algorithm has to be tested on the simulation before use with the

actual robot system. One limitation for RoboWorksTMand RoboTalkTMis that the

graphical interface requires significant computation power, which may slow down the

overall update rate.

5.3.3 MicrosoftTMVisual Studio

Visual Studio (VS) is the main programming software for the master controller. The

master controller is based on an example program provided by SensableTM. That

program controls two Phantom Omni devices simultaneously. We used the 2005

version of VS. Although, there are newer versions which provide many new features,

the 2005 version is the most compatible with the Phantom examples. The library files

of all other software packages are imported into VS. After importing the library files,

the functions predefined for the RoboTalkTMand the Phantom devices can be used.
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C/C++ is used as the programming language. TCP/IP is used as the interfacing

protocol between the master and the slave robot.

5.3.4 Phantom Configuration and Phantom Test

SensableTM, the manufacture of the Phantom, provided these two software packages.

The Phantom Configuration reads the serial numbers from the devices connected to

the computer and assigns names to them. Those names are used in the computer

codes written in VS. Phantom Test provides several simple testing programs that

help diagnose the hardware status. It also helps the programmer get familiar with

the devices and identifies the coordinates of the devices. SensableTMalso provides

library files for C/C++ programs and several example codes for their product.

5.3.5 LibbarrettTM

The LibbarrettTMfile contains the control software for WAM. There are twelve

example programs in the LibbarrettTMfolder. All of them are provided as source

code and must be compiled into executable before testing. The first example is the

process of turning on and off the WAM and is always a good starting point for any

type of programming. Functions for various operations can be seen in the source files.

Our program is based on example one. Codes about TCP/IP protocol and robot

motion control are added to the original code. Several configuration files are also

modified.

A very good trouble shooting command is “btutil.” It can list all the available

pucks on the current CAN bus. If the computer reports a problem with any of the

pucks, Barrett should be contacted for repair.
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Chapter 6

Experimental Assessments

To verify the efficacy of the control architecture and the system setup, several

experiments are developed here. First, two experiments are carried out to test the

experimentâĂŹs testbed capability and reliability. The first one is the evaluative

experiment for the 6 DOF master manipulator; its workspace and force/torque

feedback capabilities are explored. The master manipulator is also tested in both

haptics and teleoperation applications. Then the kinematics of the redundant slave

manipulator are studied; a wrist singularity avoidance algorithm is applied.

After testing the system testbed, we conducted the kinesthetic exploration

experiments. The next three experiments have a similar protocol, but investigated

different kinesthesia factors: weight, center of gravity and inertia distribution. These

properties are closely related to kinesthetic feedback and force reflection. During

experiments for each kinesthesia factor, a direct contact haptic perception experiment

is carried out as a comparison group. This experiment provides the ideal case result

for the haptic exploration task in a teleoperator scenario. This is because the ideal

feedback in a teleoperation system should be able to mimic the exact motion and force

interaction in the slave workspace, as if the operator is interacting with the remote

space directly. Then the new controller is used through teleoperation to perform the

same tasks. Lastly, a PD control architecture is provided as another control group.

53



The system testbed discussed in the previous chapter is the overall experimental

platform.

6.1 Evaluation of the Innovative Master Manipula-

tor with Six Degree of Freedom Force/Torque

Feedback

In this experiment, the master controller system, consisting of four haptic devices,

is tested. Results show the reliability of the novel system. First, the system is

manipulated by an operator mimicking a normal haptics exploration scenario to test

its kinematics algorithms. Then a static virtual wall is used to test the force feedback

capability. Since the master manipulator would be in direct contact with operators,

its stability is crucial for the safety of the operators.

6.1.1 Kinematics Evaluation

The kinematics algorithm proposed is evaluated in this experiment. The position and

orientation of the master controller is generated based on the position information

of the four Omnis. The computational capability of our computer is high enough

to maintain a 1 kHz update rate when communicating with all four Omnis in every

iteration. During this experiment, the operator attempted to test the workspace

boundaries, first in linear motion along the three axes, then in rotational motion

around the three axes.

Discussion

The data showed that the new system we built achieved the proposed workspace.

All four Phantoms are in their own workspace during the process. Although one

particular Phantom may be in its wrist singularity position at its workspace limit,
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Figure 6.1: Position of the Master Controller
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Figure 6.2: Orientation of the Master Controller

the system configuration is still stable due to the fact that we used only the Phantoms’

position information to determine the master system configuration. The master

system orientation is determined by the relative positions of the Phantoms. When

computing the system position, all four PhantomsâĂŹ positions are used; this makes

the data more accurate in that the process of taking the average helps reduce the

random noise from the encoders.

In the first half of the experiment, the manipulator translated in its workspace,

first along the x axis, then the y axis, then the z axis, while the four Phantoms moved

accordingly, as is shown in Fig. 6.1 and 6.2. The second and third Phantoms, as

shown in Fig. 6.4 and 6.5, have their coordinate systems paralleled to that of the

manipulator system; therefore, their position curves are very similar to 6.1 during the

first half of the experiment. In the second half of the experiment, the manipulator

rotated around the x, y and z axes, respectively. The angles α, β and γ were defined
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Figure 6.3: Position of Phantom Omni No. 1
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Figure 6.4: Position of Phantom Omni No. 2

according to Appendix E. The rotational angles were able to achieve the proposed

specifications.

6.1.2 Haptics Experiment

A virtual wall with a stiffness of 300N/m and a rotational stiffness of 50Nm/rad

was established. The system is able to interact with this flexible wall in a virtual

environment (VE).

The virtual wall passes through the origin and is perpendicular to the z axis. Its

force and torque feedback functions are defined in Eqs. 6.1 and 6.2. The desired joint

position is computed using the kinematics of the new system, and the figure shows

that the singularity problem is avoided because of the method we used. The force

collaboration between the Omnis is shown in Fig. 6.7 and Fig. 6.8. All of them are

56



0 10 20 30 40 50 60 70
−200

−100

0

100

200

300

Time (sec)

3 3P
 (

m
m

)
 

 
3
3
P

x
3
3
P

y
3
3
P

z

Figure 6.5: Position of Phantom Omni No. 3
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Figure 6.6: Position of Phantom Omni No. 4

shown in the end-effector frame of the Omnis.

F =

kp(
O
h P − Po) z > 0

0 z < 0

(6.1)

τ =

kt(
O
h θ − θo) z > 0

0 z < 0

(6.2)

Where Po is the point where the haptic device enters the virtual wall in VE, θo is

the orientation of the device when it enters the virtual wall. kt and kp are the wall’s

translational and rotational stiffness, respectively. The dynamics of the virtual wall

is simulated using a passive integrator proposed in [32].

When the master manipulator enters the wall, a resistant force is created that

pushes the manipulator back to its point of entry. Also, the rotational resistant force

pushes the manipulator toward its original orientation when it enters the virtual wall.
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This type of modeling is widely accepted in haptics research because it can emulate

typical interactions between objects. A large stiffness coefficient is suitable for a more

rigid material while a small stiffness coefficient corresponds to a more flexible object.

During the process, an operator may push the limit of the force capability, first in

translational motion and then in rotational motion.

Disucussion

The force and torque applied by the manipulator during the interaction with the

virtual wall is shown in Fig. 6.7 and 6.8. In the first half of the experiment, the

manipulator translated inside the virtual wall to test its force feedback capability.

Then it was rotated around its point of entry to generate a torque feedback; as shown

in Fig. 6.8. From Fig. 6.9 to Fig. 6.12, we can see the four Phantoms worked

collectively to generate the desired force and torque. For example, between 30 and

35 seconds, torque along the y axis is applied. For all the Phantoms, force along

their negative x and negative z axis is applied accordingly. The force is multiplied

with leverage, in this case the distance between the pressure point and the center of

the handle, to derive the equivalent torque. The operator was able to feel a resistant

force/torque against the relative motion between the master manipulator and the

virtual wall simulated.

We also developed a graphic rendering of the virtual wall. As shown in Fig. 6.14,

the red sphere represents the position of the master device in the virtual environment

as it interacts with the deformable virtual wall.

6.1.3 Teleoperation Experiment

Experiment Setup

In this experiment, the omni-based system we developed is used as the master robot

in a teleoperation system. The WAM was used as the slave robot as shown in Fig. 5.1.

Two computers are used as the master and slave controllers. The master controller
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Figure 6.8: Torque Applied by the Device

is connected to the master robot through Firewire cable, and the slave controller

is connected to the slave robot through Control Area Network (CAN) bus. The

position, orientation and force information is transmitted between the computers

through the Ethernet. 2-Channel controllers are used to enforce position and force

tracking [41, 27, 56].

Experimental Results

The new master controller system shows great potential in the experiment. As in Fig.

6.13, the joint angles of the slave robot track the master robot well. The singularities

of the Phantoms are successfully avoided due to our kinematics computation. The

desired angles generated by the master manipulator are stable and smooth, making

it possible for the slave manipulator to track them smoothly. The slave manipulator

was able to track the master robot well because of its mechanism and controller

design. The data from this experiment confirmed that the system was ready for the

kinesthetic exploration experiments.
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Figure 6.9: Force Applied by Phantom Omni No. 1
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Figure 6.10: Force Applied by Phantom Omni No. 2

6.2 Kinematics of the Redundant Slave Robot

The purpose of this experiment is to test the efficacy of the wrist singularity avoidance

algorithm. We focused on avoiding wrist singularity because the workspace of the

following experiments is in the most dexterous space of the robot and, therefore,

significantly eliminates the possibility of other singularities. The wrist singularity

occurs when the determinant of its Jacobian Matrix equals zero.

ẋ =J(θ)θ̇ (6.3)

J(θ) =

Z0 × (on − o0) · · · Zn−1 × (on − oi−1)

Z0 · · · Zn−1

 (6.4)
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Figure 6.11: Force Applied by Phantom Omni No. 3
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Figure 6.12: Force Applied by Phantom Omni No. 4

Applying the property of spherical wrist, the Jacobian matrix can be simplified into:

=

J11 0

J12 J22

 (6.5)

Taking its determinant, we have:

|J | =|J11||J22| (6.6)

|J22| = sin(θ6) (6.7)

Therefore, the wrist singularity happens when:

θ6 = 0 (6.8)

What we designed is an intuitive algorithm, when θ6 approaches 0, for example smaller

than a constant threshold α, joint three is activated and provides a pivot motion that
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Figure 6.13: Position Tracking of the Teleoperation System

holds the wrist position, but places its orientation in a way where θ6 is no longer zero,

and the arm is φ degrees with respect to the original configuration. Also, the robot

needs a smooth transition between the cases when the singularity avoidance is and is

not activated, so we define:

φ =

φ = kφ(θ6 − α), if θ6 ≤ α

0, otherwise
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Therefore, when θ6 enters the singularity zone, joint three will be activated smoothly;

details can be found in Appendix. C.

6.2.1 Results and Discussion

We used RoboWorks to simulate the WAM manipulator as the slave manipulator.

The reason why we did not use the real manipulator was that when close to the

singularity configuration, the joint velocities can become large. The robot can have

a brief but very violent motion, and then shutdown. This is because in order to

generate a small velocity at the end effector space, a set of very large velocities in

the joint space is required. This set of large velocities usually exceeds the maximum

velocity allowed by the robot, and the control system shuts down operation as a safety

measure.

The results of the singularity avoidance algorithm are shown in Fig. 6.15 and

Fig. 6.16. In Fig. 6.15, the angle of joints five and seven change drastically when

joint six approaches zero, and joint three stays constant at zero (it is shown as the

red line), which mimics a singularity an anthropomorphic arm can encounter. In

Fig. 6.16, joint three is activated when the robot approaches the wrist singularity,

as shown by the red line; therefore, all of the joints travel smoothly. This singularity

avoidance algorithm was essential to our application because most of the singularities

we encountered were wrist singularities.
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Figure 6.14: Haptics Application
The red sphere shows the position of the master controller in the virtual

environment. The red rectangle shows the position of the deformable virtual wall.
The cave on the wall is caused by the force exerted by the red sphere.
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Figure 6.15: Joint Angles of WAM without Singularity Avoidance
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Figure 6.16: Joint Angles of WAM with Singularity Avoidance
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6.3 Weight Perception

As mentioned in Chapter. 3, two sets of equations govern the motion of an object:

fd = ma+mg (6.9)

τd = Iα + ωT I × ω + τg(θ) (6.10)

In this experiment, the participants were asked to judge the weight of the object,

which is the term m and I in Eq. 6.9 and Eq. 6.10. The other terms were kept

constant.

6.3.1 Methods

The experiment presented here is the first one of a series of experiments. In this

experiment, haptics exploration tasks were studied in both teleoperation and direct

interactions. Weight perception was used as the kinesthetic exploration task. The

operators interacted with test objects that look identical. They would answer

questions about the weight of test objects. It took approximately half an hour for

each subject to complete the experiments.

Design of the Test Objects

A test object used in the experiment is shown in Fig. 6.17. It is made up of three

parts: the handle, the extra weight and the cardboard box around them. The handle

is where the subject would grasp. On top of the handle, there is a piece of sheet

aluminum. The purpose of the aluminum is to make it easier for the robot to grasp

the test object. Every time the robot grasped the test object, the top piece was

first placed onto the palm part of the hand, and then the robotic fingers are closed

to provide gripping force. These combined mechanisms ensured a firm grasp. A

threaded rod passed through a hole at the bottom of the handle and was bolted down
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Figure 6.17: A Test object With the Cardboard Box Open

Table 6.1: Weight of the Test Objects
No. Weight (Wa Unit:kg) Normalized Weight (Wn)
1 0.6030 6.865
2 0.8774 9.987
3 1.2909 14.70

Comparison 0.8784 (Wc) 10.00

at its midpoint. The extra weights were fastened on the two ends of the threaded

rod. Every test object had a cardboard box around it, and all the boxes had identical

appearances. This is to ensure that the subjects could not receive any additional

visual information about the weight of the object. Also, since the material of the

handles was identical, there was no appreciable tactile sensing difference between the

objects. The normalized weight is defined according to Eq. 6.11.

Wn =
Wa

Wc

× 10 (6.11)
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WhereWa is the actual weight shown in the second column of Table 6.1. Wc is 0.8784

kg, the actual weight of the comparison objects, as shown in the last row, second

column in Table 6.1. The purpose of this normalization is to eliminate bias from

the subjectsâĂŹ previous experiences. It is easier and more meaningful to test the

relative weight perception than the quantitative weight perception capability.

There were three testing methods used: direct contact haptics exploration,

teleoperation haptics exploration with a two channel controller, and teleoperation

haptics exploration with a three channel controller. In the direct contact exploration,

the subjects manipulated the test objects directly using their dominant hand, so

the force the participants experienced was exactly the amount of force needed

to manipulate the objects. In the teleoperation experiments, the participants

manipulated the objects through a teleoperation system shown in Fig. 5.1. In every

section, three test objects were used, so for each participant there were nine trials in

total.

The perception time was recorded as a performance index. In direct contact

exploration tests, perception time was the interval from when the subject picked

up the object until they laid down the object. In teleoperation exploration tests,

the perception time was the time interval where the force feedback was enabled. The

subjects were unaware that the time they spent was a type of data we were collecting,

but before the experiment started, they were all informed that the process would be

videotaped.

Procedure and Instructions

In the experiment, the participant was asked to come in and sit comfortably on the

chair next to the table where the direct haptic exploration was going to take place.

An introduction about the experiments was given to the participant by the examiner.

Then the direct contact exploration experiment started. The subject was first given

the comparison object to manipulate. They were told that the weight of this object

was ten units and that they needed to remember this weight. The object was then
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taken away from the participant and a test object was presented to them. They then

picked up the test object and manipulated it before telling the examiner the weight

of the test object. This process was repeated two more times for the other two test

objects. Then the direct contact exploration experiment ended. The test objects were

presented to the participants following a random sequence generated by a computer

program.

Before the teleoperation kinesthetic tasks started, the subjects were given two

minutes of recess while the examiner set up and initialized the robot. At the beginning

of the three channel controller teleoperation exploration section, the subjects were

given a brief introduction about the system. Then the experiment started. The

experiments shared the same procedure as the direct contact experiments. They were

given the comparison object every time before the test object to review.

After finishing the three channel control section, the robot went back to its home

position. The participants were given a two minutes recess while the examiner made

changes to the controller. Then the same procedure was carried out one more time

using the two channel controller.

System Testbed

A 7 DOF WAM was used as the slave robot. An innovative 6 DOF master controller

was used as the master robot. Its details are explained in Chapter 5.

One camera on the slave side was directly connected to a monitor on the master

side to provide visual feedback for the subjects. A large piece of black cloth hanging

between the slave robot and the master side prevented the subjects from seeing the

slave side directly. This was to ensure that the subjects received visual feedback from

the slave side only through the monitors to mimic an actual teleoperation scenario.

When we implemented the three channel controller, a new issue emerged. The

force/torque sensor reading from the slave robot contained a high frequency noise.

When it was reflected to the master controller, there was an audible, high pitch noise

from the actuators of the master controller, so we implemented a first-order low pass
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Figure 6.18: Direct Contact Exploration
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Figure 6.19: Teleoperation Exploration
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filter for sensor measurements value, as shown in Eq. 6.12. Its cutoff frequency was

set to 5 Hz, because when converted to the frequency domain, most of human motion

is under 5 Hz. [20]

f̃ffd(k) = αfffd(k) + (1− α)f̃ffd(k − 1) (6.12)

Where α is the low pass filter constant, denote T as the update period of the master

controller and τ as the filter constant, then when T << τ , we have the following

equation:

α =
T

τ
(6.13)

Another issue was that the fffd was given with respect to the robotic hand coordinate

frame, which must be transformed into the world coordinate frame. This was achieved

by multiplying the coordinate transformation matrix which can be derived through

the robotâĂŹs forward kinematics. Also the force feedback was scaled down to ensure

that the desired force did not exceed the capacity of the haptic devices.

f̃ffd = kf
0
7Rf̃ffd (6.14)

kf = 0.5 (6.15)

0
7R = 0

7R(θ1, θ2, θ3, θ4, θ5, θ5, θ6, θ7). (6.16)

Where kf is the force scaling factor, and 0
7R is the coordinate transformation between

the gripper frame and the world frame and is a function of the robot configuration as

shown in Eq. 6.16, its analytical expression can be found in Appendix B. Therefore,

combining Eqs. 6.12 to 6.16, results in the C4 block in Fig. 5.5.
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Figure 6.20: Filtered Force/Torque Sensor Data and Unfiltered Force/Torque Sensor
Reading

Participants

Five individuals, aged from 24-30, volunteered to be the participants in these

experiments. All of them were right-handed and two of them were females. None

of them had participated in any experiments on this setup before.

6.3.2 Results and Analysis

The perceived weights were recorded and their average and variance were computed

according to Eq. 6.17.

x̃ =
1

N

N∑
k=1

xj

σ2 =
1

N − 1

N∑
k=1

(xj − x̃)2 (6.17)

The ideal perceived weight should be exactly proportional to the actual weight of

the test object, so the ideal curve would be a 45 degree straight line that passes

through the origin. As shown in Fig. 6.21, the blue line, which represents where

the subjects were tested in direct contact exploration tasks, shows the curve of a

roughly proportional relationship. According to the dashed black line in Fig. 6.21,

the subjects cannot tell the difference between the test objects. This is due to the fact

that the position tracking error between the master and the slave robots was so low;
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Figure 6.21: Perceived weight vs. Actual Weight in Direct Contact (top), Two-
Channel Control (Middle) and Three-Channel Controller (bottom)

the force feedback was very close to zero, as shown in Fig. 6.13. In the blue line of

Fig. 6.21, where the force feedback channel was enabled, the performance improved

greatly, especially for the heavy object. These results show significant improvement

from the results in [43].

The perception time also confirms our expectations. In Fig. 6.22, trials 1-3 show

the perception time for the three trials in direct contact exploration, trials 4-6 show the

time spent on the two channel controller time, and trials 7-9 show the time spent on

the three channel teleoperation experiments. Note for each section of the experiment,
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Figure 6.22: Perception Time Vs. Trials

the first trials (trial 1, 4 and 7) always take longer than the rest. This is because

the subjects needed time to get used to the experimental setup. The second and

third trial used in the three channel controller cases (trial 8 and 9) are significantly

shorter than those of the two channel controller case (trial 5 and 6). This shows that

the three channel controller provides better weight perception than the two channel

controller, but is still worse than the direct haptics exploration.

6.4 Center of Gravity Perception

When holding an object, not only does a person have to provide the grasping force

to cancel the gravity, but he/she also has to provide torque to compensate for the

unbalanced object if he/she is not holding it at the center of gravity; otherwise the

heavier side would drop. This can also be seen from Eq. 6.9, where the third term

τg(θ) is a gravitational torque term. In this experiment, we try to determine the
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perception accuracy. The term m was kept the same for the three test objects used

in this experiment.

In the teleoperation exploration experiments, this unbalancing effect can be

reflected back to the subject through the teleoperator. The force/torque sensor can

measure the torque generated by the unbalanced load. These experiments are used

to test the operators’ ability to the unbalanced objects during the direct contact and

teleoperation experiments.

6.4.1 Methods

Apparatus

In this experiment, three boxes with identical appearances and weights were used.

The weights on them were distributed differently to provide different locations for the

center of gravity. The configurations of the objects are shown in Tab. 6.3 and Fig.

6.23. The unbalanced object added a torque along the axis that is perpendicular to

the handle and the threaded rod.

Table 6.2: Apparatus Configuration for Center of Gravity Experiment
(Units: m)

No. Left* Right* Lc

0 0 1.3× 10−2 8.6× 10−2

1 3.2× 10−3 9.5× 10−3 4.3× 10−2

2 6.4× 10−3 6.4× 10−3 0
* shows the thickness of the metal plate. The plates have identical area, so the thickness is proportional to its weight.

Procedure

Before the experiments, each participant was given brief instructions about the

experiment. He/she was given enough time to get comfortable with the teleoperation

system. Participants were also instructed to adjust their seats as comfortable as

possible.

76



Figure 6.23: A Test Object in the Center of Gravity Perception

There are three sections for each participant, each experiment testing method

corresponding to one type of method mentioned in the last part. The first testing

method is, again, the direct contact exploration. Two kinds of system control

architectures were tested: a simple PD controller and the advanced transparency

enhanced controller. The procedures of the three testing methods were identical. Each

section had five trials in total. The three objects were presented to the participant

in a random order.

In the direct contact section, the lab examiner put an object in front of the

participant and asked him/her to pick it up using his/her dominant hand. They

were asked to hold it only at its handle. After the participant was asked to state

which end of the box was heavier. There are only two possible results for each trial

0 (wrong) and 1 (right).

During each trial in the teleoperation sections, the laboratory personnel put the

test object between the fingers of the gripper and closed the gripper of the robot.
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Then, the participants were asked to pick up the handle of the master robot and try

to determine the objectâĂŹs center of gravity based on the force feedback. When

he/she felt comfortable enough, he/she was advised to release the master manipulator.

The same question was asked and answered. The participants were only able to see

the slave side in a television view connected to a CCD camera on the slave side. This

is to simulate the actual remote handling process. The time spent on each trial was

also recorded, but the participants were unaware of that.

Participants

People with various backgrounds volunteered for the experiments. A recruiting flier

was used to recruit volunteers. They were given free T-shirts for the time they spent.

6.4.2 Results and Analysis

The average accuracy and execution time are taken as the haptics index of the

corresponding trials according to Eq. 6.17. The results are given in Fig. 6.24 and Fig.

6.25. The trend of the bar chart clearly supports what was hypothesized. In the direct

interaction case, the participants spent the least amount of time and had the highest

accuracy. In the three channel controller, the participants had lower accuracy and

spent more time in reaching their decision. In the PD controller case, the participants

spent very long times with very low accuracy.

6.5 Inertia Perception

This experiment tries to test inertia perception resolution. The difference between

the first two experiments and this one is that acceleration is required to generate the

force difference that helps distinguish objects, as shown in Eq. 6.9 and Eq. 6.10.

The m term was the same for all the objects. Also there is no noticeable τg(θ) term

because the gravity center was at the geometric center of the objects.
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Table 6.3: Results of Center of Gravity Perception

Participants Number DC 3C 2C
1 X X X X X X × × ×

2" 3" 2" 14" 5" 3" 10" 12" 14"
Accuracy 100% 100% 0%
Time 2.3" 7.3" 12"
2 × X X X X X × X ×

2" 2" 2" 18" 6" 11" 25" 13" 10"
Accuracy 66.7% 100% 33.3%
Time 2" 11.6" 16"
3 X X X X × X × × ×

13" 10" 3" 12" 12" 8" 19" 14" 10"
Accuracy 100% 66.7% 0%
Time 8.7" 10.7" 14.3"
4 X X X X × × × × ×

13" 3" 8" 15" 12" 22" 12" 22" 14"
Accuracy 100% 33.3% 0%
Time 8" 16.3" 16"
5 X X X X × X × × ×

2" 2" 2" 7" 3" 4" 8" 10" 6"
Accuracy 100% 66.7% 0%
Time 2" 4.7" 8"

Average Time 4.6" 10.2" 13.3"
Standard Deviation 3.4" 4.4" 3.4"
Average Accuracy 93.3% 73% 6.7%
Standard Deviation 0.15 0.28 0.15

6.5.1 Methods

Procedure

The experiments still have three sections: direct contact exploration, teleoperation ex-

ploration with PD controller and teleoperation exploration with advanced controller.

In each section, there were three trials, and in each trial, the participants were given

two objects one after the other. They were asked to compare the second one with

the first one in terms of mass. So, there were three possible answers: more massive,
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Figure 6.24: Average Accuracy in Center of Gravity perception

less massive and the same. If they answered with “the same”, the answer would be

treated as incorrect because none of the objects had the same inertia. During the

experiments, the participants were instructed to only compare the test objects in the

same trial and discard all previous experiences.

Apparatus

The same 0.3m-long, 1.30kg-weight test objects were used in this experiment. The

weights used were the quarter-inch thick steel plate with both a width and height

three and a half inches. There were three objects used, as shown Tab. 6.4 and Fig.

6.26. Each object had two weights. They were placed symmetrically to each other

on objects. The first one has them at 1.9 × 10−2m from the center of the threaded

rod; this is the closest they can get because of the size of the handle. The second one

has them placed at 7.4× 10−2m. And the third one has them at the furthest possible

location: 1.5 × 10−1m from the center. The location of the weights on the second

object is chosen so that the radius of gyration and the square root of total effective

inertia of the three of them forms an arithmetic progression.
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Participants

Five people, aged from 19 to 30, volunteered for the experiments. They were given

free T-shirts for their time. The same flyer used in the previous experiment was used

here.

6.5.2 Results and Analysis

The raw data of this part of the experiment is in Tab. 6.5. The accuracy and time

spent on each trial was recorded. The time accounted for was from the time the

participant picked up the object to the time he/she came up with an answer to our

question. Fig. 6.27 and 6.28 shows the bar chart of the experiment results. As we

can see, the accuracy rate of the PD controller is lower and the exploration time

is longer. This supports our hypothesis that the advanced controller provides better
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Figure 6.26: A Test Object in Inertia Perception

transparency in the kinesthetic exploration tasks. However, we have to point out that

this part of the experiment proved to be the most difficult of the three. This is because

inertia manifests itself through motion acceleration, which may be ambiguous to some

people. So, the accuracy rate is very low even in the direct contact exploration part.

Given the limited workspace and the force capacity of the manipulators, the result

has merit.

6.6 Discussion

The first two experiments tested the functionality of the experimental testbed.

The last three experiments used the testbed to carry out the proposed kineshtetic

exploration tasks. The same kinesthetic experimental framework is used in the

three different kinesthetic perception experiments. Based on the performance in the

kinesthetic exploration tasks, it is obvious that the teleoperational exploration can be

further improved, since the performance in direct contact experiments is much better
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Table 6.4: Apparatus Configuration for Inertia Experiment
(Units: m)

NO. Lx
Radius of
Gyration

0 1.9× 10−2 1.7× 10−2

1 7.4× 10−2 5.7× 10−2

2 1.5× 10−1 1.14× 10−1
* shows the thickness of the metal plate. The plates have identical area, so the thickness is proportional to its weight.
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Figure 6.27: Average Accuracy vs. Experimental Methods

than in the teleoperation case. Possible methods include the hardware, the controller

design and so on. This has been the drive of teleoperations research for over four

decades.

In this experiment, the controller design significantly influenced the results. The

better the force feedback provided to the operator, the better the experiment result

is. These experiments show that the more advanced control algorithms can improve

kinesthetic perception. This is consistent with earlier research results showing that a

better control system can improve the system transparency [26, 29].
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Table 6.5: Results of Inertia Perception

Participants Number DC TA TPD
1 X X X × X × × X ×

15" 13" 8" 25" 30" 24" 23" 24" 15"
Accuracy 100% 33.3% 33.3%
Time 12" 26.3" 20.6"
2 X X X X × X × X X

17" 20" 20" 28" 24" 20" 40" 26" 23"
Accuracy 100% 66.7% 66.7%
Time 19" 24" 29.7"
3 X × × X × × × × X

30" 26" 28" 71" 74" 67" 69" 54" 100"
Accuracy 33.3% 100.0% 66.7%
Time 28" 70.7" 74.3"
4 × X × X X X X × X

61" 97" 23" 52" 31" 60" 97" 84" 50"
Accuracy 33.3% 100% 66.7%
Time 60.3" 47.7" 77"
5 × × X × X X × × X

20" 28" 14" 29" 26" 21" 19" 27" 22"
Accuracy 33.3% 66.7% 33.3%
Time 20.7" 25.3" 22.7"

Average Time 28.0" 38.8" 44.8"
Standard Deviation 18.7" 20.3" 28.3"

Accuracy Rate 60% 60% 46.7%
Standard Deviation 0.37 0.28 0.19

Human factors are very important in any experiment involving human subjects.

The more subjects there are, the less potential for bias in the results. For example,

females tended to over-rate the weight of the objects and males were more likely to

underestimate the weight of the objects. The expertise of the subjects in related areas

can also play a very important role. Someone who is familiar with the experimental

setup can produce much better results than a person naive about teleoperation

systems. Therefore, in our experiments, the subjects were given brief introductions to

the experiments and the system testbed to make them familiar with the environment.
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Figure 6.28: Average Perception Time vs. Experimental Methods

Another important factor about human subjects is the issue of fatigue. People get

tired which leads to overrating weights as the experiment proceeds, so a proper resting

period during the experiment is crucial.

The goal for a kinesthetic teleoperation system is to provide a sense of immersion

so that the operator perceives as if it can mimic a direct hand interaction. The

results of these experiments show that the performance of current teleoperation

systems is still not high enough to provide that level of feedback. Both the hardware

and control design of the system may be posing limitations to the performance. In

this experiment, teleoperational and direct kinesthetic exploration were investigated.

Different controllers for the teleoperation system were used in the experiments.

Weight estimation, center of gravity perception and inertia perception experiments

were considered. The result suggested that the controller with a better transparency

provided better performance. Several factors were discussed and analyzed. There are

a lot of open questions that may be promising research topics, for example, comparing

the hardware systems using the same controller and experiment protocol.

85



Chapter 7

Conclusions

7.1 Overview

In this dissertation, kinesthetic perception in teleoperation systems was investigated.

During the course of this research, two major issues have been addressed: system

testbed configuration and experimental protocol development. The system testbed

configuration issue includes the kinematic redundancy of the slave robot, the actuation

redundancy of the master robot and the kinematics of the master robot. The

experimental protocol issue includes the design of test objects, the setup of the

experimental environment and the development of the experimental procedure.

Experiments were conducted which demonstrated the influence of the controllers on

the performance of the teleoperation systems.

7.2 Slave Robot Redundancy Resolution

In the slave kinematic redundancy problem, we adopted a geometric approach. The

redundancy of the robot was utilized to avoid the wrist singularity. A simulated

slave manipulator was used to test the algorithm. The advantage of this approach

is obvious: every step of computation is based on a geometric method that has

clear physical meaning. It is easier to compute and interpret. Commonly used
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pseudo inverse based algorithms require taking the inverse of the Jacobian matrix,

which consumes much computational power. Previously, geometric approach inverse

kinematics methods are only applied on non-redundant robots. Also, this algorithm

is easy to apply to robots with different kinematics.

The disadvantage of this algorithm is that it only solved the singularity in

one particular configuration. It is still an open question for the other singularity

configurations and for the joint limit avoidance.

7.3 Master Controller Design

Through research, people are always trying to push the limits of human knowledge;

therefore, proper equipment may not always be off-the-shelf. For this reason,

custom-designed experimental equipment has been widely used. We designed a

master manipulator that can offer the necessary force feedback. The novel master

manipulator is the integration of four off-the-shelf haptic devices and some other

custom-designed parts. When solving the master actuation redundancy problem,

four haptic devices were integrated into one system; the convex optimization method

was used to resolve the redundancy. Using the collaboration between small scale

robots to provide a large force capability is beneficial in that it makes the system

more expandable and flexible. Also, it helps reduce the cost of the equipment.

Recently developed advanced prototyping methods have made the design and

production of new conceptual products much easier. 3D printing is the most

important development. It was used to manufacture the prototype. This brings

a whole new dimension to parts design. Previously, engineers had to consider the

availability of the material in their designs; now the 3D printer can print objects

of any shape as long as they can be contained in the 3D printer work space. Also,

the material used in 3D printing is far lighter than most other materials used in the

prototyping process. This makes the new robot more transparent. However current
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3D printing technology is not perfect; its material still suffers from weakness and lack

of heat-resisting capability.

7.4 Kinesthesia Experiments

The experimental protocol developed was based on previous human factor analysis

research and experimental psychology methods. Using a standardized protocol made

the results of the experiments more valuable. Every experiment had at least five

participants; most of them were naive about the experiment.

The results of the experiments support the hypothesis: a controller that provides

better force tracking can improve kinesthetic exploration performance. In the weight

and center of gravity perceptions, the average perception time decreased when the

three channel controller was used, and the average accuracy rate increased. For the

inertia perception, the trend of the curves still supports what we expected. But the

differences resulting from the use of using different controllers is not very significant.

We think it is due to the fact that the acceleration generated by the teleoperation

system is not noticeable to human perception. Also, we think that the low pass filter

may have had a side effect in the kinesthetic perception tasks. It created a significant

lag in the force feedback and some force/torque associated with the dynamics of the

object was lost because of this low pass filtering mechanism.

7.5 General Discussion

Experiments were presented and the kinesthetic exploration tasks in both direct

contact and teleoperation cases were investigated. Experimental protocols, control

algorithms and hardware were constructed centered on the concept of testing and

enhancing kinesthetics feedback. There were three fundamental contributions: 1)

an experimental framework was proposed to test the kinesthetic exploration tasks

in both teleoperation and direct contact cases; 2) different controllers were used
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in the experiments to analyze their role in kinesthetic exploration tasks; and 3)

a singularity avoidance algorithm was used to improve the performance of the

kinesthetic exploration tasks. The results show that as the force feedback was

enhanced, the participants’ performance improved. The direct contact exploration

and PD controller were used as the comparison. If the force feedback is further

improved, there should be better results. The experiments were very fundamental

and can be applied to other teleoperation applications.
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Chapter 8

Future Work

This dissertation demonstrates the concept of testing the kinesthetic perception

in teleoperation systems. A system testbed was configured and an experimental

framework was proposed. We can further explore this concept along many possible

avenues. The following sections explain areas in which future research work can be

conducted.

8.1 Kinematic Redundancy

A geometric approach based inverse kinematic algorithm was used to avoid wrist

singularity. It can also be generalized to avoid other singularities such as elbow

or shoulder singularity. The algorithm we proposed considered the wrist Jacobian

matrix; if we can use the same method to analyze other portions of the Jacobian

matrix, we would be able to solve the singularity problem of the whole arm. In other

words, the robot will be able to travel inside its workspace without encountering

any singularities. Also, it would be useful to use the redundancy in avoiding the

joint limits and in avoiding collision with other objects in the workspace. It would

also be interesting to optimize the impedance of the robotic arm by utilizing its

redundancy. The impedance of the robot in Cartesian space is different given different

configurations, although the individual joint controllers used are the same.
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8.2 Master Controller

We built an innovative master controller by integrating off-the-shelf haptic devices.

Kinematics and force feedback algorithms were proposed.

One potential way to upgrade the current master controller would be to install

switches to increase its functionality. Most teleoperation systems require many inputs

from the operators, such as the control command of the open/close motion of the

gripper or the activation/deactivation of many other types of end-effectors. Also,

we can install those tactile sensors or force torque sensors on the handle to take

force/torque measurements from the master side and then send these measurements

to the slave side. This way, a four-channel control architecture would be formed, and

then it could be used in the kinesthetic perception experiments.

3D printing technology has been developing faster than ever before. If the 3D

metal printer becomes more affordable, many more robots parts will become easy to

custom-designed. We can have those switches mechanically built in the handle so

that it would not require any assembly. This would make the handle much easier to

manufacture and have a very consistent appearance.

Another new type of master controller that might be interesting has the

exoskeleton style structure. That type of structure mimics the kinematics of a human

arm, has a very large workspace and usually does not have a singularity problem.

8.3 Control Algorithms

A lot of controller algorithms have been proposed to enhance the performance of

teleoperation systems. In this dissertation, only two of them were explored. The

most transparent four-channel controller was not tested. The additional channel we

did not use was the force measurement from the master controller. This is due to the

fact that the master controller is relatively small and it is challenging to integrate

an extra component into the system. More measurements taken and more signals

91



transferred usually can improve the sense of immersion, but more signals transmitted

also require better communication channels. So it would be very interesting to see

whether increased system complexity increases kinesthetic feedback. Even for the

same type of controller, there are a lot of parameters that we can tweak, for example,

the gains of the controllers and the scaling factors.

Also, there are significant numbers of passivity enforced controllers that perform

well in maintaining the stability of teleoperation system. It would be useful to test

their transparency in kinesthetic exploration tasks. The tradeoff between performance

and stability is the central issue of controller design. A system that has very high

sensitivity may tend to go unstable, but a very stable system usually has slow

response.

8.4 Integrating Kinesthetic and Tactile Sensation

Kinesthetic and tactile sensing are the two subareas of haptics. They are closely

related. For example, when a person lifts an object and tries to determine its weight,

he/she relies on both kinesthetic and tactile information. The gravity the wrist

and the arm perceive is a projection of the load onto the muscles, and the fingers

perceive the deformation and discomfort caused by the load. There has been little

effort to use this combined information comprehensively. Different types of haptics

sensing have different advantages. When one perceives the weight of a relatively small

object, tactile sensing is the major perception method. When trying to handle a large

object, kinesthetic sensing is the major factor. If we can fuse the two types of data

together, we may be able to generate complete information about the environment.

The equipment in our lab currently has this capability. The Barretthand has a touch

pad that provides tactile sensing information on the finger tips and the palm. This

information may be important when determining the shape or the weight of the

object. Also, when the object is light, the sensors on the joints and wrist may not be
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accurate because their ranges are large, but the tactile sensors can be very useful in

this case.

Tactile sensing can also provide extra information, for instance, temperature

or texture of the objects. If an artificial intelligence algorithm can be used, such

information can be used together to determine the attributes of the object. Another

challenge to this issue is miniaturizing the various types of sensors.

8.5 Experimental Protocol Improvements

Human factors are also very important to the performance of teleoperation systems. A

well-trained operator is usually more effective than a naive operator. But there is also

a maximum performance level that is limited by the natural perception capabilities of

human beings. So by analyzing the minimum amount of effort spent on the operators’

training, we can make the training more cost effective and affordable. Also, gender,

age, race and many other factors could be influential. These results would be useful

when trying to pick operator candidates from the general population.

Also, in our experiments, the examiners interacting with the subjects knew the

actual attributes of the testing objects. This may have brought extra information

to the subjects inadvertently. It would be best to use the double-blind experimental

protocol where two examiners are used. One of them does the object configuration

tasks and therefore knows the answers to the questions but does not interact with

the subjects, while the other examiner interacts with the subjects but knows nothing

about the actual test objects being used.
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Appendix A

Testing Object Design

The dimensions of the testing objects are shown in Fig. A.1. Every testing object

is made up of a center rod, a handle and several pieces of sheet metal. The handle

is fastened to on the center rod. The metal sheets are attached to both ends of the

center rod. n1 and n2 represent the numbers of metal plates attached to each side of

the center rod. The dimension of each sheet of metal is d × a × a in3. The variable

lx1 and lx2 shows the location of the handle on the center rod. The center rod has a

length of l and cross-sectional area of A. The handle is made up of a a quarter inch

aluminum plate with two pieces of PVC on each side. So the weight of the testing

object is:

m = m1 +m2(n1 + n2) +m3 +m4 (A.1)

m1 = ρ1lA (A.2)

m2 = a2wdwρ2 (A.3)

m3 = ρ3πR
2
hLh (A.4)

m4 = ρ4LhRhdh (A.5)

Where ρ1 and ρ2 are the mass densities of the materials as shown in Tab. A.1. So
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Figure A.1: Dimension of Testing Objects

Table A.1: Mass Density of the Material Used in the Objects

ρ1 ρ2 ρ3
Material Aluminum PVC Steel

Unit: kg/m3 2.7×103 1.35×103 7.8×103

the inertia matrix of the center rod with respect to its geometricy center is:

I1 =


0 0 0

0 1
12
m1l

2 0

0 0 1
12
m1l

2

 (A.6)

Where

m1 = 0.0536kg (A.7)

l = 0.3048m (A.8)
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Plugging in the numbers, we can get

I1 =


0 0 0

0 4.15× 10−4 0

0 0 4.15× 10−4

 (A.9)

The inertia matrix of a metal sheet with respect to its geometricy center is:

I2 =


1
6
m2a

2
w 0 0

0 1
12
m2(a

2
w + d2w) 0

0 0 1
12
m2(a

2
w + d2w)

 (A.10)

where

aw = 0.0889m (A.11)

dw = 0.00635m (A.12)

m2 = 0.388kg (A.13)

for steel plates and

aw = 0.0889m (A.14)

dw = 1.58× 10−3m (A.15)

m2 = 0.0338g (A.16)

for aluminum. So

I2 =


5.13× 10−4 0 0

0 2.56× 10−4 0

0 0 2.56× 10−4

 (A.17)
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for the steel. The inertia matrix of the outer pieces of the handle with respect to

their its geometricy center is:

I3 =


1
12
m3(3R

2
h + l2h) 0 0

0 9π2−32
18π2 m3R

2
h 0

0 0 9π2−64
36π2 m3R

2
h + 1

12
m3(l

2
h)

 (A.18)

where

Rh = 1.91× 10−2m (A.19)

lh = 1.02× 10−1m (A.20)

m3 = 0.101kg (A.21)

Plug in the values, we have

I3 =


9.7× 10−5 0 0

0 4.7× 10−5 0

0 0 9.9× 10−4

 (A.22)

The inertia matrix of the center piece of the handle is separated into two pieces, with

the upper half a rectangular shaped object and the lower half a semicylindrical er

shaped object. The inertia of the upper half with respect to its geometricy center is:

I4 =


1
12
m4(l

2
ha + l2ha2) 0 0

0 1
12
m4(l

2
ha2 + d2h) 0

0 0 1
12
m4(l

2
ha + d2h)

 (A.23)
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where

m4 = 9.8× 10−2kg (A.24)

dh = 6.35× 103m (A.25)

lha = 0.15m (A.26)

lha2 = 2Rh = 3.81× 10−2m (A.27)

Plug in the values

I4 =


1.96× 10−4 0 0

0 1.22× 10−5 0

0 0 1.84−4

 (A.28)

The inertia of the lower half with respect to its geometricy center is:

I5 =


9π2−32
18π2 m5R

2
h 0 0

0 9π2−64
36π2 m5R

2
h + 1

12
m5d

2
h 0

0 0 1
12
m5(l

2
ha + d2h)

 (A.29)

where

m5 = 7.1× 10−3kg (A.30)

dh = 6.35× 10−3m (A.31)

Rh = 1.9× 10−2m (A.32)

(A.33)
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Table A.2: Location of the Origins and of and the Mass of the Components

m (Unit:kg) x (Unit:m) y (Unit:m) z (Unit:m)
1 0.0536 0 8.89× 10−2 0
2 0.388 0.15 8.89× 10−2 0
3 0.101 1.13× 10−2 0 0
4 9.8× 10−2 0 1.27× 10−2 0
5 7.1× 10−3 0 9.7× 10−2 0

Plug in the values

I5 =


8.2× 10−7 0 0

0 2.56× 10−6 0

0 0 8.83× 10−7

 (A.34)

We chose the center of the handle as the inertia coordinate for the object;, therefore,

the inertia matrix of the parts with respect to their its own geometricy center needed

to be shifted to coincide with the new frame. The shift between the two frames is

shown in Tab. A.2 Using the parallel axis theorems for moments of inertia [22]

Ix′x′ = Ixx +m(y2o′ + z2o′) (A.35)

Iy′y′ = Iyy +m(x2o′ + z2o′) (A.36)

Iz′z′ = Izz +m(x2o′ + y2o′) (A.37)

Ix′y′ = Ixy +mxo′yo′ (A.38)

Iy′z′ = Iyz +myo′zo′ (A.39)

Ix′z′ = Ixz +mxo′zo′ (A.40)
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and summing up the inertia matrices of all components, we can derive the inertia

matrix of the testing objects as follows:

I =


I11 I12 I13

I21 I22 I23

I31 I32 I33

 (A.41)

I11 = m1b
2 +

n1 + n2

6
m2a

2 + (n1 + n2)m2b
2 +

1

12
m3(R

2
h + l2h) (A.42)

+
1

12
m4(l

2
h + d2h) (A.43)

I12 = 0 (A.44)

I13 = m1b(
l

2
− lhx1) (A.45)

I21 = 0 (A.46)

I22 =
1

12
m1l

2 +m1(
l

2
− lx1)2 +

n1 + n2

12
m2(a

2 + d2)

+ n1m2(l
2
x1 + b2) + n2m2(l

2
x2 + b2) +

1

48
m3(4R

2
h + 4l2h + d2h) (A.47)

+
1

12
m4(d

2
h + l2h) I23 = 0 (A.48)

I31 = m1b(
l

2
− lhx1) (A.49)

I32 = 0 (A.50)

I33 =
1

12
m1l

2 +m1b
2 +

1

12
m(a2 + d2)

+ n1m2blx1 + n2m2blx2 +
1

2
m3R

2 +
1

12
m4(d

2
h + d2h) (A.51)

And the final result is shown in Tab. A.3
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Table A.3: Inertia of the Object with Two One-Quarter Inch Steel Plate on Each
Side

Qt. I ′xx I ′yy I ′zz I ′xy I ′yz I ′xz
(kgcm2) (kgcm2) (kgcm2) (kgcm2) kgcm2 kgcm2

1 1 4.2× 103 4.2× 103 8.4× 103 0 0 0
2 2 7.2× 104 1.9× 105 2.5× 105 1.1× 105 0 0
3 2 1.9× 103 1.2× 103 2.0× 104 0 0 0
4 1 2.1× 103 1.2× 102 2.0× 103 0 0 0
5 1 676.2 25.6 676.9 0 0 0

Sum 8.0× 104 1.9× 105 2.8× 105 1.1× 105 0 0
Model 8.4× 104 1.9× 105 2.6× 105 9.5× 104 0 0

111



Appendix B

Kinematics of WAM

The forward kinematics is used to determine the position and orientation of the end

effector based on the joint angles. The general form of a transformation is given in

Eq. 5.3

T =


cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sai−1d

sθisαi−1 cθisαi−1 cαi−1 −cai−1d

0 0 0 1

 (B.1)

The following equations shows the transformation of the joints [4].

0T1 =


c1 −s1 0 0

s1 c1 0 0

0 0 1 0

0 0 0 1

 (B.2)
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1T2 =


c2 −s2 0 0

0 0 1 0

−s2 −c2 0 0

0 0 0 1

 (B.3)

2T3 =


c3 −s3 0 0

0 0 −1 −L3

−s3 −c3 0 0

0 0 0 1

 (B.4)

3T4 =


c4 −s4 0 d3

0 0 1 0

−s4 −c4 0 0

0 0 0 1

 (B.5)

4T5 =


c5 −s5 0 −d3
0 0 −1 −L4

s5 c5 0 0

0 0 0 1

 (B.6)

5T6 =


c6 −s6 0 0

0 0 1 0

−s6 −c6 0 0

0 0 0 1

 (B.7)
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6T7 =


c7 −s7 0 0

0 0 −1 −L7

s7 c7 0 0

0 0 0 1

 (B.8)

Then

0T2 = 0T1
1T2 (B.9)

=


c1c2 −c1s2 −s1 0

c2s1 −s1s2 c1 0

−s2 −c2 0 0

0 0 0 1

 (B.10)

0T3 = 0T1
1T2

2T3 (B.11)

=


s1s3 + c1c2c3 c3s1 − c1c2s3 c1s2 L3c1s2

c2s3s1 − c1s3 −c1c3 − c2s1s3 s1s2 L3s1s2

−c3s2 −s2s3 c2 L3c2

0 0 0 1

 (B.12)

0T4 = 0T1
1T2

2T3
3T4 (B.13)

=


c4(s1s3 + c1c2c3)− c1s2s4 −s4(s1s3 + c1c2c3)− c1c4s2 c3s1 − c1c2s3 ox3

−c4(c1s3 − c2c3s1)− s1s2s4 s4(c1s3 − c2c3s1)− c4s1s2 −c1c3 − c2s1s3 oy3

−c2s4 − c3c4s2 c3s2s4 − c2c4 s2s3 oz3

0 0 0 1


(B.14)
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Where

ox3 = L3c1s2 + d3s1s3 + d3c1c2c3 (B.15)

oy3 = L3s1s2 − d3c1s3 + d3c2c3s1 (B.16)

oz3 = L3c2 − d3c3s2 (B.17)

0T5 = 0T1
1T2

2T3
3T4

4T5 (B.18)

=


r11 r12 r13 ox4

r21 r22 r23 oy4

r31 r32 r33 oz4

0 0 0 1

 (B.19)

Where

r11 = c5(c4(s1s3 + c1c2c3)− c1s2s4) + s5(c3s1 − c1c2s3) (B.20)

r12 = c5(c3s1 − c1c2s3)− s5(c4(s1s3 + c1c2c3)− c1s2s4) (B.21)

r13 = s4(s1s3 + c1c2c3) + c1c4s2 (B.22)

r21 = −c5(c4(c1s3 − c2c3s1) + s1s2s4)− s5(c1c3 + c2s1s3) (B.23)

r22 = s5(c4(c1s3 − c2c3s1) + s1s2s4)− c5(c1c3 + c2s1s3) (B.24)

r23 = c4s1s2 − s4(c1s3 − c2c3s1) (B.25)

r31 = s2s3s5 − c5(c2s4 + c3c4s2) (B.26)

r32 = s5(c2s4 + c3c4s2) + c5s2s3 (B.27)

r33 = c2c4 − c3s2s4 (B.28)
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ox4 = L3c1s2 + d3s1s3 − d3c4(s1s3 + c1c2c3) + L4s4(s1s3 + c1c2c3) (B.29)

+ d3c1c2c3 + L4c1c4s2 + d3c1s2s4 (B.30)

oy4 = L3s1s2 − d3c1s3 + d3c4(c1s3 − c2c3s1)− L4s4(c1s3 − c2c3s1) (B.31)

+ d3c2c3s1 + L4c4s1s2 + d3s1s2s4 (B.32)

oz4 = L3c2 + L4c2c4 − d3c3s2 + d3c2s4 + d3c3c4s2 − L4c3s2s4 (B.33)

0T6 = 0T1
1T2

2T3
3T4

4T5
5T6 (B.34)

=


r11 r12 r13 ox5

r21 r22 r23 oy5

r31 r32 r33 oz5

0 0 0 1

 (B.35)

Where

r11 = c6(c5(c4(s1s3 + c1c2c3)− c1s2s4) + s5(c3s1 − c1c2s3))

− s6(s4(s1s3 + c1c2c3) + c1c4s2) (B.36)

r12 = −c6(s4(s1s3 + c1c2c3) + c1c4s2)− s6(c5(c4(s1s3 + c1c2c3)− c1s2s4)

+ s5(c3s1 − c1c2s3))

r13 = c5(c3s1 − c1c2s3)− s5(c4(s1s3 + c1c2c3)− c1s2s4) (B.37)

r21 = s6(s4(c1s3 − c2c3s1)− c4s1s2)− c6(c5(c4(c1s3 − c2c3s1)

+ s1s2s4) + s5(c1c3 + c2s1s3)) (B.38)

r22 = c6(s4(c1s3 − c2c3s1)− c4s1s2) + s6(c5(c4(c1s3 − c2c3s1) + s1s2s4) (B.39)

+ s5(c1c3 + c2s1s3)) (B.40)

r23 = s5(c4(c1s3 − c2c3s1) + s1s2s4)− c5(c1c3 + c2s1s3) (B.41)
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r31 = −c6(c5(c2s4 + c3c4s2)− s2s3s5)− s6(c2c4 − c3s2s4) (B.42)

r32 = s6(c5(c2s4 + c3c4s2)− s2s3s5)− c6(c2c4 − c3s2s4) (B.43)

r33 = s5(c2s4 + c3c4s2) + c5s2s3 (B.44)

ox5 = L3c1s2 + d3s1s3 − d3c4(s1s3 + c1c2c3) + L4s4(s1s3 + c1c2c3) (B.45)

+ d3c1c2c3 + L4c1c4s2 + d3c1s2s4 (B.46)

oy5 = L3s1s2 − d3c1s3 + d3c4(c1s3 − c2c3s1)− L4s4(c1s3 − c2c3s1) (B.47)

+ d3c2c3s1 + L4c4s1s2 + d3s1s2s4 (B.48)

oz5 = L3c2 + 291c2c4 − d3c3s2) + d3c2s4 + d3c3c4s2 − L4c3s2s4 (B.49)

0T7 = 0T1
1T2

2T3
3T4

4T5
5T6

6T7 (B.50)

=


r11 r12 r13 ox5

r21 r22 r23 oy5

r31 r32 r33 oz5

0 0 0 1

 (B.51)

where

r11 = −c7(s6(s4(s1s3 + c1c2c3) + c1c4s2)− c6(c5(c4(s1s3 + c1c2c3) (B.52)

− c1s2s4) + s5(c3s1 − c1c2s3)))− s7(s5(c4(s1s3 + c1c2c3)− c1s2s4) (B.53)

− c5(c3s1 − c1c2s3)) (B.54)

r12 = s7(s6(s4(s1s3 + c1c2c3) + c1c4s2) (B.55)

− c6(c5(c4(s1s3 + c1c2c3)− c1s2s4) + s5(c3s1 − c1c2s3))) (B.56)

− c7(s5(c4(s1s3 + c1c2c3)− c1s2s4)− c5(c3s1 − c1c2s3)) (B.57)

r13 = c6(s4(s1s3 + c1c2c3) + c1c4s2) (B.58)

+ s6(c5(c4(s1s3 + c1c2c3)− c1s2s4) + s5(c3s1 − c1c2s3)) (B.59)
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r21 = c7(s6(s4(c1s3 − c2c3s1)− c4s1s2) (B.60)

− c6(c5(c4(c1s3 − c2c3s1) + s1s2s4) + s5(c1c3 + c2s1s3))) (B.61)

+ s7(s5(c4(c1s3 − c2c3s1) + s1s2s4)− c5(c1c3 + c2s1s3)) (B.62)

r22 = c7(s5(c4(c1s3 − c2c3s1) + s1s2s4)− c5(c1c3 + c2s1s3)) (B.63)

− s7(s6(s4(c1s3 − c2c3s1)− c4s1s2)− c6(c5(c4(c1s3 − c2c3s1) + s1s2s4) (B.64)

+ s5(c1c3 + c2s1s3))) (B.65)

r23 = −c6(s4(c1s3 − c2c3s1)− c4s1s2) (B.66)

− s6(c5(c4(c1s3 − c2c3s1) + s1s2s4) (B.67)

+ s5(c1c3 + c2s1s3)) (B.68)

r31 = s7(s5(c2s4 + c3c4s2) + c5s2s3) (B.69)

− c7(c6(c5(c2s4 + c3c4s2)− s2s3s5) (B.70)

+ s6(c2c4 − c3s2s4)) (B.71)

r32 = c7(s5(c2s4 + c3c4s2) + c5s2s3) (B.72)

+ s7(c6(c5(c2s4 + c3c4s2)− s2s3s5) (B.73)

+ s6(c2c4 − c3s2s4)) (B.74)

r33 = c6(c2c4 − c3s2s4) (B.75)

− s6(c5(c2s4 + c3c4s2)− s2s3s5) (B.76)

ox6 = L3c1s2 + d3s1s3 − d3c4(s1s3 + c1c2c3) (B.77)

+ L4s4(s1s3 + c1c2c3) (B.78)

+ d3c1c2c3 + L4c1 ∗4 s2 + d3c1s2s4 (B.79)
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oy6 = L3s1s2 − d3c1s3 + d3c4(c1s3 − c2c3s1) (B.80)

− L4s4(c1s3 − c2c3s1) + d3c2c3s1 + L4c4s1s2 (B.81)

+ d3s1s2s4 (B.82)

oz6 = L3c2 + L4c2c4 − d3c3s2 + d3c2s4 (B.83)

+ d3c3c4s2 − L4c3s2s4 (B.84)

JT =



z0 × (o7 − o0) z1

z1 × (o7 − o1) z2

z2 × (o7 − o2) z3

z3 × (o7 − o3) z4

z4 × (o7 − o4) z5

z5 × (o7 − o5) z6

z6 × (o7 − o6) z7


(B.85)

Since WAM has a spherical joint, then

o7 − o6 = 0 (B.86)

o7 − o5 = 0 (B.87)

o7 − o4 = 0 (B.88)
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Then the Jacobian matrix of WAM can be simplified into

JT =



z0 × (o7 − o0) z1

z1 × (o7 − o1) z2

z2 × (o7 − o2) z3

z3 × (o7 − o3) z4

0 z5

0 z6

0 z7


(B.89)
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Appendix C

Inverse Kinematics of WAM

A general inverse kinematics for a redundancy is complicated, but the axes of the

last three joints of WAM intersect at one point; this reduces the complexity of the

computation. Because this is equivalent to having a spherical joint at the wrist, it

decouples the inverse kinematics problem into two sub-problems: inverse position

kinematics and inverse orientation kinematics. The inverse position kinematics

generates the desired angle for the first four joints from the base. The orientation

kinematics considers the remaining three. where And the joint limitations are:

Table C.1: Denavit-Hartenberg Parameters for WAM

Joint ai−1 αi−1 di θi
1 0 0 0 θ1
2 0 −π

2
0 θ2

3 0 π
2

L3 θ3
4 d3 −π

2
0 θ4

5 −d3 π
2

L4 θ5
6 0 −π

2
0 θ6

7 0 π
2

L7 θ7
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Table C.2: Link Parameter Values

Parameter Value
L3 55.8cm
L4 29.1cm
L7 6.5cm
d3 4.76cm

Table C.3: Joint Limits

Joint Maximum Joint Angle (radians) Minimum Joint Angle (radians)
1 2.46 -2.46
2 1.9 -1.9
3 2.74 2.74
4 3.14 -0.9
5 3.14 -3.14
6 4.7 -1.57
7 2.35 -2.35

C.1 WAM Inverse Kinematics with Joint Three Set

to Zero

The first step to solving the inverse kinematics of WAM is to turn WAM into a

non-redundant robot by setting joint two equal to zero.

C.1.1 Inverse Position Kinematics: - A Geometric Approach

The geometric variables are defined in Fig. C.1. The third joint is held at zero

to eliminate the redundancy at the first joint. Define xd, yd and zd as the desired

manipulator position and θ1, θ2, θ3 and θ4 are desired angles. We first set

θ3 = 0.0 (C.1)
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Figure C.1: Elbow Kinematics of WAM

Then the first joint is easy to find according to the following equation:

θ1 = arctan(xd/yd) (C.2)
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Since the rotation axis of Joint 4 does not intercept with axis three and five, in order

to simplify the computation we compute four offset values for the robot.

l′3 =
√
l23 + d23 (C.3)

α2 = arctan
d3
l3

(C.4)

l′4 =
√
l24 + d24 (C.5)

α4 = arctan
d3
l4

(C.6)

Then we can solve for the values of joints 1, 2 and 4. The first joint angle can be

given by Eq. C.2.

ld2 =
√
x2d + y2d + z2d (C.7)

γ1 = arcsin(
zd
ld2

) (C.8)

γ2 = arccos(
l2d1 + l′23 − l′

2
4

2ld1l′3
) (C.9)

γ3 = arccos(
l′23 + l′24 − l2d1

2l′3l′4
) (C.10)

θ2 = γ1 + γ2 + α2 (C.11)
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θ4 = 180− γ4 (C.12)

= 180− (360− γ5 − 90− 90) (C.13)

= γ5 (C.14)

= 360− (90− α2)− (90− α4)− γ3 (C.15)

= 180 + α2 + α4 − γ3 (C.16)

Then add the constant offset angles given by Eq. C.3-Eq. C.6.

C.1.2 Inverse Orientation Kinematics

T =


c5c6c7 − s5s7 −c7s5 − c5c6s7 c5s6

c7s6 −s6s7 −c6
c5s7 + c6c7s5 c5c7 − c6s5s7 s5s6

 =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (C.17)

Using an inverse trigonometric, we can find eight possible solutions.

θ6 = − arccos(−r23) (C.18)

θ5 = arctan(r33/r13) (C.19)

θ7 = arctan(−r22
r21

) (C.20)

C.2 General Inverse Kinematics of WAM

In this section, the method of computing the inverse kinematics of the WAM, without

locking joint 3, will be presented. First, denote the plane shown in the zoomed-in

picture in Fig. C.1 as the reference plane. When the constraint on joint 3 is released,

the robot elbow joint will be able to go around in a circle without changing the

position and orientation of the end-effector. Define the new plane that link three and

link four formed as the arm plane. Denote the angle between the planes as ζ. The
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Figure C.2: Inverse Kinematics of Lower Arm of WAM

variables, γ1, γ2, ld2, γ3, α3 and α4 are all defined the same way as in the last section

and they can be found with the same equations. First draw a line on the arm plane

from O′4 and perpendicular to O1O5 , then

O1B = cos γ2L
′
3 (C.21)

BA = tan γ1O1B (C.22)
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Draw a line from o4 that is perpendicular to O1O5. This line is going to intersect

with O1O5 at B, then

HB = cosφBO4 (C.23)

HC = (HB +BA) cos γ1 (C.24)

= (cosφBO′4 + tan γ1O1B) cos γ1 (C.25)

= (cosφBO′4 + tan γ1 cos γ2L
′
3) cos γ1 (C.26)

= cos γ1 cosφ sin γ2L
′
3 + sin γ1 cos γ2L

′
3 (C.27)

Then we can find θ3

θ2 = arcsin(
HC

L′3
) (C.28)

= arcsin(
cos γ1 cosφ sin γ2L

′
3 + sin γ1 cos γ2L

′
3

L′3
) (C.29)

= arcsin(cos γ1 cosφ sin γ2 + sin γ1 cos γ2) (C.30)

θ′1 = arcsin(
EC

O1E
) (C.31)

= arcsin(
O4H

cos(θ2)L′3
) (C.32)

= arcsin(
sinφO4B

cos(90− θ2)L′3
) (C.33)

= arcsin(
sinφ sin γ2L

′
3

cos(90− θ2)L′3
) (C.34)

= arcsin(
sinφ sin γ2

sin θ2
) (C.35)

Therefore the θ̃1 is:

θ̃1 = θ′1 + θ1 (C.36)

Where θ1 is given by Eq. C.2. By inspection, θ4 will be constant when the end-

effector position and orientation are constant. The last thing unknown on the lower
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arm is the θ3. Draw a line from O5 that is perpendicular to O1O4 at H2, connect

H2 and O′5. H2O
′
5 perpendicular to O1O4 at H2. Therefore, the surface H2O5O

′
5 is

perpendicular to the surface O1O5O
′
5. Draw a line from O′5 to H2O

′
5 at H3. This line

is perpendicular to the O1O4O
′
5 surface. Draw a line from D perpendicular to O1E

at H4.

O5H3 = DH4 (C.37)

DH4 can be found by the following equation:

DH4 = sin θ′1O1D (C.38)

= sin θ′1

√
x2d + y2d (C.39)

And O5H2 can be given by

O5H2 = sin γ2O1O5 (C.40)

= sin γ2

√
x2d + y2d + z2d (C.41)

Therefore, θ3 is given by

θ3 = arcsin(
O5H3

O5H2

) (C.42)

= arcsin(
DH4

O5H2

) (C.43)

= arcsin(
sin θ′1

√
x2d + y2d

sin γ2
√
x2d + y2d + z2d

) (C.44)
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Plug in Eq. C.35:

= arcsin(
sinφ sin γ2

√
x2d + y2d

sin θ2 sin γ2
√
x2d + y2d + z2d

) (C.45)

= arcsin(
sinφ

√
x2d + y2d

sin θ2
√
x2d + y2d + z2d

) (C.46)

Then we can derive the rotational transformation matrix:

0
4R

4
7R = 0

7R (C.47)

4
7R = 4

0R
0
7R (C.48)

Plug the result into Eq. C.17. The method of solving for the last three wrist joints

is the same as shown in Eq. C.18-Eq. C.20.
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Appendix D

WAM-Phantom Teleoperation System

Startup and Operational Procedure

D.1 Startup

D.1.1 Phantom Omni

The Omnis are connected to a windows PC through a firewire cable. The Omnis can

be connected in a series, where the lower female connector should be connected to the

one closer to the Omni, and the upper one should be connected to the Omni further

away from the computer. Check the connectivity before turning them on.

Turn on the power plug in the panel; now the blue LED lights inside the inkwell of

the Omnis should be blinking. Then turn on the computer and type in the password

and username to log in the computer. There are two programs on the screen, one

called “Phantom Setup” and another one called “Phantom Control”. Launch “Phantom

Control” and check to see whether all the serial numbers of the Omnis show up on

the drop-down list. If any one does not show up, recycle the power of the Omnis.

Go to network settings and make sure that the netmask is set to “255.255.255.0"

and the IP address is set as “192.168.7.24”. Launch “Visual Studio 2005" and start

the solution called “ColumnbForce"; click “start without debugging.” Now all the
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Omnis are actuated, and the computer is sending position commands to the WAM

computer.

D.1.2 WAM

Turn on the power supply of WAM, an AC to 48VDC converter. Turn on WAM

external PC; it takes the computer more than one minute to start-up. The login

passcode is “WAM.” Type “sudo ifconfig eth0 192.168.7.27 netmask 255.255.255.0”

to set up the ethernet. Then the computer will ask for a password again; type

“WAM.” Type “robot” as the username and “WAM” as the passcode. Go to “cd

tianqiu/modified_examples.” Now the control program of WAM is launched. Follow

the direction to shift+idle and shift+activate WAM. Type enter three times and then

you can see the first command position received from the Phantom computer. See if

they are close to “0,45,0,90,0,-45,0,” because that is the origin of the slave workspace.

If it is close enough, hit enter and the robot will go to the desired position. During

this process, do not move the master controller; otherwise, there will be big jerk when

starting the teleoperation mode. When the slave robot reaches the desired position,

hit enter again, and now the robot is in teleoperation mode.

D.2 Shutdown

The shutdown procedure is basically the reverse of the initialization. First hit the

“Enter” key on the WAM computer. Then close the gripper by hitting the “Enter”

key three more times. Then type “q” to quit the teleoperation mode. The robot will

move back to its home position; hit shift+idle the robot and quit the program. For

the Omnis’ PC, simply right click the Opengl window and click “quit.”
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Appendix E

Euler Angle and Robot Angle

Tracking Error

In this section, we will discuss using the robot end-effector orientation matrices to

determine the orientation angle tracking error, therefore determining the torque to

be provided by the PID controller. The orientation difference matrix is defined as:

Rdiff = Rs(Rm)−1 (E.1)
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Then in order to determine the difference angle, we need to apply the Euler angle

transformation.

Rdiff = Z(α)Y (β)X(γ) (E.2)

=


cosα − sinα 0

sinα cosα 0

0 0 1




cos β 0 sin β

0 1 0

− sin β 0 cos β




1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 (E.3)

=


cosα cos β cosα sin β sin γ − cos γ sinα sinα sin γ + cosα cos γ sin β

cos β sinα cosα cos γ + sinα sin β sin γ cos γ sinα sin β − cosα sin γ

− sin β cos β sin γ cos β cos γ


(E.4)

Therefore the Euler angles can be found using Eq.

β = − arcsinRdiff
31 (E.5)

γ = − arccos
Rdiff

33

cos β
(E.6)

α = arccos
Rdiff

11

cos β
(E.7)
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