
 

 Swansea University E-Theses                                     _________________________________________________________________________

   

User Experience Enchanced Interface ad Controller Design for

Human-Robot Interaction
   

Chen, Junshen
   

 

 

 

 How to cite:                                     _________________________________________________________________________  
Chen, Junshen (2019)  User Experience Enchanced Interface ad Controller Design for Human-Robot Interaction.

Doctoral thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa52455

 

 

 

 Use policy:                                     _________________________________________________________________________  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa52455
http://www.swansea.ac.uk/library/researchsupport/ris-support/


 

User Experience Enhanced

Interface and Controller Design

for Human-Robot Interaction

Junshen Chen

Supervised by Professor Chenguang Yang

Submitted to Swansea University in fulfilment of

the requirements for the Degree of

Doctor of Philosophy

in Electronic and Electrical Engineering

Swansea University

July 2019





Abstract
The robotic technologies have been well developed recently in various

fields, such as medical services, industrial manufacture and aerospace.
Despite their rapid development, how to deal with the uncertain envi-
ronment during human-robot interactions effectively still remains un-
resolved. The current artificial intelligence (AI) technology does not
support robots to fulfil complex tasks without human’s guidance. Thus,
teleoperation, which means remotely controlling a robot by a human op-
erator, is indispensable in many scenarios. It is an important and useful
tool in research fields. This thesis focuses on the study of designing a
user experience (UX) enhanced robot controller, and human-robot in-
teraction interfaces that try providing human operators an immersion
perception of teleoperation. Several works have been done to achieve the
goal.

First, to control a telerobot smoothly, a customised variable gain con-
trol method is proposed where the stiffness of the telerobot varies with
the muscle activation level extracted from signals collected by the surface
electromyograph(sEMG) devices. Second, two main works are conducted
to improve the user-friendliness of the interaction interfaces. One is that
force feedback is incorporated into the framework providing operators
with haptic feedback to remotely manipulate target objects. Given the
high cost of force sensor, in this part of work, a haptic force estimation
algorithm is proposed where force sensor is no longer needed. The other
main work is developing a visual servo control system, where a stereo
camera is mounted on the head of a dual arm robots offering operators
real-time working situations. In order to compensate the internal and ex-
ternal uncertainties and accurately track the stereo camera’s view angles
along planned trajectories, a deterministic learning techniques is utilised,
which enables reusing the learnt knowledge before current dynamics
changes and thus features increasing the learning efficiency. Third, in-
stead of sending commands to the telerobts by joy-sticks, keyboards or
demonstrations, the telerobts are controlled directly by the upper limb
motion of the human operator in this thesis. Algorithm that utilised the
motion signals from inertial measurement unit (IMU) sensor to captures
humans’ upper limb motion is designed. The skeleton of the operator is
detected by Kinect V2 and then transformed and mapped into the joint
positions of the controlled robot arm. In this way, the upper limb mo-
tion signals from the operator is able to act as reference trajectories to
the telerobts. A more superior neural networks (NN) based trajectory
controller is also designed to track the generated reference trajectory.
Fourth, to further enhance the human immersion perception of teleop-
eration, the virtual reality (VR) technique is incorporated such that the
operator can make interaction and adjustment of robots easier and more
accurate from a robot’s perspective.

Comparative experiments have been performed to demonstrate the
effectiveness of the proposed design scheme. Tests with human subjects
were also carried out for evaluating the interface design.
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1 Introduction

With the development of advanced materials, sensors, and actuators, robots

are playing an essential role in industrial manufacturing and daily life. There

are many industries, such as nuclear energy, deep sea exploration, and space

and deep mining, requiring robots to complete complicated tasks under high

temperature, high pressure, strong radiation, and some other extreme envi-

ronments. Given the complexity of tasks and the uncertainty of environment,

general robots, including the existing intelligent robots, are powerless. From

long-term practice, considering the possibility and limitation of technology and

economy, human operators participate in the control and decision-making of

robots is currently the most efficient way. Therefore, there has emerged an im-

portant branch in the field of robotics - robot teleoperation, also known as tele-

bots.

Robot teleoperation system is essentially an intelligent system of Human-robot

Interaction (HRI). As the application environment of telebots becomes more

and more extensive, the traditional operation method controlled by operators

has been unable to meet the requirements of high-precision operations. A good

illustration is to perform work cooperatively with coordinate activities. Gener-

ally speaking, the advantage of human lies in the strong ability of perception,

decision-making, and planning. Robots have their advantages in achieving sta-

ble and high-precision operations.

For an intelligent system, its perception, execution and other functions are dis-

tributed at different intelligent levels (such as decision-making level and execu-

tion level). Therefore, the problem of HRI is to assign different levels of intelli-

gence between the operator and the robot. The specific assignment depends on

the complexity of the task, the complexity of the environment, the operator’s

skills and the autonomous abilities of the robot. For example, human beings

get tired easily and have physical and even psychological limitations because of

1



emotional interference. While, robots can perform complex and accurate cal-

culations rapidly. They can complete repetitive and significantly precise oper-

ations. Furthermore, robots have no emotional awareness and are not affected

by emotions.

With the development of automation and intelligence of the robot, human-

robot collaborative control becomes an important research direction of the

robot teleoperation. Therefore, how to harmonise the advantages of human and

robots, and combine the strong decision-making ability of human with the high

precision operation ability of robots, becomes an important role in improving

the user experience (UX) of remote operation of a robot. On the other hand,

accurate high-precision operations can be carried out to improve the success

rate of completing tasks. Friendly HRI is an important bridge between human

and robot, and an important tool to improve the UX while working remotely.

The research carried out in friendly HRI is of critical value in both theoretical

and application aspects.

There are a variety of control methods and control interfaces for operating

multi-degree of freedom (MDOF) robots. New demands for HRI methods emerge

as the widespread use of MDOF robots. In order to improve UX for current

HRI of MDOF robots, attention should be paid to the challenges stated below:

1) The current remote control methods for MDOF robots requires physical con-

tact. Human operator’s motion is easily restrained by hardware devices, such

that operator cannot control robot intuitively. It implies the potential chances

of reduction in robots’ efficiency, and poor performance for telebots.

2) Most of the research on multi-dof robot interaction focuses on master - slave

teleoperation and shared teleoperation. The former mainly reflects the human

as the dominant, and the robot moves according to the human command. The

latter mainly divides the control right to a certain extent, with each part con-

trolled by human and robot. Concerning the current interaction mode, both
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master-slave and shared-control robot do not effectively handle assisting tasks.

Human operator and robot are hard-wired together physically, resulting in a

lack of flexibility in completing tasks.

3) The multi-dof robot exists because it can replace human to reach the en-

vironment that human cannot reach, such as high temperature, high pressure

and high radiation. In these environments, human beings cannot predict the

situation of the environment, which is called environmental uncertainty. Fur-

thermore, most of the tasks that a multi-dof robot needs to complete are high-

precision operations, such as bomb removal by an explosive removal robot, as-

sembly and maintenance of a space robot, and operation of a telesurgery robot.

This becomes a research challenge for using robots to assist human in high-

precision operations under both internal and external uncertainties.

This thesis is a research of designing UX enhanced controller and interface for

HRI during teleoperation, including sensor data processing, using artificial in-

telligence (AI) and computer applications. The research carried out can help to

improve UX during teleoperation in both intuitive and immersive ways.

The thesis is organised as follows. The introduction is given in Chapter 1. The

motivation and innovation of this research are presented with research chal-

lenges. After the introduction, background information is described in Chapter

2, including methods of robot control and HRI interfaces. The robot used in

this research, Baxter robot, is introduced, together with its system dynamics.

In Chapter 3, we developed a physiological signal enhanced teleoperation strat-

egy. Muscle activation was extracted for improving user’s ability to complete

delicate task during teleoperation. Chapter 4 studies visual servoing of a hu-

manoid dual-arm robot with neural learning enhanced skill transferring control.

A visual servoing (VS) control system is built by using stereo vision. In order

to compensate for the effect of uncertain payload and other internal and ex-

ternal uncertainties during teleoperation, a neural networks (NN) controller is
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designed with knowledge-reuse and skill transfer features. Chapter 5 focused

on utilising human operator’s motion as reference trajectories and the robot is

controlled using NN technique. In Chapter 6, an immersive interface for robot

teleoperation has been developed. A virtual reality environment has been de-

signed for controlling a telerobot arm. Extensive tests have been performed

with human subjects to evaluate the interface. Finally, Chapter 7 concludes the

research works and the contributions of the thesis.
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2 Background Research

2.1 Methods of Robot Control

2.1.1 Baxter robot arm

Baxter is a two-arm robot built by Rethink Robotics [3] shown in Fig. 1. It

is 5 to 6 feet tall, 306 lbs weight with pedestal and 7 DOFs per arm, and it is

equipped with 360 degree sonar for human presence detection and changeable

end-effectors. It is used in simple industrial tasks such as loading, unloading,

packaging and kitting, machine tending or material handling. Different acces-

sories can be used on Baxter platform such as vacuum cup gripper, electric par-

allel gripper and mobile pedestal.

Figure 1: Baxter robot profile [1]: Baxter robot has 7 joints with each arm and
each joint is constructed as serial elastic actuator (SEA).

The feature of the Baxter lies in its intrinsic safety. Many existing robots used

in industry are built to complete tasks rapidly, most of the components are

moving in very fast speed in order to increase efficiency, and lack of safety sen-

sors to reduce costs, these make them not safe for workers to interact with.
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Compliant joints are used in Baxter, its arms are driven by springs that driven

by motor, this allow Baxter reduce the impact when its arm hit something.

Force sensors built in the arms, adjustable torque force and 12 sonar sensors

around the head of Baxter can perform detection of human movement and

proximity also make Baxter safer to be work nearby.

One another feature of the Baxter is that it is cost effectively. And software en-

gineers are not necessary to use Baxter, because it can be trained to complete

its tasks, by moving its arms to required position and letting Baxter to mem-

orise it. Therefore, Baxter is able to work without complicated programming,

such that the cost of software development can be reduced [3].

Each Baxter’s arm has seven rotational joints and eight links, as well as an in-

terchangeable gripper (such as an electric gripper or vacuum cup) which can

be installed at the end of each arm. A head-pan with a screen, located on the

top of the torso, can rotate in horizontal plane. Baxter’s kinematics model

based on Denavit-Hartenberg (DH) parameters has been built in our previ-

ous work [4]. The slave Baxter robot has two identical 7-DOF manipulators,

as shown in Fig. 2.

Figure 2: The kinematic model of Baxter’s arm
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2.1.2 Robot Operating System and Rospy

The Robot Operating System (ROS) is an open source operation system for

robot programming. A variety of built-in tools, libraries, and conventions are

provided to simplify the task which demands complex and robust robot be-

haviours to complete.

Rospy is a pure Python client library for ROS. The rospy client API enables

Python programmers to quickly interface with ROS Topics, Services, and Pa-

rameters. The design of rospy favours implementation speed (i.e. developer

time) over runtime performance so that algorithms can be quickly prototyped

and tested within ROS. It is also ideal for non-critical-path code, such as con-

figuration and initialisation code. Many of the ROS tools are written in rospy

to take advantage of the type introspection capabilities. Many of the ROS

tools, such as ’rostopic’ and ’rosservice’, are built on top of rospy.

2.1.3 Robot System Dynamics

The dynamics of Baxter robot manipulator is described below [5]:

D(q)q̈ + C(q, q̇)q̇ + τg +G(q) = τu (1)

where D(q) is the inertia matrix of the manipulator, C(q) is the Coriolis ma-

trix for the manipulator, G(q) denotes the gravity terms, τu denotes the control

input and τg denotes the payload gravity.

The payload gravity can be described as

τg = JT(q)fg (2)

where J ∈ R6×7 is the manipulator’s Jacobian matrix, and fg is the gravity of

the payload.
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2.1.4 Teleoperation trajectory generation

During the teleoperation, the end effector would not be able to follow exactly

the reference trajectory set at the master side. Let us introduce tracking error

defined as

eq(t) = q(t)− qd(t) (3)

where eq = [e1, e2, · · · , en]T , n = 7 which equals Baxter robot arm’s joint num-

bers.

Xd 

Xd

Xd=M(Xd )

Figure 3: Trajectory and reference trajectory generated by the Omni and the
Baxter.

As shown in Fig. 3, xd
′ is the trajectory generated by the master device and

xd is the end-effector’s reference trajectory obtained by applying the transfor-

mation on xd
′. Then, the reference trajectory in joint space, i.e., qd, can be ob-

tained by using the closed-loop inverse kinematics (CLIK) method on xd [6].

However, typically there is undesired transient performance such as overshoot

or steady-state tracking error, which need to overcome during teleoperation.
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2.1.5 User Datagram Protocol

The User Datagram Protocol (UDP) is one of the core members of the Internet

protocol suite (the set of network protocols used for the Internet). With UDP,

computer applications can send messages, in this case referred to as datagrams,

to other hosts on an Internet Protocol (IP) network without prior communica-

tions to set up special transmission channels or data paths.

UDP uses a simple transmission model with a minimum of protocol mecha-

nism. It has no handshaking dialogues, and thus exposes any unreliability of

the underlying network protocol to the user’s program. As this is normally IP

over unreliable media, there is no guarantee of delivery, ordering, or duplicate

protection. UDP provides checksums for data integrity, and port numbers for

addressing different functions at the source and destination of the datagram.

UDP is suitable for cases where error checking and correction are either not

necessary or performed in the application, avoiding the overhead of such pro-

cessing at the network interface level. Time-sensitive applications often use

UDP because dropping packets is preferable to waiting for delayed packets,

according to [7]. If error correction facilities are needed at the network inter-

face level, an application may use the Transmission Control Protocol (TCP)

or Stream Control Transmission Protocol (SCTP) which are designed for this

purpose.

2.1.6 Neural Networks Control

Neural networks (NN) have been a useful tool for robotic control design to deal

with the dynamic uncertainties. It has been proved effective and efficient to ap-

proximate the unknown dynamics, for instance, uncertain payloads. However,

NN usually does not have the competence to learn the actual system dynam-

ics even during stable closed-loop control. Furthermore, neural learning suffers

the the lack of reusing previously learned knowledge, such that computational
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load may bring high pressure to the processor. How to design a neural learn-

ing control, which is able not only to perform storage and reuse of the optimal

neural weight values during control, but also guarantee steady-state tracking

performance and predefined transient performance, is an important topic to be

investigated.

2.1.7 Localized RBF NNs

Radial basis functions have their origins in the study of multivariate approxi-

mation theory, particularly in the area of strict multivariable interpolation [8].

By introducing a number of modifications to overcome the restrictions in exact

RBF interpolation, RBF neural network models were developed by Broomhead

and Lowe [9] and Poggio and Girosi [10], in the late 1980s. In this thesis, RBF

NN is used to design the robot teleoperation controller in Chapter 4 and 5.

A linear-in-the-parameter RBF NN can be used to approximate a continuous

function, i.e., φ(z) : Rm → R, over a compact set Ωz ⊂ Rm, can be formulated

as

φ(z) = W ∗TS(z) + εz ∀z ∈ Ωz (4)

where W ∗ = [w∗1, w
∗
2, · · · , w∗l ]T ∈ Rl is the weight vector, z ∈ Ωz is the input

vector with Ωz ⊂ Rm being a compact set, l is the number of NN nodes, and

εz is the approximation error. S(z) = [S1(‖z − µ1‖), · · · , Sl(‖z − µl‖)]T , is the

regressor vector with Si(·) being a radial basis function, and µi (i = 1, · · · , l)

the centre. The Gaussian functions are chosen as

Si(‖z − µi‖) = exp

[
−(z − µi)T (z − µi)

ς2

]
(5)

where µi = [µi1, µi2, · · · , µim]T ∈ Rm represents the centre of each receptive

field and ς is the variance.
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For a large enough number of neurons, there exists a weight matrix W ∗ such

that

F (z) = W ∗TS(z) + ε(z) (6)

where W ∗ = [W ∗
1 ,W

∗
2 , · · · ,W ∗

n ] ∈ RN×n is the weight matrix of RBFNN. The

estimated weight Ŵ will be used in practice to replace W ∗ for the approxima-

tion of a continuous function in this manner F (z) = ŴS(z), where Ŵ is the

estimate of W to be specified later in Section 4.7.

The ideal weight vector W ∗ is defined as the optimal value of W that could

minimise the approximation |εz| for all z ∈ Ωz as

W
def
= arg min

W ′∈Rl

{
sup|h(z) = W

′TS(z) = b|
}
, z ∈ Ωz. (7)

When the number of NN nodes l increases, the approximation error |εz| re-

duces. Given sufficiently large node number l and appropriately placed node

centres µi and variances ηi, it has been proved that the RBFNN can approxi-

mate any continuous function arbitrarily close over a compact set. It should be

noted that the ideal NN weight W ∗ is an artificial quantity, which is unknown.

In practice, we use estimated weight Ŵ in replacement of W ∗ to approximate a

continuous target function as

φ(z) ≈ ŴTS(z) (8)

where Ŵ is obtained by a learning law.

2.1.8 Predefined Transient Tracking Performance

To guarantee the desired tracking performance of teleoperation, we now con-

sider shaping the dynamics of the transient response (e.g., overshoot, conver-
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gence rate and convergence accuracy) of motion tracking error eq.

Let us define a performance function γi, i = 1, 2, . . . , n which is a smooth,

bounded, strictly positive, and decreasing function with limt→∞ γi(t) = γi∞.

γi(t) is chosen as [11]

γi(t) = (γi0 − γi∞)e−κitq + γi∞ (9)

where γi0, γi∞ and κi are positive constants. Then the mathematical expression

of predefined tracking performance can be described by equalities

−δ1iγi(t) < eqi(t) < δ2iγi(t), i = 1, 2, · · · , n (10)

where δ1i, δ2i are positive design constants. The constants δ2iγi∞ and −δ1iγi∞

represent, respectively, the upper bound and low bound of the maximum al-

lowable magnitude of the tracking error ei at the steady state and they can be

designed arbitrarily small. Furthermore, the decreasing rate κi of γi(t) intro-

duces a lower bound on the required convergence rate of ei, and −δ1iγi0, δ2iγi0

represent the upper bound of the maximum overshoot and the lower bound

of undershoot, respectively. Therefore, the desired transient and steady-state

tracking performance can be determined by the appropriate selection of the de-

sign constants δ1i, δ2i, γi0, γi∞ and κi.
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2.2 Methods of Human-robot Interaction

2.2.1 Motion Capture

Many teleoperation applications have been advanced in recent years. In [12], a

shared control method of Baxter robot manipulator has been developed. While

the user is teleoperating the motion of the end-effector of the manipulator, the

robot manipulator can avoid obstacle automatically with the original perfor-

mance of the end effector motion. A method for imitating human writing skills

and transferring them to a Baxter robot manipulator has been present in [13].

By using electromyography (EMG) signals and a haptic device, human opera-

tors can teleoperate a robot manipulator doing a fine calligraphy. Physiological

studies have shown that our central neural system (CNS) can adapt to muscle

force, stiffness and damping to perform different tasks in various environments.

However, there has been very little research in the robotics communities to in-

corporate human motor skills of muscle force, stiffness and damping adaptation

into teleoperation. Muscle activities regulated by CNS can be represented by

surface electromyography (sEMG) measured by electrodes attached to the skin

of human limbs. Therefore, sEMG based tele-impedance control has been re-

cently developed to transfer the variable stiffness from a human operator to

a robot for flexible manipulation [14–17]. In [18], a surface electromyography

(sEMG) signals enhanced teleoperation strategy has been presented. The hu-

man operators can sense the circumstance in a haptic manner and adapt mus-

cle contraction subconsciously as if they are directly interacting with the envi-

ronment. In [19], it describes the development of a virtual robot teleoperation

platform based on hand gesture recognition incorporating visual information.

Motion capture system is one of the teleoperation methods. A motion capture

system mainly includes two interfaces, vision system based sensing interface

and wearable device/joystick remotely input interface. Several sensors have
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been used for the vision-based system such as Kinect and Leap Motion. In [20],

human motions are captured by a Kinect sensor and the joint angles of Baxter

robot has been calculated to teleoperate the robot based on vector approach

and inverse kinematics approach. In [21], human welder movement is captured

by the Leap Motion sensor, and then the learnt skill has been transferred to a

welding robot via a teleoperation system. For the remote input interface, wear-

able devices such as exoskeleton [22] or joystick such as Omni haptic device [6]

are commonly used.

2.2.2 VR and AR User Interface

VR is a technology that presents digitally created information to our senses via

various pieces of equipment the combination of which gives the user the feel-

ing that they are in the virtually created environment. It can be achieved using

many different types of hardware to cover each of the human senses, e.g. head-

sets, omnidirectional treadmills, and special gloves. In [23], by wearing a visual

headset, operators can intuitively control the pose of a camera on the head of

the robot, and the operator can perceive from the robot’s perspective. Combin-

ing these pieces of technology simulates senses in unison to create the feeling of

reality. A VR-based interface was created for Underwater Robots that utilises

immersive technologies to reduce user faults and mental fatigue [24].

Augmented Reality (AR) is ‘technology to superimpose information on the

world we see’. AR is different to VR; instead of using entirely computer-generated

environments to let the user thinking they are somewhere else, and immerses

them in a new environment, AR just adds more visual information into the en-

vironment they are already in. There have been various attempts over the past

few years to bring AR to mainstream consumers. For example, a novel AR sys-

tem was developed for defining virtual obstacles, specifying tool positions, and

specifying robot tasks [25]. An augmented reality visualisation interface was
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presented in [26] to simultaneously present visual and laser sensors information

further enhanced by stereoscopic viewing and 3-D graphics.

There have also been applications in entertainment with devices such as the

Nintendo 3DS using AR to create games that interacted with the player’s sur-

roundings.

2.2.3 Programming by Demonstration

Programming by demonstration (PbD) is a similar technique to the record and

replay technique, in which a robot is shown a set of movements and then re-

peats them exactly multiple times, but PbD has an aspect of learning inte-

grated into it, making it a more effective system. The main aim of program-

ming by demonstration is that the end user of the robot can teach the robot

to perform a task without the need for programming [27]. Before this tech-

nology became widespread, every function a robot would undertake needed to

be meticulously broken down and analysed so a programmer would be able to

code in each step individually. In this traditional case, a programmer would

have had to programme the robot so that it can safely and correctly response

to every possible case within its working environment. To do this effectively,

the task has to be broken down into numerous steps, and each step tested thor-

oughly with many different scenarios to ensure the robot can cope with these

changes [27] [28].

In contrast to conventional coding procedure, PbD allows this process to be

streamlined by showing the robot its task, while its position, joint rotations

and any other required pieces of data are recorded. This allows it to repeat

the task by following this data and no coding is required. It is also possible

for the robot to learn how to deal with varying circumstances by showing it

through multiple different but similar scenarios and the robot will be able to

generalise its task [27] [28]. Combining cutting-edge technology, VR, with PbD
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is an effective way of teaching a robot. In [29], the author created a cleaning

robot with virtual agents in a virtual environment. The proposed VR based

PbD method can help to reduce the labour, time and cost associated with the

interactive learning of robot. A VR approach of learning by imitation and pro-

gramming by demonstration was also presented in [30].
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2.3 Objective and Scope

The general objectives of this thesis are to develop systems including designing

different kinds of robot controllers and building user interfaces for teleoperation

purposes. For the user interfaces, we will use different types of sensors to study

how different level of visual feedback and haptic feedback will effect the user

experience during teleoperation. For the controller’s design, we will put focus

on developing neural network control to increase the autonomy of the telebot.

The challenge of compensating both internal and external uncertainties, and

reuse the knowledge after learning are both included into consideration.

Figure 4: Teaching-pendant programming interface for a KUKA industrial
robot.

During teleoperation, the most important challenge is to let human user col-

laborate with a robot. However, teleoperating the robot through every motion

is slow and tiresome, especially on difficult tasks. It is important to take hu-

man factors into consideration while designing controllers and user interfaces

for teleopration applications. Conventionally, industrial robot were mostly op-

erated by a teaching pendant. In Figure 4, it shows a typical user interface
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(teach pad) for human workers to control an industrial robot. A typical teach-

ing pendant has its limitations, such as it only has simple button interface, and

it can only leave a certain distance away from the robot due to cable connec-

tion. With the call of Industry 4.0, robots have marched into every types on

production line. It brings new challenges for creating user friendly interfaces for

human operators to operate these machines, especially for unskilled workers.

In this thesis, more immersive and intuitive teleoperation methods has been

proposed and investigated, aiming to improve user experience during teleopera-

tion.
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3 Development of a Physiological Signals En-

hanced Teleoperation Strategy

In this Chapter, we have developed a teleoperation method to control a teler-

obot manipulator with novel features, such that the human operator could ma-

noeuvre the robot with both physical and physiological signals.

We have developed a personalised variable gain control where the control gain

is set according to muscle activation level extracted from sEMG signals, and

force feedback is employed so that the human operator is able to sense the cir-

cumstance and adapt to muscle contraction subconsciously as if they are di-

rectly interacting with the environment.

3.1 Introduction

Telerobots have a wide range of applications in space, subsea exploration and

manipulating dangerous and hazardous objects, e.g., disabling a bomb. Nowa-

days, telerobots have been marching into medical fields, e.g., teleoperated mi-

crosurgery and health care, such as tele-assisted rehabilitation for people who

suffer from immobility of upper limb [31] due to neurological injuries. In con-

trast to the automatically controlled manipulator, which can deal with fixed

tasks under structure environments, teleoperated robots can work in more com-

plex ones. A teleoperated micro-hand of two rotational fingers was proposed

in [32]. A new control method was introduced to control the Engineering Test

Satellite VII manipulator [33]. An Internet-based teleoperation system has

been developed for robot manipulator Thermo CRS A465 [34].

Most teleoperation systems employ a master-slave framework, in which the nec-

essary feedback information sampled at the remote slave end is transmitted

back to the master end, such that the local human operator can manipulate

the robot according to these feedback information in real time as if he/she is
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manipulating the robot in person. As a combination of a local human operator

and a remote robot, a telerobot system should merge the intelligence of both

robot and operator to achieve an optimal performance [35]. However, most ex-

isting techniques ignore this point and fail to consider adapting robot controller

in accordance to motor behaviour of each human operator. Despite plausible

mathematical models of human motor control built by physiologists [36, 37] and

advanced control techniques developed by robotics [38, 39], little effort has been

made to combine expertise from both disciplines to develop a matching control

technology that perfectly fuses respective advantages of human and a robot.

Studies of human motor skills reveal that human arm can adjust muscle groups

co-contraction to yield desired skeleton mechanical impedance during interac-

tion with dynamic environment [40] for the sake of minimising the interaction

force and performance errors without endpoint force changes. There also ex-

ist selective changes by CNS [41, 42] for activations in individual muscles to

generate variable forces for different tasks. Indeed, humans have superior mo-

tor capabilities and skills which allows them to effectively modulate their mo-

tion/impedance in a smooth and efficient manner according to the task needs.

Therefore, it is ideal to transfer human’s adaptive impedance and force to a

telerobot manipulator of geographical similarity. Many other advantages of this

human-robot dynamic transfer can be emerged such as safety, compliant inter-

action with human and the environment [43].

There are various ways of transferring motion of a human operator to a teler-

obot using different sensors and techniques, such as motion capture technique

based on a visual sensor [44, 45], a joystick, or an exoskeleton device. However,

these traditional means only collect physical signals such as position, orienta-

tion, force and torque, therefore, these approaches are incapable of capturing

the muscle activations or motor skills of human operators. The surface elec-

tromyography (sEMG) signals collected by non-invasive electrodes attached
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on human skins are ideal physiological means to incorporate human skills into

robots. They reflect human muscles activations that represent human joint mo-

tion, force, and stiffness [46–49]. sEMG signals have been widely used for a

robot to understand human motion intention during implementing tasks and

have also been recently used in tele-impedance control [16, 43, 50]. The role of

impedance regulation in increasing stability, accuracy and task readiness has

been illustrated in many research work [40, 41, 51]. Study results have reflected

that bringing muscle impedance adaptation into teleoperation provides great

flexibility of telerobot manipulation.

Human motor control experiment shows the independent adaptation of force

and impedance when interacting with external force field [52]. Our daily life

experience also reveals that our dexterous skills in muscle stiffness can adapt

in the presence of interactive force. Therefore, the presence of force feedback is

important to ensure the natural performance of motor skills, and it is also nec-

essary to bring into tele-impedance control system the haptic interface, which

provides operator’s tactile feeling of the remote environment through force

feedback. It is reported that the introduction of force feedback into teleoper-

ated systems can facilitate the reduction of energy consumption, task comple-

tion time and the magnitude of errors [53,54].
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3.2 Teleoperation System Description

In this work, the teleoperation system employs a master-slave control structure.

A haptic device (SensAble R© haptic Omni) is used at the master end, and the

slave system mainly consists of a 7-DOF Baxter robot arm. The position infor-

mation of the robot hand is sampled and sent to a central processing computer,

while the feedback force is exerted on the stylus of the haptic device. In this

way, a human operator can operate a distant object according to the haptic

feedback and visual feedback. The overall teleoperation structure is illustrated

in Fig. 5, where clearly shows that in our proposed method, both physiological

signal (sEMG) collected from MYO armband shown in Fig. 6 and physical sig-

nal (position) sampled by Omni shown in Fig. 7(a) are integrated to generate

commands controlling the robot arm.

Figure 5: The illustration of the overall system

3.2.1 MYO armband

sEMG signals can be regarded as a linear summation of a compound of motor-

unit action potentials (MUAPs). In this work, a wireless 8-channels EMG col-
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lecting device MYO is employed with a default sampling frequency, 200Hz.

Figure 6: Myo armband

As shown in Fig. 6, the MYO armband can be easily worn in comparison to

conventional electrodes. It consists of 8 EMG sensors and 9-axis IMU(Inertial

Measurement Unit). The MYO armband needs to be calibrated for each dif-

ferent users before using. It can be done with the official MYO connect app by

following the instructions. Also, the size of the MYO armband can be adjusted

with clippers provided from the original package to fit the width of each user’s

arm.

3.2.2 SensAble R©Omni

In this work, a SensAble R© Omni haptic joystick as shown in Fig. 7(a) is utilised

to produce force feedback. This haptic device is of 6 DOFs, in which the first

three DOFs contribute to position while the last three form a gimbal contribut-

ing to orientation. A stylus equipped with two buttons is also attached to the

end-effector. The kinematics of Omni device including forward kinematics,

inverse kinematics, and Jacobian matrix has been well studied in the litera-

ture [55, 56]. A high-performance 32/64bit driver on MATLAB/Simulink plat-

form has been developed in our previous work [6].

In this section, we incorporate force feedback in the control scheme without

using a force sensor for measuring the interaction force. Instead, a haptic ren-

dering algorithm based on the motion tracking error information is employed in
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(a) Omni haptic joystick (b) Force feedback generation

Figure 7: Haptic rendering using Omni joystick.

such a manner that the force feedback is generated using an admittance model

as illustrated in Fig 7(b) following the law specified below:

F = M ¨(dX) +D ˙(dX) +K(dX) (11)

where K is the stiffness of a virtual spring, D is the damping ratio of a virtual

damper, M is the virtual mass and dX is the difference between Baxter end-

effector’s actual position and commanded reference position set by Omni joy-

stick. For simplicity, in this work, we only consider 3D translational movement,

and dX = Xs − Xm, where Xs ∈ R3 is the salve Baxter robot end-effector’s

actual translational position and Xm ∈ R3 is its reference position from the

master Omni device.

The feedback force generated by the haptic rendering algorithm Eq. 11 en-

hances the tracking performance awareness of the human operator, i.e., inte-

grate the tactile sensing with visual sensing. Most importantly, to compensate

the feedback force which tends to pull the operator’s hand counter the direc-

tion of movement towards the lagged robot end effector position, operator’s

muscle activation is subconsciously enlarged to produce a resistant force. Sub-

sequently, the control gain increases accordingly to the growing EMG signals,

such that the robot will speed up to follow the operator’s motion.
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3.2.3 Workspace Matching

When operating a telerobot which is kinematically dissimilar to the master de-

vice, it should be bear in mind that the telerobot manipulator works in its own

workspace which might be quite different from that of the master device. Eval-

uating whether or not a given location is reachable is thus a fundamental prob-

lem. Analytical methods can determine closed-form descriptions of workspace

boundary, but these methods are usually complicated with nonlinear equations

and matrix inversion involved. Numerical methods, on the other hand, are rel-

atively more efficient. Rastegar and Perel [57] introduced the Monte Carlo ran-

dom sampling numerical method to generate the workspace boundary of some

simple manipulators using only forward kinematics. The method is relatively

simple to apply and by which we create the workspace mapping model.

The definition of coordinate frame axis of the Omni joystick is different from

that of the Baxter, as illustrated in Fig. 8. Thus, the Cartesian coordinate of

Omni, [xm
′ym
′zm
′]T , needs to be transformed as followings:

Ao
′ = Rz(

π

2
)Rx(

π

2
)AoRy(

π

2
)Rz(

π

2
)


1 0 0

0 −1 0

0 0 −1

 (12)

where Rx, Ry, and Rz are the basic rotational matrix, Ao is the transform ma-

trix of the Omni and Ao
′ is the correspondent modified matrix.

According to the forward kinematics and joint rotate limit of the master device

and the slave robot, the Monte Carlo method of random sampling is applied

to the joint space of the manipulator to approximate the workspaces of both

master and slave [6]. The homogeneous radial distribution was employed to

generate 8000 points in the joint space of master and slave separately.
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Figure 8: Frame axis direction of the Omni and the Baxter.

To enable the workspace of the master Omni joystick and that of the slave

Baxter robot arm overlapping each other as much as possible to improve the

manoeuvrability, the point cloud matching method is utilised due to its con-

venience of considering the position of the end effector instead of its structure.

The mapping process can be performed as in equation (13)
xs

ys

zs

=

cosδ −sinδ 0

sinδ cosδ 0

0 0 1

×


Sx 0 0

0 Sy 0

0 0 Sz



xm

ym

zm

+

Tx

Ty

Tz


 (13)

where [xsyszs]
T , [xmymzm]T are the Cartesian coordinate of end effector of the

Baxter and the Omni respectively, δ is the revolute angle about Z-axis of the

Baxter base frame, [SxSySz]
T and [TxTyTz]

T are the scaling factor and transla-

tion about X, Y, Z axis. According to [6], for the left arm of Baxter robot, the

mapping parameters in the equation (13) can be calculated and given as

δ =
π

4
,


Sx

Sy

Sz

 =


0.041

0.040

0.041

 ,

Tx

Ty

Tz

 =


0.701

0.210

0.129


The result of workspace matching is represented in 3D space as in Fig. 9. Note

that, the direction of the axis of the haptic joystick is different from the axis of
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telerobot manipulator. With the help of the proposed method, a three axis of

the end-effector has been aligned to match the sight of the operator.

In equation (13), only the revolution about Z-axis is done. The master, Omni

joystick is placed on a horizontal platform and consequently the Z-axis of mas-

ter is perpendicular to horizontal plane.

Figure 9: Workspace matching result. The red point cloud is the workspace of
slave and grey point cloud represents the master workspace.

Likewise, the slave, Baxter robot is adjusted carefully to make sure that the

Z-axis is upward vertical and also perpendicular to horizontal plane. In this

way, the Z-axis of master is parallel to Z-axis of slave. The revolution about

X-axis and Y-axis are neglected due to a human-in-loop control approach is

employed. That is to say, as long as the X-axis and Y-axis of master and slave

are alignment approximately, operator can adjust the arm of robot according to

the posture depicted on the master computer’s screen instead of to control the

slave directly use the accurate coordinate value.

It is noted that the aforementioned workspace matching causes motion ampli-
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fication because the workspace of Baxter robot arm is physically much larger

than that of the Omni joystick. This amplification would increase the difficulty

of delicate manipulation, e.g., tiny motion error of a user would lead to large

undesired motion deviation of the telerobot.
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3.3 Extraction of Muscle Activation

The transformation from sEMG to muscle activation is an essential process.

How to estimate the influence of the activation level from sEMG in terms of

the performance of variable gain control was proposed in this work. Firstly, the

raw sEMG from all channels, namely, ui(k), where k is the current sampling

instant and i = 1, 2, · · · , N , are integrated by computing root mean square of

the ui(k), with a similar concept to those proposed in [58,59] as below:

ū(k) =

√√√√ 1

N

N∑
i=1

u2
i (k) (14)

Next, the moving average filter is applied as below:

ūf (k) =
1

max{k,N}

k+M∑
i=k

ūf (k) (15)

following experimental studies, M = 20 is chosen in the experiment to gain the

best filtered signals from sEMG data.

The study on the single motor unit shows that the multiple action potentials

(APs) cause multiple twitch responses. If the time between APs decreases, the

twitches start to merge into each other, and thus the muscle force increases

steadily. However, at high frequency, the twitches get closer to tetanus, where

no further force is produced even if the frequency increases.

Therefore, a nonlinear mapping between frequency and force for single motor

units can be assumed. The nonlinear mapping from neural activation u(k) to

muscle activation a(k) proposed in [60] is employed in this work:

a(k) =
eAu(k) − 1

eA − 1
(16)

where A is the nonlinear shape factor which is allowed to vary between -3 and
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0, with A = −3 being highly exponential and A = 0 being linear.

3.4 sEMG based Variable Gain Control

3.4.1 Control gain calculation

The control gain can be set proportionally to the muscle activation. However,

it is of importance to normalise the control gain within the specified range of

stable motion. Otherwise, it may cause instability due to incompatibility with

human stiffness variations. The following Eq. (17) is used to generate control

gain at the kth sampling instant by incorporating specified range:

Gain(k) = (Gainmax −Gainmin)
(a(k)− amin)

(amax − amin)
+ Gainmin (17)

where the gain range of stable robot motion Gainmax and Gainmin as well as

the maximum and minimum muscle activation amax and amin can be obtained

experimentally beforehand.

3.4.2 Structure of control implementation

The variable gain control proposed in this work is realised in both position con-

trol mode and torque control mode provided by the Baxter robot. The control

diagrams are shown in Fig. 10, where x∗ is the reference trajectory commanded

by the operator, x is the actual trajectory of the robot, J is the Jacobian of the

robot arm, and J−1 is the pseudo-inverse of J . In position control mode shown

in Fig. 10(a), the control gain generated from sEMG reflecting muscle acti-

vation directly affect the commanded speed sent to the position controller of

the Baxter robot. Therefore, in this control mode, an operator can adjust the

moving speed of the robot manipulator by muscle contractions. On the Baxter

platform, the position and torque modes are built-in control modes. During the

remote control, the operator remotely merely controls the movement of end-
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(a) Diagram of position control mode

(b) Diagram of torque control mode

Figure 10: Diagrams of two control modes: position control (a) and torque con-
trol (b) modes.

effector providing positions to be tracked, and the target placing position is

not known by the arm manipulator. Therefore, the overshoot is brought about

mainly due to the inaccurate operations, which relates to the settings of teleop-

eration system, instead of the selected control mode.

Fig. 10(b) shows the implementation in torque control mode, whereas the spec-

ified control gains proportionally affect the stiffness of the controlled robot

arm.
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3.5 Experimental Studies

Two sets of experiments have been designed and carried out to verify the effec-

tiveness and efficiency of the proposed sEMG enhanced teleoperation system.

(a) Pick-up and Drop Task (b) Lift-up and Move Task

Figure 11: Two designed experimental tasks to test the developed variable gain
control strategy under both position control mode and torque control mode.

3.5.1 Test in position control mode

In the position control method, the control gain can be set in order to change

the following speed of the telerobot manipulator. A pick-up and drop task

was designed to test the performance of the EMG based variable gain control

method. In this experiment, the operator is to pick up the target object from

a start position labelled with the blue cross on the table to a target position

labelled red cross on the table, as shown in Fig. 11(b).

The green object showed in Fig. 11(a) is the object to pick-up and drop. Figs. 12,

13, 14 are captured from the video clips which were recorded during the test.

Figs. 12(a), 13(a), 14(a) show the scenarios when the manipulator reached

the object. Figs. 12(b), 13(b), 14(b) show the status when the manipulator

was gripping the object and starting the movement to the target dropping po-

sition, as labelled with the blue cross on the table. Figs. 12(c), 13(c), 14(c)

32



(a) (b) (c) (d)

Figure 12: High gain mode

(a) (b) (c) (d)

Figure 13: Low gain mode

(a) (b) (c) (d)

Figure 14: sEMG based variable gain mode

show the scenarios when the manipulator reached the dropping position. Figs.

12(d), 13(d), 14(d) show the scenarios when the manipulator dropped the ob-

ject and start moving back to the original position. Operator in both low gain

mode and the EMG based variable gain mode could reach and drop the target

smoothly and accurately. While under the high gain control mode, it is very

hard for an untrained operator to grip the object accurately in the first time,

for any inaccurate operation will be rapidly followed and amplified. The red

circles in Figs. 12(b), 12(c) illustrate that the object had been placed a dis-

tance from the target position, i.e., the red cross labelled on the table, by the

manipulator. Generally, motion amplification exists when the workspace of the
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master device is much smaller than the workspace of the slave robot.

The time consumption of the entire pickup and drop task is relatively low in

high gain mode and EMG based variable gain mode, while it is much higher in

the low gain mode. Comparative experiments illustrate that the sEMG based

variable gain in position control model ensures efficient, smooth and accurate

manipulation. Moreover, it has better user experience than the high gain and

the low gain modes, especially for the untrained, unskilful operators.
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(b) EMG signals. Green line shows the raw EMG signals after moving aver-
age filtering, and blue line shows the envelop detected from green line using
algorithm in [1]
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Figure 15: Relationship between force feedback and robot tracking speed, un-
der sEMG based variable gain mode

In Fig. 15(a), the blue curve represents the speed of the manipulator’s end ef-

fect. In Fig. 15(b), the green one represents the raw data of the EMG signals,
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and the blue curve stands for the time series of muscle action extracted from

the EMG signals. Force feedback of the Omni is shown in Fig. 15(c). Fig. 15

demonstrates that when the sEMG based variable gain control mode is se-

lected, the gain of the manipulator’s speed will increase when the operator is

subject to a large feedback force forced on his/her forearm and vice versa.
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Figure 16: Tracking performance. Solid red lines: actual position trajectories of
robot manipulator. Solid black lines: commanded position trajectories set by
Omni joystick.

3.5.2 Test in torque control mode

In the stiffness control method, the manipulator’s stiffness can be set in order

to adjust the torque of the manipulator. A lift-up and move task is designed to

verify whether the EMG based variable stiffness can improve the performance
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of the task regarding efficiency and accuracy. In this experiment, the operator

is asked to lift up the target object from a start position labelled with the blue

cross on the table to a target position labelled red cross on the table, as shown

in Fig.11(b).

As shown in Fig. 11(b), a one kilogram toolbox is an object to be lift-up and

moved. When high stiffness is applied, the toolbox can be lifted successfully.

However, the stiffness of the manipulator is set according to the unloaded con-

dition. When the heavy box has been lifted, the dynamic of the manipula-

tor is changed, and the manipulator begins to shake, which can be seen from

the trajctory in Fig. 16(a). When low stiffness is applied, as demonstrated in

Fig. 16(b), the object could not be lifted at all and could be barely dragged to

the target position. While when sEMG based variable stiffness is applied, in

Fig. 16(c), the manipulator was able to lift up the object as well as to keep it-

self stable. Fig. 16(d) demonstrates the Root Mean Square Error (RMSE) of

tracking performance in the three different modes. The sEMG based variable

stiffness mode presents the lowest RMSE among these three tests. Further-

more, better user experience than the high stiffness and the low stiffness modes

has been achieved, especially for the untrained, unskilful operators.

In Fig. 17(a), the blue curve represents the stiffness percentage of the manip-

ulator. In Fig. 17(b), the green one represents the raw data of the EMG sig-

nal. The blue curve is the filtered EMG signal. Force feedback of the Omni

is shown in Fig. 17(c). Fig. 17 demonstrates that when the sEMG based vari-

able stiffness control mode is used, the stiffness percentage of the manipulator

will increase when the operator is subject to a large feedback force forced on

his/her forearm and vice versa.
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(b) EMG signals. Green line shows the raw EMG signals after moving aver-
age filtering, and blue line shows the envelop detected from green line using
algorithm in [1]
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Figure 17: Relationship between force feedback and robot tracking speed, un-
der sEMG based variable stiffness mode

3.6 Conclusion

This chapter which has been published in [61], and awarded as Best Confer-

ence Paper Award on ICIA 2015. This chapter presents a novel motion control

strategy for telerobots, using variable control gain which can be adjusted in

real time according to muscles activation by a human operator, whereas the

muscle activation is extracted from sEMG measured from a human operator.

Both haptic feedback and visual feedback (from human’s eye) are combined

in order to fully exploit human motor skills in stiffness and force adaptation

when interacting with external forces. A simple yet effective haptic rendering
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algorithm generating force feedback proportional to position tracking error is

used. The sEMG based variable gain control strategy has been implemented in

both position control mode and torque control mode, and a master-slave frame-

work is employed in teleoperation. Workspace between the master device and

the slave telerobot manipulator has been mapped in order to match the re-

searchable spaces. Comparative experimental studies have demonstrated that

the proposed method can improve teleoperation performance in both position

control mode and torque control mode, in terms of manipulation performance

as well as user experience.
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4 Visual Servoing of Humanoid Dual-arm Robot

with Neural Learning Enhanced Skill Trans-

ferring Control

4.1 Introduction

The issues pertaining to robot control has gained increasing research atten-

tion, recently. VS is a technique of control using computer vision information

to control the motion of a robot. It mainly consists of techniques relating to

computer vision, image processing and control theory [62, 63]. VS is one of the

most important way in improving the flexibility of robot control systems [64]

and has been widely applied. There are two central setups of the camera and

the robot end-effector: Eye-in-hand, also known as end-point open-loop con-

trol, where the position of the object is captured by the camera appended to

the robot hand; Eye-to-hand, or end-point closed-loop control, where the move-

ment of the end-effector and the object are both acquired by a camera settled

on the world frame [65]. Several approaches aims to provide better observation

of target objects by increasing the number of cameras, such as a system using

multiple cameras in [66]. A combination of eye-in-hand camera and eye-to-hand

camera system in [67]. However, they have low adaptability to a changing envi-

ronment. In this section, a control method of a Baxter robot arm end-effector

using a stereo visual camera ZED as the eye-to-hand camera is developed. Eye-

in-hand VS can only provides a narrow field of view, since the sensors are at-

tached in the hand. ZED sensor consists of a pair of progressive scan CCD

cameras with fixed alignment in between. It is used to detect the target objects

position in workspace. A Least Squares based method is proposed to reduce

stochastic errors during the camera calibration process.

To improve robot arm’s control performance, an adaptive controller was de-

veloped for robot manipulators [68]. It employed a barrier Lyapunov function
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based synthesis to design a controller for the manipulator to operate in an el-

lipsoidal constrained region. An adaptive neural network (ANN) control for

the robot system in the presence of full-state constraints is designed [69]. The

NN enables the system to deal with uncertainties and disturbances effectively.

Among these work above, we see that NN technique has been extensively used

for robot control system due to its universal approximation ability and its ca-

pability to cope with unmodeled dynamics of the robot systems. The highly

nonlinear nature of the robot dynamics makes it challenging to obtain an accu-

rate model under practical operational conditions [70]. However, conventional

NN control focuses on internal uncertainties. To overcome the uncertainties

produced from the unknown payload, a novel NN based intelligent controller is

designed in this section with an enhanced performance of VS control.

Furthermore, the learning ability of conventional NN controllers is limited,

since even repeating the same task, the parameters of controller need recal-

culation every time. Therefore, a deterministic learning technique has been

developed not only to obtain control dynamic knowledge from closed-loop con-

trol process, but also to reuse the obtained knowledge for other similar control

task without readapting to the uncertainties of the environments [71]. Deter-

ministic learning is proposed by using deterministic calculations that began

from adaptive control, rather than utilising syntactical standards. The deter-

ministic learning approach tackles the issue of learning in a dynamic situation

and is valuable in numerous applications, for example, dynamic pattern recog-

nition [72, 73], learning and control of robotics [74, 75], and oscillation faults

diagnosis [76]. In addition to the designed NN controller, deterministic learn-

ing feature is added to reuse the learnt knowledge efficiently. After the initial

learning of the environmental uncertainties, the proposed NN controller do not

need to re-learn until dynamics changes. It can greatly reduce the computa-

tional load.

With the aim of improving the “intelligence” of the robot, a robot-to-robot
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skill transfer mechanism is proposed. By using surface electromyography sig-

nal, human arm stiffness was extracted to transfer human writing skills to the

robot [1]. A communication language was developed of transferring grasping

skills from a human user to a robot [77]. Unlike these conventional approaches

of transferring human skills to a robot, the learned knowledge from NN con-

troller is transferred from arm to arm with a dual-arm robot. With the guaran-

teed performance, NN controller only needs to learn once of system uncertain-

ties on one side of dual-arm. The other arm can perform the same task without

readapting the same uncertainties. It can help to increase the neural learning

efficiency and reduce the computational load further.

In this context, this section presents an neural learning enhanced visual servo-

ing control system with knowledge reuse and skill transfer features. This neural

learning based compensation mechanism can be used to overcome the effect

of the unknown payload as well as uncertainties associated with the telerobot

model and environment. The system was successfully implemented on a Baxter

humanoid robot, and test results are demonstrated, which show the potential of

the novel learning controller.
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4.2 Preliminaries

In order to ensure the desired tracking performance during teleoperation, we

now consider shaping the transient response (e.g., overshoot, convergence rate,

and convergence accuracy) of motion tracking error eq. Let us define a set of

smooth, bounded, strictly positive, and decreasing functions γi, i = 1, 2, . . . , n

to impose constraints on the tracking error eq, with limt→∞ γi(t) = γi∞. Here,

γi(t) is chosen as [78]

γi(t) = (γi0 − γi∞)e−κitq + γi∞ (18)

where γi0, γi∞, and κi are positive constants. Then, the mathematical expres-

sion of predefined tracking performance can be described by using γi as below

−δγi(t) < eq(t) < γi(t) if eq(0) > 0

−γi(t) < eq(t) < δγi(t) if eq(0) < 0
(19)

where the positive constant δ can be designed arbitrarily small. γi∞(t) and

−δγi∞(t) represent the upper and lower bound of the tracking error eq’s max-

imum allowable magnitude at the steady state when eq(0) > 0, respectively.

δγi∞(t) and −γi∞(t) respectively represent the upper and lower bound of the

tracking error eq’s maximum allowable magnitude at the steady state, when

eq(0) < 0. Therefore, the performance function γi(t) can predefine the con-

troller performance after determining the above parameters.

Lemma [79]: Consider a parameterised linear time-varying (LTV) multivariable

systems in the following form:

ė
θ̇

 =

 A(e, λ) B(e, λ)T

−C(t, λ) 0

e
θ

 , z :=

e
θ

 (20)

where e ∈ Rn, θ ∈ Rm, A(e, λ) ∈ Rn×n, B(e, λ) ∈ Rm×n, C(e, λ) ∈ Rm×n,

λ ∈ D ⊂ Rl.
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There exists a constant φM > 0 such that for all t > 0 and for all λ ∈ D,

max

{
‖B(t, λ)‖ ,

∥∥∥∥∂B(t, λ)

∂t

∥∥∥∥} 6 φM . (21)

And there exist symmetric matrices P (t, λ) and Q(t, λ) such that P (t, λ)B(t, λ)T =

C(t, λ)T and −Q(t, λ) := A(t, λ)TP (t, λ)+P (t, λ)A(t, λ)+ Ṗ (t, λ). Furthermore,

∃pm, qm, pM and qM > 0 such that, for all (t, λ) ∈ R>0 × D, pmI 6 P (t, λ) 6

pMI and qmI 6 Q(t, λ) 6 qMI.

Then, the system is λ-uniformly globally exponentially stable (λ-UGES) if

and only if B(·, ·) is λ-uniformly persistency of excitation (λ-uPE), and the in-

bound constants are independent of the initial conditions λ.
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4.3 Kinematics Modelling of Humanoid Baxter R© Robot

Arms

4.3.1 Dual arms workspace identification for humanoid Baxter R©

robot

Baxter R© robot is a humanoid robot with an identical pair of seven degrees of

freedom (DOF) manipulators installed. Each manipulator has seven rotational

joints and eight links as shown in Fig. 18(a). The joint naming of the arm is

displayed in Fig. 18(b).

(a) Baxter robot arm (b) Baxter robot arm joint naming

Figure 18: Baxter humanoid robot and its joint naming. S0 - Shoulder Roll. S1
- Shoulder Pitch. E0 - Elbow Roll. E1 - Elbow Pitch. W0 - Wrist Roll. W1 -
Wrist Pitch. W2 - Wrist Roll

Baxter robot’s kinematic model together with DH parameters and joint rota-

tion limits were discussed from our previous work [80]. It is essential to esti-

mate the robot manipulator workspace for optimised robotic design and al-

gorithm. The previous method used on a single arm [80] is extended to both

arms to calculated the reachable workspace. 6000 randomly chosen points in

the joint space for each arm were generated. Then, point clouds of the reach-
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able workspace for both manipulators were generated based on the end-effector

positions calculated with forward kinematics, as illustrated in Fig. 19(a). Fur-

thermore, Delaunay triangulation is applied to the point cloud to generate a

convex hull of the joint space, as illustrated in Fig. 19(b). These convex hulls

are used to identify the individual workspace for left and right arm indepen-

dently in order to let them co-operate more efficiently during control.

(a) The point cloud of the reachable
workspace of Baxter robot arms.

(b) The convex hull of the reachable
workspace of Baxter robot arms.

Figure 19: The identification of Baxter’s workspace.

4.4 Setup of Stereo Vision Sensor

4.4.1 System Structure Overview

The robot control communication network is shown in the Fig.20. The ZED

stereo camera is a passive depth camera consists of two RGB-cameras with

fixed alignment. It is used as visual sensors in the robotic control system. It

captures videos in 30 fps under 1280×720 resolution to produce dense coloured

depth maps for estimating the positions of objects. ZED keeps capturing videos

of objects by its two cameras and sends them to a client computer via a USB

3.0 cable. Based on the difference between the two videos, client computer con-

structs disparity maps where the 3-D position information of objects can be

read. Then, the target object’s position information is sent to the Server Com-

puter via UDP packets. The server computer will receive and decode them and

then command Baxter to follow the target object along a reference trajectory.
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Figure 20: Communication Network

4.4.2 Stereo Camera Calibration

Raw pictures captured by ZED are distorted because lenses in ZED introduce

nonlinear lens distortion deviating from the simple pin-hole model. To solve

this problem, camera parameters calibration is necessary. To this end, we need

to find out the camera parameters such as the intrinsic, extrinsic and distor-

tion. Usually, researchers used a 2D checker-board pattern to evaluate them,

instead of the complexity of 3D reference models, given the high cost of precise

calibration objects. Among all the above parameters, intrinsic and distortion

parameters are provided by the manufacturer, which can be employed directly.

After we complete the camera parameters calibration, undistorted pictures can

be captured from ZED. Then, we can get an object’s coordinates in ZED’s co-

ordinate system. However, in practice, the position of objects is presented in

Baxter coordinate system rather than ZED. Therefore, we need to transform

the ZED coordinates into the Baxter coordinates, i.e., the position calibration

is necessary. The transform equation is shown as equation(22).

T


X1 X2 . . . Xi

Y1 Y2 . . . Yi

Z1 Z2 . . . Zi

1 1 . . . 1


=


x1 x2 . . . xi

y1 y2 . . . yi

z1 z2 . . . zi

1 1 . . . 1


(22)

where T is the transform matrix. (Xi, Yi, Zi) denotes coordinates in ZED and

(xi, yi, zi) means coordinates in Baxter.

The aim of position calibration is to form the coordinate transform matrix T .

46



T can be achieved by the formula (23).

T =


x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

1 1 1 1




X1 X2 X3 X4

Y1 Y2 Y3 Y4

Z1 Z2 Z3 Z4

1 1 1 1



−1

∈ R4×4 (23)

where (xi, yi, zi) and (Xi, Yi, Zi), i = 1, 2, 3, 4, are four non-coplanar point coor-

dinates in the robot coordinate system and the ZED coordinate system, respec-

tively.

To measure coordinates in Baxter coordinate system, the most straightforward

way is to use direct measurement by a measuring tape. However, it is very

coarse because the origin of the Baxter coordinate system is inside Baxter’s

body which is unavailable. Furthermore, it is also hard to ensure the horizon-

tality and verticality of the ruler. Another way to measure coordinates is to

use the kinematics of Baxter. At first, some established reference coordinates

are given, and then we command Baxter’s end-effector to move to these posi-

tions by using kinematics. In this way, we can get the end-effector’s coordinates

without direct measurement. Then, we use ZED to measure the end-effector’s

coordinates in ZED’s coordinate system, which will be introduced in the next

section. Subsequently, the points’ coordinates in both Baxter coordinate sys-

tem and ZED in formula (23) are easily achieved.

However, when using kinematics, stochastic errors always exist. In order to re-

duce these errors, Least Squares Method is employed. The aim of this algo-

rithm is to calculate an overall solution which minimises the sum of the square

errors in the given data. In order to employ this method in the calibration, we

must transform equation (22) in the form of equation (25). The transformation

can be done as below:
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X1I4 Y1I4 Z1I4 I4

X2I4 Y2I4 Z2I4 I4

...
...

...
...

XnI4 YnI4 ZnI4 I4




Tc1

Tc2

Tc3

Tc4


=



x1

y1

z1

1

...

xn

yn

zn

1



(24)

where I4 ∈ R4×4 means identity matrix. Tci ∈ R4×1 means the column vector in

the transform matrix T .

Let A =


X1I4 Y1I4 Z1I4 I4

X2I4 Y2I4 Z2I4 I4

...
...

...
...

XnI4 YnI4 ZnI4 I4


, X =


Tc1

Tc2

Tc3

Tc4


and B =



x1

y1

z1

1

...

xn

yn

zn

1



, we can

rewrite (24) into

AX = B (25)

while A is a known matrix with a dimension of 4n×16. X represents the trans-

formation matrix T with a dimension of 16 × 1. B is a column vector with a

dimension of 4n × 1. In most cases, this equation has no analytical solution.

The system is overdetermined because to suppress the undesired effect from

measuring noise, the number of sampled data that comprise Eq. (25) is greater
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than the dimensions of solution. Therefore, only numerical solution to Eq. (25)

can be obtained by using the Least Square method is chosen. Initially, Eq. (25)

is transformed as below:

ATAX = ATB (26)

If ATA is nonsingular, the transformation matrix can be calculated as below:

X = (ATA)−1ATB (27)

According to the equation(27), the solution of equation(24) can be achieved,

i.e. the transform matrix T can be solved by the method of Least Squares. We

can get a more precise solution by completing more coordinates measurement

in ZED and Baxter.

Since the robot arms contain red colours and green colours are easily impacted

by illumination, a blue object was used for detection. We firstly extracted (Xi, Yi, Zi),

i = 1, 2, 3, 4 of the object’s centroid from four different positions, out of ZED

camera, as the black XYZ shown in Fig. 21(a). The end-effector’s position

(xi, yi, zi), i = 1, 2, 3, 4 were recorded simultaneously. The end-effector were

posed 10cm behind the object’s centroid, in order to follow the object while not

block the object from camera view, as the white xyz shown in Fig. 21(a).

Then we substituted (xi, yi, zi) and (Xi, Yi, Zi), i = 1, 2, 3, 4 into equation (24)

to get the transformation matrix T . T was applied to the object’s centroid po-

sition, and the data was sent to the robot as reference coordinates for following

the object. The results are shown in Fig. 21(b) and Fig. 22, black XYZ stands

for object’s reference coordinates and white xyz stands for the coordinates that

robot end-effector actually followed.

4.4.3 Theory of Depth Measurement in ZED

Both pictures captured under active ambient lighting by the ZED stereo cam-

era, are aligned utilising the camera intrinsics and are amended for distortion.
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(a) Before calibration

(b) After calibration

Figure 21: Positions of the object and the end-effector, left image used for dis-
playing and monitoring. Black XYZ: object’s coordinates under camera’s frame
of reference. White xyz: end-effector’s coordinates under robot’s frame of refer-
ence.

Figure 22: Precision of calibration. Cross mark: Object’s position. Circle mark:
End-effector’s position.
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In this way, the undistorted images will be stereo rectified to adjust both the

projection planes’ epipolar lines and guarantee comparable pixels’ presence in

a predetermined row of the image. The images acquired are then frontal paral-

leled and are estimated correspondingly. The Fundamental and the Essential

frameworks are figured by utilising Epipolar geometry. There are seven pa-

rameters in the Fundamental matrix representing two images’ pixel relations,

three for two image planes’ homography and two for each epipole. The Essen-

tial matrix has five parameters in a 3×3 matrix, three of them are the rotation

values between the camera projection planes and two for translation. Then the

epipolar lines were adjusted, and the epipoles was moved to infinity. Fig. 23(a)

delineates the results of stereo correction with row adjusted pixels.

Table 1: Definition of variables
1 xl column value of the left image pixel
2 xr column value of the right image pixel
3 D Depth (mm)
4 B Baseline (mm)
5 f focal length (mm)
6 d disparity
7 P Projection matrix
8 X/ω, Y/ω, Z/ω 3D world coordinates

The definition of variables utilised underneath is given in Table 1. Stereo cor-

respondence is a technique for coordinating pixels with comparative surface

texture over two co-planar picture planes. The separation between the columns

of these splendidly coordinated pixels is characterised as d = xl − xr.

Block matching is actualised for assessing the image correspondence. With the

use of the sum of absolute differences (SAD), a 15-pixel window block is used

to discover the matching results. Considering computational load, the disparity

range is selected low as [0 40] to match the low texture difference of the ex-

periment environment. In order to get a more complete outcome, Semi-Global

method is used to drive the disparity values to the neighbouring pixels [81].

The output of the disparity map is illustrated in Fig. 23(b).
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(a) Rectified stereo Images

(b) Disparity Map

Figure 23: Stereo images and 3D reconstruction.

The disparity can be calculated by the Triangulation equation D = B f
d
, where

D,B, f, d is defined in Table 1. It is inversely proportional to the depth of the

pixel. Bouguet’s algorithm is used to obtain the Cartesian coordinates from the

reconstruction of the image, and the equation is shown below (28).

P [x, y, d, 1]T = [X, Y, Z, ω]T (28)

where ω 6= 1 is the homogeneous component.
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4.5 Detection and Localisation of Target Object

4.5.1 Colour object detection

Colour-based segmentation is utilised in order to isolate a single colour object

from the captured image. One approach is to convert the entire RGB frame

into corresponding Hue-Saturation-Value (HSV) plane and concentrate the

pixel values of the colour you want to detect. To do so, one may be able to

detect almost every single distinguishable colours in a single frame. However,

it implementation in a live video is challenging because of ambient light. An

alternative approach was proposed in our team’s previous work [82], which con-

verted the captured image into L*a*b* colour space where the value of ‘a’ and

‘b’ is related to the colour information of a point.

During the experiments, all images are converted into L*a*b* colour space and

the variance between every point’s colour and the standard colour marks will

be calculated. The estimations are selected based on the minimum variance

value of each image. Furthermore, the intersection of the diagonals was used to

calculate the centroid and Harris corner detector was used to calculate the cor-

ners of the object. According to the centroid point in the image, the object’s

coordinates in ZED is then extracted from the images. By applying the trans-

formation matrix in section 4.4.2, the object’s coordinates in Baxter’s coordi-

nate system can be calculated. Fig. 21(b) demonstrates the calculated centroid

of the object after coordinate transformation in robot coordinates.

4.5.2 Object Detection Regulation

After several tests, we find that because of the nonuniform distribution of light

in space, the object’s colour in images keeps changing as the object moves.

Sometimes the colour values of ‘a’ and ‘b’ change a lot that it affects the sta-

bility of object detection. To solve this problem, we employed a regulation al-

gorithm in object detection. The algorithm is described below. (i) Calculate

the variance between the image points’ colour and the colour marks. (ii) If the
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value of the variance of the object is not so large, go back to (i) and continue

next detection. Conversely, go to (iii). (iii) Calculate the average value of ‘a’

and ‘b’ around the centroid points, and update the older colour marks with

new values. Then start next detection based on these new colour marks.

By employing the algorithm above, object detection becomes more stable and

more adapted to the environment.

4.6 Switching control between two arms

The depth of the object to be manipulated is mapped to the convex hull to ex-

pedite the process of decision making, because a point cloud matching would

limit the processing speed. This is done by checking the presence of the point’s

respective co-ordinates in the convex-hull projection on the three Cartesian

planes. For example, if (X1, Y1, Z1) is the point representing the object, its

presence in the 3D hull is detected by following five steps:

Algorithm 1 Object detection in the 3D workspace hull

1: Check if the XY plane projection of the hull contains the point (X1, Y1),
Y Z plane contains point (Y1, Z1) and XZ plane contains point (X1, Z1)
using Ray Casting Algorithm;

2: Obtain the presence decision in the workspace of both arms;
3: If the point locates in both of the manipulator workspace, give the control

priority to the arm with the smallest Euclidean distance from manipulator;
4: Divide the control based on the detection of the point in left or right

workspaces;
5: If the point lies outside both the workspaces, stop arm movement to avoid

singularity.

The above procedure ensures an efficient motion to reach the object in the

robot workspace. It mimics the human intuition of using the nearest possible

arm for grabbing in order to avoid the use of excessive body movements and

minimize the use of energy.

Once the target object’s co-ordinates has been detected, end effector desired

trajectory for the visual tracking task can be defined as the moving trajectory

of the target. As for visual guided manipulation task, the end effector desired
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trajectory can be generated according to the location of the target object. De-

note the joint velocities as θ̇ and end-effector velocity as ẋ, then they must sat-

isfy ẋ = Jθ̇ where J is the Jacobian matrix of each arm.

4.7 Neural Network Controller Design

4.7.1 Adaptive Neural Controller

An adaptive NN based controller is designed to achieve the following control of

the joint space trajectory. The dynamic equation of the manipulator is shown

in (69).

M (θ)θ̈ +C(θ, θ̇)θ̇ +G(θ) + τext = τ , (29)

where M (θ) is the manipulator inertia matrix, C(θ, θ̇) is the Coriolis matrix

for the manipulator, G(θ) is the gravity terms and τext denotes the external

torque including the payload gravity applied at the end-effector.

Define s = ėθ+Λeθ, v = θ̇d−Λeθ, where eθ = θ−θd, Λ = diag(λ1, λ2, . . . , λn).

Then, the dynamic equation (69) can be rewritten as (70).

M(θ)ṡ+C(θ, θ̇)s+ F = τ (30)

where F ∈ Rn, is defined as

F = M(θ)v̇+C(θ, θ̇)v+G(θ) + τext (31)

Design the adaptive controller as (71).

τ = F̂ −Ks (32)

where F̂ is the estimate of F , and K = diag {ki} , i = 1, 2, · · · , n is a diagonal

matrix and min {ki} > 0.5.
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Then, by substituting (71) into (70), the closed-loop dynamics of the robot sys-

tem can be written as (72).

M(θ)ṡ+C(θ, θ̇)s = W̃TS(z)− ε(z)−Ks (33)

The following function approximation method is used.

F = W ∗TS(z) + ε(z)

F̂ = ŴTS(z)

F̃ = F̂ − F = W̃TS(z)− ε(z)

W̃ = Ŵ −W ∗

(34)

where W ∗ = [W ∗
1 ,W

∗
2 , · · · ,W ∗

n ] ∈ RN×n is the weight matrix, S(z) is the

basis function vector, z ∈ Ωz ⊂ Rq is the input vector with Ωz ⊂ Rq being

a compact set, N is the number of NN node, and ε(z) is the approximation

error. s(z) = [s1(‖z − µ1‖), · · · , sN(‖z − µN‖)]T , is the regressor vector, with

si(·) being a radial basis function, and µi (i = 1, · · · , N) being the centre. The

Gaussian functions choose as

si(‖z − µi‖) = exp

[
−(z − µi)T (z − µi)

ς2

]
(35)

where µi = [µi1, µi2, · · · , µiq]T ∈ Rq represents the centre of each receptive field

and ς is the variance.

Choose the following Lyapunov function.

V =
1

2
sTM(θ)s+

1

2
tr(W̃TQW̃ ) (36)

where Q is a positive definite weight matrix. And using the skew-symmetry

[83] of the matrix Ṁ − 2C, the first derivative of V can be calculated as

V̇ = −sTKs− sTε(z) + tr
[
W̃T

(
S(z)sT +Q ˙̂W

)]
(37)
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The update law is designed as follow.

˙̂W = −Q−1
(
S(z)sT + σŴ

)
(38)

where σ is a pre-designed positive constant.

Substituting (80) into (79), we have

V̇ = −sTKs− sTε(z)− σtr(W̃TŴ ) (39)

Based on Young’s inequality, from (81) we can have

V̇ ≤ −(λmin(K)−
1

2
)‖s‖2−

σ

2
‖W̃‖2 + ρ (40)

where ρ = 1
2
ε2 + σ

2
‖W ∗‖2, with ε is the upper limit of ‖ε‖ over Ω. If W̃ and

s satisfy the following inequality

(λmin(K)−
1

2
)‖s‖2 +

σ

2
‖W̃‖2 ≥ ρ (41)

where I is the unit matrix, then we can have V̇ ≤ 0.

By using LaSalle’s theorem, we see that ‖W̃ ‖ and ‖s‖ will converge to an in-

variant set Ωs ⊆ Ω, on which V̇ (t) = 0, where Ω is the bounding set that is

defined as

Ω =

{(
‖W̃ ‖, ‖s‖

) ∣∣∣∣ σ2ρ‖W̃ ‖2 +
(2K − I)

2ρ
‖s‖2 ≤ 1

}
. (42)

4.7.2 Analysis of NN Learning Convergence

By denoting a new subscript ζ, it represents the region which is close to the

tracking trajectory, and ζ̄ represents the region which is far away from the

tracking trajectory. Let Sζ(z) be the element that the neurons located in the

region of ζ, and Ŵζ is the associated weight matrix of NN. From (80) we can
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have

˙̃Wζ = −Q−1
ζ

(
Sζ(z)sT + σζŴζ

)
(43)

and from (73) we have that the NN approximation error εiζ(z) is close to ε(z).

S̄ζ and ¯̃Wζ are defined as below:

S̄ζ =


Sζ 0[Nζ×1] · · · 0[Nζ×1]

0[Nζ×1] Sζ · · · 0[Nζ×1]

...
...

...
...

0[Nζ×1] · · · 0[Nζ×1] Sζ


∈ RnNζ×n (44)

and

W̄ζ = [W T
1ζ ,W

T
2ζ , . . . ,W

T
nζ , ]

T ∈ RnNζ (45)

Subsequently, we define an augmented matrix of the diagonal matrix σζ as

σ̄ζ = [σζ , σζ , · · · , σζ ] ∈ RNζ×Nζ . From this, we could rewrite (43) into:

˙̃̄
Wζ = −S̄ζ(z)Q−1

ζ sT −Q−1
ζ σ̄ζŴζ (46)

Using the spatially localised approximation ability of RBF NN, the closed-loop

system from (72) can be expressed as below:

ṡ = M−1(θ)[−Ks+ S̄ζ(z) ¯̃WT
ζ − εζ(z)− C(θ, θ̇)s] (47)

Then, an LTV system can be created from the system of (47) and (46) as fol-

low  ṡi

˙̃Wζi

 =

−M−1(θ)N(t) M−1(θ)S̄Tζi(z)

−Q−1
i S̄ζi(z) 0[Nζ×Nζ ]

 si
¯̃Wi

+

−M−1(θ)εi(z)

−Q−1
i σiŴi

 (48)
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where N(t) = ki +C(θ, θ̇), i = 1, 2, · · · , n. Let P = Q−1
i M(θ), which is symmet-

ric, and let A = −M−1(θ)N(t), B = M−1(θ)S̄Tζi(z), and C = Q−1
i S̄ζi(z), then we

have

ATP + PA+ Ṗ = Q−1
i

(
Ṁ(θ)− 2C(θ, θ̇)− 2K

)
:= U (49)

Since min{ki} > 0.5, Qi is positive, and using the skew-symmetry [83] of the

matrix Ṁ − 2C, such that we can have U < 0. This guarantees the exponential

stability of the nominal part of the system in Eq. (48). Then on the premise of

small enough σ, the parameter error W̃ζ will converge exponentially to a small

neighbourhood (determined by |εζ(z)| and ‖ − σζŴζ‖) of zero for all t > T1.

Thus, Ŵζ can converge exponentially to a small neighbourhood of the desired

weight value W ∗
ζ for all t > T1.

4.7.3 Knowledge Reusing and Skill Transfer

Now, we can accurately approximate the dynamical system F (z) by using the

localisation feature of RBFNN, with the convergence of Ŵζ such as

F (z) = W̄ T
ζ Sζ(z) + ε̄ζ(z) (50)

where ε̄(z) is close to ε(z) in the steady-state process, and

W̄ζ = meant∈[tai,tbi]Ŵζ (t) =
1

tbi − tai

∫ tbi

tai

Ŵζ(s)ds (51)

with [tai, tbi], tbi > tai > T1 representing a time segment after the transient

process.

Let us define

W̄ = meant∈[tai,tbi]Ŵ (t) =
1

tbi − tai

∫ tbi

tai

Ŵ (s)ds (52)
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we will have

Ŵ TSζ̄(z) ≈ W̄ T
ζ Sζ(z) (53)

Therefore, we could use W̄ T
ζ Sζ(z) to replace W̄ T

i Si(z) for approximating the

uncertainties of system dynamics F (z).

Since the learnt knowledge will not keep in the memory, the control parame-

ters have to be recalculated even when reproducing the similar control tasks.

However, since the estimate Ŵ can converge into a small neighbourhood of the

optimal W ∗, F (z) which is the accurate approximation of the system dynam-

ics can be still achieved. The above learning method can be considered as the

system dynamics approximation using constant NN weights.

Based on our previous work [78], the following control law is proposed to reuse

the learnt knowledge instead of using the original NN based controller (71) and

the updated law of RBFNN’s weight (80)

τ = −Ks+ F̄ (z) (54)

where K = diag {ki} , i = 1, 2, · · · , n,min {ki} > 0.5 and F̄ (z) = W̄ TS(z).

With the property of dual-arm for Baxter robot, once one side of arm learnt

the uncertainties of the environment, i.e. payload, the learnt knowledge can

also be transferred and reused on the other arm without readapting the uncer-

tainties. This feature can also be extended to a robot-to-robot skill transfer.

While performing the same tasks, this mechanism can significantly help to re-

duce computational load with guaranteed performance.

4.8 Experiment Studies

A visual tracking task was performed to test the proposed VS method, with

neural learning and without neural learning for comparison. The experiment
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setup is shown in Fig. 24. In each set of tests, the blue object was moved by

the operator from the starting point (P1 : [0.7,−0.2,−0.2]) to the end point

(P2 : [0.7, 0.2,−0.2]) in a rectangle trajectory. The object was lifted up after

leaving the starting point and generally put down on the operating table level

at the end.

Figure 24: The experiment setup. Left cross: the start point. Right cross: the
end point. Two different payloads were held in both grippers on the manipula-
tor. The right and left one each weigh 1.3 kg and 0.7kg respectively.

Due to the 7-DOF robot dynamics, N = 37 × 7 nodes are employed for the

NN to complete a high precision of approximation. While the NN’s weight ma-

trix is initialised as Ŵ (0) = 0 ∈ R15309×7. The design parameters K of the

controller are specified as K = diag {9, 9, 8, 4.5, 1.8, 1.2, 0.8}.

The object reference trajectories which has been recorded using MATLAB and

the end-effector trajectories of this set of comparative experiments are demon-

strated in Fig. 25. The NN learning weights of individual joints are demon-

strated in Fig. 26. The compensation torques obtained by NN of each joint are

shown in Fig. 27.
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4.8.1 Control without NN Learning

During this initial set of experiments, the performance of the control method

without NN learning is tested to establish baseline performance. The colour

object was held by the operator and was moved along a predefined trajectory

as introduced earlier. From 25(a), we can see the actual position trajectory is

below the reference trajectory because of the heavy payload.

4.8.2 Control with NN Learning

During this set of experiments, the same task as the first experiment was per-

formed. In this set, the NN learning was added to the controller, and the per-

formance of the telerobot manipulator was recorded. Compared with the first

test, NN learns the payload’s weight during teleoperation and subsequently af-

fects the control inputs. As can be seen from 25(b), the robot was able to re-

store to normal tracking position. The control torque inputs of right and left

arm are shown in Fig. 27(a) and 27(b).

4.8.3 Control after NN Learning

During the last set of experiments, the NN will first learn the dynamics while

both manipulators were tracking the object along a repeated trajectory, same

as previous two. After four cycles, the NN adapted to the external dynamics

(attached payload). So that the trained NN will be reused for the further tele-

operation. The control torque inputs of right and left arm are shown in Fig.

27(c) and 27(d). The performance of tracking is illustrated in 25(c).

From Fig. 25(d), it can be seen that the designed adaptive controller can help

system compensate tracking error from both internal and external dynamics.

The trained NN has a steady performance with reusing the trained knowledge

to increase tracking performance.
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4.9 Conclusion

This Chapter has been published in [84]. An NN learning enhanced VS control

method was developed in this chapter and implemented on a humanoid dual-

arm Baxter robot. The colour object was detected by a stereo camera and a

regulation algorithm was applied to ensure the effectiveness of detection. The

calibration between the camera and robot’s coordinates was done with the pro-

posed least squared based method to reduce stochastic errors. The dynamic

parameters of the manipulator are estimated by the radial basis function NN

and an improved adaptive control method is designed for compensating the ef-

fect of uncertain payload and other uncertainties during the dynamic control

of the robot. Specifically, a knowledge reuse method with skill transfer feature

has been created to increase the neural learning efficiency. So that the learnt

NN knowledge can be easily reused for finishing repetitive tasks and also can

be transferred to another arm for performing the same task. The proposed NN

controller was validated with tests on a Baxter humanoid robot. Experimen-

tal results demonstrate that it can realise the optimal performance under the

designed VS control.
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(a) Without NN

(b) Trajectory while Learning

(c) Trajectory after Learning Reused

(d) RMSE

Figure 25: Tracking trajectory and root-mean-square error (RMSE). (a-c)
Dashed line: reference trajectories generated by object tracking. Solid and
Dash-dot lines: actual position trajectories of both robot right and left ma-
nipulators respectively. (d) Left: RMSE of the right arm under three different
conditions. Right: RMSE of the left arm under three different conditions.
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(a) NN learning weights for every single joint of the right arm
while learning.

(b) NN learning weights for every single joint of the left arm while
learning.

(c) NN learning weights for every single joint of the right arm
while learning reused.

(d) NN learning weights for every single joint of the left arm while
learning reused.

Figure 26: NN learning weights for every single joint.
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(a) The compensation torque of the right arm obtained by NN
while learning.

(b) The compensation torque of left arm obtained by NN while
learning.

(c) The compensation torque of right arm obtained by the NN
after training.

(d) The compensation torque of left arm obtained by the NN after
training.

Figure 27: NN control torques for every single joint of both arms. (a) and (b)
show the joint torques while NN was learning the uncertainties. (c) and (d)
show the joint torques after NN were trained. s0, s1, e0, e1, w0, w1 and w2
represent the 7 joints of the robot arm.
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5 Neural Learning Enhanced Teleoperation Con-

trol Using IMU Based Motion Capture

This Chapter presents a neural network (NN) control enhanced teleoperation

strategy which has been implemented on the Baxter robot. The upper limb

motion of the human operator is captured by the inertial measurement unit

(IMU) embedded in a pair of MYO armbands worn on the operator’s forearm

and upper arm, respectively. They are used to detect and to reconstruct the

physical motion of shoulder and elbow joints of the operator. Let the human

operator’s motion be reference trajectories. Subsequently, the robot is con-

trolled using NN technique to compensate for its unknown dynamics. Adap-

tive law has been synthesised based on Lyapunov theory to enable effective

NN learning. Previous experiments have been carried out to test the proposed

method, which have shown satisfactory performance on the Baxter robot tele-

operation.

5.1 Motion Capture

5.1.1 Human Arm Motion Capture by the Method of X-Y-Z Fixed

Angles

As shown in Fig. 28, the global coordinate frame (xs, yG, zG) is defined as: x-

axis points to the side in lateral direction; y-axis points forwards, z-axis point-

ing upwards. For the easy calculation of the shoulder joint angles, the local

frame of the humerus (xH , yH , zH) and forearm frame (xF , yF , zF ) coincides

with the global frame. The local frame of humerus (xH , yH , zH) is defined as:

x-axis pointing to the left, y-axis pointing to the forward, z − axis pointing to

the upward along the upper arm.

The local frame of the forearm (xF , yF , zF ) is defined as: x-axis pointing the

left, y-axis pointing the forward along the forearm, z-axis pointing the upward.

The rotation matrices of the orientations of the humerus frame and forearm
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Figure 28: The global frame, local frame and MYO armbands frames (X1, Y1,
Z1) and (X2, Y2, Z2).

frame under the global frame can be obtained as below:

Ri
GH =

[
X i
GH Y i

GH Zi
GH

]
=


1 0 0

0 1 0

0 0 1

 (55)

Ri
GF =

[
X i
GF Y i

GF Zi
GF

]
=


1 0 0

0 1 0

0 0 1

 (56)

where R ∈ R3×3 is the rotation matrix, i is the initial position, “G”, “H” and

“F” denote the global, humerus and forearm frame respectively. The rotation

matrix RY X represent the orientation of the frame “X” with respect to frame

“Y ”. The column vector XMN , YMN , and ZMN denote unit vectors describing

the principal directions of the frame “N” in terms of frame “M”, and XMN ,

YMN , ZMN ∈ R3×1.

The local frame of humerus and forearm are not stationary and the orientation

of the humerus frame with respect to the first MYO armband frame and the

forearm frame with respect to the second MYO armband frame are constant

68



matrixs, given as

Ri
UH = (Ri

GU)TRi
GH (57)

Ri
LF = (Ri

GL)TRi
GF (58)

where “U” represents the frame of the first MYO armband worn on the upper

arm, and “L” represents the frame of the second MYO armband worn on the

lower arm.

The orientations of the humerus and forearm under the global frame while the

operator moving his/her arm can be described as:

Rf
GH = Rf

GUR
i
UH (59)

Rf
GF = Rf

GFR
i
LF (60)

where f denotes the current arm position.

A quaternion q1 = [x, y, z, w]T can be obtained from the first MYO’s gyroscope,

where (x, y, z) is a vector and w is a scalar quantity.

q1 = xi+ yj + zk + w

According to [85], we can obtain the orientations of the humerus under the

global frame from the quaternion, as follows:

Rf
GH =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (61)

=


1− 2(y2 + z2) 2(xy − wz) 2(wy + xz)

2(xy + wz) 1− 2(x2 + z2) 2(yz − wx)

2(xz − wy) 2(wx+ yz) 1− 2(x2 + y2)
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The joint angles present in human arm frame are displayed in Fig. 29. Ac-

knowledgement of describing frame {B} in frame {A} is as follows: {B} is

coincident with frame {A}. First, rotate frame {B} about XA by an angle γ,

then about YA by an angle β, finally, about ZA by an angle α [86]. The angles

γ, β, α are the roll, pitch and yaw angles respectively.

Rf
GH = RZ(α)RY (β)RX(γ) (62)

=

[
cosαcosβ cosαsinβsinγ−sinαcosγ cosαsinβcosγ+sinαsinγ
sinαcosβ sinαsinβsinγ+cosαcosγ sinαsinβcosγ−cosαsinγ
−sinβ cosβsinγ cosβcosγ

]

Figure 29: The joint angles present in human arm frame.

With two MYO armbands, we can measure the five joint angles of the opera-

tor’s arm. From Eq. (61) and (62), the three shoulder joint angles (shoulder

flexion/extension, abduction/adduction and internal/external rotation) are

calculated. Through the data collected from two MYO armbands, we can cal-

culate these two elbow joint angles (elbow flexion/extension and pronation/-

supination).
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qd1 = arctan(
√
r2

31 + r2
32/r33) (63)

qd2 = arctan((r23/sinqd1)/(r13/sinqd1)) (64)

qd3 = arctan((r32/sinqd1)/(−r31/sinqd1)) (65)

where the qd3, qd2 and qd1 represent the joint angles of shoulder roll, shoulder

yaw and shoulder pitch, respectively.

qd4 = arccos(
−−→
OeA ·

−−−→
OeOs) (66)

qd5 = arccos[
−−→
OeB · (

−−→
OeA×

−−−→
OeOs)] (67)

where the qd4 and qd5 represent the joint angles of elbow flex and elbow roll

respectively. The
−−→
OeA is the unit vector along the y-axis of the forearm frame.

The
−−→
OeB is the unit vector along the x-axis of the forearm frame. The

−−−→
OeOs is

the unit vector along the z-axis of the humerus frame.

5.2 Neural Networks Controller Design

Let us define the desired joint space trajectory qd as

qd = [qd1, qd2, qd3, qd4, qd5]T ∈ R5 (68)

Now, let us consider apply NN based control technique to achieve the follow-

ing control of the joint space trajectory. The output signal of the system is re-

quired to follow the expected input signal. So responses of the closed-loop sys-

tem be quick, accurate, and stable. The angle matrix qd ∈ R5 exported by the

MYO is regarded as the reference signal. and the angle matrix q ∈ R5 returned

by the robot are the actual angles. The dynamic equation of the manipulator is
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shown in Eq. (69).

M(q)q̈ + C(q, q̇)q̇ +G(q) +N(q) = τ, (69)

where M(q) ∈ R5×5 is the manipulator inertia matrix, C(q, q̇) ∈ R5×5 is the

Coriolis matrix for the manipulator, G(q) ∈ R5×1 is the gravity terms and

N(q) ∈ R5×1 is unmodeled dynamics caused by exchangeable robot gripper

and system uncertainties.

Define z = ėq + Λeq, qr = q̇d − Λeq, where eq = q − qd, Λ = diag(λ1, λ2, . . . , λn).

Then the dynamic equation (69) can be rewritten as (70).

M(q)ż + C(q, q̇)z +G(q) +M(q)q̇r + C(q, q̇)qr = τ −N(q), (70)

Design the adaptive controller as (71).

τ = Ĥ(q) + M̂(q)q̇r + Ĉ(q, q̇)qr −Kz, (71)

where Ĥ(q), M̂(q) and Ĉ(q, q̇) are the estimates of G(q) + N(q), M(q) and

C(q, q̇), respectively.

Then the closed-loop system dynamic can be written as (72).

Mż + Cz +Kz = (M̂ −M)q̇r + (Ĉ − C)qr + (Ĥ −H) (72)

The following function approximation method is used.

M(q) = W ∗T
M SM(q) + εM

C(q, q̇) = W ∗T
C SC(q, q̇) + εC

H(q) = W ∗T
H SH(q) + εH(z),

(73)

where W ∗
M , W ∗

C and W ∗
H are the weight matrices; SM(z), SC(z) and SH(z) are

the basis function matrices, and εM(z), εC(z) and εH(z) are the approximation
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errors.

The basis function matrices are designed as follow.

SM(q) = diag (Sq, . . . , Sq)

SC(q, q̇) = diag

 Sq

Sq̇

 , . . . ,
 Sq

Sq̇


SH(q) =

[
ST
q . . . ST

q

]T
,

(74)

where

Sq = [φ (‖q − q1‖) φ (‖q − q2‖) . . . φ (‖q − qn‖)]T

Sq̇ = [φ (‖q̇ − q̇1‖) φ (‖q̇ − q̇2‖) . . . φ (‖q̇ − q̇n‖)]T

φ(r) = e−(εr)2

(75)

The estimates of M(q), C(q, q̇) and H(q) can be written as (76).

M̂(q) = ŴT
MSM(q)

Ĉ(q, q̇) = ŴT
C SC(q, q̇)

Ĥ(q) = ŴT
HSH(q),

(76)

By substituting (76) into (72), we have

Mż + Cz +Kz = W̃T
MSM(q)q̇r + W̃T

C SC(q, q̇)qr + W̃T
HSH(q) (77)

where W̃T
M = ŴT

M −W ∗T
M , W̃T

C = ŴT
C −W ∗T

C and W̃T
H = ŴT

H −W ∗T
H .
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Choose the following Lyapunov function.

V =
1

2
zTMz

+
1

2
tr
(
W̃T
MQMW̃M + W̃T

CQCW̃C + W̃T
HQHW̃H

)
,

(78)

where QM , QC and QH are positive definite weight matrices. And the deriva-

tive of V is

V̇ =− zTKz−

tr
[
W̃T
M

(
SM(q)q̇rz

T +QM
˙̂
WM

)]
+

tr
[
W̃T
C

(
SC(q, q̇)qrz

T +QC
˙̂
WC

)]
+

tr
[
W̃T
H

(
SH(q)zT +QH

˙̂
WH

)]
(79)

The update law is designed as follow.

˙̂
WM = −Q−1

M

(
SM(q)q̇rz

T + σMŴM

)
˙̂
WC = −Q−1

C

(
SC(q, q̇)qrz

T + σCŴC

)
˙̂
WH = −Q−1

H

(
SH(q)zT + σHŴH

) (80)

where σM , σC , σH are predesigned positive constants. Substituting (80) into

(79), we have

V̇ =− zTKz − σM tr
(
W̃T
MŴM

)
− σCtr

(
W̃T
C ŴC

)
− σHtr

(
W̃T
HŴH

) (81)
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Using Young’s inequality, (81) can be further relaxed as

V̇ =− zTKz +
σM tr(W

∗T
M W ∗

M)

2
− σM tr(W̃

T
MW̃M)

2

− σM tr(Ŵ
T
MŴM)

2
+
σCtr(W

∗T
C W ∗

C)

2

− σCtr(W̃
T
C W̃C)

2
− σCtr(Ŵ

T
C ŴC)

2

+
σHtr(W

∗T
H W ∗

H)

2
− σGtr(W̃

T
HW̃H)

2

− σHtr(Ŵ
T
HŴH)

2

=− zTKz +
σM tr(W

∗T
M W ∗

M)

2
− σM tr(W̃

T
MW̃M)

2

+
σCtr(W

∗T
C W ∗

C)

2
− σCtr(W̃

T
C W̃C)

2

+
σHtr(W

∗T
H W ∗

H)

2
− σHtr(W̃

T
HW̃H)

2

(82)

So that we have

V̇ ≤ −ηV + κ (83)

where η = min[2K, σM/
(
λmax(QM)

)
, σC

(
λmax(QC)

)
, σH/

(
λmax(QH)

)
], κ =

1
2
tr(σMW

∗T
M W ∗

M+σCW
∗T
C W ∗

C+σGW
∗T
G W ∗

G). Since V > 0 and κ is the product of

the predesigned constants and weight matrixes that we given, as long as κ ≤ η,

we can have V̇ ≤ 0. According to Lyapunov theory, the system is stable.

5.3 Experimental Results

5.3.1 Experimental Set-up

An operator stands upright with two MYO armbands on the same arm in the

lab. The first MYO armband is worn near the centre of the upper arm, and it

can measure the orientation of the upper arm. The second MYO armband is

worn near the centre of the forearm, and it is used to estimate the orientation

of the forearm by the build-in gyroscope and calculate the wrist joint angles by
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eight bioelectrical sensors. The experiment setup with the initial pose of the

robot is shown in Fig. 30.

Before the operator controls the virtual robot arm, the MYO armband must be

calibrated and the EMG sensors must be warm up so that the MYO armband

can discern different hand poses. The operator should stand still before the

Baxter completes mimicking the human arm’s configuration, and his/her arm

should not move too fast through the experiment.

Figure 30: The experiment setup with the initial pose of the robot.

5.3.2 Results of Experiment

The norms of weights relating to each joint are given as shown in Fig. 31. It

is seen that, with compensation, the parameter estimates are smooth. Fig. 32

represents the position difference of the five joints between the robot trajectory

and the reference one given by Myo armband. The left row of Fig. 32 was gen-

erated without NN learning, while the NN enhanced controller was applied in

the right row of Fig. 32. It can be seen that the tracking performance of the

manipulator’s joints has been improved after adopting the NN learning control.

The model of using MYO armband to control Baxter robot arm was designed

and tested. The proposed NN learning controller was also tested, and the re-

sults show its effectiveness of compensating the unknown dynamics during tele-

operation.
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Figure 31: NN learning weights for every single joint. s0, s1, e0, e1 and w0 rep-
resent the five robot joints used in this experiment, respectively.

5.4 Conclusion

In this published chapter [87], an NN learning enhanced teleoperation control

of the Baxter robot is developed. The motion of the human operator’s arm can

be detected and reconstructed by using physical IMU signals, provided by a

pair of MYO armbands worn on the operator’s arm. Then the data was applied

to Baxter robot’s joints respectively for teleoperation. The advantages of us-

ing the MYO armband are that MYO armband is portable and the calculated

angles of shoulder joint and elbow joint are accuracy. NN learning based com-

pensation mechanism for the controller helps the user to overcome the effect of

the uncertainties associated with the telerobot model and environment while

teleoperating. The proposed controller guaranteed the system output track-

ing errors satisfied the prescribed transient and steady-state control behaviour

bounds. Experimental tests have demonstrated the effectiveness of the pro-

posed design techniques.
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Figure 32: Robot trajectory compares with MYO reference point. Left: With-
out NN, Right: With NN
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6 Development of an Immersive Interface for

Robot Teleoperation

In this section, various techniques have been investigated in order to enhance

user experience (UX) for robot teleoperation. In this teleoperation system de-

sign, the human operators are provided with both immersive visual feedback

and intuitive skill transfer interface such that when controlling a telerobot arm,

a user is able to “feel” in a first-person perspective in terms of both visual and

haptic sense. Some high-tech devices including Omni haptic joystick, MYO

armband, Oculus Rift DK2 headset, and Kinect v2 camera are integrated. The

surface electromyography (sEMG) signal allows the operator to naturally and

efficiently transfer his/her motion skills to the robot, based on the properly de-

signed elastic force feedback control. For visual feedback, operators can control

the pose of a camera on the head of the robot via the wearable visual headset,

such that the operator can perceive from the robot’s perspective. Tests involv-

ing human subjects have been performed to evaluate the design, and the exper-

imental results have shown that superior performance and better UX have been

achieved by the proposed method in comparison with the traditional methods.

6.1 Introduction

With the advance of automation technologies, robots have become increas-

ingly prominent in our everyday lives [88]. Autonomous robots have become

in common use in industrial, as these robots can complete high precision tasks

with minimal completion time, especially within hazard environments. How-

ever, specialised tasks that require extensive interactions with uncertain en-

vironment, e.g., medical operation which is not suitable for fully autonomous

robots to be applied to. A tele-controlled robot remotely controlled by human

operators may be desired for these tasks [89], i.e., teleoperation. Works demon-

strated in [90] shows how stereo vision contributes to improving the perfor-
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mance of applications in mobile robot teleguide. [91] presents a non-contacting

vision-based method of robot teleoperation which improves the accuracy of ob-

ject gripping tasks. Teleoperation has progressed to the point, where human

operators can easily control a multi-jointed robotic arm [1, 85, 92, 93], via a hap-

tic feedback device. As introduced in [94], with haptic force feedback, a pilot

can have a natural representation when approaching obstacles. Force feedback

was also added in [95] to aid camera system avoiding the obstacle in mobile

robot teleoperation. It is natural to combine haptic information with visual in-

formation for coordinated information feedback. However, conventional means

of visual feedback using a monitor do not provide an operator with an immer-

sive user experience.

Immersive visual feedback technique has been utilised in many research projects

to provide an operator with a sense of telepresence [96] [97], i.e., the feeling

that the operator exists at the robot’s remote location. An Oculus Rift headset

is used in this work to give an immersive visual feedback of the workspace of a

robotic arm from a fixed position stereo camera in [98]. However, this system

does not allow an operator to manipulate the orientation of the stereo camera.

An underwater simulation environment is created in [99], and it allows an op-

erator to control the orientation and operators view of a simulated ROV (Re-

motely Operated Vehicle) via an Oculus Rift headset. In comparison to this de-

sign, our design is based on a physical platform. By combining haptic feedback,

and visual feedback, an operator would naturally experience telexistence [96].

However, none of the research mentioned above investigates whether there is a

link between operator task performance and operator immersion whilst teleop-

erating. Therefore, extensive tests have been performed in this work to com-

pare operation-friendliness with or without the proposed immersive interfaces.

To enhance the telepresence, in this work, an immersive visual feedback device

Oculus Rift DK2 is employed, together with a Kinect v2 RGB-D imaging de-

vice, and haptic device Geomagic Touch, to teleoperate a Baxter robot arm.
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Figure 33: An illustration of the teleoperation setup, with each key component
labeled, including a Kinect head mount system, a Baxter robot, a Geomagic
Touch and an Oculus Rift DK2 [photo taken at Plymouth University].

Haptic feedback devices which give an operator force feedback from a telerobot

have been utilised extensively among researchers [100, 101]. In this work, using

IR sensor at the cuff of Baxter’s end-effector(Fig. 34), the haptic feedback in-

formation is provided as the distance between an object/surface and Baxter’s

gripper. This haptic force feedback is also bonded with two other customised

force feedbacks, tactile force, and restoration force. Tactile force is derived from

a force sensing resistor (FSR) mounted onto one of the pincers of Baxter’s end-

effector gripper (referred to as the FSR pincer, Fig. 34), which allows an opera-

tor to sense the firmness of objects picked up by the gripper. Restoration force

tends to drag the haptic joystick back to the pre-set initial pose, after an oper-

ator has used the haptic joystick to change the position of the robot’s gripper’s

pincers. Force feedback is presented to an operator via a Geomagic Touch hap-

tic feedback joystick (Fig. 33), which is also used by the operator to control the

position of Baxter’s end-effector.
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Figure 34: An illustration of one of the Baxter robot’s end-effectors. A: the
cuff camera; B: the IR range sensor; C: active, gripper attachment [2]; D: VR
headset capture of the operator’s view of the robot workspace, captured by the
cuff camera

Immersive visual feedback technique which provides an operator a sense of

telepresence has been implemented in many research projects [96, 102]. In [103],

a panoramic display system was used for improving the teleoperation perfor-

mance of a mining robot. A virtual reality (VR) headset, Oculus Rift, was used

in [104] to control a simulated robot in a combat scenario. An intuitive 3D in-

terface was designed to allow operator immerse in a virtual environment while

teleoperating [105]. Rather than using the conventional interface composed of

a monitor and a keyboard [106], immersive visual feedback technique can give

operators a feeling that they are controlling the robot as sitting inside a robot.

In this work, the output image stream after image processing is displayed on

the Oculus Rift DK2 headset. The operator is able to manipulate the gaze of

the Kinect camera’s field of view (via a servo pan and tilt kit), as they move

their head in a manner which is naturally similar, towards a certain direction

for a better view. The IMU unit built into the Oculus Rift headset records the

operator’s head motion, and the pan and tilt servo platform, upon which the

Kinect camera is fixed, tracks the recorded motion. The Kinect pan and tilt

servo platform, which is then mounted onto the head of Baxter, enables an op-

erator to feel as though they are looking at the robot’s workspace from a static

position, in place of the robot.

In order for the operator to control the gaze of visual feedback camera, i.e.,

Kinect v2, a pan and tilt servo mount has been designed and manufactured,

and fixed on top of Baxter’s head. This also could be beneficial to other re-
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search carried out on the Baxter robot platform in the future. Baxter is a ro-

bust, reliable research robot platform, and researches that have already con-

ducted on this platform has shown promising and interesting results. To the

best of our knowledge, it is the first attempt among the teleoperation com-

munity to implement a system which combines haptic and immersive visual

feedback on this platform. Extensive tests have been carried out, based on our

previous work [107], to compare the user experiences of non-immersive and im-

mersive teleoperation interfaces and their performances.

6.2 System Communications

Figure 35: The illustration of the teleoperation system.

To enhance the telepresence, in this work, Oculus Rift DK2 that could provide

vision from robot’s perspective is employed (Fig. 37(a)), together with hap-

tic device Omni (Fig. 33), to teleoperate a Baxter robot arm (Fig. 35). This

haptic device is of 6 degree-of-freedom (DOF), which allows the user to per-

ceive the obstacle and environment-related forces. The forward kinematics, in-

verse kinematics and Jacobian of the Omni haptic device has been well studied

by [55]. In addition, infrared (IR) sensor built into the cuff of Baxter’s end-

effector are used to provide haptic feedback information to an operator about

the distance between the robot’s gripper and an object/surface (referred to as

proximity force). The whole haptic feedback is combined with two force feed-

backs: referred to as proximity force (Fig. 38), and elastic force (Fig. 40), re-
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spectively, to provide a compound haptic feedback to the operator. And then,

by wearing MYO armband (Fig. 37(b)), the sEMG signal was collected from

the operator and used to transfer skills from the human operator to the robot.

A brief user manual of the teleoperation system can be found in Appendix A.

6.2.1 Kinect

Kinect (Fig. 36) is a line of motion sensing input devices by Microsoft for Xbox

360 and Xbox One video game consoles and Windows PCs. Based around a

webcam-style add-on peripheral, it enables users to control and interact with

their console/computer without the need for a game controller, through a nat-

ural user interface using gestures and spoken commands. It is basically a depth

camera. Normal webcams collect light that is reflected by the objects in its

field of view and turn them into an image. Kinect can also measure the dis-

tance between the objects in front of it and itself. Then it displays the depth

data in form of image using grey-scale values. By fusing the 2-D image and

depth informations, Kinect can output a less memory-consuming depth im-

age that contains 3D information of objects in front of it. The depth image,

compared with the 3D cloud points, are easier to process and more suitable for

real-time application.

Figure 36: Kinect sensor with its coordinate system.
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6.2.2 Oculus Rift

Oculus Rift is a head-mounted display, which uses the position tracking sensor

and optical lens to consist a system. With it, the wearers can feel an illusion

that they are actually in a virtual environment. In particular, Oculus Rift De-

velopment Kit 2 (DK2) is used in this work, which has developed four key im-

provements compare with DK1. The DK2 has higher resolution (960×1080 per

eye), low-persistence OLED display, higher refresh rate and positional tracking

function.

(a) Oculus Rift DK2 (b) Myo Armband

Figure 37: Oculus Rift DK2 and Myo armband.

6.2.3 MYO Armband

MYO armband, developed by the Thalmic Labs company, is a wearable device,

which can recognise the hand gesture and arm movement by wearing it on the

arm. Based on the muscles’ movement, the eight built-in EMG sensors, along

with a 9-axis IMU sensor can identify the hand gesture and send the signals

to the system via Bluetooth. The sensors generate data by electrical impulses

from arm muscles. Given that each user has a different type of skin, muscle

size and etc, it is necessary to calibrate the device before each different user

starts using. It can help to increase the accuracy of the gesture recognising per-

formance.
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6.3 Immersive Visual Feedback

In this section, the proximity force and the 3D stereo vision are introduced. As

by combining these two tactile and vision feedback, the system can provide the

user a more immersive teleoperation experience.

6.3.1 Proximity Force

In order for the operator to sense that an object is close to the gripper, it is

required that the pitch and yaw of the end-effector are known. By adding an

extra point (PW in Cartesian space) to the wrist of Baxter’s right arm, it is

possible to determine the direction that the end-effector is pointing to in Carte-

sian space, which is represented as a resultant vector in Eq. 84:

Ps
def
==

[
x y z

]T
;Poffset

def
== PW − PE (84)

where Ps is any Cartesian point in Baxter’s workspace, including x, y, z coordi-

nates, PW is the added wrist point, PE is the end-effector point, and Poffset ∈

R3 is the resultant vector. The magnitude of the resulting vector is determined

by the output value of the IR sensor on the end-effector of the Baxter robot.

The range of distances detectable by the end-effector IR sensor is 40mm (clos-

est) to 400mm (furthest). Therefore, before the range value (scalar) being mul-

tiplied by the end-effector direction vector, the detected distance must be sub-

tracted from the maximum detectable distance, since the closer the object

to the gripper, the greater the magnitude of the force feedback the operator

should experience, and conversely the further away the object/surface, the

smaller the magnitude of the force feedback the operator experiences. The re-

sulting Cartesian force vector is analogous to a spring, between the end-effector

IR sensor and the detected object (as shown in figure 38). The resulting Carte-
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sian force vector is determined by Eq. 85:

Fp = Poffset · k (dIRmax − dobject) (85)

where Fp =
[
Fpx Fpy Fzp

]T
, k is a distance gain, dIRmax = 400mm, and

dobject is the IR-sensed distance to the object.

Figure 38: A description of the spring-like behaviour of the object proximity
force feedback (derived from end-effector IR sensor measurements, equation
85); an Interlink Electronics 406 force sensing resistor is attached to the left
gripper pincer.

6.3.2 Visual feedback from the robot’s perspective

A Kinect v2 device is mounted onto the head of Baxter to give the operator a

complete view of the robot’s workspace, and a 3D printed mount was designed

to fit directly onto the head of Baxter, as shown in Fig. 39(a). The Kinect

v2 is mounted upon a 3D printed support bar, which fixes to an aluminium

bracket. The aluminium bracket is fixed to a Dynamixel MX28R servo (tilt

servo), which mounts on the top of a Dynamixel MX28R servo (pan servo).

Controlling Kinect’s View: The positions of both pan and tilt MX-28R servos

are controlled by an Arduino Micro-controller board. The operator can view

the entirety of Baxter’s workspace through the Oculus Rift (via the Kinect v2)

by changing the orientation of their head (Fig. 39). This gives the operator the

ability to control the direction of the Kinect device from their head position.
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(a) (b)

Figure 39: (a) The movement of the Kinect camera, determined by the head
movements of the operator. (b) The natural head movements of the operator,
tracked by the headset’s built-in IMU.

Rendering on Oculus Rift: To display images on the screen of the Oculus Rift

headset: a program is used to implement D3D11 to create a 2D texture from

the supplied colour image (Kinect or end-effector camera), and then present

this to the Oculus. This simple method, however, will apply distortion, and

scaling to the supplied texture, and will lead to reducing motion blur. Apply-

ing a distortion to original image cancels distortion contributed by the Oculus

Rift’s lenses. The final image is presented to each of the operator’s eyes via the

headset’s screen. The 1920 x 1080 pixel screen is split into two halves (each 960

x 1080 pixels), both halves are presented with the same image in this system.
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6.4 Intuitive Skill Transfer

In this section, the elastic force feedback and the extraction of muscle activa-

tion are introduced. By applying elastic force feedback on the haptic device,

the operator will naturally generate force during the remote control in order

to counter the feedback force so that the user can transfer his/her skills more

intuitively to the robot.

6.4.1 Elastic Force Feedback

Figure 40: Force feedback generation.

Rather than the measuring interaction forces in traditional ways, such as mount-

ing a force sensor onto the robot manipulator, we estimate the interaction forces

by a haptic rendering algorithm. The algorithm is obtained by the tracking er-

ror during motion. In Fig. 40, we assume that the interaction force is governed

by an admittance model given in Eq. (86):

Fe = M ¨(dP ) +D ˙(dP ) +K(dP ) (86)

where K is a virtual spring’s stiffness, D is a virtual damper’s damping ratio,

M is a virtual mass and dP is the position difference between the Omni joy-

stick’s commanded reference position and the Baxter end-effector’s actual posi-

tion. In this work, we only consider the three dimensions translational motion

for simplicity, and dP = Ps − Pm, where Ps ∈ R3 is the actual translational

position of Baxter’s end-effector and Pm ∈ R3 is the Omni device’s reference
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position. Then, we can formulate the torque of the Omni as below:

τo = JT
o (Fe + Fa) (87)

where τo is the torque of the Omni device, and Jo is the Jacobian matrix of the

Omni device.

Fa = JT ·
[
Fpy Fpz Fpx

]T
(88)

where the force vector is rearranged to match the Baxter and Omni’s coordi-

nate frames, T =
[
TJ1 TJ2 TJ3

]T
, and J ∈ R3×3 is the Jacobian matrix.

The elastic force generated by the haptic rendering algorithm (86) can help hu-

man operator to improve awareness of the tracking performance, i.e., combining

visual sensing into the tactile sensing. Above all, the human operators will sub-

consciously apply an increase force on their arm so as to counter the increased

feedback force on the haptic device, since the feedback force will tend to pul-

l/push the user’s hand according to the difference between actual moving di-

rection and the lagged robot end-effector position or overshoot position. Thus,

the control gain will increase or decrease respectively according to the sEMG

signals, and accordingly, the end-effector will accelerate or slow down to match

the user’s action.

6.4.2 Extraction of Muscle Activation

Figure 41: Human Arm stiffness Mapping to Robot Joint.
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Fig. 41 shows how human arm stiffness is mapped to robot joint. The estima-

tion of muscle activation level from raw sEMG signals will impact the perfor-

mance of the human-robot skill transfer. Therefore, extracting muscle activa-

tion levels from the collected sEMG signals is an essential step for the exper-

iment. At first, all the eight channels of raw sEMG signals obtained from the

MYO armband will be squared and low-pass filtered (see Fig. 42), according to

our previous work [1].

Figure 42: sEMG signals processing procedure by using Squaring and Low-pass
Filter.

Then recursive filter is applied to e(t), the rectified, normalised and filtered

sEMG signals, and determine the neural activation u(t). sEMG was repre-

sented below showing its time-varying feature [108]:

u(t) = α ∗ e(t− d)− β1 ∗ u(t− 1)− β2 ∗ u(t− 2) (89)

where d is the electromechanical delay, and α, β1, β2 are coefficients of a second-

order dynamics system. In order to make sure (89) always have a positive sta-

ble solution, we must have:

β1 = γ1 + γ2 β2 = γ1 ∗ γ2 α− β1 − β2 = 1 (90)

where |γ1| < 1, and |γ2| < 1.
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Then, as we explained in our previous paper [61], there is a nonlinear relation-

ship between frequency and force for single motor units. And here is the non-

linear mapping method from u(t) to muscle activation a(t) [108]:

a(t) =
eAu(t) − 1

eA − 1
(91)

where A ∈ [−3, 0] is the nonlinear shape factor. It can affect muscle activation

level from A = −3 being highly exponential to A = 0 being linear.

In addition, if the control gain is set proportionally to the muscle activation

level, control rate, and stiffness variations could result in instability and incom-

patibility of the system. Therefore, we normalise the control gain κ at the tth

sampling instant within the specified range as:

κ(t) = (κmax − κmin)
(a(t)− amin)

(amax − amin)
+ κmin (92)

where κmax and κmin are the stable robot motion’s gain range, amax and amin

are the maximum and minimum muscle activation. These parameters can all

be obtained experimentally beforehand.
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6.5 Evaluation of System Performance

The system was evaluated in two different scenarios, visual immersion and intu-

itive skill transfer. The basic system communication interfaces of two scenarios

were setup as shown in Fig. 35. The Baxter robot was connected to the Baxter

terminal slave PC. The Kinect, Omni, Oculus, and MYO were all connected to

the master PC. The master PC and slave PC were connected wirelessly within

the same local network. The VR headset, Oculus, was used in the first scenario

to test how the visual immersion levels would affect the teleoperation experi-

ences. The sEMG device, MYO armband, was wore in the second scenario to

verify how variable control gain help operators to gain a better control during

teleoperation.

6.5.1 Test of Visual Immersion

Twelve subjects participated in testing, where they were asked to complete a

simple pick up and place task, which involved stacking 3 Lego blocks on top

of one another and picking up one block at a time, as shown in Fig. 43. This

task was repeated for three different types of teleoperation systems: In the first

system, the operator who controlled the Kinect’s position with the headset,

was given force feedback when controlling the position of Baxter’s right end-

effector, and could switch between the Kinect and cuff camera’s view. In the

second system, the operator was not presented with any force feedback when

controlling the position of Baxter’s right end-effector. In the third system, the

operator did not wear the Oculus visual headset. Instead, the Kinect images

were presented to the operator via an LCD monitor. The testing environment

is shown in Fig. 43.

Operators were asked to complete a questionnaire after completing the task for

each of the systems mentioned above, which asked the operator to rate various

aspects of each system. When the operator was completing each task, the num-

ber of times that any part of the end-effector collided with either the testing
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table or Lego blocks was recorded as shown in Fig.44.

Figure 43: An operator attempts the pick-and-place task using the Oculus Rift,
and haptic controller (force feedback enabled)

According to the test results, 67% of the participant operators preferred the

use of the Oculus Rift to supply visual feedback, instead of an LCD monitor.

The remaining 33% preferred the LCD monitor due to discomfort when view-

ing images through the Oculus Rift headset.

Several operators expressed that they experienced difficulties when determin-

ing distance of objects from Baxter’s right end-effector when viewing Baxter’s

workspace via the Kinect. Coincidentally, 92% of operators said they prefer

utilising the combination of Kinect and cuff camera views to pick up and place

objects when completing the given tasks, rather than solely viewing images

from the Kinect.

Figure 44: Correlation between interface type and total number of end effector
table collisions; based on all 12 participants’ experimental data.

Apparently, seen from Figs. 44 and Fig. 45, the number of end-effector colli-

sions and the level of immersion experienced by the operators is relevant. As

the operator’s sense of immersion decreases, the number of end-effector table
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Figure 45: Average experience ratings of each system variant, reported by all
participating operators.

collisions increases. The lack of deep sense when viewing the robot workspace

via the LCD screen or third-person visual headset causes the operator to col-

lide with the test table. Additionally, the lack of sense of depth the operator

experiences via visual feedback, can also be improved by end-effector object

proximity haptic feedback.

After comparing third-person visualisation and haptic feedback with screen

& feedback (Fig. 45), it can be seen that the immersiveness of the operator’s

experience can affect the concentration required for the operator to complete

the given task. The average of operators’ third-person visual experience is at

93% when using the Oculus Rift headset and 57% when presenting Baxter

workspace images via the LCD screen relate to average operator, required con-

centration ratings of 73%, and 88% respectively. The increase in the concen-

tration required for the third-person visualisation only system compared to

the third-person visualisation and haptic feedback system (Fig. 45), can be at-

tributed to the lack of force feedback in the third-person visualisation only sys-

tem. 92% of tested operators agreed that the haptic controller force feedback

was helpful when moving the controller joints back to their respective initial

positions, after the operator has switched from the cuff camera to the Kinect

camera view, or the operator has finished changing the position of the right

end-effector gripper pincers. However, 58% of those who agreed, commented
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that the force feedback was too stiff and uncomfortable at times, i.e. the force

feedback would sometimes spike, giving the operator a large force for a small

period of time (approximately 0.1 seconds).

6.5.2 Intuitive Skill Transfer

Figure 46: Designed Pick-up and Place task setup.

In this set of the experiments, the manipulator’s tracking speed can be ad-

justed online. A pick-up and place task is designed to verify whether the sEMG

based teleoperation can help the user to have a more intuitive teleoperation

experience and improve the tracking performance in terms of efficiency and ac-

curacy. In the experiments, the global task objective is to pick up the target

object from a start position, and then place it to a target position, as shown in

Fig. 46. Different types of control gains will be applied to each task.

The control gain was set to be high, low and variable as extracted from user’s

sEMG in a different iteration of the experiment for comparative studies. In
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Figure 47: a. End-effector Speed of Baxter robot. b. Control gain value of the
Baxter robot. Phase A: Approaching the object. Phase B: Picking up the ob-
ject. Phase C: Moving to the placing area. Phase D: Placing the object. Phase
E: Moving back to the initial position.
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(a) (b) (c) (d)

Figure 48: Set of screenshots of the recorded test tries under high gain control
mode.

Fig. 47, the blue line represents the tracking speed corresponding to a high

control gain. The tracking performance was good due to its high following

speed. However, it is difficult to perform high accuracy required movement

such as pick-up the target object. As we can see from a set of screenshots of

the recorded test trials (Fig. 48), the manipulator will either miss the object or

knock over/move the object from its original position.

The yellow line in Fig. 47 represents the tracking speed when the control gain

is sEMG variable based. In Phase A, when we need to approach the object

quickly, the control gain immediately increased and almost reach the same level

as in the high gain mode. Next, it dropped to a controllable level when pick-

ing up the object, in Phase B. It raised back to a high level after the object

was picked up and remain the level until the operator controlled the robot arm

move to the placing area, as shown in Phase C. Then, the control gain imme-

diately dropped again when the operator did the place manoeuvre, as in Phase

D. Finally, the control gain raised back when the operator moved the manipu-

lator to its initial position, as in Phase E.

The red line in Fig. 47 shows the tracking speed under low control gain. The

manipulator was able to finish the task, and the performance was accurate

due to its relatively slow speed. However, it is time-consuming for finishing the

same task compare with the previous two control gain set. The time consump-

tion of finishing the entire task in the sEMG based variable gain mode almost

matches that in the high gain mode, while it is two times longer than that in
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the low gain mode.

With these comparative experiments, the sEMG variable gain control mode

demonstrates a more accurate, smooth and efficient teleoperation experience

than the other two modes. Furthermore, it is more intuitive for the untrained,

unskilful operators to transfer their skills to the robot.

6.6 Conclusion

In conclusion, visual feedback from the robot’s perspective is provided com-

bined with compound haptic feedback for teleoperating a robot arm. sEMG

signals are collected to vary the control gain of the manipulator. Using Oculus

Rift headset, the visual feedback enables an operator to view robot workspace

in the robot’s perspective, which greatly assists the operator in concentrating

on completing the task while reducing the cognitive load on the user, since the

operator is able to move their head in a natural way to manipulate the posi-

tion of the camera on robot’s head. Wearing Myo armband, the sEMG signal

enables the operator to teleoperate the robot more intuitively, since the con-

trol gain will be changed while the user is naturally countering the force feed-

back from the haptic device. Experimental results show that most tested oper-

ators preferred using the Oculus Rift headset for visual feedback of the robot

workspace, and the tracking performance becomes better when sEMG is ap-

plied. The visual and haptic feedback techniques investigated in this work help

to improve user experience in both immersive and intuitive ways, and can be

applied in similar teleoperation setup. This chapter’s work has been published

in [109].
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7 Conclusion

7.1 Summary of Thesis and Contributions

This thesis is a research of developing control methods and designing interface

for HRI. The works have been carried out aiming to enhance the UX during

teleoperation in both immersive and intuitive ways. The contributions of the

thesis are reviewed, and the research work results are summarised.

In Chapter 3, the proposed physiological signals enhanced teleoperation strat-

egy is implemented in both position control mode and torque control mode.

The former mode enables the human operator to adjust motion tracking speed

through muscle contraction, while in the latter one, the stiffness of the robot

arm could be set through muscle activation directly. The proposed method

greatly improve the user’s ability to manipulate a telerobot for a delicate task,

especially in the presence of motion amplification of the teleoperation system.

The effectiveness of the proposed approach has been tested and confirmed by

comparative experiments where a 7-DOF (degrees of freedom) robotic arm of

Baxter R© robot is employed.

Chapter 4 presents a novel combination of visual servoing (VS) control and

neural network (NN) learning on a humanoid dual-arm robot. A VS control

system is built with stereo vision obtaining the 3D point cloud of a target ob-

ject. A least square based method is proposed to reduce the stochastic error

in workspace calibration. An NN controller is designed to compensate for the

effect of uncertain payload and other internal or external uncertainties during

the tracking control. In contrast to the conventional NN controller, a deter-

ministic learning technique is utilised in this work, to reuse the neural learnt

knowledge before current dynamics changes. A skill transfer mechanism is also

developed to apply the neural learnt knowledge from one arm to the other,

to increase the neural learning efficiency. The moving trajectory of the object

tracked by the proposed VS algorithm provides target positions to the coor-
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dinated dual arms of a Baxter robot in the experimental study. Robotic im-

plementations have demonstrated the efficiency of the developed VS control

system and have verified the effectiveness of the proposed NN controller with

knowledge-reuse and skill transfer features.

In Chapter 5, the neural learning enhanced control techniques has been suc-

cessfully applied to teleoperate the Baxter robot manipulator. A pair of MYO

armbands worn on the operator’s forearm and upper arm are used to teleoper-

ate the robot manipulator. Preliminary experiments are carried out to test the

desire performance and the results are given.

In Chapter 6, we have investigated various techniques that can be used to en-

hance the user experience for robot teleoperation. In our teleoperation system

design, the human operator is provided with both immersive visual feedback

and intuitive skill transfer interface such that when controlling a telerobot arm,

a user is able to “feel” in a first-person perspective with both visual and hap-

tic sense. Some high-tech devices including Omni haptic joystick, MYO arm-

band, Oculus Rift DK2 headset, and Kinect v2 camera are integrated. The

surface electromyography (sEMG) signal allows the operator to naturally and

efficiently transfer his/her motion skill to the robot, based on the properly de-

signed elastic force feedback. For visual feedback, operators can control the

pose of a camera on the head of the robot via the wearable visual headset, such

that the operator is able to perceive from the robot’s perspective. Tests have

been performed with human subjects to evaluate the design, and the experi-

mental results have shown that superior performance and better user experi-

ence have been achieved by the proposed method in comparison with the tradi-

tional methods.
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7.2 Proposals for Future Works

Due to the restriction of the university’s network, long distance remote control

experiments were not conducted. Consequently, how much the communication

lag will affect the performance of remotely controlling a robot is not explored

in the research work of this thesis. Therefore, discussions about the topic of

communication lags are expected in future work. For the other, in the future

more mature technologies and various types of sensors are also expected to

be emerged into the HRI teleoperation framework. An electroencephalogram

(EEG) sensor would be a good example to let operators control robot as a part

of their own body. Moreover, deep learning used in designing controller in this

paper can be also used on image processing part of future systems. We believe

that these would allow telebots to increase autonomous level and operators to

use more user-friendly commands to control a robot.

Another interesting research topic would be developing a new interface for ac-

celerating industrial robot programming on VR or mixed reality (MR) based

platform. Traditional robotic programming methods are considered inefficient

and outdated in current industrial and market demands, because they require

professional knowledge for robot programming to complete a task. Developing

a more efficient programming platform for industrial robots by integrating cut-

ting edge technologies, i.e., MR and advanced programming by demonstration

(PbD), could be a solution. Our previous work [110] has proved that VR/MR

and our developed PbD can be combined seamlessly in the platform, thus en-

abling it to inherit the advantages of the both techniques. VR/MR serves as an

interface of transferring human impedance adaptive skills to robots. The plat-

form could provide its user an immersive experience and personalised assistance

with a fast and high-efficiency method while training the industrial robot by

demonstration.

Here has listed several objectives for future references: Development of online

training an industrial robot to perform a set of motor primitives by grounding
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concrete action using PbD techniques; Increasing the combinations of actions

that can be taught to the robot for the generation of more complex movements;

Development of online learning techniques for the improvement of the learned

manipulation skills; Grounding EMG signal from human masters to enable a

robot to pose more human-like behaviours; Development of force/haptic feed-

back mechanism into VR/MR interface for enhanced demonstration experience

of human user; Combing visual feedback of robot workspace into VR/MR envi-

ronment to provide an immersive operation environment for human operators;

Integration of human master skill transfer, PbD system and virtual vision into

one single system; Investigation of how different behavioural and cognitive ca-

pabilities can enhance the motor skills learning through Human-robot physical

Interaction (pHRI); Development of a set of prototypes that depict an interac-

tive PbD process between a human user and a robot.
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A Teleoperation System User Manual

User Manual for the Immersive Interface of Baxter 
Robot Teleoperation 

 
 

1. Enable Baxter Robot by using the command below on Baxter workstation running 
under Ubuntu. 

$ rosrun baxter_tools enable_robot.py -e 

 
2. Run Baxter controller programme. 

 
3. Connect Oculus Rift, Omni Haptic device and Kinect camera to master PC running 

under Windows. 
 

4. Start the programme of Oculus Rift with Kinect camera and the MATLAB programme 
for the Omni. 
 

5. Wear Oculus to get the immersive vision streamed from the Kinect camera which 
mounted on the head of Baxter. 
 

6. Hold the joystick of Omni to teleoperate Baxter robot arm. 
 

7. Connect MYO armband to master PC via Bluetooth. 
 

8. Wear MYO armband on the forearm and calibrate MYO to have an ultimate output 
for the individual user. 
 

9. Start the programme of MYO, so that user’s motor skills can be transferred 
intuitively to the robot during teleoperation by holding the Omni joystick. 
 

 
All codes mentioned above can be provided upon request. 
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