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Abstract

Among medical robotics applications are Robotics-Assisted Mirror Rehabilitation Therapy

(RAMRT) and Minimally-Invasive Surgical Training (RAMIST) that extensively rely on mo-

tor function development. Haptics-enabled expert-in-the-loop motor function development for

such applications is made possible through multilateral telerobotic frameworks. While sev-

eral studies have validated the benefits of haptic interaction with an expert in motor learning,

contradictory results have also been reported. This emphasizes the need for further in-depth

studies on the nature of human motor learning through haptic guidance and interaction. The

objective of this study was to design and evaluate expert-in-the-loop multilateral telerobotic

frameworks with stable and human-safe control loops that enable adaptive “hand-over-hand”

haptic guidance for RAMRT and RAMIST.

The first prerequisite for such frameworks is active involvement of the patient or trainee,

which requires the closed-loop system to remain stable in the presence of an adaptable time-

varying dominance factor. To this end, a wave-variable controller is proposed in this study

for conventional trilateral teleoperation systems such that system stability is guaranteed in the

presence of a time-varying dominance factor and communication delay. Similar to other wave-

variable approaches, the controller is initially developed for the Velocity-force Domain (VD)

based on the well-known passivity assumption on the human arm in VD. The controller can

be applied straightforwardly to the Position-force Domain (PD), eliminating position-error ac-

cumulation and position drift, provided that passivity of the human arm in PD is addressed.

However, the latter has been ignored in the literature. Therefore, in this study, passivity of the

human arm in PD is investigated using mathematical analysis, experimentation as well as user

studies involving 12 participants and 48 trials. The results, in conjunction with the proposed

wave-variables, can be used to guarantee closed-loop PD stability of the supervised trilateral

teleoperation system in its classical format. The classic dual-user teleoperation architecture

does not, however, fully satisfy the requirements for properly imparting motor function (skills)

in RAMRT (RAMIST). Consequently, the next part of this study focuses on designing novel

supervised trilateral frameworks for providing motor learning in RAMRT and RAMIST, each



customized according to the requirements of the application.

The framework proposed for RAMRT includes the following features: a) therapist-in-the-

loop mirror therapy; b) haptic feedback to the therapist from the patient side; c) assist-as-

needed therapy realized through an adaptive Guidance Virtual Fixture (GVF); and d) real-time

task-independent and patient-specific motor-function assessment. Closed-loop stability of the

proposed framework is investigated using a combination of the Circle Criterion and the Small-

Gain Theorem. The stability analysis addresses the instabilities caused by: a) communication

delays between the therapist and the patient, facilitating haptics-enabled tele- or in-home reha-

bilitation; and b) the integration of the time-varying nonlinear GVF element into the delayed

system. The platform is experimentally evaluated on a trilateral rehabilitation setup consisting

of two Quanser rehabilitation robots and one Quanser HD2 robot.

The framework proposed for RAMIST includes the following features: a) haptics-enabled

expert-in-the-loop surgical training; b) adaptive expertise-oriented training, realized through a

Fuzzy Interface System, which actively engages the trainees while providing them with appro-

priate skills-oriented levels of training; and c) task-independent skills assessment. Closed-loop

stability of the architecture is analyzed using the Circle Criterion in the presence and absence

of haptic feedback of tool-tissue interactions. In addition to the time-varying elements of the

system, the stability analysis approach also addresses communication delays, facilitating tele-

surgical training. The platform is implemented on a dual-console surgical setup consisting

of the classic da Vinci surgical system (Intuitive Surgical, Inc., Sunnyvale, CA), integrated

with the da Vinci Research Kit (dVRK) motor controllers, and the dV-Trainer master console

(Mimic Technology Inc., Seattle, WA).

In order to save on the expert’s (therapist’s) time, dual-console architectures can also be ex-

panded to accommodate simultaneous training (rehabilitation) for multiple trainees (patients).

As the first step in doing this, the last part of this thesis focuses on the development of a

multi-master/single-slave telerobotic framework, along with controller design and closed-loop

stability analysis in the presence of communication delays. Various parts of this study are sup-

ported with a number of experimental implementations and evaluations.

The outcomes of this research include multilateral telerobotic testbeds for further studies

on the nature of human motor learning and retention through haptic guidance and interac-
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tion. They also enable investigation of the impact of communication time delays on supervised

haptics-enabled motor function improvement through tele-rehabilitation and mentoring.

Keywords: Expert-in-the-loop motor skills development; haptics-enabled motor learning; mul-

tilateral teleoperation; robotics-assisted surgical training; robotics-assisted mirror rehabilita-

tion therapy; supervised telerobotics.
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Chapter 1

Introduction

A robotics-based teleoperation system (henceforth called a telerobotic or teleoperation system)

extends an operator’s sensing and manipulation capabilities to a remote location. It facilitates

off-site performance of a desired task through a set of robotic consoles, which provides opera-

tors with safety and accessibility. A telerobotic system consists of three main components: 1)

a slave console, performing a desired task on a designated environment; 2) a master console

manipulated by an operator, remotely controlling the slave console [1], [2]; and 3) a commu-

nication channel, to transmit data between the master and slave consoles that may be located

at some distance [3]. Telerobotic systems have been broadly used in a wide range of appli-

cations from mining, space and underwater exploration, to medicine [3], [4], [5], [6]. The

application of telerobotic systems to medicine includes Robotics-Assisted Minimally Invasive

Surgery (RAMIS) [5], [6] and Robotics-Assisted Rehabilitation Therapy (RART) [7], [8], [9],

which have received a great deal of attention during the past couple of decades. Although teler-

obotic systems offer considerable benefits to various aspects of medical interventions, when

it comes to motor function and skills development, their conventional Single-Master/Single-

Slave (SM/SS) structure imposes limitations and there are constraints that need to be addressed.

This research focuses on two main applications of a telerobotic system for motor function de-

velopment in two medical interventions, RART and RAMIS, in terms of the limitations im-

posed by an SM/SS structure, and it proposes solutions for both of these applications. To

discuss each application in further detail, each topic will be elaborated on separately.

1
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1.1 Robotics-Assisted Rehabilitation Therapy

Annually 15 million people worldwide suffer from stroke, a sudden loss of brain function

caused by the rupture of blood vessels in the brain (hemorrhagic stroke) or the interruption

of blood flow to the brain (ischemic stroke). As a result of a stroke, brain cells (neurons) in

the affected area are deprived of oxygen and begin to die [10]. With a survival rate of about

70%– about 10 million people per year– stroke is known to be a major leading cause of long-

term disabilities and severe impairments [11]. The significant number of patients recovering

from stroke, in addition to other neurological disorders, has led to a growing need for reha-

bilitation services in order to induce neuroplasticity in patients. Neuroplasticity is referred

to as the reorganization ability of the brain by developing new neural connections through

sensory inputs, experience, and learning, which allows the brain’s neurons to compensate for

injury and disease [12]. Achieving brain neuroplasticity from rehabilitation therapy is a labor-

intensive process, which necessitates not only a therapist’s expertise and knowledge, but also

reproducible movements and stereotyped exercises. This has led to a paradigm shift towards

Robotics-Assisted Rehabilitation (RAR), offering novel recovery-assessment approaches along

with patient-targeted rehabilitation therapies [13, 14]. MIT-MANUS [13], ARMin [15], Pneu-

WREX [16], RUPERT [16], [17] are some examples of robotics-assisted rehabilitation systems.

As an effective rehabilitation approach, Mirror Therapy (MT) has also found its way into the

robotics-assisted rehabilitation world [18, 19].

1.1.1 Mirror Therapy

Mirror therapy (Fig. 1.1) refers to the use of a mirror to create a reflective illusion of a Patient’s

Impaired Limb (PIL) moving in accordance with the Patient’s Functional Limb (PFL), in order

to trick the brain into thinking the movement has occurred at the impaired/affected side [20].

It has been shown in several studies that observing or imagining an action activates the same

cortical areas of the brain as during execution of the same action [21], [22], [23], [24]. Based

on this mechanism, mirror therapy has been shown to be effective by providing the patient with

a visual illusion of his/her impaired limb moving, thus activating the cortical areas involved in

the task execution and inducing neuroplasticity.
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Figure 1.1: Conventional mirror therapy ( c©North Coast Medical Inc.; source:
https://www.ncmedical.com/item 2444.html).

Moreover, through mirror-symmetric (or any other coordinated bimanual) movement pattern

for the two limbs in mirror therapy, the unimpaired hemisphere of the brain interacts with

the impaired hemisphere, thereby inducing reorganization of the motor cortex networks and

facilitating cortical neuroplasticity through a second mechanism [25, 26].

The effectiveness of mirror-symmetric bimanual therapy has been shown in comparison with

conventional unimanual therapy to result in an increase in the functional ability as well as a

decrease in movement completion times for the PIL [27]. Mirror therapy has also been shown

to be effective in terms of improving the accuracy, active range of motion, dexterity and grip

strength of the limb [28–31].

1.1.2 Robotics-Assisted Mirror Therapy (RAMT)

To benefit from the indisputable advantages of RAR, the robotic form of mirror therapy has

evolved during the past decade. During robotics-assisted mirror therapy, motions of the pa-

tient’s functional limb are mirrored through a telerobotic medium to the patient’s impaired

limb, promoting the functional recovery of the impaired limb through the spatial coupling ef-

fect between the two limbs, resulted from the tendency of one limb to adopt the spatial features

of the other limb [26, 32, 33]. Fig. 1.2 illustrates an overall scheme of robotics-assisted mirror

therapy. Existing RAMT systems, such as Mirror Image Movement Enabler (MIME) [34], pro-
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Functional LimbImpaired Limb

Figure 1.2: Robotics-assisted mirror therapy [19].

vide a bilateral– i.e., single-master/single-slave– telerobotic framework in order for the PIL to

move in accordance with the mirror-image motions of the PFL. This gives patients some level

of control over the therapy through the involvement of their functional limb. However, due to

the inherently restrictive structure of SM/SS systems used in conventional RAMT (Fig. 1.3),

the PIL interacting with the slave robot can only receive commands from the PFL interacting

with the master robot. This means that a therapist cannot be directly involved in the rehabil-

itation loop to apply corrective movements or to monitor/assess the PIL performance through

haptic feedback. Presence of an expert in the loop of the therapy is essential in promoting

the patient’s functional recovery not only because of the therapist’s knowledge and expertise,

but also due to the possible effect of haptic interaction with an expert on the patient’s learn-

ing curve, as discussed in [35]. This haptic interaction between the therapist and the patient

is, however, not achievable through the limiting SM/SS structure of the conventional RAMT

system.

1.2 Robotics-Assisted Minimally Invasive Surgery

In a RAMIS operation, as a particular form of minimally invasive surgery, surgical instruments

are introduced into the patient’s body through tiny incisions, where surgeons perform surgical

intervention by remotely manipulating the instruments through a master/slave telerobotic plat-

form. Besides the benefits provided to patients by non-robotic minimally invasive surgery, i.e.,
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Figure 1.3: The overall scheme of the conventional robotics-assisted mirror therapy with re-
spect to the interconnection between the PFL and the PIL [36] ( c©[2016] IEEE).

Figure 1.4: The da Vinci surgical robotic system ( c©[2006] Intuitive Surgical, Inc.).

less post-operative pain and significantly faster recovery time as result of reduced trauma, and

improved cosmesis [37], RAMIS also offers several advantages to surgeons by 1) improving

dexterity in manipulating surgical instruments, 2) providing HD stereovision capabilities, 3)

filtering out their hand tremor, and 4) scaling down their hand motions resulting in enhanced

precision [38], [37] [39]. The da Vinci R© surgical system (Fig. 1.4) from Intuitive Surgical

Inc. [40] is an FDA-approved RAMIS system which has been used in more than 200,000 surg-

eries to date.

1.2.1 Robotics-Assisted Minimally Invasive Surgical Training (RAMIST)

While this form of surgery has significant advantages for patients, it could be challenging

for novice surgeons and residents to perform, and achieving technical competence requires a



6 CHAPTER 1. INTRODUCTION

Figure 1.5: The dual-console da Vinci R© Si surgical robotic system ( c©[2009] Intuitive Surgical,
Inc.).

well-planned learning strategy. For successful RAMIS, effective surgical training is necessary

for novice surgeons to acquire appropriate psychomotor skills [41]. There have been several

RAMIS-related adverse events reported to the U.S. Food and Drug Administration (FDA) dur-

ing the past 15 years. One reason cited for this is a lack of proper training; affirming the

necessity of developing appropriate RAMIST frameworks [42].

In order to provide on-demand training to RAMIS trainees, Intuitive Surgical Inc. has devel-

oped the da Vinci R© Skills Simulator [40] which is operated from the surgeon’s console of the

da Vinci R©. The Simulator incorporates a virtual reality (VR)-based simulation platform from

Mimic [43] and provides the trainee with the look and feel of the da Vinci R© Surgical System.

A more recent development by Intuitive Surgical Inc., the dual-console da Vinci R© Si Surgical

System [44], shown in Fig. 1.5, addresses questions that normally arise regarding fidelity of

the simulation environment by providing a feature that enables a trainee to be involved in an

actual surgical procedure. This system offers two master consoles each manipulated individ-

ually by a surgeon, one of which can be a trainee. However, at each time, the slave console

receives commands only from one master console. Therefore, to involve the trainee in the pro-

cedure, it is required to switch from the expert’s console to the trainee’s. Therefore, when the

trainee has control over the procedure, the expert does not have any authority over the surgery,
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which may increase potential risks to the patient. This constraint is mainly imposed due to

the inherent SM/SS structure of the system. Although two master consoles are integrated into

the system, the whole system is a combination of two SM/SS systems independently working

in series/parallel, rather than a cohesive Dual-Master/Single-Slave (DM/SS) framework. In

addition, the system provides the trainee, using a see-and-repeat model [44], with no direct

supervision and control on the trainee through haptic-based interaction between the expert and

the trainee. Such haptic interactions can enhance and speed up the motor learning process

compared to when practicing the task alone for the same duration [35].

1.3 Research Statement

The aforementioned challenges for RAMT and RAMIS necessitate development of appropriate

supervised haptics-enabled multilateral frameworks tailored based on the requirements of each

application in order to cultivate proper motor function (skills). The potency of expert-in-the-

loop dyadic haptic interaction in advancing motor function (skills), as compared to practicing

the learning task alone for the same duration, has been investigated in many studies, although

in the absence of communication delay. While several have validated the benefits of supervised

haptic augmentation in motor learning processes [35], [45], [46], [47], contradictory outcomes

have also been reported possibly due to the fixed-gain nature of the error-reducing haptic guid-

ance provided and/or the forcefulness insufficiency of the haptic guidance resulting from the

limited stability margin of the dyadic frameworks under investigation [48], [49]. These contro-

versies emphasize the need for further in-depth and conclusive studies on the nature of human

motor learning and retention through haptic guidance and dyadic interactions. An exemplary

testbed for these purposes should enable active involvement of the operator as well as skills-

oriented assignment of the haptic guidance [48], while preserving closed-loop stability in the

presence of sufficiently high level of haptic interaction [49]. Therefore, this thesis aims at

the design and development of appropriate expert-in-the-loop haptics-enabled teleoperation

frameworks that facilitate further informative studies on the nature of human motor learning

and retention in both RAMT and RAMIS areas.
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1.3.1 Time-Varying Dominance Distribution

To achieve the above-mentioned goal, the first requirement for the trilateral telerobotic system

would be to allow for time-varying dominance/authority distribution between the two opera-

tors (expert/novice or therapist/patient). This allows the patient (novice) to actively engage

in the therapy (training) process depending on their level of impairment (skills). Toward this

end, ensuring closed-loop stability of the dual-user system in the presence of a time-varying

dominance factor is a necessity. Therefore, the first part of this thesis aims at development of

a wave variable control approach for conventional haptics-enabled dual-user teleoperation sys-

tems such that system stability is guaranteed in the presence of a time-varying dominance factor

as well as communication time delay. The proposed controller includes a local impedance-

based controller adopted from the literature for each robot and a wave transformation mod-

ified for the dual-user system with a time-varying dominance-factor. In order to investigate

closed-loop stability, passivity theory has been applied and it has been shown that the proposed

wave-variable-based controller guarantees system stability in the presence of a time-varying

dominance factor, while the communication channels have constant time delays. Validity of

the controller has been demonstrated via experiments.

1.3.2 Position-Force Domain Passivity

Similar to other passivity-based approaches, the above-mentioned wave-variable methodology

is initially developed for velocity-force domain, due to the well-known assumption of passivity

of the human arm in this domain. However, the framework is straightforwardly extendable

to position-force domain, which enhances performance by eliminating position-error accumu-

lation and position drift, provided that the human-arm terminal also remains passive in this

domain. Unlike velocity-force domain passivity of the human arm, position-force domain pas-

sivity of the human-arm terminal has not, however, been studied in the literature. Therefore,

the next part of this thesis focuses on investigating passivity of the human arm in position-force

domain, explored through mathematical analysis, experimentation and statistical user studies

involving 12 subjects and 48 trials. It is shown that, unlike in velocity-force domain, passivity

of the human arm in position-force domain is frequency-dependent and thereby, considera-
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tion should be given for a framework to be applied in the position-force domain. For future

design of suitable controllers, statistical analyses are performed to investigate correlations be-

tween the levels of position-force domain passivity of the left and the right arms of the human

participants, as well as the levels of passivity of the subjects’ arms and their physical charac-

teristics, e.g., weight, height, and body mass index. Possible control strategies through which

the passivity of the operator termination can be guaranteed are also discussed.

1.3.3 Novel Trilateral Teleoperation Frameworks

Integrating the above-mentioned position-force domain passivity analysis with the proposed

wave-variable methodology will facilitate time-varying adjustment of the dominance factor for

the conventional trilateral teleoperation framework in position-force domain. While this will

address instability challenges of a conventional dual-user framework in the presence of a time-

varying dominance factor, the classic dual-user architecture has still some limitations that make

it inadequate for properly inducing motor function/skills in RAMT and RAMIS. Consequently,

the next parts of this thesis focus on design and implementation of novel supervised trilateral

frameworks for inducing motor learning in RAMT and RAMIS, each customized/tailored ac-

cording to the requirements of the application. Rigorous stability analyses have also been

performed to ensure closed-loop stability of the frameworks in the presence of various desta-

bilizing factors, including communication time delays.

The framework proposed for each application provides the following innovations:

Robotics-Assisted Mirror Therapy

1. Therapist-in-the-loop MT, which enhances the PIL motor recovery process through the

cross-cortex coupling effect between limbs, as well as the expertise and direct supervi-

sion of the therapist over the treatment to provide appropriate corrective movements.

2. PFL-mediation, which allows for the supervision/impact of the patient over the treatment

through their PFL medium in order to guarantee the patient’s safety and comfort by

avoiding the application of excessive pressure and pain on the PIL.

3. Haptic feedback to the therapist from the patient side, which allows the therapist to better
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decide on the intensity of the therapy administered to the patient.

4. Assist-as-needed therapy, realized through an adaptive Guidance Virtual Fixture (GVF),

which promotes active involvement of the patient in the treatment.

5. Task-independent and patient-specific motor-function assessment, which facilitates adap-

tive adjustment of the therapy based on the patient’s impairment level.

Another contribution of this part of the thesis is an investigation of the closed-loop stabil-

ity of the proposed framework. This was done using a combination of the Circle Criterion

and the Small-Gain Theorem, which leads to a set of sufficient stability conditions. The pro-

posed stability analysis also addresses instabilities caused by communication delays between

the therapist and the patient, which facilitates the case of haptics-enabled tele/in-home rehabil-

itation.The proposed procedure also addresses extra stability challenges raised by the integra-

tion of the time-varying nonlinear GVF element into the delayed closed-loop system. Several

experiments are conducted in order to evaluate the proposed framework.

Robotics-Assisted Minimally Invasive Surgical Training

1. Expert-in-the-loop surgical training with multimodal sensorimotor integration, which

speeds up the learning curve through haptic interaction between the novice and the ex-

pert.

2. Adaptive expertise-oriented training, realized through a Fuzzy Interface System (FIS)–

which actively engages the trainee, while providing them with appropriate level/format

of training, depending on their level of proficiency over the task.

3. Task-independent motor skills assessment, which facilitates adaptive expertise-oriented

training;

4. Haptic feedback from the surgical site to the expert surgeon, which enables the expert to

transparently perceive the surgical environment, disregarding the trainee’s level of skills

and participation.
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5. concurrent conduct of a surgical procedure by an expert providing multimodal training

to a trainee at any stage of motor-skills learning, without jeopardizing patient safety.

Another contribution of this part is an investigation of the closed-loop stability of the proposed

framework using the Circle Criterion, in the presence and absence of tool-tissue interaction

haptic feedback, which leads to sufficient stability conditions. In addition to the time-varying

elements of the system, the stability analysis approach also addresses communication time

delay, facilitating tele-surgical training. Experimental evaluations are presented in support of

the proposed platform through the implementation of a dual-console surgical setup consisting

of the classic da Vinci R© surgical system (Intuitive Surgical, Inc., Sunnyvale, CA) and the dV-

Trainer R© master console (Mimic Technology Inc., Seattle, WA).

1.3.4 Novel Multi-Master/Single-Slave Teleoperation Framework

The above-mentioned dual-console telerobotic architectures provide expert-in-the-loop motor

function development training to one patient/trainee at a time. In order to save on the thera-

pist/surgeon time, the dual-console architectures can be extended to accommodate for multiple

patients/trainees. As the first of step of doing so, the next part of this thesis focuses on devel-

opment of a multi-master/single-slave telerobotics framework. The desired objectives for the

MM/SS system are presented in such a way that both cooperative and training applications,

e.g. surgical teleoperation and surgical training, can benefit. Passivity of the system is investi-

gated and it is shown that an ideal MM/SS system, depending on its structure, may not always

be passive unlike a conventional SM/SS system. An impedance-based control methodology is

developed to satisfy the desired objectives of the MM/SS system in the presence of commu-

nication delays. The Small-Gain theorem is used to analyze closed-loop stability, deriving a

sufficient condition to guarantee system stability in the presence of time delays. Experimen-

tal results conducted on an MM/SS system are presented to evaluate the performance of the

proposed methodology.

1.4 Thesis Structure

The structure of the rest of the thesis is as follows:
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Chapter 2 Presents a systematic literature review on multilateral (trilateral and higher)

telerobotic systems. It classifies the existing state-of-the-art architecture based

on topologies, applications (including motor function development in robotic

surgical training and rehabilitation), and closed-loop stability analysis approaches.

For each category, the review discusses control strategies used for various archi-

tectures as well as control challenges (e.g., closed-loop instability as a result of

a delay in the communication network, etc.) addressed by each methodology.

Chapter 3 Presents a wave-variable control approach developed for the conventional dual-

user teleoperation system, such that closed-loop stability is guaranteed in the

presence of a time-varying dominance factor as well as communication delays.

Chapter 4 Investigates human-arm passivity in position-force domain. It shows through

analytical, experimental and user trial studies that unlike in the velocity-force

domain, passivity of the human arm in the position-force domain is frequency-

dependent and thereby, consideration should be given for a framework to be

applied in the position-force domain. The chapter concludes with suggestions

for ensuring passivity of the arm terminal in the aforementioned domain.

Chapter 5 Presents the design and implementation of the proposed supervised trilateral

framework for robotics-assisted mirror rehabilitation therapy. Closed-loop sta-

bility analysis of the framework using a combination of the Circle Criterion and

the Small-Gain Theorem, as well as experimental evaluations are also presented.

Chapter 6 Discusses the design and implementation of the supervised dual-console ar-

chitecture proposed for robotic minimally invasive surgical training. Closed-

loop stability analysis of the proposed architecture in the presence and absence

of tool-tissue interaction haptic feedback is also discussed and sufficient sta-

bility conditions are derived. The experimental evaluation of the architecture

on a dual-console platform consisting of the classic da Vinci R© surgical system

(Intuitive Surgical, Inc., Sunnyvale, CA) and the dV-Trainer R© master console

(Mimic Technology Inc., Seattle, WA) is also presented.
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Chapter 7 Presents the proposed multi-master/single-slave teleoperation framework. An

impedance-based control methodology is adopted to satisfy the desired objec-

tives of the MM/SS system in the presence of communication delays. Closed-

loop stability analysis of the framework in the presence of time delays and using

the Small-Gain theorem as well as experimental evaluation of the proposed plat-

form are also given.

Chapter 8 Highlights the contributions of this thesis and provides suggestions for future

work.



Bibliography

[1] Y. Ye and P. X. Liu, “Improving trajectory tracking in wave-variable-based teleoperation,”

IEEE/ASME Transactions on Mechatronics, vol. 15, no. 2, pp. 321–326, 2010.

[2] V. Chawda and M. K. OMalley, “Position synchronization in bilateral teleoperation un-

der time-varying communication delays,” IEEE/ASME Transactions on Mechatronics,

vol. 20, no. 1, pp. 245–253, 2015.

[3] C. Melchiorri, “Robotic telemanipulation systems: An overview on control aspects,” in

Proceedings of the 7th IFAC Symposium on Robot Control, vol. 1, 2003, pp. 707–716.

[4] M. Tavakoli, R. Patel, M. Moallem, and A. Aziminejad, Haptics for Teleoperated Surgical

Robotic Systems. New Frontiers in Robotics, World Scientific, 2008.

[5] A. D. Greer, P. M. Newhook, and G. R. Sutherland, “Human–machine interface for

robotic surgery and stereotaxy,” IEEE/ASME Transactions on Mechatronics, vol. 13,

no. 3, pp. 355–361, 2008.

[6] J. Burgner, D. C. Rucker, H. B. Gilbert, P. J. Swaney, P. T. Russell, K. D. Weaver, and

R. J. Webster, “A telerobotic system for transnasal surgery,” IEEE/ASME Transactions on

Mechatronics, vol. 19, no. 3, pp. 996–1006, 2014.

[7] A. Gupta and M. K. O’Malley, “Design of a haptic arm exoskeleton for training and

rehabilitation,” Mechatronics, IEEE/ASME Transactions on, vol. 11, no. 3, pp. 280–289,

2006.

[8] P. R. Culmer, A. E. Jackson, S. Makower, R. Richardson, J. A. Cozens, M. C. Levesley,

and B. B. Bhakta, “A control strategy for upper limb robotic rehabilitation with a dual

14



BIBLIOGRAPHY 15

robot system,” IEEE/ASME Transactions on Mechatronics, vol. 15, no. 4, pp. 575–585,

2010.

[9] S. F. Atashzar, I. G. Polushin, and R. V. Patel, “Networked teleoperation with non-passive

environment: Application to tele-rehabilitation,” in 2012 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS). IEEE, 2012, pp. 5125–5130.

[10] Z. Corbyn, “Stroke: a growing global burden,” Nature, vol. 510, no. 7506, pp. S2–S3,

2014.

[11] http://www.strokecenter.org/patients/about-stroke/stroke-statistics/.

[12] B. B. Johansson, “Brain plasticity and stroke rehabilitation the Willis lecture,” Stroke,

vol. 31, no. 1, pp. 223–230, 2000.

[13] H. I. Krebs, N. Hogan, M. L. Aisen, and B. T. Volpe, “Robot-aided neurorehabilitation,”

IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 1, pp. 75–87, 1998.

[14] R. Colombo, F. Pisano, S. Micera, A. Mazzone, C. Delconte, M. C. Carrozza, P. Dario,

and G. Minuco, “Robotic techniques for upper limb evaluation and rehabilitation of stroke

patients,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 13,

no. 3, pp. 311–324, 2005.

[15] T. Nef, M. Guidali, V. Klamroth-Marganska, and R. Riener, “Armin-exoskeleton robot

for stroke rehabilitation,” in World Congress on Medical Physics and Biomedical Engi-

neering, September 7-12, 2009, Munich, Germany. Springer, 2009, pp. 127–130.

[16] R. Sanchez Jr, E. Wolbrecht, R. Smith, J. Liu, S. Rao, S. Cramer, T. Rahman, J. Bobrow,

and D. Reinkensmeyer, “A pneumatic robot for re-training arm movement after stroke:

Rationale and mechanical design,” in Rehabilitation Robotics, 2005. ICORR 2005. 9th

International Conference on. IEEE, 2005, pp. 500–504.

[17] J. He, E. Koeneman, R. Schultz, D. Herring, J. Wanberg, H. Huang, T. Sugar, R. Herman,

and J. Koeneman, “RUPERT: a device for robotic upper extremity repetitive therapy,” in

27th Annual International Conference of the IEEE Engineering in Medicine and Biology

Society. IEEE, 2005, pp. 6844–6847.



16 BIBLIOGRAPHY

[18] S. Hesse, G. Schulte-Tigges, M. Konrad, A. Bardeleben, and C. Werner, “Robot-assisted

arm trainer for the passive and active practice of bilateral forearm and wrist movements

in hemiparetic subjects,” Archives of physical medicine and rehabilitation, vol. 84, no. 6,

pp. 915–920, 2003.

[19] C. G. Burgar, P. S. Lum, P. C. Shor, and H. M. Van der Loos, “Development of robots

for rehabilitation therapy: the palo alto va/stanford experience,” Journal of rehabilitation

research and development, vol. 37, no. 6, pp. 663–674, 2000.

[20] H. Thieme, J. Mehrholz, M. Pohl, J. Behrens, and C. Dohle, “Mirror therapy for improv-

ing motor function after stroke,” Stroke, vol. 44, no. 1, pp. e1–e2, 2013.

[21] L. Fadiga, L. Fogassi, G. Pavesi, and G. Rizzolatti, “Motor facilitation during action

observation: a magnetic stimulation study,” Journal of neurophysiology, vol. 73, no. 6,

pp. 2608–2611, 1995.

[22] S. De Vries and T. Mulder, “Motor imagery and stroke rehabilitation: a critical discus-

sion,” Journal of Rehabilitation Medicine, vol. 39, no. 1, pp. 5–13, 2007.

[23] M. Iacoboni, R. P. Woods, M. Brass, H. Bekkering, J. C. Mazziotta, and G. Rizzolatti,

“Cortical mechanisms of human imitation,” Science, vol. 286, no. 5449, pp. 2526–2528,

1999.

[24] C. Keysers, B. Wicker, V. Gazzola, J.-L. Anton, L. Fogassi, and V. Gallese, “A touching

sight: Sii/pv activation during the observation and experience of touch,” Neuron, vol. 42,

no. 2, pp. 335–346, 2004.

[25] J. H. Cauraugh and J. J. Summers, “Neural plasticity and bilateral movements: a re-

habilitation approach for chronic stroke,” Progress in Neurobiology, vol. 75, no. 5, pp.

309–320, 2005.

[26] H. Kim, L. M. Miller, I. Fedulow, M. Simkins, G. M. Abrams, N. Byl, and J. Rosen,

“Kinematic data analysis for post-stroke patients following bilateral versus unilateral re-

habilitation with an upper limb wearable robotic system,” IEEE Transactions on Neural

Systems and Rehabilitation Engineering, vol. 21, no. 2, pp. 153–164, 2013.



BIBLIOGRAPHY 17

[27] J. J. Summers, F. A. Kagerer, M. I. Garry, C. Y. Hiraga, A. Loftus, and J. H. Cauraugh,

“Bilateral and unilateral movement training on upper limb function in chronic stroke pa-

tients: a TMS study,” Journal of the Neurological Sciences, vol. 252, no. 1, pp. 76–82,

2007.

[28] E. L. Altschuler, S. B. Wisdom, L. Stone, C. Foster, D. Galasko, D. M. E. Llewellyn,

and V. S. Ramachandran, “Rehabilitation of hemiparesis after stroke with a mirror,” The

Lancet, vol. 353, no. 9169, pp. 2035–2036, 1999.

[29] J. A. Stevens and M. E. P. Stoykov, “Using motor imagery in the rehabilitation of hemi-

paresis,” Archives of Physical Medicine and Rehabilitation, vol. 84, no. 7, pp. 1090–1092,

2003.

[30] J. A. Stevens and M. Ellen Phillips Stoykov, “Simulation of bilateral movement training

through mirror reflection: a case report demonstrating an occupational therapy technique

for hemiparesis,” Topics in stroke rehabilitation, vol. 11, no. 1, pp. 59–66, 2004.

[31] K. Sathian, A. I. Greenspan, and S. L. Wolf, “Doing it with mirrors: a case study of a

novel approach to neurorehabilitation,” Neurorehabilitation and Neural Repair, vol. 14,

no. 1, pp. 73–76, 2000.

[32] A. R. Luft, S. McCombe-Waller, J. Whitall, L. W. Forrester, R. Macko, J. D. Sorkin, J. B.

Schulz, A. P. Goldberg, and D. F. Hanley, “Repetitive bilateral arm training and motor

cortex activation in chronic stroke: a randomized controlled trial,” The Journal of the

American Med. Association, vol. 292, no. 15, pp. 1853–1861, 2004.

[33] M. E. Michielsen, M. Smits, G. M. Ribbers, H. J. Stam, J. N. van der Geest, J. B. Buss-

mann, and R. W. Selles, “The neuronal correlates of mirror therapy: an fMRI study on

mirror induced visual illusions in patients with stroke,” Journal of Neurology, Neuro-

surgery & Psychiatry, vol. 82, no. 4, pp. 393–398, 2011.

[34] P. Lum, C. G. Burgar, M. Van der Loos, P. Shor, M. Majmundar, and R. Yap, “The mime

robotic system for upper-limb neuro-rehabilitation: results from a clinical trial in subacute

stroke,” in 9th International Conference on Rehabilitation Robotics, 2005, pp. 511–514.



18 BIBLIOGRAPHY

[35] G. Ganesh, A. Takagi, R. Osu, T. Yoshioka, M. Kawato, and E. Burdet, “Two is better than

one: Physical interactions improve motor performance in humans,” Scientific reports,

Nature Publishing Group, vol. 4, 2014.

[36] M. Shahbazi, S. Atashzar, M. Tavakoli, and R. Patel, “Robotics-assisted mirror rehabili-

tation therapy: A therapist-in-the-loop assist-as-needed architecture,” IEEE/ASME Trans-

actions on Mechatronics, DOI: 10.1109/TMECH.2016.2551725, 2016.

[37] C. Preusche, T. Ortmaier, and G. Hirzinger, “Teleoperation concepts in minimal invasive

surgery,” Control Engineering Practice, vol. 10, no. 11, pp. 1245–1250, 2002.

[38] J. Rosen, B. Hannaford, M. P. MacFarlane, and M. N. Sinanan, “Force controlled and tele-

operated endoscopic grasper for minimally invasive surgery-experimental performance

evaluation,” IEEE Transactions on Biomedical Engineering, vol. 46, no. 10, pp. 1212–

1221, 1999.

[39] A. Talasaz, “Haptics-enabled teleoperation for robotics-assisted minimally invasive

surgery,” Ph.D. dissertation, Western University, 2012.

[40] http://www.intuitivesurgical.com/products/skills simulator/.

[41] C. Feng, H. Haniffa, J. Rozenblit, J. Peng, A. Hamilton, and M. Salkini, “Surgical training

and performance assessment using a motion tracking system,” in Proceedings of the 2nd

European Modeling and Simulation Symposium. EMSS, 2006, pp. 647–652.

[42] H. Alemzadeh, R. K. Iyer, Z. Kalbarczyk, N. Leveson, and J. Raman, “Adverse events

in robotic surgery: A retrospective study of 14 years of FDA data,” ArXiv Preprint

ArXiv:1507.03518, 2015.

[43] http://www.mimicsimulation.com/training/.

[44] http://www.intuitivesurgical.com/products/davinci surgical system/davinci surgical syst

em si/ dualconsole.html.

[45] K. Reed, M. Peshkin, M. J. Hartmann, M. Grabowecky, J. Patton, and P. M. Vishton,

“Haptically linked dyads are two motor-control systems better than one?” Psychological

science, vol. 17, no. 5, pp. 365–366, 2006.



BIBLIOGRAPHY 19

[46] R. Groten, D. Feth, A. Peer, M. Buss, and R. Klatzky, “Efficiency analysis in a collab-

orative task with reciprocal haptic feedback,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems. IEEE, 2009, pp. 461–466.

[47] D. Feth, B. A. Tran, R. Groten, A. Peer, and M. Buss, “Shared-control paradigms in multi-

operator-single-robot teleoperation,” in Human Centered Robot Systems. Springer, 2009,

pp. 53–62.

[48] Y. Li, V. Patoglu, and M. K. O’Malley, “Negative efficacy of fixed gain error reducing

shared control for training in virtual environments,” ACM Transactions on Applied Per-

ception, vol. 6, no. 1, p. 3, 2009.

[49] Y. Che, G. M. Haro, and A. M. Okamura, “Two is not always better than one: Effects

of teleoperation and haptic coupling,” in 2016 6th IEEE International Conference on

Biomedical Robotics and Biomechatronics (BioRob). IEEE, 2016, pp. 1290–1295.



Chapter 2

Literature Review

A teleoperation system consists of at least one master robot locally manipulated by an operator,

and at least one slave robot that remotely mimics the maneuvers of the master robot in order to

perform the operation on an environment. A communication network connects the master and

the slave robots, transferring necessary information between the two sites (Fig. 2.1). A teler-

obotic framework with one master robot and one slave robot is called Single-Master/Single-

Slave (SM/SS) teleoperation system, which establishes unilateral or bilateral information flow

between the two agents. The first SM/SS teleoperator was build in the mid 1940s by Geortz.

Since then, several state-of-the-art studies have been conducted on SM/SS teleoperators and

various control frameworks have been developed for such systems, as discussed in [1, 2]. By

extending the human capability to remote or unaccessible sites, teleoperation has been found

to be effective in a wide range of applications, from underwater and space exploration, mining

and handling toxic materials, to robotics-assisted rehabilitation and telesurgery [1].

As the field of telerobotics grows, multilateral (trilateral and beyond) frameworks have also

received much attention during the past few decades. A multilateral framework not only allows

for one-to-one correspondence between the operator-master and the slave-environment sets,

but also realizes collaborative scenarios between multiple operator-master sets and/or multiple

slave robots. As with human behaviour [3], collaborative performance of a task can enhance

efficacy, precision, dexterity, loading capacity and handling capability [4].

In an SM/SS system, the teleoperator can be modeled as an 1-port or 2-port network, de-

pending on the type of interactions between the operator and the environment. As shown in

20
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Figure 2.1: Schematic representation of components of an SM/SS teleoperation system.
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Figure 2.2: Schematic representation of a unilateral SM/SS teleoperation system.
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Figure 2.3: Schematic representation of a bilateral SM/SS teleoperation system.

Fig. 2.2, having a one-directional interaction between the operator and the environment results

in an 1-port teleoperator network, called a unilateral system. Establishing a two-directional

interaction between the operator and the environment transforms the teleoperator into a 2-port

network, and therefore the system is a bilateral one (Fig. 2.3). Having more than 2 robotic

agents (master and slave robots), i.e., n >= 3, the teleoperator can be modeled as an n-port

network and therefore, is an n-lateral framework. Based on the analogy used in the literature, a

multilateral teleoperation system with 3 robotics agents interacting is called a trilateral frame-

work.

The research conducted on multilateral (trilateral and higher) teleoperation systems can be

categorized into four main divisions, as follow:

1. Trilateral, which refers to the interconnection of a total of three human-master sets and
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slave robots,

2. Multi-Master/Single-Slave (MM/SS), which allows for collaboration between multiple

operators in order to control/manipulate one slave robot through their corresponding

master robots,

3. Single-Master/Multi-Slave (SM/MS), which enables control of multiple slave robots

through one master robot manipulated by one operator,

4. Multi-Master/Multi-Slave (MM/MS), which, as the name implies, realizes collaboration

of multiple operators and robots in general.

It should be noted that in this context, multilateral refers to trilateral and higher, but not bilat-

eral SM/SS framework. Bilateral systems have been extensively discussed in excellent surveys

including [1, 2]. To the best knowledge of the authors, this article is the first to provide an

overview and classification of the state-of-the-art literature on multilateral teleoperation sys-

tems. As the field is very broad with no specific borderlines, we do not claim that the survey

covers every aspect of the field, but we believe that it presents the most important attributes.

The rest of this chapter is organized as follows: Sections 2.1-2.4 present an overview of

existing state-of-the-art multilateral frameworks classified based on the architectures. Section

2.1 discusses existing trilateral teleoperation systems, as the widest category of multilateral

frameworks, in three classifications. Sections 2.2, 2.3, and 2.4, respectively, present multi-

lateral MM/SS, SM/MS, and MM/MS teleoperation frameworks with more than three robotic

agents. Section 2.5 gives an overview of the state-of-the-art topology-interdependent stability

analysis for general multilateral teleoperation systems. Section 2.6 concludes the chapter and

provides an overview of future research directions on multilateral teleoperation systems.

2.1 Trilateral Architectures

A trilateral architecture is the most common form of a multilateral teleoperation system, in

which three master and slave agents interact. Depending on the number of agents and their

interaction configuration, we have classified trilateral teleoperation systems into three main

categories, namely:
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• Teleoperated-Autonomous Shared Control (TASC),

• Dual-User Shared Control (DUSC),

• Dual-User Redundancy Control (DURC),

as discussed below.

2.1.1 Teleoperated-Autonomous Shared Control (TASC)

This type of shared control strategy refers to a combination of teleoperated and autonomous

modes, in which an operator and an autonomous agent can collaboratively perform a task

[5]. In such frameworks, the operation outcome benefits from not only the supervision and

decision making capabilities of the operator, but also a considerably shorter completion time

and possibly enhanced precision as a result of the autonomous mode [6, 7].

In [8], Zaatri developed a cooperative error recovery scheme for such frameworks. By

providing a Graphical User Interface (GUI) to the operator, the scheme creates a dialog between

the operator and the autonomous agent in order to recover errors, avoid failures, and save

time. In this context, an error or failure was defined as the occurrence of an unexpected and/or

exceptional event. Handling delicate objects is an application that, upon proper selection of

types and methods of feedback (force, visual and audio), can benefit from a TASC framework

[9]. There are also several other applications for which several TASC frameworks have been

developed to date, as categorized below:

Space

Assembly, maintenance and repair processes for space satellites are among applications in

which a TASC strategy is very beneficial [10]. While autonomous agents are incapable of

dealing with large uncertainties, major re-planning, re-tooling or making common-sense deci-

sions, pure teleoperation also necessitates the terrestrial teleoperator to be predictive in sending

commands to the remote station in order to handle large communication delays (expected to

be larger than 8 seconds round trip) [11]. This makes a TASC architecture suitable for space

applications, by combining advantages of both teleoperated and autonomous control modes.
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In 1989, Hayati [6] developed a two-level hierarchical shared control framework that accepts

commands from either an autonomous planner or a teleoperator alone, or a combination of

the two. The architecture was designed for general applications, while also specifically mod-

ified for space applications; and to cover both possible approaches: 1) modifying nominal

autonomous trajectories by a teleoperator, or 2) autonomously modifying nominal teleoperator

trajectories.

In [7], a User Macro Interface (UMI) for the TASC architecture was implemented to enable

the operator to interactively set up a task-execution environment, specify input parameters for

a variety of task primitives, and to stop task execution at any time. The UMI interface was

designed to serve at a local command site in order to prepare and send operator’s commands to

a remote space robot.

A general TASC telerobotic architecture was presented in [5] for real-time, sensor-based

Cartesian control of remote manipulator systems. The framework allows simultaneous control

inputs from various components including haptics-enabled joystick, vision controller, position

controller, and force controller. The system was experimentally implemented at the National

Aeronautics and Space Administration (NASA) Langley Research Center.

Haptics-Enabled Training in Virtual Environment

Training a novice based on haptic guidance/assistance is another application of TASC mode.

This enables a trainee to share control of a telerobotic system with a virtual or actual expert,

while receiving haptic cues. In [12], Powell et al. used a shared control methodology to clas-

sify and investigate the efficacy of various haptic-based training paradigms. In this study, the

control was shared between a novice and an autonomous virtual expert interacting to perform

tasks in a Virtual-Reality (VR) environment. In a similar work [13], Li et al. studied the effi-

cacy of haptic guidance during training in VR environments using the TASC framework. The

evaluation was performed on a target-hitting task and based on fixed-gain error-reducing haptic

guidance. The outcome emphasized the necessity of adaptive time-varying, and possibly skill-

oriented, haptic guidance, rather than fixed-gain assistance with continuous presence in order

to preserve the trainee’s active involvement, thereby, their motor pathway activity.
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Figure 2.4: Schematic representation of a TASC framework for surgical procedures [14]
( c©[2015] IEEE).

Supervised Autonomous Surgical Procedures

While inherently delicate in terms of manipulating deformable tissues in a very dynamic en-

vironment, robotic surgical producers involve several repetitive tasks, e.g., cutting, suturing,

palpating and debriding. Incorporating some degree of automation (Fig. 2.4) to perform such

kinematically complex and repetitive tasks can decrease the processing and physical burdens

on surgeons, while speeding up the operation without degrading the outcome. In [14], Shamaei

et al. presented a teleoperated TASC framework that integrates a surgeon supervision and an

autonomous agent to perform surgical tasks. The architecture, which is designed independent

of the automation algorithm, includes: 1) a dominance factor to enable the surgeon to take

control over the slave robot, and 2) an aggressiveness factor which specifies the pace of the

autonomous agent, assigning either leader, synchronous, or follower roles to the slave robot. In

this study, the autonomous agent was defined to be a linear mapping to coordinate a trajectory-

following task. The adjustment process of the dominance and the aggressiveness factors as

well as a systematic adaptation rule for the automation agents was not presented.

2.1.2 Dual-User Shared Control (DUSC)

This strategy refers to control and manipulation of a slave robot by two human operators

through a shared/collaborative framework (Fig. 2.5). It is shown that through a shared dyadic
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Communication            Channel

Figure 2.5: Schematic representation of a general trilateral DUSC framework, including two
operator-master sets and one slave-environment set, communicating through a network [16]
( c©[2012] Cambridge University Press).

framework, a dyad can quickly negotiate a more effective task-performance strategy that en-

hances the outcome, compared to individually executing the task by either operator. This

negotiation is apparently at a level below the awareness of the operators and must happen

through a haptic interaction channel [15]. Compared to other categories of trilateral teleopera-

tion systems, prior art on DUSC frameworks is relatively greater and can be classified into two

main divisions, frameworks developed for general purpose with a focus on control challenges

(e.g., closed-loop stability), and specific applications, which in turn can be classified into more

subcategories based on the particular application (e.g., supervised robotics-assisted surgical

training and rehabilitation therapy), as described below:

Control Strategies for General DUSC Architectures

Khademian and Hashtrudi-zaad [17] presented a six-channel DUSC framework to enable in-

teraction between two operators, collaboratively controlling a slave robot through a domi-

nance/authority factor. The architecture was designed such that two desired objectives (position-

based and force-based) are defined to simultaneously satisfy for each operator/master set as

well as the slave robot. The framework requires all positions and forces to be exchanged



2.1. TRILATERAL ARCHITECTURES 27

among the three agents, the balance of which were set to be shaped through the dominance

factor. By developing a number of kinesthetic measures, the impact of the dominance factor

on the transparency level of the system with a delay-free communication network was also

investigated. In [18], an H∞ force-position controller was developed for such a framework in

order to ensure robust stability of the system in the absence of communication delay, but the

presence of uncertainties in operators and environment dynamics. A robust controller based

on µ-synthesis was developed in [19] in order to address instabilities caused by known and

constant communication delay between the masters and the slave sides, as well as dynamic

uncertainties in the system.

In [20], a DUSC framework was developed to satisfy 1) a position-based desired objective

at the slave side (incorporating the dominance factor) in order to ensure shared control of the

operators over the slave robot through a dominance factor, and 2) a force-based desired objec-

tive at each master side, providing the operators with haptic feedback from the environment.

A decentralized adaptive impedance controller as well as a sliding-mode control method-

ology along with a passivity-based analysis approach were developed in [20] and [16], re-

spectively, to ensure closed-loop stability of the nonlinear DUSC system in the presence of

unknown and constant communication time delay. The definition of the ideal hybrid matrix

for DUSC frameworks integrated with the dominance factor was initially introduced in [16].

A higher order sliding-mode impedance controller was also developed in [21] for the DUSC

system with unknown and constant communication time delay.

An adaptive fuzzy control approach and an adaptive neural network controller were devel-

oped, respectively, in [22] and [23] for motion/force synchronization in dual-master control of

a single holonomic-constrained slave robot. The controllers were designed such that stability

of the teleoperation system is preserved in the presence of stochastic time-varying communica-

tion delay, dynamics/kinematics uncertainties and external disturbance. In [24], Ghorbanian et

al. developed a DUSC framework with two distinct dominance factors. To address instability

caused by time-varying communication delays, two controllers were presented: 1) Proportional

with dissipative gains, and 2) Proportional and Derivative with dissipative gains.

A time domain passivity controller was developed in [25] for DUSC frameworks subject to

communication delays. The controller was designed in a generic way, such that any control ar-
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chitecture and communication channel characteristics in a peer-to-peer system are allowed. It

was shown experimentally that the proposed approach can be used well for round-trip delays up

to 200ms. In [26], a wave-variable-based control methodology was developed to ensure closed-

loop stability of a DUSC framework in the presence of a time-varying dominance-factor (which

enables real-time adjustment of the operators’ authority over the task) as well as constant com-

munication time delays. The concept of time-varying authority adjustment for operators was

originally introduced in [27] by Shahbazi et al. In [28], a passivity-based approach based on

the Port-Hamiltonian method was adopted for DUSC framework with a time-varying domi-

nance factor. An asymmetric DUSC framework with three dominance factors was introduced

in [29], and stability conditions were derived for the system in the presence of an unknown

communication delay.

Application-Specific DUSC Architectures: Therapist-In-the-Loop (TIL) Rehabilitation

Therapy

Rehabilitation therapy is a labor-intensive process, that necessities not only a therapist’s exper-

tise and knowledge, but also reproducible movements and stereotyped exercises [30]. This has

resulted in a paradigm shift in past decades towards supervised robotic rehabilitation, which

brings knowledge and supervision of a therapist into the loop of robotics-assisted rehabilitation

therapy [31]. Along with bilateral SM/SS frameworks, DUSC architectures have also found

their way to supervised robotic rehabilitation, where they also enable tele and in-home therapy

procedures, so that a therapist can remotely provide rehabilitation to a patient.

Carignan et al. [32] developed a DUSC framework that enables a therapist and a patient

to remotely interact through a virtual environment. The virtual task was defined as collabo-

ratively manipulation of a virtual beam by the therapist and the patient, while providing them

with interaction forces reflected back from the virtual environment. A control methodology

based on wave variables was presented to counter the destabilizing effect of communication

and processing time delays.

In [33], Shahbazi et al. presented a therapist-in-the-loop DUSC framework for robotics-

assisted mirror rehabilitation. The framework (Fig. 2.6), designed for patients with hemipare-

sis and/or hemispatial neglect, includes adaptive assist-as-needed therapy adjusted based on the
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Figure 2.6: Schematic representation of a trilateral DUSC framework for therapist-in-the-loop
rehabilitation therapy [33] ( c©[2016] IEEE).

impairment level of the patient’s affected limb. Through such a DUSC framework, a patient

benefits from an enhanced motor-recovery process as a result of integrating the following fea-

tures: 1) the cross-cortex coupling effect between the patient’s impaired and functional limbs

induced by the mirror therapy; 2) the expertise and direct supervision of, as well as the haptic

feedback delivered to, the therapist in the loop enabling them to provide appropriate corrective

movements; 3) the supervision of the patient over the treatment through their functional limb

medium, which ensures the patient’s safety and comfort by limiting excessive pain and pressure

on the patient’s impaired limb; and 4) active involvement of the patient in the treatment through

the adaptive assist-as-needed therapy. A combination of the Small Gain theorem and the Circle

Criterion was used to analyze closed-loop system stability in the presence of communication

delays to also facilitate tele and in-home rehabilitation.

Application-Specific DUSC Architectures: Expert-in-the-Loop Haptics-Enabled Train-

ing

Haptics-based interaction with an expert when learning a motor task has been shown to consis-

tently enhance a trainee’s motor skills and performance, compared to when practicing the task

individually for the same duration [34], [35]. Through the DUSC telerobotics frameworks, it is
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possible to bring the supervision and involvement of an expert into a training loop to capitalize

on the impact of haptic interactions on the trainee’s learning curve.

Yano [36] was among the first researchers to incorporate haptics interaction between an

expert and a trainee through a DUSC framework such that they can simultaneously work in

a virtual environment with force feedback. The system was designed so as to have a “haptic

coupling” between their hands to assist skills development in virtual environments.

Nudehi et al. [37] developed a DUSC training architecture for minimally invasive surgery.

The framework was designed to enable an expert surgeon to mentor a trainee through a fixed-

gain error-based haptic interaction between the expert and the trainee. The concept of the

dominance factor for DUSC frameworks was initially introduced in this paper, which allows

providing partial levels of control authority over the task to each user. A control approach

based on H∞ was presented to ensure robust stability and performance of the architecture in the

presence of constant communication delay.

In [38], Chebbi et al. outlined the high level design of a collaborative virtual surgical

environment that allows haptic tele-mentoring of a trainee by an expert during performance

of simple surgical tasks. The paper discussed various aspects of the simulated graphical unit,

including graphical rendering, physical simulation, and collision detection inside the virtual en-

vironment. The DUSC framework was designed so as to include the following control modes:

1) independent mode in which each operator can independently perform simple virtual surgical

tasks; 2) tele-mentoring mode, in which the expert can guide the movements of the trainee; 3)

tele-evaluation mode, in which the trainee has control over the movements of the expert; and

4) bilateral tele-mentoring mode which provides the expert and the trainee with a two-way in-

teraction such that both can feel the movements of each other.

In [39], a tele-collaborative VR environment was presented and evaluated for dual-user surgi-

cal training, through which a novice and an expert can remotely communicate and collaborate.

The simulated VR application, which involves a gall bladder removal, allows both the trainee

and the expert to simultaneously work in the same virtual space. Withstanding latencies of

around 200 millisecond, the tele-collaborative virtual environment was evaluated between an

expert located in USA and some trainees in Australia.

In [40], a dual-user framework was presented for haptics-enabled training, where two mas-
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ter robots are manipulated by an expert and a trainee, while the slave robot makes contact with

the environment. The architecture was designed such that each robot follows the trajectory of

another robot, creating a chain of leader-follower behavior. The framework can be considered

as a closed-loop interconnection of two SM/SS frameworks placed in series, where the slave

robot of the first SM/SS framework acts as the master robot for the second architecture, the

slave robot of which acts as the master robot for the first framework. To realize the framework,

a decoupled controller was applied to each robot in differential-position mode.

In [41], the controller design for a trainer-trainee collaboration in haptics-enabled virtual

environments was addressed. Adaptive nonlinear controls were developed to enforce desired

mapping between the operators and the virtual environment, which can be either impedance or

admittance type, in the presence of parametric dynamic uncertainties in the operator’s hand. A

Lyapunov function was used to investigate performance of the closed-loop system, while also

analyzing closed-loop stability using the Nyquist envelopes of the interval plants and an off-

axis circle criterion. The approach provided for the analysis of closed-loop stability requires a

priori knowledge of the bounds on the users’ and environment’s parameters.

In [42], Khademian et al. presented a DUSC architecture for haptics-enabled training in a

simulated environment. In this architecture, a virtual slave robot is collaboratively controlled

by a trainee and a trainer through their partial authority levels over the task. The framework

sets two simultaneous desired objectives for each user and his/her corresponding master robot

based on: 1) the weighted sum of positions of the virtual slave and the second master robots,

and 2) the in-contact haptic force generated at the slave side. This can result in simultaneous

exertion of two different forces on the users’ hands. A mechanism based on which the users

can decouple and discriminate between these forces, however, was not presented. Closed-loop

stability of the architecture was analyzed against uncertainties in the environment and the user’s

dynamics, using the Llewellyn’s unconditional stability criterion. This was done by 1) find-

ing the continuous-domain equivalent of the discrete-time virtual slave robot using the Tustin

transformation; 2) obtaining an equivalent two-port network model from the original three-port

framework by considering the environment as a load termination; and 3) applying Llewellyn’s

criterion to the resulting two-port network. The kinesthetic performance of the architecture was

also evaluated through numerical analysis and in terms of transparency under various operating
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conditions, including types of environments and users’ grasps.

In [27], Shahbazi et al. developed a DUSC framework for haptics-enabled training of a

novice concurrently with the execution of a surgical procedure by an expert in the loop. The

kinesthetic haptic guidance was proposed to be adaptively adjusted in real-time and based on

the performance level of the trainee in order to keep the trainee actively engaged. Thus, to ob-

jectively quantify the trainee’s performance in real time, a relative skills-assessment approach

was developed. The concept of time-varying adaptive dominance factor was originally pre-

sented in this paper, enabling real-time adjustment of the authority level of the trainee over

the surgical task based on his/her level of expertise. An impedance-based control method-

ology was applied and closed-loop stability was investigated. By applying the Small Gain

theorem, a sufficient condition was derived that guarantees closed-loop stability of the archi-

tecture in the presence of a non-negligible time-varying communication delay. In [43], the

authors took a further step by proposing a real-time expertise-oriented surgical training archi-

tecture. The expertise-oriented framework was designed such that it provides novice trainees

with haptic guidance/cueing, while trainees with a sufficient level of expertise receive haptic

tool-tissue interaction force reflected back from the patient side that enables the trainees to get

acquainted with the range of forces applied to the surgical instruments in the patient’s body.

This was realized through a Fuzzy interface system, which adaptively specifies the type and

level of the haptic guidance/feedback as well as the appropriate authority level of the trainee

over the procedure based on to his/her level of expertise in real time. Closed-loop stability of

the expertise-oriented framework was investigated in the presence of constant communication

delays and a sufficient stability condition was derived.

A trilateral DUSC architecture was developed by Shamaei et al. [44] for robotic training.

The framework (consisting of two master robots manipulated by a trainee and an expert as well

as one slave robot) includes a dominance factor, through which the trainee’s authority level

over the slave robot can be controlled. In addition, an observation factor was incorporated,

through which the desired force/velocity inputs to the trainee can be adjusted. The architec-

ture consists of six velocity- and force-based desired objectives, two for each master and slave

robots. A discussion on how to assign both velocity and force values simultaneously was not

given. Stability and transparency of the framework was analyzed numerically for a specific
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version of the architecture run in position-position-position mode.

2.1.3 Dual-User Redundancy Control (DURC)

Kinematic redundancy of a robotic manipulator makes it appropriate for use in unstructured and

complex environments, and enables simultaneous multitasking [45]. Involving human opera-

tor(s) in controlling a kinematically redundant robot through teleoperated frameworks brings

the human intelligence, expertise and sensory inputs into the loop, while it requires appropri-

ate strategies for redundancy resolution. A solution to this is to incorporate two master robots

in order to control a kinematically redundant slave robot, such that each master robot can be

assigned to perform a part of the task [46].

Unlike symmetric trilateral teleoperation systems, in asymmetric DUSC frameworks there

is no one-to-one mapping between the Degrees Of Mobility (DOMs) of the master robot(s)

and the slave robot. DOM is defined as the minimum number of independent variables that

uniquely determines the robot motion. In [46], Malysz and Sirouspour developed an asymmet-

ric DURC approach, in which two master robots can control a kinematically redundant slave

robot in delay-free applications (Fig. 2.7). The architecture was designed such that the first

master robot controls a primary task control frame (e.g. the slave end-effector frame), while

the second master robot manipulates a secondary task (e.g. avoiding collision with obstacles in

the environment) without affecting the primary task. This was achieved through a joint-space

Lyapunov-based adaptive controller with local velocity-level redundancy resolution and task-

space coordinating reference commands. The approach was also extended in [47] to dual-user

control of a kinematically deficient slave robot.

An application to such frameworks is robotic rehabilitation. In [48], Culmer et al. de-

veloped a DURC strategy for upper-limb robotic rehabilitation in which two 3-Degree-Of-

Freedom (DOF) robotics systems were used to control a human arm in 6-DOF and to perform

rehabilitative tasks in a virtual user interface environment. A main challenge in such an ap-

plication is to ensure that the master robots are controlled in unison with each other, and also

with the patient’s arm in order to safely coordinate arm movements. For this purpose, a 6-

DOF model of the upper limb was used to form the controller’s coordinate system and an

admittance-based cooperative control strategy was applied.
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Figure 2.7: Schematic representation of a trilateral asymmetric DURC framework [46]
( c©[2011], SAGE Publications).

2.2 MM/SS Architectures

MM/SS teleoperation frameworks are, in fact, an extended class of dual-user teleoperation

systems in which multiple operators can collaboratively control a slave robot, resulting in an

improved-dexterity human-machine interface. This can involve shared/cooperative user con-

trol of a slave robot with either an equal number of DOFs or kinematic redundancy in order to

enhance operability in complex environments [49], [50].

Goldberg et al. [51] were among the first researchers to develop an MM/SS framework that

enables multiple operators to collaboratively teleoperate an industrial robotic arm over the In-

ternet. In order to fuse the inputs from all operators, input averaging was applied. Based on the

Central Limit Theorem, input averaging for multiple operators with similar levels of expertise

may lead to a more effective control signal than that from an individual.

Katsura et al. [52] presented a control framework for MM/SS systems in the spatial mode

coordinate system to compensate for differences in the structure and the number of DOF be-

tween the master robots and the slave robot. For this purpose, a spatial mode transformation
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Figure 2.8: Schematic representation of an SM/MS teleoperation system with three slave robots
handling a common object [53] ( c©[2005] IEEE).

was introduced based on decoupled modes of a task (e.g., translation, rotation, and grasp). An

acceleration-based controller was designed to facilitate position regulation at the slave side and

force servoing at the masters side.

In [49], projective force mappings were introduced for MM/SS frameworks to facilitate

dividing the teleoperation control of the slave end-effector into a number of potentially over-

lapping subtasks. A systematic way to obtain corresponding projective matrices was presented

based on which the master robots can be allocated shared or decoupled control over the slave

robot. An adaptive controller was applied to implement the projective force mapping objec-

tives. The approach does not include environment force feedback to the operators.

In [54], Shahbazi et al. presented a set of desired objectives for MM/SS teleoperation

frameworks, through which both mutli-user cooperative and training applications (e.g., surgi-

cal training to a class of trainees) can be realized. The definition of the hybrid matrix as well

as the desired hybrid matrix for such a framework was initially given in this paper. Passivity

of the framework was investigated and it was shown that, unlike SM/SS systems, passivity of

an MM/SS system is architecture-dependent and determined based on the desired objectives of

the architecture. An impedance-based control approach was developed to satisfy the desired

objectives defined for the system in the presence of communication delays. Using the Small-
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Gain theorem, closed-loop stability of the framework was investigated and a sufficient stability

condition in the presence of communication time delays was derived.

2.3 SM/MS Architectures

An SM/MS system enables an operator to remotely control multiple slave robots performing a

common task. The coordination of slave robots in such frameworks increases the load capacity,

dexterity and rigidity of the system. An SM/MS system is applicable in tasks such as manip-

ulating a heavy object, or assembling a bolt-nut pair, where multiple slave arms are required

to accomplish the task, while one operator would suffice to control the position/orientation as

well as the interface force/moment of the target point. Fig. 2.8 shows a schematic representa-

tion of an SM/MS framework with three slave robots.

In [55], a task-oriented control approach was proposed for SM/MS systems using a Virtual

Internal Model (VIM). The framework enables the operator to concentrate on the task itself

in the 6-DOF space, while the VIM-based controller automatically resolves the task-oriented

variables into the motion of each slave arm. The control framework requires some level of

knowledge about the task in order to specify the internal force/moment interactions.

When handling a kinematically-unknown object using an SM/MS system, grasping safety

is a critical aspect. Grasping should be maintained securely and precisely in order to avoid

dropping the object. In [56], Lee and Spong proposed a passivity-based control framework for

SM/MS that ensures a secure and tight cooperative grasping among the slave robots regardless

of the communication time delay, operator command, and behavior of the object. Applying a

passive decomposition, the dynamics of the slave robots is first decomposed into two decou-

pled systems, namely a shape system and a locked system. The shape system is then controlled

by disturbance cancellation to ensure a secure grasp, while the locked system (describing the

overall behavior of the slave robots) is controlled in accordance with the operator’s commands.

The passivity-based control framework was designed such that the operator can receive haptic

force feedback, while ensuring safety and stability of the interaction in the presence of com-

munication delay using the scattering variables. In [57], a wave-variable-based controller was

also developed for nonlinear SM/MS systems to guarantee position synchronization and force



2.4. MM/MS ARCHITECTURES 37

reflection in the presence of time-varying communication delays.

2.4 MM/MS architectures

MM/MS systems enables multiple operators to remotely control multiple slave robots in a

common environment over the network. Such frameworks are applicable in cooperative tele-

operation, which offers several advantages including increased dexterity, enhanced handling

capability and loading capacity, as well as improved robustness as a result of possible redun-

dancy [4]. Fig. 2.9 shows a schematic representation of such a framework for a specific case of

two operators remotely manipulating two slave robots to perform a collaborative physical task.

One of the main challenges with such systems in the presence of considerable communication

time delays is to cope with delayed visual perception in order to avoid collision between the

slave robots [58]. To ensure a collision-free collaboration between the slave robots, in [59], a

real-time predictive graphics simulator was developed for such frameworks, in which the slave

robots move based on a predictive trajectory generated by the simulator at the operators’ sites.

In [60], an Internet-based distributed multi-behavior MM/MS system was presented, in-

cluding three layers of hierarchical system software, namely: 1) the robot application layer, 2)

the robot task layer, and 3) robot execution layer. The multi-behavior structure of the system

enables performance of simple tasks (e.g., executing a primitive action) as well as complex

operations (e.g., dealing with unexpected events such as possible collisions).

Lo et al. [61] developed a distributed event-based control methodology for MM/MS sys-

tems in the presence of Internet communication time delay. The controller was developed such

that each operator/master independently controls a slave robot, while real-time force feedback

was used to render the interactions among the robots and the operators.

In [4], Sirouspour developed a multilateral MM/MS teleoperation framework that 1) takes

the dynamic interaction of slave robot with the tool/environment into account, and 2) allows

force and position information flow between all master and slave robots, rather than merely

between each corresponding master-slave unit, in order to facilitate task coordination and ex-

ecution. A µ-synthesis robust control methodology was also developed to ensure stability of

the framework in the presence of unknown, but passive, operators and environment dynam-
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Figure 2.9: Schematic representation of a multilateral cooperative teleoperation framework1

[59].

ics. In [62], a model-based adaptive nonlinear controller was developed for the same MM/MS

framework. The Lyapunov analysis was used to analyze closed-loop stability of the framework

in free motion, and in contact with flexible and rigid environments. In [63], Setoodeh et al. de-

veloped an event-based distributed controller for such a framework subject to a known constant

communication delay. The control strategy included model-based Linear Quadratic Gaussian

(LQG) controllers for free and in-contact phases with switching according to the operation

phase. The Nyquist technique was used to investigate robustness of the system with respect to

parametric uncertainties.

In [64], the concept of model-mediated MM/MS cooperative frameworks was adopted in

order to incorporate knowledge about the environment into the system. In this framework, an

estimated model of the environment was rendered on the master site, rather than transmitting

force/velocity signals, in order to enhance the bandwidth of the overall system. The framework,

integrated with a centralized position-based admittance controller, was developed for a specific

1-DOF MM/MS system with two master-slave pairs communicating through a delay-free com-

1Reprinted from: A collaborative multi-site teleoperation over an ISDN, vol. 13, no. 8, N.Y. Chong, et al.,
Mechatronics, pp.957-979., c©(2003), with permission from Elsevier.
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munication network. Feth et al. [65] improved on this by proposing prediction algorithms for

dyadic haptic interaction, such that no a-priori knowledge about the task, the remote environ-

ment or the teleoperator dynamics is required.

Using information graphs and consensus algorithms, Tumerdem et al. [66] presented a mul-

tilateral teleoperation platform that is robust to dynamical changes in the network topology, as

long as the network structure remains connected and balanced. Capitalizing on the stability

of consensus algorithms under switching conditions, the system was designed such that the

controller law at each robot site also switches in correspondence with the dynamical changes

in the network topology, while tolerating communication failures.

In [67], Kanno and Yokokohji presented a wave-variable-based controller for MM/MS sys-

tems with arbitrary number of master/slave robots. By introducing a wave node (to which

multiple wave-variable-based transmission lines can be connected), the controller guarantees

passivity of the system in the presence of communication delay regardless of the dynamics

characteristics of the master/slave robots. The controller also includes a wave-integral-error

feedback in order to compensate position drift resulted by the communication delay.

In [68], a general multilateral control framework based on passivity was presented to en-

able energy coupling of n operator-master sets and m environment-slave sets through a delayed

communication network. This framework includes three main elements: 1) nodes: generalized

effectors or agents, e.g. human-master set, autonomy agent, and/or environment-slave set; 2)

segment: the energy flow between each two nodes; and 3) track: a control medium that enables

the flow of energy between each two nodes. This high-level modular topology, integrated with

a passivity-based controller, uses power-correlated signals transferred between each two nodes

independently of the nature of the agents, eliminating the necessity of precise modeling of the

agents. A generalized modular representation of MM/SS framework was also given in [69],

based on the flow/effort concept in mechanical-electrical network analogy. A time domain

passivity controller was developed to stabilize the closed-loop framework in the presence of

communication time delay, regardless of the number of master-slave robots, the control archi-

tecture and dynamic uncertainties.

Chen et al. [70] presented an adaptive robust controller for a general MM/MS system with n

master-operators to remotely manipulate n slave robots cooperatively handling an object. The
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framework replaces the environment force feedback by using an estimation of environment

parameters at the master side in order to address the non-passivity caused by the conventional

bilateral delayed communication channel. The adaptive robust controller addresses dynamics

nonlinearities and parametric uncertainties of the robots and the environment.

2.5 Topology-Free Stability Analysis of Multilaretal Teleop-

eration Frameworks

Closed-loop stability is one of the main objectives in designing control strategies for teleop-

eration systems, and this is particularly important for multilateral frameworks. This section

presents an overview of the state-of-the-art stability analysis approaches for general multilat-

eral teleoperation systems independent of their topology and architectural interconnections,

through modeling the systems as n-port networks.

In [71], Mendez et al. presented a necessary and sufficient criterion for passivity analysis

of coupled multi-DOF multilateral teleoperation/haptic systems, which in turn ensures stability

of the closed-loop system. Considering the multilateral framework as an n-port network, the

criterion was developed based on the analysis of immittance (impedance, admittance, hybrid

or inverse-hybrid) parameters of the n-port network. For the n-port network to remain pas-

sive, the proposed criterion necessitates 2n conditions for the immittance parameters and their

residues to satisfy. It was shown in the paper that for n = 2, the proposed passivity criterion

reduces to Raisbeck’s criterion for a two-port network. Although the proposed passivity crite-

rion provides a conservative approach to stability analysis, it does not require information on

the operators’ and the environment’s impedance characteristics as long as they remain passive.

In [72], an approach for unconditional stability analysis of dual-user teleoperation systems

(which can be modeled by 3-port networks as shown in Fig. 2.10) was presented. The pro-

posed framework is based on reducing the 3-port network to an equivalent 2-port network

(schematically shown in Fig. 2.11), to which Llewellyn’s unconditional stability criterion can

be applied. For this purpose, one of the three terminations of the network (operator 1, operator

2 or environment) should be considered as a load termination (zero excitation) and absorbed

into the 3-port network. Among the three terminations, the environment is the best candidate
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Figure 2.10: Schematic representation of a trilateral teleoperation system modeled by a 3-port
network [72] ( c©[2010] IEEE).

Figure 2.11: Schematic representation of the reduced 2-port network, by considering the envi-
ronment as the load termination [72] ( c©[2010] IEEE).

for load termination as, unlike the two operators, it does not generate exogenous input or ex-

citation. Choosing the environment as the load termination, the equivalent 2-port network can

be then calculated through algebraic manipulations. Afterward, Llewellyn’s criterion can be

applied to the equivalent 2-port network to find the stability criterion. In addition to the im-

mittance (impedance, admittance, hybrid or inverse-hybrid) parameters of the original 3-port

network, the resultant stability criterion also depends on the dynamics of the environment (load

termination) absorbed into the equivalent 2-port network, which, thereby, should be known.

Remark: In this context, a 2-port network is said to be unconditionally (absolutely) stable,

if it is stable for all possible passive terminations [73].

A similar approach was adopted in [73] to develop a stability analysis framework for mul-

tilateral MM/MS teleoperation frameworks (which can be modeled by an n-port network).
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Based on this approach, two ports of the network should be arbitrary chosen as the network’s

sources, while all other ports will be considered as load terminations and absorbed into the

network, resulting in a reduced 2-port network. The next step would be to apply unconditional

stability analysis methods such as Llewellyn’s criterion or stability circles in the scattering do-

main to the equivalent 2-port network. The stability conditions derived using this method will

depend on not only the n-port network parameters, but also the port terminations. The stability

analysis approach requires the dynamics of all terminations, except for one of the source ter-

minations, to be approximated by linear models.

In [74], Li et al. took one step further by presenting an absolute stability condition for

trilateral systems in a closed-form expression. In this work, a set of necessary and sufficient

conditions was directly derived for trilateral systems based on the impedance (admittance) ma-

trix of the equivalent 3-port network, without first reducing to a 2-port network. In addition to

the set of stability conditions, the proposed criterion also necessitates the network impedance

(admittance) matrix to satisfy a symmetrization condition, which involves the actual values

of the teleoperator parameters. The stability criterion was expanded in [50] to also cover a

class of multilateral MM/SS teleoperation systems, in which multiple master robots control

one slave robot provided that the total number of DOFs in master robots is equal to the that of

the slave robot. similar to the trilateral version, the stability analysis framework proposed for

multilateral systems requires the immittance matrix of the equivalent n-port network to also

satisfy a specific symmetrization condition, which can be satisfied by proper adjustment of the

controller gains. The stability analysis framework allows for dynamic coupling across different

DOFs of the robots, the operators and the environment.

Razi et al. [75] also set out a framework for coupled stability analysis of linear trilateral

teleoperation systems (modeled by a 3-port network). The analysis framework was based on

an extended version of Zeheb–Walach (ZW) criteria and applies to the immittance parameters

of the 3-port network. An Extended ZW (EZW) theorem was developed such that, unlike the

original ZW, it allows poles on the imaginary axis, which makes it applicable to robotic sys-

tems with position feedback.

In [76], the passivity criterion vs. the absolute stability criterion for trilateral teleoperation

systems was compared analytically and through simulations/experiments. It was concluded
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that, in the position-tracking mode for such systems, the absolute stability criterion is less con-

servative compared to the passivity criterion. It was also shown that the two criteria become

the same for a trilateral framework with a symmetric immittance matrix.

2.6 Discussion and Future Direction

In this chapter, a review of multilateral frameworks was given, classifying the existing state-of-

the-art architectures. The higher layer of classification was made based on the existing topolo-

gies, dividing the frameworks into the following general categories: 1) trilateral, 2) MM/SS, 3)

SM/MS and 4) MM/MS frameworks. Then, the state-of-the-art results in each category were

discussed in terms of applications, control strategies and challenges. An overview of topology-

free stability analysis approaches for multilateral teleoperation framework was also presented.

As described in the chapter, coping with dynamic uncertainties for human operator(s) and

the environment was among the control challenges addressed by prior studies on multilateral

frameworks. Several studies also addressed control challenges associated with communica-

tion time delays, including closed-loop instability. Effect of communication delays (and other

degrading aspects of communication networks, e.g., packet loss and jitter) on system perfor-

mance/transparency have not, however, received much attention. Similar to SM/SS frame-

works, and as also verified in [77] for a specific trilateral framework with a shared virtual en-

vironment, it is expected that communication delays have a destructive effect on performance

of haptics-enabled multilateral systems as well. However, to what extent performance of mul-

tilateral teleoperation can be affected by communication delays, considering system topology,

compared to that of a SM/SS system, requires more experimental and analytical investigations.

Khademian et al. [78], Bacocco and Melchiorri [79], Powell et al. [12] are some of the publi-

cations that have discussed performance and efficacy of multilateral frameworks in the absence

of communication delays. A part of future work can be focused on studying performance of

delayed multilateral teleoperation systems as well as how having multiple operators in the loop,

as compared to in classical SM/SS systems, can impact and possibly improve the outcome. The

results of this type of investigative studies can then be used to enhance the operators telepres-

ence and improve the task outcome for various multilateral architectures. Towards increasing
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Figure 2.12: Schematic representation of a multi-modal telepresence system with visual, audi-
tory and haptic feedback augmentation [80] ( c©[2009], SAGE Publications).

the operators telepresence and enhancing interaction between operators in a multi-user tele-

operation framework, Buss et al. [80] developed a multi-modal system by augmenting visual,

auditory and haptic feedback components into the framework (Fig. 2.12). For this purpose, a

high-fidelity interpolation technique was developed to render three-dimensional sound scenes,

a video system was designed to allow modeling and rendering of the remote environment in

real time, and admittance-based haptic system was implemented to improve the operators telep-

resence.

As discussed earlier, haptics-enabled expert-in-the-loop motor skills development (includ-

ing robotics-assisted surgical training [37], [38], [81] and rehabilitation therapy [32], [33]) as

well as haptics-enabled training of a class of trainees [54] are among applications made possi-

ble through multilateral teleoperation frameworks. Effectiveness of haptic feedback from the

environment was shown in [82], in terms of enhancing users performance as well as their sense

of co-presence and awareness in a cooperative virtual environment. The potency of dyadic hap-

tic interaction between two operators in enhancing the motor skills, as compared to practicing

the task alone for the same duration, has also been investigated in many studies in the absence

of communication delays. While several have validated the benefits of haptic augmentation in

motor learning [34], [35], [83], [84], possible dependencies of the outcome on the task type

and difficulty, the operator’s ability, as well as the modality and the level of the haptic feedback
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have also been discussed [13], [85], [86]. This emphasizes the need for further exploration

of the extent of task-dependence as well as the impact of the forcefulness level and the type

of haptic guidance. In addition, studies should be conducted to investigate the impact of large

communication delays on the process of motor skills development through long-distance haptic

interactions. Frameworks with a stable and human-safe control loop, as proposed in this thesis

(which enables adaptive skills-oriented haptic guidance, without imposing limitations on the

level of guidance force), realize appropriate testbeds for further studies on the nature of human

motor learning and retention through haptic guidance and dyadic interactions. Frameworks

with limited stability margin and fixed-gain error-reducing haptic guidance may not suffice for

in-depth and conclusive studies [13], [85].

Another interesting area to explore would be the process of dominance/authority distribu-

tion between multiple operators as well as the impact of such distribution on the performance of

shared multilateral frameworks. Shahbazi et al. [81], presented a real-time adjustment profile

for the dominance factor for a trilateral framework developed for surgical training applications.

Groten et al. [87] experimentally investigated the dominance distribution procedure between

two operators for an object handling task. Future studies can be conducted to explore such

issues (e.g., the development of a systematic adjustment procedure for the dominance distribu-

tion) for a wider range of applications, while ensuring closed-loop stability and thereby, safety

of human-robot interaction.
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Chapter 3

Time-Varying Dominance Distribution: A

Wave-Variable Approach

The material presented in this chapter was published in the Proceedings of the IEEE/ASME

International Conference on Advanced Intelligent Mechatronics (AIM), pp. 415-420, France,

2014.

3.1 INTRODUCTION

A teleoperation system makes it possible for a human to perform a task remotely with no need

for the operator to be present at the task side. Therefore, teleoperation systems can be used for

hazardous tasks and out of reach areas; such as in space exploration, undersea tasks, mining,

and handling of hazardous materials [1]. An important recent application of teleoperation is

in the medical field, and more specifically, in the performance of Minimally Invasive Surgery

(MIS).

In teleoperation systems, stability and transparency are the main control objectives. How-

ever, these objectives are usually at odds with each other, meaning that an improvement in

one can degrade the other. Addressing this problem usually necessitates a trade-off in the con-

troller design procedure. The controller design gets more complicated and challenging if the

c©[2014] IEEE. Reprinted, with permission, from [Mahya Shahbazi, H.A. Talebi, R.V. Patel,” Networked
Dual-User Teleoperation with Time-Varying Authority Adjustment: A Wave Variable Approach”, IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM), 2014.]
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master and the slave robots are located far from each other. In fact, long distances can in-

troduce considerable communication delays, which are difficult to deal with [1], [2], [3]. In

order to deal with communication delays in Single-Master/Single-Slave (SM/SS) teleopera-

tion systems, several control structures are presented in the literature, as summarized in [4].

In an SM/SS system, as the name implies, one operator holding one master robot performs

a task through one slave robot. Building on this conventional category of teleoperation sys-

tems, dual-user systems have also been introduced. In this category, two operators perform

a common task through a set of two master robots and one slave robot [5], [6]. In dual-user

teleoperation systems, each operator can affect the operation based on his/her expertise. The

authority of each operator over the task can be adjusted by a “dominance factor”, which can

be set depending on the task and expertise of the operators. A dual-user teleoperation system

is primarily applicable in cooperative tasks and training applications, e.g., rehabilitation and

surgical training [7], [8], [9]. Work on dual-user teleoperation systems is relatively recent and

there are only a few studies to date on the subject. In [10], a control architecture is proposed

to control a kinematically redundant slave manipulator controlled by two master robots. In

this architecture, the scheme is different from the dual-user task mentioned above. Each mas-

ter performs a separate task, a primary and a secondary, while in the problem addressed in

this chapter, the master robots perform a common task cooperatively. In [11], two multilat-

eral shared control architectures are presented for dual-user systems, which provide increased

maneuverability and enhanced sense of the environment to the users. A force-position mul-

tilateral shared controller has been proposed for dual-user teleoperation systems in [12]. The

controller is robustly stable in the presence of uncertainties of hand dynamics and environmen-

tal impedance. Although the above-mentioned studies as well as most of the other previous

research present control methodologies for dual-user systems, they do not address the issue of

communication delays.

A robust controller based on µ-synthesis has been proposed for a dual-user system in the

presence of communication delays in [5]. In this architecture, the time delay between the slave

robot and each master robot is assumed to be known and constant, while delay-free communi-

cation is assumed between the master robots.

A potential application of a dual-user system is in two-handed tele-rehabilitation therapy,



3.1. INTRODUCTION 59

where the patient is asked to involve his/her healthy arm to cooperate with the therapist’s arm

in order to train the patient’s impaired arm [13]. This approach, which increases the effec-

tiveness of therapy, necessitates two master robots one held by the therapist and the other by

the patient’s healthy arm in order to manipulate one slave robot held by the patient’s impaired

arm. A suitable therapy would allow the therapist to specify the impact level of the patient’s

healthy arm over his/her impaired arm during the task. This necessitates the closed-loop sys-

tem to remain stable in the presence of a time-varying dominance factor. Another potential

application of a dual-user system could be in training for Robotics-Assisted Minimally Inva-

sive Surgery (RAMIS), e.g., when two surgeon’s consoles are available as in the new da Vinci

Si from Intuitive Surgical Inc., where one is operated by a mentor and the other by a trainee

to manipulate the slave robotic system at the patient side. A useful feature of such a system

would be to provide the expert with the ability to adjust the authority of the trainee over the

task in a real-time fashion. This also requires the system to remain stable in the presence of the

time-varying dominance factor.

Work on dual-user teleoperation systems is relatively recent, and applications involving

variation of the dominance factor have not been considered in previous research. In [14], a

dual-user training approach for RAMIS was proposed by the authors which benefits from the

variation of the dominance factor. However, the structure proposed there and the closed-loop

stability analysis were task-specific, developed for training applications and cannot be straight-

forwardly generalized to other applications such as tele-rehabilitation therapy. Therefore, in

this chapter, a dual-user system with a time-varying dominance factor is studied, while pre-

serving system generality. In order to make the communication channels passive, a modified

version of the conventional wave transformation approach used for the SM/SS system [15]

is proposed, guaranteeing closed-loop stability of the dual-user system with a time-varying

dominance factor in the presence of a constant delay. Controller validity is demonstrated by

experimental results.

The rest of the chapter is organized as follows: The system dynamics and desired objec-

tives are presented in Section 3.2. Section 3.3 describes the controller design and the modified

wave transformation for the dual-user system. The stability analysis and experimental results

are given in Section 3.4 and 3.5, respectively. Section 3.6 concludes the chapter.
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3.2 System Dynamics and Desired Objectives

3.2.1 System Dynamics

In a dual-user teleoperation system, two operators use two master robots in order to perform

a task through a slave robot. Both master robots and the slave robot have nonlinear dynamics

[16]:

Dγ(xγ)ẍγ +Cγ(xγ , ẋγ)ẋγ +Gγ(xγ) = Fcγ −Fextγ (3.1)

where γ = m1 and γ = m2, for master #1 and master #2, respectively, while for the slave robot,

γ = s. In addition, xγ stands for the positions of the robots’ end-effectors, Dγ is the mass

matrix, Cγ(xγ , ẋγ) corresponds to the velocity-dependent elements and Gγ(xγ) represents the

position-dependent forces such as gravity. Furthermore, Fcγ stands for the control signal and

Fext γ for the external force acting at the robot end-effector. The external force acting on each

master robot corresponds to the hand force of its operator. The operator’s hand dynamics are

modeled by a second-order linear time-invariant system [17]. Therefore, the operators’ hand

forces Fhi (i = 1,2) are given by:

Fext mi =−Fhi =

−
(

F∗hi
−Mhi ẍhi−Bhi ẋhi−Khi[xhi− xhi0]

) (3.2)

where Mhi , Bhi and Khi (i = 1,2) denote the mass, damping and stiffness of the operators’

hands, respectively and F∗hi
represents the users exogenous force. In addition, xhi (i = 1,2)

refers to the position of the operators’ hands, while the subscript 0 refers to the initial value,

i.e., xhi at t = 0. Since, each operator holds a master robot with his/her hand; we have the

following equality between the operators’ hand positions and the end-effector positions of the

master robots:

xhi = xmi (i = 1,2) (3.3)

The external force acting on the slave end-effector corresponds to the environment force. Since

the environment can be modelled as a second-order linear time-invariant system [17], the envi-
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ronment force Fe is given by:

Fext s = Fe = Meẍe +Beẋe +Ke(xe− xe0) (3.4)

where Me, Be and Ke refer to the mass, damping and stiffness of the environment respectively;

xe corresponds to the position of the environment and the subscript 0 refers to the initial value

(at t = 0). Since the slave robot interacts with the environment, the following equality holds

between the slave position and the environment position:

xs = xe (3.5)

3.2.2 Desired Objective in Dual-User Systems

In dual-user systems, two operators perform the task cooperatively. Therefore, it is desired for

the slave robot to follow a combination of the positions of the master robots. This combination

is adjusted through the dominance factor “α”. Therefore, the desired position for the slave

robot is as follows [11]:

xsd = αxm1 +(1−α)xm2 (3.6)

where xm1 , xm2 and xs represent the positions of masters and slave robots and subscript “d”

refers to the desired value for the slave robot. In addition, α the dominance factor varies

between 0 and 1 which determines the authority of each user over the task. Setting α = 1,

and consequently 1−α = 0, full authority will be given to the first operator, while the second

operator will have no authority over the task. In another case, considering equal authority

for the operators, we have α = 1−α = 0.5 and the slave position will be the average of the

master robots’ positions. If the operators perform the task completely similar to each other

that is xm1 = xm2 , as can be seen in (3.6), the effect of the dominance factor will be eliminated;

therefore, regardless of the value of α , in this case we will have: xsd = xm1 = xm2 .

In addition to the desired objectives for the slave position, it is desired for the operators

to feel the environment force to have transparent operations. Therefore, two other desired



62 CHAPTER 3. TIME-VARYING DOMINANCE DISTRIBUTION

objectives for the dual-user system are as follows [11]:

Fh1d = Fe (3.7)

Fh2d = Fe (3.8)

where the subscript “d” refers to the desired value of Fh1 and Fh2 , the operators’ hand forces.

3.3 The Proposed Wave-Variable-Based Controller

In order to satisfy the desired objectives for the dual-user system, a decentralized impedance-

based control methodology is adopted [18]. For this purpose, three impedance surfaces are

defined as the desired closed-loop systems and an impedance controller is designed to satisfy

these impedance surfaces. Note that the impedance controller can be replaced by an adaptive

impedance controller if the robots’ physical parameters are not exactly known. The impedance

equations for master #1, master #2 and the slave robot are defined as follows:

M1,d ẍm1 +B1,d ẋm1 +K1,dxm1 = Fh1−Fe (3.9)

M2,d ẍm2 +B2,d ẋm2 +K2,dxm2 = Fh2−Fe (3.10)

xs = αxm1 +(1−α)xm2 (3.11)

where Mi,d , Bi,d and Ki,d (i = 1,2) correspond to the desired inertia, damping and stiffness for

master #1 and master #2. By satisfying (3.9) and (3.10) as the closed-loop system of the master

robots, it can be seen that the operators’ hand forces, Fhi , will follow the environment force, Fe,

with an error. This error is relative to the position of the corresponding master robot as well as

the desired impedance parameters Mi,d , Bi,d and Ki,d . Therefore, by setting these parameters to

small values, the force tracking error can be reduced to an acceptable value, although it cannot

be totally eliminated.

The adopted impedance-based control methodology can guarantee system stability in the

presence of negligible time delay. However, it is well-understood that a significant communica-

tion delay can easily make the overall closed-loop system unstable. Therefore, in this chapter,
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the conventional wave transformation (applicable to the SM/SS system) is modified so as to

guarantee the closed-loop stability for the dual-user system in the presence of the time-varying

dominance factor and constant communication delays.

The proposed wave transformations for the communication channels between the slave

robot and the master #1 and #2 in a dual-user system with a time-varying dominance factor are

given by (3.12) and (3.13), respectively:

fm1 = b1α̇xm1 +b1α ẋm1−
√

2b1vm1

= b1
(
αxm1

)′
−
√

2b1vm1

um1 =−vm1 +
√

2b1α̇xm1 +
√

2b1α ẋm1

=−vm1 +
√

2b1
(
αxm1

)′

˙xs1 =

√
2
b1

us1−
1
b1

fs1

vs1 = us1−
√

2
b1

fs1

(3.12)



fm2 = b2 ˙xm2−b2α̇xm2−b2α ẋm2−
√

2b2vm2

= b2

(
(1−α)xm2

)′
−
√

2b2vm2

um2 =−vm2−
√

2b2α̇xm2−
√

2b2α ẋm2 +
√

2b2ẋm2

=−vm2 +
√

2b2

(
(1−α)xm2

)′

˙xs2 =

√
2
b2

us2−
1
b2

fs2

vs2 = us2−
√

2
b2

fs2

(3.13)

where (·)′ refers to the
d

dτ
(·) operation; umi and vmi (i = 1,2) are the wave variables used at

the master robots sides; usi and vsi (i = 1,2) are the wave variables used at the slave robot
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side and we have usi(t) = umi(t − Ti) and vmi(t) = vsi(t − Ti), where Ti indicate the constant

time delay between master robot #i and the slave robot; Moreover, bi (i = 1,2) indicate the

characteristic wave impedances for the wave transformation between master #i and the slave

robot. Furthermore, fsi (i = 1,2) = Fe. Signals with the subscript i=1 correspond to those used

for the communication channel between the slave robot and master #1, while i = 2 refers to the

signals through the communication channel between the slave robot and master #2. In addition,

Ti (i = 1,2) denotes the communication delay between the slave robot and master #i . Fig. 1

shows the overall dual-user system including the wave variables. By applying these transfor-

mations, at the masters sides, instead of Fe, we will receive fm1 and fm2 sent from the slave

side. Therefore, it is required to replace Fe by fm1 and fm2 in (3.9) and (3.10), respectively.

In addition, based on the definition of the wave variables in (3.12) and (3.13), the slave

robot will receive ẋs1 and ẋs2 instead of α̇xm1 +α ẋm1 and −α̇xm2 +(1−α)ẋm2 as the signals

sent from master #1 and master #2, respectively. Therefore, αxm1 and (1−α)xm2 in (3.11) are

required to be replaced with the integral of ẋs1 and ẋs2 , respectively.

The presence of α̇ in (3.12) and (3.13), the proposed wave transformation necessitates

bounded first-derivative for the dominance factor α(t), which should be considered in the

dominance-factor design process. Different parameters may contribute to the adjustment of

a dominance factor depending on the application. For example in training a novice for a

RAMIS, the quantified expertise level of the trainee over the task [19] may be included in

the online automatic adjustment of the dominance factor. Therefore, the more expertise the

trainee demonstrates during the task, the more authority could be given to her/him over the

task. Besides the trainee’s expertise level, the expert surgeon still can be given the ability to

overrule the automatic adjustment when necessary. The various design scenarios to adjust the

dominance factor in an online fashion during the task with regard to the application turns the

subject into a fascinating area to study, which is the future focus of this research.

3.4 Stability Analysis

In order to investigate the closed-loop stability, passivity theory is used. A passive teleoperator

can be shown to be stable despite the nonlinear behavior of the operators and the environment
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as long as they are passive, but otherwise arbitrary [20], [21]. Therefore, by the assumption of

passivity of the environment and the operators with respect to the velocity-force input-output

pair, in order to have a passive system, the overall communication-channel specified by the red

dashed line in Fig. 3.1 (including the communication channels Ψ1 and Ψ2, and wave transfor-

mations) and the transformation blocks Ω1 and Ω2 are required to be separately passive. A

general time-varying n-port system with zero initial energy storage is passive if [22], [23]:

ε(t) =
∫ t

0
Pin(τ)dτ =

∫ t

0
xT (τ).y(τ)dτ ≥ 0 (3.14)

where x(τ) ∈ Rn and y(τ) ∈ Rn correspond to the input and output of the network, respectively.

For the overall communication channel, x(τ) and y(τ) are defined as:

x(τ) =
[

d
dτ

(αxm1(τ))
d

dτ
((1−α)xm2(τ)) Fe(τ) Fe(τ)

]
,

y(τ) =
[

fm1(τ) fm2(τ)
d

dτ
xs1(τ)

d
dτ

xs2(τ)

] (3.15)

Consequently, for passivity of the communication channel, it is required to have:

ϖ(t) =
∫

t

0

(
(αxm1)

′
. fm1 +((1−α)xm2)

′
. fm2 + x

′
s1
.Fe

+x
′
s2
.Fe

)
dτ ≥ 0

(3.16)

This condition can be written down in a conservative format, which refers to a sufficient con-

dition for (3.16), as follows:


ϖ1(t) =

∫
t

0

(
(αxm1)

′
. fm1 + x

′
s1
.Fe

)
dτ ≥ 0

ϖ2(t) =
∫

t

0

((
(1−α)xm2

)′
. fm2 + x

′
s1
.Fe

)
dτ ≥ 0

(3.17)

In fact, if ϖ1(t) ≥ 0 and ϖ2(t) ≥ 0, then ϖ = ϖ1(t)+ϖ2(t) ≥ 0. According to Fig. 1, this

conservative condition indicates that passivity of the overall communication channel, shown

by the red dashed line, can be satisfied if the communication channels Ψ1 and Ψ2 (including the

wave transformations) are separately passive.

To investigate passivity of Ψ1 and Ψ2, by a change of the variables δm1 = αxm1 and δm2 =
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(1−α)xm2 , the wave variables fmi and umi(i = 1,2) given by (3.12) and (3.13) can be rewritten

as (3.18) and (3.19). Now, the simplified wave transformations for the communication chan-

nels between each master robot and the slave robot are in the form of the conventional wave

transformation [15], [24]. 

fm1 = b1δ̇m1−
√

2b1vm1

um1 =−vm1 +
√

2b1δ̇m1

˙xs1 =

√
2
b1

us1−
1
b1

fs1

vs1 = us1−
√

2
b1

fs1

(3.18)



fm2 = b2δ̇m2−
√

2b2vm2

um2 =−vm2 +
√

2b2δ̇m2

˙xs2 =

√
2
b2

us2−
1
b2

fs2

vs2 = us2−
√

2
b2

fs2

(3.19)

Therefore, the overall communication channels between the slave robot and the master robots

(Ψ1 and Ψ2 including the wave transformations) are passive. Fig. 3.2 shows the network con-

nections of the simplified wave transformations for the communication channel Ψi (i = 1,2).

In addition to passivity of the overall communication channel shown by the red dashed line

in Fig. 3.1, two transformation blocks Ω1 and Ω2 also need to be passive. To investigate passiv-

ity of these blocks, the inputs and the outputs of the 2-port system Ω1 and Ω2 can be defined as

in (3.20) and (3.21), respectively. Note that, based on the standard passivity theorem [25], [26],

the conditions of passivity can be applied to input/output pairs sent/received through the n-port

network.



3.4. STABILITY ANALYSIS 67

Figure 3.1: The overall scheme of the dual-user system focusing on the signals transmitted,
where Wave T.s refers to the proposed wave transformations; Ψ1 and Ψ2 denote the com-
munication channels between the master robots and the slave robot; vm1(t) = vs1(t − T1),
us1(t) = um1(t−T1), us2(t) = um2(t−T2), vm2(t) = vs2(t−T2), where T1 and T2 are the constant
time delays in Ψ1 and Ψ2 respectively. Ω1 and Ω2 illustrate two sub-systems transforming xΩi

to yΩi, i = 1,2, as elaborated below in (3.20) and (3.21).
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Figure 3.2: Network connection of the simplified wave transformation for communication
channel Ωi (i = 1,2) given in (3.18) and (3.19), which is in the form of the conventional
wave transformation.


xΩ1(τ) =

[
d

dτ
xm1(τ) fm1(τ)

]

yΩ1(τ) =

[
d

dτ
αxm1(τ) fm1(τ)

] (3.20)


xΩ2(τ) =

[
d

dτ
xm2(τ) fm2(τ)

]

yΩ2(τ) =

[
d

dτ
(1−α)xm2(τ) fm2(τ)

] (3.21)

Consequently, for passivity of Ω1 and Ω2, it is required, for i = 1,2, to have:

ΞΩi(t) =
∫ t

0

(
xT

Ωi
(τ).yΩi(τ)

)
dτ ≥ 0 (3.22)

which can be rewritten as:

ΞΩi(t) =
∫ t

0

(
x
′
mi
(τ).
(
αi(τ).xmi(τ)

)′
+ fmi(τ). fmi(τ)

)
dτ ≥ 0 (3.23)

where αi =

 α i = 1

1−α i = 2
.

Therefore, for passivity of Ωi, it is enough to have:
∫ t

0

[
x
′
mi
(τ).
(
αi(τ).xmi(τ)

)′]
dτ ≥ 0,

which can be straightforwardly shown by the assumption of slow variation profile for αi. There-

fore, by the assumption of passivity of the environment and the operators, and also by ensuring

passivity of both Ω1 and Ω2, as well as passivity of the overall communication channel in-
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(a) Customized Quanser haptic wands.

(b) Mitsubishi PA10-7C slave robot.

Figure 3.3: The experimental setup.

cluding the wave transformations, shown by the red dashed line in Fig. 3.1, it follows that the

entire closed-loop system remains passive, and hence stable in the presence of a time-varying

dominance factor and constant time delays.

3.5 Experimental Results

In this section, experimental results are given to demonstrate the validity of the proposed

scheme. The experimental setup, as shown in Fig. 3.3, consists of two customized Quanser

Haptic Wands as the master robots and one Mitsubishi PA10-7C robot with a rod as the op-

eration tool attached at the tip as the slave robot. An ATI Gamma six-DOF force sensor has

been mounted between the wrist of the PA10-7C robot and the rod to measure the environment

force exerted at the tool tip. The User Datagram Protocol is used to transmit data between the

master robots and the slave robot. The manipulators’ controllers and the communication are

implemented at a sampling frequency of 1kHz [27].
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Figure 3.4: Time-varying dominance factor α used in the experiment.

In the conducted experiments, the communication channels had constant time-delays as

follow: T1 = 140ms, T2 = 110ms. In addition, the dominance factor α was designed to change

according to Fig. 3.4. As can be seen, between t = 0s and t = 45s the dominance factor was

set to 0.95 which refers to high authority of operator #1 where operator #2 had authority of

1−α = 0.05. Between t = 45s and t = 55s the dominance factor started to decrease to 0.5

and had the value of 0.5 till t = 95s. Therefore, between t = 55s and t = 95s, α = 1−α = 0.5

which refers to equal authority of both operators over the task. At t = 95s, the dominance

factor α started to decrease and reached to the value 0.05 at t = 105s and kept its value until

t = 140s. Between t = 105s and t = 140s, operator #1 had her lowest authority level from the

beginning of the experiment, while operator #2 had his maximum authority over the task. To

include in-contact motions in the experiment, a silicone tissue phantom was placed at xs > 0.

Fig. 3.5 shows the experimental results.

As can be seen in Fig. 3.5a, between t = 0s and t = 45s, the slave robot is mostly guided

by operator #1 who had the most level of authority. Although operator #2 moved his hand to-

tally differently from operator #1, he was unable to skew the slave robot motion due to his low

authority over the task. It should be noted that, between t = 20s and t = 40s where the slave

robot was in contact with tissue, it did not completely track the position of master #1 although

operator #1 had the full authority. This tracking error is due to existence of the tissue which did

not allow the slave robot to move further along xs ≥ 0. Consequently, as shown in Fig. 3.5b,

the environment force increased and was reflected back to operators’ hands. After t = 45s, the
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Figure 3.5: Experimental results in the presence of time delays.
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dominance factor α started to decrease and reached to 0.5 at t = 55s. As can be seen in Fig.

3.5a, although operator #1 generated larger motions inside the tissue in this time interval, the

slave robot moved less inside the tissue comparing with the first in-contact motion. This is due

to the decrease of operator #1’s authority, α , and increase of operator #2’s, 1−α . Therefore,

with regard to the fact that operator #2 was keeping his master robot at xs = 0, a smaller motion

was generated for the slave robot. Consequently, since the slave robot moved less inside the

tissue, less environment force was generated compared to the previous in-contact motion, as

shown in Fig. 3.5b.

Between t = 55s and t = 95s, both operators had equal authority (α = 1−α = 0.5) and

consequently they both had equal impacts on the slave robot. As shown in Fig. 3.5a, the slave

robot tracked the α-based combination of the master robots position, which is their average in

that time interval. At t = 95s, the dominance factor α started to decrease and reached to 0.05 at

t = 105s and kept its value till t = 140s. Fig. 3.5a, shows that the authority of operator #1 over

the slave robot started to decrease, where after t = 105s her authority over the task is totally

removed. Consequently, at the last phase of the experiment, the slave robot was manipulated

by operator #2 regardless of the motions generated by operator #1.

During the experiment, whenever the slave robot was guided inside the tissue, the envi-

ronment force increased and was reflected back to both operators’ hands (Fig. 3.5b). Conse-

quently, both operators experienced good transparency irrespective of their authority level over

the task.

It is noteworthy that, the variation profile of the dominance factor was designed just to

evaluate the controller performance at different levels of authority. In an actual task, the domi-

nance factor should be adjusted systematically with regard to various parameters specific to the

task. For example, in a training application, the dominance factor adjustment should include

quantified expertise levels of the trainee over the task in an online fashion. A systematic design

of the profile variation for the dominance factor with regard to the application will be the focus

of our future work.
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3.6 Conclusions

In order to have a mechanism for transferring authority from a therapist (expert surgeon) to a

patient (trainee) and vice versa, the dominance factor needs to be changed online during the

procedure. The adjustment mechanism of the dominance factor could include various parame-

ters such as the expertise level of the trainee. This chapter addressed the problem of including

a time-varying dominance factor in a dual-user system. A wave-variable-based controller was

presented to guarantee system stability in the presence of the time-varying dominance factor,

while the communication channels had constant time delays. By applying passivity theory, it

was shown that the wave-transformation-based approach makes the communication channels

passive, which ensures stability of the dual-user system. Validity of the controller was demon-

strated by experimental results.

Similar to other passivity-based approaches, the proposed wave-variable methodology is

primarily developed for velocity-force domain, due to the well-known passivity assumption

for the human arm in this domain. However, the framework is straightforwardly extendable

to position-force domain, provided that the human-arm terminal also remains passive in this

domain. Unlike velocity-force domain passivity of the human arm, position-force domain pas-

sivity has not been studied in the literature. Therefore, the next chapter investigates passivity of

the human arm in position-force domain through mathematical analysis, experimentation and

statistical user studies.
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Chapter 4

Position-Force Domain Passivity of

Human Arm in Telerobotics Systems

The material presented in this chapter has been submitted for publication in the International

Journal of Robotics Research (IJRR): Special Issue on Human-Robot Interaction, 2016.

4.1 Introduction

Teleoperation extends an operator’s sensing and manipulation capabilities to a remote location.

It facilitates off-site robotic performance of a desired task through a user console, and ensures

cost-effectiveness, safety and accessibility. Teleoperation systems have been broadly used in

a wide range of applications from mining to space and underwater exploration to robotics-

assisted minimally invasive surgery [1], [2], robotic surgical training [3, 4], and robotics-

assisted rehabilitation therapy [5], [6], [7].

A teleoperation system consists of three main components: 1) A slave robot, performing a

desired task on a designated environment, 2) a master console manipulated by an operator, re-

motely controlling the slave console; and 3) a communication channel to transmit data between

the master and the slave [8]. Fig. 4.1 shows the overall scheme of a single-master/single-slave

teleoperation system, in which teleoperator refers to the set of communication channels in-

tegrated with the master and the slave robots. Long-distance communication can introduce

time delays into the system, which can cause instability [9]. To ensure robust stability of

77
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EnvironmentOperator
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Figure 4.1: The overall scheme of a teleoperation system. The teleoperator includes the com-
munication channel as well as the master and the slave robots. U = [u1,u2] and Y = [y1,y2]
refer to the input and output of the teleoperator, respectively.

the system against communication delays in order to guarantee safe human-robot interaction,

passivity-based control methodologies have been developed building on the following passiv-

ity theorems:

Theorem I: A system is passive if it consists solely of passive elements [9].

Definition I: A general time-varying n-port network with zero initial energy storage is passive

if [10], [11]:

ε(t) =
∫ t

0
UT (τ) . Y (τ) dτ ≥ 0 (4.1)

where U ∈ Rn and Y ∈ Rn correspond to the input and output of the network, respectively.

Based on Theorem I and by the assumption of passivity of the operator and the environ-

ment [12], the only element to make passive is the teleoperator (which is equivalent to making

the communication channel passive), for which several methodologies have been introduced

in the literature. These approaches can be classified into two main categories: 1) Time Do-

main Passivity Controller (TDPC) [13], [14], and 2) Frequency Domain Passivity Controller

(FDPC), which includes Scattering Matrix [9] and Wave Variables [15] approaches.

According to Definition I, passivity of a general system can be analyzed based on the input and

output of the system, regardless of their nature. In the teleoperation systems literature, all of

the existing approaches have addressed the passivity of the communication channel (and there-

fore, the passivity of the teleoperator) by considering the input-output pair to be velocity and

force signals. This has imposed the limitation of having to transmit the velocity signal from

the master side to the slave side, rather than transmitting the position signal. Transmission of

the velocity signal causes position-error accumulation and position drift, which considerably

degrades the position tracking performance of the system [13].

Several techniques have been proposed in the literature in order to address the position drift

caused by the FDPCs [16], [17], [18], and a few methods were recently proposed to compensate
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for the position drift in TDPC systems [13], [19]. However, these approaches, which mostly

modify the conventional passivity controllers, have been mainly developed for addressing the

position drift in bilateral Single-Master/Single-Slave (SM/SS) teleoperation systems, and are

not straightforwardly applicable to a Multi-Master/Single-Slave (MM/SS) framework, due to

the topographical complexities of MM/SS platforms. MM/SS systems have been shown to

be useful in supervised robotics-assisted surgical training [3], [4] and rehabilitation [20], [21],

where an expert surgeon/therapist can be directly involved in the procedure based on haptic

interaction with a trainee/patient. According to a recent study [22], haptics-based interaction

with a partner when learning a motor task considerably enhances motor skills compared to

when practicing the task alone for the same duration.

Considering the mathematics behind most of the conventional passivity controllers pro-

posed in the literature for SM/SS systems, which is fundamentally based on (4.1), the same

controller that makes the communication channel passive for the input-output pair of force

and velocity (i.e., velocity-force domain) can also make the communication channel passive

for the input-output pair of force and position (i.e., position-force domain). This immediately

addresses the position-drift issue and may be straightforward to apply to more complex frame-

work such as MM/SS. Although using a Position-force Domain (PD) controller to make the

communication channel passive is possible through the existing passivity-based approaches,

according to Fig. 4.1, it necessitates the connection terminal of the operator-teleoperator to

also remain passive in the position-force domain in order to comply with Theorem I. For this

purpose, passivity of the operator terminal in the position-force domain, however, is a criti-

cal question to be investigated. In fact, passivity of the operator in the velocity-force domain

seems to be the main reason behind the development of all the passivity-based controllers to

date in the Velocity-force Domain (VD). While there have been a number of studies on the

numerical measurement of the endpoint impedance of the arm [23], [24], [25], there are very

few studies on PD Passivity (PDP) of the operator. In [26], PD passivity of the human arm

was assessed through numerical measurement of the endpoint impedance of the arm. The

assessment has been performed over a limited range of frequency and does not discuss the

frequency-dependence of PD passivity.

Therefore, in order to facilitate PDP controllers for teleoperation systems regardless of the
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complexity of the framework and the number of master and slave robots involved, the main

question to answer is whether the operator is passive in the position-force domain as well;

and if not, what measures should be taken in order to make the operator termination passive.

Consequently, in this chapter, the PDP of the human operator has been investigated through

mathematical and experimental analyses as well as statistical user studies involving 12 sub-

jects and 48 trials. It has been shown that, unlike in VD, the operator will not remain passive

in PD for all frequency ranges; This implies the need for appropriate control strategies to make

the human operator termination passive in PD. For future design of suitable controllers, sta-

tistical analyses are conducted to investigate the possible correlation between the levels of PD

passivity of the left and right arms of the human participants, and the levels of passivity of the

subjects’ arms and their physical characteristics, e.g., weight, height, and body mass index.

Possible control strategies through which the passivity of the operator termination can be en-

sured are also discussed.

The rest of the chapter is organized as follows: Section 4.2 analyzes passivity of the oper-

ators in PD, mathematically. Section 4.3 gives experimental results in support of the mathe-

matical analysis. Section 4.4 discusses the user trials on humans, and statistically analyzes PD

passivity as well as correlations between the subjects’ physical features and passivity levels of

their arms. Section 4.5 suggests possible control approaches to ensure the PDP of the operator

termination, and Section 4.6 concludes the chapter.

4.2 Mathematical Analysis

The dynamics of the human arm can be modeled by a second-order system [27]:

Mhẍh(t)+Bhẋh(t)+Kh(xh(t)− xhe) = fh(t) (4.2)

Here, fh refers to the force applied to the arm endpoint, xh is the hand position, and xhe is the

hand equilibrium position commanded by the central nervous system. In addition, Mh, Bh and

Kh denote the constant real-valued inertia, damping and stiffness of the arm.
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By the change of variables x = xh− xh0 , (4.2) is transformed to:

Mhẍ(t)+Bhẋ(t)+Khx(t) = fh(t) (4.3)

where x refers to the displacement with respect to the equilibrium point xh0 . Taking the Laplace

transform of (4.3) yields

(Mhs2 +Bhs+Kh)X(s) = Fh(s) (4.4)

where Fh(s) =L { fh(t)} and X(s) =L {x(t)}, in which L and s indicate the Laplace operator

and the Laplace variable, respectively.

Continuing the analysis in one Degree-Of-Freedom (DOF) in the interest of simplicity and

without loss of generality, the admittances of the human arm in the position-force domain,

YP(s), and in the velocity-force domain, YV (s) can be written as follows:

YP(s) =
X(s)
Fh(s)

=
1

Mhs2 +Bhs+Kh
(4.5)

YV (s) =
V (s)
Fh(s)

=
s

Mhs2 +Bh +Kh
(4.6)

where V (s) = L {v(t)} and v(t) = ẋ(t).

In order for a transfer function G(s) to represent a passive system, G(s) must be Positive

Real (PR) [28] as defined below:

Theorem II: A rational transfer function G(s) is PR if and only if [29]:

1. G(s) does not have poles in the open right half plane,

2. All poles of G(s) on the imaginary axis are simple, and the associated residues are real

and non-negative,

3. G( jω)+G(− jω)≥ 0, for all ω ≥ 0.

With Mh, Bh and Kh having positive values, both YV (s) and YP(s) satisfy the first two PR con-

ditions. Investigating the third condition for YV (s) in order to investigate the positive-realness
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and therefore the passivity of the human arm in the velocity-force domain yields:

YV ( jω)+YV (− jω) =
2Bhω2

(Kh−Mhω2)2 +(Bhω)2 ≥ 0 (4.7)

which is always true, as Bh refers to a positive-valued damping term. Therefore, YV (s) satisfies

the third PR condition as well, which implies the passivity of the human arm with respect to

the force-velocity input-output pair. This is completely in agreement with the literature, where

the human arm has been considered as a passive system for force-velocity interactions [12].

Investigating the same condition for YP(s) leads to

YP( jω)+YP(− jω) =
2(Kh−Mhω2)

(Kh−Mhω2)2 +(Bhω)2 ≥ 0 (4.8)

which is dependent not only on Kh and Mh, but also on the frequency w, and is not true for

ω > ωn =

√
Kh

Mh
. Therefore, unlike in the velocity-force domain, the human arm does not

remain passive in the position-force domain for all frequency ranges.

Remark: Giving the analysis in one DOF does not affect generality, as the above serves as

an counterexample to show the non-passivity of the operator in the position-force domain. The

same applies to the second-order model considered for the human arm. Although this model

is a simplified model of the human arm’s neuro-musculoskeletal structure as detailed in [27],

it can still show the position-force domain non-passivity of the human arm as opposed to the

velocity-force domain, even for the simplest model.

What can be inferred from (4.8) is that increased stiffness of the arm can contribute to the

passivity of the arm in the position-force domain, while the arm’s inertia has an active effect.

Moreover, the higher the motion frequency, the higher the possibility of non-passivity. In order

to investigate these hypotheses, experiments were conducted as described in the following

section.
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4.3 Experimental Analysis

In order to investigate the passivating or non-passivating effect of inertia, stiffness and motion

frequency, experiments were conducted. The experimental setup, shown in Fig. 4.2, con-

sists of an adjustable custom-built Mass-Spring Array (MSA) connected to a 2-DOF planar

Quanser rehabilitation robot (Quanser Consulting Inc., Markham, ON, Canada). The capstan

drive mechanism of the Quanser rehabilitation robot makes it back-drivable with low friction

and inertia. The robot is capable of exerting forces up to 50 N throughout its semicircular

workspace, and the motors encoders provide a resolution of better than 0.002 mm in Carte-

sian space [26]. The modular structure of the MSA allows us to add external mass and spring

elements to examine the effect of various inertia/stiffness values. During the experiments con-

ducted in three scenarios, the MSA’s end-point was perturbed by the robot using the following

Persistently Exciting (PE) perturbation:

P = 0.0025.∑4
k=1 ∑

3
j=1 sin(

ωit
k
) (4.9)

where ω1 = 1.2π , ω2 = 2π , and ω3 = 3π
rad

s
. The position of the MSA’s endpoint, xMSA, and

the force applied to the MSA, fMSA, were measured in 2 Cartesian directions along X and Y

axes. In order to measure fMSA, an ATI Gamma force sensor (ATI Industrial Automation Inc.,

Apex, NC, USA) was placed between the robot’s End-Effector (EE) and the MSA. The force

sensor has a resolution of 0.0125 N and maximum measurable force of 65 N along X-Y axes.

Since the robot’s EE was in contact with the MSA’s end-point, the position and velocity of

the robot’s EE captured by applying forward kinematics to the robot’s joint positions reading

served as those of the MSA’s end-point (xMSA and vMSA).

The PD passivity of the MSA system in each experimental trial was investigated using

Definition I with respect to force-position input-output pair by checking if:

εPD(t) =
∫ t

0
xT

MSA(τ) . fMSA(τ) dτ ≥ 0 (4.10)

The expression “passivate” has been used as a synonym for “make passive”.
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Note that MSA was relaxed at t = 0, so the initial energy was zero, and therefore the passivity

condition given in (4.10) was checked with the right-hand side being zero.

4.3.1 Experimental Scenario I

The first experiment was conducted for a series of mass values, namely, m1 = m0, m2 = m0 +

230gr, m3 =m0+460gr, and m4 =m0+690gr by adding masses to the system, with no springs

added; m0 > 0 refers to the mass of the handle between the force sensor and the MSA before

adding any external mass to the MSA. Fig. 4.3 shows εPD calculated for the mass values. As

can be seen in this figure, εPD for all mi (i = 1,2,3,4) has negative and decreasing value for all

t ≥ 0, which indicates non-passivity of the mass. As can also be seen in this figure, the heavier

the mass, the more non-passive behavior it shows, which is in agreement with the mathematical

analysis discussed in the previous section.

4.3.2 Experimental Scenario II

The second experiment investigates the effect of stiffness on passivity. For this purpose, stiff-

ness elements were added to the same mass values mi (i = 1,2,3,4) as in previous scenario by

adding a set of springs (k1 = 50, k2 = 175, k3 = 190, k4 = 230
N
m

) to the MSA. Fig. 4.4 shows

Springs

Mass

Quanser 

Rehab. 

Robot

Force Sensor

Figure 4.2: The mass-spring array system connected to the 2-DOF planar Quanser rehabilita-
tion robot.
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Figure 4.3: Experimental results: effect of inertia on εPD

εPD calculated for the sets of mass-spring elements. Comparing Fig. 4.4 with Fig. 4.3, the pas-

sivating effect of stiffness components as opposed to mass components can be seen. Although

mi (i = 1,2,3,4) moves the system towards non-passivity (as shown in Fig. 4.3), adding stiff-

ness can reverse the trend and make the system passive. This result is also in agreement with

the PD passivity condition derived in the previous section.

4.3.3 Experimental Scenario III

Considering the passivity condition given in (4.8), in addition to mass and stiffness, motion

frequency can also play an essential role in passivity of the arm in PD. Therefore, a third

experiment is designed to examine the effect of the perturbation’s frequency range. For this

purpose, experimental scenario I has been repeated for the same circumstances, including the

mass values, except for the frequency range of the perturbation signal. In this experiment, the

perturbation given in (4.9) has been applied for ω1 = 2π , ω2 = 6π , and ω3 = 10π
rad

s
. Fig.

4.5 shows εPD calculated for the mass elements perturbed at higher frequencies. Comparing

Figs. 4.3 and 4.5, it can be seen that, although the mass elements have shown non-passive

behavior in both frequency ranges (experimental scenario I and III), the rate of non-passivity

was considerably higher for the higher-frequency perturbation (experimental scenario III). In
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60 seconds, εPD has reached from 0 to -0.045 for the low-frequency perturbation (Fig. 4.3),

while during the same time εPD for the high-frequency perturbation has dropped from 0 to

-1.54 (Fig. 4.3).

The experimental results in this section support the mathematical analysis given in Section

4.2. As verified in both Sections 4.2 and 4.3, stiffness can contribute towards passivity in

PD, while mass and increased frequency work against passivity of the arm in the position-

force domain. The analyses given in Sections 4.2 and 4.3 build upon the second-order model

approximation for the human arm. Although the model is very popular in the literature and has

been used to a large extent, there still might be a question of accuracy due to the unmodeled

dynamics. To address concerns about the thoroughness of the model, a series of user trials has

also been conducted as discussed in the following section.

4.4 User Trials and Statistical Analysis

In order to analyze the PD passivity of the human arm without forgoing the analysis accuracy

as a result of possible model reduction/uncertainty in the previous section, user trials were

conducted.
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Figure 4.4: Experimental results: effect of stiffness on εPD
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Figure 4.5: Experimental results: effect of motion frequency on εPD

4.4.1 Subjects

Twelve healthy subjects (5 women, 7 men; mean age, 29 years; age range, 26-40 years) were

recruited. Data was collected for both left and right arms of the subjects, giving us 24 sets

of data. Two participants were left-handed and 10 right-handed, all with no history of motor

impairment. Demographics of all participants are presented in Table 4.1. All participants gave

written informed consent to participate in the study. The study was approved by the Research

Ethics Board (REB) at the University of Alberta.

4.4.2 Setup and Procedure

As illustrated in Fig. 4.6, each subject sat in front of a Quanser rehabilitation robot and grasped

the robot’s handle with their hand. They were asked to relax their arm and avoid voluntary

intervention as the robot applied perturbations to their arm. All data was collected at test loca-

tions in which the subject’s forearm formed a right angle with their upper-arm in the interest of

consistency. Each trial was repeated four times for each subject, collecting force and position

data on both right and left arms with two different frequency ranges of perturbations applied to

each side for two minutes. The following PE position perturbation signals were applied to the
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Table 4.1: Demographics for all participants

Subject
Number

Sex Age (yr) Handedness

1 F 27 Right
2 M 27 Right
3 F 30 Right
4 M 28 Right
5 M 27 Left
6 F 28 Right
7 F 26 Left
8 M 28 Right
9 M 27 Right
10 M 40 Right
11 M 29 Right
12 F 26 Right

subject’s hand in X and Y directions:

PX = 0.015.∑4
k=1 ∑

3
j=1 sin(

ωit
k
)sin(θ t)

PY = 0.015.∑4
k=1 ∑

3
j=1 sin(

ωit
k
)cos(θ t)

(4.11)

In (4.11), ω1, ω2, ω3, θ are respectively set to 0, π , 2π and 0.55π
rad

s
for the lower range

of perturbation frequencies, and to 3π , 6π , 12π and 0.35π
rad

s
for the higher range of pertur-

bation frequencies. The low and high ranges of perturbation frequencies were selected based

on a threshold calculated according to the natural frequency of a typical human arm. For this

purpose, a stiffness of Kh = 100
N.s2

m
and a mass of Mh = 1Kg [26] were considered in (4.2)

leading to a natural frequency as ωn =

√
Kh

Mh
= 3.2π

rad
s

. This shows natural frequency based

on the mathematics derived in Section 4.2, may serve as the passivity/non-passivity threshold

of the arm. The low-frequency signal was generated such that, while having a rich frequency

content, its largest frequency remained below 3.2π
rad

s
. The high-frequency perturbation sig-

nal was also generated such that it contained higher-than-threshold frequencies, while having
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Figure 4.6: The experimental setup used in the user trials.

a rich frequency content.

Figs. 4.7 and 4.8 illustrate a 2-Dimentional (2D) X −Y representation of the perturbation

signals with low and high frequencies, respectively. Note that the two-dimensional perturbation

would suffice for the analysis of the relative contributions of the shoulder, elbow, and biarticu-

lar muscles to the overall limb passivity/activity, without entailing the experimental complexity

of a full multi-dimensional evaluation [26] and [23].

During the trials, the forces applied by the subject’s hand to the robot’s end-effector was

measured using the ATI Gamma force sensor located at the robot’s EE. The position of the

robot’s EE also served as the position of the subject’s hand endpoint, as the subject were grasp-

ing the robot’s handle. PD passivity of the subject’s arm for each experimental trial was in-

vestigated using the general passivity criterion given in (4.1) with respect to force-position

input-output pair by calculating εPD(t) =
∫ t

0 xT
h (τ) . fh(τ) dτ . It should be noted that using

the general input-output-based criterion to investigate the system passivity eliminates any ne-

cessity for estimation of the human arm impedance parameters (mass, damping and inertia).
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Figure 4.7: Low-frequency 2D X-Y position perturbation
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Figure 4.8: High-frequency 2D X-Y position perturbation

Due to its model-free nature, the input-output approach does not suffer from possible inaccu-

racies/uncertainties of various arm models.
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4.4.3 Results

Figs. 4.9-4.12 illustrate εPD calculated for the subject during the following four sets of trials,

respectively; 1) LH-LF: Left Hand, Low-Frequency perturbation; 2) RH-LF: Right Hand, Low-

Frequency perturbation; 3) LH-HF: Left Hand, High-Frequency perturbation; and 4) RH-HF:

Right Hand, High-Frequency perturbation.

Passivity/Non-passivity in Low-Frequency Trials

As it can be seen in Figs. 4.9 and 4.10, εPD remained positive for both right and left arms of the

subjects during the low-frequency trials. This indicates passivity of the subjects’ arms during

the low-frequency trials. However, it can also be seen that subject #10 had a fluctuating εPD

with growing oscillations, which could have caused negative εPD if the trials had lasted longer.

Therefore, despite its positive εPD, we consider the behavior of subject #10 as non-passive. Os-

cillations can also be seen in the εPD calculated for subject #5 in the LH-LF trial and subjects

#7 and #8 in the RH-LF trial. However, the damped nature of those oscillations eliminates the

possibility of εPD getting non-passive in the long run.

In order to investigate the statistical significance of the result (passivity of the arm in low-

frequency ranges), statistical analysis was conducted to illustrate that the high number of pas-

sive behaviors during RH-LF and LH-LF did not occur by chance. In this case, an occurrence

possibility of 0.5 indicates equal chance of passivity/non-passivity for the subjects during the

trials. Based on the high number of passive behaviors during RH-LF and LH-LF, we hypothe-

size the following:

Hypothesis: Low-frequency perturbations result in passive behavior for the human arm.

To evaluate this hypothesis, a binomial test was carried out to investigate whether the real

probability of passive behavior during low-frequency perturbations is greater than 0.5. The

binomial test statistically compared the number of successes (the number of passive behaviors

during RH-LF and LH-LF trials, i.e., 22), observed in the total number of trials, i.e., 24, with a

hypothesized probability of success (that is hypothesized to be greater than 0.5). Based on the

aforementioned alternative hypothesis, the null hypothesis is defined as follows:

Null hypothesis: The real probability of passive behaviors in RH-LF and LH-LF trials is

not greater than 0.5.
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Using the binomial test, the null hypothesis is rejected with p-value equal to 1.794e− 05,

which is well below 0.05, indicating that the true possibility of passive behavior during low-

frequency perturbation is significantly greater than 0.5 (the probability of passivity as given

by the binomial test is 0.9166). This implies passive behavior of the participants’ arms in the

presence of low-frequency perturbations.

Passivity/Non-passivity in High-Frequency Trials

Figs. 4.11 and 4.12 illustrate εPD calculated for left and right arms of the subjects during the

high-frequency trials, i.e., RH and LH, respectively. As can be seen in these figures, εPD had

a negative decreasing trend during all the high-frequency trials, except for the right arm of

subject #9. This negative εPD along with its decreasing trend indicates non-passivity of the

subjects. This results is in agreement with the mathematics derived in Section 4.2, which asso-

ciates the higher chance of non-passivity to the higher range of movement frequencies.

The interesting point about the trend of εPD for subject #9 in the RH trial (Fig. 4.12) is that,

although it has shown a passive behavior, the level of passivity has decreased considerably

compared to that in the RL trial (Fig. 4.10). This also illustrates the non-passivating effect of

the high-frequency perturbation on subject #9, although the perturbation frequency range has

yet been low enough for his right arm to behave passively.

In order to investigate the statistical significance of the result (non-passivity of the arm in

high-frequency ranges), statistical analysis was conducted to indicate that the high number of

non-passive behaviors during RH and LH did not occur by chance. Similar to the previous

case, an occurrence possibility of 0.5 indicates equal chance of passivity/non-passivity for the

subjects, based on which the hypothesis is defined, as follows:

Hypothesis: High-frequency perturbations can result in non-passive behavior for the hu-

man arm.

A binomial test was carried out to evaluate this hypothesis by investigating whether the real

probability of non-passive behavior during high-frequency perturbations is greater than 0.5.

According to the above alternative hypothesis, the null hypothesis is defined as follows:

Null hypothesis: The real probability of non-passivity during the high-frequency pertur-

bations is not greater than 0.5.
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Figure 4.9: εPD for the left hand of all of the subjects recorded during low-frequency perturba-
tion

Based on the results in Figs. 4.11 and 4.12, the number of successes (that is the number

of non-passive behaviors, in this case) was set to 23. The total number of trials was set to 24

and the hypothesized probability of success was set to be greater than 0.5. Using the bino-

mial test, the null hypothesis is rejected with p-value equal to 1.49e−06, which is well below

0.05, indicating that the true possibility of non-passivity during high-frequency perturbation is

significantly greater than 0.5 (The probability of non-passivity as given by the binomial test is

0.9583). This implies that the non-passive behavior of the participants’ arms has not happened

by chance, but as the result of the high-frequency perturbations.

Passivity/Non-passivity Correlation Between Left and Right Arms

Figs. 4.13 and 4.14 compare εPD for left and right arms of two of the subjects in low-frequency

and high-frequency trials, respectively. In both frequency ranges, correlations can be seen be-

tween the level of passivity/non-passivity of each subject’s left arm and right arm. The level

of correlation from one person to another could vary based on the mechanical properties of the

person’s arms such as muscle density and strength. By looking at the results in Figs. 4.9-4.12, it

can be seen that not all of the subjects have shown similar passivity/non-passivity behavior be-

tween their left and right arms. In order to investigate the possible correlation between their left
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Figure 4.10: εPD for the right hand of all of the subjects recorded during low-frequency pertur-
bation
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Figure 4.11: εPD for the left hand of all of the subjects recorded during high-frequency pertur-
bation

and right arms, statistical analysis was carried out. For this purpose, the slope of εPD calculated

for the subjects’ arms was used as a metric to quantify the degree of passivity/non-passivity in

subject’s arms. In order to calculate the average slope of εPD for each subjects’ arms, the lin-

ear least-squares curve-fitting method was applied. The slope of the fitted straight-line was
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Figure 4.12: εPD for the right hand of all of the subjects recorded during high-frequency per-
turbation

Table 4.2: Mean-value and standard deviation of the quantified passivity/non-passivity levels

LH-LF RH-LF LH-HF RH-HF

Mean 0.0018 0.0017 -0.0040 -0.0039

Standard Deviation 0.0010 0.0009 0.0026 0.0030

recorded for each εPD as a quantified passivity/non-passivity metric. Fig. 4.15 illustrates the

quantified passivity/non-passivity degree for the subjects during the four trials.

Fig. 4.16 shows the distribution of the quantified data for all the subjects during the four

sets of trials (LH-LF, RH-LF, LH-HF, RH-HF). The mean-value and standard deviation of the

quantified passivity/non-passivity levels for all the trials are given in Table 4.2. Fig. 4.17 also

compares the distributions for the Left Hands (LH) and Right Hands (RH), disregarding the

frequency range of the perturbations. Both Figs. 4.16 and 4.17 indicate a reasonable correla-

tion between the passivity/non-passivity level of the subjects’ left and right arms.

In order to statistically assess the degree of correlation between the left and right arms, the

Pearson product-moment Correlation Coefficient (PCC) was calculated. The PCC provides a

measure of the linear correlation between two sets of data, where PCC = 1 refers to a total
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Figure 4.13: εPD comparison between the left and right hands for subjects #1 and #5 during
the low-frequency perturbation.
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Figure 4.14: εPD comparison between the left and right hands for subjects #1 and #5 during
the high-frequency perturbation.

positive correlation while PCC = 0 indicates zero correlation between the data sets. Applying

the Pearson test to the data for the subjects’ left and right arms, the PCC was calculated to be

0.8240 with a p-value equal to 7.4564e−07 which is well below 0.05, indicating significantly
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high levels of correlation between the subjects’ left and right arms. It should be noted that

the data used in this PCC-based evaluation passed the normality test using the Lilliefors and

Jarque-Bera methods.

Remark: The level of correlation possibly associates with the level of similarities between

the mechanical characteristics of the person’s arms, despite existing muscle-strength variabil-

ity as a result of the person’s handedness. This association could be helpful in generating a

map, based on which the range of passivity/non-passivity degree for one arm of a person can

be specified based on that of his/her other arm. Such a correlation map can be specially helpful

in designing position-force domain passivity controllers for applications involving bi-manual

activities, e.g., in teleoperated robotics surgery. Nevertheless, this would require data collec-

tion from an extensive number of subjects in order to generate an accurate correlation map

between the left and right arms, which will be part of the future work.

Correlation Between Passivity/Non-Passivity Levels of the Arm and Physical Features of

the Body

An interesting question to answer would be whether the level of passivity of a person’s arm can

be associated with his/her physical features, e.g. weight and height. If so, a correlation map

can be possibly generated, based on which the level of passivity of a person’s arm is estimated

according to the person’s physical features.

In order to address this question, statistical analyses were conducted; and the level of cor-

relation associated with the subjects’ weight, height, arm length, and body mass index were

investigated. Body Mass Index (BMI) is a quantified value derived based on one’s weight

and height (BIM =
Weightkg

Height2
m

), indicating the amount of his/her tissue mass (muscle vs. fat).

For this purpose, the Pearson correlation test was applied and the results are as follows: no

significant correlation was observed between the subjects’ height and the passivity levels of

their arms during the low-frequency trials (p-value= 0.0744). A significant direct correlation

of 0.7393 was, however, observed between the passivity level of their arms and their body

weights (p-value= 0.0060). A significant direct correlation of 0.7563 was also observed be-

tween the subjects’ BMI and the passivity level of their arms (p-value= 0.0044). This sounds

reasonable, as the amount of tissue mass (muscle vs. fat) directly contributes to the mass and
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Figure 4.15: Passivity/Non-passivity degrees for all the subjects calculated from the least-
squared curves fitted to their εPD.

stiffness levels of an individual’s arm.

Another effective factor could be the individual’s arm length, which can affect the end-point

impedance of his/her arm with respect to his/her arm impedances at the joints level. Therefore,

the combination of the subjects’ arm length (LArm) and their BMI was also tested (LArm ∗BMI),

which resulted in significant direct correlation level of 0.7920 (p-value= 0.0021). Among all

of the above, the latter metric provides the highest correlation, which can be used for the pur-

pose of generating a correlation map that associates the physical features of an individual to

the passivity range of his/her arm. In order to generate an accurate association/correlation map,

data collection and analysis should be carried out for a large number of subjects, which will be

a part of the future work.

4.5 Discussion

As elaborated earlier, the passivity of the human arm in the position-force domain, unlike in the

velocity-force domain, is frequency-dependent and the operator arm may not remain passive
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for the high frequency ranges. Therefore, in order to develop position-force domain passivity

controllers for MM/SS systems, PD passivity of the operator should be also satisfied in addition

to the PD passivity of the communication channel. PD passivity of the communication channel

can be realized through the conventional passivity controllers in the literature by some change

of variables [30]. The important issue, however, will be making the operator in the position-

force domain passive for all frequency ranges. Development of an appropriate PD passivity

controller for the operator in detail will be part of our future work. However, some of the

possible solutions to this problem are briefly discussed below:

1. Filtering out frequencies above the natural frequency of the operator’s arm. Considering

the fact that the frequency range characteristics of human motion is normally below their

natural frequency, the higher frequency ranges of the signals flowing into the system

may contain no significant contents. This, though, should be specifically discussed in

the context of the application.

2. Virtually increasing the natural frequency of the operator’s arm by adding positive stiff-

ness (as a passivating element) into the system through the controller. This approach

would be the dual of adding a damping term into the system in the conventional velocity-

force domain passivity controllers. The injection of the positive stiffness will shift the

εPD to a higher level and in fact act as an initial positive bias term for the εPD. Therefore,

the combination of the virtual stiffness and the operator’s arm can tolerate higher ranges

of motion frequencies compared to the operator’s arm alone. Although this approach can

improve the high-frequency passivity of the system, it may degrade system performance

in low-frequency ranges.

3. Canceling out partially the effect of the mass of the operator’s arm (the non-passivating

element) by virtually injecting a negative mass into the system. This will decrease the

total mass value of the combination of the operator’s arm and the negative mass, increas-

ing the natural frequency of the system and therefore shifting the boundary of passivity

to higher frequency ranges. Unlike the virtual stiffness, the virtual mass will have a

frequency-dependent effect on system performance, and will have a less degrading im-

pact in the low-frequency range compared to that in high-frequency range.
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Remark: The combination of the three suggested control approaches may be integrated into a

PD passivity-observer/passivity-controller strategy, through which the passivity of the human

arm terminal in position-force domain may be guaranteed. To what extent these strategies are

helpful along with other possible control strategies are will be investigated in future work.
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Figure 4.16: The distribution of the passivity/non-passivity degrees for all the subjects during
the four trials: LH-LF, RH-LF, LH-HF, RH-HF.
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Figure 4.17: The distribution of the passivity/non-passivity degrees for the left hand (LH) and
right hand (RH) of the subjects.
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4.6 Conclusions

In this chapter, the position-force domain passivity of the human arm was investigated in order

to facilitate the development of passivity-based controllers in the position-force domain for

teleoperation systems. It was shown through mathematical analysis and experimental results

that, unlike the velocity-force domain, the passivity of the human arm in position-force domain

is frequency-dependent, and the operator does not remain passive in the position-force domain

for all ranges of frequencies. User studies were conducted in support of the proposed hypoth-

esis (frequency-dependent nature of the position-force domain passivity of the human arm),

for the purpose of which 12 subjects were recruited. Each subject participated in four trials;

data was collected for both their left and right arms for two different ranges of perturbation fre-

quencies. Statistical analysis was performed on the data for 48 trials to validate the proposed

hypothesis. Statistical analysis was also conducted to study the correlation between 1) the lev-

els of passivity of the left and the right arms of the subjects; and 2) the level of correlation of

the passivity of the subjects’ arms and their physical characteristics, e.g., weight, height, and

body mass index.

The classic dual-user architecture still has some limitations that make it inadequate for

proper motor function (skills) development in RAMT and RAMIS. Consequently, in the next

two chapters, the design and implementation of specific supervised trilateral frameworks cus-

tomized according to the requirements of each application will be discussed.
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Chapter 5

Robotics-Assisted Mirror Rehabilitation

Therapy: A Therapist-in-the-Loop

Assist-as-Needed Architecture

The material presented in this chapter was published in the IEEE/ASME Transactions on

Mechatronics, vol. 21, no. 14, pp. 1954 - 1965, 2016.

5.1 INTRODUCTION

Annually 15 million people worldwide suffer from stroke. With a survival rate of about

70%, stroke is known to be a major leading cause of long-term disabilities and severe im-

pairments [1, 2]. The significant number of patients recovering from stroke, in addition to

other neurological disorders, has led to a growing need for rehabilitation services to induce

neuroplasticity in patients. Neuroplasticity is referred to as the reorganization ability of the

brain by developing new neural connections through sensory input, experience, and learning,

which allows the brain’s neurons to compensate for injury and disease [3]. Achieving brain

neuroplasticity from rehabilitation therapy is a labor-intensive process, which necessitates not

only a therapist’s expertise and knowledge, but also reproducible movements and stereotyped

c©[2016] IEEE. Reprinted, with permission, from [M. Shahbazi, S.F. Atashzar, M. Tavakoli and R.V. Pa-
tel, “Robotics-Assisted Mirror Rehabilitation Therapy: A Therapist-in-the-Loop Assist-as-Needed Architecture”,
IEEE/ASME Transactions on Mechatronics, vol. 21, no. 14, pp. 1954 - 1965, 2016].
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exercises. This has led to a paradigm shift towards robotics-assisted rehabilitation therapy,

offering novel recovery-assessment approaches along with patient-targeted rehabilitation ther-

apies [4, 5].

Robotics-assisted mirror therapy, a recent form of robotic rehabilitation, has received a

great deal of attention during the past decade [6] . This type of therapy is particularly useful

for patients with hemiparesis [7], the most common movement impairment. Hemiparesis refers

to one-sided weakness and affects about 80% of stroke survivors [8]. Effectiveness of mirror

therapy has been also shown for patients suffering from unilateral neglect after stroke [9]. Uni-

lateral neglect, also known as hemispatial neglect, is a symptom of a brain damage in which

the person experiences a deficit in attention to and awareness of one side of his/her body and

anything in the external world on the same side. A patient with this neurological condition is

unable to perceive and process stimuli on that side of the body or the environment, while that

inability is not due to a lack of sensation [10].

During robotics-assisted mirror therapy, motions of the Patient’s Functional Limb (PFL)

are mirrored through a telerobotic medium to the Patient’s Impaired Limb (PIL), promoting the

functional recovery of the impaired/affected limb through the spatial coupling effect between

the two limbs. This results from the tendency of one limb to adopt the spatial features of the

other limb [11–13]. Through mirror-symmetric (or any other coordinated bimanual) movement

pattern for the two limbs in mirror therapy, the unimpaired hemisphere of the brain interacts

with the impaired hemisphere, thereby inducing reorganization of the motor cortex networks

and facilitating cortical neuroplasticity [11,14]. The effectiveness of mirror-symmetric biman-

ual therapy has been shown in comparison with conventional unimanual therapy to result in

an increase in the functional ability as well as a decrease in movement completion times for

the PIL [15]. Mirror therapy has also been shown to be effective in terms of improving the

accuracy, active range of motion, dexterity and grip strength of the limb [16–19].

Existing robotics-assisted mirror-therapy systems, such as MIME [20], provide a unilat-

eral Single-Master/Single-Slave (SM/SS) telerobotic framework in order for the PIL to move

in accordance with the mirror-image motions of the PFL. This gives patients some level of

control over the therapy through the involvement of their functional limb. However, due to the

inherently restrictive structure of SM/SS systems [21], the PIL interacting with the slave robot
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can only receive commands from the PFL interacting with the master robot. This means that a

therapist cannot be directly involved in the rehabilitation loop to apply corrective movements

or to monitor/assess the PIL performance through haptic feedback. Fig. 5.1 shows the overall

scheme of a conventional robotics-assisted mirror therapy system. Presence of an expert in the

loop of the therapy can play an essential role in promoting the patient’s functional recovery.

Based on a recent study published [22], haptics-based interaction with a partner when learn-

ing a motor task considerably enhances the motor skills compared to when practicing the task

alone for the same duration. Therefore, haptics-based interaction of a therapist with a patient

can be effective not only because of the therapist’s knowledge and expertise, but also due to

his/her positive effect on the patient’s learning curve as a result of the interaction. Capitalizing

on the impact of therapist-patient haptics-based interaction, in this chapter a Therapist-In-the-

Loop (TIL) framework is proposed for robotics-assisted mirror therapy based on a supervised

trilateral telerobotic system integrated with adaptive Assist-as-Needed Therapy (ANT) that is

adjusted based on the impairment and disability level of the patient’s affected limb. The overall

scheme of the proposed framework is shown in Fig. 5.2. The proposed architecture offers the

following innovations:

(1) Therapist-in-the-loop MT,

(2) PFL-mediation,

(3) Haptic feedback to the therapist,

(4) Adaptive GVF,

(5) Task-independent and patient-specific motor-function assessment,

(6) Closed-loop stability analysis,

which are discussed below.

The architecture establishes a mirroring behavior between the patient’s two limbs, while

the desired trajectories are provided by a therapist supervising the therapy. This is expected

to enhance the treatment by bringing the therapist’s expertise directly into the treatment. The

framework is designed such that the trajectories desired for the PIL are commanded by the ther-

apist through the PFL, where the PFL has the ability to modify/update the trajectory. There-

fore, having the PFL as a medium between the therapist and the PIL, the therapist-commanded

trajectories can be conditioned before being passed on to the PIL. Benefiting from the pa-



5.1. INTRODUCTION 109

Mirror-Symmetric 

TrajectoryP
a
ti
en

t’
s

Fu
n

ct
io

n
a
l 

L
im

b

P
a
tien

t’s
Im

p
a
ired

 L
im

b

Figure 5.1: The overall scheme of the conventional robotics-assisted MT.

tient’s proprioceptive knowledge and self-awareness of workspace limitations, the proposed

PFL-mediated approach enables the patient to modify the therapist-commanded trajectories in

order to avoid painful/uncomfortable maneuvers for the PIL, of which the therapist may not be

aware. Based on how closely the therapist-commanded trajectories are followed by the PIL,

which may have been modified by the PFL in the interest of patient safety and comfort, the

system also provides the therapist with haptic feedback. This would allow the therapist to bet-

ter decide on the intensity of the therapy administered to and acceptable for the patient.

The framework also provides the patient with adaptive Assist-as-Needed Therapy (ANT)

using a time-varying Guidance Virtual Fixture (GVF). A GVF is a suitable approach for provid-

ing kinesthetic guidance along desired trajectories [23]. In this thesis, the intensity/forcefulness

of the GVF is proposed to be adaptively adjusted based on the patient’s impairment/performance

level perceived during the therapy.

For this purpose, benefiting from the presence of the PFL in the therapy loop, a novel per-

formance assessment framework (called performance symmetry (PS)) is proposed for mirror

therapy, based on which the adaptive GVF is adjusted in real time. PS provides a relative

quantifiable assessment of the PIL performance by comparing it to the PFL performance as

the patient’s gold standard. Unlike the absolute assessment metrics currently available in the

literature [5, 24], the proposed PS metric takes the performance level of the PFL into account

for each patient when assessing the PIL performance for the same patient. Consequently, the

quantified assessment results will be more objective, easier to interpret, and adjusted to the

inevitable intra-patient variability in motor deficiency.

In addition to PS, another metric is also proposed based on the Level Of Guidance (LOG)

provided to the PIL during the treatment. Using this metric in parallel with other performance

metrics enables the assessment process to distinguish between performance improvements due

to the patient’s functional recovery vs. those due to the GVF-based assistance to the patient
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during the treatment. The aforementioned PS and LOG metrics, along with two other metrics

from the literature, are used to develop an adaptation law for updating the adaptive ANT based

on the impairment level of the PIL.

As there are three sets of local sub-systems (PIL, PFL and therapist), globally interacting

through a trilateral telerobotic architecture, stability of the closed-loop system should be in-

vestigated in order to guarantee system stability. For this purpose, a combination of the Circle

Criterion and the Small-Gain Theorem is applied and a set of sufficient stability conditions is

derived. The proposed stability analysis addresses instabilities caused by communication de-

lays between the therapist and the patient. This facilitates the case of haptics-enabled bilateral

tele-rehabilitation, which is suitable for applications such as in-home rehabilitation [25], [26].

Incorporating the Circle Criterion into the Small-Gain Theorem, the proposed procedure also

addresses extra stability-analysis challenges raised by the integration of the time-varying non-

linear GVF element into the delayed closed-loop system.

Through the proposed trilateral framework, the patient benefits from an enhanced motor-

recovery process as a result of integrating the following characteristics: (a) the cross-cortex

coupling effect between limbs induced by the mirror therapy; (b) the expertise and direct su-

pervision of, along with the haptic feedback delivered to, the therapist in the loop over the

treatment to provide appropriate corrective movements; (c) the supervision/impact of the pa-

tient over the treatment through the PFL-mediated feature, which guarantees the patient’s safety

and comfort by avoiding the application of excessive pressure and pain on the PIL; and (d) ac-

tive involvement of the patient in the treatment through the adaptive GVF-based ANT.

The rest of this chapter is organized as follows: Section 5.2 presents the proposed archi-

tecture. Section 5.3 discusses the metrics proposed and the adaptation law developed for ANT.

Section 5.4 presents the closed-loop stability of the system in the presence of communication

delays. Experimental results are given in Section 5.5, and Section 5.6 concludes the chapter.
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Figure 5.2: The overall scheme of the supervised trilateral telerobotic framework proposed for
Assist-as-Needed Mirror Therapy (ANMT).

5.2 THE PROPOSED FRAMEWORK

5.2.1 Architecture for the PIL/Robot Interaction

In order for the PIL to undergo mirror therapy, its desired position xdes,PIL is defined to be the

mirror image of PFL’s position, xPFL, as follows:

xdes,PIL(t) = β · xPFL(t) (5.1)

where β = diag(β1, ...,βn) refers to the mirroring matrix, accommodating for the mirroring

effect between the functional and the impaired limb across the sagittal plane; the subscript

n indicates the number of Degrees of Freedom (DOF). Depending on the mirroring plane,

βi (i = 1,2, · · · ,n), which is the mirroring coefficient for the ith DOF, can be set to either +1 or

-1. For example, for mirroring along the x-axis, β1 will be set to -1, while βi (i , 1) will be set

to +1 in order to accommodate for the same-directional/parallel trajectories along other axes.

By setting all the elements of the mirroring matrix to +1, the framework can be used for bilat-

eral parallel therapy, which has also been shown to be effective in inducing neuroplasticity [6].

In order to provide the PIL with an assist-as-needed therapy to actively engage the patient

in the treatment process, an adaptive GVF is proposed, the stiffness of which can be adaptively
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adjusted according to the impairment/disability level of the PIL. The higher level of impair-

ment the PIL shows, the more strict and enforcing the GVF becomes to provide the patient

with a higher level of assistance. The GVF is designed such that if the PIL remains within a

specific range of its desired trajectory, i.e., inside a specific spherical volume centered at the

desired trajectory point xdes,PIL, no GVF force will be applied to it. However, if the deviation

error between the PIL and the mirror image of the PFL (the desired trajectory for PIL) exceeds

a certain threshold, the GVF will apply force to the PIL in order to assist the PIL with ac-

complishing the trajectory. The allowable range of the deviation error is set to be up to RGV F .

Exceeding the allowable range of position error, i.e.,
∣∣xdes,PIL− xPIL

∣∣ > RGV F , will cause the

PIL to receive the following GVF force:

FGV F,PIL(t) = KGV F,PIL(t)(xdes,PIL(t)− xPIL(t)) (5.2)

where KGV F,PIL(t) ∈ [κmin,κmax] refers to the adaptive stiffness of the GVF, to be adjusted

according to the impairment level of the PIL, the design of which including the patient’s motor-

function assessment is discussed in Section 5.3. κmin and κmax indicate some positive lower

and upper bounds to be considered in the design procedure for KGV F,PIL. It should be noted that

various motor-function assessment metrics, including but not limited to movement accuracy,

motion smoothness, movement velocity and grip strength, can be used in order to design the

variation profile of the adaptive GVF’s stiffness.

In order for the patient to transparently feel the desired GVF force applied by the robot on

his/her PIL, it is required to have:

FPIL(t) =−FGV F,PIL(t) (5.3)

where FPIL refers to the force applied by the PIL to its corresponding robot. Note that the minus

sign is to account for the direction of forces, i.e., applied by the robot to the PIL or vice versa.

However, as will be discussed in Section 5.4, similar to any other telerobotic system [27],

ensuring closed-loop stability may degrade the system transparency and performance. Thus, to

guarantee closed-loop stability in the presence of communication delays, a modified impedance

surface is defined as the desired closed-loop system at the PIL robot, through which the GVF
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force FGV F,PIL is applied to the PIL by its corresponding robot:

FPIL(t) =−FGV F,PIL(t)+

Mϑ ,PIL · ẍPIL(t)+Bϑ ,PIL · ẋPIL(t)+Kϑ ,PIL · xPIL(t)
(5.4)

where Mϑ ,PIL, Bϑ ,PIL and Kϑ ,PIL stand for mass, damping and stiffness, respectively, to be

used as the local control parameters at the PIL robot. From the performance viewpoint, the

control parameters are desired to be set to zero, which results in FPIL(t) = −FGV F,PIL(t) as in

(5.3). However, it will be shown in Section 5.4 how positive values for these parameters will

contribute to closed-loop stability in the presence of communication time delay between the

therapist and the patient in order to facilitate the case of tele and in-home rehabilitation.

5.2.2 Architecture for the PFL/Robot Interaction

The architecture at the PFL robot is designed such that the PFL receives commands (desired

trajectories) from the therapist, but is able to deviate from them. This PFL-mediated platform

allows the patient to alter the therapist-commanded trajectory, if the trajectories are felt to be

painful or uncomfortable for the PIL. To realize this goal, a position-error impedance surface

is designed for the PFL:

FPFL,des(t) = Mdes,PFL(ẍ∗T (t)− ẍPFL(t))+

Bdes,PFL(ẋ∗T (t)− ẋPFL(t))+Kdes,PFL(x∗T (t)− xPFL(t))
(5.5)

where xPFL indicates the trajectory generated by the PFL and x∗T refers to the mirror image of

the therapist-commanded trajectory. Note that since the PIL will move based on the mirror-

image of the PFL, while the therapist will provide the trajectory desired for the PIL, the PFL

should receive the mirror-symmetric image of the trajectory commanded for the PIL by the

therapist, i.e., to receive x∗T = β ·xT , where β indicates the mirroring matrix. Mdes,PFL, Bdes,PFL

and Kdes,PFL refer to the desired mass, damping and stiffness, respectively, through which the

PFL can alter the desired trajectories received from the therapist in the interest of safety and

comfort. In addition, FPFL,des stands for the desired force applied by the robot to the PFL as a

result of interaction with the therapist. In order for the PFL to receive FPFL,des, it is desired to
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have:

FPFL =−FPFL,des, (5.6)

where FPFL indicates the force applied by the PFL to the robot. Consequently, and based on

the desired impedance surface defined in (5.5), the position of the functional limb will be:

XPFL(s) =
FPFL(s)

Zdes,PFL(s)
+β ·XT (s) (5.7)

where Zdes,PFL(s) = Mdes,PFLs2+Bdes,PFLs+Kdes,PFL. Here, s indicates the Laplace transform

variable. Thus, the PFL can follow the mirrored image of therapist’s trajectories βxT by apply-

ing minimal FPFL. However, if the patient considers the therapist-commanded trajectories to

be painful or uncomfortable for the PIL, s/he can apply enough force FPFL,des, to make xPFL

deviate from the therapist mirrored trajectory βxT . The PFL as a medium to convey desired

trajectories from the therapist to the PIL increases the patient safety and comfort.

With the same reasoning as for (5.4), for the sake of closed-loop stability, the desired be-

havior FPFL =−FPFL,des is replaced by an impedance surface as the desired closed-loop system

at the PFL robot, through which the desired force FPFL,des is applied to the PFL by some mod-

ification:
FPFL =−FPFL,des(t)+

Mϑ ,PFL · ẍPFL(t)+Bϑ ,PFL · ẋPFL(t)+Kϑ ,PFL · xPFL(t)
(5.8)

where Mϑ ,PFL, Bϑ ,PFL and Kϑ ,PFL refer to the mass, damping and stiffness to be used as the

local control parameters at the PFL robot. These parameters are desired to be zero for the

purpose of performance, i.e., the PFL feels FPFL,des, entirely. However, as discussed in Section

5.4, setting them to non-zero values will help with stabilizing the entire closed-loop system.

5.2.3 Architecture for the Therapist/Robot Interaction

As described earlier, in the interest of the patient’s safety and comfort, the framework enables

the PFL to alter the therapist-commanded trajectory, xT , when necessary, before passing it on to

the PIL. Therefore, the trajectories eventually followed by the PIL may not be exactly similar

to those created by the therapist. Therefore, it is required for the therapist to receive haptic

feedback about the PIL movements in relation to the therapist-commanded movements. For
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this purpose, position-error-based haptic feedback, Fϕ,T , is designed to be sent to the therapist

by his/her corresponding robot, as follows:

Fϕ,T (t) = Mϕ,T (ẍPIL(t)− ẍT (t))+

Bϕ,T (ẋPIL(t)− ẋT (t))+Kϕ,T (xPIL(t)− xT (t))
(5.9)

where Mϕ,T , Bϕ,T and Kϕ,T denote the mass, damping and stiffness of the position-error-based

haptic feedback, respectively. With the same reasoning for (5.4) and (5.8), an impedance sur-

face is defined for the desired closed-loop behavior at the therapist side, through which the

haptic force feedback Fϕ,T is applied by the robot to the therapist by the modification:

FT =−Fϕ,T (t)+

Mϑ ,T · ẍT (t)+Bϑ ,T · ẋT (t)+Kϑ ,T · xT (t)
(5.10)

where Mϑ ,T , Bϑ ,T and Kϑ ,T stand for the desired mass, damping and stiffness to be used as the

local control parameters at the therapist’s robot. In addition, FT refers to the force applied to

the robot by the therapist. The force FT applied by the therapist to the corresponding robot, as

well as the forces FPIL and FPFL applied by the PIL and PFL to their corresponding robots can

be modeled by second-order LTI systems [28]:

FΘ(t) = F∗
Θ
(t)−MΘ · ẍΘ(t)−BΘ · ẋΘ(t)

−KΘ · (xΘ(t)− xΘ0))
(5.11)

where F∗
Θ

, for Θ = PIL, PFL, T , denote the exogenous force applied by the operator, which is

either the patient or the therapist. MΘ, BΘ and KΘ stand for mass, damping and stiffness of the

limb, respectively; and xΘ0 indicates the initial position of the therapist’s limb, xΘ.

5.3 Adaptive Assist-as-Needed Therapy

A patient-specific treatment practice that actively engages the patient in the treatment by adapt-

ing to his/her motor capability enhances the degree of recovery, compared to a non-adaptive

training scenario [29, 30].
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In order to promote patient active involvement, the framework provides the PIL with ANT,

the level of which is decided by the GVF adjusted adaptively based on the PIL’s level of im-

pairment. In order to realize the proposed ANT strategy, objective assessment of the PIL’s

motor-function is essential.

5.3.1 Motor Function Assessment

By development of robotics-assisted rehabilitation, quantified evaluation of patient’s motor

performance and recovery has been also made possible [31], providing objective assessment

results compared to the traditional subjective assessment approaches, e.g. Fugl Meyer [32],

Motor Assessment Scale [33] and Motricity Index [34]. For this purpose, various objective and

quantitative evaluation metrics have been used in the literature such as movement smoothness,

movement accuracy, active range of motion, peak and mean velocity, task completion time,

etc. [5, 24, 35].

Although the above metrics provide useful quantified information about a patient’s motor

function, they could still be challenging, due to the intra-patient variability, to interpret and

to correlate with the impairment severity of every patient regardless of their age, gender and

their before-stroke baseline muscle strength. Intra-task variability is also another issue when

assessing a patient’s motor-function, as not every daily activity can be linked to a quantified

baseline performance level. Having a baseline performance level for every single task and

every single patient can be challenging, as a result of which a wide range of daily tasks cannot

be included in the patient’s treatment and evaluation practice.

In this thesis, we take advantage of having both functional and impaired limbs of the patient

involved in order to propose a novel motor function assessment metric for mirror therapy, which

addresses both intra-task variability and intra-patient variability. The proposed metric, called

Performance Symmetry can reflect the nature of any of the current metrics in the literature,

but also provides a task-independent and patient-specific evaluation. In hemiparetic patients,

regardless of their age, gender, baseline muscle strength, and for any type of practice tasks,

the motor performance of their functional limb can reflect the ideal level of performance their

impaired limb should achieve. Therefore, the performance of the PFL can be considered as

the patient-specific baseline in evaluation of the PIL performance. Accordingly, unlike the
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absolute assessment metrics in the literature, we propose a normalized relative quantifying

assessment metric, PS, for mirror therapy in order to provide more objective, patient-specific,

and easier-to-interpret evaluation results, as follows:

PSΩ(t) = 1−
∣∣∣ΩPFL(t)−ΩPIL(t)

ΩPFL(t)+ΩPIL(t)

∣∣∣ (5.12)

where Ω can be any quantified metric used in conventional robotics-assisted rehabilitation.

Here, we have used two of these metrics to incorporate in the PS assessment:

Movement Smoothness (MS)

which is shown to be correlated with the patient’s level of temporal coordination and the extent

of jerky movements. Following a stroke, movements made by the affected limb are composed

of sub-movements with poor temporal coordination, resulting in jerky movements. The higher

the motor recovery, the smoother the movements become [24]. In order to incorporate MS into

PS, it is required to calculate MS for both PFL and PIL (MSη for η = PFL and PIL), which

can be performed as per the definition

MSη(t) =
1
t

∫ t

0

√
(
d3 xη ,x

dτ3 )2 +(
d3 xη ,y

dτ3 )2 +(
d3 xη ,z

dτ3 )2 dτ (5.13)

where the subscripts x, y and z refer to positions along the x, y and z directions, respec-

tively. Calculating MSPFL and MSPIL based on (5.13), and incorporating them into (5.12),

the movement-smoothness symmetry (PSMS) will be specified as

PSMS(t) = 1−
∣∣∣MSPFL(t)−MSPIL(t)

MSPFL(t)+MSPIL(t)

∣∣∣ (5.14)

This provides a normalized objective assessment of the PIL’s movement smoothness without

any a priori knowledge about the task.

Total Path Length (TPL)

which is the total distance traveled by the patient’s limb from movement onset. Comparing

the TPL traveled by the PIL and the PFL gives a measure of the deviation error to indicate
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how accurately the PIL has been able to follow the mirrored-image of the PFL. The higher the

motor recovery, the more similar the distance traveled. The total path length T PLη for both

PFL and PIL (η = PFL,PIL) can be calculated based on

T PLη(t) =
∫ t

0

√
(
dxη ,x

dτ
)2 +(

dxη ,y

dτ
)2 +(

dxη ,z

dτ
)2 dτ (5.15)

Calculating T PLPIL and T PLPFL based on (5.15) and incorporating them into (5.12) gives the

normalized measure of symmetry for the PIL deviation error, as follows:

PST PL(t) = 1−
∣∣∣T PLPFL(t)−T PLPIL(t)

T PLPFL(t)+T PLPIL(t)

∣∣∣ (5.16)

For any quantifying metric, the same process can be repeated to calculate the patient-specific

symmetry level for that metric.

In addition to the proposed PS measure, a motor-function metric is also proposed based

on the level of guidance provided to the PIL during the therapy. Most of the metrics in the

literature, which are mainly meant for assessing performance, cannot distinguish in real-time

whether an improved performance has been due to the patient’s functional recovery or as a re-

sult of the haptic assistance guiding the patient’s limb toward the practice trajectory. Therefore,

we are proposing a novel metric based on the LOG provided to the PIL through the adaptive

GVF during the treatment, which is beneficial in updating the quantified performance assess-

ment based on the actual contribution and active involvement of the patient. The higher the

level of guidance and assistance provided to the PIL to accomplish the task, the lower the level

of functional ability scored for the PIL. For this purpose, the normalized GVF-based LOG

metric is defined as follows:

ψGV F(t) = 1−
∫ t

0

∣∣FGV F,PIL(τ)
∣∣dτ∣∣FGV F,max

∣∣∗ t
(5.17)

where FGV F,PIL refers to the adaptive GVF force applied to the PIL, and FGV F,max indicates

the maximum level of GVF force considered to apply to the PIL during a treatment session.

Incorporating this metric in parallel with other performance metrics, the patient’s functional

improvement as well as his/her own level of contribution to the movements can be quantified.



5.4. CLOSED-LOOP STABILITY ANALYSIS 119

5.3.2 Adaptive GVF Design

To incorporate the three assessment metrics PSMS, PST PL and ψGV F for the purpose of updating

the stiffness of the adaptive GVF applied to the PIL, given in (5.2), the metrics are integrated

using the following fusion law:

ΛPIL(t) =
1
2

ψGV F(t) · (PSMS(t)+PST PL(t)) (5.18)

which combines the metrics derived based on the performance symmetry with the proposed

GVF-based LOG metric in parallel, resulting in a normalized single metric between 0 and 1 to

be used as an adaptive coefficient in order to update the adaptive stiffness of the GVF, KGV F,PIL:

KGV F,PIL(t) = κmin +(κmax−κmin)(1−ΛPIL(t)) (5.19)

where κmin and κmax refer to the lower and upper bounds of the GVF’s stiffness, KGV F,PIL,

preset based on the level of guidance forces desired to be applied to the PIL during a treatment

session. Note that having 0 ≤ ΛPIL ≤ 1 ensures that KGV F,PIL remains between the desired

boundaries [κmin,κmax]. It should be noted that, setting κmin = κmax, would set KGV F,PIL to a

constant value κmin, which bypasses the real-time adaptation.

5.4 Closed-loop Stability Analysis

In order to satisfy the local desired closed-loop system defined for each robot as in (5.4), (5.8)

and (5.10), a decentralized impedance controller adopted from [36] is applied. By satisfying

these impedance surfaces, the closed-loop system will be decoupled in various DOFs. There-

fore, stability of each DOF can be analyzed independently. By some mathematical manipula-

tions, the proposed architecture defined in (5.1)-(5.11) can be modeled as in Fig. 5.3 for each

DOF, and then transformed to Fig. 5.4 without affecting the outputs y1 and y2; τ1 and τ2 refer

to communication delays from the patient to the therapist and vice versa, and

Ξ1(s) =
Zdes,PFL(s)

Zϑ ,PFL(s)+Zdes,PFL(s)+ZPFL(s)
(5.20)
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Ξ2(s) =
1

Zϑ ,PIL(s)+ZPIL(s)
(5.21)

Ξ3(s) =−
Zϕ,T (s)

Zϑ ,T (s)+Zϕ,T (s)+ZT (s)
(5.22)

Ξ4(s) =
1

Zϕ,T (s)
(5.23)

Ξ5(s) =
1

Zdes,PFL(s)
(5.24)

Ξ6(s) = (Ξ1 ·βi)
−1 (5.25)

Z(.)(s) = M(.)s2 +B(.)s+K(.); M(.),B(.),K(.) > 0 (5.26)

In order to analyze the stability of the system, a combination of the Small-Gain Theorem and

the Circle Criterion is applied.

Theorem I [37]: The delayed feedback system given in Fig. 5.5 is Input-Output Stable

𝜩𝟏 𝜷𝒊 𝜩𝟐 𝝉𝟏

𝜩𝟒𝝉𝟐 𝜩𝟑

𝒙𝑷𝑰𝑳

−𝒙𝑻

𝑭𝑷𝑭𝑳
∗

𝑭𝑷𝑰𝑳
∗

𝑲𝑮𝑽𝑭,𝑷𝑰𝑳

𝜷𝒊

Patient

Therapist

𝒙𝒅𝒆𝒔,𝑷𝑰𝑳
𝑲𝑮𝑽𝑭,𝑷𝑰𝑳𝜩𝟓

𝑭𝑷𝑭𝑳
†

𝑭𝑻
∗𝑭𝑻

†

𝒚𝟏

𝒚𝟐

Figure 5.3: The overall closed-loop system
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𝒙𝑷𝑰𝑳

−𝒙𝑻
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†

𝑭𝑻
∗𝑭𝑻
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Figure 5.4: The overall closed-loop system
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(IOS) if:

u1 ∈ L∞ , u2 ∈ L∞ (5.27)

ζ1 ∈ [0,∞) , ζ2 ∈ [0,∞) (5.28)

ζ1 ·ζ2 6 1 (5.29)

where, ζ1 and ζ2 in (5.28)-(5.29) stand for the IOS gain of sub-systems Σ1 and Σ2, respectively,

as per the following definition given for the IOS gain.

Definition I: The IOS gain of a system with the input-output relation y(t) = Σu(t), where

Σ is a mapping or operator that specifies y in terms of u, is a nonnegative constant ζ such that:

sup
t>0
|y(t)|6 ζ · sup

t>0
|u(t)|+ ε;

where ε is a nonnegative constant bias term.

Therefore, in order for the closed-loop system given in Fig. 5.4 to remain stable, the three

small-gain conditions given in (5.27)-(5.29) should be met. Based on the first condition, it is

required to have

u1 = F†
PFL +F†

PIL ∈ L∞ , u2 = F†
T ∈ L∞ (5.30)

F∗T (t), F∗PFL(t) and F∗PIL(t) refer to the exogenous forces applied by the therapist and the patient,

which belong to the L∞ space [37], while F†
T (t), F†

PFL(t) and F†
PIL(t) indicate the outputs of the

systems Ξ4(s), Ξ5(s) and Ξ6(s) for inputs F∗T (t), F∗PFL(t) and F∗PIL(t)
KGV F,des(t)

, respectively. Having

0 < κmin < KGV F,PIL from the previous section, the input F∗PIL(t)
KGV F,des(t)

is also bounded and belongs

to the L∞ space. Considering the structure of systems Ξ4(s), Ξ5(s) and Ξ6(s), which are stable

and proper transfer functions belonging to the L1 space, they map inputs in L∞ to outputs in

L∞. Consequently, F†
T (t), F†

PFL(t) and F†
PIL(t) belong to L∞, satisfying (5.27).

𝚺𝟏 𝝉𝟏

𝝉𝟐
𝒖𝟐

𝚺𝟐

𝒖𝟏

Figure 5.5: Small-Gain Theorem
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The next step in analyzing closed-loop stability is to check whether the IOS gains of the

feedforward and the feedback paths in Fig. 5.4 satisfy the next two sets of conditions in (5.28)

and (5.29). To calculate the IOS gain of the feedforward loop, first let us consider the local

feedback loop in the feedforward path, from xPIL to xdes,PIL. In this feedback loop, KGV F,PIL

is a time-varying parameter belonging to [κmin,κmax], as defined in the previous section. This

parameter refers to the stiffness of the GVF, to be adjusted adaptively. Without the need to go

into details about how to update KGV F,PIL, it can be assumed to belong to sector (0,ρ] per the

following definition:

Definition II [38]: A memoryless function h : [0,∞)×RP −→ RP is said to belong to the

sector (0,ρ] with ρ = ρT > 0 if h(t,u)T [h(t,u)−ρu]6 0.

Stability of the local feedback loop from xPIL to xdes,PIL can be analyzed using the Circle

Criterion, as described next. Previously, Miandashti [39] used the Circle Criterion to study the

stability of sampled-data bilateral teleoperation systems.

Theorem II [38]: The feedback connection of a linear dynamical system G(s) and a

nonlinear element ξ , as shown in Fig. 5.6, is stable if ξ ∈ [ξ1,ξ2], with ξ2− ξ1 > 0, and

[I +ξ2G(s)][I +ξ1G(s)]−1 is Strictly Positive Real (SPR).

Using a type II loop transformation [38], and considering that ξ = KGV F,PIL(t) is a map-

ping such that K−1
GV F,PIL is causal, KGV F,PIL ·K−1

GV F,PIL = I, and both KGV F,PIL and K−1
GV F,PIL have

finite gains, the feedback connection in Fig. 5.6 can be transformed into the feedback system

in Fig. 5.7. Since 0 < κmin < KGV F,PIL(t) < κmax, ξ−1 = K−1
GV F,PIL in the feedforward path of

Fig. 5.7 does not affect the system’s stability. Therefore, the system in Fig. 5.7 is identical

to the feedback connection in Fig. 5.8 in terms of stability, which in turn is similar to that for

the local feedback loop in the feedforward path, from xPIL to xdes,PIL, in Fig. 5.4. Therefore,

considering that KGV F,PIL ∈ [κmin,κmax] and based on Theorem II, the local feedback system,

from xPIL to xdes,PIL, in Fig. 5.4 is stable if [I +κmaxΞ2(s)][I +κminΞ2(s)]−1 is SPR. We also

𝑮(𝒔)

𝝃(. )

𝒓 𝒚

Figure 5.6: Feedback connection used in the Circle Criterion
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𝑮(𝒔)𝝃(. )
𝒓 𝒚

𝝃−𝟏(. )

Figure 5.7: Feedback connection based on the type II loop transformation [38]

𝑮(𝒔)𝝃(. )
𝒓 𝒚

Figure 5.8: Modified feedback connection used in the Circle Criterion

need the following definitions:

Definition III [38]: The transfer function H(s) is SPR if H(s− ε) if Positive Real (PR) for

some ε > 0.

Definition IV [38]: The transfer function H(s) is PR if:

• poles of H(s) are in Re(s)< 0

• for all real ω for which jω is not a pole of H(s), H(s)+HT (s∗) is positive semi-definite,

and

• any pure imaginary pole jω of H(s) is a simple pole and the residue lims→ jω(s−

jω)H(s) is positive semidefinite Hermitian.

According to Definitions III and IV, and considering the structure of Ξ2(s), which is a stable

and strictly proper transfer function, [I +κmaxΞ2(s)][I +κminΞ2(s)]−1 is SPR if

(1+κ)(Kϒ +κmin)+B2
ϒ

ω2 > (1+κ)Mϒω2 (5.31)

where κ = κmax−κmin > 0, Mϒ = Mϑ ,PIL+MPIL, Bϒ = Bϑ ,PIL+BPIL and Kϒ = Kϑ ,PIL+KPIL.

Therefore, by proper adjustment of local control parameters at the PIL side (Mϑ ,PIL, Bϑ ,PIL and

Kϑ ,PIL), stability of the local feedback loop from xPIL to xdes,PIL can be guaranteed. Having

the local feedback loop stable, it can be shown that the loop has its highest input-output gain

when KGV F,PIL is at its maximum level, i.e., KGV F,PIL = κmax. Therefore, the IOS gain of the

local feedback loop in the presence of time-varying KGV F,PIL will be equivalent to the IOS gain

of the same loop when KGV F,PIL has been set to κmax. Therefore, we can continue the stability
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𝜩𝟏 𝜷𝒊 𝝉𝟏
𝒖𝟏

𝒖𝟐

𝜮𝟏

𝜩𝟕

𝜷𝒊 𝜩𝟑𝝉𝟐
𝜮𝟐

Figure 5.9: The closed-loop system transformed based on the Circle Criterion

analysis of the overall closed-loop system by replacing the time-varying KGV F,PIL by its upper

bound κmax, which represents the worst case. Consequently, Fig. 5.4 can be transformed to

Fig. 5.9, where Ξ7(s) =
κmax ·Ξ2(s)

1+κmax ·Ξ2(s)
. Comparing Fig. 5.9 with Fig. 5.5, Σ1 and Σ2 can be

written as
Σ1(s) = Ξ1(s) ·βi ·Ξ7(s) =

βi · κmax
Zϑ ,PIL(s)+ZPIL(s)+κmax

· Zdes,PFL(s)
Zϑ ,PFL(s)+Zdes,PFL(s)+ZPFL(s)

(5.32)

Σ2(s) = βi ·Ξ3(s) =−
βi · Zϕ,T (s)

Zϑ ,T (s)+Zϕ,T (s)+ZT (s)
(5.33)

The next step is to investigate the condition given in (5.28), i.e., to have the IOS gains

of Σ1(s) and Σ2(s) belong to [0,∞). Since Σ1(s) and Σ2(s) indicate transfer functions rep-

resenting two LTI systems, the IOS gain is equal to the L1 norm of the two systems; L1

norm of transfer function Σ(s) is defined according to the formula ‖Σ(s)‖L1
=
∫ +∞

0
|σ(τ)| dτ ,

σ(t) = L−1 [Σ(s)]. Therefore, (5.28) is equivalent to Σ1(s) ∈ L1 and Σ2(s) ∈ L1. Considering

the structure of Σ1(s) and Σ2(s), which are stable and proper transfer functions, and knowing

that βi and κmax are bounded parameters, both Σ1(s) and Σ2(s) belong to L1. The last condition

given in (5.29) necessitates

∣∣∣ βi · κmax
Zϑ ,PIL(s)+ZPIL(s)+κmax

· Zdes,PFL(s)
Zϑ ,PFL(s)+Zdes,PFL(s)+ZPFL(s)

∣∣∣
L1
·∣∣∣− βi · Zϕ,T (s)

Zϑ ,T (s)+Zϕ,T (s)+ZT (s)

∣∣∣
L1
≤ 1

(5.34)

which can be transformed into three conservative conditions, as follows:∣∣∣∣ βi · κmax

Zϑ ,PIL(s)+ZPIL(s)+κmax

∣∣∣∣
L1

≤ 1 (5.35)
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∣∣∣∣ Zdes,PFL(s)
Zϑ ,PFL(s)+Zdes,PFL(s)+ZPFL(s)

∣∣∣∣
L1

≤ 1 (5.36)

∣∣∣∣− βi · Zϕ,T (s)
Zϑ ,T (s)+Zϕ,T (s)+ZT (s)

∣∣∣∣
L1

≤ 1 (5.37)

An approach to guarantee that (5.35)-(5.37) are satisfied is to ensure that the magnitude of each

transfer function inside the brackets is not greater than one for all s = jω , i.e.,

|κmax| ≤
∣∣Zϑ ,PIL(s)+ZPIL(s)+κmax

∣∣ (5.38)

∣∣Zdes,PFL(s)
∣∣≤ ∣∣Zϑ ,PFL(s)+Zdes,PFL(s)+ZPFL(s)

∣∣ (5.39)∣∣Zϕ,T (s)
∣∣≤ ∣∣Zϑ ,T (s)+Zϕ,T (s)+ZT (s)

∣∣ (5.40)

These three inequalities along with the one given in (5.31) represent the stability criteria for

the closed-loop system in the presence of communication time delays between the patient and

the therapist. As can be seen, the control parameters Mϑ ,∆, Bϑ ,∆ and Kϑ ,∆; ∆ = PIL,PFL,T

appear in all four conditions, through which the stability conditions can be satisfied.

Remark: The proposed stability analysis platform can be applied to general non-rehabilitation

teleoperation applications, as well. The framework itself can be considered as a new triple-user

hierarchical/supervised leader-follower system.

5.5 Experiments

In order to evaluate the performance of the proposed framework, three sets of experiments were

conducted. The experimental setup consists of one Quanser HD2 haptic device acting as the

therapist’s robot; and two Quanser upper-extremity rehabilitation robots serving as the PIL and

PFL robots. The User Datagram Protocol (UDP) was used to transmit data between the master

robots and the slave robot. All controllers and the communication between the robots were

implemented using the QuaRC Real-Time system at a sampling frequency of 1 kHz. Fig. 5.10

shows the experimental setup.

The experiments were performed in two DOFs, along the sagittal-transverse plane. The

mirroring between the PIL and the PFL was implemented across the sagittal plane. In these
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Quanser

HD2 Haptic Device

Figure 5.10: Experimental Setup

experiments, two operators were asked to simulate behaviors of a typical patient and a typical

therapist in three distinctive scenarios in order to evaluate various features of the proposed

system. The operators were familiar with the setup.

5.5.1 Scenario I: PFL-mediated Mirror Therapy

The first scenario consisted of two phases to evaluate 1) the mirroring effect between the PIL

and the PFL, and 2) the impact of the PFL as a medium on the Therapist-Commanded Trajec-

tory (TCT) received at the PIL robot. The therapist was asked to generate and repeat a squared

trajectory during both phases of the experiment. The patient was asked to consider the TCT as

“comfortable” in Phase I (t = 0− 80s) and “uncomfortable” in Phase II (t = 80− 160s), and

react accordingly. Therefore, she was supposed to intentionally alter the TCT by her PFL in

Phase II, where the motions were defined as “uncomfortable”. A time-varying profile was set

for KGV F,des, such that κmin = 350 and κmin = 400. Round-trip communication delay of 200 ms

was also introduced between the therapist’s robot and the patient’s robots.

The results are given in Figs. 5.11-5.13. Fig. 5.11 shows the 2D representation of

the trajectories for the therapist, the PFL and the PIL. As can be seen, the therapist provided

squared trajectories. The PFL followed the mirror-image of the Therapist-Commanded Trajec-

tory (TCT), which in turn caused the PIL to follow the TCT in the same direction, as expected.

In the second phase of the experiment, where the PFL was asked to resist the TCT due to the
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motions being considered as “uncomfortable” for the PIL, the amplitude of the PIL motion was

also reduced through the PFL-mediated architecture to avoid the painful and/or uncomfortable

trajectory for the PIL. As can be seen, the framework also ensured the mirroring effect between

the PIL and the PFL in both phases. Fig. 5.12 shows the same trajectory results in 1D, across
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Figure 5.11: Experimental scenario #1: 2D plot of trajectories
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Figure 5.12: Experimental scenario #1: 1D plot of trajectories across the mirroring plane
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Figure 5.13: Experimental scenario #1: Haptic feedback provided to the therapist
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the mirroring plan with respect to time. The force feedback provided to the therapist during

the experiment is shown in Fig. 5.13. As can be seen, in Phase II, the therapist received con-

siderable force on his hand informing him of the “discomfort” felt by the patient. This feature

helps the therapist to be aware of and ensure the patient’s safety during the therapy.

5.5.2 Scenario II: How Time-Varying Assistance Helps

The second scenario was designed to investigate the effect of the time-varying virtual fixture

gain KGV F,des on the PIL performance. For this purpose, a time-varying profile was set for

KGV F,des, increasing from κmin = 1 to κmax = 400 during the experiment. The round-trip com-

munication time delay between the patient’s robots and the therapist’s robot was 200ms. To

simulate an impaired PIL, a 2-DOF mass-spring array was used in order to represent non-

symmetric spasticity in a PIL. Spasticity, also referred to as an unusual stiffness, tightness, or

pull of muscles, is a feature of altered skeletal muscle performance as a result of damage to the

brain or the spinal-cord including that resulting from stroke.

For this purpose, the 2-DOF asymmetric mass-spring array was connected to the PIL robot,

as shown in Fig. 5.14, simulating an impaired PIL affected by spasticity. Similar to the first

scenario, the therapist was asked to generate squared trajectories, while the PFL was asked to

consider the TCT as comfortable, thereby transferring the TCT to the PIL with no conditioning.

Fig. 5.15 illustrates the 2-DOF time-based trajectory generated by the therapist and the trajec-

tory followed by the simulated impaired PIL as a result of the time-varying GVF assistance

force applied to the impaired PIL. As can be seen, at the beginning of the experiment, where

KGV F,des was at its lowest value KGV F,des = κmin, the GVF provided minimal assistance to the

PIL, thus the PIL was not able to follow the therapist-commanded trajectory. By increasing

KGV F,des during the experiment, the level of assistance provided to the PIL increased such that

during the last 50s of the experiment, the impaired PIL fully tracked the desired TCT.

Fig. 5.16 shows a 2D planar view of the same trajectories, where the smaller squares

correspond to the lower levels of assistance by the GVF. As can be seen, at the beginning of the

experiment, the simulated impaired PIL was not only unable to generate the desired amplitudes

of the trajectory due to the low level of the GVF assistance, but also had an undesired rotational

shift due to the asymmetry of the PIL. Towards the end of the experiment, increasing levels of
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Figure 5.14: The 2-DOF mass-spring array connected to the PIL robot

Figure 5.15: Experimental scenario #2: 2D trajectories with respect to time

the GVF corrected for both amplitude and rotational-shift of the trajectories. The time-varying

GVF assistance enables the adaptive ANT in order to actively engage the patient in the therapy.

5.5.3 Scenario III: Adaptive Patient-Targeted ANT

The third scenario was designed in three phases to evaluate various aspects of the proposed

adaptive ANT strategy updated based on the patient’s motor-function ability. For this purpose,

the patient was asked to simulate three different motor-function levels in three Phases, as fol-
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Figure 5.16: Experimental scenario #2: 2D plot of trajectories

lows:

Phase I (t = 0− 45s): extensively impaired and unable to move. To emphasize the high

level of impairment, the user was asked not to follow the PFL’s mirrored movement, but to add

some level of resistance to her PIL’s movement (not allowing the GVF guiding her PIL along

the TCT) in order to simulate a “heavy” PIL.

Phase II (t = 45− 85s): moderately impaired with some weakness, requiring some level

of assistance from the GVF in order to complete the task.

Phase III (t = 85−130s): slightly impaired, able to generate the mirror image of the PFL’s

movement with minimum assistance from the GVF.

The scenario’s pattern can be also seen in Fig. 5.17, which shows a comparison between

the therapist-commanded trajectory and the one made by the PIL. In phase I, the low amplitude

of the PIL’s movement is due to the resistance the user was asked to make to the GVF, although

the GVF was trying to make her follow the TCT. In the second phase, a tracking improvement

happened because the user did not resist the GVF (yet showing a moderate impairment on her

PIL), enabling the GVF to assist as needed. In Phase III, the enhanced tracking was due to the

ability of the PIL in following the TCT with minimum assistance from the GVF.

The results for this experiment are given in Fig. 5.18-Fig. 5.20. Fig. 5.18 illustrates the

proposed normalized motor-function metrics, PSMS, PST PL and ψGV F (LOG), for the PIL cal-

culated during the experiment in real-time. As can be seen, the two metrics PSMS and PST PL
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Figure 5.17: Experimental scenario #3: PIL’s trajectory compared with the TCT

refer to a relatively low level of motor-function for the PIL during Phase I, due to the undesir-

able tracking performance. The metric LOG also represents a low level of functional ability,

zero at most of the time-range, as the PIL was not able to accomplish the task even with the

help of the GVF; as mentioned, this phase was included to emphasize the feature of a “heavy”

hand with high level of impairment, in order to provide a comparison platform for the other

two phases of the experiment. In Phases II and III, the performance metrics PSMS and PST PL

increased considerably, which indicates the improved performance for the PIL, as expected.

However, an interesting difference can be seen at the level of the functional ability shown by

the metric LOG between these two phases. Although in both Phases II and III, the PIL has

shown tracking improvement, the metric LOG refers to higher level of motor-function in phase

III, compared to Phase II. This is a remarkable feature of the proposed LOG metric, which can

distinguish between an improved performance induced by the GVF’s assistance (as in Phase

II) and an improvement due to the actual functional recovery of the PIL (as in Phase III).

Fig. 5.19 shows the adaptive stiffness of the GVF, KGV F resulting from the parallel com-

bination of the LOG with performance metrics PSMS and PST PL. As can be seen, in the first

phase, the system increased the KGV F to its maximum level (κmax = 500N/m) to assist the

extensively-impaired and unable-to-move PIL. In the second phase, the stiffness was adjusted

by the system to a medium level to help the moderately-impaired PIL; while in the third phase,

the stiffness was reduced considerably, as the PIL’s functional assessment assigned a high level

of functional ability for the PIL.
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Figure 5.18: Experimental scenario #3: Motor-function assessment metrics

Figure 5.19: Experimental scenario #3: Adaptive GVF’s stiffness adjusted according to the
PIL impairment level

Fig. 5.20 shows the GVF assistance provided to the PIL based on the adaptive GVF stiff-

ness derived in accordance with the PIL’s functional ability. In Phase I, the PIL was provided

with a high level of GVF assistance (about 20N peak-to-peak), due to the poor motor-function.

During Phase II, the GVF assistance reduced considerably (to about 9N peak-to-peak), as the

PIL was able to partially perform the task and required less level of assistance. In Phase III,

a slight level of GVF force was applied to the PIL (about 2N peak-to-peak), as a result of the

enhanced motor-function illustrated by the PIL.
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Figure 5.20: Experimental scenario #3: ANT provided to the PIL

5.6 Conclusions

A therapist-in-the-loop framework was presented for mirror rehabilitation therapy. Integrating

an adaptive assist-as-needed training approach, the patient’s impaired limb receives personal-

ized therapy according to their level of impairment and disability. This enables the patient’s

impaired limb to be actively involved in the therapy. The expectation is that this will play

an important role in promoting functional recovery and motor learning, as opposed to mov-

ing passively. Using the proposed framework, the desired therapy trajectories are transferred

from the therapist to the patient’s impaired limb after being conditioned by the patient’s func-

tional limb especially when trajectories that are painful or uncomfortable for the impaired limb

are prescribed by the therapist. In order to inform the therapist about any discomfort at the

patient’s side causing alteration in the desired trajectories, haptic feedback from the patient’s

impaired limb is provided to the therapist. A criterion was also developed for updating the

adaptive ANT implemented by the guidance virtual fixture, based on the patient’s impairment

level. Two assessment metrics, Performance Symmetry (PS) and Level Of Guidance (LOG),

were developed to facilitate the patient-targeted therapy and evaluation. Stability of the closed-

loop system was investigated using a combination of the Circle Criterion and the Small-Gain

Theorem. The stability analysis took into account the adaptive assist-as-needed therapy as

well as communication time-delays between the patient and the therapist, facilitating tele and

in-home rehabilitation applications. The proposed stability analysis platform can be possibly

applied to general non-rehabilitation teleoperation applications, as well. Experimental results

were reported to show the performance of the proposed framework.

While this chapter presented the design and implementation of the supervised dual-console
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architecture proposed for motor function restoration using mirror rehabilitation therapy, the

next chapter will discuss the framework proposed for motor skills development in robotic min-

imally invasive surgery.
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Chapter 6

Multimodal Sensorimotor Integration for

Expert-in-the-Loop Telerobotic Surgical

Training

The material presented in this chapter has been submitted for publication in IEEE Transactions

on Robotics (TRO), 2016.

6.1 INTRODUCTION

Robotics-Assisted Minimally Invasive Surgery (RAMIS) has emerged during the last few deca-

des, building on the advantages of Minimally Invasive Surgery (MIS), while addressing sev-

eral challenges facing traditional MIS. Besides the benefits provided to patients, i.e., less post-

operative pain and significantly faster recovery time as result of reduced trauma, and improved

cosmesis, RAMIS also offers several advantages to surgeons by 1) improving dexterity in ma-

nipulating surgical instruments, 2) providing High-Definition (HD) stereovision capabilities,

3) filtering out their hand tremor, and 4) scaling down their hand motions resulting in enhanced

precision [1], [2]. The improved dexterity and precision offered by RAMIS enables surgeons

to perform operations that would previously have been difficult to perform via conventional

MIS, especially for morbidly-obese patients [3]. The da Vinci R© surgical system [4] is the first

FDA-approved RAMIS system and is used in more than 500,000 procedures annually [5].

140
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While RAMIS offers significant advantages, it could be challenging for novice surgeons

and residents to perform, and achieving technical competence requires a well-planned learning

strategy. For successful RAMIS, effective surgical training is necessary for novices to acquire

appropriate psychomotor skills [6]. There have been several RAMIS-related adverse events

reported to the FDA during the past 15 years [7]. One reason cited for this is a lack of proper

training; affirming the necessity of developing appropriate RAMIS training frameworks.

In order to provide on-demand training to RAMIS trainees, robotic surgery simulators have

been developed, e.g., RoSSTM (Simulated Surgical Systems, LLC) [8], RobotiX MentorTM

(3D Systems, Inc.) [9], and dV-Trainer R© [10]. The simulators interface with a Virtual Reality

(VR) environment and provide task-based (e.g. ring transfer and suturing) and procedure-based

training modules [5]. Although simulators can serve as a bridge between preclinical and clini-

cal training, they still fall short of providing realistic tissue-behavioral characteristics [11].

By development of the dual-console da Vinci R© Si surgical system [12], a new teaching

paradigm has evolved, which addresses questions that normally arise regarding fidelity of the

VR-based simulation environment by enabling a trainee to be involved in an actual surgical

procedure. This system offers two master consoles, each manipulated individually by a sur-

geon, one of which can be a trainee. However, at each time, the slave console receives com-

mands only from one master console. Therefore, to involve the trainee in the procedure, it

is required to switch from the expert’s console to the trainee’s. Therefore, when the trainee

has control over the procedure, the expert does not have any authority over the surgery, which

may increase potential risks to the patient. This constraint is mainly imposed due to the in-

herent Single-Master/Single-Slave (SM/SS) structure of the system. Although two master con-

soles are incorporated into the system, the whole framework is a combination of two SM/SS

systems independently working in series/parallel, rather than a cohesive and integrated Dual-

Master/Single-Slave framework.

Moreover, the dual-console da Vinci R© Si system provides the training based on a see-and-

repeat model [12], with no direct supervision and control on the trainee through haptic-based

interaction between the expert and the trainee. Haptics-based interaction with a partner when

learning a motor task has been proved highly effective in enhancing the motor skills as com-

pared to practicing the task alone for the same duration [13].
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Haptic interaction between an expert and a trainee could also provide an effective approach

to deliver real-time feedback to the trainee. As Fitts and Posner proposed [14], there are three

phases involved in acquisition of any motor skill: 1) cognitive phase, in which the learner intel-

lectualizes the task and understands the mechanics of the skill; 2) integrative phase, in which

knowledge is translated into appropriate motor behavior, yet with lack of fluidity; and 3) au-

tonomous phase, in which independent learning occurs with no supervision or guidance, and

smooth performance evolves [15]. During the integrating phase, in which the trainee develops

motor behaviors, coaching and immediate feedback must accompany performance in order to

avoid acquisition of incorrect motor habits, as undesirable motor patterns are difficult to elimi-

nate once they are established. In fact, there is little benefit but great potential side-effect for a

trainee to practice a task without receiving proper real-time feedback, i.e., knowing if they are

performing correctly and what they must perform differently [16].

Providing the trainee with solely verbal feedback or a see-and-repeat guidance/instruction

from an expert may have limited effectiveness; since the expert no longer views the task as an

intellectual problem broken down into steps, while the learner may not have achieved adequate

proficiency to perceive the important elements of the expert motion through merely observa-

tion. Therefore, the expert may not be able to verbalize the guidance beyond a global statement,

while visual demonstration of the expert movement may not be sufficiently enlightening for the

trainee [16]. Furthermore, the see-and-repeat approach is only suitable for trainees who have

enough level of expertise to perform the procedure, at least partially, on their own. In fact, they

should possess a reasonably high level of motor skills to qualify to operate the surgical system.

This makes it insufficient for less-skilled trainees.

Therefore, in this chapter an Expert-In-the-Loop (EIL) haptics-enabled training framework

is proposed for dual-console surgical robotic systems to deliver feedback and guidance through

a fusion of multiple sensorimotor modalities, rather than a stand-alone vision modality. The

framework includes a Fuzzy Interface System (FIS) to provide the trainee with expertise-

oriented guidance, such that the more expertise the trainee shows, the lower level of haptic

guidance will be provided. The proposed expertise-oriented framework can be used by trainees

at any stage of motor-skills development without jeopardizing patient safety.

Another safety aspect that must be ensured in any haptics-enabled teleoperation system
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is closed-loop stability to guarantee safe and reliable human-robot interaction [17]. There-

fore, closed-loop stability of the framework is investigated using the Circle Criterion and it is

shown that the proposed framework is unconditionally stable. The framework is implemented

on a dual-console surgical system consisting of a classic da Vinci R© surgical system and a dV-

Trainer R©. As indicated by several studies, the dV-Trainer R© provides the look and feel of the

da Vinci R© master console [10], and together with the classic da Vinci R© surgical system, they

provide the key features of a dual-console surgical robotic system in terms of workspace, num-

ber of Degrees-Of-Freedom (DOFs) and user interface. Experimental evaluations are given in

three separate scenarios in support of the proposed platform.

Remark: To the best knowledge of the authors, the implemented setup serves as 1) the first

research platform for dual-console studies and development on the classic da Vinci R© surgical

system, and 2) the first haptics-enabled training platform based on HOH guidance/cueing for

such a system.•

The rest of the chapter is organized as follows: Section 6.2 presents the overall framework

with multimodal sensorimotor integration for dual-console surgical robotic systems. Section

6.3 discusses the adaptive adjustment process of a trainee’s level of engagement in terms of

their authority over the procedure and the haptic guidance provided based on their level of

proficiency in real-time. Section 6.4 presents a stability analysis for the closed-loop system.

Experimental results are given in Section 6.5. Sections 6.6 and 6.7 discuss two further exten-

sions, and Section 6.8 concludes the chapter.

6.2 Sensorimotor Integration for Dual-Console Surgical

Robotic Systems

Kinesthetic Hand-Over-Hand (HOH) guidance can be applied to trainees’ hands in order to

teach them the optimal movement synergies required for performing a task without “wasting

movements”. Teaching optimal synergies from early stages of surgical robotic skills acqui-

sition, before the trainee establishes incorrect or inefficient movements and motor habits that

could be difficult to unlearn, can speed up the learning process while decreasing the practice-

related fatigue [16].
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The presence of an expert in the loop, realized through the dual-console framework (such

as the da Vinci R© Si surgical system) can provide an appropriate desired reference of the move-

ment synergy for the trainee. Therefore, as a result of the proposed EIL architecture, without

requiring any task prediction or any a priori information about the surgical task, the trainee

can receive real-time kinesthetic HOH guidance along with the visual cues already available

on the dual-console system. A possible realization of the HOH guidance force, fΓ , applied to

the trainee’s hands through the corresponding master console is defined as follows:

fΓ (t) = kΓ (t)(xE(t)− xT (t)) (6.1)

where xT and xE refer to the trajectories of the master consoles manipulated by the trainee and

the expert, respectively; xE serves as the real-time desired trajectory for the trainee; kΓ ∈ [0,κ]

indicates the stiffness of the “virtual elastic bond” between the trainee’s and the expert’s hands,

based on which the trainee is cued to follow the optimal motion of the expert. Also, κ is the

maximum level of kΓ , the variation profile of which can be set in real-time based on the exper-

tise level of the trainee, as discussed in the next section. The more skilled the trainee is, the less

the level of HOH guidance provided to preserve their freedom of motion. It should be noted

that the HOH guidance induces a 1-way haptic interaction (from the expert to the trainee) that

does not affect surgical performance and movements of the expert surgeon, and therefore does

not impose any risk with regard to patient safety.

Depending on the skills level of the trainee, it may also be desirable for the expert in the

loop to provide a sufficiently skilled trainee with some level of control over the surgical pro-

cedure in order to speed up the trainee’s learning process. The current architecture of the

dual-console da Vinci R© Si system allows either zero or full transfer of control over the slave

console to the trainee, i.e., xS,Des(t) = xE(t) or xS,Des(t) = xT (t), respectively; where xS,Des

refers to the desired trajectory of the slave manipulator. A more general and flexible config-

uration would be to provide the trainee with partial authority over the procedure, so that the

expert’s continuous involvement is preserved:

xS,Des(t) = αE(t) · xE(t)+αT (t) · xT (t) (6.2)
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where 0≤ αE ≤ 1 and 0≤ αT ≤ 1 denote the authority level (dominance factor) over the slave

console for the expert and the trainee, respectively, such that αE +αT = 1. This configuration

keeps the expert involved in the loop of surgery while the sufficiently skilled trainee performs

a part of the surgical operation. The authority level of the trainee can be either set directly by

the expert, or adapted automatically based on the trainee’s level of expertise, as elaborated in

the next section. Note that two special cases of (6.2) would be to have: 1) αE = 1, αT = 0,

and 2) αE = 0, αT = 1. These cases provide the trainee with zero and full authority over

the slave console, respectively, which are the only two configurations available in the current

architecture of the da Vinci R© Si system.

Through the proposed framework, a trainee can benefit in several ways:

1. real-time feedback as a result of the expert-in-the-loop configuration;

2. sensorimotor integration by incorporating haptic modality with the visual modality;

3. progressive training through the adaptive expertise-oriented scheme.

6.3 Adaptive Expertise-Oriented Engagement

In the previous section, an overview of the proposed framework was presented. In this section,

the adjustment process for the stiffness of the HOH force provided to the trainee, kΓ , as well

as their level of control over the operation, αT , based on the trainee’s level of proficiency will

be discussed. Although this process can also be manually performed in an offline manner by

the expert, online adaptation of the parameters helps engage the trainee in an intermittent inter-

action, which has been shown to significantly enhance and speed up motor learning [13]. Au-

tomatic, yet supervised, adaptation of kΓ and αT facilitates their real-time adjustment without

imposing an extra processing burden on the expert surgeon in the loop. Therefore, to incorpo-

rate the element of the expert’s supervision into the automatic online adaptation process, the

adjustment profiles of kΓ and αT are defined as follows:

αT (t) = ζ · α̂T (t) (6.3)

kΓ (t) = κ · k̂Γ (t) (6.4)
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where 0≤ α̂T (t)≤ 1 and 0≤ k̂Γ (t)≤ 1 denote the adaptive elements of the online adjustment

process. In addition, 0≤ κ and 0≤ ζ ≤ 1 are supervisory elements set by the expert surgeon,

which enable the expert to confine αT and kΓ within his/her preferable range. Unlike the

adaptive elements which are automatically updated in real-time, the supervisory elements can

be adjusted offline or at much lower rates, so that the expert is not burdened with unnecessary

multitasking. In order to adjust the adaptive elements (α̂T and k̂Γ ) based on the trainee’s level

of proficiencies, an FIS is designed as described below. Fuzzy Logic (FL) provides a powerful

flexible approach in dealing with the imprecision, vagueness and subjectivity of surgical motor-

skills assessment [18].

6.3.1 Task-Independent Skills Assessment

The first step in the development of the expertise-oriented FIS is to assess the trainee’s pro-

ficiency level objectively and in real-time. Since it is not possible to quantitatively express

the desired maneuvers of a complex and multi-step surgical operation in advance, using the

traditional absolute assessment approaches, a desired quantitative performance cannot be de-

termined with respect to which the trainee’s performance can be assessed. Therefore, the skills

assessment approach should be task-independent, yet objective, so that it can be used in real-

time surgical scenarios. Having an expert in the loop as a result of the dual-console framework,

the performance of the expert serves as a desired reference for the trainee in real-time. For this

purpose, a normalized task-independent metric, Φ , is defined, based on which the performance

of the trainee can be determined in relation to that of the expert in the loop.

Φ∆ (t) = 1−
∣∣∣∣∆E(t)−∆T (t)
∆E(t)+∆T (t)

∣∣∣∣ (6.5)

where ∆E and ∆T denote absolute skills-assessment metrics calculated for the expert and the

trainee, individually. The absolute metric, ∆ , can be any of the existing quantitative gold-

standard metrics in the literature, two of which are used in this chapter, as described below.
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Total Path Length (TPL)

denotes the length of the curved path traversed by the operator’s hand, which is equal to the TPL

traveled by her/his corresponding master manipulator. To perform a similar task, in contrast

with that performed by a novice, an expert will have a smaller TPL due to optimized movement

characteristics and coordination. The TPL, ρ , for an operator is calculated as follows [19]:

ρν =

∫
t

0

√(
dxν ,x

dτ

)2

+

(
dxν ,y

dτ

)2

+

(
dxν ,z

dτ

)2

dτ (6.6)

where ρE (ν = E) and ρT (ν = T ) denote the TPL for the expert and the trainee respectively;

subscripts x, y and z refer to position elements along x, y and z directions respectively. Hav-

ing ρE and ρT calculated for the expert and trainee in real time, the normalized TPL can be

calculated for the trainee relative to that of the expert using (6.5), as follows:

Φρ(t) = 1−
∣∣∣∣ρE(t)−ρT (t)
ρE(t)+ρT (t)

∣∣∣∣ (6.7)

which provides an online task-independent measure for the trainee’s performance.

Motion Smoothness (MS)

can be quantified based on the time-integrated squared jerk, where jerk refers to the third

derivative of the manipulator’s end-effector position. Maximally smooth movements have min-

imal time-integrated jerks, which makes the metric appropriate for quantitative skills assess-

ment [19], [20]. The metric representing MS, δ , is defined as follows:

δν =

∫
t

0

√(
d3xν ,x

dτ3

)2

+

(
d3xν ,y

dτ3

)2

+

(
d3xν ,z

dτ3

)2

dτ (6.8)

Calculating δE (ν = E) and δT (ν = T ) for the expert and the trainee and incorporating them

into (6.5) gives the normalized MS for the trainee relative to that of the expert as follows:

Φδ (t) = 1−
∣∣∣∣δE(t)−δT (t)
δE(t)+δT (t)

∣∣∣∣ (6.9)
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Level Of Guidance (LOG)

The same process can be repeated in order to task-independently normalize any quantitative

performance metric for the trainee relative to that of the expert. This relative approach of

performance assessment specifies how closely the trainee has been able to follow the desired

trajectory generated by the expert. In order to determine whether a good performance of the

trainee has been due to the trainee’s actual proficiency over the task or resulted from the pres-

ence of HOH haptic guidance, a linear metric based on the LOG provided to the trainee is also

incorporated into the skills assessment process. The LOG metric, Φη , determines how atten-

tively the trainee has followed guidance cues provided to their hand through the HOH haptic

force.

Φη =

{
1− fΓ

fκ

if fΓ ≤ fκ ;

0 if fΓ > fκ .
(6.10)

where fκ denotes the maximum level of HOH force to be applied to the trainee’s hand.

6.3.2 The Fuzzy Interface System Design

In order to adjust the adaptive elements of the architecture, α̂T (t), k̂Γ (t), based on the profi-

ciency level of the trainee, an FIS is designed. The FIS fuses and utilizes the three proficiency

assessment metrics (Φρ , Φδ and Φη ) as inputs in order to adaptively update α̂T (t), and k̂Γ (t) in

real time. For this purpose, the proficiency level of a trainee is categorized into four divisions:

1) Beginner, 2) Intermediate, 3) Advanced, and 4) Skilled (BIAS).

Moving from a beginner trainee to a skilled trainee, the FIS should increase the adaptive

portion of the trainee’s authority level over the task, α̂T (t). Note that according to (6.3), the

overall authority level of the trainee, αT , is restricted to the maximum allowable level set by

the expert, ζ , which retains the expert’s desirable authority level over the operation to ensure

patient safety.

The FIS should also provide a higher level of HOH guidance to a beginner, compared to an

intermediate/advanced trainee, by increasing the adaptive portion of the HOH stiffness, k̂Γ (t),

while decreasing the LOG for trainees with higher proficiency levels. Note that according to

(6.4), the overall stiffness of the HOH guidance, kΓ (t), is limited by the maximum allowable
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Figure 6.1: The FIS output surfaces with respect to inputs LOP and LOG- Left: α̂T , Right: k̂Γ .
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Figure 6.2: The overall scheme of the closed-loop system in the absence of tool-tissue in-
teraction haptic feedback. Image derived from photographs of masters and EndoWristTM-
Instruments provided by Intuitive Surgical, Inc. [ c©2006].

stiffness level set by the expert, κ , while the FIS specifies its adaptive variation profile, k̂Γ (t).

To accomplish the requirements desired for the training system, the fuzzy rules are defined

as follows:

• If the trainee level is Beginner, significantly decrease α̂T (t) and significantly increase

k̂Γ (t);

• If the trainee level is Intermediate, slightly decrease α̂T (t) and slightly increase k̂Γ (t);

• If the trainee level is Advanced, slightly increase α̂T (t) and slightly decrease k̂Γ (t);

• If the trainee level is Skilled, significantly increase α̂T (t) and significantly decrease

k̂Γ (t).
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To design the FIS, the MATLAB Fuzzy Logic Toolbox is used. An average sum of the two

performance metrics Φρ and Φδ along with Φη are fuzzified as the inputs of the FIS using

“Trapezoidal-shaped” and “Triangular-shaped” membership functions. The same membership

functions are also used for the purpose of defuzzification at the output. Note that Φρ and Φδ are

combined into a single input, quantifying the performance level of the trainee, called the Level

Of Performance (LOP), while LOG (Φη ) is used as the second input in parallel to indicate if

a skilled behavior of the trainee is a result of their good performance or due to the presence

of HOH guidance. Using the average/weighted summation of performance metrics as a single

input allows for straightforwardly integrating other quantitative performance metrics into the

process without the necessity of redesigning the FIS. The resulting output surfaces with respect

to the two inputs LOP and LOG are shown in Fig. 6.1.

6.4 Closed-Loop Stability Analysis

Fig. 6.2 illustrates the overall scheme of the proposed framework. As can be seen, there is a

feedback loop at the trainee’s side, the effect of which on stability of the overall system should

be investigated. Ensuring closed-loop stability in any haptics-enabled teleoperation system is

a necessity in order to guarantee the safety and reliability of the human-robot interaction [21].

Therefore, in this section, closed-loop stability of the framework is analyzed.

The dynamics of a trainee’s arm can be modeled by a second-order system as follows [22]:

fϒ(t) = f ∗T (t)−MT · ẍT (t)−BT · ẋT (t)

−KT · (xT (t)− xT0))
(6.11)

where fϒ refers to the force applied by the trainee at his/her corresponding master console, and

fϒ = − fΓ ; f ∗T denotes the exogenous force applied by the trainee; MT , BT and KT stand for

the mass, damping and stiffness of the trainee’s hand respectively; and xT0 indicates the initial

position of the trainee’s hand, xT .

Combining (6.1) and (6.11) , the resulting system at the trainee side is shown in Fig. 6.3.

The closed-loop system is a feedback connection of the linear dynamical system Z−1
T (s) and

the nonlinear time-varying element KΓ (t), the stability of which can be analyzed using the
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Circle Criterion. The Circle Criterion is an appropriate analysis tool for linear systems subject

to a nonlinear feedback element [23]. In Fig. 6.3, ZT (s) denotes the impedance characteristics

of the trainee’s hand in the Laplace domain, such that ZT (s) = MT s2+BT s+KT ; where s indi-

cates the Laplace Transform variable.

Theorem I [23]: The feedback connection of a linear dynamical system G(s) and a nonlin-

ear element ξ is stable if for ξ ∈ [ξ1,ξ2], with ξ2−ξ1 > 0, [I+ξ2G(s)][I+ξ1G(s)]−1 is Strictly

Positive Real (SPR).•

Considering that KΓ ∈ [0,κ] and based on Theorem I, the feedback system, from output xT

to input f ∗T +KΓ xE , is stable if [I +κZ−1
T (s)] is SPR. We also need the following definitions:

Definition I [23]: The transfer matrix H(s) is SPR if H(s− ε) is Positive Real (PR) for

some ε > 0.•

Definition II [23]: The transfer matrix H(s) is PR if:

• the poles of all elements of H(s) are in Re(s)< 0

• for all real ω for which jω is not a pole of H(s), H(s)+HT (−s) is positive semi-definite,

and

• any pure imaginary pole jω of H(s) is a simple pole and the residue lims→ jω(s−

jω)H(s) is positive semi-definite Hermitian.•

Considering that 0 < κ , and ZT (s) = MT s2 +BT s+KT denotes the impedance character-

istics of the trainee’s hand such that MT ,BT and KT > 0, the first and the third conditions of

strictly positive realness are automatically satisfied for [I +κZ−1
T (s)]. In order for the second

condition to be satisfied, [I +κZ−1
T (s)]+ [I +κZ−1

T (−s)]T , which can be simplified to (6.12),

𝑍𝑇
−1(𝑠)𝐾𝛤,𝑇(𝑡)

𝑓𝑇
∗

𝐾𝛤,𝑇(𝑡)

𝑥𝐸 𝑥𝑇+

_

+

Figure 6.3: The closed-loop system at the trainee side.
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should be Positive Semi-Definite (PSD).

[I +κZ−1
T (s)]+ [I +κZ−1

T (−s)]T =

[I +κZ−1
T (s)]+ [IT +κZ−T

T (−s)] =

2I +κ(Z−1
T (s)+Z−T

T (−s))

(6.12)

Assuming that the admittance characteristic of the human hand, Z−1
T , is an SPR system, Z−1

T (s)+

Z−T
T (−s) is a PSD matrix; which, considering that 0 < κ , implies that (6.12) is PSD, as well.

Hence, all the conditions in Theorem I are satisfied and the closed-loop system shown in Fig.

6.3 is stable. Note that f ∗T and xE are the trainee’s exogenous force and the expert-generated po-

sition, respectively, which are bounded signals; and considering that KΓ ∈ [0,κ], f ∗T +KΓ xE is a

bounded input to the system. This guarantees boundedness of xT in the presence of HOH guid-

ance. Satisfying (6.2) for the slave console, and considering that 0≤αE , αT ≤ 1, boundedness

of xs,Des is also guaranteed, which implies unconditional stability of the proposed framework.

Remark: The admittance characteristic of the human arm in the velocity-force domain is

an SPR system. In position-force domain, there exists a frequency-dependent condition on the

arm’s characteristics for the human arm to remain SPR. However, in most telerobotic applica-

tions, including surgical, the frequencies of motions generated by operators are normally below

the natural frequency of their arm characteristic. By considering this assumption, the admit-

tance characteristic of the human arm in the position-force domain is also an SPR system.•

6.5 Experimental Evaluations

6.5.1 Setup Design and Implementation

To evaluate the proposed framework, a dual-console platform was set up. The platform consists

of 1) a first generation da Vinci R© surgical robotic system, integrated with the da Vinci R© Re-

search Kit (dVRK) motor controllers (by Johns Hopkins University, Baltimore, MD; Worcester

Polytechnic Institute, Worcester, MA; and Intuitive Surgical, Inc., Sunnyvale, CA, USA) [24];

and 2) a dV-Trainer R© console. The dV-Trainer R© provides the look and feel of the da Vinci R©

master console [10], and together with the da Vinci R© result in a dual-console RAMIS system
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in terms of workspace, number of DOFs and user interface. In addition to haptics-enabled

training based on HOH guidance/cueing, the implemented setup also provides an appropriate

research and development testbed for the dual-console surgical robotic systems, including the

da Vinci R© Si system.

In this setup, each of the da Vinci’s two Master Tool Manipulators (MTMs) and two Patient

Side Manipulators (PSMs) are connected to an individual dVRK motor controller, consisting

of a pair of Quad Linear Amplifiers (QLAs) and IEEE-1394 FPGA boards [24]. The dVRK

enables us to transmit force commands to the MTMs. This results in the MTMs being haptic-

enabled. High level control computations are performed on a Linux computer which communi-

cates with the motor controllers via a low-latency Firewire (IEEE-1394a) bus. The application

software for dVRK is written in C++ using the component-based cisst libraries [25] and the

Surgical Assistant Workstation (SAW) package [26].

Fig. 6.4 illustrates the experimental setup along with the schematic connections between

components. In this figure, Computer I is responsible for interfacing with the dV-Trainer R©

using a C++ API provided by Mimic Technologies. Computer I also serves as the processing

core for the proposed framework, on which the adaptive FIS-based parameters are generated in

MATLAB Simulink integrated with Quarc real-time software (by Quanser Inc.). Computer II

runs a modified version of the dVRK teleoperation application and interfaces with the dVRK

motor controllers. The modified dVRK teleoperation application runs at a sampling rate of

500Hz, where at each sample the Cartesian position of both the MTMs and PSMs as well as

the gripper and pedal states of the MTMs and grasper angle of the PSMs are measured and sent

to Computer I. This information along with that received from the dV-Trainer R© is processed by

the FIS-based processing core on Computer I. The resulting desired position for the PSMs and

the desired HOH force are re-transmitted to Computer II. When received, the former (position)

is set by the original dVRK teleoperation control implementation as the desired position for

the PSMs, while the latter (force) is mapped and applied to the haptics-enabled MTMs. The

two computers communicate via the User Datagram Protocol (UDP) over a Local Area Net-

work (LAN). VGA multiplexers are used to share the endoscopic cameras’ outputs between the

stereo viewers on the two master consoles. In this configuration, the da Vinci R© master console

was utilized as the trainee’s console, while the dV-Trainer R© was used as the expert’s console.
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6.5.2 Experimental Results

In order to evaluate various aspects of the framework, three sets of experiments were con-

ducted. The experiments, discussed below, examine the architecture when the trainee is given

zero, constant and time-varying adaptive authority levels over the task, respectively.

Scenario I

This experiment evaluates the adaptation process of the HOH guidance provided to the trainee,

while the expert has full control over the procedure. This mode allows training a novice trainee

concurrently with the performance of a surgical procedure by an expert surgeon, without jeop-

ardizing patient safety due to the trainee’s inexpertise. For this purpose, it is sufficient to set ζ ,

the expert’s supervisory element over the trainee’s authority level, to zero, resulting in αT = 0

and αE = 1. In order to study the behavior of the system in various situations, the experiment

was conducted in three phases:

Phase #1 (t = 0−50s): the trainee was asked to simulate skilled behavior by following the

desired trajectory also followed by the expert.

Phase #2 (t = 55− 110s): the trainee was asked to follow the desired trajectory not very

accurately, but with some errors, while paying moderate attention to the HOH force provided

to him and allowing the HOH force to guide him to some extent.

Phase #3 (t = 115−165s) the trainee was asked to simulate unskilled behavior by keeping

his master console at a fixed location, while completely ignoring the desired trajectory gener-

ated by the expert or the HOH guidance provided to him.

In this experiment, κ was set to 250 N/m as the maximum allowable level of HOH stiffness.

The results are given in Fig. 6.5. Fig. 6.5a shows the trajectories in the Y direction for the ex-

pert’s and the trainee’s master consoles as well as the desired trajectory generated for the slave

console. As can be seen in this figure, in all three phases and as a result of αE = 1, the slave

robot followed the expert’s trajectory regardless of the level of expertise shown by the trainee.

Fig. 6.5b shows the three normalized proficiency metrics Φρ , Φδ and Φη calculated for the

trainee in real-time. As can be seen, in the first phase of the experiment, when the trainee was

behaving as an expert, all three measures refer to his high level of expertise. During the second

phase, a slight reduction of Φρ , Φδ can be seen as a result of small errors generated by the
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trainee, while they still refer to an acceptable level of performance for him. However, Φη has

dropped considerably during the second phase. Comparing the first and the second phases, this

indicates that although the trainee has shown quite similar levels of performance (in terms of

trajectory tracking) in both phases, his good performance during the first phase has been as a

result of his expertise, while he has relied more on the HOH guidance force during the second

phase in order to retain his performance level. During the third phase of the experiment, all

three metrics dropped considerably, as the trainee completely ignored the expert’s trajectory

and the HOH guidance force.

Fig. 6.5c illustrates the adaptive HOH stiffness generated by the FIS for the trainee accord-

ing to his proficiency level during the experiment. As can be seen in this figure, the lowest

and the highest levels of stiffness were set for the trainee during the first and the last phases,

respectively, while providing him with a moderate level of assistance during the second phase.

Scenario II

This experiment investigates the effect of a constant authority level for the trainee and illus-

trates how undesirable a non-adaptive approach could be. For this purpose, the trainee’s au-

thority level, αT , was set to 0.5, allocating equal levels of control over the task for the trainee

and the expert. The experiment was conducted in three phases, as describe below:

Phase #1 (t = 0− 60s): The expert was asked to generate the desired trajectory as an

oval-shape path traversed four times. The trainee’s role was defined to simulate a proficient

performance by following the desired trajectory generated by the expert.

Phase #2 (t = 60−110s): The trainee was asked to simulate a non-expert by following a

trajectory completely different from that of the expert in the loop. The trainee was instructed

to move his hand at a normal pace.

Phase #3 (t = 110−165s): The trainee was asked to repeat the actions of Phase #2, but also

generate non-smooth and abrupt movements in order to exaggerate undesirable movements.

Fig. 6.6 shows 2D representation of trajectories in the X-Y plane. As can be seen, dur-

ing the first phase, the slave manipulator followed the average of the expert’s and the trainee’s

trajectories. During the second phase, the trainee created smaller trajectories than the desired
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Figure 6.5: Experimental results, scenario #1; αT = 0, αE = 1.



158 CHAPTER 6. SUPERVISED TELEROBOTIC SURGICAL TRAINING

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

P
o

si
ti

o
n

 (
m

) 
- 

Y
 

   
P

h
as

e 
II 

   
  

-0.04

-0.02

0

0.02

0.04

Position (m) - X
-0.06 -0.04 -0.02 0 0.02 0.04 0.06

P
h

as
e 

III

-0.04

-0.02

0

0.02

0.04

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

P
h

as
e 

I

-0.04

-0.02

0

0.02

0.04
xT
xE
xS,Des

Figure 6.6: Experimental results, scenario #2: position comparison, 2D representation; αT =
αE = 0.5.



6.5. EXPERIMENTAL EVALUATIONS 159

oval-shape generated during the previous phase. Therefore, the expert had to increase the

movement range of her hand to compensate for the undesired performance of the trainee in or-

der to make the slave robot follow the oval-shaped trajectory. In fact, as a result of the non-zero

authority level of the expert, she was still able to handle the trainee’s inexpertise, although with

extra effort. While this situation (resulting from partial but non-adaptive authority allocation

for the trainee) is far from ideal, it may be a safer approach than transferring full authority to

the trainee (as in the current architecture for the dual-console da Vinci R© Si), since the expert

still has some level of control over the task. However, as shown in the third phase, providing

the trainee with partial but non-adaptive authority over the task is insufficient in terms of en-

suring patient’s safety. As can be seen in Fig. 6.6, during the third phase, the trainee created

exaggerated non-smooth and abrupt movements. Despite the expert’s effort to suppress the

trainee’s undesirable performance, the expert was not able to compensate for the trainee’s in-

expertise. Therefore, the trajectory set for the slave robot was far from the desired oval-shaped

path. Although transferring partial, rather than full, authority over the task to the trainee can

enhance safety, the offline adjustment process is still insufficient.

Scenario III

Online adjustment of the trainee’s authority level during the operation can be either done by the

expert in the loop, which might impose extra load and stress on the expert, or performed adap-

tively but semi-autonomously. In this experiment, the full architecture including the expertise-

oriented online adaptation process of the trainee’s authority level along with adaptive HOH

guidance force is evaluated. In order to make the experiment’s conditions comparable to those

of the previous experiment, ζ (the expert’s supervisory element over the trainee’s authority

level) was set to 0.5, while enabling the online adaptation feature. The trainee was also asked

to repeat all the phases performed in experimental scenario #2, simulating 1) a skilled trainee

(t = 0−65s), 2) a novice trainee, while making normally-paced movements (t = 65−125s),

and 3) a novice trainee, while creating non-smooth and abrupt movements (t = 125− 170s).

In addition, the trainee was instructed to forcefully ignore and resist the HOH guidance force

applied to his hand during the novice phases (#2 and #3) of the experiment. The expert’s super-

visory element for the HOH force, κ , was set to 250 N/m, indicating the maximum allowable
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stiffness of the HOH force to be applied to the trainee’s hand. Fig. 6.7 illustrates the results of

this experiment.

Fig. 6.7a shows the three normalized proficiency metrics Φρ , Φδ and Φη calculated for the

trainee in real-time. As can be seen, all three metrics refer to a high level of expertise for the

trainee during Phase #1. Therefore, as shown in Fig. 6.7b, the system provided the trainee with

a high level of authority (about 0.4 out of the maximum allowable level ζ = 0.5) during this

phase. During both second and third phases, the proficiency metrics dropped considerably as a

result of the inexpertise shown by the trainee. Comparing Φδ (quantifying the level of motion

smoothness of the trainee’s movement) for Phases #2 and #3, Φδ dropped in the third phase

due to the non-smooth and wobbly movements of the trainee, as expected. In addition, in both

phases, the LOG metric (Φη ) plunged, indicating that the trainee had ignored the HOH forces

applied to his hand.

Consequently, the trainee was rated as a beginner by the FIS during Phases #2 and #3, set-

ting his authority level over the task to zero (Fig. 6.7b). Fig. 6.7c also illustrates the HOH

stiffness, kΓ , adaptively adjusted for the trainee by the FIS. As can be seen, during phases #2

and #3, kΓ was set to a very high level (215 out of the maximum allowable level κ = 250),

increasing the HOH force applied to the trainee’s hand (Fig. 6.7d).

Fig. 6.8 compares the trainee’s and the expert’s trajectories as well as the desired trajectory

set for the slave console. As can be seen, the slave robot has followed the weighted summation

of the expert’s and the trainee’s trajectories during the first phase. However, in phases #2 and

#3, the zero authority provided to the trainee by the PIS as a result of his lack of proficiency re-

sulted in the slave console to completely ignore the trainee’s trajectory and follow the expert’s.

Comparing this result with Fig. 6.6 (the position diagram of scenario #2), the effectiveness of

the expertise-oriented adaptive adjustment approach is clear. Using the adaptive framework,

while a skilled trainee can participate in the surgical procedure, a novice trainee can receive

HOH guidance in order to develop adequate sensorimotor skills, without jeopardizing patient

safety.
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6.6 Extension: Integration of Haptic Feedback of Tool-Tissue

Interaction Forces

During the late stages of learning, when the trainee has achieved a reasonable level of motor

skills in manipulating the robotic console, familiarization with Tool-Tissue Interaction (TTI)

forces should be the next step. Directing the trainee’s focus on the effect of the movement,

i.e., the TTI force, has been shown to be effective in facilitating automaticity in motor control
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and enhancing movement efficiency [27]. TTI force estimation/measurement in surgical robots

including the da Vinci R© Si has not, however, fully evolved [28], [29]. Development of an ap-

propriate force sensor for RAMIS is still an open problem due to constraints on size, geometry

and cost along with the necessity for biocompatibility and sterilizability [30], [31]. Nonethe-

less, assuming the availability of accurate TTI force measurement technology for RAMIS in

the near future, the training haptic force provided to the trainee through the master console,

fT (equal to fΓ (t) in the previous case), can be modified such that an advanced trainee feels

TTI haptic forces on their hands rather than HOH haptic guidance. For this purpose, the haptic

force provided to the trainee, fT , can be defined as:

fT (t) = βΓ . fΓ (t)+βΩ . fΩ (t) (6.13)

where fΩ denotes the TTI haptic force; βΓ and βΩ refer to activation coefficients of forces fΓ

and fΩ , respectively. βΓ and βΩ can have a value of 0 or 1 such that βΓ +βΩ = 1. They can

be adjusted by the expert (for example using a foot pedal) or automatically through the FIS

depending on the learning need as well as the learning phase of the training. For the latter case,

the fuzzy rule should be defined as follows:

• If the trainee is at the Beginner level, significantly decrease α̂T (t) and significantly in-

crease k̂Γ (t);

• If the trainee is at the Intermediate level, slightly decrease α̂T (t) and slightly increase

k̂Γ (t);

• If the trainee is at the Advanced level, slightly increase α̂T (t) and significantly decrease

k̂Γ (t);

• If the trainee is at the Skilled level, significantly increase α̂T (t) and provide them with

TTI haptic feedback, rather than HOH guidance force, i.e., switching from βΓ to βΩ .

This provides the trainee with expertise-oriented training in the sense that the type of haptic

guidance (HOH vs. TTI) will be specified based on their level of expertise as well as their

phase of learning. Assuming the availability of accurate TTI force measurement, the expert
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Figure 6.9: The overall scheme of the closed-loop system in the presence of TTI haptic feed-
back.

surgeon can also be provided with TTI haptic feedback, as follows, in order to enhance their

surgical performance:

fE(t) = fΩ (t) (6.14)

where FE indicates the force applied to the expert’s hand by their corresponding master con-

sole. Augmenting TTI feedback adds extra loops into the system that, as shown below, will

impose stability conditions to be satisfied and the closed-loop stability will not necessarily be

unconditional anymore.

6.6.1 Stability Analysis in the Presence of TTI Force Feedback

Incorporating TTI feedback to the system will transform the framework to Fig. 6.9, and the

closed-loop system into: 
fT (t) = βΓ . fΓ (t)+βΩ . fΩ (t)

xS,Des(t) = αE(t). xE(t)+αT (t). xT (t)

fE(t) = fΩ (t)

(6.15)

Now, by modeling the operators (the trainee and the expert) as well as the environment (gen-

erating the TTI force on the slave manipulator) by second-order linear time-invariant sys-
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tems [32], we have: fhΛ
(t) = f ∗hΛ

(t)−MΛ ẍΛ (t)−BΛ ẋΛ (t)−KΛ (xΛ (t)− xΛ ))

fΩ (t) = MΩ ẍS(t)+BΩ ẋS(t)+KΩ (xS(t)− xS0))
(6.16)

where fhΛ
(Λ : T, E) denotes the force applied by the trainee (Λ : T ) and by the Expert (Λ :

E) to their corresponding master console, where fhT = − fT and fhE = − fE . Also, MΛ , BΛ

and KΛ indicate mass, damping and stiffness of their hand, respectively; and xΛ0 indicates

the initial position of the their hand, xΛ . In addition, fΩ denotes the TTI force applied by

the environment to the tool; MΩ , BΩ and KΩ indicate mass, damping and stiffness of the

environment, respectively. Also, xS0 denotes the initial value of xS, the end-effector position of

the slave manipulator in contact with the environment.

In order to analyze the stability of the closed-loop system, the Small-Gain Theorem is

applied.

Theorem II [33]: The feedback interconnection of systems Σ1 and Σ2 is Input-Output Stable

(IOS) if:

u1 ∈ L∞ , u2 ∈ L∞ (6.17)

Σ1 ∈ L1 , Σ2 ∈ L1 (6.18)

ϑ1 ·ϑ2 6 1 (6.19)

where, ϑ1 and ϑ2 in (6.18)-(6.19) denote the IOS gain of sub-systems Σ1 and Σ2, respectively,

as per the following definition given for IOS gain.

Definition III: The IOS gain of a system with the input-output relation y(t) = Σu(t), where

Σ is an operator or a mapping that specifies y in terms of u, is a nonnegative constant ς such

that:

sup
t>0
|y(t)|6 ς · sup

t>0
|u(t)|+ ε;

where ε is a nonnegative constant bias term.•

The closed-loop framework can be transformed into the format given in Fig. 6.10. Since

0 ≤ αE ,αT ≤ 1,αT and αE = 1− αT introduce the maximum gain 1 to inputs xT and xE .

Therefore, in the worst case, αT and αE can be replaced by 1, as shown in Fig. 6.11. It should



166 CHAPTER 6. SUPERVISED TELEROBOTIC SURGICAL TRAINING

be noted that in reality αT and αE do not become equal to 1 simultaneously. Therefore, this

worst case considered in Fig. 6.11 leads to a conservative stability condition. By substituting

fΩ and fhΛ
(Λ : T,E) from (6.16) into the closed-loop system given in (6.15), considering

the worst case condition and by some mathematical manipulations, ZΩ , Π1, Π2 and U1 are

calculated as follows:

ZΩ = MΩ · s2 +BΩ · s+KΩ (6.20)

Π1 =
1

ZE
(6.21)

Π2 =
βΩ ZE +βΓ KHOH

ZE · (ZT +βΓ KHOH)
(6.22)

U1 =
ZT +βΓ KHOH

Ξ
·F∗E +

βΩ ZE +βΓ KHOH

Ξ
·F∗T (6.23)

where Ξ = ZT +βΩ ZE +2βΓ KHOH , ZE = MEs2 +BEs+KE , and ZT = MT s2 +BT s+KT .

Based on the Small-Gain Theorem, it is required to investigate the following conditions for

ensuring stability of the closed-loop system in the presence of the TTI force:

U1 ∈ L∞ (6.24)

Σ1 = Π1 +Π2 ∈ L1 , Σ2 = ZΩ ∈ L1 (6.25)

ϑ1 ·ϑ2 6 1, where ϑ1 = ||Σ1||L1, ϑ2 = ||Σ2||L1
(6.26)

F∗hΛ
(Λ : T, E), which denotes the hand exogenous forces applied by the trainee and the expert

belonging to L∞ [33]. In addition, ZΛ (Λ : T, E) corresponds to their hand dynamics with pos-

itive and bounded coefficients. As a result, while also having KHOH as a positive and bounded

parameter, U1 belongs to L∞, i.e., the first stability condition given by (6.24) is satisfied.

For the second stability condition given by (6.25), we have Σ1 = Π1 +Π2, which results in

Σ1 =
ZT +βΩ ZE +2βΓ KHOH

ZE(ZT +βΓ KHOH)
, belonging to L1. However, Σ2 = ZΩ does not belong to L1 due

to its improper dynamics. In order to address this issue, as elaborated in [33], it is sufficient

to apply a low-pass filter ψ =
1

ψ2s2 +ψ1s+ψ0
to the TTI force, before transmitting it to the

operators’ master consoles, in order to transform Σ2 to a proper dynamics. Applying the filter

results in Σ2 = ZΩ ·ψ =
MΩ s2 +BΩ s+KΩ

ψ2s2 +ψ1s+ψ0
∈ L1. Therefore, the second stability condition
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given by (6.25) is also fulfilled.

For the third stability condition given by (6.26), and based on the definition of the L1-norm,

we have:

||Σ1||L1 =

+∞∫
−∞

∣∣∣∣ZT +βΩ ZE +2βΓ KHOH

ZE(ZT +βΓ KHOH)

∣∣∣∣dω (6.27)

||Σ2||L1 =

+∞∫
−∞

∣∣∣∣MΩ s2 +BΩ s+KΩ

ψ2s2 +ψ1s+ψ0

∣∣∣∣dω (6.28)

Using the above definitions, and considering that ψ is a user-defined filter which can be de-

signed such that ||ψ||L1 ≤ 1, a sufficient condition to guarantee the third stability criterion given

in (6.26) can be defined as follows:∣∣∣∣ZT +βΩ ZE +2βΓ KHOH

ZT +βΓ KHOH

∣∣∣∣≤ ∣∣∣∣ ZE

ZΩ

∣∣∣∣ (6.29)

It should be noted that, as a result of considering the worst case scenario when calculating the

IOS gain for the feedforward path in Fig. 6.10, the above condition is a sufficient condition for

the closed-loop system to remain stable in the presence of the TTI haptic force feedback.

As can be seen, the derived stability condition depends on the impedance values of the
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operator’s hand and the environment. In order to add some level of control over the stability

condition, the desired closed-loop system defined in (6.15) can be modified to:
fT (t) = βΓ . fΓ (t)+βΩ . fΩ (t)

xS,Des(t) = αE(t). xE(t)+αT (t). xT (t)

fE(t) = fΩ (t)− (McẍE(t)+BcẋE(t)+KcxE(t))

(6.30)

where Mc, Bc and Kc denote controller parameters through which the stability condition can be

guaranteed, disregarding the impedance characteristics of the operators’ hand and those of the

environment. This, however, results in transparency degradation for the expert, causing them

to feel the TTI feedback force with an error equal to McẍE(t)+BcẋE(t)+KcxE(t). Stability-

transparency trade-off in TTI-force-reflective teleoperation systems is an inherent challenge of

such frameworks [34]. Repeating the same stability analysis process for the modified closed-

loop system given by (6.30), the stability condition given by (6.29) will be transformed to:∣∣∣∣ZT +βΩ ZE +2βΓ KHOH

ZT +βΓ KHOH

∣∣∣∣≤ ∣∣∣∣ZE +Zc

ZΩ

∣∣∣∣ (6.31)

where Zc = Mcs2 + Bcs + Kc provides control over the stability condition, disregarding the

impedance characteristics of the environment and the operators’ hand.

6.7 Future Work: Sensorimotor Integration for Haptics-Enabled

Simulators

A RAMIS simulator mainly consists of a haptics-enabled master console integrated with a VR-

based simulated environment. Although RAMIS simulators have been shown to be effective

in surgical skills acquisition, the process can be accelerated through sensorimotor integration.

Some simulators, e.g. the dVTrainer from Mimic, have enabled visual guidance by visually

illustrating for the trainee the desired configuration of the simulated master console in the VR

environment. The visual cue is meant to guide/help the trainee in aligning the master console

with the desired configuration in order to speed up the learning process. However, manipulating

a master console in 6-DOF is often quite complicated so that solely a visual cue may not be
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enough to guide the novice toward the desired configuration. Although visual guidance shows

where to move the tool’s tip, it does not show how to manipulate the master console to achieve

that desired configuration. In order to address this issue, the proposed hand-over-hand guidance

can also be integrated into RAMIS simulators, as discussed below.

6.7.1 Integration of HOH Guidance into RAMIS Simulators

Incorporation of HOH guidance into RAMIS simulators enables the novice to observe the de-

sired configuration along with receiving haptic cues that direct their attention towards the way

of reaching that configuration and serves as online performance feedback. For this purpose,

the HOH guidance force fϖ to be applied to the trainee’s hand is defined as follows:

fϖ(t) = kϖ(t)(xϖ ,Des(t)− xϖ(t)) (6.32)

where xϖ refers to the endpoint position of the master console projected onto the tool tip in

the VR environment; xϖ ,Des indicates the desired configuration of the tool tip to align with. In

addition, kϖ refers to the positive elasticity of the virtual bond established between the trainee’s

hand and the desired configuration. The stiffer the virtual bond, the stronger the guidance or

cueing HOH force will be.

Specifying the desired configuration or trajectory in simple tasks, e.g., ring transfer, cutting

and needle handling, is pretty straightforward, since the task itself implies the desired trajec-

tory. Therefore, the optimal trajectory can be automatically detected. However, specifying the

desired trajectory for more complex training tasks may not be as straightforward to automati-

cally detect in real-time. In order to address this issue, we propose to pre-record the trajectories

made by an expert surgeon to be used later as the desired reference trajectory for novices. In

fact, because of the simulated environment, a specific task has consistent goals from one ses-

sion to another. Therefore, the performance of an expert surgeon with sufficiently developed

motor skills and optimal movement synergy can be used as the reference performance for the

novice trainee who later practices the same task. By using pre-recorded trajectories of an ex-

pert as the desired reference trajectory for trainees, the stiffness kϖ resembles a virtual bond

between the trainee’s hand and that of the expert’s in real-time, without the physical presence
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of the expert during the trainee’s practice session. In fact, this approach enables an expert-

in-the-loop training with real-time feedback which provides the novice with a fusion of visual

and haptic sensorimotor modalities. This feature can be added to any haptics-enabled RAMIS

simulator in order to accelerate the trainees learning speed through multimodal sensorimotor

integration.

After sufficiently developing the trainee’s motor skills, the next phase of the learning pro-

cedure would be to familiarize the trainee with forces applied to the virtual tool’s tip to rep-

resent tool-tissue interaction in the VR environment. It should be mentioned that due to the

complexity of accurately modeling tissue dynamics [11], estimation of the TTI force in the

VR environment could be inaccurate; however, the incorporation of haptic information in the

VR environment may prove useful in determining how integration of this additional sensing

modality helps in the learning process.

6.8 Conclusions

A novel expert-in-the-loop framework integrated with multiple sensorimotor modalities was

presented for training on dual-console surgical robotic systems, such as the da Vinci R© Si surgi-

cal system. In order to provide the trainee with adaptive expertise-oriented training in real-time

which actively engages them in the training session, a Fuzzy Interface System (FIS) was incor-

porated into the architecture. The FIS adjusts the trainee’s authority level over the procedure

as well as the level of kinesthetic hand-over-hand guidance and cueing provided to the trainee

based on their level of proficiency. Capitalizing on the presence of an expert in the loop as well

as the expertise-oriented design of the framework, concurrent performance of a surgical proce-

dure by an expert while providing multimodal training to a trainee at any stage of motor-skills

learning can be realized without jeopardizing patient safety. Closed-loop stability of the overall

system was analyzed using the Circle Criterion, and it was shown that, unlike many haptics-

enabled teleoperation systems, the proposed framework is unconditionally stable. In order to

evaluate the architecture, a dual-console platform was designed and implemented, consisting

of the classic da Vinci R© surgical system and the dV-Trainer R© console. The implemented setup

serves not only as the first research platform for dual-console studies on the classic da Vinci R©
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surgical system, but also the first training platform integrated with haptic guidance and cueing

for such a system. Experimental evaluations were conducted in three distinct scenarios and the

overall performance of the proposed platform was investigated.

The dual-console telerobotic architectures mentioned in this and the previous chapters pro-

vide expert-in-the-loop motor function training to one patient (trainee) at each time. In order

to save on the therapist (surgeon) time, the dual-console architectures can be extended to ac-

commodate for multiple patients (trainees). The first step in doing this is the development of a

multi-master/single-slave telerobotics framework, which is discussed in the next chapter.



Bibliography

[1] A. Talasaz, “Haptics-enabled teleoperation for robotics-assisted minimally invasive

surgery,” Ph.D. dissertation, Western University, 2012.

[2] A. Takhmar, I. G. Polushin, A. Talasaz, and R. V. Patel, “Cooperative teleoperation with

projection-based force reflection for MIS,” IEEE Transactions on Control Systems Tech-

nology, vol. 23, no. 4, pp. 1411–1426, 2015.

[3] A. L. Smith, E. M. Scott, T. C. Krivak, A. B. Olawaiye, T. Chu, and S. D. Richard, “Dual-

console robotic surgery: a new teaching paradigm,” Journal of Robotic Surgery, vol. 7,

no. 2, pp. 113–118, 2013.

[4] http://www.intuitivesurgical.com/products/skills simulator/.

[5] A. M. Jarc and I. Nisky, “Robot-assisted surgery: an emerging platform for human neu-

roscience research,” Frontiers in Human Neuroscience, vol. 9, p. 315, 2015.

[6] C. Feng, H. Haniffa, J. Rozenblit, J. Peng, A. Hamilton, and M. Salkini, “Surgical training

and performance assessment using a motion tracking system,” in Proceedings of the 2nd

European Modeling and Simulation Symposium, 2006, pp. 647–652.

[7] H. Alemzadeh, R. K. Iyer, Z. Kalbarczyk, N. Leveson, and J. Raman, “Adverse events

in robotic surgery: A retrospective study of 14 years of FDA data,” ArXiv Preprint

ArXiv:1507.03518, 2015.

[8] http://www.simulatedsurgicals.com.

[9] http://simbionix.com/simulators/robotixmentor.

172



BIBLIOGRAPHY 173

[10] http://www.mimicsimulation.com/products/dv-trainer/.

[11] C. D. Lallas, Davis, and J. W. Members of the Society of Urologic Robotic Surgeons,

“Robotic surgery training with commercially available simulation systems in 2011: a

current review and practice pattern survey from the society of urologic robotic surgeons,”

Journal of Endourology, vol. 26, no. 3, pp. 283–293, 2012.

[12] http://www.intuitivesurgical.com/products/davinci surgical system/da

vinci surgical system si/ dualconsole.html.

[13] G. Ganesh, A. Takagi, R. Osu, T. Yoshioka, M. Kawato, and E. Burdet, “Two is better than

one: Physical interactions improve motor performance in humans,” Scientific reports,

Nature Publishing Group, vol. 4, 2014.

[14] P. M. Fitts and M. I. Posner, Human performance. Brooks/Cole, 1967.

[15] M. Cox, D. M. Irby, R. K. Reznick, and H. MacRae, “Teaching surgical skills—changes

in the wind,” New England Journal of Medicine, vol. 355, no. 25, pp. 2664–2669, 2006.

[16] J. A. Kopta, “The development of motor skills in orthopaedic education.” Clinical Or-

thopaedics and related research, vol. 75, pp. 80–85, 1971.

[17] J. Li, M. Tavakoli, and Q. Huang, “Absolute stability of multi-dof multilateral haptic

systems,” IEEE Transactions on Control Systems Technology, vol. 22, no. 6, pp. 2319–

2328, 2014.

[18] M. Riojas, C. Feng, A. Hamilton, and J. Rozenblit, “Knowledge elicitation for perfor-

mance assessment in a computerized surgical training system,” Applied Soft Computing,

vol. 11, no. 4, pp. 3697–3708, 2011.

[19] S. Cotin, N. Stylopoulos, M. Ottensmeyer, P. Neumann, D. Rattner, and S. Dawson, “Met-

rics for laparoscopic skills trainers: the weakest link!” in Medical Image Computing and

Computer-Assisted Intervention. Springer, 2002, pp. 35–43.

[20] N. Hogan and T. Flash, “Moving gracefully: quantitative theories of motor coordination,”

Trends in Neurosciences, vol. 10, no. 4, pp. 170–174, 1987.



174 BIBLIOGRAPHY

[21] A. Aziminejad, M. Tavakoli, R. V. Patel, and M. Moallem, “Transparent time-delayed bi-

lateral teleoperation using wave variables,” IEEE Transactions on Control Systems Tech-

nology, vol. 16, no. 3, pp. 548–555, 2008.

[22] J. M. Dolan, M. B. Friedman, and M. L. Nagurka, “Dynamic and loaded impedance

components in the maintenance of human arm posture,” IEEE Transactions on Systems,

Man and Cybernetics, vol. 23, no. 3, pp. 698–709, 1993.

[23] H. K. Khalil, Nonlinear Systems. Prentice Hall, Upper Saddle River, 2002, vol. 3.

[24] P. Kazanzidesf, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and S. P. DiMaio, “An

open-source research kit for the da vinci R© surgical system,” in IEEE International Con-

ference on Robotics and Automation, 2014, pp. 6434–6439.

[25] M. Y. Jung, A. Deguet, and P. Kazanzides, “A component-based architecture for flexi-

ble integration of robotic systems,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2010, pp. 6107–6112.

[26] P. Kazanzides, S. DiMaio, A. Deguet, B. Vagvolgyi, M. Balicki, C. Schneider, R. Ku-

mar, A. Jog, B. Itkowitz, C. Hasser et al., “The Surgical Assistant Workstation (SAW)

in minimally-invasive surgery and microsurgery,” in MICCAI Workshop on Systems and

Arch. for Computer Assisted Interventions, 2010.

[27] G. Wulf, C. Shea, and R. Lewthwaite, “Motor skill learning and performance: a review

of influential factors,” Medical Education, vol. 44, no. 1, pp. 75–84, 2010.

[28] O. Mohareri, C. Schneider, and S. Salcudean, “Bimanual telerobotic surgery with asym-

metric force feedback: A davinci R© surgical system implementation,” in 2014 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2014, pp. 4272–4277.

[29] A. Trejos, R. Patel, and M. Naish, “Force sensing and its application in minimally invasive

surgery and therapy: a survey,” Proceedings of the Institution of Mechanical Engineers,

Part C: Journal of Mechanical Engineering Science, vol. 224, no. 7, pp. 1435–1454,

2010.



BIBLIOGRAPHY 175

[30] A. M. Okamura, “Haptic feedback in robot-assisted minimally invasive surgery,” Current

Opinion in Urology, vol. 19, no. 1, p. 102, 2009.

[31] O. Mohareri, S. E. Salcudean, and C. Nguan, “Asymmetric force feedback control frame-

work for teleoperated robot-assisted surgery,” in 2013 IEEE International Conference on

Robotics and Automation (ICRA), 2013, pp. 5800–5806.

[32] A. Shahdi and S. Sirouspour, “Adaptive/robust control for time-delay teleoperation,”

IEEE Transactions on Robotics, vol. 25, no. 1, pp. 196–205, 2009.

[33] I. Polushin, H. J. Marquez, A. Tayebi, and P. X. Liu, “A multichannel IOS small gain the-

orem for systems with multiple time-varying communication delays,” IEEE Transactions

on Automatic Control, vol. 54, no. 2, pp. 404–409, 2009.

[34] C. A. L. Martı́nez, R. van de Molengraft, S. Weiland, and M. Steinbuch, “Switching

robust control for bilateral teleoperation,” IEEE Transactions on Control Systems Tech-

nology, vol. 24, no. 1, pp. 172–188, 2016.



Chapter 7

Multi-Master/Single-Slave Teleoperation

Framework

The material presented in this chapter was published in the IEEE/ASME Transactions on

Mechatronics, vol. 20, no. 4, pp. 1668-1679, 2014.

7.1 Introduction

Providing operators with safety and accessibility, teleoperation systems allow remote perfor-

mance of a desired task through a set of robotic consoles. In a Single-Master/Single-Slave

(SM/SS) teleoperation system, a master console is manipulated by an operator in order to per-

form a desired task in a remote environment through a slave console [1], [2]. In order to trans-

mit data between master and slave consoles that may be located at a considerable distance, a

communication channel is also required [3]. As a manifest feature of data-transmission, mainly

at long distances, communication delays are inevitable. These can lead to undesired effects on

the system in terms of stability and transparency [4], [5]. To address this issue, several control

methodologies were introduced for SM/SS systems.

In [6], a control law was designed to ensure closed-loop passivity in the presence of con-

stant communication time-delays. System passivity was shown using scattering theory. In [7],

c©[2014] IEEE. Reprinted, with permission, from [M. Shahbazi, S.F Atashzar, H.A. Talebi, R.V. Patel,
“Novel Cooperative Teleoperation Framework: Multi-Master/Single-Slave System”, IEEE/ASME Transactions
on Mechatronics, vol. 20, no. 4, pp. 1668-1679, 2014].
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a scattering-based approach was extended to address the problem of time-varying communica-

tion delays. Wave variables were defined in [8] as another systematic approach to guarantee

closed-loop stability.

In [9], transparency of various SM/SS structures was discussed and a transparency-optimized

architecture was designed. The architecture requires a two-way transmission of force and ve-

locity. In [10], Hashtrudi-zaad introduced two classes of three-channel architectures which

require transmission of three signals, rather than all four signals that are required in the four-

channel architecture, that ensure transparency in the presence of negligible time delays. In [11]

and [12], further development introduced two-channel architectures that also ensure system

transparency. Several other control methodologies were introduced for SM/SS system, some

of which have been summarized in [13].

SM/SS teleoperation systems have been extensively used in a wide range of applications

from mining, space and under-water exploration to telesurgery, Robotics-Assisted Minimally

Invasive Surgery (RAMIS) [14], [15], [16], [17] and rehabilitation [18], [19], [20]. However

despite the promising advantages, the SM/SS structure does not offer the opportunity of cooper-

ative task-performance to multiple operators. In some applications, e.g., RAMIS, the operator

needs to perform a task while training a non-expert person simultaneously, as training is es-

sential to highly develop the trainee’s psychomotor skills in a robotics-assisted task [21]. To

address the issue, a dual-user teleoperation system, as in the case of the new da Vinci Si from

Intuitive Surgical Inc. [22], could be used in which two surgeon’s consoles are available, one

operated by an expert and the other by a trainee to manipulate the slave robotic system at the

environment side. In [23], the authors proposed a novel dual-user teleoperation framework,

through which the performance of a surgical operation concurrently with training a non-expert

trainee is possible. The framework allows adaptive adjustment of the trainee’s level of involve-

ment in the task, according to his/her level of expertise over the operation.

Another application for a dual-user teleoperation system is in two-handed tele-rehabilitation

therapy, where the patient involves his/her healthy arm to cooperate with the therapist’s arm in

order to train the patient’s impaired arm [24]. This approach, which increases the effectiveness

of the therapy, necessitates two master consoles, one held by the therapist and the other by the

patient’s healthy arm in order to manipulate a slave robot held by the patient’s impaired arm.



178 CHAPTER 7. MULTI-MASTER/SINGLE-SLAVE TELEOPERATION FRAMEWORK

With regard to the emerging applications of a dual-user teleoperation system, several stud-

ies have been performed on dual-user systems. In [25], adaptive nonlinear control architectures

were developed for dual-user haptic interaction compatible with impedance and admittance

dynamic simulations. However, the given stability analysis did not address communication

time-delays. In [26], a six-channel multilateral shared control architecture was presented for a

delay-free dual-user system and a number of performance measures were extended/proposed

to analyze the kinesthetic performance of the controller. In [27], a µ-synthesis-based robust

controller was proposed for dual-user systems in the presence of known communication de-

lays. In [28], a sliding-mode-based controller was proposed to overcome the undesired effects

of time delays on stability of a dual-user system, though a stability condition was derived for

the system which necessitates numerical computation to determine system stability. An adap-

tive impedance controller was presented in [29] to stabilize a dual-user system in the presence

of constant time-delays, while a comprehensive stability analysis was given for the closed-loop

system. In [30], the effect of environmental factors on the user’s performance were investi-

gated in a dual-user system where a trainee and a trainer were able to collaboratively perform

a common task in a virtual environment.

Although various control frameworks have been presented for the dual-user system, this

category is a very special class of Multi-Master/Single-Slave (MM/SS) teleoperation system.

The general format of the MM/SS system with more than two operators has received very little

attention. A general MM/SS system would be beneficial in training scenarios (e.g. surgical)

allowing multiple-trainees to be involved in the training procedure. For example in a surgi-

cal training case, this would allow a surgical task to be performed concurrently with training

several trainees, while adaptively adjusting the involvement level of each trainee in the task

according to his/her level of expertise. Without regarding the involvement level of the trainees

in the task, trainees would still be able to feel the environment force on their hands, and learn

about the various ranges of force interactions with various types of tissues in a surgical task.

As a future application, in order to provide force reflection, haptic gloves along with visuo-

haptic displays can be used to expand the force-feedback capabilities that would allow trainees

to feel the environment in a much more natural way [31], [32]. In addition to the benefit for

trainees, the architecture would also be convenient for experts in enabling them to work with
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several trainees at the same time. Another possible application of an MM/SS system architec-

ture could also be a multilateral haptic system, in which multiple master robots control a higher

degrees-of-freedom slave robot to enable several human operators to collaboratively perform a

dexterous task [33].

Therefore, this thesis takes a further step and proposes an MM/SS teleoperation system

for the general case of “n” operators (n ≥ 2). In this chapter, a set of desired objectives for

an MM/SS system is proposed. The passivity of the closed-loop system is investigated and it

is shown that unlike a traditional SM/SS system, an ideal MM/SS system with the proposed

structure is not passive (even when communication delays are negligible), which, as elaborated

later, is a consequence of the way the system’s desired objectives are defined. An impedance-

based control methodology is adopted to satisfy the system objectives. The small-gain theorem

is then used to investigate closed-loop stability in the presence of communication delays, re-

sulting in a sufficient condition to guarantee system stability. Finally experimental results are

given to evaluate the performance of the proposed methodology.

The rest of the chapter is organized as follows: The dynamics of an MM/SS teleoperation

system are given in Section 7.2. The desired objectives for the MM/SS system are proposed in

Section 7.3. In Section 7.4, passivity of the ideal MM/SS system is investigated and discussed.

Sections 7.5 and 7.6 present the control methodology and stability analysis, respectively. Ex-

perimental results are presented in Section 7.7 and Section 7.8 concludes the chapter.

7.2 Dynamics of MM/SS Teleoperation Systems

7.2.1 Master Consoles

A general MM/SS system consists of “n” master robots manipulated by “n” operators in order

to control a slave robot. Each master robot has nonlinear dynamics as follows [34]:

Dmi(xmi)ẍmi +Cmi(xmi, ẋmi)ẋmi +Gmi(xmi) = Fc,mi−Fext,mi
(7.1)

where xmi (i = 1, ..,n) is the end-effector position of master #i. Dmi(xmi) is the mass ma-

trix, while Cmi(xmi, ẋmi) and Gmi(xmi) represent velocity-dependent elements and position-
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dependent forces such as gravity, respectively. Moreover, Fc,mi and Fext,mi are the control signal

and the external force acting at the robot end-effector. Since, the external force, Fext,mi , acting

on each master robot is applied by its corresponding operator, we have:

Fext,mi =−Fhi (7.2)

While the operators’ hand forces Fhi(i = 1,2, . . . ,n) can be modeled as second-order time-

invariant systems as follows [35]:

Fhi = F∗hi
−Mhi ẍhi−Bhi ẋhi−Khi[xhi− xhi0] (7.3)

where Mhi , Bhi , Khi and F∗hi
denote the mass, damping, stiffness, and the users’ exogenous

force, respectively. In addition, xhi and xhi0 show the hand position of operator #i and the initial

value for xhi , respectively. Note that each master robot is held by a corresponding operator

resulting in xhi = xmi . It is worth mentioning that the operators’ hand dynamics will be used in

the stability analysis in Section 7.6.

7.2.2 Slave Console

Similar to the master robots, the slave robot can be described by nonlinear dynamics as follows:

Ds(xs)ẍs +Cs(xs, ẋs)ẋs +Gs(xs) = Fc,s−Fext,s (7.4)

where xs denotes the end-effector position for the slave robot. Similarly, Ds(xs) is the mass ma-

trix, Cs(xs, ẋs) corresponds to the velocity dependent elements and Gs(xs) represents position-

dependent forces such as gravity. Fc,s and Fext,s denote the control signal and the external force

acting on the end-effector of the slave robots. The external force acting on the slave robot cor-

responds to the environment force, Fe, which can be modeled by a second-order time-invariant

system as follows [35]:

Fext,s = Fe = Meẍe +Beẋe +Ke[xe− xe0] (7.5)
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where Me, Be, Ke and xe denote the environment mass, damping, stiffness and position, re-

spectively. In addition, xe0 refers to the initial value for xe. Note that since the slave robot is

interacting with the environment, we have xs = xe.

7.3 Desired Objectives for the MM/SS System

As mentioned earlier, an MM/SS teleoperation system provides a cooperative environment for

multiple operators, enhancing the quality of the task performance. In addition, an MM/SS ar-

chitecture allows performance of an operation, e.g. surgery, simultaneously with training of

multiple trainees. This coincidence provides trainees with hands-on training on a real envi-

ronment, rather than virtual simulated environments currently used for training. An MM/SS

system is also useful for remote performance of delicate tasks such as telesurgery, in which a

communication network failure could cause serious problems. Using an MM/SS system, if any

failure occurs for one operator’s network, the other operator(s) involved in the procedure can

easily take over the control of the slave system. Accordingly, in an MM/SS system, each oper-

ator is desired to have a level of authority to affect the task based on his/her level of expertise

and experiences. To address this issue, the desired position for the slave robot is proposed as

follows:

xsd = α1xm1 +α2xm2 + ...+αnxmn (7.6)

where xsd shows the desired position for the slave robot; xmi shows the position of master #i.

Moreover, αi(i = 1,2, . . . ,n), the “dominance factor”, specifies authority level of operator #i

over the task. Therefore, authority of each operator over the task is adjustable through his/her

corresponding dominance factor, which varies between 0 and 1, and:

n

∑
i=1

αi = 1, αi ≥ 0 (7.7)

In an MM/SS system, it is also desired for each user to feel the environment force for having an

ideal transparent operation. Therefore, in addition to the objectives defined for the slave robot

in (7.6), the objectives are defined for the operators as follows, specifying the desired force to
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be exerted on their hands: 

Fh1d = Fe

Fh2d = Fe
...

Fhnd = Fe

(7.8)

where Fhid shows the desired value for the force to be exerted on operator #i’s hand. By defin-

ing the desired objectives as given by (7.6)-(7.8), each operator can have an impact over the

task according to his/her authority based on his/her level of expertise. At the same time, he/she

is able to feel the environment force completely, without regarding his/her level of authority

over the task. This definition makes the system appropriate for training applications such as

surgery. As an example, consider the expert as the operator # j, α j in (7.6) can be set to 1

and αi(i = 1, . . . ,n , j) to 0, which leads the desired position of the slave robot to be equal to

the end-effector position of master-console # j manipulated by the mentor, operator # j. This

authority adjustment eliminates the impact of other operators, which could be novice trainees.

However, considering (8), they are still capable of feeling the force reflected back from the

environment. This allows the trainees to get trained on the interaction-force ranges for dif-

ferent environment types, e.g. different tissue types in surgical operations. Of course, using

the proposed structure, a trainee who does have sufficient skills level could still be given some

authority over the task, if desired.

It should be noted that in this framework, in addition to multiple trainees, multiple ex-

perts could also be given authority over the task according to various factors, e.g. their skills

level and the communication network quality through which each operator is transmitting data

to/from the slave robot. The quality of the communication network is an essential factor to be

considered, especially in remote performance of delicate operations such as surgery, in which

any network failure could be a real challenge. Adjustment of the operators’ authority levels in

an MM/SS system is a topic worth investigating further. Preliminary steps have been taken by

the authors for a specific case of a dual-user system in [23], [36].
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7.4 Passivity of an Ideal MM/SS System

In a traditional SM/SS system, the passivity theorem is an approach used to investigate stability

of the closed-loop system. It has been shown that in the presence of negligible communication

delay, the SM/SS system is passive and consequently stable [37]. However, as shown in this

section, the general MM/SS system does not exhibit this property. In fact, due to its specific

structure imposed by the way the system’s desired objectives are defined in (7.6)-(7.8), the

closed-loop system is not passive. To show this, a hybrid matrix is defined for the proposed

MM/SS system and the passivity theorem is applied as discussed below.

An MM/SS system with n operators is an (n+1)-port network. Therefore, a hybrid matrix

can be derived by defining the input U and the output Y for the network as follows:

U =



ẋm1

ẋm2
...

ẋmn

−Fe


(n+1)×1

, Y =



Fh1

Fh2
...

Fhn

ẋs


(n+1)×1

(7.9)

The hybrid matrix H(n+1)×(n+1) for an MM/SS system can be defined as follows:

Y = HU , where H(n+1)×(n+1) =

Fh1

ẋm1

∣∣∣∣
ẋm1,0,OT IN=0

. . .
Fh1

ẋmn

∣∣∣∣
ẋmn,0,OT IN=0

Fh1

−Fe

∣∣∣∣
ẋmi=0

...
. . .

...
...

Fhn

ẋm1

∣∣∣∣
ẋm1,0,OT IN=0

. . .
Fhn

ẋmn

∣∣∣∣
ẋmn,0,OT IN=0

Fhn

−Fe

∣∣∣∣
ẋmi=0

ẋs

ẋm1

∣∣∣∣
ẋm1,0,OT IN=0

. . .
ẋs

ẋmn

∣∣∣∣
ẋmn,0,OT IN=0

ẋs

−Fe

∣∣∣∣
ẋmi=0


(7.10)

where OTIN refers to other elements of the network input, U . In other words, ẋm1 , 0,OT IN =

0 means that all elements of U except ẋmi are set to zero.

Considering the desired objectives defined for the system in (7.6)-(7.8), the desired hybrid
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matrix is given by:

Hdesired =


0 . . . 0 −1
...

. . .
...

...

0 . . . 0 −1

α1 . . . αn 0


(n+1)×(n+1)

(7.11)

The desired hybrid matrix is satisfied if the desired objectives for the system are satisfied. Con-

sequently, Hdesired is an illustration of ideal transparency for the system. In order to investigate

passivity of the system, Hdesired is examined through the passivity theorem, as follows:

Theorem 1: A linear time-invariant n-port network possessing a general hybrid matrix,

which is analytic in the open Right Half Plane (RHP), is passive if and only if the general

hybrid matrix is positive real [38].

Theorem 2: The matrix H is positive real if and only if [38], [39]:

1. H is analytic in the open RHP.

2. H(s) = H(s) for all s in the open RHP.

3. The Hermitian part of H is Positive Semi-Definite (PSD) for all s in the open RHP.

Considering Theorems 1 and 2, in order for the proposed MM/SS system to be passive, the

Hermitian part of Hdesired , denoted by Hhermit , is required to be positive semi-definite, which is

equivalent to having all eigenvalues of Hhermit ≥ 0, where:

Hhermit =
1
2
(Hdesired +H∗desired) (7.12)

Calculating the eigenvalues of Hhermit we have:

eig(Hhermit) =



0
...

0

±1
2

√
∑

n
i=1(αi−1)2.

(7.13)

As can be seen, considering (7.7), Hhermit has n− 1 zero eigenvalues, while one of the other

two is always negative. The only case in which all the eigenvalues are zero is when n =
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1, causing ∑
n
i=1(αi − 1)2 = 0, which is in fact equivalent to an SM/SS system. However,

for the general MM/SS system with n ≥ 2, disregarding the value of αi, Hhermit has always

one negative eigenvalue. This implies that Hdesired is not Positive Real. Consequently, unlike

a traditional SM/SS system, the proposed closed-loop MM/SS system is not passive (even

when communication delays are negligible), due to its specific structure imposed by the way

the system’s desired objectives are defined in (7.6)-(7.8). The non-passivity of the proposed

general MM/SS system means that it generates more energy than it consumes. The reason can

be intuitively described by taking a look on what each operator injects into the n-port network

and what he/she receives from the network. As can be seen in (7.6)-(7.8), each master robot has

a partial effect on the slave robot proportional to the corresponding operator’s authority level.

Therefore, the slave robot is partially controlled by each operator. On the other hand, each

operator receives the environment force reflected back from the slave side. The environment

force is the result of the slave’s full motion in the environment. This full motion is in fact

a combination of the partial motions injected by all operators. Therefore, each operator is

injecting partial motion into the system, while he/she is receiving the environment force caused

by the full motion of the slave robot. This generates negative energy flow into the network,

causing non-passivity of the system. This non-passivity is a result of the way the system

transparency is defined, as all the users are desired to feel the environment force completely.

Depending on application, the desired objectives can be also defined in such a way that the

system remains passive. For example, by reflecting back to each operator a scaled version

of the environment force proportional to his/her dominance factor, the hybrid matrix will be

transformed to (7.14). Using Theorems 1 and 2, it can be shown that this represents a passive

network.

Hdesired =


0 . . . 0 −α1
...

. . .
...

...

0 . . . 0 −αn

α1 . . . αn 0


(n+1)×(n+1)

(7.14)

Reflecting back an αi-based ratio of the environment force means that each operator will feel

the portion of environment force generated solely from his/her motion. This structure is not a

suitable approach for training, since a trainee with zero authority will feel zero force reflected
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back from the environment. The framework could still be useful in some applications such

as cooperative task performance, the discussion of which is outside the scope of this thesis.

In the following sections, we will focus on the system introduced in (7.6)-(7.8), addressing

the control methodology and stability analysis for the closed-loop system in the presence of

communication time-delays.

7.5 Control Methodology

Communication time-delays can destabilize an MM/SS teleoperation system. Therefore, a

control methodology is required, using which the closed-loop stability can be assured. For

this purpose, a methodology previously presented by the authors in [28] for a dual-user system

is extended here for the general case of MM/SS with n operators. In this impedance-based

structure, the following n+1 impedance surfaces are defined as the desired closed-loop system:

M1,d ẍm1 +B1,d ẋm1 +K1,dxm1 = Fh1d−Fe

M2,d ẍm2 +B2,d ẋm2 +K2,dxm2 = Fh2d−Fe
...

Mn,d ẍmn +Bn,d ẋmn +Kn,dxmn = Fhnd−Fe

(7.15)

xs = α1xm1 +α2xm2 + ...+αnxmn (7.16)

In (7.15), the equation with the index i shows the desired impedance surface defined for master

console #i. In this equation, Mi,d , Bi,d and Ki,d denote the desired mass, damping and stiff-

ness respectively for the master console #i. Also (7.16) defines the desired impedance surface

defined for the slave console. By setting Mi,d , Bi,d and Ki,d(i = 1,2, . . . ,n) to 0 in (7.15), it

can be seen that the proposed desired impedance-based closed-loop system, (7.15) and (7.16),

will be ideally equivalent to the system desired objectives defined by (7.6) and (7.8). However,

it will be shown in the next section that these parameters play a significant role in ensuring

closed-loop system stability although they may degrade the system transparency.

In order to satisfy the defined impedance surfaces as the closed-loop system, an impedance

controller is designed to locally control each master and slave console. It should be noted that

to implement the controller, each master console requires the environment force to be sent from
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the slave side. Moreover, the slave console requires the position of the master consoles to be

sent. In the presence of communication delays, the signals transmitted from one console to an-

other are received in their delayed format. Therefore, the closed-loop system can be expressed

by (7.17) and (7.18) below, when the communication delay is not negligible.

M1,d ẍm1 +B1,d ẋm1 +K1,dxm1 = Fh1d−Fd1
e

M2,d ẍm2 +B2,d ẋm2 +K2,dxm2 = Fh2d−Fd2
e

...

Mn,d ẍmn +Bn,d ẋmn +Kn,dxmn = Fhnd−Fdn
e

(7.17)

xs = α1xd1
m1

+α2xd2
m2

+ ...+αnxdn
mn

(7.18)

where the di(i = 1,2, . . . ,n) shows the value of the time-delay for the communication channel

#i, through which the data between the slave console and master console #i is transmitted. In

addition, the signal ∆di corresponds to the delayed format of ∆, i.e., ∆(t− di). For example,

xdi
mi = xmi(t−di).

7.6 Closed-Loop Stability Analysis

This section discusses stability analysis for the proposed MM/SS system in the presence of

communication time-delays. For this purpose, the small-gain theorem, a tool for studying

stability of interconnected systems [40], is applied to obtain a sufficient stability condition for

the system. The derivation of a stability condition for a general MM/SS system is considerably

more complicated than that for an SM/SS or a dual-user system, as it should address the issue

for a general case of n operators, while n can take any positive integer value.

Theorem 3: According to the small-gain theorem, the feedback system in Fig. 7.1 is Input-

Output Stable (IOS) if [40], [41]:

u1 ∈ L∞ & u2 ∈ L∞ (7.19)

Σ1 ∈ L1 & Σ2 ∈ L1 (7.20)
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γ1.γ2 ≤ 1 where γ1 = ||Σ1||L1
, γ2 = ||Σ2||L1

(7.21)

In Fig. 7.1, T1 and T2 correspond to time-varying communication delays satisfying the follow-

ing conditions:

1. Ξl > 0 and a piecewise continuous function Ξu : R→ R+ satisfying Ξu(τ2)−Ξu(τ1) ≤

τ2− τ1 exist, such that the following inequalities hold for all t ≥ 0:

Ξl ≤ min{T1(t),T2(t)} ≤ max{T1(t),T2(t)} ≤ Ξu

2. t−max{T1(t),T2(t)}→+∞ as t→+∞

In real-world communication networks, these assumptions can always be satisfied. Assump-

tion #1 implies the existence of an upper-bound for delays that does not grow faster than the

time itself. Assumption #2 can also be satisfied using standard techniques such as sequence

numbering and/or time-stamping and by assigning a maximal packet lifetime, when transmit-

ting the data [41].
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𝑢2 
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Figure 7.1: General scheme of a feedback system with time delays.

In order for the small-gain theorem to be applicable to the MM/SS system, it is required to

transform the system into the format given in Fig. 7.1. For this purpose, by substituting Fe and

Fhi(i = 1,2, . . . ,n) from (7.3) and (7.5) into the closed-loop MM/SS system given by (7.17)

and (7.18), the system can be modeled as given in Fig. 7.2. In this figure, F∗hi
, (i = 1,2, . . . ,n)

shows the exogenous force exerted on master #i by operator #i. Also Ψi = αi(Zhi +Zi,d)
−1, and

Σ2 = Σe, where:

Zhi = Mhis
2 +Bhis+Khi (7.22)

Zi,d = Mi,ds2 +Bi,ds+Ki,d (7.23)

Ze = Mes2 +Bes+Ke (7.24)
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In addition, di and d
′
i show the time delays between the master console #i and the slave console

and vice versa, respectively.

In this model, let T1 = max(d1,d2, ...,dn) and T2 = max(d
′
1,d

′
2, ...,d

′
n). Now let’s define ζi

 

 

 

Ψ2 

 

Ψn 

 

𝑑2 
 

𝑑𝑛 
 

𝜉2 

 

𝜉𝑛 

 

Σ2 
 

𝑑𝑛
′  

 

Ψ1 

 

𝑑1 
 

𝜉1 

 

Fℎ1
∗  

 

Fℎ2
∗  

 

Fℎ𝑛
∗  

 

xs 

 

𝐹𝑒 

 

𝑑2
′  

 

𝑑1
′  

 

α1𝑥1  

α2𝑥2 
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Figure 7.2: General scheme of the MM/SS system in the presence of delays.

and ξi, for i = 1,2, . . . ,n, as ζi = di−T1 and ξi = d
′
i −T2. With regard to the fact that T1 ≥ di

and T2 ≥ d
′
i , ζi and ξi characterize lead blocks with the values of T1−di and T2−d

′
i . It should

be noted that although ζi and ξi are non-causal, they can be used in the analysis procedure.

Using the given definitions, the system given in Fig. 7.2 can be transformed to one given in

Fig. 7.3, where δi (i = 1,2, . . . ,n) illustrate delay blocks with the value of T2−d
′
i .

Now, we take a further step by defining F∗
δ

as given in 7.25, which allows simplification of

Fig. 7.3 to Fig. 7.4.

F∗
δ
=

F∗1 Ψ1 +F∗2 Ψ2 + ...+F∗n Ψn

Ψ1L(ξ1)+Ψ2L(ξ2)+ ...+ΨnL(ξn)
(7.25)

where L(ξi) represents a lead operator with the value of ξi.

By naming the block shown by the dashed line as Σ1, which is a combination of n separate

systems in parallel, Fig. 7.4 will have a similar format as Fig. 7.1. Therefore, to investi-

gate the system stability, it is required to examine the small-gain stability conditions given by

(7.19)-(7.21). For this purpose, the two cases of constant and time-varying delay are discussed

separately.
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Figure 7.3: General scheme of the MM/SS system after some manipulations

 

 

 

Ψ2 
 

Ψn 
 

𝜁2 
 

𝜁𝑛 
 

𝜉2 
 

𝜉𝑛 
 

𝑇1 
 

𝑇2 Σ2 

Ψ1 
 

𝜁1 
 

𝜉1 
 

F𝛿
∗  

 

xs 

 

 

𝐹𝑒 

 

 

Σ1 
 

𝑢2 = 0 

 

Figure 7.4: General scheme of the MM/SS system transformed so as to match with Fig. 7.1.

7.6.1 Constant Communication Delay

In the case of constant communication delay, ζi and ξi, for i = 1,2, . . . ,n, have constant values.

Therefore, using the Laplace transform, they can be modeled as eζis and eξis in the frequency

domain. To investigate input-to-output stability of the closed-loop system, as the first condition

given by (7.19) implies, the inputs F∗
δ

and u2 are needed to be bounded, that is F∗
δ
∈ L∞ &

u2 ∈ L∞. According to the system structure, u2 ∈ L∞. To investigate F∗
δ
∈ L∞, by some algebraic

manipulations, (7.25) can be transformed to:

F∗
δ
=

n

∑
k=1

F∗k .αk.∏ j,k
(
Zh j +Z j,d

)
∑

n
i=1 αi.

[
∏ j,i(Zh j +Z j,d)

]
. eξis

(7.26)
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By defining ϖk =
αk.∏ j,k

(
Zh j +Z j,d

)
. eξks

∑
n
i=1 αi.

[
∏ j,i(Zh j +Z j,d)

]
. eξis

for k = 1, . . . ,n, (7.26) can be written as:

F∗
δ
=

n

∑
k=1

(F∗k .e
−ξks).ϖk (7.27)

In this equation, F∗k for k = 1,2, . . . ,n, which is the hand exogenous force for operator #k in

the frequency space belongs to L∞ [41]. Therefore, F∗k .e
−ξks also belongs to L∞, since the time

delay does not change the L∞-norm. In addition, n , the number of the involved operators, is a

bounded value. Therefore, to satisfy F∗
δ
∈ L∞, it is sufficient for ϖk no matter of the causality

issue, to be bounded, i.e., to be a proper transfer function with no poles on jω axis. For

k = 1, . . . ,n, eξks can be modeled by a λ -order Padé approximation as follows:

eξks =
1− ι1,ks+ ι2,ks2 + ...± ιλ ,ksλ

1+ ι1,ks+ ι2,ks2 + ...+ ιλ ,ksλ
(7.28)

where ιϑ ,k (ϑ = 1, ...,λ ) are constant parameters proportional to ξk. By substituting eξks from

(7.28), ϖk will be transformed to:

ϖk =

αk.
[
∏ j,k

(
Zh j +Z j,d

)]
.

(
1− ι1,ks+ ι2,ks2 + ...± ιλ ,ksλ

1+ ι1,ks+ ι2,ks2 + ...+ ιλ ,ksλ

)

∑
n
i=1

[
αi.
[
∏ j,i(Zh j +Z j,d)

]
.

(
1− ι1,is+ ι2,is2 + ...± ιλ ,isλ

1+ ι1,is+ ι2,is2 + ...+ ιλ ,isλ

)] (7.29)

By some algebraic manipulation, it can be shown that ϖk, (k = 1, . . . ,n), is a proper transfer

function, belonging to L∞. Therefore, the first stability condition given by (19) is fulfilled.

The next step is investigating the second stability condition, given in (7.20). According to the

definition Σ1 and Σ2, ‖Σ1‖L1 and ‖Σ2‖L1 are as follows:

‖Σ1‖L1 =
∥∥∥∑

n
i=1Ψi e(ζi+ξi)s

∥∥∥
L1

=
∥∥∥∑

n
i=1 αi(Zhi +Zi,d)

−1 e(ζi+ξi)s
∥∥∥

L1
(7.30)

‖Σ2‖L1 = ‖Ze‖L1 (7.31)
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According to the definition of the L1-norm in the frequency domain, ‖Σ1‖L1 can be written as:

‖Σ1‖L1 =

∫
+∞

−∞

∣∣∣∣∣ n

∑
i=1

αi(Zhi +Zi,d)
−1 e(ζi+ξi)s

∣∣∣∣∣dω

≤

∫
+∞

−∞

n

∑
i=1

∣∣∣αi(Zhi +Zi,d)
−1 e(ζi+ξi)s

∣∣∣dω

=

∫
+∞

−∞

n

∑
i=1

∣∣αi(Zhi +Zi,d)
−1∣∣ ∣∣∣e(ζi+ξi)s

∣∣∣dω

(7.32)

Considering the fact that
∣∣∣e(ζi+ξi) jω

∣∣∣
i=1,2,. . . ,n

= 1, the right-hand side of the above inequality

can be simplified as follows:

‖Σ1‖L1 ≤

∫
+∞

−∞

n

∑
i=1

∣∣αi(Zhi +Zi,d)
−1∣∣dω

=
n

∑
i=1

∫ +∞

−∞

∣∣αi(Zhi +Zi,d)
−1∣∣dω

=
n

∑
i=1

∥∥αi(Zhi +Zi,d)
−1∥∥

L1

(7.33)

Therefore, an upper-bound for ‖Σ1‖L1 is calculated as:

‖Σ1‖L1 ≤
n

∑
i=1

∥∥αi(Zhi +Zi,d)
−1∥∥

L1
(7.34)

As given in (7.22) and (7.23), Zhi and Zi,d represent impedances. Therefore, (Zhi +Zi,d)
−1 is

a strictly-proper transfer function. Since 0≤ αi ≤ 1, ‖αi(Zhi +Zi,d)
−1‖L1 has an upper bound.

Calling the upper-bound βi, inequality (7.34) can be written as:

‖Σ1‖L1 ≤
n

∑
i=1

∥∥αi(Zhi +Zi,d)
−1∥∥

L1

≤ n∗max(βi)i=1,2,...,n

(7.35)

where n represents the number of master consoles. As a result, ‖Σ1‖L1 has an upper bound,

n∗max(βi)i=1,2,...,n, which implies Σ1 ∈ L1 as a part of the second stability condition given by

(7.20).



7.6. CLOSED-LOOP STABILITY ANALYSIS 193

As given by (7.20), for the second stability condition of the small-gain theorem, it is re-

quired to have Σ2 ∈ L1. Considering the definition of Σ2 = Ze, where Ze is the environment

impedance which is an improper dynamics, it is clear that Σ2 does not belong to L1. In order

to transform Σ2 to a proper dynamics, a low-pass filter Π(s) =
1

φ1s2 +φ2s+φ3
can be applied

to the environment force, before sending it to the master robots sides, which is a typical ap-

proach in the small-gain-based teleoperation systems as elaborated in [20]. The applied filter

may introduce undesired lag into the system and alleviate the high-frequency component of the

reflected environment-force, degrading the transparency. However, these undesired effects can

be decreased by setting the filter’s poles far enough. By applying the filter Π(s), Σ2 will be

transformed to Ze(s)Π(s) =
Mes2 +Bes+Ke

φ1s2 +φ2s+φ3
which belongs to L1 space and consequently, the

second part of the first stability condition given by (7.20) is satisfied.

The third stability condition given by (7.21) requires to have γ1.γ2, where γ1 = ‖Σ1‖L1 ,

γ2 = ‖Σ2‖L1 . Using the derived inequality in (7.34), the stability condition can be written as

follows to achieve a sufficient stability condition:

γ1.γ2 = ‖Σ1‖L1‖Σ2‖L1

≤

(∫ +∞

−∞

n

∑
i=1

∣∣αi(Zhi +Zi,d)
−1∣∣dω

)
.‖Σ2‖L1 ≤ 1

(7.36)

Simplifying (
∫+∞

−∞ ∑
n
i=1

∣∣αi(Zhi +Zi,d)
−1
∣∣dω).‖Σ2‖L1 ≤ 1, a sufficient stability condition is de-

rived as follows:
Mes2 +Bes+Ke

φ1s2 +φ2s+φ3
≤

∣∣∣∣∣ 1
∑

n
i=1

∣∣αi(Zhi +Zi,d)−1
∣∣
∣∣∣∣∣ (7.37)

Using the inequality ∑
n
i=1

∣∣αi(Zhi +Zi,d)
−1
∣∣ ≤ ∣∣∑n

i=1 αi(Zhi +Zi,d)
−1
∣∣, the sufficient stability

condition given in (7.37), derived for the MM/SS system in the presence of constant time-

delay, can be transformed to:

Ze

φ1s2 +φ2s+φ3
≤
∣∣∣∣ 1
∑

n
i=1 αi(Zhi +Zi,d)−1

∣∣∣∣ (7.38)

As can be seen, system stability can be ensured by appropriate adjustment of the desired

impedance parameters, Mi,d , Bi,d and Ki,d , where Zi,d = Mi,ds2 +Bi,ds+Ki,d , meaning that in

order to guarantee system stability the parameters may be needed to be set to non-zero values.
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However, referring to the desired impedance surfaces defined in (7.15) and (7.16), it is obvious

that setting Mi,d , Bi,d and Ki,d to non-zero values causes the system transparency to deviate

from the ideal situation. However, the compromise between system stability and transparency

is essential in an MM/SS system, as it is also the case in SM/SS, the traditional category of

teleoperation system.

By setting the number of users to 1, and also setting the filter poles sufficiently far, the

stability condition derived in (7.38) will be transformed to |Ze| ≤ |(Zhi + Zi,d)|, which is in

accordance with the condition derived in the literature for the traditional SM/SS system.

It is noteworthy that to ensure system stability, proper adjustment of the desired impedance

parameters, Mi,d , Bi,d and Ki,d , is an important issue to focus on. For this purpose, either a rough

estimation of the operator’s hand impedance, or a rough upper-bound estimation would suffice,

ensuring system stability in a conservative manner. There has been some research aimed at pro-

viding measures of an operator’s hand impedance with/without force sensors [42], [43], [44]

This topic will be studied in more depth as a part of our future work.

7.6.2 Time-Varying Communication Delay

In order to analyze system stability in case of time-varying communication delays, the follow-

ing assumption is made: d1 = d2 = ... = di and d
′
1 = d

′
2 = ... = d

′
n, which means equal delays

between the slave console and the master consoles. By making this assumption, T1 and T2 will

be transformed to T1 = di and T2 = d
′
i , which leads to ζi = ξi = 0. Following the same proce-

dure for constant time-delay, (7.26)-(7.38), it can be seen that (7.38) will also be a sufficient

stability condition for the system in the presence of equal time-varying delays.

An approach to satisfy the above assumption is to locate all the master consoles, and con-

sequently the operators, at the same site. In training applications, such as in surgery, this

assumption is not restricting since the expert and the class of trainees can be located at the

same site. However, for more flexibility, our future work will focus on relaxing the assumption

made for the time-varying delay case.
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7.7 Experiments

7.7.1 Experimental Setup

In order to evaluate the proposed methodology, a set of experiments were conducted. The

experimental setup consists of two customized Quanser Haptic Wands and a Quanser HD2 as

the master consoles and one Mitsubishi PA10-7C robot as the slave console.

(a) Customized Quanser haptic wands, and Quanser HD2

(b) Mitsubishi PA10-7C slave robot and da Vinci tool.

Figure 7.5: The experimental setup.

Fig. 7.5 shows the experimental setup. The controller for each robot was implemented

on a computer and the Real-Time QuaRC software was used to automatically generate real-

time code directly from MATLAB Simulink. The User Datagram Protocol (UDP) was used

for communication between the master consoles and the slave console. In order to expose the

system to random time-varying communication delays, delay blocks from MATLAB Simulink

were used. The round-trip time-varying delay between the slave robot and master robot #1,

#2, and #3 were set to T1 = 260±40ms, T2 = 280±40ms, and T3 = 220±40ms, respectively.

All controllers and the communication between the robots were implemented at a sampling

frequency of 1 kHz.
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7.7.2 Experimental Results

The experiments consisted of two main scenarios. In the first scenario, the behavior of the

system in the presence of various sets of dominance factors was investigated. For this purpose,

three experiments were performed in which the dominance factors were set as follows: 1) α1 =

α2 = 0.333, α3 = 0.334, allocating equal authority level for the operators, 2) α1 = α2 = 0.5,

α3 = 0, allocating some authority level for operators #1 and #2, while setting zero authority

for operator #3, and 3) α1 = α2 = 0, α3 = 1, giving full authority to operator #3, while setting

zero authority for operator #1 and #2. The results for these experiments are given in Fig. 7.6-

Fig. 7.8. In these experiments, Mi,d = 0.3 kg and Bi,d = 0.6 N.s/m and the task was defined

to move in both free motion and in-contact motion interacting with soft tissue. As can be seen

in Fig. 7.6a, each of the master robots had some level of authority over the slave robot. To

clearly show this, the experiment was conducted in four segments: 0−25s, 25−55s, 55−90s

and 90− 125s. In the first three sections, one operator was asked to move the corresponding

master robot at each time range, while the other two operators were asked to keep their master

robots firmly at a fix position. It can be seen that the operators were able control the slave robot

proportional to their authority level, α1 = α2 = 0.333, α3 = 0.334. In the last episode of the

experiment, the three operators were asked to manipulate their master robots concurrently. As

can be seen, the slave robot moved in accordance with the combination of their positions based

on their authority level. In addition, Fig. 7.6b shows the force profile for the environment

and the operators’ hands. As shown in this figure, without regarding the authority level of

the operators, each operator was able to feel the environment force, although with a delay.

Note that as discussed earlier, due to the considerable amount of communication delays, the

transparency level is not ideal. However, a delayed format of the environment force can be

reflected on the operators’ hands, which is the case in this experimental result.

The second experiment conducted for the first scenario, the results of which are shown in

Fig. 7.7, investigates a different set of authority levels for the operators, where α1 = α2 = 0.5,

α3 = 0. As can be seen in Fig. 7.7a between t = 0s and t = 30s, although operator #3 moved

his corresponding master robot, the slave robot remained stationary which is due to the zero

authority level set for operator #3. However, both operators #1 and #2 had control over the slave

robot proportional to their authority level, as can be seen from t = 30s onwards. Moreover,
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without regarding the levels of authority set for the operators, as shown in Fig. 7.7b, they were

all able to feel the delayed environment force reflected back on their hand.

Another set of authority levels, α1 =α2 = 0, α3 = 1, was set for the operators, the results of

which are shown in Fig. 7.8. This experiment was performed to show the system behavior as

an SM/SS system, which is an especial case of the general MS/SS system. For this purpose, the

authority of the two operators was set to zero, whereas the third one was given full authority. As

shown in Fig. 7.8a, operators #1 and #2 had no authority over the slave robot, while operator

#3 was fully controlling the task. As shown in Fig. 7.8b, all the operators were able to feel the

environment force, even though two of them did not have any involvement in the task.

With regard to the precision of the slave robot’s end-effector, consider Fig. 7.8a as a specific

example. In this figure, by setting α1 = α2 = 0, α3 = 1, the slave robot was set to follow the

movements made by the end-effector of master robot #3. The results show that xs tracks xm3

accurately indicating good tracking performance for the slave robot’s end-effector.

In the second experimental scenario, the effect of the desired impedance parameters on

the system behavior was investigated. For this purpose, a heavy hard object was used as the

environment and the task was defined to interact with the object, which could possibly lead

to instability in the system. In this scenario, two experiments were conducted, focusing on

the effect of the desired impedance parameters on system stability. In both experiments, the

authority levels for the operators were set similarly to α1 = α2 = 0.1,α3 = 0.8, in order to

create a comparable condition between the two experiments. In the first experiment the result

of which is shown in Fig. 7.9, Mi,d and Bi,d , (i = 1,2,3) were set to 0.3 kg and 0.6 N.s/m,

respectively. As shown in Fig. 7.9, these parameters were not high enough to satisfy the closed-

loop stability condition and consequently were not able to stabilize the system. Therefore, the

system behavioral trend was towards instability.

In the next experiment, Mi,d and Bi,d , (i = 1,2,3) were set to 1.2 kg and 2.4 N.s/m, while

the other factors were kept similar to those of the previous experiment. As shown in Fig. 7.10,

the closed-loop stability condition was satisfied and the system behaved in a stable manner.

As can be seen in Fig. 7.10a, the slave robot tracked an αi-based combination of the three

master robots. In addition, all the operators were able to feel the force reflected back from the

environment.
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Figure 7.6: Experimental results for the first scenario, α1 = α2 = 0.333, α3 = 0.334, Mi,d =
0.3 kg and Bi,d = 0.6 N.s/m.
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Figure 7.7: Experimental results for the first scenario, α1 = α2 = 0.5, α3 = 0, Mi,d = 0.3 kg
and Bi,d = 0.6 N.s/m.
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Figure 7.8: Experimental results for the first scenario, α1 = α2 = 0, α3 = 1, Mi,d = 0.3 kg and
Bi,d = 0.6 N.s/m.



7.7. EXPERIMENTS 201

Time (s)
0 5 10 15 20 25

P
o

si
ti

o
n

 (
m

)

0

0.05

0.1

0.15

0.2
X

m1

X
m2

X
m3

X
s

(a) Position comparison

Time (s)
0 5 10 15 20 25

F
o

rc
e 

(N
)

0

2

4

6

8

10
F

h1

F
h2

F
h3

F
e

(b) Force comparison

Figure 7.9: Experimental results for the second scenario, α1 = α2 = 0.1, α3 = 0.8, Mi,d =
0.3 kg and Bi,d = 0.6 N.s/m.
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Figure 7.10: Experimental results for the second scenario, α1 = α2 = 0.1, α3 = 0.8, Mi,d =
1.2 kg and Bi,d = 2.4 N.s/m.
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7.8 Conclusions

In this chapter, a general MM/SS teleoperated system was proposed. A set of desired objec-

tives for the MM/SS system were presented in such a way that both cooperative and training

applications, e.g. surgical teleoperation and surgical training, can benefit. Using the passiv-

ity theorem, it was shown that an ideal MM/SS system is not passive unlike the traditional

SM/SS system. To satisfy the desired objectives, an impedance-based control methodology

was adopted. Stability of the closed-loop system in the presence of communication delay was

investigated using the small-gain theorem and a sufficient condition was derived to ensure sys-

tem stability. Experimental results on an MM/SS system were given to evaluate the proposed

methodology.
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Chapter 8

Conclusions and Future Work

The work presented in this thesis was aimed at design and development of supervised teler-

obotic platforms that facilitate further investigations on the nature of human motor learning

and retention in both Robotics-Assisted Mirror Therapy (RAMT) and Robotics-Assisted Min-

imally Invasive Surgery (RAMIS) applications. To this end, a wave-variable controller was

proposed to ensure closed-loop stability of a classical trilateral teleoperation system in the

presence of a time-varying dominance factor. Time-varying dominance factors in multilateral

teleoperation platforms enable active participation and involvement of the trainee and thereby

accelerate the motor learning process. In order to enable straightforward application of the

proposed wave-variable control to Position-force Domain (PD), passivity of the human arm in

PD was investigated using mathematical analyses, experimentation as well as user studies in-

volving 12 participants and 48 trials. Implementing wave-variable controllers in PD eliminates

inaccuracies due to position-error accumulation and position drift.

The results, in conjunction with the proposed wave-variable approach, can be used to guar-

antee closed-loop PD stability of the supervised trilateral teleoperation system in its classical

format. Classic dual-user teleoperation frameworks do not, however, fully satisfy the require-

ments for properly inducing motor function in Robotics-Assisted Mirror Rehabilation Therapy

(RAMRT) and Robotics-Assisted Minimally invasive Surgical Training (RAMIST). Therefore,

novel supervised trilateral frameworks were designed and developed for inducing motor learn-

ing in RAMRT and RAMIST, each customized according to the requirements of the applica-

tion. The frameworks enable time-varying involvement of the patient and trainee, adaptive and

209
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skills-oriented adjustment of hand-over-hand haptic guidance for active immersion, as well as

data transfer through communication networks with time delays for facilitating tele- and in-

home rehabilitation and tele-surgical training. Finally, a multi-master/single-slave telerobotic

framework was also proposed in order to accommodate for motor function training simultane-

ously for a class of patients or trainees. The next section discusses the contributions in further

details.

8.1 Contributions

The main contributions of the thesis are as follows:

• A wave variable control approach was developed for conventional haptics-enabled dual-

user teleoperation systems such that system stability is guaranteed in the presence of a

time-varying dominance factor as well as communication time delays. The proposed

controller includes a local impedance-based controller adopted from the literature for

each robot and a wave transformation modified for the dual-user system with a time-

varying dominance-factor. In order to investigate closed-loop stability, passivity theory

was applied and it was shown that the proposed wave-variable controller guarantees sys-

tem stability in the presence of a time-varying dominance factor, while the communica-

tion channels have constant time delays. Validity of the controller was demonstrated via

experiments.

• Passivity of the human arm in position-force domain was investigated through mathe-

matical analysis, experimentation and statistical user studies. It was shown that, unlike

in the Velocity-force Domain (VD), passivity of the human arm in the position-force

domain is frequency-dependent. This implies the necessity of making the human-arm

terminal passive in addition to ensuring teleoperator passivity in PD, as opposed to that

in VD, in which passivity of the human-arm terminal is assumed to inherently be the

case. For future design of suitable controllers, statistical analyses were conducted to in-

vestigate correlations between the levels of PD passivity of the left and the right arms of

the human participants, as well as the levels of passivity of their arms and their physical

characteristics, e.g., weight, height, and body mass index. Possible control strategies
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through which the passivity of the operator termination can be guaranteed in PD were

also discussed.

• A trilateral teleoperation framework was developed for robotics-assisted mirror rehabil-

itation therapy, providing the following innovations:

� Therapist-in-the-loop Mirror Therapy (MT), which enhances the motor recovery

process for the patient’s Impaired Limb (PIL) through the cross-cortex coupling

effect between limbs, as well as the expertise and direct supervision of the therapist

over the treatment to provide appropriate corrective movements.

� Patient’s Functional Limb (PFL)-mediation, which allows for the supervision/impact

of the patient over the treatment through their PFL medium in order to guarantee

the patient’s safety and comfort by avoiding the application of excessive pressure

and pain on the PIL.

� Haptic feedback to the therapist from the patient side, which allows the therapist to

decide on the intensity of the therapy administered to the patient;

� Assist-as-needed therapy realized through an adaptive Guidance Virtual Fixture

(GVF) which promotes active involvement of the patient in the treatment.

� Task-independent and patient-specific motor-function assessment, which facilitates

the adaptive adjustment of the therapy based on the patient’s impairment level.

Closed-loop stability of the proposed framework was rigorously investigated using a

combination of the Circle Criterion and the Small-Gain Theorem, deriving a set of suf-

ficient stability conditions. The proposed stability analysis also addresses instabilities

caused by communication delays between the therapist and the patient, thereby, facili-

tates haptics-enabled tele/in-home rehabilitation. The proposed procedure also addresses

extra stability challenges raised by the integration of the time-varying nonlinear GVF el-

ement into the delayed closed-loop system. Several experiments were conducted in order

to evaluate the proposed framework.

• A trilateral teleoperation framework was developed for robotics-assisted minimally in-

vasive surgical training, providing the following innovations:
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� Expert-in-the-loop surgical training with multimodal sensorimotor integration to

speed up the learning curve through haptic interaction between the novice and the

expert.

� Adaptive expertise-oriented training– realized through a Fuzzy Interface System

(FIS), which actively engages the trainee, while providing them with appropriate

level/format of training, depending on their level of proficiency over the task.

� Task-independent motor skills assessment to facilitates adaptive expertise-oriented

training.

� Haptic feedback from the surgical site to the expert surgeon which enables the

expert to transparently perceive the surgical environment, disregarding the trainee’s

level of skills and participation.

� Conduct of a surgical procedure by an expert concurrent with providing multimodal

training to a trainee at any stage of motor-skills learning, without jeopardizing pa-

tient safety.

Closed-loop stability of the proposed architecture was investigated using the Circle Crite-

rion, in the presence and absence of tool-tissue interaction haptic feedback, and sufficient

stability conditions were derived. In addition to the time-varying elements of the system,

the stability analysis approach also addressed communication time delays, facilitating

tele-surgical training. Experimental evaluations were presented in support of the pro-

posed platform through the implementation of a dual-console surgical setup consisting

of the classic da Vinci R© surgical system (Intuitive Surgical, Inc., Sunnyvale, CA) and the

dV-Trainer R© master console (Mimic Technology Inc., Seattle, WA). The implemented

setup serves as 1) the first research platform for dual-console studies and development on

the classic da Vinci R© surgical system, and 2) the first haptics-enabled training platform

based on hand-over-hand guidance and cueing for such a system.

• A novel multi-master/single-slave telerobotics framework was designed. The desired

objectives for the MM/SS system were presented such that both cooperative and training

applications, e.g. surgical teleoperation and surgical training, can benefit. Passivity of

the system was investigated and it was shown that, unlike a conventional SM/SS system,
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an ideal MM/SS system, depending on its structure, may not always be passive. An

impedance-based control methodology was developed to satisfy the desired objectives of

the MM/SS system in the presence of communication delays. The Small-Gain theorem

was applied to analyze closed-loop stability in the presence of time delays and a sufficient

condition was derived. Experimental results on an MM/SS system were presented to

evaluate the performance of the proposed methodology.

8.2 Future Work

Based on the work described in this thesis, there are several research directions that can be

explored, as summarized below:

• The wave variable controller proposed for conventional trilateral frameworks in VD can

be integrated with the results of the Position-force Domain Passivity (PDP) study of the

human arm in order to directly apply the controller in PD. For this purpose, appropriate

controllers to make the human-arm terminal passive in PD should be developed. Toward

this end, the solutions suggested in Chapter 4 can be implemented and compared in terms

of performance for various ranges of frequencies, identifying the approaches best fitting

to the application. The results can also be used in conjunction with other VD passivity-

based approaches in order to realize PD versions of such controllers.

Based on the results derived in Chapter 4 from statistical studies on correlation between

the PDP of the participant’s arm and their physical characteristics, and through further

user studies on a larger group of participants, passivity maps of the human arm in relation

to their physical characteristics can be generated. Towards this end, appropriate artificial

neural networks may be designed to associate the input data with the output data. The

input data can include physical characteristics of the participants, e.g., weight, height,

gender and BMI; The output data can be the frequency range over which their arm termi-

nal remains passive. Such passivity maps would enable development of user-independent

PD controllers that do not require identification of the impedance characteristics of the

operator in teleoperation applications.

• Besides facilitating controller design in PD, PD passivity analysis of the arm terminal
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for patients with hemiparesis may also serve as an appropriate metric to quantify the

disability level as well as longitudinal functional recovery of their impaired limb. Irre-

spective of their gender and their baseline muscular strength, a patient’s functional limb

can serve as an ideal reference for their impaired limb in terms of maneuverability, range

of motion and stiffness. Therefore, having a passivity map associated with dominant

and non-dominant limbs of a group of healthy control participants can enable passivity-

based assessment of the functional ability of a patient’s impaired limb relative to that of

their functional limb. The outcome can also be integrated with the relative skills assess-

ment approach in Chapter 5 in order to enhance the efficacy of the proposed adaptive

assist-as-needed therapy for RAMRT.

• Exploring the effectiveness of the framework proposed for RAMRT through clinical

studies would be another direction for further research. A user study can be conducted

to compare the proposed framework with conventional robotic rehabilitation and mir-

ror therapy approaches in terms of efficacy in motor function development and retention

in patients with hemiparesis. In this context, in addition to haptics-enabled assistance,

visual and auditory modalities can be also integrated and evaluated. Accordingly, an

optimal multimodal sensorimotor integration pattern may be designed to maximize the

development rate of motor function in patients with disabilities. Identifying the opti-

mal profile of haptics-enabled assistance would also be another aspect to explore. The

optimal profile may differ from one patient to another depending on their extent of dis-

abilities, due to the possible variations in their levels of perceivable haptic forces.

• While the classical form of mirror rehabilitation therapy focuses on the mirroring effect

between symmetric limbs (arm-arm or leg-leg), asymmetric mirror therapy (arm-leg)

may also be effective in inducing motor function. This is a question that can be answered

through a teleoperation-based mirror therapy framework. Using such a platform, asym-

metric mirror therapy can be implemented and examined in terms of possible benefits to

hemiparetic patients.

• Effectiveness of the framework designed for RAMIST in accelerating motor skills de-

velopment can be examined through user studies. For this purpose, the dual-console da
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Vinci-based platform developed in Chapter 6 can be used to involve an expert surgeon

and a trainee simultaneously. The effect of various factors on the learning curve of the

trainee can be examined. Some of these factors include: type and complexity levels of

the tasks to be practiced; expertise level of the trainee; as well as format and intensity

level of guidance to be provided to the trainee.

Effect of various formats of guidance - including haptic, vibratory tactile, visual, and

auditory – can be evaluated and compared to design the optimal integration degree of

multiple modalities into the guidance profile. Optimal intensity of the haptic guidance

can be investigated such that it can convey enough cues to the trainee, without spoiling

their active participation. That can also involve optimal design of membership functions

for the FIS through user studies.

The modular design of FIS allows for integration of multiple skills assessment metrics.

Therefore, in addition to the metrics described here, other measures can be straightfor-

wardly incorporated. An avenue to explore would be to study and develop skills assess-

ment measures based on some biological measurements. Examples of such biometrics

are heart rate, oxygen and carbon dioxide saturation level, respiratory rate and EEG-

based brain activity. Such biometrics could provide trainee-specific measurements such

as their level of stress and concentration over the task. As an ongoing part of this study,

we have started investigating possible correlations between the expertise level of trainees

and their level of stress and concentration during robotic surgical tasks. For this purpose,

we have been conducting user trials involving 40 participants with expertise levels vary-

ing from novice to expert robotics surgeons. In this ongoing study, participants are asked

to perform several tasks on the da Vinci surgical system as well as the dv-Trainer, while

some of their biometrics are recorded. These biometrics include heart rate, oxygen sat-

uration and EEG signals. The tasks varies from easy to complex and includes pick and

place, rope walk, ring walk, suturing and tube anastomosis, as well as energized dissec-

tion. A partial goal of this study would be to explore any possible correlations between

the expertise levels of the surgeons and their levels of stress and concentration during

a robotic surgical task. The outcome will be used later to develop surgical assessment

metrics based on biological measurements, which can be integrated into the supervised
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training platform proposed in this thesis.

Another aspect to investigate through user studies would be to compare the impact of

haptic interaction with an expert in real-time with that with a virtual expert. A virtual ex-

pert refers to movements of an expert recorded prior to and replayed during the training

session. A combination of the above studies will help to provide in-depth understand-

ing of the nature of human motor learning during robotics-assisted surgical tasks. The

outcome, in turn, will specify appropriate measures to be taken towards optimizing the

training framework for robotics-assisted minimally invasive surgery.

• Another direction would be to equip haptics-enabled RAMIS simulators with haptic

guidance. Some simulators, e.g. the dV-Trainer from Mimic, have enabled visual guid-

ance by visually illustrating for the trainee the desired configuration of the simulated

master console in the VR environment. The visual cue is meant to guide/help the trainee

in aligning the master console with the desired configuration in order to speed up the

learning process. However, manipulating a master console in 6-DOF is often quite com-

plicated so that a visual cue by itself may not be enough to guide the novice toward the

desired configuration. Although visual guidance shows where to move the tool’s tip, it

does not show how to manipulate the master console to achieve that desired configura-

tion. Therefore, hand-over-hand guidance and cueing can also be integrated into such

simulators to speed up the trainee’s motor learning.

• The frameworks proposed for both RAMRT and RAMIST in Chapters 5 and 6 are de-

signed and analyzed in the presence of communication time delays. Therefore, they can

be used for tele/in-home rehabilitation and tele-mentoring. The stability analyses pro-

vided for both architectures make it possible to investigate the impact of communication

delay on the human learning curve. Studies can be conducted to find the sensitivity to

delay of human motor learning through haptic guidance. A delay threshold may be ob-

tained to denote the level up to which the learning ability is preserved. This threshold

may be different for rehabilitation purposes and surgical training due to cognitive and

physical differences between healthy and impaired participants.

• Finally, the MM/SS teleoperation framework proposed in Chapter 7 can be customized
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to specifically address the requirements for RAMRT and RAMIST applications. The

framework should be modified such that each patient or trainee receives an appropriate

level and format of guidance, without affecting the inputs to other patients or trainees.

The outcome would enable rehabilitation and surgical training for a class of patients

and trainees, while saving on the time of the therapist/expert. This will be helpful in

considerably reducing treatment and training costs for such applications, while providing

patients and trainees with higher quality of therapy and training.
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