24,660 research outputs found

    A review on the application of evolutionary computation to information retrieval

    Get PDF
    In this contribution, different proposals found in the specialized literature for the application of evolutionary computation to the field of information retrieval will be reviewed. To do so, different kinds of IR problems that have been solved by evolutionary algorithms are analyzed. Some of the specific existing approaches will be specifically described for some of these problems and the obtained results will be critically evaluated in order to give a clear view of the topic to the reader.CICYT under project TIC2002-03276University of Granada under project ‘‘Mejora de Metaheur ısticas mediante Hibridaci on y sus Aplicaciones

    Neural Networks Architecture Evaluation in a Quantum Computer

    Full text link
    In this work, we propose a quantum algorithm to evaluate neural networks architectures named Quantum Neural Network Architecture Evaluation (QNNAE). The proposed algorithm is based on a quantum associative memory and the learning algorithm for artificial neural networks. Unlike conventional algorithms for evaluating neural network architectures, QNNAE does not depend on initialization of weights. The proposed algorithm has a binary output and results in 0 with probability proportional to the performance of the network. And its computational cost is equal to the computational cost to train a neural network

    What is Computational Intelligence and where is it going?

    Get PDF
    What is Computational Intelligence (CI) and what are its relations with Artificial Intelligence (AI)? A brief survey of the scope of CI journals and books with ``computational intelligence'' in their title shows that at present it is an umbrella for three core technologies (neural, fuzzy and evolutionary), their applications, and selected fashionable pattern recognition methods. At present CI has no comprehensive foundations and is more a bag of tricks than a solid branch of science. The change of focus from methods to challenging problems is advocated, with CI defined as a part of computer and engineering sciences devoted to solution of non-algoritmizable problems. In this view AI is a part of CI focused on problems related to higher cognitive functions, while the rest of the CI community works on problems related to perception and control, or lower cognitive functions. Grand challenges on both sides of this spectrum are addressed

    Edge Potential Functions (EPF) and Genetic Algorithms (GA) for Edge-Based Matching of Visual Objects

    Get PDF
    Edges are known to be a semantically rich representation of the contents of a digital image. Nevertheless, their use in practical applications is sometimes limited by computation and complexity constraints. In this paper, a new approach is presented that addresses the problem of matching visual objects in digital images by combining the concept of Edge Potential Functions (EPF) with a powerful matching tool based on Genetic Algorithms (GA). EPFs can be easily calculated starting from an edge map and provide a kind of attractive pattern for a matching contour, which is conveniently exploited by GAs. Several tests were performed in the framework of different image matching applications. The results achieved clearly outline the potential of the proposed method as compared to state of the art methodologies. (c) 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works
    corecore