27,947 research outputs found

    Guidelines for the deployment and implementation of manufacturing scheduling systems

    Full text link
    It has frequently been stated that there exists a gap between production scheduling theory and practice. In order to put theoretical findings into practice, advances in scheduling models and solution procedures should be embedded into a piece of software - a scheduling system - in companies. This results in a process that entails (1) determining its functional features, and (2) adopting a successful strategy for its development and deployment. In this paper we address the latter question and review the related literature in order to identify descriptions and recommendations of the main aspects to be taken into account when developing such systems. These issues are then discussed and classified, resulting in a set of guidelines that can help practitioners during the process of developing and deploying a scheduling system. In addition, identification of these issues can provide some insights to drive theoretical scheduling research towards those topics more in demand by practitioners, and thus help to close the aforementioned gap.Framiñan Torres, JM.; Ruiz GarcĂ­a, R. (2012). Guidelines for the deployment and implementation of manufacturing scheduling systems. International Journal of Production Research. 50(7):1799-1812. doi:10.1080/00207543.2011.564670S17991812507Baek, D. H. (1999). A visualized human-computer interactive approach to job shop scheduling. International Journal of Computer Integrated Manufacturing, 12(1), 75-83. doi:10.1080/095119299130489Comesaña Benavides, J. A., & Carlos Prado, J. (2002). Creating an expert system for detailed scheduling. International Journal of Operations & Production Management, 22(7), 806-819. doi:10.1108/01443570210433562Bensana, E. 1986. An expert-system approach to industrial job-shop scheduling. In: Proceedings of the 1986 IEEE international conference on robotics and automation. 1986. Vol. 3, pp.1645–1650.Berglund, M., & Karltun, J. (2007). Human, technological and organizational aspects influencing the production scheduling process. International Journal of Production Economics, 110(1-2), 160-174. doi:10.1016/j.ijpe.2007.02.024Besbes, W., Teghem, J., & Loukil, T. (2010). Scheduling hybrid flow shop problem with non-fixed availability constraints. European J. of Industrial Engineering, 4(4), 413. doi:10.1504/ejie.2010.035652Bhattacharyya, S., & Koehler, G. J. (1998). Learning by Objectives for Adaptive Shop-Floor Scheduling. Decision Sciences, 29(2), 347-375. doi:10.1111/j.1540-5915.1998.tb01580.xBitran, G. R., & Tirupati, D. (1988). OR Practice—Development and Implementation of a Scheduling System for a Wafer Fabrication Facility. Operations Research, 36(3), 377-395. doi:10.1287/opre.36.3.377Buxey, G. (1989). Production scheduling: Practice and theory. European Journal of Operational Research, 39(1), 17-31. doi:10.1016/0377-2217(89)90349-4Chen, J.-F. (2004). Unrelated parallel machine scheduling with secondary resource constraints. The International Journal of Advanced Manufacturing Technology, 26(3), 285-292. doi:10.1007/s00170-003-1622-1Collinot, A., Le Pape, C., & Pinoteau, G. (1988). SONIA: A knowledge-based scheduling system. Artificial Intelligence in Engineering, 3(2), 86-94. doi:10.1016/0954-1810(88)90024-6Cowling, P. (2003). A flexible decision support system for steel hot rolling mill scheduling. Computers & Industrial Engineering, 45(2), 307-321. doi:10.1016/s0360-8352(03)00038-xDudek, R. A., Panwalkar, S. S., & Smith, M. L. (1992). The Lessons of Flowshop Scheduling Research. Operations Research, 40(1), 7-13. doi:10.1287/opre.40.1.7Dumond, E. J. (2005). Understanding and using the capabilities of finite scheduling. Industrial Management & Data Systems, 105(4), 506-526. doi:10.1108/02635570510592398Fox, M. S., & Smith, S. F. (1984). ISIS?a knowledge-based system for factory scheduling. Expert Systems, 1(1), 25-49. doi:10.1111/j.1468-0394.1984.tb00424.xFraminan, J. M., & Ruiz, R. (2010). Architecture of manufacturing scheduling systems: Literature review and an integrated proposal. European Journal of Operational Research, 205(2), 237-246. doi:10.1016/j.ejor.2009.09.026Freed, T., Doerr, K. H., & Chang, T. (2007). In-house development of scheduling decision support systems: case study for scheduling semiconductor device test operations. International Journal of Production Research, 45(21), 5075-5093. doi:10.1080/00207540600818351Gao, C and Tang, L. 2008. A decision support system for color-coating line in steel industry. In: Proceedings of the IEEE international conference on automation and logistics, ICAL 2008. 2008. pp.1463–1468.Grant, T. J. (1986). Lessons for O.R. from A.I.: A Scheduling Case Study. Journal of the Operational Research Society, 37(1), 41-57. doi:10.1057/jors.1986.7Graves, S. C. (1981). A Review of Production Scheduling. Operations Research, 29(4), 646-675. doi:10.1287/opre.29.4.646HALSALL, D. N., MUHLEMANN, A. P., & PRICE, D. H. R. (1994). A review of production planning and scheduling in smaller manufacturing companies in the UK. Production Planning & Control, 5(5), 485-493. doi:10.1080/09537289408919520Higgins, P. G. (1996). Interaction in hybrid intelligent scheduling. International Journal of Human Factors in Manufacturing, 6(3), 185-203. doi:10.1002/(sici)1522-7111(199622)6:33.0.co;2-6Kanet, J. J., & Adelsberger, H. H. (1987). Expert systems in production scheduling. European Journal of Operational Research, 29(1), 51-59. doi:10.1016/0377-2217(87)90192-5Kathawala, Y., & Allen, W. R. (1993). Expert Systems and Job Shop Scheduling. International Journal of Operations & Production Management, 13(2), 23-35. doi:10.1108/01443579310025286Kerr, R. M. (1992). Expert systems in production scheduling: Lessons from a failed implementation. Journal of Systems and Software, 19(2), 123-130. doi:10.1016/0164-1212(92)90063-pKnolmayer, G., Mertens, P., & Zeier, A. (2002). Supply Chain Management Based on SAP Systems. doi:10.1007/978-3-540-24816-3Leachman, R. C., Benson, R. F., Liu, C., & Raar, D. J. (1996). IMPReSS: An Automated Production-Planning and Delivery-Quotation System at Harris Corporation—Semiconductor Sector. Interfaces, 26(1), 6-37. doi:10.1287/inte.26.1.6MACCARTHY, B. L., & LIU, J. (1993). Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling. International Journal of Production Research, 31(1), 59-79. doi:10.1080/00207549308956713McKay, K. N., & Black, G. W. (2007). The evolution of a production planning system: A 10-year case study. Computers in Industry, 58(8-9), 756-771. doi:10.1016/j.compind.2007.02.002McKay, K. N., Safayeni, F. R., & Buzacott, J. A. (1988). Job-Shop Scheduling Theory: What Is Relevant? Interfaces, 18(4), 84-90. doi:10.1287/inte.18.4.84McKay, K. N., Morton, T. E., Ramnath, P., & Wang, J. (2000). ?Aversion dynamics? scheduling when the system changes. Journal of Scheduling, 3(2), 71-88. doi:10.1002/(sici)1099-1425(200003/04)3:23.0.co;2-0MCKAY, K., PINEDO, M., & WEBSTER, S. (2009). PRACTICE-FOCUSED RESEARCH ISSUES FOR SCHEDULING SYSTEMS*. Production and Operations Management, 11(2), 249-258. doi:10.1111/j.1937-5956.2002.tb00494.xMissbauer, H., Hauber, W., & Stadler, W. (2009). A scheduling system for the steelmaking-continuous casting process. A case study from the steel-making industry. International Journal of Production Research, 47(15), 4147-4172. doi:10.1080/00207540801950136Numao, M and Morishita, S. 1989. A scheduling environment for steel-making processes. In: Proceedings of the 5th conference on artificial intelligence applications. 1989. pp.279–286.Olhager, J., & Rapp, B. (1995). Operations Research Techniques in Manufacturing Planning and Control Systems. International Transactions in Operational Research, 2(1), 29-43. doi:10.1111/j.1475-3995.1995.tb00003.xPerez-Gonzalez, P., & Framinan, J. M. (2009). Scheduling permutation flowshops with initial availability constraint: Analysis of solutions and constructive heuristics. Computers & Operations Research, 36(10), 2866-2876. doi:10.1016/j.cor.2008.12.018Pinedo, M., & Yen, B. P.-C. (1997). Annals of Operations Research, 70, 359-378. doi:10.1023/a:1018986524234Portougal, V., & Robb, D. J. (2000). Production Scheduling Theory: Just Where Is It Applicable? Interfaces, 30(6), 64-76. doi:10.1287/inte.30.6.64.11623Reisman, A., Kumar, A., & Motwani, J. (1997). Flowshop scheduling/sequencing research: a statistical review of the literature, 1952-1994. IEEE Transactions on Engineering Management, 44(3), 316-329. doi:10.1109/17.618173Steffen, MS. 1986. A survey of artificial intelligence-based scheduling systems. In: Proceedings of the fall industrial engineering conference. 1986.Storer, R. H., Wu, S. D., & Vaccari, R. (1992). New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling. Management Science, 38(10), 1495-1509. doi:10.1287/mnsc.38.10.1495Tang, L., & Wang, G. (2008). Decision support system for the batching problems of steelmaking and continuous-casting production. Omega, 36(6), 976-991. doi:10.1016/j.omega.2007.11.002T’kindt, V., Billaut, J.-C., Bouquard, J.-L., LentĂ©, C., Martineau, P., NĂ©ron, E., 
 Tacquard, C. (2005). The e-OCEA project: towards an Internet decision system for scheduling problems. Decision Support Systems, 40(2), 329-337. doi:10.1016/j.dss.2004.04.001Wiers, VCS. 1997. Human–computer interaction in production scheduling: Analysis and design of decision support systems for production scheduling tasks. Ph.D. Thesis, Technische Universiteit Eindhoven, NetherlandsWiers, V. C. S. (2002). A case study on the integration of APS and ERP in a steel processing plant. Production Planning & Control, 13(6), 552-560. doi:10.1080/09537280210160321Wiers, V. C. S., & Van Der Schaaf, T. W. (1997). A framework for decision support in production scheduling tasks. Production Planning & Control, 8(6), 533-544. doi:10.1080/095372897234876Zhang, L., Krishnamurthy, A., Malmborg, C. J., & Heragu, S. S. (2009). Variance-based approximations of transaction waiting times in autonomous vehicle storage and retrieval systems. European J. of Industrial Engineering, 3(2), 146. doi:10.1504/ejie.2009.02360

    Computer Application in the Steel Industry: Control of Basic Oxygen Furnaces and Integrated Management Systems in Large Plants

    Get PDF
    Interest in computer based management systems in the steel industry can be attributed to three main reasons. First, steel is a basic industry that is of interest to most of the IIASA NMOs. Second, steel is a complex industry with different types of processing and manufacturing facilities. Third, and most important, the steel industry is perhaps the most advanced area of technology with respect to the application of both an integrated systems approach and computers for real time information processing and decision making. The major goal of this workshop was to aid IIASA in identifying the most advanced methods for planning, scheduling and production control, and to determine how these methods can be implemented and coordinated to achieve systems integration. The proceedings of this workshop deal with problem oriented models for industrial technology -- specifically with the application of computers for the control of basic oxygen furnaces. A review of the present practices in nine countries, including Japan, the USA and the USSR, are presented, along with suggestions for further IIASA research

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    A Web Smart Space Framework for Intelligent Search Engines

    Get PDF
    A web smart space is an intelligent environment which has additional capability of searching the information smartly and efficiently. New advancements like dynamic web contents generation has increased the size of web repositories. Among so many modern software analysis requirements, one is to search information from the given repository. But useful information extraction is a troublesome hitch due to the multi-lingual; base of the web data collection. The issue of semantic based information searching has become a standoff due to the inconsistencies and variations in the characteristics of the data. In the accomplished research, a web smart space framework has been proposed which introduces front end processing for a search engine to make the information retrieval process more intelligent and accurate. In orthodox searching anatomies, searching is performed only by using pattern matching technique and consequently a large number of irrelevant results are generated. The projected framework has insightful ability to improve this drawback and returns efficient outcomes. Designed framework gets text input from the user in the form complete question, understands the input and generates the meanings. Search engine searches on the basis of the information provided

    Demand response within the energy-for-water-nexus - A review. ESRI WP637, October 2019

    Get PDF
    A promising tool to achieve more flexibility within power systems is demand re-sponse (DR). End-users in many strands of industry have been subject to research up to now regarding the opportunities for implementing DR programmes. One sector that has received little attention from the literature so far, is wastewater treatment. However, case studies indicate that the potential for wastewater treatment plants to provide DR services might be significant. This review presents and categorises recent modelling approaches for industrial demand response as well as for the wastewater treatment plant operation. Furthermore, the main sources of flexibility from wastewater treatment plants are presented: a potential for variable electricity use in aeration, the time-shifting operation of pumps, the exploitation of built-in redundan-cy in the system and flexibility in the sludge processing. Although case studies con-note the potential for DR from individual WWTPs, no study acknowledges the en-dogeneity of energy prices which arises from a large-scale utilisation of DR. There-fore, an integrated energy systems approach is required to quantify system and market effects effectively

    Welcome to OR&S! Where students, academics and professionals come together

    Get PDF
    In this manuscript, an overview is given of the activities done at the Operations Research and Scheduling (OR&S) research group of the faculty of Economics and Business Administration of Ghent University. Unlike the book published by [1] that gives a summary of all academic and professional activities done in the field of Project Management in collaboration with the OR&S group, the focus of the current manuscript lies on academic publications and the integration of these published results in teaching activities. An overview is given of the publications from the very beginning till today, and some of the topics that have led to publications are discussed in somewhat more detail. Moreover, it is shown how the research results have been used in the classroom to actively involve students in our research activities

    Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach

    Get PDF
    Integrated steel manufacturers (ISMs) have no specific product, they just produce finished product from the ore. This enhances the uncertainty prevailing in the ISM regarding the nature of the finished product and significant demand by customers. At present low cost mini-mills are giving firm competition to ISMs in terms of cost, and this has compelled the ISM industry to target customers who want exotic products and faster reliable deliveries. To meet this objective, ISMs are exploring the option of satisfying part of their demand by converting strategically placed products, this helps in increasing the variability of product produced by the ISM in a short lead time. In this paper the authors have proposed a new hybrid evolutionary algorithm named endosymbiotic-psychoclonal (ESPC) to decide what and how much to stock as a semi-product in inventory. In the proposed theory, the ability of previously proposed psychoclonal algorithms to exploit the search space has been increased by making antibodies and antigen more co-operative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results compared with other evolutionary algorithms such as genetic algorithms (GA) and simulated annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained and convergence time required to reach the optimal/near optimal value of the solution
    • 

    corecore