946 research outputs found

    Hardware Impairments in Large-scale MISO Systems: Energy Efficiency, Estimation, and Capacity Limits

    Full text link
    The use of large-scale antenna arrays has the potential to bring substantial improvements in energy efficiency and/or spectral efficiency to future wireless systems, due to the greatly improved spatial beamforming resolution. Recent asymptotic results show that by increasing the number of antennas one can achieve a large array gain and at the same time naturally decorrelate the user channels; thus, the available energy can be focused very accurately at the intended destinations without causing much inter-user interference. Since these results rely on asymptotics, it is important to investigate whether the conventional system models are still reasonable in the asymptotic regimes. This paper analyzes the fundamental limits of large-scale multiple-input single-output (MISO) communication systems using a generalized system model that accounts for transceiver hardware impairments. As opposed to the case of ideal hardware, we show that these practical impairments create finite ceilings on the estimation accuracy and capacity of large-scale MISO systems. Surprisingly, the performance is only limited by the hardware at the single-antenna user terminal, while the impact of impairments at the large-scale array vanishes asymptotically. Furthermore, we show that an arbitrarily high energy efficiency can be achieved by reducing the power while increasing the number of antennas.Comment: Published at International Conference on Digital Signal Processing (DSP 2013), 6 pages, 5 figure

    Towards a Realistic Assessment of Multiple Antenna HCNs: Residual Additive Transceiver Hardware Impairments and Channel Aging

    Get PDF
    Given the critical dependence of broadcast channels by the accuracy of channel state information at the transmitter (CSIT), we develop a general downlink model with zero-forcing (ZF) precoding, applied in realistic heterogeneous cellular systems with multiple antenna base stations (BSs). Specifically, we take into consideration imperfect CSIT due to pilot contamination, channel aging due to users relative movement, and unavoidable residual additive transceiver hardware impairments (RATHIs). Assuming that the BSs are Poisson distributed, the main contributions focus on the derivations of the upper bound of the coverage probability and the achievable user rate for this general model. We show that both the coverage probability and the user rate are dependent on the imperfect CSIT and RATHIs. More concretely, we quantify the resultant performance loss of the network due to these effects. We depict that the uplink RATHIs have equal impact, but the downlink transmit BS distortion has a greater impact than the receive hardware impairment of the user. Thus, the transmit BS hardware should be of better quality than user's receive hardware. Furthermore, we characterise both the coverage probability and user rate in terms of the time variation of the channel. It is shown that both of them decrease with increasing user mobility, but after a specific value of the normalised Doppler shift, they increase again. Actually, the time variation, following the Jakes autocorrelation function, mirrors this effect on coverage probability and user rate. Finally, we consider space division multiple access (SDMA), single user beamforming (SU-BF), and baseline single-input single-output (SISO) transmission. A comparison among these schemes reveals that the coverage by means of SU-BF outperforms SDMA in terms of coverage.Comment: accepted in IEEE TV

    Massive MIMO Systems with Non-Ideal Hardware: Energy Efficiency, Estimation, and Capacity Limits

    Full text link
    The use of large-scale antenna arrays can bring substantial improvements in energy and/or spectral efficiency to wireless systems due to the greatly improved spatial resolution and array gain. Recent works in the field of massive multiple-input multiple-output (MIMO) show that the user channels decorrelate when the number of antennas at the base stations (BSs) increases, thus strong signal gains are achievable with little inter-user interference. Since these results rely on asymptotics, it is important to investigate whether the conventional system models are reasonable in this asymptotic regime. This paper considers a new system model that incorporates general transceiver hardware impairments at both the BSs (equipped with large antenna arrays) and the single-antenna user equipments (UEs). As opposed to the conventional case of ideal hardware, we show that hardware impairments create finite ceilings on the channel estimation accuracy and on the downlink/uplink capacity of each UE. Surprisingly, the capacity is mainly limited by the hardware at the UE, while the impact of impairments in the large-scale arrays vanishes asymptotically and inter-user interference (in particular, pilot contamination) becomes negligible. Furthermore, we prove that the huge degrees of freedom offered by massive MIMO can be used to reduce the transmit power and/or to tolerate larger hardware impairments, which allows for the use of inexpensive and energy-efficient antenna elements.Comment: To appear in IEEE Transactions on Information Theory, 28 pages, 15 figures. The results can be reproduced using the following Matlab code: https://github.com/emilbjornson/massive-MIMO-hardware-impairment

    A General Framework for Transmission with Transceiver Distortion and Some Applications

    Full text link
    A general theoretical framework is presented for analyzing information transmission over Gaussian channels with memoryless transceiver distortion, which encompasses various nonlinear distortion models including transmit-side clipping, receive-side analog-to-digital conversion, and others. The framework is based on the so-called generalized mutual information (GMI), and the analysis in particular benefits from the setup of Gaussian codebook ensemble and nearest-neighbor decoding, for which it is established that the GMI takes a general form analogous to the channel capacity of undistorted Gaussian channels, with a reduced "effective" signal-to-noise ratio (SNR) that depends on the nominal SNR and the distortion model. When applied to specific distortion models, an array of results of engineering relevance is obtained. For channels with transmit-side distortion only, it is shown that a conventional approach, which treats the distorted signal as the sum of the original signal part and a uncorrelated distortion part, achieves the GMI. For channels with output quantization, closed-form expressions are obtained for the effective SNR and the GMI, and related optimization problems are formulated and solved for quantizer design. Finally, super-Nyquist sampling is analyzed within the general framework, and it is shown that sampling beyond the Nyquist rate increases the GMI for all SNR. For example, with a binary symmetric output quantization, information rates exceeding one bit per channel use are achievable by sampling the output at four times the Nyquist rate.Comment: 32 pages (including 4 figures, 5 tables, and auxiliary materials); submitted to IEEE Transactions on Communication

    On the MIMO Capacity with Residual Transceiver Hardware Impairments

    Get PDF
    Radio-frequency (RF) impairments in the transceiver hardware of communication systems (e.g., phase noise (PN), high power amplifier (HPA) nonlinearities, or in-phase/quadrature-phase (I/Q) imbalance) can severely degrade the performance of traditional multiple-input multiple-output (MIMO) systems. Although calibration algorithms can partially compensate these impairments, the remaining distortion still has substantial impact. Despite this, most prior works have not analyzed this type of distortion. In this paper, we investigate the impact of residual transceiver hardware impairments on the MIMO system performance. In particular, we consider a transceiver impairment model, which has been experimentally validated, and derive analytical ergodic capacity expressions for both exact and high signal-to-noise ratios (SNRs). We demonstrate that the capacity saturates in the high-SNR regime, thereby creating a finite capacity ceiling. We also present a linear approximation for the ergodic capacity in the low-SNR regime, and show that impairments have only a second-order impact on the capacity. Furthermore, we analyze the effect of transceiver impairments on large-scale MIMO systems; interestingly, we prove that if one increases the number of antennas at one side only, the capacity behaves similar to the finite-dimensional case. On the contrary, if the number of antennas on both sides increases with a fixed ratio, the capacity ceiling vanishes; thus, impairments cause only a bounded offset in the capacity compared to the ideal transceiver hardware case.Comment: Accepted for publication at the IEEE International Conference on Communications (ICC 2014), 7 pages, 6 figure

    Secrecy Energy Efficiency of MIMOME Wiretap Channels with Full-Duplex Jamming

    Full text link
    Full-duplex (FD) jamming transceivers are recently shown to enhance the information security of wireless communication systems by simultaneously transmitting artificial noise (AN) while receiving information. In this work, we investigate if FD jamming can also improve the systems secrecy energy efficiency (SEE) in terms of securely communicated bits-per- Joule, when considering the additional power used for jamming and self-interference (SI) cancellation. Moreover, the degrading effect of the residual SI is also taken into account. In this regard, we formulate a set of SEE maximization problems for a FD multiple-input-multiple-output multiple-antenna eavesdropper (MIMOME) wiretap channel, considering both cases where exact or statistical channel state information (CSI) is available. Due to the intractable problem structure, we propose iterative solutions in each case with a proven convergence to a stationary point. Numerical simulations indicate only a marginal SEE gain, through the utilization of FD jamming, for a wide range of system conditions. However, when SI can efficiently be mitigated, the observed gain is considerable for scenarios with a small distance between the FD node and the eavesdropper, a high Signal-to-noise ratio (SNR), or for a bidirectional FD communication setup.Comment: IEEE Transactions on Communication

    Limited Feedback Design for Interference Alignment on MIMO Interference Networks with Heterogeneous Path Loss and Spatial Correlations

    Full text link
    Interference alignment is degree of freedom optimal in K -user MIMO interference channels and many previous works have studied the transceiver designs. However, these works predominantly focus on networks with perfect channel state information at the transmitters and symmetrical interference topology. In this paper, we consider a limited feedback system with heterogeneous path loss and spatial correlations, and investigate how the dynamics of the interference topology can be exploited to improve the feedback efficiency. We propose a novel spatial codebook design, and perform dynamic quantization via bit allocations to adapt to the asymmetry of the interference topology. We bound the system throughput under the proposed dynamic scheme in terms of the transmit SNR, feedback bits and the interference topology parameters. It is shown that when the number of feedback bits scales with SNR as C_{s}\cdot\log\textrm{SNR}, the sum degrees of freedom of the network are preserved. Moreover, the value of scaling coefficient C_{s} can be significantly reduced in networks with asymmetric interference topology.Comment: 30 pages, 6 figures, accepted by IEEE transactions on signal processing in Feb. 201

    Asymptotic Analysis of SU-MIMO Channels With Transmitter Noise and Mismatched Joint Decoding

    Get PDF
    Hardware impairments in radio-frequency components of a wireless system cause unavoidable distortions to transmission that are not captured by the conventional linear channel model. In this paper, a 'binoisy' single-user multiple-input multiple-output (SU-MIMO) relation is considered where the additional distortions are modeled via an additive noise term at the transmit side. Through this extended SU-MIMO channel model, the effects of transceiver hardware impairments on the achievable rate of multi-antenna point-to-point systems are studied. Channel input distributions encompassing practical discrete modulation schemes, such as, QAM and PSK, as well as Gaussian signaling are covered. In addition, the impact of mismatched detection and decoding when the receiver has insufficient information about the non-idealities is investigated. The numerical results show that for realistic system parameters, the effects of transmit-side noise and mismatched decoding become significant only at high modulation orders.Comment: 16 pages, 7 figure
    corecore