40 research outputs found

    A cross-layer approach for new reliability-performance trade-offs in MLC NAND flash memories

    Get PDF
    In spite of the mature cell structure, the memory controller architecture of Multi-level cell (MLC) NAND Flash memories is evolving fast in an attempt to improve the uncorrected/miscorrected bit error rate (UBER) and to provide a more flexible usage model where the performance-reliability trade-off point can be adjusted at runtime. However, optimization techniques in the memory controller architecture cannot avoid a strict trade-off between UBER and read throughput. In this paper, we show that co-optimizing ECC architecture configuration in the memory controller with program algorithm selection at the technology layer, a more flexible memory sub-system arises, which is capable of unprecedented trade-offs points between performance and reliability

    Letter from the Special Issue Editor

    Get PDF
    Editorial work for DEBULL on a special issue on data management on Storage Class Memory (SCM) technologies

    Design Guidelines for High-Performance SCM Hierarchies

    Full text link
    With emerging storage-class memory (SCM) nearing commercialization, there is evidence that it will deliver the much-anticipated high density and access latencies within only a few factors of DRAM. Nevertheless, the latency-sensitive nature of memory-resident services makes seamless integration of SCM in servers questionable. In this paper, we ask the question of how best to introduce SCM for such servers to improve overall performance/cost over existing DRAM-only architectures. We first show that even with the most optimistic latency projections for SCM, the higher memory access latency results in prohibitive performance degradation. However, we find that deployment of a modestly sized high-bandwidth 3D stacked DRAM cache makes the performance of an SCM-mostly memory system competitive. The high degree of spatial locality that memory-resident services exhibit not only simplifies the DRAM cache's design as page-based, but also enables the amortization of increased SCM access latencies and the mitigation of SCM's read/write latency disparity. We identify the set of memory hierarchy design parameters that plays a key role in the performance and cost of a memory system combining an SCM technology and a 3D stacked DRAM cache. We then introduce a methodology to drive provisioning for each of these design parameters under a target performance/cost goal. Finally, we use our methodology to derive concrete results for specific SCM technologies. With PCM as a case study, we show that a two bits/cell technology hits the performance/cost sweet spot, reducing the memory subsystem cost by 40% while keeping performance within 3% of the best performing DRAM-only system, whereas single-level and triple-level cell organizations are impractical for use as memory replacements.Comment: Published at MEMSYS'1

    Flash memory management with cooperation, adaptation and assistance

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Extending Memory Capacity in Consumer Devices with Emerging Non-Volatile Memory: An Experimental Study

    Full text link
    The number and diversity of consumer devices are growing rapidly, alongside their target applications' memory consumption. Unfortunately, DRAM scalability is becoming a limiting factor to the available memory capacity in consumer devices. As a potential solution, manufacturers have introduced emerging non-volatile memories (NVMs) into the market, which can be used to increase the memory capacity of consumer devices by augmenting or replacing DRAM. Since entirely replacing DRAM with NVM in consumer devices imposes large system integration and design challenges, recent works propose extending the total main memory space available to applications by using NVM as swap space for DRAM. However, no prior work analyzes the implications of enabling a real NVM-based swap space in real consumer devices. In this work, we provide the first analysis of the impact of extending the main memory space of consumer devices using off-the-shelf NVMs. We extensively examine system performance and energy consumption when the NVM device is used as swap space for DRAM main memory to effectively extend the main memory capacity. For our analyses, we equip real web-based Chromebook computers with the Intel Optane SSD, which is a state-of-the-art low-latency NVM-based SSD device. We compare the performance and energy consumption of interactive workloads running on our Chromebook with NVM-based swap space, where the Intel Optane SSD capacity is used as swap space to extend main memory capacity, against two state-of-the-art systems: (i) a baseline system with double the amount of DRAM than the system with the NVM-based swap space; and (ii) a system where the Intel Optane SSD is naively replaced with a state-of-the-art (yet slower) off-the-shelf NAND-flash-based SSD, which we use as a swap space of equivalent size as the NVM-based swap space

    Analysis of SSD’s Performance in Database Servers

    Get PDF
    Data storage is much needed in any type of device and there are multiple mechanisms for data storage which vary from the device to device but at the end it’s a magnetic drive which holds the data and stored in the form of digital format. One predominant data storage device is hard disk drive also called as HDD. Hard disk drives are used in a wide range of systems like computers, laptops and netbooks etc., it has magnetic platter which is used for reading and writing operations. (Hard disk drive, n.d.) With the emerging technologies and modularization of web application design architecture created a need for different kind of operating system and system architecture based on the functionality. If we want a server where files need to be placed it should be designed in such a way that it needs to be good at input and output operations (I/O). (How does a hard drive work?, 2018) If we want to store videos and stream, that server should be good at asynchronous streaming functionality. If we need to store the structured/un-structured data which can be pertained to any educational institution or an organization, we can use a database server to store this data in tables and it can be used. In general, we use hard disk drives to store any kind of data in all the servers, but there will be only changes in the system architecture. The concept of HDD utilization has been constant from past 20 years. There was a huge growth in the architectural design of operating systems used for hosting database servers, but when it comes to storage HDD’s have been used for many years. With the need for speed and faster operations from the perspective of storage, solid state drives come in to picture. (SSD Advantage, n.d.)They have a different kind of architecture when compared to HDD and they are called as SSD. This paper discusses the idea of using SSD’s instead of HDD’s in database servers. We created multiple database instances for SSD’s and HDD’s and also created multiple web applications using JAVA and connected to each of these database servers to access data via REST API’s. We have run multiple tests to compare the load time of all the different database instances and generated some visual analytics how it behaves when multiple/series of get operations made on the database with the REST API. This analysis will help in finding if there are any anomalies in the behavior with increase in throughput of read and write operations

    Flash Memory Devices

    Get PDF
    Flash memory devices have represented a breakthrough in storage since their inception in the mid-1980s, and innovation is still ongoing. The peculiarity of such technology is an inherent flexibility in terms of performance and integration density according to the architecture devised for integration. The NOR Flash technology is still the workhorse of many code storage applications in the embedded world, ranging from microcontrollers for automotive environment to IoT smart devices. Their usage is also forecasted to be fundamental in emerging AI edge scenario. On the contrary, when massive data storage is required, NAND Flash memories are necessary to have in a system. You can find NAND Flash in USB sticks, cards, but most of all in Solid-State Drives (SSDs). Since SSDs are extremely demanding in terms of storage capacity, they fueled a new wave of innovation, namely the 3D architecture. Today “3D” means that multiple layers of memory cells are manufactured within the same piece of silicon, easily reaching a terabit capacity. So far, Flash architectures have always been based on "floating gate," where the information is stored by injecting electrons in a piece of polysilicon surrounded by oxide. On the contrary, emerging concepts are based on "charge trap" cells. In summary, flash memory devices represent the largest landscape of storage devices, and we expect more advancements in the coming years. This will require a lot of innovation in process technology, materials, circuit design, flash management algorithms, Error Correction Code and, finally, system co-design for new applications such as AI and security enforcement

    Facilitating Emerging Non-volatile Memories in Next-Generation Memory System Design: Architecture-Level and Application-Level Perspectives

    Get PDF
    This dissertation focuses on three types of emerging NVMs, spin-transfer torque RAM (STT-RAM), phase change memory (PCM), and metal-oxide resistive RAM (ReRAM). STT-RAM has been identified as the best replacement of SRAM to build large-scale and low-power on-chip caches and also an energy-efficient alternative to DRAM as main memory. PCM and ReRAM have been considered to be promising technologies for building future large-scale and low-power main memory systems. This dissertation investigates two aspects to facilitate them in next-generation memory system design, architecture-level and application-level perspectives. First, multi-level cell (MLC) STT-RAM based cache design is optimized by using data encoding and data compression. Second, MLC STT-RAM is utilized as persistent main memory for fast and energy-efficient local checkpointing. Third, the commonly used database indexing algorithm, B+tree, is redesigned to be NVM-friendly. Forth, a novel processing-in-memory architecture built on ReRAM based main memory is proposed to accelerate neural network applications

    Towards Successful Application of Phase Change Memories: Addressing Challenges from Write Operations

    Get PDF
    The emerging Phase Change Memory (PCM) technology is drawing increasing attention due to its advantages in non-volatility, byte-addressability and scalability. It is regarded as a promising candidate for future main memory. However, PCM's write operation has some limitations that pose challenges to its application in memory. The disadvantages include long write latency, high write power and limited write endurance. In this thesis, I present my effort towards successful application of PCM memory. My research consists of several optimizing techniques at both the circuit and architecture level. First, at the circuit level, I propose Differential Write to remove unnecessary bit changes in PCM writes. This is not only beneficial to endurance but also to the energy and latency of writes. Second, I propose two memory scheduling enhancements (AWP and RAWP) for a non-blocking bank design. My memory scheduling enhancements can exploit intra-bank parallelism provided by non-blocking bank design, and achieve significant throughput improvement. Third, I propose Bit Level Power Budgeting (BPB), a fine-grained power budgeting technique that leverages the information from Differential Write to achieve even higher memory throughput under the same power budget. Fourth, I propose techniques to improve the QoS tuning ability of high-priority applications when running on PCM memory. In summary, the techniques I propose effectively address the challenges of PCM's write operations. In addition, I present the experimental infrastructure in this work and my visions of potential future research topics, which could be helpful to other researchers in the area
    corecore