
FLASH MEMORY MANAGEMENT

WITH COOPERATION, ADAPTATION

AND ASSISTANCE

CHUNDONG WANG

(B.Sc., XI’AN JIAOTONG UNIVERSITY, CHINA)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2013

DECLARATION

I hereby declare that the thesis is my original work and it has been written

by me in its entirety. I have duly acknowledged all the sources of informa-

tion which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

Chundong Wang

November 14, 2013

i

Acknowledgements

First of all, my deepest gratitude goes to my supervisor, Professor Wong Weng

Fai, for his persistent and attentive guidance throughout my Ph.D. candida-

ture. Professor Wong always inspires me and encourages to do research. His

professional supervision is of great value to my career in the future.

I would like to express my sincere thanks to my dissertation committee mem-

bers, Professor Tulika Mitra, Professor Roland Yap Hock Chuan and Professor

Tei-Wei Kuo. They have spent a lot of time in reviewing my dissertation, and

given me insightful comments and suggestions.

I am grateful to teachers during my Ph.D. study. They did teach me not only

knowledge but all skills for a researcher. I also would like to thank administrative

staffs of the school and the university for their help in the past five years.

Many thanks are due to my fellows in the Embedded Systems Research Labs

and SoC, including Edward Sim, Ju Lei, Anderi Hagiescu, Liang Yun, Huynh

Phung Huynh, Sudipta Chattopadhyay, Liu Shanshan, Qi Dawei, Ding Hup-

ing, Chen Jie, Chen Liang, Pooja Roy, Wang Jianxing, Mamohan Manoharan,

Thannimalai Somu Muthukaruppan, Zhong Guanwen, Ramapantulu Lavanya,

Guo Xiangfa, Li Bo, Su Bolan and many others that are not listed. I want

to express my gratitude to Professor Jürgen Teich in University of Erlangen-

Nuremberg, Professor Qi Yong, Professor Song Qinbao and Dr. He Liang in

Xi’an Jiaotong University, Dr. Yang Wentong in the National University Health

System, and Assistant Professor Yeh Chi-Tsai in Shih Chien University. I also

want to thank Wang Dong, Hai Zhen, Cheng Peng, Chen Peng, Hu Ping, Zhang

Kaibin and Li Zhenggang. I highly appreciate their encouragement and support.

I would love to extend the warmest thanks to my parents. They always

believe me and encourage me to pursue my dreams. Twelve years ago I left my

hometown for study. I wish we could live together soon after my graduation.

Finally, I want to thank my wife, Jiang Lina. I might not be able to write

this dissertation without her love and understanding. We met ten years ago in

our high school. She is always being supportive to me and helping me through

all the hard times. This dissertation is dedicated to her.

ii

Contents

Declaration i

Acknowledgements ii

Contents iii

Abstract vi

List of Publications viii

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Flash Memory Management . 1

1.1.1 NAND Flash Memory . 1

1.1.2 Flash Memory Management 2

1.2 Problem Formulation and Motivation 4

1.3 Thesis Statement and Overview 6

1.4 Organization of the Chapters . 8

2 Background 9

2.1 NAND Flash Memory . 9

2.2 Modules of Flash Memory Management 11

2.3 The Background of the Era . 14

3 Literature Review 15

3.1 Flash Device and Its Potential 15

3.2 Algorithms of Flash Management 17

3.2.1 Schemes for Wear Leveling 17

3.2.2 Schemes for Address Mapping 19

iii

3.2.3 Schemes for RAM Buffer Management 21

3.3 Strategies Behind Flash Management 23

3.3.1 Module-Cooperative Flash Management 23

3.3.2 Workload-adaptive Flash Management 24

3.3.3 OS-involved Flash Management 25

4 OWL: Cooperative Wear Leveling 26

4.1 Overview . 26

4.2 Challenge and Motivation . 28

4.3 OWL’s Block Organization . 29

4.4 Locality-based Block Allocation 30

4.5 Scan and Transfer Scheme . 34

4.6 Experimental Evaluation . 37

4.6.1 Experimental Methodology 37

4.6.2 Effectiveness of OWL . 38

4.6.3 Effects of BAT Size . 40

4.6.4 Effectiveness of ST . 41

4.7 Summary . 44

5 ADAPT: Workload-Adaptive Hybrid Address Mapping 47

5.1 Overview . 47

5.2 Online Adaptive Partitioning of the Log Space 49

5.3 Predictive Transfers . 53

5.4 Aggregated Data Movement . 56

5.5 Merge or Move Decision Procedure 57

5.6 Experiments . 57

5.6.1 Configurations and Assumptions 57

5.6.2 Performance Evaluation 59

5.6.3 Effects of Log Space Capacity 62

5.6.4 Effects of Log Space Partitioning 63

5.6.5 Impact of κ . 64

5.6.6 Effects of the Interval Length on Adaptation 64

5.6.7 Effects of HAT Size . 65

5.6.8 Tuning of Aggregation Threshold 66

5.7 Summary . 68

6 TreeFTL: An Adaptive Tree in the RAM Buffer 71

6.1 Overview . 71

6.2 The Tree in RAM . 73

iv

6.2.1 The Three Levels . 73

6.2.2 Address Translation With The Tree 75

6.3 Lightweight Pruning of TreeFTL 77

6.3.1 Lightweight Pruning with Caching Groups 77

6.3.2 Two-level LRU Selection Mechanism 80

6.4 Discussions on TreeFTL . 82

6.4.1 Partitioning and RAM Space Utilization 82

6.4.2 Workload Adaptation . 82

6.4.3 Reliability and Garbage Collection 83

6.5 Performance Evaluation . 83

6.5.1 Experimental Setup . 83

6.5.2 Performance Improvements by TreeFTL 85

6.5.3 Effect of the Lightweight LRU Selection 88

6.6 Summary . 90

7 SAW: OS-Assisted Wear Leveling 91

7.1 Overview . 91

7.2 Temperature of File Types . 93

7.2.1 Update Frequency of A File Type 94

7.2.2 Update Recency . 96

7.2.3 Temperature of File Types 97

7.3 Wear Leveling with Temperature 98

7.3.1 Exponential Division of Flash Blocks 98

7.3.2 Temperature Adjustment 99

7.4 A Prototype of SAW . 99

7.5 Experimental Evaluation . 101

7.5.1 The Effectiveness of SAW 102

7.5.2 The Accuracy of f for ϕ 105

7.5.3 The Impact of β . 106

7.5.4 Impact of Interval Length 106

7.5.5 Full Results with the Prototype and FlashSim 107

7.6 Summary . 107

8 Conclusion 113

8.1 Thesis Contributions . 113

8.2 Future Directions . 114

Bibliography 115

v

Abstract

NAND flash memory-based devices are ubiquitous for data storage in smart

phones, personal computers and enterprise servers today. This can be attributed

to the advantages of NAND flash memory over ferromagnetic material and

volatile memory; in particular, they are lightweight, shock-resistance, energy-

efficiency and non-volatility. However, NAND flash memory has inherent char-

acteristics that are still serious concerns in its deployment. At the same time, the

environments in which storage devices are used have become much more diverse

in the past three decades since the invention of flash memory. Efficient and ef-

fective strategies to manage flash device are therefore necessary. This motivates

us to innovate new approaches within this thesis.

The management of a NAND flash device is traditionally done by an em-

bedded software called the flash translation layer (FTL). The FTL is developed

in a modular design with each module being responsible for one aspect of flash

management. For example, address mapping maps logical addresses of file sys-

tems to physical addresses of flash memory; wear leveling attempts to commit

all flash blocks to age at a similar rate, and RAM buffer management aims to

make the best use of the RAM buffer inside a flash device.

Our first idea is to have the modules of the FTL cooperate with one another.

Modules are likely to have different and possibly independent perspectives with

regards to flash management. Therefore, a module of the FTL may benefit from

the knowledge of another. Based on this idea we have developed OWL. It is a

wear leveling algorithm that works within hybrid address mapping. The latter

vi

classifies allocation requests when allocating blocks for data storage. Coopera-

tion between them goes beyond simply exchanging information. Instead, a part

of the wear leveling module of OWL is co-developed with the hybrid mapping

module so as to incorporate the latter’s information and consideration upon

deciding which block to be allocated.

Workload adaptation is our second idea. Flash-based storage devices serve

workloads to store and access data. The ability of adapting to a given workload

is essential due to the diversity of workloads. Address mapping and RAM buffer

management are two functionalities of the FTL that relate to data access. We

have first designed a hybrid mapping scheme named ADAPT. ADAPT achieves

the goal of workload adaptation through separating and handling respective

sequential and random requests. TreeFTL is another scheme we have devised to

manage the RAM buffer of a flash device. TreeFTL caches metadata of address

mapping and real data pages in the RAM space using a tree-like structure. To

minimize the overheads of context switch between workloads, TreeFTL has a

lightweight mechanism for evicting the LRU victims to make space.

Our third idea is to enlist the help of the operating system (OS). Traditionally

the FTL is self-contained and the OS is oblivious of storage devices. As the OS

has a global perspective of data and files, we would like to use the OS’s knowledge

to assist the FTL to manage flash device. The result of this collaboration is a

scheme we called SAW, of which the OS analyzes files to figure out quantitative

hints for the FTL to perform wear leveling. Correspondingly the FTL customizes

its block organization to utilize the hints received from the OS. Hints are packed

along within data segments and delivered to the FTL. The FTL unpacks each

segment, interprets the hint and conducts block allocation accordingly.

Experiments have been conducted to evaluate our proposals. Results confirm

that our approaches in this thesis could gain significant improvements on device

lifetime and access performance, respectively, with insignificant overheads.

vii

List of Publications

1. Chundong Wang and Weng-Fai Wong. Observational wear leveling: an effi-

cient algorithm for flash memory management. In Proceedings of the 49th An-

nual Design Automation Conference, DAC ’12, pages 235–242, San Francisco,

California, USA, 2012. ACM.

2. Chundong Wang and Weng-Fai Wong. Extending the lifetime of NAND

flash memory by salvaging bad blocks. In 15th Design, Automation, and Test

in Europe (DATE 2012) conference, pages 260–263, Dresden, Germany. March

2012.

3. Chundong Wang and Weng-Fai Wong. ADAPT: Efficient workload-sensitive

flash management based on adaptation, prediction and aggregation. In Proceed-

ings of the 2012 IEEE 28th Symposium on Mass Storage Systems and Technolo-

gies, MSST ’12, Pacific Grove, California, USA, April 2012.

4. Chundong Wang and Weng-Fai Wong. TreeFTL: Efficient RAM Management

for High Performance of NAND Flash-based Storage Systems. In Proceedings of

the 16th Design, Automation and Test in Europe Conference, DATE ’13, pages

374-379, Grenoble, France. March 2013.

5. Chundong Wang and Weng-Fai Wong. SAW: System-assisted wear leveling

on the write endurance of NAND flash devices. In Proceedings of the 50th An-

nual Design Automation Conference, DAC ’13, pages 164:1-164:9, Austin, Texas,

USA, 2013. ACM.

viii

List of Tables

3.1 A Summary of the Latest Wear Leveling Algorithms 17

4.1 Block Allocation Ratios in FAST 29

4.2 Capacities for Traces . 37

5.1 I/O Request Size of Various Workloads 48

5.2 Latencies of Large-block SLC NAND Flash Memory [38] 54

5.3 Prediction Hit Rates and Aggregated Moves 62

6.1 Latencies of SLC NAND Flash Memory [41] 74

6.2 Hit Ratios (%) of APS, JTL and Tree 87

7.1 Symbols of SAW Model . 95

7.2 Mean Difference of Standard Deviation with Five Intervals (I) . 106

7.3 Average Erase Count, Standard Deviation, the Counts of Write

and Read Operations of baseline, BET and SAW (1st Time) . . . 108

7.4 Average Erase Count, Standard Deviation, the Counts of Write

and Read Operations of baseline, BET and SAW (2nd Time) . . . 109

7.5 Average Erase Count, Standard Deviation, the Counts of Write

and Read Operations of baseline, BET and SAW (3rd Time) . . . 110

7.6 Average Erase Count and Standard Deviation of 5k, 10k, 15k,

20k and 25k . 111

7.7 Average Erase Count, Standard Deviation and Service Time of

lazy and lazy-S . 112

ix

7.8 Average Erase Count, Standard Deviation and Service Time of

BET and BET-S . 112

7.9 Average Erase Count, Standard Deviation and Service Time of

OWL and O-SAW . 112

x

List of Figures

1.1 A Logical Structure of NAND Flash Devices 3

1.2 The Flash Memory Management 4

2.1 Structures and Operations of NAND Flash Memory 9

2.2 Page Mapping and Block Mapping 13

3.1 Three types of merge(adopted from Lee et al. [62]) 21

3.2 Page-level Mapping: DFTL and CDFTL 22

4.1 Locality-based Block Allocation with BAT 31

4.2 An Example of ST Scheme . 36

4.3 Average Erase Counts of Each Trace 38

4.4 Standard Deviation of Erase Counts 39

4.5 Elapsed Time with Four Algorithms 39

4.6 The Effects of Different BAT Size 40

4.7 The Effects of ST with Various δ (A) 41

4.8 The Effects of ST with Various δ (B) 41

4.9 The Effects of λ length . 42

4.10 Normalized Elapsed Time with Various Γ 43

4.11 Normalized Average Erase Count with Various Γ 44

4.12 Standard Deviation with Various Γ 45

5.1 Predictive Transfer with the Historical Access Table 55

5.2 Aggregated Data Movement . 56

xi

5.3 Normalized Elapsed Time of DFTL, WAFTL and ADAPT . . . 60

5.4 Normalized Erase Counts of WAFTL and ADAPT 60

5.5 Normalized Write Counts of WAFTL and ADAPT 61

5.6 Effects of Different Log Space Capacities 63

5.7 Performance Impact of Log Space Partitioning 64

5.8 Impact of Different Sequential Write Identification Thresholds . . 65

5.9 The Effects of κ (A) . 65

5.10 The Effects of κ (B) . 66

5.11 Captures of Access Distribution for SPC1 and MSR-prxy 0 . . . 67

5.12 The Effects of the Interval Length (A) 68

5.13 The Effects of the Interval Length (B) 68

5.14 Effects of Different HAT Sizes . 69

5.15 Performance of Aggregated Movement 70

6.1 A Conceptual Structure of TreeFTL 74

6.2 Address Translation Process in TreeFTL 76

6.3 The Sketch of TreeFTL’s Victim Selection 78

6.4 The Sketch of TreeFTL’s Two-level LRU Selection Mechanism . 80

6.5 Normalized Service Time for Traces (1) 84

6.6 Normalized Service Time for Traces (2) 85

6.7 Captures of Access Distribution for TPC-C and MSR-ts 0 86

6.8 Cumulative Service Time and Average Size of CG for Traces at

Runtime . 89

6.9 Effect of Lightweight Victim Selection 90

7.1 A Sketch of SAW Prototype . 100

7.2 Average Erase Count with Prototype 101

7.3 Standard Deviation of Erase Counts with Prototype 102

7.4 Average Erase Count with FlashSim 103

7.5 Standard Deviation of Erase Counts with FlashSim 103

xii

7.6 Service Time with FlashSim . 104

7.7 Fluctuation of f/ϕ (Clockwise: PM-5m, PM-10m, FS-2h, VM-2h) 105

7.8 s and β at Runtime (Clockwise: PM-5m, PM-10m, FS-2h, VM-2h)105

xiii

Chapter 1

Introduction

The advent of flash memory has changed the persistent data storage of computer

systems. NAND flash memory’s non-volatility, lightweight, shock-resistance and

scalability make it a promising candidate for the secondary storage in both em-

bedded systems and general-purpose computing systems. However, the ever-

increasing utilization of NAND flash memory comes with its challenges. On the

one hand, the environments in which NAND flash memory is used today vary

significantly. For example, the access pattern of a smart-phone is very different

from that of an enterprise server. On the other hand, NAND flash memory has

been evolving to be denser and weaker than before. Also, the products made

of NAND flash memory are getting diverse; they can be either emulated to be

block devices or just exposed as raw flash devices. In all, these challenges neces-

sitate revising existent strategies for managing NAND flash-based device. This

thesis will hence present novel approaches on the management of NAND flash

memory. Several management algorithms, which target either longer device life-

time or higher access performance, have been developed accordingly in order to

achieve satisfactory effectiveness and efficiency.

1.1 Flash Memory Management

1.1.1 NAND Flash Memory

NAND flash memory is preferred in hand-held products like smart-phones, dig-

ital cameras and tablet computers, because of its lightweight and resistance to

damage during movements [50]. Simultaneously, flash-based solid state drives

(SSDs) are starting to replace traditional ferro-magnetic hard disk drives (HDDs) [1,

78]. Both personal computers (PCs) and enterprise servers have been utilizing

flash-based SSDs for secondary storage. For example, the MacBook Air laptops

1

CHAPTER 1. INTRODUCTION

of Apple inc. are mature in marketplace. In 2008 Google announced a plan to

use Intel SSD storage in its servers [20]. Later in the autumn of 2009, MySpace

migrated its data from HDDs to SSDs produced by Fusion-io [72].

A NAND flash device consists of multiple flash memory chips. In a NAND

flash chip there are hundreds of thousands of flash cells. Each flash cell has

a single transistor with an extra metal strip, which is called the floating gate

between the control gate and the oxide tunnel [5, 27, 89, 7]. To store data into a

cell has to program it, which means to place a very high voltage to drive electrons

to approach the floating gate. However, electrons will stay there unless a reverse

voltage is applied to pull them off the floating gate. Such a process is referred

to as an erase operation. Note that an erase operation takes a much longer time

than a program operation. So it is unacceptable to update “in place” as the time

caused by an additional erase operation is too costly. Herein lies the first key

issue of NAND flash memory, which is, data have to be updated in an out-of-

place way: data to be updated are first written into a clean page and the original

page of the data is invalidated to be dirty. Another issue is the units of the said

program and erase operations for flash memory. Because of the fabrication, the

unit for a program operation of NAND flash memory is a page, and the unit

for an erase operation is a block. Generally a page consists of thousands of

flash cells, and a block comprises scores of pages. The out-of-place updating and

the access unit constraints are the main concerns for the improvement of access

performance of NAND flash memory-based devices.

The third issue of NAND flash memory also comes from the flash cell struc-

ture. The oxide layer of the cell, the one that isolates the electrons of the floating

gate, is alternatively strained by continual program and erase operations for stor-

ing data [82]. In a long run, the oxide layer would be punctured after too many

P/E cycles [79]. Then the cell cannot store data any longer. A page that has

a permanently defective cell is deemed to be “worn-out”. It in turn makes the

block it is in worn out. A worn-out bad block is supposed to be kept away from

regular use [39, 67]. Worse, a flash chip that has excessive worn-out blocks has

to be discarded. Such an issue is referenced as the write endurance of NAND

flash memory. It adversely impacts the lifetime of NAND flash devices.

1.1.2 Flash Memory Management

The characteristics of NAND flash memory, including access unit constraints,

out-of-place updating and write endurance, are the foundation of all strategies

for flash memory management. There are three goals for the flash memory

management. First, the utilization of flash blocks and pages should be as high

2

CHAPTER 1. INTRODUCTION

H
os

t
In

te
rfa

ce
s

Embedded
Processor

Fl
as

h
C

on
tro

lle
r

FTL

RAM Buffer

H
os

t
…
…

Chip 0

Chip 1

Chip2

Chip N-2

Chip N-1

Flash Chips

Figure 1.1: A Logical Structure of NAND Flash Devices

as possible. Second, the performance of data access must be optimal. Third,

the lifetime of flash device has to be entailed without too much performance

degradation [44, 95].

Figure 1.1 shows the logical structure of a common NAND flash device. It

has an interface like USB or SATA that connects to the host system. Inside

the flash device an embedded processor is equipped for computation. The RAM

cache, also referenced as RAM buffer in some literatures, is used to buffer data

and metadata. The flash controller conducts write, read and erase operations on

flash chips. The FTL, which is abbreviated for the flash translation layer, is the

embedded firmware that is responsible for the management of a flash device.

The functionalities of flash memory management include address mapping,

wear leveling, bad block management (BBM), RAM buffer management and

garbage collection, as is sketched in Figure 1.2. Address mapping is also known

as address translation. We will use them interchangeably in this thesis. Address

mapping is to map logical addresses given by the host file system to physical

addresses in the form of flash block and page. Owing to the constraints of access

units as well as out-of-place updating, address mapping of flash device is not that

straightforward. Wear leveling is a technique targeting the issue write endurance

of flash memory to avoid premature retirement of flash blocks. It aims to even

out erase operations across all flash blocks. So it is used to ensure that flash

blocks are worn at the same rate. Though, blocks may still go worn-out, and

BBM is employed to trace them. RAM buffer is an important component of

NAND flash devices. SRAM or DRAM has much shorter latency than NAND

flash memory, and to utilize a RAM cache for buffering may favorably affect

access performance of NAND flash devices. Garbage collection, also known as

the reclamation, is caused by out-of-place updating that leaves invalid, obsolete

3

CHAPTER 1. INTRODUCTION

Flash Memory
Management

Wear
Leveling

Bad Block
Management

RAM
Management

Address
Translation

Lifetime Performance

OWL (DAC 2012)
BBS (DATE 2012)
SAW (DAC 2013)

BBS (DATE 2012) ADAPT (MSST 2012)
TreeFTL (DATE 2013)

TreeFTL (DATE 2013)

Figure 1.2: The Flash Memory Management

data behind. Such dirty data have to be demolished. The blocks and pages they

take up can be vacated and cleaned for further use.

All the above functionalities of flash management are performed by one en-

tity, i.e., the mentioned FTL. The FTL may be presented or named in different

ways [68]. Here we reference them uniformly as the FTL for the ease of discus-

sion. The FTL is designed in a modular way; each module of the FTL works

on one functionality of flash management. Though, how to develop a module

deserves special attention as it is not trivial to hold both the effectiveness and

the efficiency simultaneously in hand.

1.2 Problem Formulation and Motivation

The ever-increasing utilization of NAND flash memory indicates the bright future

of flash devices. As the dollar/capacity offered by flash-based storage devices is

continuously decreasing, the utilization would be further boosted. However, the

concomitant challenges are ignorable. The dropping of price for NAND flash

memory is partially caused by the Multi-Level Cell (MLC) technique to produce

flash memory. Briefly speaking, a traditional flash cell can store only one bit per

cell, which is called Single-Level cell (SLC) flash. Using MLC technique, two [61]

or more [54] bits now can be stored just within one single cell. Since flash memory

can be manufactured to be much denser with MLC technique, the reduction of

production cost is not beyond expectation. However, the reduction of price is

not free of charge on other aspects. Empirical evidence of worsening lifetime

and reliability, as well as access performance, of MLC flash memory has been

reported [27]. Though, MLC flash is still considered to be the mainstream in

4

CHAPTER 1. INTRODUCTION

marketplace [28], and most low-end and middle-level SSDs are made of MLC flash

chips [15]. The two-fold MLC flash and its prevalence dictate that the embedded

software to manage a flash device, i.e., the said FTL, should be fittingly designed

to provide satisfying device lifetime and access performance.

Besides the issue of the development of NAND flash memory, which is derived

from the innate characteristics of flash itself, the situations where flash device is

being environed turn to be a concern also. Different workloads differently impose

on the storage device. As access performance and write endurance of flash device

are strongly correlated to the workload in service, to be adaptive to workload is

widely advocated by researchers and practitioners [1, 15, 17, 45, 64, 78, 111]. A

common way to speculate the access behavior of a workload is to assess the ratio

of sequential to random requests. Sequential requests are ones that access a large

number of pages. Random requests selectively access a handful of pages among

a wide range. Flash-based device is believed to be favored by workloads with a

high demand for random access requests [78] as flash memory need not rotate the

actuator to locate the desired position like ferromagnetic hard disk. Nevertheless,

random writes in a large storage space may lead to excessively long response

latency, owing to write amplification caused by inevitable garbage collection

as well as wear leveling [15, 33]. Worse, because of out-of-place updating, the

various workloads of access requests result in various layouts of data across flash

blocks. This may not be a big deal for hard disk, or byte-addressable SRAM and

DRAM as they support in-place rewriting; for NAND flash memory, however,

to recycle used space badly impacts access performance and device lifetime.

Therefore, it is desirable for a flash device to have a good understanding of

workloads for serving them.

In all, both the flash memory itself and its utilization motivate us to rethink

of how to manage flash device. On the one hand, the management of flash

device must highly regard the specifics of NAND flash memory. The aforemen-

tioned address mapping, for example, is not merely to map addresses; to allocate

flash pages and blocks is one of its duties. The allocation of blocks and pages

must abide by access constraints and erase-before-program issue of NAND flash

memory. As for wear leveling, it is just employed to target the issue of write

endurance of flash.

On the other hand, the management of flash device ought to be self-adaptive

to various workloads. Existing strategies of previous works, however, have lim-

itations on the adaptation. For example, FAST [60] is a classical FTL that

was proposed for mapping addresses. It judiciously utilizes the access units of

flash memory as well as out-of-place updating in managing blocks and pages to

5

CHAPTER 1. INTRODUCTION

accommodate data, but it lacks on the ability of handling sequential requests.

The successor of FAST, the FASTer FTL [64], emphasizes on workloads found

in OLTP systems. But OLTP system just represents one type of workloads.

The third perspective on flash device is to view it in a systemic way. Flash

device is used for secondary storage in a computer system. It is not irrelevant to

other components of the integration. Two implications lie herein. Firstly, flash

device serves the upper-level OS to store and access data; in other words, it con-

ducts communications with OS. So it is able to obtain substantial information

from the OS for the purpose of managing flash device. TRIM command [21],

which engages the modern OS in informing flash device of reclaiming space in

advance, shows the feasibility of notification from the OS to the FTL. Although

the TRIM command is simple, more complicated exchange is implied to be pos-

sible. Secondly, the management of flash device can be enhanced using the ideas

reflected in other parts of the computer system. For example, the mentioned

FAST FTL uses the idea of CPU cache for address mapping. The page man-

agement of virtual memory [97], as well as the virtual RAM drive constructed

by a part of main memory [2], shares similar points with flash device as well.

However, as flash itself differs from DRAM-based main memory, they cannot be

directly applied to flash device. Though, their ideas are still referential to us.

1.3 Thesis Statement and Overview

Given the challenges described above, the aim of this thesis, is to propose novel

strategies for flash management which, on the one hand must take into consider-

ation the idiosyncratic characteristics of NAND flash memory, and, on the other

hand should be effective and efficient for a variety of workloads. With these in

mind, we have taken three approaches to the problem. Since the FTL is the main

agent in charge of managing a flash device, it is natural to start by exploring

the internals of the FTL. Thus in the first approach we proposed new modes of

the cooperation between modules of the FTL. A module is responsible for one

functionality and it has its particular perspective with regards to flash manage-

ment. The cooperation we proposed is not simply exchanging of messages in

between. Rather it is the co-development of modules; a part of one module is

embedded into another so as to gain immediate information on the nature of the

ongoing accesses. By doing so it is expected that one module can benefit from

the sharing with another one.

As flash device needs to be able to handle various workloads, our second at-

tempt is on the workload adaptation of FTL modules. In other words, we intend

6

CHAPTER 1. INTRODUCTION

to construct workload-adaptive modules. As a workload is nothing more than a

series of consecutive access requests, the access behavior of a running workload

can be learnt accordingly. The learning in turn helps the FTL handle future

requests. In the end the management algorithm is able to adapt to different

workloads.

The third approach we have explored is on the collaboration between the

OS that sits in the upper level and the FTL that is in the lower-level storage

device. The OS has good knowledge of applications, files and data, which is not

available to the FTL. On the other side, the FTL autonomously manages the

flash device in a manner that is transparent to the OS. So we involve the OS

in the process of flash management. With the assistance of the OS, the FTL

should profit from this involvement.

The main contributions of this thesis, also main ideas of this thesis, are as

follows.

• Inter-module cooperation-based management for flash device is investi-

gated. An algorithm for wear leveling, namely Observational Wear Lev-

eling (OWL) [105] is proposed. The wear leveling module of OWL is co-

developed within the address mapping module. By doing so, OWL can

succinctly classify data and accommodate them accordingly.

• Schemes for workload-adaptive address mapping and RAM buffer manage-

ment have been proposed. ADAPT [103] is for address mapping and it is

able to serve workloads that have variant mixes of sequential and random

requests. TreeFTL [107], which manages the RAM buffer of flash device,

can dynamically adapt to workloads as it has a self-adjustive structure

maintained in the buffer.

• OS-assisted flash management has been studied. An algorithm named

OS-Assisted Wear leveling (SAW) [106] was devised. The wear leveling

of SAW relies on the OS’s hints. The OS is responsible for the analysis

over a massive number of files with a model, and the FTL performs wear

leveling as it is notified. According to the idea of SAW, a prototype has

been established upon open-source systems.

The effectiveness as well as efficiency of these approaches have been verified to

be evident and significant by our experiments. We believe that our proposals are

positive contributions to the field of flash memory management. We also hope

that our explorations will help practitioners improve existing designs. Besides

the widespread presence of flash device in mobile systems like smartphones,

7

CHAPTER 1. INTRODUCTION

netbooks and tablet computers, it is also clear that flash memory will play an

important role in the next generation of secondary storage for general-purpose

computing systems. To summarize, we believe our proposals to be described in

following chapters of this thesis will improve the utilization of flash-based storage

devices in the near future.

1.4 Organization of the Chapters

In this thesis, the three said approaches with several novel schemes would be

described. This chapter has introduced an overview of NAND flash memory,

flash-based device and the motivation for novel flash management strategies.

Chapter 2 will give a detailed background of NAND flash memory. Chapter 3

surveys flash device and state-of-the-art schemes that were proposed for flash

memory management. They are for different functionalities and the essence of

their designs would be discussed. Chapter 4 is what we did to verify the effect of

the module-cooperative approach. It presents the Observational Wear Leveling

(OWL). For OWL, the module of address mapping assists the module of wear lev-

eling to allocate flash blocks to data. In other words, address mapping classifies

data and wear leveling accommodates them subsequently. Through cooperation

the wear evenness is significantly improved with ignorable performance over-

heads. Chapter 5 and Chapter 6 are our attempts to develop workload-adaptive

modules for flash management. Chapter 5 presents ADAPT. As mentioned,

ADAPT is able to be adaptive to workloads that are variously mixed with ran-

dom accesses and sequential accesses. Chapter 6 proposes an algorithm named

TreeFTL [107] for RAM buffer management. TreeFTL is succinctly sensitive to

running workloads. It adapts to workloads by dynamically partitioning the RAM

space for buffering data and mapping addresses. The performance improvement

has been reported through the employment of TreeFTL and ADAPT, respec-

tively. Chapter 7 is about the OS-Assisted Wear leveling (SAW). For SAW, the

OS is not unaware of flash memory management any longer. Instead, the FTL

conducts wear leveling with hints provided by the OS. The hints are generated

online through a model over a large number of files. The wear evenness is con-

sequently improved due to the participation of the OS. Chapter 8 will conclude

this thesis and possible future works would be briefly presented.

8

Chapter 2

Background

This chapter gives an overview of NAND flash memory as well as tactics pre-

ferred for flash memory management. It first details physical characteristics of

NAND flash memory, including issues about flash cells, out-of-place updating

and write endurance. Following these are aspects of flash memory management,

including the modules of wear leveling, address mapping, RAM buffer manage-

ment and bad block management, etc.

2.1 NAND Flash Memory

NAND flash memory was invented by Masuoka et al. [71] of Toshiba. Its full

name could be NAND flash Electrically Erasable Programmable Read-Only

Memory (EEPROM or E2PROM) [89]. All the characteristics of NAND flash

memory, as well as the modules of flash management firmware, are based on the

structure of a NAND flash cell.

Block
Page

Chip

Bit Line (in)

Bit Line (out)

Word n

Word n+1

Word n+2

p-substrate
n+ S n+ D

12V

p-substrate
n+ S n+ D

12V

Control Gate

Floating Gate

Tunneling oxide layer

6V

(a) Erase

(b) Program (write)

Figure 2.1: Structures and Operations of NAND Flash Memory

9

CHAPTER 2. BACKGROUND

Flash Cell, Page and Block Figure 2.1 shows a sketch of the structure

of a flash cell, with erase and program operations alongside. A flash cell is a

transistor with an extra floating gate. Flash memory makes use of charge stored

on the floating gate to accomplish the non-volatile storage [7]. The floating

gate is a metal strip between the control gate and the tunnelling oxide layer of

the transistor. It is sandwiched with oxide insulators, which enables the cell to

retain charge for a long period of time even if the circuit power supply is cut

off. To program or erase a flash cell is just to drive electrons. When the erase

operation is conducted, under the voltage the electrons at the floating gate will

be ejected to the source by tunnelling. The cell after an erase operation is in the

‘1’ state. To program a cell to be ‘0’ state, a reversed voltage must be applied

to the control gate, and then electrons are driven to approach the floating gate.

SLC flash and MLC flash There are two types of NAND flash memory.

One is single-level cell (SLC) flash memory of which each cell stores one bit. On

the other hand, a cell of multi-level cell (MLC) flash is able to store two bits or

more. Note that for SLC flash memory whether the bit is ‘1’ or ‘0’ is decided

through sensing the voltage. The range of the voltage is divided into two halves

with a threshold. If the voltage sensed is higher than the threshold, it is deemed

to be ‘1’. Otherwise it is ‘0’. For MLC flash, more thresholds are inserted to

set up more divisions over the voltage range. For example, if the range of the

voltage is divided into four quarters, the cell can represent ‘00’, ‘01’, ‘10’ and

‘11’; commonly two bits are stored in an MLC flash cell [26]. Products that

have three bits stored in a cell are available in marketplace today. However, the

increase of density is at the cost of the worsening endurance for a flash cell.

Out-of-place updating To do in-place updating is not reasonable for

NAND flash memory. It is due to the physical characteristics of the flash cell. As

is mentioned, electrons are trapped until an erase operation is conducted to pull

them away. Considering the access units of NAND flash memory, to update data

requires that a page should be rewritten. A flash page cannot be individually

erased unless the whole block it is in is erased. Put in another way, if we tried

to do in-place updating on a single page, we would have to rewrite all pages in

a block after an erase operation. In this way the overhead caused by a write

operation would be too significant due to many writes plus one erase operation.

Out-of-place updating is yet acceptable. Every time data in a page are to be

updated, an erased page will be allocated to accommodate them; the original

page will be invalidated then.

Write endurance The issue of write endurance is another problem of

NAND flash memory, which is also ascribed to the physical characteristics of flash

10

CHAPTER 2. BACKGROUND

cells. It is obvious that both program operation and erase operation alternatively

strain the oxide layer of a cell through applying voltages to drive electrons. After

undergoing too many program/erase (P/E) flips (the reversals of voltage), finally

the oxide layer cannot isolate the floating gate any longer. The limitation for

MLC NAND flash memory is much tighter than SLC flash. For the former, it

is about 10,000 cycles for a page; for the latter, it is about 100,000 cycles. As

is said, the range of the voltage for NAND flash memory is divided into more

parts. To program the bits for writing requires much more elaborate techniques.

The finer adjustment adversely impacts the physical tolerance of the flash cell.

This explains why MLC flash devices have a much shorter lifetime. For SLC

flash devices, though it has a longer lifespan, the upper bound of P/E cycles is

still not so satisfying for use.

2.2 Modules of Flash Memory Management

The said flash translation layer (FTL) is the one that is responsible for the

management of flash device. It can be found in flash-based block devices, such

as SSDs or USB sticks. In an MTD device made of raw flash [98], it is presented in

another form. As their functions are identical, we will reference them uniformly

as the FTLs for the ease of discussion.

The FTL emulates flash devices like traditional block-interface devices to hide

special characteristics of NAND flash memory. Main functionalities of flash man-

agement, including wear leveling, address translation, bad block management,

RAM buffer management and garbage collection, are represented by respective

modules of the FTL. We will first give an overview of wear leveling and address

translation, as they are two basic modules for flash memory management.

Wear Leveling Wear leveling targets the issue of write endurance of flash

memory. As is mentioned, limited program/erase flips exist for a flash page.

However, previous algorithms of wear leveling mostly focus on erase operations

as the physical limitation is mainly caused during the erasing procedure [89]. On

the other hand, to reduce program/erase flips at the page-level is not reasonable

as the unit of erase operations is a block. Besides, the coarser granularity of

erasures can ease the module of wear leveling. Hence, it is preferred for wear

leveling to spread erase operations over flash blocks.

Wear leveling’s common tactic is to classify data and put them into suitable

aged blocks. To do so a data structure called the block aging table (BAT) is

needed [40]. It is used to record the age of each block. The age here refers to

the erase count of a flash block. The more the erase count, the older the flash

11

CHAPTER 2. BACKGROUND

block. As for data, they would be identified to be either hot or cold. Hot data

are ones that are frequently updated. Otherwise, they are cold data. This is

an inaccurate and rough classification on data. Because cold data are seldom or

never rewritten after storage, they are preferred to being put into elder blocks.

In this way elder block can avoid being erased soon. On the other hand, given

a younger block that is used to accommodate hot data, as the data are likely

to be invalidated soon, it would be erased soon for reclamation. Therefore, the

wear evenness over flash blocks is gradually achieved.

Traditionally algorithms of wear leveling are classified into two categories. It

can be either dynamic or static [10, 40]. Dynamic wear leveling generally selects

the youngest free block for new data. Static wear leveling may vacate the block

currently occupied by cold data for use. The latter is more prevalent today

because all blocks are under consideration. Another perspective to classify wear

leveling schemes is on how the module of wear leveling is triggered: an algorithm

can be deemed to be proactive, passive or hybrid [105]. Proactive wear leveling

aims to put data in suitable aged blocks actively. Upon allocation requests, the

access frequency of the data has been estimated, and a block would be found

and allocated accordingly. The overhead to do estimation is inevitable. Passive

wear leveling swaps data between blocks when the wear evenness over blocks has

been worsened beyond a certain limit. Hence, the evenness has to be continually

detected at runtime. Hybrid wear leveling has both features.

Address Mapping Address mapping, also known as address translation,

is to translate logical addresses given by file systems to physical addresses in the

form of flash block and page [103, 118, 107]. Page mapping and block mapping

are two basic mapping schemes. Figure 2.2 sketches them.

Given a logical address, the FTL looks up in the mapping table to find the

corresponding physical block number in the case of block mapping, or physical

block number and page number in the case of page mapping. Page mapping

is flexible to relocate data among pages. However, the overhead due to the

fine granularity cannot be ignored. Specifically the size of the mapping table is

troublesome. For a 64GB SSD with 2KB per page, there would be more than

32 million entries in the table. If 4 bytes are used for an entry, the table will be

128MB. It is difficult to maintain such a large table in RAM buffer for reference.

On the other side, block mapping works at the block-level. It has a much

smaller mapping table, but it lacks flexibility owing to its coarse granularity. For

a logical page, it can only reside within the same physical page of different blocks

under block mapping. Therefore, to rewrite a page will cause block-level copying

because data in neighbouring pages have to be migrated to next physical block

12

CHAPTER 2. BACKGROUND

alongside. It is arduous to move so many data at one time for one single rewrite.

Page OffsetLogical Block no.

Logical Address

Page No.

Page Mapping Table

Physical Block No. Page OffsetPage No.

(a) Page Mapping
Physical Address

Page OffsetLogical Block No.

Logical Address

Page No.

Block Mapping Table

Physical Block no. Page OffsetPage No.

(b) Block Mapping
Physical Address

Figure 2.2: Page Mapping and Block Mapping

Hybrid mapping combines page mapping and block mapping. It separates

all physical blocks into the data space, log space and free block pool. Each logical

block is mapped to a block in data space using block-level mapping. As block

mapping is not flexible, the log space is maintained to temporarily hold updates

in page mapping. Updates are first absorbed by log pages. They will be merged

to data space afterwards. Details of hybrid mapping will be shown in Chapter 3.

Bad Block Management (BBM) BBM can be viewed as an extension of

wear leveling. It is used to trace bad blocks that contain permanently defective

cells. Note that some bad blocks are already present when the flash device

is shipped [39]; they are referred to as initial bad blocks. In the beginning,

initial bad blocks are marked and recorded in a Bad Block Table (BBT) [37] by

manufacturers. The worn-out block is another type of bad blocks that come out

at runtime. A flash cell is likely to go defective after it undergoes excessive P/E

cycles. If a cell wears out, the page it is in, as well as the block, will be identified

to be worn-out. Worn-out bad blocks are recorded in the BBT also. In tradition,

bad blocks are supposed to be kept away from regular use.

RAM Buffer Management RAM buffer is an important resource of

NAND flash devices. The RAM buffer is made of SRAM [29, 86], DRAM [43,

49, 94, 99] or non-volatile RAM [47, 66, 83]. Although flash memory can be

accessed at a much higher speed than magnetic hard disks, the gap between

the requirement of host system and the performance of flash device is still wide.

Moreover, considering the said out-of-place updating, a buffer to cache updated

data is very necessary for a flash-based device.

Besides the metadata related to flash management, entries of the address

mapping table and data pages are also cached in the RAM space. In this way,

13

CHAPTER 2. BACKGROUND

RAM buffer management serves the module of address mapping. Previously, the

RAM space is used for one purpose, either address mapping or data buffering.

Recently how to manage the RAM space for both uses has been explored.

Garbage CollectionGarbage collection, also known as the reclamation [25],

is usually designed within the wear leveling and/or address mapping. It is due

to the out-of-place updating during address remapping. Invalid dirty data may

be scattered across blocks after a period of execution [12, 15, 65]. When there

are no flash blocks left for use, ones that have invalid data will be reclaimed.

Yet valid data might exist in the block also. Therefore, for a victim block, the

module of garbage collection needs to bypass invalid data, and move valid data

to another clean block [33]. Then the victim block can be erased for future use.

Besides affecting resource utilization, the scheduling of reclamation may have an

impact on the access performance too.

2.3 The Background of the Era

The strategies to manage flash device were simple when they were primarily

utilized. The capacity of a flash device was in a small magnitude three decades

ago. To assure wear evenness or conduct garbage collection in a 128MB flash

drive at that time is much easier than a 1TB SSD today. The situations in which

flash memory was equipped were not complicated also. It was mainly used in

USB drives or digital cameras. Access behaviors observed in these portable

computing systems are usually discontinuous and bulky. Such simple access

patterns are not difficult for the FTL to handle.

Things have changed a lot in the past thirty years. The presence of smart-

phones and tablet computers, as well as the upgrade of enterprise servers, re-

quires that the secondary storage should be supported by a lightweight, shock-

resistant and energy-efficient material. Undoubtedly NAND flash is a promising

candidate. Thanks to the development of manufacturing and techniques like

MLC, the flash device now can be produced in a huge capacity at a lower price.

However, the ever-increasing utilization and expansion make the flash device

confront unprecedented obstacles. The challenges met by flash devices that are

exposed to various workloads are real and tough. How to manage flash device

effectively without loss of efficiency in different systems deserves thorough inves-

tigation; otherwise the further use of flash device will be hindered. Researchers

and practitioners are pondering, as solutions to the above problems are about

to enhance the utilization of flash devices. On this ground, next chapters will

show our proposals to mange flash device for both effectiveness and efficiency.

14

Chapter 3

Literature Review

Before the descriptions of our approaches, we will first present flash device and

its past and potential. Then an overview of existing designs about flash memory

management would be shown. Related works will be categorized according to

the aspects of flash memory management, including previous schemes for wear

leveling, address mapping and RAM buffer management. The strategies relevant

to the design of management modules would be discussed also.

3.1 Flash Device and Its Potential

The evolution of flash memory entails it to be a promising candidate for the

secondary storage of computer systems. The presence of flash device, however,

is not unique. Generally speaking, there are two types of flash device. One is the

raw flash device, which can be seen everywhere today as it is used in smartphones.

The raw flash device directly exposes the physical characteristics of flash memory

to the system, and the MTD hardware driver [98] helps the system write and

read data. Flash memory management, though, is performed either by flash

file systems or extra software layers. Note that file systems like Ext4 or NTFS

cannot work immediately on raw flash devices. Flash file systems are ones that

have been developed specifically for raw flash, including JFFS2 [112], YAFFS

and YAFFS2 [70], as well as UBIFS [36]. These file systems cooperate with MTD

drivers for data storage and access. They differ from Ext4 or NTFS in that they

take into consideration characteristics of flash like erase-before-program issue

and write endurance. So besides functionalities of common file systems, they also

integrate modules relevant to flash management. JFFS2, YAFFS and YAFFS2

manage the flash device by themselves. UBIFS has a specific software layer

called the UBI [23]. UBI can be viewed as a customized FTL for UBIFS. UBI

has modules for address mapping and wear leveling while the garbage collection

15

CHAPTER 3. LITERATURE REVIEW

is performed by UBIFS.

Another form of flash memory is to encapsulate flash chips into a drive that

has a block input/output interface such as SSDs, USB thumb drives and micro-

SD cards. Here the block does not means a flash block; the former is a sequence

of bytes with a fixed length, used for data access and transmission, and the

latter is the unit of erase operation of flash memory. In this thesis we will use

the block-interface device to stand for block device to distinguish. Factually a

basic use of FTL is to hide specifics of flash and emulate a flash device to be

a block-interface device. By doing so, the flash device is able to be compatible

with existing systems.

With the assistance of the FTL, file systems like Ext4 or NTFS can access

data from block-interface flash-based device. It is not necessary for file systems

to care about flash management as JFFS2 and YAFFS2 do. The FTL will be

responsible for all management functionalities instead. As SSDs are springing in

marketplace, much attentions have been paid to its inroad into enterprise servers

and personal computers. Agrawal et al. [1] investigated the design tradoffs for

SSD performance. They revealed that the access performance and the device

lifetime of SSDs are highly workload-sensitive. They also argued that the layout

of data is critical to both load balancing and wear leveling.

Later Narayanan et al. [78] gave an analysis on whether it is worth migrating

the secondary storage of enterprise servers from ferromagnetic hard disks to

SSDs. Their emphasis is on the cost versus capacity of SSDs. They addressed

that the price of SSDs has to be decreased much more in order to replace HDDs.

At the same time, Chen et al. [15] did experiments on low-end, middle-level

and high-end SSDs to get insightful understanding upon performance issues of

SSDs. Through measurements they found that the management of flash device

ought to be more efficient for workloads. Other investigations for data-intensive

workloads with flash memory were conducted as well [8]. Grupp et al. [27]

did empirical estimates over flash memory to predict the future of SSDs. Their

results point out that the density gain due to MLC techniques adversely impacts

both performance and reliability of flash memory, which implicitly highlights the

importance of the management firmware.

Besides real measures performed to flash products, the simulation of flash

device is also attractive. For example, nandsim is a useful tool to simulate a

raw flash device. It has been included in the Linux kernel [76]. Agrawal et

al. [1] extended the DiskSim simulator to simulate an idealized SSD. Kim et

al. [53] proposed FlashSim simulator, which is trace-driven and object-oriented.

FlashSim allows researchers to implement their own FTLs for evaluation.

16

CHAPTER 3. LITERATURE REVIEW

3.2 Algorithms of Flash Management

In this section the classical algorithms on facades of flash memory management

are presented. Fundamental and classical schemes would be presented in details

while others are briefly described.

3.2.1 Schemes for Wear Leveling

Table 3.1 shows four algorithms that were recently proposed for wear leveling.

They all fall into the category of static wear leveling, although how they per-

form wear leveling significantly varies. Among these algorithms, the dual-pool

scheme [9], BET [14] and lazy wear leveling [10] are activated only when the

level of wear unevenness reaches some thresholds. So they perform wear leveling

in a passive way.

Table 3.1: A Summary of the Latest Wear Leveling Algorithms

Algorithm Type Block Organization Address Mapping

Dual-pool [9] Passive

Hot pool and cold pool: a block

Not constrained
with valid data is in either pool,

where blocks are prioritized upon

their erase counts.

BET [14] Passive

Block sets and BET: A set has

Not constrained
one block or several consecutive

blocks to correspond a bit in the

block erasing table (BET).

Rejuvenator [74]

Proactive Multiple block lists: blocks that Page mapping +

+ Passive have the same erase count are Hybrid mapping

grouped in a list.

Lazy wear leveling [10] Passive
Common way: free block pool,

Hybrid mapping
valid block pool, etc.

In dual-pool algorithm, hot data and cold data stay in the hot pool and the

cold pool, respectively. When the difference on the erase count between the head

of the hot pool and the rear of the cold pool exceeds a predefined threshold, the

two blocks will swap their places. For each pool, it may also be adjusted by

exchanging data between blocks to adapt to dynamic workloads.

The block erasing table, abbreviated as the BET, is a key structure of the

algorithm developed by Chang et al. [14]. We shall use this acronym to reference

their algorithm. For BET, blocks are first divided into sets, and a set may have

one block or more. The BET consists of bits; each bit represents a block set.

When a predefined interval begins, all bits in the BET are initialized to be ‘0’. If

one block of a block set is erased within the interval, its associated bit in the BET

will be set to ‘1’. The total number of erasures in the interval is recorded. If the

count of erase operations over the number of erased blocks exceeds a predefined

17

CHAPTER 3. LITERATURE REVIEW

threshold, BET will repeatedly pick un-erased blocks of the last interval, and

perform data transfers, after which it will erase them until the wear skewness is

smoothed out.

Jung et al. [44] proposed a group-based wear leveling algorithm which is

similar to BET, as it records the summary information for a group of logically

consecutive blocks. By doing so the memory footprints can be reduced. The

main tactic of this group-based algorithm is on data swapping between flash

blocks. It also considers the performance degradation due to inevitable wear

leveling actions.

Lazy wear leveling [10] is a recently proposed scheme. It is performed in

the merge procedure of hybrid mapping. As is mentioned in Chapter 2, the

hybrid mapping maintains the block mapping between logical blocks and data

blocks while the page mapping is used to temporarily hold updated data with log

blocks. The merge is a procedure during which valid data of a victim log block

are merged with valid data from corresponding data blocks into newly-allocated

blocks. Prior to lazy wear leveling, a data block that is involved during merge,

say D, will be immediately erased. In lazy wear leveling, however, if D’s erase

count is higher than the average by a threshold Δ which can be tuned online,

besides erasing D, the FTL will find a data block with cold data, say C, transfer

C’s data to D, erase C, and return C as a free block for future use.

In summary, the dual-pool scheme responds to the widening gap between

two blocks’ erasure counts, the BET scheme is activated when the erasures are

unevenly distributed beyond an extent, and lazy wear leveling works when the

block to be reclaimed is much older than the average. These reasons explain

why we deem them to be “passive”.

Rejuvenator [74] has both proactive and passive mechanisms. It allocates hot

or cold data to young or old blocks respectively in a proactive way. It records

recent access frequencies of logical pages, and identifies the temperature of pages

accordingly. It also groups blocks that have the same erase count in a list. A

list is in the lower numbered lists if its erase count is smaller than a dynamic

threshold; or it is in higher numbered lists. When new write requests arrive,

based on the recorded access information, cold data are put into younger blocks

of the lower numbered lists using page mapping, and hot data are placed in elder

blocks of the higher numbered lists in hybrid mapping. Between the smallest and

biggest erase counts is a window. If the number of free blocks in either partition

drops below two thresholds (TL and TH) respectively, data will be moved out

from the lowest list to upper lists, and the window is then adjusted. This is how

Rejuvenator performs passive wear leveling.

18

CHAPTER 3. LITERATURE REVIEW

Recently the reason of write endurance has been investigated in terms of bit

error rate of flash cells, and algorithms have been designed accordingly [79, 117].

For the ERA algorithm proposed by Yang et al. [117], the metric to spread erase

operations inside a flash device is imposed on error rates of blocks. Yet the

spreading is based on data migration between flash blocks. Besides, analytic

models for wear leveling of flash memory [96] were also constructed; they are

referential to designers.

3.2.2 Schemes for Address Mapping

Address mapping should be the most fundamental function of the FTL. Without

it the flash device could not be usable at all. Page mapping [3] and block

mapping [4] were devised based on the access units of page and block respectively.

They are primary and simple. For an early flash device with a small capacity,

they are sufficiently effective. However, with the advent of flash devices at a

large capacity, the algorithms of [3] and [4] are not satisfying any longer as

page mapping suffers from the large spatial overheads of address table while

block mapping is inflexible at updating data [113, 103]. On this ground hybrid

mapping that combines page mapping and block mapping was proposed.

The first attempt of hybrid mapping is BAST [52]. Its successor FAST [60] in-

troduced more flexible associativity. FAST was in turn succeeded by FASTer [64]

that exploited temporal locality for further performance improvement.

It is mentioned that hybrid mapping maintains data blocks using block-level

mapping as well as a fixed number of log blocks in page-level mapping. Updates

are first put into a log page instead of allocating a new data block. Hence, the log

space formed by log blocks acts like a cache of processors [31] to data blocks. In

BAST, there is a fixed one-one mapping between data blocks and log blocks. This

inflexibility results in a poor utilization of log space. FAST, on the other hand,

adopts a fully associative mapping between log space and all data blocks: a log

block is no longer designated to one data block but shared by all. Thus, in terms

of cache associativity, BAST maintains a direct mapped cache and FAST is fully

associative. More complicated N-way associative schemes of log blocks have also

been devised. Physical blocks are grouped together, and they are associated to a

set of log blocks; the size of the set may be dynamically changed at runtime [80,

55]. Mapping schemes, like the superblock [46], LAST [62], KAST [18] and

WAFTL [111], are also in the category of hybrid mapping but emphasize on

garbage collection, multitasking and real-time systems, respectively. Besides,

RNFTL [109] improves the utilization of flash blocks through reusing clean pages

in blocks to be merged.

19

CHAPTER 3. LITERATURE REVIEW

Mapping schemes that are conducted on other granularities have been pro-

posed also [113, 63]. Generally they are derived from the above three categories.

One is a set-based mapping strategy [19]. Each set contains multiple blocks.

Logical sets are mapped to physical sets with another table used to store the

mapping of logical block to physical block in a set. Lately another scheme is

based on the concept of working set [116]. Additionally, Janus-FTL [56], as its

name suggests, attempts to strike a balance between page mapping and block

mapping at runtime.

Typically, the log space of hybrid mapping is over-provisioned to be 3% of

all space [59, 64]. It is usually partitioned into a sequential area for sequential

writes and a random area for random writes. FAST assigns one log block as its

sequential area while LAST maintains a fixed number of blocks. They also have

methods to identify whether a request is sequential or random.

It is natural to process access requests for hybrid mapping. When a write

request arrives, the FTL first checks whether the page in the mapped data block

is clean. If not, a log page will be allocated to accommodate the data. The old

copy will be invalidated. The relationship between the logical page and the log

page is recorded in the log page mapping table. When no clean page is left in the

log space, a victim log block will be picked out and merged with corresponding

data blocks. After merging, the victim is erased and returned to the free block

pool. Another clean block will be allocated to replenish the log space. Figure 3.1

is adopted from [62]. In Figure 3.1 a square is a page and a rectangle of four

squares represents a flash block. The number in each square is the logical page

number that it maps to. Data in a shaded page are invalid. In Figure 3.1(c),

logical page 2 is mapped to data block D2 but cannot be rewritten directly. A

page in log block L3 has to be allocated. Successive updates can be handled by

more log pages, and mapping entries are changed accordingly. In Figure 3.1(c),

three log pages in L2 and L3 are used for logical page 4. If all pages of log blocks

are exhausted, a merge procedure must be performed to make space.

Figure 3.1 shows three types of merge in FAST. Switch merge and partial

merge have lower overheads, and are expected in the sequential area. For a

switch merge (shown in Figure 3.1(a)), the log block contains contiguous valid

data from the same logical block. It can therefore be simply switched to data

space. In a partial merge, the log block will also replace its relevant data block

but some valid data in current data block have to be transferred to it first,

as shown in Figure 3.1(b). Full merge is more complicated. FAST is fully

associative and each log block is shared by all data blocks. Thus, a full merge is

costly because each page with valid data in the log block must be (potentially)

20

CHAPTER 3. LITERATURE REVIEW

0 1 2 3 0 1 2 3

0 1 2 3

Write requests
0, 1, 2, 3

Log block L0

change

erase

Write requests
0, 1, 2

Data block L0

Data block D0 Free block D0

0 1 2
change

Log block L1

Data block D1

0 1 2 3

copy

erase

0 1 2 3
Data block L1

Free block D1

(a) Switch Merge (b) Partial Merge
Write requests
4; 0; 5;1; 4; 2; 5; 4

4 0 5 1 4 42 5
Log block L2 Log block L3

erase

0 1 2 3

(c) Full Merge

4 5 6 7

Free block F0

Data block D2 Data block D3

0 1 2 3
Data block F0

copy

copy

Log block L3

4 42 5
Log block L4

4 5 6 7
Data block D3

Free block L2 Free block D2Free block L2 Free block D2

Figure 3.1: Three types of merge(adopted from Lee et al. [62])

merged with a different data block. This requires many writes and erasures.

FAST and FASTer organize the random area in a FIFO queue (that they called

“round-robin”), and the victim log block for the full merge would be the one at

the head of the random area.

Recently, content-aware FTLs that attempt to reduce duplicate writes have

been proposed too. Examples include CAFTL [17] and CA-SSD [30]. ΔFTL [114]

also considers content locality; if a similar copy comes for an existing data seg-

ment, only the difference will be stored by ΔFTL. In all, they can potentially

benefit from the content detection and reduction.

3.2.3 Schemes for RAM Buffer Management

To manage the RAM buffer is an important responsibility of FTLs. Metadata

and data that are under request both pass through the RAM buffer, so the RAM

buffer is the most suitable one to reflect access behaviors of workloads. FTLs use

RAM space to hold mapping entries. DFTL [29] loads entries from translation

pages on demand. Besides single entries, CDFTL [86] selectively caches transla-

tion pages in a two-level structure, as is shown in Figure 3.2. Mapping entries

form the first level, the cached mapping table (CMT). Evicted entries from the

21

CHAPTER 3. LITERATURE REVIEW

CMT are first absorbed by cached translation pages in the second level. The

second-level exploits the spatial locality in workloads since neighbouring logical

addresses in a same translation page are likely to be accessed. DAC [85] is sim-

ilar to CDFTL on caching mapping entries but the former works at block-level

for large-scale flash storage systems.

Global Translation Directory

Cached Mapping Table

A R
A

M

Global Mapping Table
A

Tr
an

sla
tio

n
Pa

ge

Data Pages

…

Fl
as

h

Global Translation Directory

Cached Mapping Table

RAM

Cached Translation Pages

…

(A) DFTL (B) CDFTL’s RAM Structures

A

A

Figure 3.2: Page-level Mapping: DFTL and CDFTL

Data buffering, especially for write requests, is another use of RAM space. A

flash page is the buffering unit due to NAND flash memory’s access constraints.

BPLRU [51] utilizes a padding strategy within hybrid mapping. Unlike RAM

buffer management that only writes data to flash memory upon evictions to free

up space, BPLRU may read data from flash memory to pad a log block and

flush all data of a block back. Padding is expected to avoid arduous merge

procedures. However, reading data pages also costs time. A scheme named l-

buffer [13] has been proposed to trade off padding for merging, and vice versa.

Beside locally caching inside an individual device, buffering data for multiple

flash devices have also been investigated. FlashCoop [110] is exemplary to show

how to make use of remote RAM buffer of SSDs that are from neighbouring

servers for data buffering.

APS [94] and JTL [35] are two recent proposals that use the RAM cache

for mapping and buffering jointly in a flash device. APS reserves two small

areas of RAM as “ghost caches”. One is maintained to keep metadata of evicted

mapping entries, while the other maintains the metadata of evicted data pages.

22

CHAPTER 3. LITERATURE REVIEW

They are used to compute the expense caused by not enlarging the cache for

mapping and buffering, respectively. Write or read misses in actual cache may

hit in ghost cache. A cost-benefit model is built on these hit statistics to estimate

the benefits of enlarging either partition. Because APS’s estimation is based on

values of the past interval, there are delays in adjusting to runtime workload.

Moreover, APS uses the least recently used (LRU) algorithm at page-level or

entry-level to find a victim for evictions in respective partition. The overhead of

frequent LRU selections can be significant since tens of thousands of data pages

and mapping entries exist in the RAM.

JTL statically partitions the RAM space into two halves, one for mapping,

and the other for buffering. JTL uses a multi-level structure to manage mapping

entries. For the level n (n ≥ 0), it has 2n entries. The number of levels is

determined by the size of the RAM partition dedicated to mapping, and the

size of a single entry. All levels are divided into two groups. As RAM cache

is halved for buffering data pages, the mapping entries for these buffered pages

form Group 0 and take up positions from level 0 to m. Remaining levels fall

into Group 1, and their entries correspond to data pages that are still stored

in flash. The entry in the top level corresponds to the most recently used data

page. The entry of the newly-accessed page will drive the current entry in the

top level to move down. One entry at level 1 may need to move to level 2 if no

vacancy exists. More moves may follow in next levels. The victim to be moved

in each level is randomly selected as entries in the same level is deemed to have

similar access recency. When an entry reaches level m+ 1, its cached data page

in RAM will be flushed to flash memory. By doing so, JTL can keep the recently

used mapping entries and data pages cached in RAM.

3.3 Strategies Behind Flash Management

3.3.1 Module-Cooperative Flash Management

Module cooperation is based on the hypothesis that modules can help each other

within flash memory management. At the beginning of utilizing flash devices, the

cooperation between modules were not necessary. Three decades have passed,

and unprecedented obstacles come out to hinder the further use of flash-based

storage devices. The module-cooperative approach turns to be the first feasible

and possible way to seek for improvements.

There have been some schemes proposed to make one module cooperate with

another one. Let us take BPLRU [51] and l-buffer [13] that are for RAM buffer

management for example. They both involve hybrid address mapping in. It

23

CHAPTER 3. LITERATURE REVIEW

is mentioned that data of a logical block under hybrid mapping are scattered

in log pages and a data block. When the RAM space is used up, instead of

flushing cached pages of a logical block, BPLRU reads some pages from the

same logical block from flash memory and pads them to form a block, which

entails a sequential write operation to flash device. By doing so BPLRU aims

to avoid the expensive merge [51]. l-buffer extends the padding of BPLRU by

balancing padding and merging. Hence, either BPLRU or l-buffer just services

the writing of hybrid address translation. The interaction between them is not

very meaningful.

The cooperation between address translation and wear leveling also exists.

Lazy wear leveling [10] mentioned above is a good example. It works within

hybrid mapping. To be more specific, it checks the victim block during a merge,

and decides whether to utilize it or find another instead. The cooperation is also

straightforward, as no interplay is introduced into either side.

Factually, the cooperation between modules can be more meaningful and

significative. In this thesis, Chapter 4 will present the effectiveness of wear

leveling resulted from the deep cooperation between modules of address mapping

and wear leveling for flash memory management.

3.3.2 Workload-adaptive Flash Management

The requirement of being workload-adaptive is due to the variety of access pat-

terns of workloads flash memory is serving [11]. WAFTL [111] was claimed to

be workload-adaptive. It is for address mapping. It combines the said two basic

mapping schemes, but differs from hybrid mapping in its management on flash

blocks. It has a page-mapping buffer zone like the log space to hold updates, and

data blocks are partitioned into Block-level Mapping Blocks (BMB) and Page-

level Mapping Blocks (PMB). When the buffer zone is full, a data migration

procedure will be called to transfer the data out. WAFTL adapts to workloads

by sending buffered data to either BMB or PMB upon their access frequencies:

highly accessed data will be sent to PMB and others will be put in BMB. Un-

like merging a log block, data migration will flush all data in buffer zone and

completely reconstruct the space. It is costly to move so many data at a time.

There are also proposals on RAM buffer management that attempts to be

adaptive to workloads. The adaptation is achieved through the adjustment of

the partitions for address mapping and data buffering, though the way to adjust

partitioning is not simple. APS [47] maintains ghost caches for two partitions

to emulate the misses and hits in every interval in order to set the future par-

titioning. However, such complicated mechanism and the feedback way make it

24

CHAPTER 3. LITERATURE REVIEW

heavyweight to adapt to online workloads, not to mention the delay to respond

to the context switch of workloads.

In this thesis, two intelligent schemes based on the workload adaptation will

be shown. Their tactics are easily implemented and the effects are yet evident.

3.3.3 OS-involved Flash Management

The FTL for flash memory management is traditionally designed to be self-

contained [6]. The host OS communicates with the flash device through inter-

faces like USB or SATA, and is generally oblivious of the management of flash

memory. The OS sends requests to the FTL, and waits for replies in a client-

server manner, treating the flash device as a black box.

The involvement of the OS into flash management is attractive. There are

schemes that were devised to take file systems into account. MFTL [115] inter-

poses a filter between the file system and the FTL to separate metadata and

real data of files. Metadata are essential information to manage data of files,

like the filename, access time and access type. Generally metadata are small

and frequently udpated. MFTL pays special attention to them. It was imple-

mented within ext2 and ext3 file systems, and performance improvement was

reported. FSAF [75] focuses only on deleted data in FAT32. It is similar to the

TRIM command of modern OS [21, 42]. FSAF detects the deletion by utilizing

its knowledge about the format of FAT32 in storage devices. Meta-Cure [108]

is similar to MFTL. It adds a filter between file system and FTL to enhance

the reliability of “critical data” to avoid being damaged. Critical data in [108]

are ones that are vital for the file system and flash management. The loss of

critical data may bring in disastrous damage to the storage system. Though,

Meta-Cure does not change the file system; it is transparent to the FTL. Neither

is Hystor [16] which manages both SSDs and HDDs as one single block-interface

entity and avoids undesirable significant changes to existing file systems.

In all these works, either the OS is unaware of FTL’s workings, or vice-

versa. The FTLs just focus on either data to be deleted, metadata or cirtical

data. Our proposal in this thesis, however, is completely different, as it is a

collaborative model. The OS itself participates in the process of management.

The flash management is expected to exploit the OS’s knowledge of data and

files for profits. More details can be found in Chapter 7.

25

Chapter 4

OWL: Cooperative Wear

Leveling

This chapter will present the algorithm we developed in the first step of this

thesis to explore the inter-module cooperation inside the FTL. Its name is Ob-

servational Wear Leveling, abbreviated as OWL. It has cooperation between

address mapping and wear leveling. The cooperation here is not simply ex-

changing messages between modules. Instead, a sub-module of wear leveling is

inset into the hybrid mapping module, so that the latter is able to provide the

immediate information to the former for wear leveling. Specifically speaking,

OWL allocates suitable aged flash blocks to data during the process of address

mapping. Block allocation requests are raised in different scenarios for hybrid

mapping; OWL handles them case by case. In order to facilitate the module of

wear leveling, the way to organize blocks is also customized. Through the or-

ganic deep cooperation between wear leveling and hybrid address mapping, the

wear evenness is significantly improved, which hence confirms our hypothesis on

the potential gains obtained from the module cooperation. The mechanism of

OWL, as well as the experimental evaluation, will be detailed in this chapter.

4.1 Overview

As is mentioned in Chapter 2, wear leveling and address translation are two

basic functionalities of flash memory management. That is one reason why we

seek their cooperation. Wear leveling is employed to spread erase operations as

evenly as possible to ensure the lifetime of NAND flash device. From the analysis

of the latest algorithms on wear leveling in Chapter 3, we can see most of them

are induced when the wear evenness has been worsened to some extent. So we

26

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

deem them to be block-centric wear leveling algorithms, or passive wear leveling.

Being block-centric means that their emphasis is on the flash blocks, while being

passive means that they are activated by the worsening wear evenness. Moreover,

previous wear leveling schemes ignore a key point of wear leveling. Let us first

raise a question, “what causes the wear unevenness among flash blocks?” The

answer is the data. Evidently different data have different access frequencies.

They are accommodated into flash blocks. As a result, updating data differently

impacts the wear status of blocks. Take, for example, an extreme case, assuming

that all data were read-only. After the first write they would remain unchanged,

and no skewness would appear among blocks. This example is unusual. However,

it directs us to a new way to perform wear leveling. That is, how to devise a

data-centric algorithm for wear leveling. The proposal in the chapter, the said

OWL, has been developed in this data-centric way. OWL can also be viewed to

be proactive, as it estimates and accommodates data into suitable aged blocks

to avoid unnecessary arduous data movements.

The essence of OWL is to assess data’s access likelihood and put them in

suitable aged blocks, which is founded on the co-development of the wear level-

ing module and the address mapping module. One reason why we explore the

cooperation between them has been given above: they are basic modules for

flash memory management. Another reason is that it is during the process of

mapping logical address to physical address that flash blocks are allocated to

data. Moreover, there are reasons why hybrid address mapping is partic-

ularly opted. First, hybrid address mapping has been widely utilized for flash

devices. The prevalence of hybrid mapping makes it a good candidate for in-

vestigation. Second, hybrid address mapping provides good perspectives on the

spot of block allocation; the scenarios to allocate blocks are inherently classified,

which facilitates the wear leveling module to estimate and rank update frequen-

cies for data. Third, hybrid mapping has a shortcut to separate hot data and

cold data, because the log space interposes as a filter to sift different data.

Let us give an overview of OWL. It is said that OWL attempts to evenly

spread erase operations during the process of hybrid address mapping. To do

so, OWL maintains a Block Access Table (BAT) that observes and records the

history of recent logical block accesses. The BAT is used to perform Locality-

based Block Allocation (LBA) in the merge process of hybrid mapping. OWL

also identifies cold or very hot data, and transfers them if necessary to prevent

young blocks from being occupied for too long time. The cold or very hot data

emerge as hybrid address mapping leaves them behind. The blocks they take

up are consequently identified with the cooperation of hybrid mapping. The

27

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

sub-module of OWL, namely the scan and transfer (ST) scheme, will find them

and vacate young blocks they take up for future use. From our experiments,

with minimal spatial and temporal overheads, OWL can improve wear evenness

by as much as 29.9% and 43.2% compared to two state-of-the-art wear leveling

algorithms, respectively.

4.2 Challenge and Motivation

The emphasis of all wear leveling algorithms is laid on how to efficiently manage

a number of flash blocks with different ages in order to make them wear at the

same low rate. The key idea of OWL also lies in the management of blocks.

The particularity is that OWL attempts to take advantage of a given address

mapping scheme; herein it is the hybrid address mapping. The first concern is

what the module of wear leveling must customize to suit for the cooperation

with address mapping. One issue is the customization of organizing blocks. As

OWL intends to allocate flash blocks case by case, an efficient block organization

is necessary. As a matter of fact, not only wear leveling but all functionalities of

flash memory management are affected by the way to organize flash blocks.

Assuming an efficient block organization is available, how to allocate blocks

must be seriously considered as during processing block allocation data and

flash block meet. Data have different access frequencies while flash blocks have

different wear records. The strategy to allocate blocks surely impacts the future

wear evenness. Traditionally there are two straight manners to conduct block

allocations: the first-in-first-out (FIFO) and the youngest block first [9]. One

FTL roughly picks either way to allocate flash blocks. A good opportunity to

perform wear leveling, however, has been missed by previous schemes as the wear

skewness starts from the allocation of different aged blocks to different data.

An efficient customized organization of flash blocks for OWL would be de-

tailed. On the other hand, which block to be allocated depends on the scenario

where the allocation request is raised. For hybrid mapping there are three sce-

narios to allocate blocks. First, allocations are necessitated for data that newly

arrive. Such data are stored for the first time. Second, data to be merged have

to be accommodated. Third, the victim log block has been reclaimed after merg-

ing, and the log space must be replenished by one clean flash block. The latter

two cases are from the procedure of merge. Table 4.1 shows the proportions

of allocations for newly-arrived data and data to be merged under the FAST

FTL [60]. Without loss of generality, traces from [84], [101] and [77] were used

for analysis. It is obvious that the ratio for data to be merged is much higher

28

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

Table 4.1: Block Allocation Ratios in FAST

Trace New Allocation Merge Allocation

SPC1 3.90% 96.10%

TPC-C 33.76% 67.24%

MSR-hm 0 4.87% 95.13%

MSR-mds 0 13.02% 86.98%

MSR-prn 0 16.07% 83.93%

MSR-prxy 0 7.07% 92.93%

MSR-rsrch 0 18.42% 81.58%

MSR-stg 0 7.30% 92.70%

MSR-ts 0 8.29% 91.71%

MSR-web 0 6.75% 93.25%

than that for newly-arrived data, so OWL targets the allocation requests raised

for the former.

Note that the log space is used to hold the updated copies of data. It is

maintained in an over-provisioned, fixed capacity [1, 60]. Therefore, some of

the data in the log blocks may have to be evicted by merging to free up space.

However, the eviction does not mean that such data would never be updated

any longer. In terms of temporal locality, some of them may be accessed soon

while others may become cold. At this moment if we can predict which data are

likely to go cold, and allocate elder blocks to them, then future movements for

cold data will be avoided. Moreover, allocating young blocks to data that are

still hot also enhances wear evenness.

4.3 OWL’s Block Organization

As is mentioned, an efficient block organization promisingly facilitates the block

allocation and other functions of flash management. Even so, the block organi-

zation has not attracted as much attention as it deserves. The ways to organize

flash blocks of existing FTLs were mostly simple and straightforward. For exam-

ple, DFTL maintains a free block pool of clean blocks for address translation [29].

For hybrid address mapping flash blocks are just divided into three groups, and

not too many particular rules have been given except that log blocks are prefer-

ably managed in a FIFO queue [60, 64].

As wear leveling needs to locate the block it asks for as soon as possible, it

usually has its own special manner on organizing flash blocks. Previous works

have been shown in the Table 3.1 in Chapter 3. Take Dual-pool algorithm [9]

29

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

for instance. Its name suggests that it relies on two pools of blocks to perform

wear leveling. The recently-proposed Rejuvenator [74] maintains multiple lists

of blocks that have the same erase count for grouping.

As for the said OWL in this chapter, all flash blocks, excluding log blocks

that are managed in a FIFO queue as usual, are grouped in two pools, which

are the free block pool and the valid block pool. This is a common organization

in FTL designs [29]. In OWL we modify it slightly. The free block pool is sorted

according to the erase count of each block. Its data structure can be organized

like a min-heap for implementation, or other complicated ones that may consume

less RAM space [9]. However, one issue of the min-heap is that it has no strict

order for its nodes, which violates our intention. But the pool of flash blocks is

different from a small-scale, unique-key set of nodes. Since many flash blocks

are likely to share the same erase count, they can be approximately put into

neighboring levels of the heap structure. A strict order is not necessary so as to

minimize the temporal and spatial overheads caused by the maintenance of the

structure. In all, what we manage for OWL is a general sorted multiple-level

structure that keeps flash blocks in an inexact sequence. Using such a min-heap-

like structure, if the number of blocks is n, it will take O(log(n)) to enqueue an

erased block into the pool. Besides the free block pool, blocks in the valid block

pool are ordered by their arrival time. It is almost like an ordinary FIFO queue,

except that a valid block in the middle of the pool may, at an appropriate time,

be moved to the head. The valid block pool groups all data blocks. It can be

managed in a linear structure, for which the cost of insertion and removal is O(1)

and O(n), respectively. Note that the structures are temporarily stored in byte-

addressable RAM cache [52, 66]; even though one single insertion or removal is

insignificant, the cost still needs to be minimized considering cumulative impacts

in a long run. This also advocates that data structures for block organization

and other management issues deserve careful consideration as they would be

continuously used.

4.4 Locality-based Block Allocation

As pointed out earlier, block allocation requests may be issued for new log

blocks, arrivals of new data, or data to be merged. Traditional wear leveling

algorithms mostly employ one policy, either FIFO or the youngest block first [9,

104]. In OWL, they are not uniformly handled as usual. In particular, allocations

for log block and new data are done using the youngest block first policy. This

30

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

Lo
gi

ca
l B

lo
ck

 N
O

.

L0 1

Block Access Table (BAT)

Allocation Request for L1

Free Block Pool

Valid Block Pool

L0 L2 L1 L3

Inquire the BAT

Ranking

pos = (1-3/4)*4 = 1

(3)
F0

F1

F2

F3

V0 V1

….
Vm F1

Block F1 Allocated for L1

Block Moved

3

cntpoolfree
SIZEBAT

rankbatpospoolfree __*)
_
_1(__ ��

(4)

(7)

(9)

(3) (3) (6) (4)Entry Address
Hash Table

5

3

30

L1

L2

L3Lo
gi

ca
l B

lo
ck

 N
O

.
k

N
O

L0 1

Entry Address
Hash Table

5

3

30

Bl
oc

k

L1

gi
ca

l B L2LL

Lo
g

L3

Access Frequency
Linked List (main)

1

3

5

30

ncy
ain)

Ghost
Linked List

Figure 4.1: Locality-based Block Allocation with BAT

is easy to implement using OWL’s free block pool organization as it is just a

matter of fetching the top of the min-heap structure. Requests from merge,

however, are serviced by the allocation of a suitable aged block that is selected

in a predictive way according to the data’s recent write history.

The recent history of writes to logical blocks is recorded in the BAT in the

form of write frequencies. Hence, the BAT is a runtime record of the temporal

locality of writes. The BAT comprises three components: a hash table for rapid

looking-up, and the main linked list to hold logical blocks’ access frequencies,

and a ghost linked list. A sketch of the BAT is shown in Figure 4.1. The hash

table maps a logical block number to a linked list entry. In the main linked list,

an entry can be quickly appended or moved to the end of the list (being the

most recently used). On the arrival of a write request with a logical address,

the hash table will be checked. If the logical block number does not exist, an

entry will be created and appended to the end of the main linked list, and the

hash table mapping is set up accordingly. Otherwise, the relevant entry will be

updated and moved to the end. If the RAM space allocated for the main linked

list is exhausted, the least-recently-used (LRU) entry, i.e., the one in the front,

will be deleted to make space for the new arrival. Hence, the BAT keeps the

latest information of the temporal locality of recent writes. It will be used by

the FTL for the servicing of block allocation requests. The ghost linked list and

the overheads to maintain the BAT will be given in next subsections.

Here we will present the LBA algorithm used in the merge procedure. As

31

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

mentioned, during a merge, free blocks are needed to accept data from the log

page selected as the eviction victim, and its related data blocks. These data were

not recently used. However, the situation may change in the near future. LBA

aims to put the data to be merged into blocks of suitable ages in a predictive

way. In particular, LBA tries to make younger blocks hold hot data, while using

elder ones for the cold.

Algorithm 1: Locality-based Block Allocation

Input : logical blk no, logical block number in request
Output: free blk no, allocated free block number

1 begin
2 bat rank := CalcBATRank (logical blk no);

3 free pool pos := (1− bat rank
BAT SIZE) ∗ free pool cnt;

4 blk pt := GetFreePoolHead (void);
5 cnt := 0;
6 while (cnt < free pool pos) do
7 cnt++;
8 blk pt := GetNextFreeBlk (blk pt);

9 end
10 free blk no := blk pt;
11 return free blk no;

12 end

Algorithm 1 presents the skeleton of LBA. It is called in the merge procedure

with the logical block number as a parameter and returns the block number of a

free physical block. At line 2, the FTL first calculates the “rank” of the logical

block in the BAT. In brief, the rank of a logical block is the count of blocks in the

BAT that have lower access frequencies than it. At line 3, the FTL computes a

position in the free block pool using a heuristic formula. From line 4 to line 11,

LBA will find the block at that position in the free block pool, and return it to

the merge procedure.

The idea behind Algorithm 1 is as follows. First, the rank of the given

logical block is calculated using the recent write history recorded in the BAT.

If the logical block is highly accessed, its access frequency will be higher than

many others. Then its rank in the BAT will be high too. The LBA puts this

rank in the formula at line 3 to get the position in the free block pool, and looks

for a free block accordingly. The free block pool is a min-heap sorted with the

blocks’ erase counts. Hence, LBA can easily locate the one with the suitable age

in O(log(n)) time.

Computing the rank of a logical block is not straightforward. Since the BAT

stores the frequencies of recently referenced blocks, an intuitive way to rank a

32

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

logical block L is BAT [L].freq∑
l∈BAT BAT [l].freq . However, this is incorrect. In the most

recent interval, some blocks may be highly accessed. These hot blocks will have

very high frequencies, and they can dominate the total sum. The above fraction

will show a bias towards these blocks, and the ranks of other blocks will be

inaccurate. Worse, physical blocks cannot be fairly utilized because hot data

are unlikely to be merged soon but always occupy younger blocks. In OWL, we

first sort the blocks according to their frequencies. The rank is obtained after

sorting. Our experiments show that this is a better measure.

Figure 4.1 gives an example of LBA scheme. There are 4 entries in the BAT,

and 4 blocks in the free block pool. The number in the brackets of each block

is its erase count. When a request is raised for logical block L1, the FTL will

examine the BAT, and perform sorting. The rank of L1 is 3, and according to

the formula, its position in the free block pool is calculated to be 1. With this

number, the FTL finds physical block F1, and moves it to the valid block pool.

Finally, the FTL will return the block number F1.

A possible issue of the LBA might be ranking logical blocks through sorting

their recent write frequencies. As a sort procedure may take a long time, the

overhead is unacceptable. Based on the BAT, we have devised a lightweight

method. It is achieved with the aid of a ghost linked list whose nodes also

stand for access frequencies of logical blocks. But the ghost linked list does not

store frequencies by itself but utilizes those of the main linked list. So it can

be viewed as a shadow of the main linked list. A sample of two linked lists are

shown in Figure 4.1. We do not perform sorting upon each allocation request.

Instead we relocate the node in the ghost linked list after each write. Upon

a write operation to a logical block, its frequency in the main linked list will

be updated. When the increment to the block is completed, the block’s write

frequency has consequently changed. As the frequency definitely increases, we

will push the node in the ghost linked list forward to approach the rear of the

ghost linked list. In this process we compare the frequency of the moving node

to the frequency of each node we are about to bypass. If the frequency of the

moving node is no more than the one to be bypassed, the pushing process will

terminate. The moving node will be inserted here, as the current position is just

fit for it. Initially there are no nodes in the ghost linked list as well. An incoming

one would be enqueued to be the head. Note that for the main linked list the

incoming one is appended to the rear to represent the MRU item. Each time

we need to calculate the degree, we will just find the position number counting

from the head of the ghost linked list. In this way the ponderous sortings are

avoided, as is shown in Figure 4.1.

33

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

The temporal and spatial overheads of the BAT are fairly small. It is main-

tained in the RAM space with the block and log page mapping tables. The

access latency is much smaller than that of flash. It is not necessary to store the

BAT in flash because temporal locality is always changing. The spatial overhead

is also low. For each logical block, 4 bytes are used for the entry of the hash

table, and another 4 bytes record the access frequency in the main linked list. To

maintain the ghost linked list, 4 extra bytes are allocated for each logical block.

So the BAT will ask for 3KB for 256 logical blocks to support the LBA scheme

of OWL. Experiments show that a 3KB BAT is sufficient for OWL to function.

From Table 3.1 we can see Rejunvator also has proactive way to do wear

leveling. OWL differs from Rejuvenator in three important ways. Firstly, Reju-

venator focuses on the block allocation upon the arrival of new write requests;

OWL works in the merge procedure that issues much more allocation requests

(as shown in Table 4.1). Secondly, Rejuvenator uses page mapping for hot data

and hybrid mapping for cold data. This is fairly complicated. OWL utilizes hy-

brid mapping only, and hence eases the design. Thirdly, while they both utilize a

structure to record reference counts of logical addresses at runtime, Rejuvenator

maintains access information at the granularity of pages. OWL’s BAT works at

the block-level. With the same amount of RAM space, OWL can store longer

historical accesses.

4.5 Scan and Transfer Scheme

LBA works in the merge process, and it may miss two types of data. One is

data that are seldom, or possibly never updated after being stored. They have

no up-to-date copies in log space. In other words, their data blocks are not

related to any log page. Another is ones that are very hot. If data are highly

updated, their old copies in log pages will be quickly invalidated. So they can

avoid being merged. Evidently blocks occupied by these data are unlikely to be

erased. Thus, we use a proactive scheme named scan and transfer (ST) to find

these data, and efficiently place them in elder blocks.

Many methods have been proposed for hot/cold data identification [74, 104].

Note that here valid blocks are chronologically appended to the valid block pool,

and blocks at the head have been there for the longest time. ST exploits the or-

ganization of the valid block pool, and periodically scans a small portion through

the pool to find a block containing one of the above two types of data. To do

so, ST employs two variables, λ and δ. Briefly, ST scans (δ · 100%) of the valid

block pool after every λ write requests.

34

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

In its scanning, ST identities a young block with cold data using the block’s

erase count and mapping status. In our implementation, we deem a block to

be “young” if its erase count is smaller than half of the average erase count

of all blocks, which is more strict than group-based wear leveling [44] and lazy

wear leveling [10] that set such a standard to be the average erase count. If

a young block is not associated to any log pages, it will be picked. After the

scanning, more than one candidate may be found. To minimize the performance

overhead, ST will transfer one block’s data each time. Let functions T (b) and

Q(b) represent block b’s residence time in the pool and the quantity of valid

pages to be transferred, respectively. The victim should be the one that has

stayed for the longest time, and has the least data. Let

v(b) =
T (b)

Q(b)
. (4.1)

The block that has the largest v(b) can be selected as the victim. Given the

valid pool’s organization, T (b) can be replaced by 1
P (b) where P (b) is block b’s

position number in the pool. For example, the head of the pool has a position

number 1. Then Equation 4.1 will be

v(b) =
1

P (b) ·Q(b)
. (4.2)

There are several issues to use Equation 4.2, however. Firstly, P (b) can be easily

obtained, but to maintain Q(b) for each block requires a large amount of RAM

space. Secondly, in Equation 4.2, Q(b) has the same weight as P (b). Since ST

transfers one block after every λ requests, a larger Q(b) is acceptable, but a block

with a big P (b) might be mistakenly identified as cold. Thirdly, computing v(b)

for all the candidates may consume too much time.

Based on Equation 4.2, ST can be done in a simplified yet efficient way.

Besides λ and δ, ST employs a pointer pt and a counter k. Initially, pt points

at the first block that is associated to log pages, and k is set to zero. ST will

check each block’s erase count and mapping status through scanning δ blocks of

the pool. If a block satisfies the condition mentioned above, i.e. is young and

not associated to any log page, it will be selected, and inserted before pt. After

scanning, data of the first selected block will be transferred and k will count

by one. Before next scan, if the block that pt points at is to be merged, pt

will be replaced at the next block that is associated to some log pages, and k

will be reset to zero. In the next scan, if blocks found in previous scans exist,

ST cancels scanning and just performs data transfer on the first one of these

35

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

0 1 2 53 4 6 7 8 9

0 1 2 a4 57 8 96 3

0 1 2 a4 5 7 89 3 b c

(A) Valid pool at runtime in two �’s without ST

0 1 2 53 4 6 7 8 9

1 4 9

(B) Valid pool at runtime in two �’s with ST

012 53 4 6 7 8 9

012 4 6 7 8 9 a 5 3

01 26 7 8 9 a 5 3

0 2a 5 3 7 8 b c

6

6

14 9 0 2a 5 3 7 8 b c6

�

2�

� � = 0.3, k = 2, � = 2

2� � = 0.3, k = 2, � = 2

0 1 2

0 1 2 0 2 0 12

transfer datainsert

0 1 0 2 120

transfer data

2

insert

(C) Adjustment of block positions

pt

pt

4
pt

pt

1
pt

Figure 4.2: An Example of ST Scheme

blocks. If after scanning no candidate is found, ST will check k. If k is bigger

than a threshold Γ, the block that pt points to has been there for at least (Γ ·λ)
requests, and avoided being merged. The data that block holds could be very

hot. So ST will select and transfer it; pt and k will be reset accordingly. If k < Γ,

ST just returns. Note that the ST scheme is similar to the Clock algorithm for

approximate LRU page replacement of virtual memory [97]. One different point

is that ST does not track how often a block is accessed by itself. Instead, it

takes advantage of the information provided by the module of hybrid address

mapping. Another important difference is that, Clock algorithm only picks out

the one that is the least recently used while ST may also choose the one that is

the most recently used (a flash block with very hot data).

Obviously ST prefers blocks of cold data to blocks of hot data because the

latter still might be merged. It uses pt and k heuristically to identify a block

with very hot data. Figure 4.2 shows an example of ST at runtime. Figure 4.2(A)

is the pool’s being in two λ requests without ST. Squares are blocks that are not

associated to any log page, and circles are ones that are. The number inside is

the logical block number mapped to each block. In Figure 4.2(B), ST transfers

data in logical block 0, 2 and 1 to elder blocks. Figure 4.2(C) shows a case that

a selected block is inserted before pt.

36

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

4.6 Experimental Evaluation

4.6.1 Experimental Methodology

There are three ways to do experiments in order to measure the effectiveness of

wear leveling algorithms. They all aim to ensure that all blocks are covered in

assessing wear evenness. The first way is what lazy wear leveling did [10]. They

configured a 20.5GB SSD (0.5GB was over-provisioned for log space of hybrid

mapping) in their simulator, and “replayed the input workload one hundred

times”. The second was used in the Rejuvenator paper [74]. Their SSD in

simulation had 32GB, but they “restrict the active region” for write requests

and “the remaining blocks did not participate in the I/O operations”. The third

way is what we did. For each workload, we assigned a reasonable capacity so

that all blocks have the chance to be involved in wear leveling. The capacities

for workloads we used are shown in Table 4.2. Note that the over-provisioning

rate for log space is 3% which is the same as previous works [29].

Table 4.2: Capacities for Traces

Trace Capacity

SPC1 2.06GB

TPC-C 3.09GB

MSR-hm 0 4.12GB

MSR-mds 0 2.06GB

MSR-prn 0 6.18GB

MSR-prxy 0 4.12GB

MSR-rsrch 0 2.06GB

MSR-stg 0 4.12GB

MSR-ts 0 2.06GB

MSR-web 0 2.06GB

All the experiments were conducted using the FlashSim simulator [53] in a

Linux 64-bit system with GCC 4.6. The address mapping used was FAST [60]

that has been modified with our block organizations. We implemented BET,

lazy wear leveling and Rejuvenator as comparisons to OWL. In the following

texts, baseline refers to a configuration that has no wear leveling, lazy is the

one with lazy wear leveling, OWL refers to our proposed OWL algorithm, and

OWL-nc has all of OWL except the ST module.

The traces we used came from three sources. They are shown in Table 4.1

and Table 4.2. SPC1 and SPC2 were downloaded from [84]. TPC-C is a typical

online transaction processing (OLTP) workload from [101]. All others were from

37

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

0.9

0.92

0.94

0.96

0.98

1

1.02

BET
lazy
OWL-nc
OWL

N
or

m
al

ize
d

Av
er

ag
e

Er
as

e
Co

un
t

Trace

Figure 4.3: Average Erase Counts of Each Trace

Microsoft’s data centers [77]. They represent various environments, and the

numbers of write requests vary from 1 to 12 million. Note that each write

request in the trace may consist of multiple write operations. Caveat lector:

these traces were recorded at different machines whose configurations were never

clearly documented. Therefore, we used a different configuration for each trace,

as is shown in Table 4.2, in order to assess wear evenness caused by wear leveling

algorithms.

We studied three metrics. The average erase count, and its standard devia-

tion are used to measure the effectiveness of the wear leveling algorithms. The

overhead is measured by the elapsed time needed to finish processing the trace.

All three metrics have to be assessed together in order to obtain a qualitative

judgement about the efficacy of the algorithms.

For BET, we configured each block set to be a single block. This is the best

case for BET in terms of wear leveling. The threshold Δ of lazy wear leveling was

initialized to be 2. It is adaptively tuned online according to [10]. For OWL, the

default values of λ, δ and Γ are 1000 requests, 0.4% and 50. All flash parameters,

like the latencies of write and erase operations, were obtained from [34].

4.6.2 Effectiveness of OWL

Figure 4.3-4.5 are results on average erase count, standard deviation, and elapsed

time for each trace, normalized against baseline. Note that the optimal wear

leveling algorithm could achieve the absolute wear evenness without different

among flash blocks, which means that the standard deviation is zero. Figure 4.3

shows OWL can reduce the number of erasures in many cases, while Figure 4.4

shows that the standard deviation decreases, by as much as 29.9% and 43.2%

compared to BET and lazy with MSR-prxy 0 respectively. These lead us to

38

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

BET

lazy

OWL-nc

OWL

N
or

m
al

iz
ed

 S
ta

nd
ar

d
D

ev
ia

tio
n

Trace

Figure 4.4: Standard Deviation of Erase Counts

conclude that OWL performs better than BET and lazy in evening out erasures.

Figure 4.5 shows the elapsed time on processing each trace. OWL is at most 1.1%

slower than the baseline in the case of MSR-prn 0.

0.9

0.92

0.94

0.96

0.98

1

1.02

BET
lazy
OWL-nc
OWL

Trace

N
or

m
al

ize
d

El
ap

se
d

Ti
m

e

Figure 4.5: Elapsed Time with Four Algorithms

As mentioned earlier, the three metrics should be considered together. Take

for example TPC-C. It has 7.7 million requests in the workload. From Figure 4.3,

we can see OWL has a similar number of erasures as BET and lazy. However, as

shown in Figure 4.4 the difference in standard deviation is significant. This

implies OWL achieves better wear evenness with roughly the same erasures.

There are traces in which OWL did not do too well also. Figure 4.3 shows that

OWL has slightly more erasures than lazy for MSR-prxy 0. We analyzed MSR-

prxy 0, and found it quite different from other traces. Normally, one would

expect a write request to access a number of pages. MSR-prxy 0, however, has a

large number of very small write requests, with 77.8% of the requests accessing

only one page. Since the BAT works at block-level, such a situation is difficult

39

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

0.8

0.9

1

1.1

1.2

1.3

6KB 12KB

Trace

N
or

m
al

iz
ed

 S
ta

nd
ar

d
D

ev
ia

tio
n

Figure 4.6: The Effects of Different BAT Size

for the BAT to record access information accurately. This in turn affected LBA’s

allocations. Even so, OWL was still able to use the ST module to perform wear

leveling. This is why OWL has a little more erasures, but the best evenness.

We have also implemented Rejuvenator. However, there were several stum-

bling blocks. Specifically, two thresholds (TL and TH) were not given in their

paper. Also, it was said initially all blocks will have a zero erase count, and

all will be in the lower numbered lists. However, when and how to migrate

from such initial state to the two partitions of the lower and higher numbered

lists were not described in [74]. These parameters and process are important

for Rejuvenator. Nonetheless, we tried to simulated it but the results are not

comparable to those for BET, lazy and OWL. Take TPC-C trace for example. It

should be easy to identify hot and cold data based on the access information

of TPC-C workload. Our simulation of Rejuvenator has a similar erase count

as OWL but its standard deviation over all blocks is 44.3% more than OWL. It is

worse for other traces.

4.6.3 Effects of BAT Size

The BAT is used to support LBA in the merge procedure. The default size in

our experiments is 3KB, allowing for 256 records. We also tried varying the size

to 6KB and 12KB. The standard deviations of these normalized against the 3KB

configuration are presented in Figure 4.6. From it we can see in general a larger

BAT results in more unevenness. The BAT records the latest write frequencies,

and one with a larger capacity is more likely to store outdated information. This

will mislead LBA. In terms of overhead, besides saving space, a smaller BAT can

also have a lower access time.

40

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

0

0.4

0.8

1.2

1.6

2

0.20% 0.10% OWL-nC
N

or
m

al
iz

ed
 S

ta
nd

ar
d

D
ev

ia
tio

n

Trace

Figure 4.7: The Effects of ST with Various δ (A)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.30%

0.50%

0.60%

Trace

N
or

m
al

iz
ed

 S
ta

nd
ar

d
D

ev
ia

tio
n

Figure 4.8: The Effects of ST with Various δ (B)

4.6.4 Effectiveness of ST

δ, λ and Γ are three parameters of ST module. We experimented with different

values of them to study ST’s functions. The results of various δ are shown in

Figure 4.7 and Figure 4.8.

In our default setting, OWL will go through 0.4% of the valid block pool. We

also experimented with δ being 0.1%, 0.2%, 0.3%, 0.5% and 0.6%, and normalized

their results against those for 0.4%. Figure 4.7 shows that in general the wear

evenness will worsen when a lower proportion of blocks is checked (TPC-C and

MSR-rsrch 0). The worst case occurs in OWL-nc that does not have ST. From

Figure 4.7, processing the MSR-prxy 0 will suffer the most from the removal of

ST module. Processing less blocks means that ST is less aggressive on moving

41

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

cold data. This will result in cold or very hot data occupying their blocks longer,

preventing these blocks from being utilized. On the other hand, a less aggressive

movement would also mean less performance overhead.

2

2.5

3

3.5

4

4.5

5

5.5

6

1k 2k 3k 4k 5k

MSR-hm_0

MSR-prn_0

MSR-prxy_0

MSR-web_0

SPC1

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

1k 2k 3k 4k 5k

TPC-C
MSR-mds_0
MSR-rsrch_0
MSR-stg_0
MSR-ts_0

(A)

(B)

�

�

St
an

da
rd

 d
ev

ia
tio

n
St

an
da

rd
 d

ev
ia

tio
n

Figure 4.9: The Effects of λ length

Note that a larger δ value will cause ST to scan more blocks in the valid block

pool. However, the effect is also dependent on the workload. From the three

figures, we can see with most traces the impact of various δ is not significant.

This is due to the access patterns of these workloads being quite uniform. But

42

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

for MSR-prxy 0 again, it is obvious in Figure 4.8 that results of δ = 0.4% can be

viewed as optimal. That is to say, scanning more blocks will incorrectly classify

the data, and transfers based on such erroneous identification will only worsen

the wear evenness. On the other hand, scanning less blocks may miss blocks

that should be transferred.

We also did experiments to measure the effects of different λ. ST will be

activated every λ interval. The default value of λ is 1000 requests. Figure 4.9

shows the standard deviations in wear evenness with λ being set at 2000(2k),

3000(3k), 4000(4k) and 5000(5k) requests. From the results we can conclude

the effect of λ depends on specific workload. For MSR-prn 0 or MSR-stg 0,

the interval length has no significant impact on wear evenness. For others,

however, a longer λ will worsen the evenness. This is because ST will be less

aggressive on a longer λ. With the same δ, ST will miss blocks that ought to be

transferred. Still, for MSR-prxy 0, a more frequently executed ST module can

greatly enhance wear evenness.

0.98

0.985

0.99

0.995

1

1.005
40 50 60 70

Trace

N
or

m
al

iz
ed

 E
la

ps
ed

 T
im

e

Figure 4.10: Normalized Elapsed Time with Various Γ

Figure 4.10, 4.11 and 4.12 show the results upon various values of Γ. Evi-

dently Γ only has a marginal impact on wear evenness in most cases. Note that

Γ is the threshold for identifying very hot data. If a block stays in the valid

block pool for more than (Γ ·λ) requests, its data are most likely to be very hot.

The default value of Γ in previous experiments was 50. We conducted more ex-

periments with Γ being 30, 40, 60 and 70 (λ = 1000 and δ = 0.4%). Figure 4.10

shows that the elapsed time did not change much with various Γ (results of

Γ = 30 are used to normalize other settings). Neither did average erase count in

Figure 4.11 (results of Γ = 30 are used to normalize other settings).

In most cases, the standard deviation of erase counts was not affected as

shown in Figure 4.12. However, with a longer interval, MSR-prxy 0 would result

43

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

0.98

0.985

0.99

0.995

1

1.005
40 50 60 70

Trace

N
or

m
al

iz
ed

 A
ve

ra
ge

 E
ra

se
 C

ou
nt

Figure 4.11: Normalized Average Erase Count with Various Γ

in slightly more erasures for better evenness, while MSR-mds 0 suffered from

wear unevenness with slightly less erasures. For the former trace, a bigger Γ

could result in more data blocks being identified as very hot. The characteristics

of MSR-prxy 0 have been described before. Because small requests were fre-

quently issued, a longer interval (in more requests) would be more suitable and

could help to accurately filter out very hot data. Thus ST modules had lower

standard deviation with the increase of Γ. This also confirms our argument in

Section 4.6.2 and 4.6.4 that ST has played an important role in processing MSR-

prxy 0. For MSR-mds 0, which is taken from a media server with a majority of

big requests, a longer interval may miss blocks of very hot data with the same δ

depth to scan, and less erasures would be performed by the ST module in trans-

ferring the data. This explains why as the interval was lengthened, the erase

counts decreased and the wear evenness worsened for MSR-mds 0, as shown in

Figure 4.11 and 4.12(C).

4.7 Summary

In this chapter an innovative algorithm for wear leveling is presented, i.e., the

Observational Wear Leveling (OWL). OWL is based on the cooperation between

the module of wear leveling and the module of address mapping. Hybrid address

mapping facilitates the module of wear leveling to satisfy allocation requests for

blocks. The cooperation is not through exchanging messages in between. Instead

we have done it in a deep way: a part of the wear leveling module is embedded

into the address mapping module, so that the former can get the immediate

information to allocate flash blocks. Technically speaking, OWL records the

44

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

2.5
3

3.5
4

4.5
5

5.5
6

30 40 50 60 70

MSR-prn_0

MSR-prxy_0

MSR-web_0

�

2.2

2.3

2.4

2.5

2.6

30 40 50 60 70

MSR-ts_0

MSR-rsrch_0

MSR-hm_0

SPC1

�

(A)

1.2
1.3
1.4
1.5
1.6
1.7
1.8

30 40 50 60 70

TPC-C
MSR-mds_0
MSR-stg_0

(B)

(C)
�

St
an

da
rd

 D
ev

ia
tio

n
St

an
da

rd
 D

ev
ia

tio
n

St
an

da
rd

 D
ev

ia
tio

n

Figure 4.12: Standard Deviation with Various Γ

45

CHAPTER 4. OWL: COOPERATIVE WEAR LEVELING

temporal locality of write activities at runtime, and allocates blocks judiciously

in the merge procedure of hybrid address mapping. To do that, it makes use of a

block access table (BAT) to make decisions. In order to further even out erasures,

OWL employs a scanning and transfer mechanism to identify and move cold or

very hot data. Experimental results show that OWL outperforms a state-of-the-

art wear leveling algorithm on the evenness of erasures by as much as 43.2%

with about 1.1% performance degradation, and a space overhead of 3KB. The

evaluation therefore confirms our hypothesis of the module cooperation for flash

memory management.

46

Chapter 5

ADAPT: Workload-Adaptive

Hybrid Address Mapping

The second step of this thesis is emphasized on the adaptation to workloads. In

this chapter, a scheme for the address mapping module will be presented. We

name it ADAPT. With it we attempt to suit the FTL to dynamic access behavior

of a workload. ADAPT falls into the category of hybrid address mapping. It

has the traditional block divisions like the fixed log space, the block-mapped

data space and the free block pool. It also activates merge to make space in the

log space. However, ADAPT has been developed to online adapt to workloads.

Essentially, it adjusts the partitioning of the log space in response to sequential

and random write requests issued during runtime. By observing online access

behaviors of workloads, ADAPT also avoids premature merges by predicting the

likelihood of future references.

5.1 Overview

Address mapping is a basic functionality of the FTL. The combination of basic

page-level mapping and block-level mapping makes the hybrid mapping more

prevalent in market today. However, environments in which hybrid mapping is

employed vary greatly. Primary hybrid mapping FTLs, like BAST and FAST,

target embedded systems. With the widespread use of SSDs in enterprise servers,

workload characteristics of general-purpose computing systems have to be con-

sidered. For instance, FAST pays attention to random writes using only one log

block for sequential writes [60]. FAST’s successor FASTer [64], however, focuses

on online transaction processing (OLTP) systems. Workloads of many appli-

cation domains, such as finance and commerce, are OLTP in nature. Typical

47

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

OLTP workloads are dominated by small and random I/O requests. A high-level

access skewness exists on a handful of pages with other pages rarely touched.

Table 5.1: I/O Request Size of Various Workloads

Trace Small Medium Large

TPC-C 20 99.17% 0.83% 0.00%

SPC1 86.58% 10.63% 2.79%

MSR-hm 0 76.70% 13.72% 9.58%

MSR-mds 0 72.35% 19.79% 7.86%

MSR-prn 0 79.46% 8.88% 11.66%

MSR-prxy 0 87.91% 6.82% 5.27%

MSR-rsrch 0 68.22% 25.04% 6.74%

MSR-stg 0 72.33% 18.62% 9.05%

MSR-ts 0 67.81% 25.87% 6.32%

MSR-web 0 67.50% 23.85% 8.65%

Besides OLTP there are many other important types of I/O workloads. For

instance, mail and media servers serve contents that may be fairly large. These

types of workloads differ from OLTP in that accesses are less skewed and gen-

erally more data need to be accessed in a request; sequential and random write

requests may mix in different ratios and form dynamic access patterns, which

requires FTLs to adapt to them efficiently for high access performance. The

hybrid mapping FTLs need to be enhanced to target the variety of workloads.

Table 5.1 shows that the variation in I/O request sizes is significant. Traces

from [84], [101] and [77] were used again. Here we define a small request as

one that is 4KB (2 pages with 2KB per page), or less. This same definition was

used by previous works [62, 64]. A medium request is one whose size is smaller

than 16KB (8 pages), and any request that is larger is classified as large. For

preliminary analysis, we roughly deem large requests to be sequential, which

agrees with LAST [62]. TPC-C 20 in Table 5.1 is a typical OLTP workload

which hardly has sequential writes but is almost full of random requests in all

7.7 million write records. MSR-prxy 0, one that was taken in a proxy server and

also has a large amount of small writes, contains a lot of large requests. For non-

OLTP workloads in Table 5.1, sequential writes compose about 3% to 12% of

all requests. If these requests are handled, for example, with one log block as in

FAST, there will be high capacity misses that can badly degrade the performance.

For small random requests, since they are frequent and interpose with sequential

48

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

writes, how to satisfy them is always attractive in the development of FTLs. One

key insight of our design is that the FTL should use an intelligent strategy to

deal with workloads that are mixed with sequential and random writes.

Based on this observation, we have developed a hybrid mapping scheme. We

have named it ADAPT. One reason of this name is that ADAPT highlights the

proposal’s ability of being workload adaptive. Another reason is that ADAPT

can stand for two sub-modules of the scheme: Aggregated Data movement And

Predictive Transfer. Traditional hybrid mapping schemes partition the log space

into sequential area and random area to receive respective updates. However,

the partitioning of previous algorithms is fixed. On the other hand, the access

behaviors of workloads are changing. Therefore, our ADAPT applies a policy to

dynamically adjust the partitioning at runtime. Besides, the merge procedure

is optimized to avoid premature merge. As is covered in Chapter 3, during a

merge multiple writes and two erasures have to be performed. ADAPT utilizes

two mechanisms called the predictive transfer and the aggregated move to avert

the arduous merging works. Experimental results show that ADAPT is as much

as 35.4%, 44.2% and 23.5% faster than a state-of-the-art hybrid mapping scheme,

a prevalent page-level mapping scheme, and a latest workload-adaptive mapping

scheme, respectively, with a small increase in RAM space requirement.

5.2 Online Adaptive Partitioning of the Log Space

How to efficiently handle sequential writes and random writes is an important

issue in FTL design. As mentioned before, the log space is partitioned into the

sequential and random areas. Hybrid mapping schemes always expect sequen-

tial writes to cause switch or partial merge. FAST utilizes one log block as the

sequential area [60] while LAST considers multi-tasking environments and em-

ploys a fixed number of log blocks to handle sequential requests [62]. On the

one hand, using one log block tends to result in block thrashing. On the other

hand, since the system workload changes from time to time, it is not optimal to

reserve a fixed number of blocks also.

Before presenting our design, let us first revisit the issue of identifying se-

quential write requests. FAST uses two conditions to direct a write request to

the sequential log block: (1) if its page number is zero within the logical block

(data that the log block holds at present will be merged), or (2) the logical block

number of the write request is the same to that of the sequential log block and

the pages to be written can be simply appended in the log block. The first con-

dition is likely to incorrectly label a random request beginning from page zero

49

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

to be a sequential one, and may result in frequent merges. For LAST, besides

using more blocks for sequential writes to avoid such merges, it also takes into

account the size of a write request: if a request writes data to a number of pages,

it will be a sequential request. LAST was implemented in PCs of Windows XP

operating system, so its threshold was set to be 4KB (2 pages) [62]. For ADAPT,

however, we do not use an absolute number of pages accessed in a request to

determine whether it is sequential or random. Instead, we will adaptively change

the threshold. How this is done will be described below.

We shall now present our area partitioning scheme of ADAPT. Unlike FAST

or LAST, the sizes of the sequential and random area are adjusted dynamically.

The key idea is that, at runtime, if performance suffers from having insufficient

sequential log blocks, blocks will be transferred from the random area to the

sequential area, and vice versa. To do these, ADAPT maintains two variables in

a time interval. The first is the switch and partial merge ratio,

δ =
count of switch and partial merges

count of sequential log block allocation
.

This is the count of switch and partial merges over all block allocations from the

sequential area. Another one is the full merge ratio,

ϕ =
count of merged pages in full merges

count of full merge
.

This is the average number of merged pages in the full merges occurring in the

random area.

δ and ϕ represent the situations of recent write requests in a period inside

the sequential and random areas, respectively. One reason of using δ and ϕ is

that they reflect the effect of partitioning in an intuitive way. Another reason is

to measure δ and ϕ is not difficult at runtime, so the overhead can be minimized.

δ varies from 0 to 1. A larger δ means a higher hit rate of block allocation in

sequential area. Evidently enlarging the capacity of sequential area is likely to

be profitable. If δ > Δ, we will do so. Δ is the exponential moving average of δ

over past intervals, and how to obtain Δ would be shown. On the other hand,

a smaller δ implies more requests were incorrectly treated to be sequential, and

hence the need for sequential log blocks is not high. ϕ is an integer between 0

and the number of pages in a block, typically 64 [38]. A larger ϕ means that on

average a full merge has to process more valid pages. So having more blocks in

the random area may alleviate the pressure. We will enlarge the random area

when ϕ ≥ Φ where Φ is another threshold for ϕ. Φ is also the exponential moving

average of ϕ over past intervals. A smaller ϕ implies random requests are handled

50

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

well by the current random area size, and possibly some blocks can be transferred

to sequential area. By measuring δ and ϕ, ADAPT can adjust the utilization of

blocks in both areas. To avoid significant fluctuation on performance, ADAPT

will transfer one block every time between two areas. If δ suggests increasing the

sequential area, ADAPT will select a victim block in the random area, merge it

with its relevant data blocks and reclaim it. A clean block will be allocated to

be a sequential log block then. The random area can be adjusted likewise.

Let us present how the values for thresholds Δ and Φ are set. One more

parameter, κ is first introduced. 0 ≤ κ ≤ 1. δ would be used for elaborating

the calculation. As δ is measured period by period, we can have an average

value of δ over past intervals. It can be immediately used for the threshold. Say,

if δ of the current interval is much more than the average, the sequential area

would better be enlarged; otherwise whether to enlarge the random area will be

check. This sounds reasonable, but the average value may inaccurately indicate

the situation as the farthest intervals have equal impact due to the common way

to calculate the average. That is why we utilize κ to control the impact of recent

intervals. For the interval n, the average Δ would be computed as

Δn = κ · δn−1 + (1− κ) ·Δn−1, (5.1)

where n ≥ 1. Δ1 stands for the first interval and it is initialized to be zero.

If κ = 0, Δ would be meaningless as over time Δ would be set to the initial

value, i.e., zero. If κ = 1, Δn = δn−1; δ measured in the last interval will be used

as the threshold, and other past intervals are ignored. If 0 < κ < 1, however,

using Equation 5.1 we can have

Δn = κ · δn−1 + (1− κ) ·Δn−1

= κ · δn−1 + (1− κ) · [κ · δn−2 + (1− κ) ·Δn−2]

= ...

= κ · δn−1 + (1− κ) · κ · δn−2 + ...

+ (1− κ)i · κ · δn−i−1 + (1− κ)i+1 · κ · δn−i

+ ...+ (1− κ)n−1 ·Δ1. (5.2)

So Δn will have an average value of δ from past intervals. Equation 5.2 explains

why we call Δ the exponential moving average. The method to compute an expo-

nential moving average has been utilized in the design of operating systems [97].

It is very useful, and we will make use of it again in Chapter 7. Here the default

value of κ is 0.9. A relevant discussion on κ will be raised in Section 5.6.

51

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

The calculation of Φ is similar. If ϕ is larger than Φ, the random area is

advised to be enlarged. In ADAPT, the enlargement of the sequential area has

a higher priority than that of the random area. That is to say, ADAPT will

consider δ before ϕ. There are several reasons for this. Firstly, switch and

partial merges are less expensive. Secondly, sequential log blocks are managed

using block mapping, which consumes less RAM space. Thirdly, the utilization

of random log blocks can be optimized with ADAPT’s predictive transfer and

aggregated movement components, which will be covered in next few subsections.

Unlike LAST’s predefined 4KB threshold, the threshold of ADAPT to direct

a request to the sequential or random area is also adaptive. In a recent interval,

a very small δ, say less than 0.1, means that the sequential area was not very

effective. This will cause the threshold to be changed. From our observation on

enterprise workloads, over a long period of time, sequential writes tend to access

a similar number of pages, either a handful (around 2 pages) or a large number

(about 32 pages). Thus, if the threshold is very low, ADAPT will increase it to a

large value. Otherwise, the threshold will be decreased. This simple adjustment

is quite easy to implement. From our experiments, however, we saw that a

latency might be needed to gradually adapt to a specific workload.

Algorithm 2 shows main steps in adjusting the log space. The adjustment

is activated every INTERVAL requests (line 2 to 5). The impact of the interval

length will be discussed in Section 5.6. We check δ first at line 8. If it is not

positive, we will check ϕ at line 14. The partitions are then adjusted as described

above. A victim block is picked from one area and merged with its data blocks

(line 9 to 10 or line 15 to 16). A free block will be allocated from the free block

pool to replenish the other area (line 11 to 12 or line 17 to 18). The way to

select a victim in the random area is the same as a common merge procedure.

ADAPT organizes the random area as a FIFO queue like FAST and FASTer, and

the head will be the victim each time (line 9). For the sequential area, however,

it is better to find a block that will make a switch merge or partial merge, which

is computed by the function at line 15.

Note that our adaptation is different from previous works [80, 55]. They

adapt by changing the degree of associativity between the random log space and

the data space. In other words, a log block may be changed from being shared

by many data blocks to being bound to one. ADAPT’s adaptivity focuses on

the partitioning of log space to service either type of write request efficiently.

ADAPT also differs from WAFTL whose adaptation is in the transfer of data

from the buffer zone to either the page or block mapping areas of the data space.

52

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

Algorithm 2: Adjustment of Log Space in ADAPT

1 begin
2 reqst count++;
3 if (reqst count < INTERVAL) then
4 return;
5 end
6 else
7 reqst count := 0;
8 if (δ > Δ) then
9 victim := GetHeadofRandArea(void);

10 Merge(victim, RW);
11 free blk := AllocFreeBlock(void);
12 AddtoSeqArea(free blk);

13 end
14 else if (ϕ ≥ Φ) then
15 victim := GetVictimofSeqArea(void);
16 Merge(victim, SW);
17 free blk := AllocFreeBlock(void);
18 AddtoRandArea(free blk);

19 end
20 return;

21 end

22 end

5.3 Predictive Transfers

The second chance scheme is the main feature of FASTer. FASTer gives valid

data in the victim log block a second chance thereby preventing premature

merges. With the second chance scheme, valid data from the head block of

the random area will be moved to the block at the rear of the queue. FASTer

performs well for OLTP systems because they frequently access little data from

some very hot logical pages and not too many data would be left in the victim

log block for movement. For other classes of workloads, however, such move-

ments seem wasteful. While the second chance scheme can reduce the number

of erasures, it may significantly increase the amount of data copying. Table 5.2

shows typical latencies of write and erasure of NAND flash [38]. It can be de-

duced that moving five pages will reverse the gain of an avoidance of an erasure.

This is especially detrimental if a page given a second chance turn out not to

be accessed during the time it is in the log space. This leads to the idea that if

we can predict the likelihood whether a page in the random area will be used,

we can make a better decision on whether to delay merging this page or not. In

53

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

general, a page at the front of the random area that is likely to be accessed again

should be given a second chance in a merge process. Otherwise, if it is unlikely

to be updated in the near future, then it should be directly merged.

Table 5.2: Latencies of Large-block SLC NAND Flash Memory [38]

Read Write Erase

130.9 μs (2KB) 405.9 μs (2KB) 2 ms (128KB)

As with most forms of prediction, the principle of temporal locality can be

applied here. Particularly, a page that has been written recently is most likely

to be updated again. We utilize the historical write information of a page to

predict its future access possibility. Hence, on deciding if a page should be given

a second chance, we shall examine whether its data were recently updated.

The data structure for prediction of ADAPT is the historical access table

(HAT). HAT records a history of recent writes to logical pages at runtime. It

is a hashed queue maintained in RAM. The key used for hashing is the logical

base address in a write request, i.e., the concatenation of the logical block and

page numbers. Each entry consists of the key and the number of pages that

was written within a historical request. Hashing allows for queries about the

existence of an entry to be answered quickly. Entries in the HAT are updated

dynamically and managed via a queue discipline. On a coming write request,

if its logical base address and the size to be accessed are already cached in the

HAT, it will be moved to the rear; otherwise, a new entry will be enqueued in

the HAT. If the HAT is already full, the entry at the head of the queue (the

least recent one) will be deleted to make room for the new entry. In this way,

we maintain a history of the most recent writes for the purpose of prediction.

The overhead of HAT is insignificant. It is resident in RAM together with

address mapping tables, thus having a much shorter access latency than flash

memory. The HAT does not need to be persistently stored since access behaviors

are always changing and not correlated over a long time. The HAT is also small.

As shown in Figure 5.1, each entry of the HAT has two fields, the base page

number (4 bytes), and the number of pages accessed (2 bytes). Thus, 1KByte

of RAM can hold about 170 requests. Our experiments showed that a 1KByte

HAT could perform well. More discussions of the size of HAT will be given in

Section 5.6 with various configurations.

Figure 5.1 gives an instance of merging with prediction. A rectangle is a

physical block, and each has four squares for four pages. The number in a

54

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

…
…
…X

9

17

X

5

6

X

X

11 25

7

14

15X

…
…
…

5

6

X

X

11 25

7

14

15X

9

Head Rear Head Rear

(L0) (L1) (L2) (Ln�1) (L1) (L2) (Ln�1) (Ln)

Predictive Transfer

Base Page No. Size

9 1
5 2

Historical Access Table (HAT)

hit

To be merged

miss

…
…
…X

9

17

X

5

6

X

X

11 25

7

14

15X

Head Rear

(L0) (L1) (L2) (Ln�1)

…
…
…

5

6

X

X

11 25

7

14

15X

9

Head Rear

(L1) (L2) (Ln�1) (Ln)

Random Area

14 2

… …

X

X X

X

Random Area

Figure 5.1: Predictive Transfer with the Historical Access Table

physical page represents the mapped logical page. An ‘X’ means invalid data

that will be skipped in merging. Suppose the random area space runs out of

free pages. A merge procedure will be performed. Firstly, a new block (Ln) will

be allocated from the free block pool, and enqueued to the rear of the random

area. In return, block L0 will be removed and examined. In Figure 5.1, there

are two valid pages in block L0, namely page 0 and page 3. Page 3 corresponds

to logical page 9. Its access record exists in the HAT, and so it is given a second

chance, i.e., it will be copied into block Ln. However, the record for page 0

(which maps to logical page 17) cannot be found in the HAT, and it will be

merged immediately with its relevant data block.

ADAPT’s predictive transfer is different from the adaptive merge of a recently

proposed hybrid mapping FTL named MAST [93]. MAST uses 2D-striping to

access data. When merging has to be performed, MAST will also migrate valid

log pages to other log blocks. However, in merging or migrating a log page,

MAST considers the logical block it is related to. If that logical block is cold,

and its total number of related log pages is bigger than a fixed threshold, the log

page will be merged. Otherwise it will be migrated. Therefore, MAST’s criterion

is the number of log pages that a logical block is using, while ADAPT utilizes

the recent access history of the logical page of the corresponding log page.

55

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

5.4 Aggregated Data Movement

As we have observed in our experiments, with the workloads from media and

file servers, the victim log block to be merged may still have a lot of valid

pages. I/O requests of non-OLTP systems may not be that small, as is shown

in Section 5.1. Especially in multi-tasking environments, the access to storage

may be switched to other applications frequently, thereby leaving many log pages

valid even when they are to be merged. It is inefficient to process these pages

one at a time. Therefore, we propose an aggregated data movement scheme

to solve the problem. The example in Figure 5.2 will be used to explain this

scheme. When the random area runs out of free pages, the merge procedure will

be called. Unlike before, we shall first examine the two blocks at the head of the

random area, i.e., L0 and L1 in Figure 5.2. If the number of valid pages in L0

does not exceed an aggregated move threshold, τ , or if both L0 and L1 exceed τ ,

we will just merge L0 with its relevant data blocks using the predictive transfer

described above, i.e., a situation similar to Figure 5.1. The only remaining case

is when L0 exceeds τ , but L1 does not. Then we will instead merge L1, but move

L0 to the back of the log space, just ahead of the newly allocated block that is

resulted from the merging of L1, as shown in Figure 5.2.

…
…
…

13

9

17

5

6

X

X

11 25

7

14

15X

…
…
…

11 25

7

14

15X

Head Rear

(L0)(L1) (L2) (Ln�1) (L2) (Ln�1) (Ln)

Aggregated Movement (� =�3)

18

13

9

17

(L0)

18

To be merged

Head Rear

…
…
…

5

6

X

X

11 25

7

14

15X

(L1) (L2) (Ln�1)

13

9

17

(L0)

18

Headad Rear

13

9

17

…
…
…

11 25

7

14

15X

Head Rear

(L0)(L2) (Ln�1) (Ln)

18

Random Area

X

X X

X

Random Area

Figure 5.2: Aggregated Data Movement

Here we only consider two blocks at the front of random area. It is because

scanning too many blocks will cause performance degradation. Another reason

is that we do not want to change too much the FIFO manner of random area.

To support ADAPT’s aggregated data movement and ERL modules, we need

to know the number of valid pages in each log block. We assume that this is also

56

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

stored in a table in RAM. It is possible to store this information in the spare

area of blocks [87], but the access latency will be longer. The space requirement

for such a table is also comparatively low. A block typically comprises of 64

pages, and one byte is sufficient to store the total number of valid pages. Since

log blocks typically take up 3% of the overall capacity, an xGBytes flash SSD

with the standard 128KBytes large block configuration, will require a total of

0.24xKBytes of RAM to store the per-block valid page counts. A 64GBytes

SSD, for instance, will require a table of less than 16KBytes. This is quite small

compared to the main block mapping table which is about 2MBytes (assuming

each entry has a 3-byte physical block number and one byte for mapping status).

The ADAPT FTL scheme that we propose consists of the online adaptive

partitioning of log space, the predictive transfer, the aggregated data movement,

and ERL described above. We shall now give more details about the implemen-

tation of ADAPT, especially during the full merge to make decisions.

5.5 Merge or Move Decision Procedure

Algorithm 3 outlines the decision making procedure that is executed in the merge

procedure in ADAPT. It first locates the victim log block to be merged, the new

head and rear of random area, as well as the numbers of valid pages of the victim

and the head block (line 2 to line 6). At line 7, it checks whether aggregated

movement needs to be performed. If so, it will append the block to the rear

of the random area (line 9), set the corresponding flag (line 8), and attempt to

merge the next block to create the space (line 10 to 11).

If the condition for aggregated movement is not met, each valid page of the

log block will be checked (line 14 to 28). At line 19, the HAT is queried to see

whether the page has been accessed recently. If so, it will be moved to the rear

block (line 21). Otherwise, it will be merged with relevant data block (line 24).

Note that in the implementation, we have two levels of merges, one at the

block level (line 11) and another at the page level (line 24). This adds flexibility

to resource management at runtime.

5.6 Experiments

5.6.1 Configurations and Assumptions

In this section we will evaluate the effectiveness of ADAPT using a number of

workloads. The experiments were conducted using the FlashSim simulator [53].

We implemented FASTer, DFTL [29], WAFTL and ADAPT in FlashSim for

57

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

comparison. All the parameters of the NAND flash, including the latencies of

read, write and erasure which are shown in Table 5.2, were obtained from [38].

Algorithm 3: Merge Decision Procedure in ADAPT

1 begin
2 victim := GetHeadofRandArea(void);
3 head log blk := RenewRandAreaHead(void);
4 rear log blk := GetRearofRandArea(void);
5 vp no vic := GetValidPageNo(victim);
6 vp no hd := GetValidPageNo(head log blk);
7 if ((vp no vic ≥ τ) && (vp no hd < τ)) then
8 AG MOV := true;
9 Insert(rear log blk, victim);

10 new head := RenewRandAreaHead(void);
11 MergeBlock(head log blk, AG MOV);
12 return;

13 end
14 else
15 page no := 0;
16 while (page no < BLOCK SIZE) do
17 state := GetPageState(victim, page no);
18 if (state == VALID) then
19 flag := IsHATHit(victim, page no);
20 if (flag == true) then
21 MoveData(victim, page no, rear log blk);
22 end
23 else
24 MergePage(victim, page no);
25 end

26 end
27 page no++;

28 end

29 end
30 return;

31 end

To assess ADAPT’s effectiveness, we utilized ten traces from three sources.

They have been introduced in Chapter 4. SPC1 is a trace that was collected at

a large financial institution [84]. Another trace is a typical OLTP trace from the

TPC-C database benchmark [101], TPC-C 20. Other traces are the MSR-series

from Microsoft’s data centers [77]. The I/O characteristics of these traces have

been presented in Table 5.1. We believe these traces are representative of various

workload scenarios. The number of write requests in these traces is at least a

million. We did not use other shorter traces found in some previous works.

58

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

There are also several assumptions in our experiments. Firstly, as with earlier

works [64], we assume that the FTL has sufficient DRAM buffer to hold all

mapping tables required by FASTer. DFTL and WAFTL were configured to

have the same capacity of RAM as FASTer. ADAPT needs less RAM space

than FASTer for mapping tables because more log blocks are managed using

block mapping for sequential writes. Secondly, the traces used were collected

from different machines. Therefore, we had to assigned a capacity configuration

to each one based on their access patterns and lengths so that they are of more

or less the same scale.

We evaluated each scheme by the elapsed time (or alternatively referenced

as service time) to complete the simulation in FlashSim, together with counts of

write and erasure. FlashSim has a module that accumulates the time caused by

reads, writes and erasures as well as bus competitions on the chip. However, be-

cause the absolute value varies significantly with each trace, we chose to present

the results in a normalized form. For ADAPT, the HAT size was set to 1KB and

the aggregated move threshold τ was 56 by default. The length of the interval to

measure δ and ϕ was 4000 write requests. There will be more discussions about

the values of τ , δ and ϕ later. The default value of κ is 0.9. As with previous

works, log space was set to be 3% of the overall data capacity [60, 64]. The buffer

zone of WAFTL also took up 3% of data capacity as originally proposed [111].

Since FAST used one block [60] and LAST used 1/16 of the log space [62] for

the sequential area, the lower and upper limits of ADAPT’s dynamic sequential

area were one block and 1/16 of all log blocks by default, respectively.

5.6.2 Performance Evaluation

Figure 5.3 shows the elapsed time for simulating each trace under DFTL,WAFTL

and our proposed ADAPT, normalized against that of FASTer. Figure 5.4 and

Figure 5.5 show the erase and write counts, respectively, of WAFTL and ADAPT

normalized against those of FASTer. FASTer, WAFTL and ADAPT combine

page mapping and block mapping in a similar way, and utilize parts of flash

blocks for buffering. On the other hand, DFTL does page-level mapping, and its

overheads include loading and evicting mapping between flash and RAM. Thus

our comparisons using write and erase counts exclude DFTL. The rightmost bars

in the three figures represent the sum of ten traces’ results normalized against

the total for FASTer. Let us first compare ADAPT with FASTer and WAFTL

since they share similar designs on flash management. It is evident from Fig-

ure 5.3 that ADAPT outperforms them, consuming 35.4% less time than FASTer

at best for the SPC1 workload, and 26.5% less than WAFTL for MSR-mds 0

59

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

workload. In all, ADAPT is 17.4% and 11.7% on average faster than FASTer

and WAFTL respectively.

There is an interesting phenomenon in the case of the TPC-C 20 trace.

FASTer was developed for OLTP applications. Even so, from Figure 5.3, we

can see that for the TPC-C 20 trace, ADAPT is still marginally better than

FASTer. Since I/O requests are predominantly random and small in this OLTP

workload, with access severely skewed, there is little opportunity for ADAPT’s

mechanisms to exact its maximum impact.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
DFTL WAFTL ADAPT

Trace

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

Figure 5.3: Normalized Elapsed Time of DFTL, WAFTL and ADAPT

Figure 5.4 and Figure 5.5 are the results for write and erase counts, respec-

tively. From the two figures we can see that in every trace, ADAPT performs

less writes and erasures than FASTer and WAFTL. However, there is something

interesting to note in the results. In Figure 5.4 we can see that for MSR-mds 0,

FASTer needs four times more erasures than ADAPT, but the results in Fig-

0

0.2

0.4

0.6

0.8

1

WAFTL ADAPT

Trace

N
or

m
al

iz
ed

 E
ra

se
 C

ou
nt

Figure 5.4: Normalized Erase Counts of WAFTL and ADAPT

60

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

N
or

m
al

iz
ed

 E
ra

se
 C

ou
nt

0

0.2

0.4

0.6

0.8

1

1.2
WAFTL ADAPT

Trace

Figure 5.5: Normalized Write Counts of WAFTL and ADAPT

ure 5.3 show FASTer is merely 19.7% slower than ADAPT. This is because the

performance is mainly dominated by the number of write operations at run-

time. For MSR-mds 0 in Figure 5.5, ADAPT has only 15.2% less writes than

FASTer. Consequently, the overall improvement of performance is not as signif-

icant as the reduction on erase counts would suggest. The situation is also the

same for WAFTL and ADAPT executing MSR-ts 0. WAFTL has less erasures,

but slightly more writes making it worse than ADAPT. Moveover, WAFTL was

designed to flush all data in the buffer zone because it wants to take advan-

tage of the integration of logical blocks that are buffered. However, to move all

data is not trivial, and it will take too many writes and erasures. On the other

hand, ADAPT attempts to leave data in the buffer for a longer time to avoid

unnecessary movements.

We also implemented a state-of-the-art page mapping scheme. Since lazyFTL

was said to have a similar performance to DFTL [69], we have selected DFTL

for comparison. The results are also presented in Figure 5.3, normalized against

those of FASTer. From the figure, we can see ADAPT is faster than DFTL by

as much as 44.4% for the case of MSR-prn 0. Unlike FASTer or WAFTL that

considers characteristics of one or more types of workload, DFTL merely loads

page-mapping entries to RAM on demand, and handles sequential and random

writes in the same way. For MSR-prn 0, 9.46% of its requests would write more

than 64KB (32 pages) at a time. ADAPT could respond well to such access

patterns. However, these continual large writes from multi-tasks would cause

DFTL to reclaim blocks frequently for clean pages as well as load and evict

mapping entries, thereby badly degrading overall performance.

Table 5.3 shows the prediction hit rates and the number of aggregated move

for each trace. The hit rate is high for most traces. For SPC1, even with a rela-

61

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

Table 5.3: Prediction Hit Rates and Aggregated Moves

Trace Prediction Hit Rate Aggregated Moves

SPC1 79.50% 132

TPC-C 20 100.00% 0

MSR-hm 0 95.68% 233561

MSR-mds 0 96.49% 1727

MSR-prn 0 99.93% 124608

MSR-prxy 0 99.72% 8323

MSR-rsrch 0 98.75% 2050

MSR-stg 0 93.24% 1045

MSR-ts 0 95.16% 1165

MSR-web 0 96.99% 5408

tively lower hit rate, good performance can still be achieved by the cooperation

of all modules in ADAPT. From Table 5.3, we can also see there is no aggregated

movement for the OLTP TPC-C 20 trace, and the prediction hit rate is 100%.

This agrees with our earlier analysis in Section 5.1.

Aggregated movement and predictive transfer affect each other. If an aggre-

gated move is performed on a block, then its pages will stay longer in the log

space. This will result in the block at the rear of the random area having many

valid pages. If the heuristics are correct, many of the pages will be accessed again

soon, leaving the remaining pages to be processed by predictive transfer when

this block again reaches the head of the random area. Therefore, aggregated

movement and predictive transfer complement each other.

5.6.3 Effects of Log Space Capacity

The impact of the log space capacity was also investigated. We performed ex-

periments where the log space was provisioned as 3%, 5% and 10% of the overall

capacity. The results are shown in Figure 5.6. We normalize the results for pro-

visioning 5% and 10% of space as log space against that for 3%. It can be seen

that generally performance improves with larger log spaces. However, the extent

of effect varies. For some traces, the impact on performance is significant, but for

others, such as TPC-C 20, it is not. We believe this is particularly noteworthy

for SSD users to utilize resources.

62

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05
5% 10%

Trace

Elapsed Time (normalized
against 3%)

Figure 5.6: Effects of Different Log Space Capacities

5.6.4 Effects of Log Space Partitioning

We also did experiments to verify the effects of adaptively adjusting the parti-

tioning of the log space. In Figure 5.7, ADAPT and ADAPT-sw had the same

configuration including predictive transfer and aggregated movement except that

ADAPT-sw used only one log block for sequential writes, which is the same as

FAST and FASTer. All results are normalized to those of ADAPT-sw. From

Figure 5.7 we can see ADAPT can be faster by as much as 31.9% in the case of

SPC1. However, TPC-C 20 is still special because it has almost no sequential

writes as shown in Table 5.1.

Figure 5.8 shows the result for different thresholds used in the identification

of sequential writes. We used three configurations. The first, ADAPT-2, has

a threshold of 2 pages (4KB) which is the same as LAST. The threshold of

the second, ADAPT-32, is 32 pages (64KB). The last one is the full version of

ADAPT that adaptively adjust the threshold based on δ. The lower and upper

bounds of ADAPT are set to 2 and 32, respectively. Results of the ADAPT-

32 and ADAPT are normalized against those of ADAPT-2 and presented in

Figure 5.8. From Figure 5.8 we can see that ADAPT is faster than ADAPT-

2 and ADAPT-32 most of the time. But with some workload like MSR-ts 0,

ADAPT had to spend 12.7% more time to finish the trace. We analyzed MSR-

ts 0, and found that the feedback in current interval does not accurately reflect

the access behaviors. The results in Section 5.6.6 will address this by showing

63

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

0

0.2

0.4

0.6

0.8

1

1.2

ADAPT

Elapsed Time (normalized
against ADAPT-sw)

Trace

Figure 5.7: Performance Impact of Log Space Partitioning

how performance can be significantly improved with longer intervals.

5.6.5 Impact of κ

κ is used to calculate the two thresholds Δ and Φ for adjusting the partitioning.

As 0 < κ ≤ 1, we did experiments with κ multiply configured. The results are

shown in Figure 5.9 and Figure 5.10.

Note that κ controls the impacts of nearer and farther intervals, respectively.

However, from the two diagrams we do not find significant fluctuation with

different values of κ. It is because traces from real environments have well access

patterns. To explore the reason for variant differences, we have captured two

access periods of SPC1 and MSR-prxy 0, as shown in Figure 5.11. After 30%

and 60% of all requests, we fetched one thousand consecutive write requests,

respectively. We recorded logical page numbers those requests would access.

From the diagrams in Figure 5.11 we can find that the access distribution of

a trace is quite stable, although accesses may fall into different addresses. As

a result, the δ measured in each interval would not badly vary, which hence

explains the insignificant difference with variant κ in Figure 5.9 and Figure 5.10.

5.6.6 Effects of the Interval Length on Adaptation

ADAPT needs to observe and calculate δ and ϕ in an interval. By default, we

used an interval of 4000 requests in the experiments. We also experimented

with intervals of 2000, 3000, 5000 and 6000 requests. Their results are shown

in Figure 5.12 and Figure 5.13. From the results, we can see the length of the

64

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ADAPT-32 ADAPT

Elapsed Time (normalized
against ADAPT-2)

Trace

Figure 5.8: Impact of Different Sequential Write Identification Thresholds

5000

7000

9000

11000

13000

15000

17000

19000

21000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SPC1

TPC-C_20

MSR-hm_0

MSR-prn_0

MSR-prxy_0

�

S
er

vi
ce

 T
im

e

Figure 5.9: The Effects of κ (A)

interval hardly affects the performance. The reason is given by Figure 5.11:

over a long time the access behavior remains similar for a trace. For MSR-stg 0

and MSR-ts 0, however, their results may fluctuate a little more. That means

current configuration is too short to reflect the online behaviors. By prolonging

the interval, better performance can be achieved, as shown in Figure 5.13. This

agrees with results in Figure 5.8.

5.6.7 Effects of HAT Size

The HAT is an important data structure for ADAPT. Figure 5.14 presents four

results of each trace when the size of HAT was configured to be 512, 1024 (1K),

1,536 and 2,048 (2K) bytes. The results for 512 bytes are used to normalize

65

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

1500

2000

2500

3000

3500

4000

4500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

MSR-mds_0

MSR-rsrch_0

MSR-stg_0

MSR-ts_0

MSR-web_0

S
er

vi
ce

 T
im

e

�

Figure 5.10: The Effects of κ (B)

the other cases. It can be concluded from these results that the optimal size

of the HAT depends on the workload. Recall that the HAT is used to record

the recent write history which is then used for prediction. Obviously, keeping

too long or too short a history may result in wrong predictions. If the HAT is

too big, it would store outdated access records, causing pages that should be

merged immediately to stay too long in log space. If the HAT is too small, the

prediction would not get a full view of the locality, and unnecessary merges may

be performed.

The performance of ADAPT on TPC-C 20 trace changes slightly with dif-

ferent HAT sizes. This can also be attributed to its access patterns. Due to

the skewness of the accesses in the OLTP workload, a small HAT suffices. It

therefore makes little difference in enlarging the HAT. The results also suggest

that due to the differences in locality, the size of the HAT should be tuned for

each workload.

5.6.8 Tuning of Aggregation Threshold

The threshold τ to trigger aggregated data movement is an important parameter

of ADAPT. For the ease of reading, we have separated relevant experimental

results into Figure 5.15.

In accordance with [38], each flash block has 64 pages in our simulations. In

general, when the number of valid pages in the log block to be merged reaches

the aggregated move threshold, i.e., τ , the block would be moved, and the one

next to it will be merged instead. If τ equals to 32, aggregated move will be

performed if 50% or more pages of the block are valid. If it is 64, all the pages

in a block will have to be valid in order for an aggregated move to be activated.

Figure 5.15 show the impacts of various values of τ on access performance.

66

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

�����

����	

 ��
 �

 �
 ���

��
��
��
���
��
	�
��

�
�	
��

���	����	��	������

��	��	�������	����	� ��!�����"
#�������$

��%�

�����

����	

 ��
 �

 �
 ���

��
��
��
���
��
	�
��

�
�	
��

���	����	��	������

��	��	�������	����	� ��!������
#�������$

��%�

�����

����	

 ��
 �

 �
 ���

��
��
��
���
��
	�
��

�
�	
��

���	����	��	������

��	��	�������	����	� ��!�����"
#�������$

���& �'()

�����

����	

 ��
 �

 �
 ���

��
��
��
���
��
	�
��

�
�	
��

���	����	��	������

��	��	�������	����	� ��!������
#�������$

���& �'()

Figure 5.11: Captures of Access Distribution for SPC1 and MSR-prxy 0

We know that TPC-C 20 has no aggregated movements from Table 5.3. For

other traces, we can see from the figures that for some of them, including MSR-

ts 0, MSR-web 0, MSR hm, and MSR-prn 0, the results are better with a higher

τ . For others, such as SPC1, MSR-rsrch 0, MSR-mds 0 and MSR-stg 0, τ does

not affect access performance. However, for the MSR-prxy 0 trace, access per-

formance would degrade with larger τ . Again, we attribute this to the access

patterns of the traces themselves. Traces in the first category generally have

more valid pages in the log block to be merged than others. Hence, a higher τ

is to improve the performance. For traces in the second category, the number of

valid pages is moderate and stays fairly constant throughout the execution, and

different thresholds showed little impact.

As for MSR-prxy 0, besides capturing the requests shown in Figure 5.11, we

found out more about its access behavior. As discussed in Section 5.1, access

requests with 2 pages (4KB) are considered to be small. But in MSR-prxy 0,

there is a huge number of requests that are even smaller. 77.8% of the requests

in MSR-prxy 0 only write to one page, and data in these pages are frequently

updated. Moreover, they are scattered across the flash device. Thus the log

block to be merged may have dozens of valid pages. However, a higher τ gives

aggregated movement little chance to show off its advantage, leaving valid pages

to be processed by the predictive transfer sub-module. A larger log window

would absorb more small requests. From Figure 5.6 we can see it is MSR-prxy 0

67

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

5000

7000

9000

11000

13000

15000

17000

19000

21000

2000 3000 4000 5000 6000

SPC1

TPC-C_20

MSR-hm_0

MSR-prn_0

MSR-prxy_0

S
er

vi
ce

 T
im

e
(u

ni
t:

se
co

nd
)

Service Time
(unit: request)

Figure 5.12: The Effects of the Interval Length (A)

1500

2500

3500

4500

2000 3000 4000 5000 6000

MSR-mds_0

MSR-rsrch_0

MSR-stg_0

MSR-ts_0

MSR-web_0

S
er

vi
ce

 T
im

e
(u

ni
t:

se
co

nd
)

Service Time
(unit: request)

Figure 5.13: The Effects of the Interval Length (B)

that improves the most with larger log space.

5.7 Summary

Address mapping of the flash translation layer is central to the performance of

flash-based devices. In this chapter, we presented ADAPT, a hybrid mapping

FTL scheme that adjusts to various workloads by exploiting their access behav-

iors and temporal locality. ADAPT handles both sequential and random writes

efficiently by dynamically tuning the partitioning of the two areas of log space

that are used to process the respective types of writes. To do so, ADAPT col-

lects statistics on how log blocks are used in each area, and then utilizes these

statistics to adjust its parameters. ADAPT also explores the locality to reduce

unnecessary data movements in full merges. It employs a prediction mechanism

68

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

0.85

0.9

0.95

1

1.05

1.1

1.15

1024

1536

2048

Trace

Elapsed Time (normalized against
results with HAT size of 512B)

Figure 5.14: Effects of Different HAT Sizes

to decide whether a log page should be merged, or given a second chance. In

addition, ADAPT records the number of valid pages in each random log block

at runtime. If a block to be merged has more than a certain threshold of valid

pages, the entire block would be kept in the log space. Our experiments show

that ADAPT can outperform FASTer by as much as 35.4% with a modest ad-

ditional RAM space requirement of less than 16KBytes for a 64GBytes SSD.

ADAPT is also faster than DFTL and WAFTL by as much as 44.4% and 26.5%

respectively. The advantage of ADAPT over previous mapping schemes verifies

the idea of being workload-adaptive.

69

CHAPTER 5. ADAPT: WORKLOAD-ADAPTIVE HYBRID ADDRESS MAPPING

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

32 40 48 56 64

MSR-hm_0

MSR-stg_0

MSR-ts_0

MSR-web_0

Threshold

P
er

fo
rm

an
ce

 (
no

rm
al

iz
ed

 a
ga

in
st

re

su
lts

 w
ith

 th
re

sh
ol

d
of

 3
2)

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

32 40 48 56 64

SPC1

MSR-prn_0

MSR-rsrch_0

ThresholdP
er

fo
rm

an
ce

 (
no

rm
al

iz
ed

 a
ga

in
st

re

su
lts

 w
ith

 th
re

sh
ol

d
of

 3
2)

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

32 40 48 56 64

TPC-C_20

MSR-mds_0

MSR-prxy_0

Threshold

P
er

fo
rm

an
ce

 (
no

rm
al

iz
ed

 a
ga

in
st

re

su
lts

 w
ith

 th
re

sh
ol

d
of

 3
2)

Figure 5.15: Performance of Aggregated Movement

70

Chapter 6

TreeFTL: An Adaptive Tree in

the RAM Buffer

This chapter will show an algorithm that was also devised in the second step of

this thesis. Its target is the RAM buffer of flash device. The RAM buffer is an

ideal component to present the idea of workload adaptation as it is the one that

the most reflects access behaviors of workloads. The proposal in this chapter,

i.e., the TreeFTL is unlike sophisticated designs. It is succinct due to its simple

tree structure maintained in the RAM space. With the tree, TreeFTL is able

to adjust itself dynamically to serve access requests of workloads. Moreover,

the tree structure also entails lightweight LRU victim evictions, which further

enhance the TreeFTL to minimize overheads caused by context switch between

workloads. In all, TreeFTL will well present our attempt to make the flash

management adapt to online workloads.

6.1 Overview

The RAM buffer, also referenced as the RAM cache, is a very useful resource for

NAND flash device. Even though flash memory is much faster than magnetic

hard disks on the access speed, it is still slower than SRAM or DRAM. The

RAM buffer is hence equipped for higher access performance. How to utilize

the RAM buffer is a good spot into the management of flash device. The RAM

buffer is the one that buffers address mapping entries and data pages to satisfy

access requests. It is known that requests can be analyzed to figure out the access

patterns of various workloads. Therefore, the contents cached in the RAM buffer

contain meaningful implications of workloads.

Note that technically the RAM buffer of flash devices is unlike the cache

71

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

of processors. The issue of associativity of the CPU cache, for example, defines

various mapping relationships between cache location and data. The RAM buffer

yet has no such limitation. The space of the RAM buffer is flexibly assigned to

workloads by the FTL. It is more like the main memory of computer systems.

Most of the primary investigations on the RAM buffer can be deemed to

be space-centric. That is to say, the emphasis of RAM buffer management

is to explore how to make the best use of the limited space. It is because

the RAM buffer of an inchoate flash device is in a small capacity. At that

time, the RAM buffer is mainly used for address mapping, especially for page-

level mapping. Entries from the mapping table are partially cached for quick

reference [29, 86]. If the FTL intends to access a location which is not touched

recently, the correspondent mapping entries will be loaded into the RAM buffer

on demand. In this way, the RAM buffer management module serves the address

mapping module. Later, the temporal locality and spatial locality of workloads

are taken into consideration to manage the RAM space to map addresses [86].

Data buffering is another important use of the RAM buffer. Obviously it

costs shorter time to access data within SRAM or DRAM than NAND flash

memory. Data are buffered in the unit of a page which facilitates to access data

with NAND flash memory. One common issue of buffering data is how to flush

cached pages back to flash with the least performance overhead, especially under

a specific address mapping scheme. Algorithms like BPLRU [51], FAB [43] and

REF [91] have been proposed to target such an issue.

Note that data pages cached in the RAM buffer are still recorded in the map-

ping table, which implies that the two uses of the RAM space are not insulated.

In terms of the aim, they are both for the improvement of access performance.

There are already proposals for the joint management of the RAM buffer for

address mapping and data buffering [94, 35]. However, those schemes are ei-

ther inefficient or ineffective, which motivates us to develop an algorithm that

is advantageous both on efficiency and effectiveness. One essential requirement

for the algorithm is the simplicity. It must not be too complicated as the RAM

buffer management has to respond to access requests as swiftly as possible. An-

other goal is that the algorithm must be adaptive to running workloads, and

the process of adaptation should be lightweight and feasible. As is mentioned,

the RAM buffer reflects the access behaviors of workloads. Since workloads al-

ternately access data from the flash device, should the context switch between

workloads be too heavyweight, the algorithm would not be a promising one.

Hence we propose TreeFTL in this chapter. It jointly caches mapping entries

and data pages in the RAM buffer. Specifically speaking, it maintains cached

72

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

translation pages and data pages in a tree-like structure. The translation page is

a page that sequentially stores entries of address mapping table of flash memory

management [29]. Entries of the cached translation pages connect to cached data

pages according to the mapping relationship. The loading and eviction of pages

between RAM and flash memory are on demand, which makes the tree naturally

grow to adapt to workloads. A cached translation page and its connected cached

data page form a caching group, which is an essential concept to perform the

lightweight LRU victim selection. The overhead of context switch of workloads

is therewith reduced. Experimental results show that TreeFTL is able to out-

perform the latest algorithms of RAM buffer management, like APS [94] and

JTL [35], on service time by as much as 73.9% and 72.3%, respectively.

6.2 The Tree in RAM

The said tree-like structure maintained by TreeFTL in the RAM buffer is sketched

in Figure 6.1. It has three levels. The first level and second level are used for

address mapping, while the third level is for buffering data pages. Because the

tree naturally grows upon access requests, TreeFTL is able to dynamically adapt

to the runtime workloads. As for the context switch of workloads, TreeFTL is

endowed by its tree structure to set up a lightweight mechanism to select the

LRU victim to make space for use. The lightweight mechanism further strength-

ens the capability of TreeFTL on the workload adaptation. In following, we shall

describe TreeFTL based on the page-level address mapping such as DFTL [29].

However, the basic idea of TreeFTL can be easily adopted to a block-level map-

ping scheme like DAC [85].

6.2.1 The Three Levels

As is mentioned, all mapping entries of demand-based page-level address trans-

lation can be stored in the translation pages of flash memory [29]. A structure

named the global translation directory (GTD) is used to record the physical ad-

dresses of these translation pages. The GTD must be resident in RAM as it is

the root directory for address translation. Hence, TreeFTL makes the GTD the

root of its tree structure.

Figure 6.1 shows the conceptual tree structure of TreeFTL. In Level 1 is

the GTD. Level 2 is taken up by the cached translation pages (CTPs), while

Level 3 holds the cached data pages (CDPs). The three levels are connected

by unidirectional links which practically represent the mapping relationships.

When a translation page is loaded into RAM, its address in the GTD will be

73

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

GTD

CTPs

CDPs

RAM

DP0 DPx+2 TP1 DPy+3 DPz+3

Flash Memory

DPx+1 DPx+3

…

TP0 TP2 TP3

DPy+2 DPz

… …

Figure 6.1: A Conceptual Structure of TreeFTL

updated to point to a RAM location accordingly. So TreeFTL treats the RAM

cache as a part of storage medium. For a mapping entry in a CTP, if the data

page is cached in RAM, the record will be the RAM address instead of a physical

address in flash memory. CDPs in Level 3 are the leaves of the tree. They are

cached upon write requests. TreeFTL emphasizes on the write buffer similarly

as BPLRU [13], l-buffer [13], ExLRU [92] and APS [94] do, because for NAND

flash memory the write latency is much longer than the read latency [81] (see

Table 6.1). Furthermore, writes may trigger expensive erase operations which

cost even longer time [51, 94].

Table 6.1: Latencies of SLC NAND Flash Memory [41]

Read Operation Write Operation Erase Operation

25 μs 200 μs 700 μs

(2KB) (2KB) (128KB)

Let us first clarify the distinction between TreeFTL and existing schemes such

as DFTL and CDFTL that are categorized as the on-demand address mapping

algorithms. The structures cached in RAM space for DFTL and CDFTL have

been shown in Figure 3.2. Ignoring data buffering, TreeFTL differs from them in

74

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

that the former does not cache single entries in a caching mapping table (CMT).

There are two reasons to do so. First, to load or evict a single entry entails a

read or write for a translation page, respectively. Although batch update [29] can

group evicted entries from a same translation page, it complicates the design,

in addition to the space overhead involved. Second, a translation page covers a

wider range of consecutive logical addresses, so caching a translation page can

benefit from the spatial access locality [86]. CDFTL keeps both single entries

and translation pages in its cache. A translation page will be loaded also when

one of its entries is fetched into the RAM cache by CDFTL. Thus, eliminating

the CMT can avoid duplications, and hence save space. The process of address

translation, which will be described below, is also simplified because in CDFTL

a miss of the CMT requires consulting the CTPs first.

6.2.2 Address Translation With The Tree

Address translation in TreeFTL begins by finding the translation page to locate

the desired mapping entry. This can be done by using the logical address as a

hash key to look for the RAM location of the relevant translation page, which

results in either a hit or a miss. However, in order to show the growing of

the tree, we will describe the process in another way. The address translation

process in TreeFTL can be viewed as a traversal from the root to some leaf

of the tree. There are three scenarios for a random write request, as shown

in Figure 6.2. The first case is when both translation page and data page are

cached. In three steps (A-1, A-2 and A-3 in Figure 6.2) the data are written to

the target CDP. No operation is performed on the flash memory. The second

case is when translation page is cached but data page is in flash memory. The

data page has to be loaded into RAM buffer first. So a read operation (B-3 in

Figure 6.2) is needed. The third case is neither of the two is in RAM. In such a

scenario, two reads have to be conducted (C-2 and C-4 in Figure 6.2). So this

case is the most time-consuming.

Any CDP or CTP that has been selected as the eviction victim will be flushed

back to flash memory. More details will be given in next subsection.

TreeFTL services read requests in a slightly different way. When a read

request comes, the translation page will be loaded if it is not already cached.

For the target data page, however, it will not be loaded into RAM buffer if not

cached. Instead, the flash page is read directly from flash memory and the data

are returned to the file system then.

In all, the process of address translation with the tree is just the process of the

tree’s growing. Evidently the tree grows in a natural way upon access requests.

75

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

RAM

Fl
as

h

Host Requests

Logical Address A

Logical Address B

Logical Address C

GTD

A-1: Lookup GTD for A

B-1: Lookup GTD for B

C-1: Lookup GTD for C

A-2: Lookup CTPa

A-
3:

 U
pd

at
e

CD
Px

B-
2:

 L
oo

ku
p

CT
Pb

B-
3:

 L
oa

d
D

Py

CTPa

CTPb

CTPc

CDPx

CDPy

CDPz

DPy

TPc

DPz

B-
4:

 U
pd

at
e

CD
Py

Miss

Miss

Miss

C-2: Load TPc

C-3: Lookup CTPc

C-
4:

 L
oa

d
D

Pz

C-
5:

 U
pd

at
e

D
Pz

gg

g

g

Miss

Miss

Figure 6.2: Address Translation Process in TreeFTL

76

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

Not to mention the consequent workload adaptation, the natural growing makes

TreeFTL more preferable and feasible compared to ponderous and complicated

methods to allocate the RAM space.

Note that the write or read request mentioned above is random access request.

TreeFTL deals with sequential requests in a “write-through” manner. If data

are written to or read from flash memory in a bulk RAM cache will be bypassed.

This is similar to what JTL has done [35]. It is based on the assumption that data

which are sequentially requested are likely to be infrequently accessed. There are

many methods to identify a request to be random or sequential. For example,

deciding based on the access size is a simple but effective approach [62, 103].

TreeFTL deems a request to be sequential if it intends to access more than half

a block, i.e., 32 pages of 64KB data as in [41].

6.3 Lightweight Pruning of TreeFTL

6.3.1 Lightweight Pruning with Caching Groups

The tree grows on access requests. Nonetheless, because of the spatial limitation

of the RAM buffer, it is not allowed to overgrow. Sometimes the tree has to

be pruned. In other words, when RAM space is exhausted, a victim has to be

selected and evicted. The victim ought to be the one that is the least recently

used (LRU). APS [94] performs the LRU selection at the level of entries and

pages among cached mapping entries and data pages, respectively. JTL’s multi-

level structure [35] helps it to find the LRU mapping entry or data page easily as

less frequently accessed ones are moved down from RAM buffer to flash memory.

However, both APS and JTL suffer from LRU victim selection. Assuming that

all 64MB of a RAM cache is used for APS’s data buffering, there would be

64MB/2KB = 32768 data pages in total. It is not trivial to find the LRU page

each time in such a large number of pages. For JTL, its multi-level structure

may have to be adjusted on each arriving request.

TreeFTL exploits its tree structure and takes a lightweight way to pick out

the LRU victim. In this subsection, we will show the basic idea of TreeFLT’s

lightweight mechanism to find the LRU victim. Since TreeFTL uniformly caches

pages which are just nodes in the tree, the eviction process is exactly like pruning

a tree. To do so, TreeFTL introduces a concept of the caching group (CG). A

CG is a group which includes a CTP and its relevant CDPs in connection. In

terms of the tree structure, a CG is just a branch (sub-tree) in the RAM buffer.

For example, there are three CGs in Figure 6.3.

Now with the concept of CG we would make use of the timestamps to present

77

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

the idea of the lightweight pruning of TreeFTL. Here recording the timestamps

is applicatively chosen because it is an intuitive way to perceive and understand

the advantages of our proposal against existing page-level selection mechanisms.

In the next subsection, a more feasible algorithm for the real implementation

shall be shown. Using timestamps, TreeFTL can maintain a hash table called

the Last Access Time Table for Eviction (LATTE) that records the last access

time for each CG. The hashing key of the LATTE is the number that identifies

each CTP. This number subsequently identifies a CG. Each entry in the LATTE

is a two-tuple. The first element is the time when any CDP of that CG is last

accessed. The second element is the page number of the last accessed CDP, which

ranges from 0 to 511 (2KB a translation page and 4B for a mapping entry [29]).

Hashing enables the LATTE to be swiftly updated after access requests. A

sketch of the LATTE is shown in Figure 6.3.

(Time, Page)

(t0, 1)
(t0 + 3, 1)GTD

CGa

CGb

CGc

(t0 + 10, 2)

LATTE
(at t0+100)

CDPa0

CDPa1

CDPa3

1

2

3
4

CTPa

CTPb

CTPc

CDPb1

CDPc1

CDPc2

5

a

b

c (Time, Page)

(t0 +102, 1)
(t0 + 10, 2)

LATTE
(at t0+500)

Figure 6.3: The Sketch of TreeFTL’s Victim Selection

The victim selection is performed upon an eviction request. It first finds the

victim CG that has the smallest timestamp. In Figure 6.3, at time t0 + 100 the

78

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

victim CG is CGa. Then the selection inside a CG starts. The CDP that has the

smallest offset in a CG will be the victim page. If it is the one recorded in the

LATTE entry, however, it will be skipped unless there is no other CDP left. In

Figure 6.3, a circled number is the eviction sequence of a CDP. CDPa0 is firstly

evicted and CDPa3 will follow. On the next eviction request, CDPa1 will not be

skipped again since it is the last CDP of CGa. This way all the CDPs of CGa

would be pruned. If no new data page joins CGa (otherwise the LATTE will be

updated) before next eviction request, CTPa will be flushed back to flash as a

victim page, and CGa’s entry in the LATTE will be removed.

TreeFTL’s pruning policies can be summarized as follows:

• With the LATTE, the LRU selection is conducted at the level of a CG,

not page.

• CDPs are preferred for eviction. The one that is the most recently accessed

in a CG, i.e., the recorded one in the LATTE, would be the last to be

picked.

• If a CG has no CDP left, and it has the eldest timestamp in the LATTE,

the CTP will be evicted.

The first rule makes TreeFTL “lightweight” as the granularity of CGs is

much coarser than that of CDPs, since a CTP can point to hundreds of CDPs.

Spatial locality dictates that consecutive logical pages are likely to be accessed

in a short interval of time. Hence, the timestamp of the last accessed CDP

can be used to approximate a group’s recency. This approximation saves RAM

space and reduces processing time. It certainly suffers from the lack of detailed

information about each CDP. However, our experiments (in Section 6.8) show

that such trade-off is worthwhile to make.

The second rule states to evict CDPs is preferred. It is because a CDP is

a leaf of the tree, and a CTP yet connects to tens or even hundreds of CDPs.

Moreover a miss of a translation page needs two read operations, while a miss

of a data page requires only one read. In addition, the CDPs recorded in the

LATTE should be the last one to be evicted. Based on temporal locality, this

CDP is the one that is the most likely to be accessed again. Other CDPs will

be selected in the sequence of their offsets in their CTP.

The third rule dictates when a CTP is to be flushed back to flash. When

all CDPs are removed from a caching group, the CTP can be evicted. However,

TreeFTL’s eviction is based on demand. Only when a request is raised for free

space, will TreeFTL act. This also gives a CTP a second chance to stay for a

while in the RAM buffer.

79

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

Let us give a discussion on the overhead of the lightweight LRU victim se-

lection at CG-level compared to one at the page-level. We still use records of

timestamps as the implementation to give the comparison. In the worst case,

each CG just has a CTP and a CDP. The temporal overhead of the lightweight

selection would be half that of a page-level selection, since a timestamp is used

for two pages (a CDP and a CTP). The spatial overhead of the LATTE is the

maximum in this case too. It is less than that of a page-level strategy. The

second element of a two-tuple in the LATTE needs less space than a timestamp,

and a two-tuple stands for two pages while two pages of a page-level strategy

need two timestamps. Such an extreme case is rare. Since a caching group may

have many cached data pages, at most 512, it can be expected that the over-

head of maintaining and searching at CG-level is significantly less than that of

a page-level policy.

GTD

DPx+1 DPx+3

TPx TPy TPz

DPy+2 DPz DPz+3

(poiners)

Linked-List in Level A
(Global List)

Linked-List
in Level B

(Local List)
C

TP
s

C
D

Ps

RAM Buffer

NAND Flash Memory

Loading Ev
ic

tin
g

(Head) (Rear)

(Head) (Rear) (Head) (Rear) (Head) (Rear)

GTD

TPx TPyy TPz
((poinersp(((())

Linked-List in Level A
(Global List)

Linked-List
in Level B

(Local List)
C

TP
s

C
D

Ps

RAM Buffer

DPz DPz+3DPx+1 DPx+3 DPyy+2

((Head(())dd ((R((ear)

((Head(())dd ((R((ear)) (Head(())dd (((R((ear) (Head(()))dd ((R((ear)

Figure 6.4: The Sketch of TreeFTL’s Two-level LRU Selection Mechanism

6.3.2 Two-level LRU Selection Mechanism

The last subsection shows how the lightweight pruning could be conducted. It

is based on the tree structure and the concept of caching group. The design in

the last subsection is a classical one which is applicable for a RAM buffer in a

small size. If the RAM buffer scales up, it might be arduous and unacceptable

to maintain a table to record the last access time for each caching group. Not to

mention the spatial overhead to temporarily keep the LATTE, the time spent to

find the LRU caching group might be significant. Hence, we need a more feasible

mechanism to implement the idea of lightweight LRU victim selection.

It is preferred to implement the LRU victim selection using a hash table and

a doubly linked list [90, 94]. The hash table is used to quickly find the element

80

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

with a given key. The doubly linked list is used to dynamically reorder elements.

Usually the most-recently-used (MRU) element is relocated to the front end,

and the LRU elements are left behind to approach the rear end. By doing so

the LRU victim can be picked out in O(1) time. However, the lower temporal

consumption is not free of charge. The hash table itself and the pointers of the

doubly linked list inevitably take up the RAM space.

With the idea of linked lists, we have modified the tree structure. A two-

level mechanism to conduct the LRU victim selection has been subsequently

implemented. Figure 6.4 gives a sketch of the two-level mechanism. The Level A

is one linked list that connects all CTPs. So we call it the global linked list. At

Level B each CG has one local linked list. It is deemed to be local because CDPs

of one CG are linked together but no CDP of other CGs is involved.

The idea behind the two-level mechanism is simple. Evidently it is still based

on the tree structure and the concept of caching group. The difference between

the two-level mechanism and a common LRU caching is that the former now

has a global scope as well as multiple local scopes. The process of updating the

pointers is straightforward. At the Level A, TreeFTL updates the head pointer

to record the MRU CTP. Correspondingly, once a CTP of some caching group

has been pointed, TreeFTL will update the head of local linked list to trace the

one that is the MRU CDP. So each time TreeFTL performs a two-level updating.

When a victim has to be found, TreeFTL can easily offer the CTP that the rear

pointer of the global linked list in the Level A points at. Then the local linked

list of that victim CTP’s caching group is checked. The CDP the rear pointer

of the local linked list indicates would be the victim.

The two-level mechanism is profitable and feasible for the implementation of

the LRU victim selection. First, the global and local mechanism saves processing

time. Even though to locate the LRU victim just costs O(1) time, to adjust the

head pointers to trace the MRU element is time consuming. For the two-level

mechanism, however, it is avoided to traverse all cached pages to find the LRU

victim as the local scope narrows down the area to be searched. The time is

consequently reduced. Second, the two-level mechanism is accurate to locate the

LRU victim. To adjust the head pointer of the global linked list in Level A leaves

the LRU CTP to approach the rear. In Level B, by moving the head pointer of the

corresponding local linked list, the LRU CDP of that caching group also comes

out. Of course, the accuracy of the two-level mechanism is partially credited to

the space TreeFTL takes up to maintain those doubly linked lists; the spatial

overhead cannot be ignored. The third profit of the two-level LRU selection

mechanism is yet on the reduction of spatial consumption. As is mentioned, a

81

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

hash table is needed to quickly locate the element in question. In Figure 6.4,

however, there is no hash table employed by TreeFTL. This is contributed by

the tree structure and the address mapping module of the FTL. Through the

GTD-CTP-CDP mapping way, the CDP can be certainly found. So the hash

table is not necessary any longer. The avoidance of a hash table in turn saves

space of the RAM buffer.

6.4 Discussions on TreeFTL

6.4.1 Partitioning and RAM Space Utilization

The partitioning of RAM buffer has been investigated through different ways [94].

As for our proposed TreeFTL, the adaptive partitioning is inherently achieved.

The tree naturally grows or is pruned upon access requests. The partitions for

address mapping and data buffering are accordingly adjusted. There is no fixed

division for the two parts.

A possible issue of TreeFTL is the utilization of RAM space. A CTP has

many entries, and usually not all of them are connected to CDPs. So unused

“holes” scatter across CTPs. The benefits of caching a translation page on spatial

locality have been addressed in Section 6.2.1. In terms of RAM utilization,

caching a page for a requested entry risks taking up more space, but the potential

use of other entries in this page can save valuable time. The lower utilization of

RAM cache is more likely to be caused by outdated mapping information and

data pages. A RAM management module ought to efficiently identify and move

them out.

6.4.2 Workload Adaptation

For TreeFTL the adaptation to workloads is also naturally achieved. It is men-

tioned that different applications have different access behaviors. An application

may write and read on a large number of pages while another one just operates

on a handful. TreeFTL does not specifically distinguish one application from

the others. It is not necessary. All that TreeFTL does is satisfy requests of

each application in an on-demand way. If an application intends to access more

pages, more RAM space will be assigned to it; otherwise, that application just

takes up a smaller space.

With the lightweight mechanism to perform the LRU victim eviction, the

context switch between workloads for TreeFTL is not strenuous. The avoidance

of heavyweight switch is attributed to the flexible tree structure. If the RAM

82

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

buffer is fixedly partitioned, the recycle and reallocation of RAM space for work-

loads surely will be a concern. The dynamic partitioning also enables TreeFTL

to respond swiftly. TreeFTL takes actions the moment the context switch hap-

pens. It has no delay to so. In other words, the response time of TreeFTL to

the context switch between workloads is ignorable, which ensures that TreeFTL

could adapt to workloads efficiently and effectively.

6.4.3 Reliability and Garbage Collection

Reliability is an important issue of data storage, especially when the RAM buffer

is used as a storage medium. DRAM or SRAM is volatile memory, and would lose

data if the power supply is unexpectedly off. This problem has been addressed by

using non-volatile memory such as the phase-change memory (PCM) [29, 47, 66].

However, even though non-volatile memories bring in better reliability, their

innate characteristics must not be neglected. For example, the endurance issue of

PCM is unavoidable [66, 57, 88]. Besides the utilization of non-volatile memory,

a backup battery can otherwise be equipped. Moreover, CTPs and CDPs can

be copied to flash memory when the storage system is idle.

As is mentioned, garbage collection is another important module of NAND

flash memory management due to out-of-place updating as well as the time-

consuming write and erase operations. If data cached in the RAM buffer can

be frequently updated, it will alleviate the pressure on the module of garbage

collection since less data will be sent to flash. In addition, the module of garbage

collection is likely to take advantage of the knowledge of RAM buffer manage-

ment to reclaim flash blocks occupied by invalid dirty data. How to make the

module of RAM buffer management and the module of garbage collection coop-

erate is a good spot to look into.

6.5 Performance Evaluation

6.5.1 Experimental Setup

We still evaluated TreeFTL using FlashSim simulator [53] running on a Linux

64-bit system to simulate a 32GB NAND flash device. The compiler was GCC

4.6. The traces we used here are the same as what we used to experiment

for OWL and ADAPT. First we restate their sources. SPC1 is from Storage

Performance Council (SPC) [84]. TPC-C was collected within TPC-C database

benchmark [101]. MSR traces are from Microsoft data centers [77]. We believe

that they represent various workloads in the real world. The parameters of the

flash memory used for the evaluation, as shown in Table 6.1, were obtained

83

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

from a recent datasheet [41]. In previous works, RAM access time was either

ignored [13] or unclear [35, 94]. We assumed one RAM operation over a 2KB page

costs 2μs, which is the same as in [86]. The RAM capacity has been multiply

configured, and will be shown below.

0

0.2

0.4

0.6

0.8

1

1.2

APS Tree OPT

Trace

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

0

0.2

0.4

0.6

0.8

1

1.2
APS Tree OPT

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

Trace

(a) RAM size: 8MB

(b) RAM size: 16MB

Figure 6.5: Normalized Service Time for Traces (1)

We implemented APS and JTL as comparisons to TreeFTL. Their imple-

mentations are referred to as APS, JTL and Tree, respectively. APS’s interval

length was 1000 requests which is the same as in [94], and the two partitions had

equal capacity in the beginning. We also simulated the theoretically optimal

algorithm based on TreeFTL. It is the OPT; upon victim eviction, OPT always

picks out the one whose next use will occur farthest in the future. The idea

of OPT has been proposed for the analysis on the page replacement of virtual

memory management of the OS [97]. We include it to show the gap between

TreeFTL and the optimal situation. The metric to measure access performance

is the service time needed to process a trace using a management scheme. For a

scheme, the shorter the service time is, the higher its performance.

84

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

6.5.2 Performance Improvements by TreeFTL

Figure 6.5 and Figure 6.6 present the results for each trace with the RAM cache

configured as 8MB, 16MB, 32MB and 64MB. The rightmost bar in each diagram

is the sum of the results of all ten traces. Because service time of ten traces

varies over a wide range, we normalized values of Tree and APS to that of JTL.

From Figure 6.5 and 6.6 we can see Tree always has the least service time

under all four configurations, which means it consistently achieves the highest

performance. Take the 64MB RAM cache for example. Tree’s average time over

all traces is less than that of APS and JTL by 46.7% and 49.0%, respectively. The

service time of Tree is at best 73.9% and 72.3% less than that of APS and JTL

on MSR-prxy 0, respectively.

0

0.2

0.4

0.6

0.8

1

1.2
APS Tree OPT

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

Trace

0

0.2

0.4

0.6

0.8

1

1.2
APS Tree OPT

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

Trace

(c) RAM size: 32MB

(d) RAM size: 64MB

Figure 6.6: Normalized Service Time for Traces (2)

From Figure 6.5 and Figure 6.6 we can see the gap between results of JTL

(normalized as 1) and those of Tree is significant. It is because JTL statically

partitions for mapping and buffering into two halves. Evidently, the buffering

partition needs to take up more RAM space. One entity in a translation page is

only 4 bytes but an entity in the buffering partition is a 2KB data page. This

means that the total number of distinct entities held in JTL’s mapping partition

85

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

far exceeds that in its buffering partition. Misses for data pages cause frequent

loading and eviction between RAM and flash, while most of the space dedicated

to mapping entries is infrequently used.

From the two figures we can also find that with a small RAM capacity, Tree

outperforms APS marginally. They both can adaptively adjust partitioning. A

small capacity cannot effectively cache mapping information or data pages, and

evictions and loading dominate the performance. However, owing to the delayed

estimation of APS, Tree is still a little faster. With the increasing of RAM cache,

the overhead of LRU selection becomes significant for APS.

�����

����	

 ��
 �

 �
 ���

��
��
��
���
��
	�
��

�
�	
��

���	����	��	������

��	��	�������	����	� ��!�����"
#�������$

�����

�����

����	

 ��
 �

 �
 ���

��
��
��
���
��
	�
��

�
�	
��

���	����	��	������

��	��	�������	����	� ��!������
#�������$

�����

�����

����	

 ��
 �

 �
 ���

��
��
��
���
��
	�
��

�
�	
��

���	����	��	������

��	��	�������	����	� ��!�����"
#�������$

���&���

�����

����	

 ��
 �

 �
 ���

��
��
��
���
��
	�
��

�
�	
��

���	����	��	������

��	��	�������	����	� ��!������
#�������$

���&���

Figure 6.7: Captures of Access Distribution for TPC-C and MSR-ts 0

Also from Figure 6.5 and Figure 6.6 we can look into the gap between Tree

and OPT. Of course OPT can spend less time than Tree as the former has foreseen

the future. The size of the difference, though, depends on each trace. For

example, for the trace TPC-C Tree and OPT achieve the similar performance; OPT

is just marginally faster than Tree by 0.65% with 64MB RAM buffer. However,

for the trace MSR-ts 0, which has the most significant difference within 64MB

RAM buffer, OPT is faster than Tree by 72.76%. In order to investigate the cause

for variant differences, we have captured two access periods of TPC-C and MSR-

ts 0, as shown in Figure 6.7, the same as what we did for ADAPT in Chapter 5.

After 30% and 60% of all requests, we fetched one thousand consecutive write

requests, respectively. We recorded logical page numbers those requests would

access. From the upper two diagrams in Figure 6.7 for TPC-C, we can see the

86

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

distribution is very uniform. Most requests are grouped into narrow stripes of

logical address space, respectively. The future access hence exactly coincides

with the past access. So to evict the LRU one is profitable for TPC-C.. On the

contrary, for the lower two diagrams in Figure 6.7 for MSR-ts 0, the distributions

are diverse. Accesses are spread in a large range of logical address space, and

using the past access to predict the future access seldom sustains. Hence, the

LRU victim eviction for MSR-ts 0 is yet imprecise. Even so, the future access

can still be roughly reflected from the past access history. As shown in the

diagrams of MSR-ts 0, there are consecutive accesses to some logical pages, and

the LRU victim eviction is supposed to benefit consequently.

Table 6.2: Hit Ratios (%) of APS, JTL and Tree

Trace
Address Mapping Data Buffering

APS JTL Tree APS JTL Tree

SPC1 97.5 97.5 99.8 65.3 24.9 70.5

TPC-C 99.5 97.5 100.0 99.5 99.1 99.5

MSR-hm 0 92.4 94.2 99.4 45.8 18.1 64.1

MSR-mds 0 95.6 98.1 99.7 64.5 31.7 70.3

MSR-prn 0 70.1 96.1 99.6 48.0 26.3 77.9

MSR-prxy 0 98.9 98.6 99.9 53.2 33.9 92.6

MSR-rsrch 0 97.4 98.2 99.5 59.0 34.0 63.3

MSR-stg 0 97.4 98.2 99.6 61.5 23.1 64.8

MSR-ts 0 95.4 97.1 99.6 59.4 21.6 68.2

MSR-web 0 95.1 98.0 99.6 64.6 20.1 75.3

Table 6.2 shows the hit ratios of three schemes for mapping and buffering

with the 64MB RAM cache, respectively. Tree hardly has any miss for mapping.

We ascribe this to the spatial locality of a real workload. APS’s and JTL’s ratios

are a little lower because of their policy of caching single entries. In Table 6.2

generally the hit ratios of buffering are much lower, which is due to the mentioned

asymmetry between mapping information and data pages. Yet JTL suffers more

than APS and Tree due to its fixed partitioning.

We experimented with the RAM size as 128MB and 256MB also. They

are not included as the results are similar to ones with smaller configurations.

We did not evaluate with an even bigger RAM cache, as excessive RAM space

makes it possible to accommodate everything needed in RAM [35]. This will not

correctly highlight the effectiveness of the RAM management schemes.

To further understand the access behaviors of workloads as well as the ac-

tions of TreeFTL, we also recorded other meaningful information at runtime.

87

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

Figure 7.7 shows the cumulative service time as well as the average size of CG

for traces over the increase of write requests. Here the average size of CG is

defined as the average number of CDPs per CG at a time. As TreeFTL is specif-

ically designed to handle random write requests, we show the two values for

random write requests only. In Figure 7.7 a diagram corresponds to a trace.

In a diagram, a dashed line is the cumulative service time for random write re-

quests, and the other solid line presents the fluctuation of average CG size of a

specific trace at runtime. From each diagram, on one hand we can see that for

a trace the average size of CG fluctuates substantially. The random vibration

curve of each diagram is due to the changing access behavior of a workload.

As the workload’s access behavior is dynamic, TreeFTL has to adjust the tree

structure by loading and evicting CDPs and CTPs to adapt. The curve just

reflects the situation TreeFTL is facing.

On the other hand, the cumulative service time in each diagram of Figure 7.7

for random write requests shows an interesting phenomenon as for traces it

is almost regular. Most of the dashed curves can be approximated as a liner

function of random request in a long run. Even though some of them cannot be

modeled as one single line, like the scenarios for MSR-prxy 0 and MSR-ts 0, they

can still be viewed as piecewise linear functions. We attribute the steadiness of

the service time to the adaptivity of TreeFTL. As TreeFTL does not manage the

RAM space using heavyweight adjustment mechanism, it can inherently achieve

gradual increase of service time at running.

6.5.3 Effect of the Lightweight LRU Selection

The effect of TreeFTL’s lightweight victim selection was also measured. We

implemented Tree-PL, which is the same as Tree except that LRU victims are

selected at the page-level. Without loss of generality, MSR-hm 0 and MSR-

prxy 0 were picked as examples. Figure 6.9 are their results in six cases of “RAM

Configuration+Scheme”, respectively. It clearly shows the contributions of RAM

operations (“RAM”), flash operations (“Flash”) and LRU overheads (“LRU”) to

the overall service time with the RAM cache configured to be 32MB and 64MB

using APS, Tree-PL and Tree, respectively. JTL differs from APS and Tree in

LRU victim selection, so it was excluded. The results in Figure 6.9 support our

claim that as the capacity of the RAM cache increases, LRU selection overhead

will be an issue. We can see for APS and Tree-PL, the overhead of the page-level

selection contributes significantly to the worsening of performance as RAM cache

scales up. The CG-level LRU selection also suffers from a larger RAM size, but

the overhead increases more steadily due to its coarser granularity.

88

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

��

���

�	��

�	��

�
��

�
��

����

����

����

� 	������
������ ������� �������
��

�	��

�
��

����

����

����

����

����

����

��
��
��

��
��
��

��
���

�

��
�
��
�
�!

�"
#$

�������	
��������

����

��
������������
�����������
�������

��

���

����

����

� ��

� ��

�!��

�!��

� "���"��� #"���"��� $"���"���
��

���

� �

�!�

�#�

���

�$�

�%�

&�
��
�	

��

�
��
�
���

�

��
�
��
�'
��
�

��

(�������������	
���

����

������������������
�
�
�������������������

��

���

���

���

� �

�!�

�"�

�#�

�$�

� !������ ��������� ��!������ ���������
��

����

����

����

� ��

�!��

�"��

�#��

��

��
�
��
�
��
���

�

��
%
�
��
&
�'
($

��'(�%�	
��������

������*�

	
���������������
����+��
�����
��������

��

���

���

���

���

����

����

����

� ������� ������� ������� ������� ���������
��

� �

����

�� �

����

�� �

�!��

"�
��
��
��
��
��
��
���

�

��
�
��
�#
�$
��
%&

'��%������(��'�)�#(

��'��%#%�

"�����������������
�)�))�(���������$������

��

���

���

���

���

����

����

����

� ��������� ��������� ��������� ���������
��

����

����

����

����

����

����

"�
��
��
��
��
��
��
���

�

��
�
��
�#
�$
��
%&

'��%������(��'�)�#(

��'����)�

"�����������������
�)�)*�(���������$������

��

���

���

���

���

����

����

����

� �� ������ �������� %� ������ ����������
��

� �

����

�� �

����

�� �

����

����

����

��
	

��
	�
�
�	
��
���
�

��
�
	�
��
	�
��
��

��������
��	��	��	��

 �!"
#$,�

��	
��	���	������
����-����	�	
���	����	

��

�%�

���

�&�

�'�

�(��

�(%�

�(��

�(&�

�)������ ������� ������� ���������
��

���
����

����
����

����

�	��
�	��

�
��
�
��

����

��
�
��
�
��
�
��
���
�

��
�
�
��
�
��
��

������� ��!��"#�!

$��%����&*�

���������������
�#�#+�!������������

��

���

���

���

�'�

�!�

�"�

�#�

�*�

�(�

� '������ ������� ��������� ���������
��

����

����

�	��

�
��

����

����

�
��

��
��

��
��

��
���

�

��
�

��
��

��
��

�

!������"��#��!�$%��#

&�!'�#�*�

�����������������
�%�%+�#��������������

��

���

�
�

���

�'�

����

����

� 	��(��� ���(��� ���(��� �(���(���
��

���

����

����

����

����

�	��

�	��

�
��

�
��

��
�
��
�
��
�

��
���
�

��
�
�
��
�
��
��

������� ��!��"#�!

$��%!�)�

���������������
�#�#)�!������������

��

���

�
�

���

�'�

����

����

��
�

� 	��(��� ���(��� ���(��� �(���(���
��

���

����

����

����

����

�	��

�	��

�
��

��
�
��
�
��
�

��
���
�

��
�
�
��
�
��
��

������� ��!��"#�!

$��%))*�

���������������
�#�#+�!������������

Figure 6.8: Cumulative Service Time and Average Size of CG for Traces at
Runtime

89

CHAPTER 6. TREEFTL: AN ADAPTIVE TREE IN THE RAM BUFFER

0 500 1000 1500 2000 2500

APS
Tree-PL

Tree
APS

Tree-PL
Tree RAM

LRU
Flash

32
M

B
64

M
B

32
M

B
64

M
B

Config+Scheme

Config+Scheme

(a) MSR-hm_0

(b) MSR-prxy_0

0 1000 2000 3000 4000 5000 6000

APS
Tree-PL

Tree
APS

Tree-PL
Tree RAM

LRU
Flash

Service Time
(Second)

Service Time
(Second)

Figure 6.9: Effect of Lightweight Victim Selection

6.6 Summary

The RAM buffer is an important component of a NAND flash-based storage de-

vice. It is the one that directly reflects access behaviors of workloads. Managing

it efficiently certainly yields substantial performance improvements. TreeFTL

proposed in this chapter is capable of utilizing the RAM space jointly for caching

information of address translation and buffering data pages. Cached translation

pages and data pages are organized in a tree-like structure that naturally adapts

to changing workloads. To minimize the overhead of victim evictions, TreeFTL

employs a lightweight LRU selection algorithm based on the tree structure. The

victim selection is done at a coarse level, but the trade-off in precision results

in the significant reduction in processing time. What is more important, the

lightweight LRU victim selection enables TreeFTL to adapt to the context switch

of workloads with negligible temporal overheads. Experimental results show that

TreeFTL is able to outperform previous schemes evidently on various workloads

which are from real environments.

90

Chapter 7

SAW: OS-Assisted Wear

Leveling

This chapter will detail what we did in the third step of this thesis. Preceding

chapters have proposed three algorithms for flash memory management. Each of

them acts as one module of the FTL. As the standalone entity for flash manage-

ment, the FTL manages the flash device in an autonomous way. This chapter,

however, will involve the outside, upper-level operating system (OS) in the man-

agement process because the OS has a higher perspective of data and files. The

algorithm to be shown is the operating System-Assisted Wear leveling (SAW).

As its name suggests, the OS of SAW will assist the FTL to perform wear level-

ing. In brief, the OS analyzes access behaviors to files, and delivers hints along

with data segments to the FTL. On the other side, the FTL references such

hints to conduct data accommodation. Experimental results show that the wear

evenness can be evidently improved with the participation of the OS. The design

of SAW as well as relevant experiments would be detailed.

7.1 Overview

OWL, ADAPT and TreeFTL proposed in previous chapters target different as-

pects of NAND flash memory management. In general all of them have been

designed in the traditional way. That is to say, the management is performed

in the full charge of the FTL inside a flash device; the outside, including the

OS, has no idea of what is happening in the device. Certainly it is unnecessary

for the OS to look into the storage device; the storage device is supposed to be

transparent to the OS. What the OS wants is the data. The OS writes data to

the device and reads data from the device. It is not the OS’s concern how the

91

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

data are subsequently processed by an individual storage device.

With the increasing utilization of flash-based device, some mechanisms have

been introduced into the OS to suit. A well-known example is the TRIM com-

mand [21]. The TRIM command is used by the OS to inform the FTL in advance

of reclaiming space occupied by deleted data. The command itself is simple, but

its effectiveness is evident. More complicated schemes that seek aid from the

OS, like FSAF [75], MFTL [115], and Meta-Cure [108], have been proposed. As

is analyzed in Chapter 3, they just ask or even passively wait for information

from the OS; either the OS is unaware of FTL’s workings, or vice versa. The

interplay between the OS and the FTL, if existing, is lacking.

The profits brought in by the involvement of the OS are not limited. Our

proposal in this chapter, the said SAW, however, will explore a deep collaboration

between the OS and the FTL. Why we declare it to be deep is that the OS knows

the device it is connecting to is a flash device and the OS itself participates in

the process of wear leveling. The key point here is the OS’s knowledge of data

and files. For a flash device or other storage devices, the data is data. In the

opinion of the OS, the data is not just data. They are first presented to the

OS in the form of files. The OS creates, opens and operates files for various

applications. As has been investigated, the properties of files are meaningful

even with basic attributes of files [24, 73]. On the other hand, the knowledge of

files is out of reach of the FTL, and the OS yet can provide such information.

For SAW, what we let the OS do for wear leveling is quantitatively analyze files

to figure out their access patterns. Based on the analysis, each file type will

be assigned an integer number which we reference as the temperature degree.

What the temperature is and how to measure the temperature degrees for files

would be shown below. As each file may have more than one data segment, the

temperature degree will be attached to each segment of a file and delivered to

the lower-level FTL alongside. When the FTL receives a data segment with a

degree, it will unpack the segment, read the degree and allocate suitable aged

blocks accordingly.

Obviously the above process of SAW is founded on the analysis of files. The

analysis is performed by the OS for SAW, based on a mathematical model.

It is succinct but helpful. Not only the current access frequencies of files are

considered but the historical impacts are also taken into account. Details of the

analytic model can be found in the next section. Correspondingly, the lower-level

FTL also makes a change on the block organization to suit itself to utilize the

temperature degrees provided by the upper-level OS. Flash blocks are organized

in an exponential division through which blocks of less erase counts are given

92

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

more chance to be reused and elder blocks are likely to be protected.

The advantage of SAW over traditional algorithms for wear leveling is evi-

dent. Traditional wear leveling is conducted by the FTL itself. The lower-level

viewpoint and limited computation of a flash device adversely impact its func-

tion. For example, though OWL can also figure out access frequencies of data

inside a flash device, the relevant temporal and spatial overhead are not ignor-

able. For SAW, the OS’s participation just gives the FTL extra knowledge, and

yet releases the FTL from arduous calculation over data within an embedded

device.

The improvement of wear evenness attained by SAW is substantial. To verify

the effectiveness of SAW, we have developed a prototype based Linux virtual file

system (VFS), an open-source FTL and file system. From the experimental

evaluation based on the prototype, thanks to the participation of the OS, the

wear evenness can be significantly improved by as much as 85.0%.

7.2 Temperature of File Types

In this section we will present details of how the OS collaborates with the FTL

for wear leveling in SAW. First we need a mathematical model to figure out the

temperature degree of files. Note that the OS processes files instead of data,

which differs from the FTL. For a traditional wear leveling algorithm, data are

either coarsely identified to be hot or cold, or arduously classified by the FTL

within the limited computation resource of a flash device [32, 58, 22], as has

been shown in Chapter 4. It is where SAW is about to make a change. In SAW,

the OS is responsible for quantitatively classifying files based on a mathematical

model. For a file type, the OS dictates and analyzes its files’ update behavior.

Not only the current update behavior is pondered, but the file type’s historical

record is also taken into consideration. When each file type gets an estimate

for its update behavior, behaviors of all file types are assessed together. The

temperature degree of each file type is accordingly calculated. The degree would

be sent along with data segments of files to the FTL for reference. This process

briefly expounds how the OS plays its rule in the collaboration with the FTL.

We first need to figure out how to estimate the update behavior given a

specific file type. The term of file type has been highlighted above. What

a type files belong to depends on their file attributes. Files have a number of

attributes, such as filename, extension, access mode, and last modified time.

Mesnier et al. [73] revealed that files’ properties, like the access pattern, can be

predicted based on their attributes. Take a text file for example. It is likely to be

93

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

rewritten more often than a video file. Mesnier et. al. [73] did an offline mining

over collected files. An online exploration of the files’ attributes, however, is

not simple. Our analytic model must be succinct and reasonable to support the

online use.

For simplification, SAW only considers two attributes of a file, namely its

filename extension and access mode. Read-only files are hardly rewritten, and

will be specially dealt with. In this thesis, a file’s type refers to its filename

extension, although it is conceivable that other attributes can be used too. Files

without any extension will be treated separately. Previous qualitative ways to

identify data to be hot or cold by the FTLs are somewhat lacking. With the

assistance of the OS, we will perform the classification in a quantitative way.

The temperature of a file type, as will be derived below, depends on files’ update

frequency and recency.

7.2.1 Update Frequency of A File Type

Measuring the update frequency of a file type is the key issue of SAW. FTLs can

record the number of writes to a logical block or a logical page [105]. For files,

however, it is not that straightforward. The OS manages a large number of files

of the same type. It is neither reasonable nor scalable to keep access informa-

tion for each individual file. Moreover, two files with the same type may have

completely different update frequencies; how to merge files’ frequencies to stand

for the behavior of a file type is a problem. Hence, we need an approximation to

represent the access frequency for a type of files. Since not all files are accessed

at runtime, we will not consider dormant files but focus only on active ones. This

simplifies the online analysis, and also reduces the overhead of resuming SAW

at boot-up.

Table 7.1 is a collection for a quick reference of variables used during the

analytic modelling. Several of them are maintained by SAW for an individual

file type. Given a file type t, S(t) records the total number of active files of type

t. ς(t) is the number of accessed files of type t. This includes the files of type t

that have been opened (and possibly then closed) after the current system boot,

as well as newly created files. δ(t) is the number of files of type t that have been

deleted (since the last boot). ω(t) counts the rewrites to all t files. ς(t), δ(t) and

ω(t) are used to compute the update frequencies of file type t. Note that we are

interested in rewrites detected in the kernel module of file system, not writes,

because the latter is not a good estimate for update frequency. For example,

a video file triggers a vast number of writes during its creation. Afterwards its

contents are hardly rewritten again. So a video file’s update frequency is low.

94

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

Table 7.1: Symbols of SAW Model

Symbol Description

t File type

S(t) Total number of active files of type t

ς(t) The number of accessed files of type t

δ(t) The number of deleted files of type t

ω(t) The counts of rewrites to files of type t

ϕ(t) The update frequency of type t

I The interval

fn
(t) The predicted value for ϕn

(t) of the nth interval

sn(t) The rate of increase of type t files of the nth interval

β The bound to outlier file types

Θ The number of active file types

T A predefined constant as the upper bound of temperature degree

Cn+1
(t) The temperature for type t in (n+ 1)th interval

Γ The number of free flash blocks

When a text file is reopened, however, it may be inserted, appended or replaced

with new data. Thus, its update frequency is much higher due to many rewrites.

Let ϕ(t), the update frequency of type t, be defined as

ϕ(t) =
ω(t)

S(t)
. (7.1)

At the first sight, ϕ(t) seems to be the average rewrite of active files of type

t. Nonetheless, as is mentioned, files of the same type may differ significantly

in update behavior. Moreover, files are being created and deleted at runtime.

So Equation (7.1) is imprecise. But it is infeasible to keep too much informa-

tion for each file. We shall place more constraints to enhance the accuracy of

Equation (7.1).

First, the OS will collect the values of ς, δ and ω periodically. The interval

is defined as I. The total number of active files of type t after the nth I is to be

Sn
(t). The base case, i.e., at boot-up, is defined as S0

(t), and initialized to be zero.

In the nth I interval, ςn(t) files were newly accessed or created, and δn(t) files were

removed. So the number of type t files before the start of the (n+ 1)th I is

Sn+1
(t) = Sn

(t) + (ςn(t) − δn(t)). (7.2)

95

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

Hence, the absolute increment of type t files is

Sn+1
(t) − Sn

(t) = ςn(t) − δn(t). (7.3)

The rate of increase of type t files, sn(t), of the nth I, is

sn(t) =
ςn(t) − δn(t)

Sn
(t)

, (7.4)

where n ≥ 1 because at boot-up S0
(t) = 0, and it is in the first I that files are

accessed or created.

sn(t) could be positive or negative, as the number of type t files may increase

or decrease. β is a bound such that

-β ≤ sn(t) ≤ β, (7.5)

or put in another way,

Sn+1
(t) = Sn

(t) · (1± β), (7.6)

and Equation (7.1) is hence valid for the calculation of temperature. In this

thesis, β is set to be 10%. We do not expect the number of active files of type

t changes sharply. If |sn+1
(t) | > β, we will identify t to be an outlier. An outlier

deserves special attention since many t files are likely to be created or removed

in a short period of time.

7.2.2 Update Recency

After the nth I, Equation (7.1) can be rewritten as

ϕn
(t) =

ωn
(t)

Sn
(t)

. (7.7)

Equation (7.7) gives the rewrite frequency on a file type t, and it estimates the

update behavior of type t files in the (n+1)th interval. However, Sn
(t) accumulates

the number of active files during past n intervals. As time goes by, the updates

of type t may change a lot due to the context switch of applications. Hence

a value from a long time ago may mislead the estimation. Generally, the most

recent intervals are more relevant to the coming interval, and this recency should

be factored into Equation (7.7).

We introduce another variable to improve Equation (7.7), fn
(t), which is de-

fined to be the predicted value for ϕn
(t) of the nth interval. Here we will revisit the

96

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

idea of exponential moving average again, which has been referenced in Chap-

ter 5. We define an exponential moving average of fn+1
(t) for the (n + 1)th I

as

fn+1
(t) = α · ϕn

(t) + (1− α) · fn
(t), (7.8)

in which 0 ≤ α ≤ 1. When α = 0, the recent interval will have no effect.

With α = 1, the past history is assumed to have no influence. Given an α that

0 < α < 1, we have

fn+1
(t) = α · ϕn

(t) + (1− α) · fn
(t)

= α · ϕn
(t) + (1− α) ·

[
α · ϕn−1

(t) + (1− α) · fn−1
(t)

]

= ...

= α · ϕn
(t) + (1− α) · α · ϕn−1

(t) + ...

+ (1− α)i · α · ϕn−i
(t) + (1− α)(i+1) · α · ϕn−(i+1)

(t)

+ ...+ (1− α)n+1 · f0
(t). (7.9)

Because

α > (1− α) · α > ... > (1− α)i · α > ... > (1− α)n · α, (7.10)

we can conclude for fn+1
(t) , the farther an interval is, the less the effect it has

(f0
(t) = 0 and ϕn

(t) = 0, so the last (1−α)n+1 is ignorable). In other words, fn+1
(t)

depends the most on ϕn
(t), and also takes the past history into consideration when

0 < α < 1. Now we can use fn+1
(t) to predict the future update behavior to files

of type t in the (n+ 1)th interval.

7.2.3 Temperature of File Types

Now that we have fn for all file types, we can compute their temperature before

each interval. The temperature degree used in this thesis is from 0 to T . T is

a predefined constant. A file with the zero degree is very cold, effectively like a

read-only file. If a file’s temperature is near to T , it is extremely hot. Given a

set of file types, each one with an fn+1 for the (n+ 1)th interval, we sort them

by their f values in an ascending order. The type t then has a position number

in the sequence, Pn+1
(t) for the (n+1) interval, where 0 ≤ Pn+1

(t) ≤ Θ−1. Θ is the

number of active file types. For example, there are five file types (i.e., Θ = 5),

and the sorting sequence is

fn+1
(t0)

≤ fn+1
(t1)

≤ fn+1
(t2)

≤ fn+1
(t3)

≤ fn+1
(t4)

.

97

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

So Pn+1
(t0)

= 0 and Pn+1
(t3)

= 3. Then we can calculate the temperature for type t,

Cn+1
(t) , using

Cn+1
(t) =

Pn+1
(t)

Θ
· T. (7.11)

If T is set to be 5, Cn+1
(t3)

= 3 for type t3. Note that Equation (7.11) is valid

when n ≥ 1. The temperature of each type t for the first interval, i.e., C1
(t), is

initialized to be zero. Here the absolute value of fn+1
(t) for file type t is not so

important as we just need to compare fn+1 of file types. It in turn means the

absolute value of α has no impact to the temperature degrees of file types.

It may seem tedious to have to perform a sort over Θ file types after each

interval. As has been investigated in Section 4.4, SAW can apply the lightweight

method of OWL, and the sorting can be avoided accordingly. Another feasible

alternative way is that, since the access behaviors of the majority of file types

are stable, a complete re-sorting is not yet necessary. Instead, SAW scans the

previous sequence with updated f values, performing the necessary reordering.

This is fairly inexpensive as well.

According to Equation (7.11), it is not possible for a file to have a temperature

of T , as T is reserved for outlier files.

7.3 Wear Leveling with Temperature

7.3.1 Exponential Division of Flash Blocks

We use the temperature of a file type to allocate blocks and pages to its data.

First, we need a hash table to maintain the temperature degrees for file types.

The hash key is a file type t which is hashed to its fn
(t) for the nth interval. This

table is managed by the OS in the main memory, not in flash devices.

The primary idea of wear leveling is to allocate young blocks to hot data, and

old blocks to cold data. To make use of the temperature, free blocks in a flash

device should be well organized. SAW has its own customized block organization.

It sorts flash blocks in an ascending order by their erase counts. As we have T

degrees, all free blocks are divided into T groups. The division is not equal but

in an exponential way. Assuming there are Γ sorted free blocks, the first group

has Γ/2 blocks that have the smallest erase counts. The second group has Γ/22

blocks. By analogy, the gth group has Γ/2g (0 ≤ g ≤ T − 1) blocks. The T th

group, however, is an exceptional one that keeps Γ/2(T−1) blocks that are the

most worn at that time. This is because

Γ = (
Γ

21
+

Γ

22
+

Γ

23
+ ...+

Γ

2g
+ ...+

Γ

2(T−1)
) +

Γ

2(T−1)
. (7.12)

98

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

In SAW, an allocation request with a temperature degree of d is satisfied

by the (T − d)th block group. Whether to allocate a page or a block depends

on the allocation policy of the FTL. Why the mapping relationship between

temperature and block groups is in a {d : (T − d)} way is evident. For data

with larger degrees, they are frequently updated, so they consume much more

blocks. Correspondingly a larger block group with less erase counts are prepared

for them. For data with smaller degrees, as they are infrequently updated, they

unusually raise much less allocation requests. Another explanation can be given

from the standpoint of blocks. The exponential division is due to the intention

to make the best use of young blocks that are the least worn. SAW maintains

more blocks to the higher temperatures. Ones with the smallest erase counts are

given more chance to be utilized, while elder block can avoid being frequently

erased.

As is mentioned, SAW specially treats read-only and outlier files. The former

corresponds to the T th group, and the latter will be handled with pages and

blocks from the first group. There are usually not that many read-only files,

so Γ/2T−1 blocks should be sufficient. Outlier files are quite active. They are

accommodated into the youngest Γ/2 blocks.

7.3.2 Temperature Adjustment

The temperature is re-calculated in every interval. Hence, cold data would lag

behind with outdated temperature degrees since they are infrequently updated.

Their temperatures should be adjusted. To look for such cold data is not easy.

SAW will not yet do it by itself. As is mentioned, there is a module called the

garbage collection of flash memory management to clean up obsolete data that

are generated due to out-of-place updating. Cold data are left with them. SAW

works alongside when the process of garbage collection are being conducted. At

that time, SAW checks data to be moved; invalid data are just ignored while the

temperature degrees of valid data would be changed. Data with updated temper-

ature degrees are written back by the module of garbage collection then. In this

way, the overheads introduced by updating temperature degrees are minimized.

7.4 A Prototype of SAW

We have developed a prototype of SAW based on Linux virtual file system,

UBIFS and UBI [36]. As mentioned, there are two types of flash device. One is

block-interface flash device, like SSDs. They are emulated to be block devices to

file systems by the FTLs. On equipment such as smartphones, raw flash may be

99

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

used. UBIFS is designed for the latter, and UBI can be viewed as its special FTL.

Unlike commercial file systems and FTLs, UBIFS and UBI are open-source, so

they are good candidates to implement SAW.

UBIFS is a log-structure file system. UBI serves UBIFS to access data

and performs functionalities of flash management. Several features of UBI and

UBIFS facilitate the implementation of SAW. First, UBIFS roughly classifies

data to be LONGTERM, SHORTTERM and UNKNOWN. For example, all

files’ data are hot, i.e., SHORTTERM. Second, data are encapsulated by UBIFS

in a node with information like the inode number that they belong to [36]. Note

that the coarse identification of data is not embedded into nodes. Though, the

node structure makes it possible to add our temperature degree into each node.

Third, their original wear leveling and garbage collection are not complicated

and can be easily replaced or enhanced.

VFS

SA
W

 A
na

ly
ze

r
(P

ar
t 1

)

UBIFS

SA
W

Pa

ck
ag

er

UBI

SAW
Interpreter

txt 2
exe 0
doc 1

File type e Degree

2 0 2 2

2 3

2 1

test.txt

Segmented
D

eg
re

e

N
od

e
H

ea
de

r

data

Header & Degree
Attached

Block
Allocator

2

2 3

Fu
nc

tio
n

Ca
ll

Te
m

pe
ra

tu
re

H

as
h

Ta
bl

e

Write Requests

Block
Allocating

Data Writing

Degree Interpreting

20 222

test.txt

Segmented
D

eg
re

e

1

N
d

N
od

e
H

ea
de

rr
H

ea
de

rr

data

Header & DegreeH ee
Attached

2
Packaging of UBIFS

2

23
23Data Writing

Degree Interpreting

Interpreting of UBI

SAW Analyzer
(Part 2)

Figure 7.1: A Sketch of SAW Prototype

The prototype of SAW has three components, as is shown in Figure 7.1. The

SAW analyzer is implemented in the Linux VFS and UBIFS. It maintains the

hash table and performs SAW calculations. The SAW packager is in UBIFS. It

packages data along with relevant temperature degrees into a node. The SAW

interpreter of UBI supports block allocations using the temperature. Figure 7.1

also gives a sample on text file “test.txt”. The temperature degree of “txt” is 2.

100

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

The file is segmented into four parts, each packed with the temperature. When

a node arrives in UBI, SAW interpreter will suggest to the allocator what would

be a suitable age for the block to be allocated. The temperate degree would be

written to flash memory along with data. Note that in the real implementation

the temperate is inside the header. Here we separate it out for the ease of

discussion. For the same reason, the writing sequence of the nodes does not

adhere strictly to their header numbers.

0
10
20
30
40
50
60
70

baseline BET SAW

Av
er

ag
e

Er
as

e
C

ou
nt

Figure 7.2: Average Erase Count with Prototype

7.5 Experimental Evaluation

The evaluation of SAW was done in two ways. The first is within the above

prototype. We compiled the Linux kernel 3.1.6 in Ubuntu 12.04.1. A flash device

of 1GB was simulated using the nandsim simulator of Linux kernel. BET was

implemented for comparison. The second way we evaluated SAW was with the

FlashSim simulator [53], in which we implemented OWL, BET, lazy wear leveling

and SAW. The simulated flash was also 1GB. We went on further to enhance

BET and lazy wear leveling with the basic idea of SAW on block allocation.

The reason why we did experiments in two ways is that OWL and lazy

wear leveling work within hybrid address mapping [105, 10], so they cannot

be implemented in UBI. BET does not have such a limitation [14, 105]. The

NAND flash in the simulation was configured according to a recent datasheet [41].

The wear evenness is measured using the average erase count and its standard

deviation over all flash blocks [105, 104]. For similar average erase counts, the

smaller the standard deviation is, the better the wear evenness is. The optimal

wear evenness is that no different exists on the erase count of flash blocks. In

101

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

other words, the standard deviation is zero, which is impossible.

We did not find any file system benchmarks that target the write endurance

of flash memory. What we want are ones that operate on a large number of files

and generate sufficient write requests. We examined the analysis of Traeger

et al. [102] on various benchmarks for file system, and selected two macro-

benchmarks: postmark [48] and filebench [100]. Postmark is single-thread,

while filebench can be multi-thread. However, they both name file in sequen-

tial numbers without any extension. We modified them in order to append a

suffix to each file in the form of “.ε”. ε is a lower-case English letter from ‘a’ to

‘z’ randomly picked for a file.

The parameters of SAW are set as follows. T = 10 and α = 0.5. I is relatively

measured in terms of write requests. Its default length is 10,000 write requests.

0
1
2
3
4
5
6
7
8
9 baseline BET SAW

St
an

da
rd

 D
ev

ia
tio

n
of

 E
ra

se
 C

ou
nt

s

Figure 7.3: Standard Deviation of Erase Counts with Prototype

7.5.1 The Effectiveness of SAW

Figure 7.2 and 7.3 show the average erase count and standard deviation of

baseline, BET and SAW with the prototype. baseline has the original wear

leveling of UBIFS and UBI. BET and SAW refer to implementations of BET and

SAW, respectively. We ran postmark with ten settings, from 1 million to 10

million transactions. The number of simultaneous files was 50,000. We selec-

tively present the results of 2, 4, 6, 8, 9 and 10 million transactions, and they are

referred to as PM-2m, PM-4m and so on. We ran filebench with two public

workloads: fileserver and varmail. For each workload we ran for an hour

and two hours, respectively. They are referred to as FS-1h, FS-2h, VM-1h and

VM-2h. The number of files was also set to be 50,000. As both postmark and

filebench have random behaviors at runtime [48, 102], we ran our experiments

102

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

with each setting thrice, and the results shown in Figure 7.2 and 7.3 are the

mean values. Full results are in the next subsection.

The effectiveness of SAW is evident. From Figure 7.2 we can see that in each

case SAW performed a similar number of erasures compared to baseline and BET.

However, in Figure 7.3, SAW’s standard deviation of erase counts significantly

decreases compared to BET, as much as 85.0% with PM-10m. Even with FS-1h

and FS-2h that are read-dominant workloads, the reductions can reach 17.3% and

22.8% compared to BET, respectively. Hence we conclude that SAW effectively

avoids wear skewness with the cooperation of the OS.

Measuring the performance overheads is not straightforward with the involve-

ment of the OS. Moreover, the changing behaviors of postmark and filebench

during each run make direct comparison difficult. We have recorded counts of

write, read and erase operations for each case as indicators of the performance.

0

20

40

60

80

100

120

PM-2m PM-4m PM-6m PM-8m PM-9m PM-10m FS-2h

lazy lazy-S BET BET-S OWL O-SAW

Av
er

ag
e

Er
as

e
Co

un
t

Trace

Figure 7.4: Average Erase Count with FlashSim

TraceSt
an

da
rd

 D
ev

ia
tio

n
of

 E
ra

se
 C

ou
nt

s

0

2

4

6

8

10

12

PM-2m PM-4m PM-6m PM-8m PM-9m PM-10m FS-2h

lazy lazy-S BET BET-S OWL O-SAW

Figure 7.5: Standard Deviation of Erase Counts with FlashSim

OWL, lazy wear leveling, and BET were implemented in FlashSim. The

latter two were enhanced with SAW’s idea in their block allocation. Their im-

103

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

0

5000

10000

15000

20000

PM-2m PM-4m PM-6m PM-8m PM-9m PM-10m FS-2h

lazy lazy-S BET BET-S OWL O-SAW
Se

rv
ic

e
Ti

m
e

(s
ec

on
d)

Trace

Figure 7.6: Service Time with FlashSim

plementation are referred to as OWL, lazy, BET, lazy-S and BET-S, respectively.

OWL has already considered block allocation. We did not enhance it. Instead,

we replaced OWL’s block allocation with SAW’s. This implementation is re-

ferred to as O-SAW.

Note that FlashSim is a trace-driven simulator. Previous experiments on

FlashSim utilized traces collected from various machines. However, since write

requests of those traces have no temperature information, they are not suitable.

Instead, we recorded access request in UBI. There, each request does have a

temperature. These traces were then fed to FlashSim. Experimental results are

partially shown in Figure 7.4, 7.5 and 7.6. Full results are included in the next

subsection.

Figure 7.4 and 7.5 show that the average erase counts on a trace for each

scheme is similar, but the standard deviation has decreased significantly for

lazy-S and BET-S, by as much as 55.9% and 82.6%, respectively. Thus, wear

evenness was highly improved in the presence of SAW. On the other side, O-SAW

has comparable wear evenness to OWL, and the standard deviation of the former

is at most 7.0% more. But OWL allocates blocks according to its own calculation

utilizing the lower computation capability of a flash device, while O-SAW just

needs to use the temperature of each incoming request. Hence, O-SAW has a

much lower computation and resource overhead, while achieving a similar level

of wear evenness.

The performance overhead can be measured using trace driven simulation

because it is entirely deterministic. The time needed to service all requests

of a trace is a good indicator of the performance overhead incurred by wear

leveling [105, 104]. The more the service time, the greater the performance

degradation. Figure 7.6 shows the service time for traces with each scheme. It

is obvious that the addition of SAW has little performance impact.

104

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

7.5.2 The Accuracy of f for ϕ

f is used to predict ϕ for the next interval using Equation (7.8), which is the

basis of the temperature calculation. We ran experiments to verify the accuracy

of f for ϕ. Without loss of generality, we selected the file type whose filename

extension is “.c”. We collected f and ϕ in every interval with PM-5m, PM-10m,

FS-2h and VM-2h, and calculated f/ϕ, as is shown in Figure 7.7. We can see

after system boot-up, f/ϕ fluctuates within tight bounds around 1.0. Hence, we

conclude that the prediction of f for ϕ is accurate.

��

����

��

����

�� ���� ���� ���� �	�� ����

��
�

����������������

�����

��

����

��

����

�� ���� ���� ���� ���� �����

�
��
�	

��������	����

�����

��

����

��

����

�� ���� ���� ���� ���� ����� �����

�
��
�	

��������	����

�����

��

����

��

����

�� ��� ���� ���� ���� ���� ���� ����

�
��
��

���	
��������	

�����

Figure 7.7: Fluctuation of f/ϕ (Clockwise: PM-5m, PM-10m, FS-2h, VM-2h)

����

����

��

����

����

�� ���� ���� ���� �	�� ����

�
��
��

�	�
�������	�
�

�

����

����

��

����

����

�� ���� ���� ���� ���� �����

�
��
��

�	�
�������	�
�

�

����

����

��

����

����

�� ���� ���� ���� ���� ����� �����

�
��
��

�	�
�������	�
�

�

����

����

��

����

����

�� ��� ���� ���� ���� ���� ���� ����

��
�

����������������

�

Figure 7.8: s and β at Runtime (Clockwise: PM-5m, PM-10m, FS-2h, VM-2h)

105

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

7.5.3 The Impact of β

It was mentioned in Section 7.2.1 that we use β as a bound for identifying whether

a file type is an outlier or not. Without loss of generality, we collected the s value

in every interval for the file type “.c” using the experimental configurations PM-

5m, PM-10m, FS-2h and VM-2h. The results are presented in Figure 7.8. At

boot-up, many files are accessed, so s is somewhat large. After the system has

warmed up, s fluctuates marginally around 0. Note that β was set to be 10% by

default. In summary, experiments show that s is typically much less than the

selected threshold.

From the experiments conducted to verify the accuracy of f/ϕ and β we can

see our model for the calculation of temperature degrees is quite precise.

Table 7.2: Mean Difference of Standard Deviation with Five Intervals (I)

Benchmark Mean
Absolute Mean Difference

5k 10k 15k 20k 25k

PM 2m 0.865 0.009 0.001 0.001 0.002 0.013

PM 4m 0.960 0.018 0.004 0.014 0.007 0.007

PM 6m 0.981 0.019 0.002 0.004 0.017 0.004

PM 8m 0.986 0.007 0.025 0.002 0.002 0.018

PM 9m 0.982 0.015 0.012 0.002 0.003 0.022

PM 10m 0.985 0.007 0.011 0.023 0.014 0.009

FS-1h 0.692 0.017 0.001 0.024 0.004 0.007

FS-2h 0.861 0.047 0.009 0.016 0.029 0.007

VM-1h 0.789 0.012 0.004 0.011 0.002 0.003

VM-2h 1.036 0.004 0.021 0.017 0.026 0.026

7.5.4 Impact of Interval Length

I is an important parameter of SAW. Its default length is 10,000 write requests.

We also experimented with lengths of 5,000, 15,000, 20,000 and 25,000. They are

referred to as 5k, 10k, 15k, 20k and 25k, respectively. Here we highlight their

standard deviation in each case in Table 7.2 to shown the difference. Results of

average erase counts can be found in the next subsection. There are the mean

values over five intervals, as well as the absolute mean differences between the

value of each I and the mean. From Table 7.2 we can see the fluctuation caused

by changes of I is insignificant.

106

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

7.5.5 Full Results with the Prototype and FlashSim

We have recorded all experimental results for reference. As is mentioned in the

thesis, due to the essentially non-deterministic nature of the operating system,

there can be differences between each run of the experiments. Here, we present

the full experimental results of baseline, BET and SAW in terms of the aver-

age erase count, standard deviation, the counts of write and read operations in

Table 7.3, 7.4 and 7.5. The three tables show results recorded at each time,

respectively. Note that the count of erase operations is not separately listed

because it can be computed using the average erase count in each table.

The detailed experimental results of five settings on the interval I are pre-

sented in Table 7.6, including the average erase count and standard deviation.

Results from the FlashSim simulator have been collected too. The average

erase count, standard deviation and service time of lazy, lazy-S, BET and BET-S,

OWL and O-SAW, are separated into Table 7.7, 7.8 and 7.9 for readability. The

traces of VM-1h and VM-2h were not fed to FlashSim because they are too

short.

The result of the prototype and that of FlashSim under the same setting

may be different, or even vary significantly. We ascribe this phenomenon to the

distinction between simulators. The prototype of SAW can be viewed as a full-

system simulator while FlashSim performs standalone trace-driven simulation.

7.6 Summary

In this chapter, we revisit the write endurance issue of flash device, and elab-

orate a novel scheme named operating System-Assisted Wear leveling (SAW).

We attempt to seek the assistance of the OS to manage flash device. In this

chapter, the OS participates in the process of wear leveling. An analytic model

has been set up for the OS to quantitatively estimate the temperature of files.

The degree calculated from the model is sent to the lower-level FTL along with

data. The FTL subsequently references the temperature of date segments to

conduct the block allocation. To make use of the temperature, we customize the

block organization of the FTL in an exponential division. We have also devel-

oped a prototype with the idea of SAW based on Linux virtual file system, an

open-source flash file system and FTL. Experiments show that the collaboration

between the OS and the FTL substantially improves the wear evenness by as

much as 85.0% compared to the latest FTL-based wear leveling algorithms. This

significant improvement confirms our hypothesis that the participation of the OS

into flash memory management is able to bring in considerable profits.

107

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

T
ab

le
7.
3
:
A
ve
ra
g
e
E
ra
se

C
o
u
n
t,

S
ta
n
d
a
rd

D
ev
ia
ti
o
n
,
th
e
C
o
u
n
ts

o
f
W
ri
te

an
d
R
ea
d
O
p
er
a
ti
o
n
s
o
f
b
a
s
e
l
i
n
e
,
B
E
T
a
n
d
S
A
W
(1
st

T
im

e) B
en

ch
m
a
rk

A
v
er
a
g
e
E
ra
se

C
o
u
n
t

S
ta
n
d
a
rd

D
ev

ia
ti
o
n

W
ri
te

O
p
er
a
ti
o
n
s

R
ea

d
O
p
er
a
ti
o
n
s

b
a
s
e
l
i
n
e

B
E
T

S
A
W

b
a
s
e
l
i
n
e

B
E
T

S
A
W

b
a
s
e
l
i
n
e

B
E
T

S
A
W

b
a
s
e
l
i
n
e

B
E
T

S
A
W

P
o
st
m
a
rk

P
M
-1
m

6
.5
7
2

6
.6
2
4

6
.8
4
2

1
.4
7
1

1
.3
5
0

0
.7
9
1

2
,9
7
2
,9
0
4

3
,0
0
0
,9
1
7

3
,1
1
9
,3
0
5

5
,9
4
9
,1
6
2

5
,6
3
4
,3
5
6

5
,0
4
9
,1
3
7

P
M
-2
m

1
2
.0
4
3

1
2
.1
9
6

1
2
.6
4
3

2
.3
8
7

2
.1
1
5

0
.8
6
0

5
,8
7
7
,7
2
2

5
,9
5
0
,7
0
3

6
,1
9
6
,3
9
9

8
,4
4
3
,4
7
7

9
,6
1
5
,8
3
9

9
,5
1
6
,1
9
8

P
M
-3
m

1
7
.5
1
2

1
7
.7
7
1

1
8
.4
6
4

3
.1
6
7

2
.7
3
1

0
.9
1
2

8
,7
7
9
,1
1
7

8
,8
9
6
,5
1
3

9
,2
8
1
,5
4
1

1
2
,8
1
0
,7
0
9

1
3
,3
6
6
,7
5
0

1
4
,2
3
6
,2
5
4

P
M
-4
m

2
2
.9
8
5

2
3
.4
3
0

2
4
.2
7
6

3
.8
6
4

3
.2
7
1

0
.9
5
7

1
1
,6
8
1
,9
2
1

1
1
,8
3
6
,1
4
6

1
2
,3
6
3
,1
0
3

1
6
,8
9
7
,7
9
0

1
7
,3
9
7
,3
8
6

2
0
,5
4
8
,7
7
0

P
M
-5
m

2
8
.4
4
6

2
8
.8
5
5

3
0
.0
7
5

4
.4
9
7

3
.7
9
8

0
.9
5
2

1
4
,5
7
8
,3
1
7

1
4
,7
6
7
,4
2
7

1
5
,4
3
7
,9
3
9

2
1
,1
1
9
,6
4
2

2
2
,7
0
6
,3
3
0

2
3
,9
3
9
,0
1
1

P
M
-6
m

3
3
.9
5
6

3
4
.4
6
1

3
5
.9
2
9

5
.1
8
6

4
.3
1
9

0
.9
9
2

1
7
,5
0
0
,7
8
8

1
7
,7
3
7
,8
4
3

1
8
,5
4
4
,0
5
9

2
6
,1
3
3
,7
9
7

2
5
,4
0
3
,3
9
5

3
2
,9
9
6
,6
7
8

P
M
-7
m

3
9
.5
9
0

4
0
.1
3
5

4
1
.8
6
8

5
.8
2
8

4
.8
9
4

0
.9
7
6

2
0
,4
8
5
,8
1
4

2
0
,7
4
6
,0
9
9

2
1
,6
9
2
,5
2
0

3
0
,6
2
4
,0
2
2

2
9
,9
2
0
,7
6
0

4
9
,3
9
7
,3
8
6

P
M
-8
m

4
5
.2
4
9

4
5
.9
1
6

4
7
.8
8
1

6
.6
0
6

5
.5
0
9

0
.9
7
5

2
3
,4
8
4
,6
2
3

2
3
,7
9
6
,5
8
7

2
4
,8
8
1
,3
9
1

3
5
,7
4
1
,1
9
6

3
4
,4
3
6
,7
7
2

5
5
,9
4
0
,0
4
8

P
M
-9
m

5
0
.7
9
8

5
1
.6
2
7

5
3
.8
4
7

7
.2
0
7

6
.0
9
8

0
.9
7
9

2
6
,4
2
9
,9
0
6

2
6
,8
1
2
,8
2
5

2
8
,0
4
2
,5
8
2

4
0
,3
7
0
,5
2
6

4
0
,1
1
1
,4
6
8

4
7
,7
9
8
,7
4
3

P
M
-1
0
m

5
6
.3
7
7

5
7
.4
1
2

5
9
.7
5
0

7
.8
1
7

6
.5
2
5

0
.9
9
1

2
9
,3
8
4
,1
4
5

2
9
,8
2
9
,5
2
5

3
1
,1
7
0
,5
6
6

4
5
,7
2
9
,5
2
3

4
7
,2
5
3
,4
2
6

4
8
,5
4
0
,6
9
4

F
il
eb

en
ch

F
S
-1
h

7
.6
2
8

7
.2
2
4

6
.6
5
5

0
.9
1
5

0
.8
2
5

0
.6
7
8

4
,0
3
5
,3
2
5

3
,7
8
8
,6
8
5

3
,5
1
8
,1
7
3

2
5
3
,7
8
7
,0
2
8

2
3
3
,5
1
1
,1
1
8

2
1
3
,6
5
0
,2
6
7

F
S
-2
h

1
5
.4
6
3

1
4
.1
9
5

1
2
.7
6
7

1
.2
8
5

1
.0
6
8

0
.8
1
7

8
,1
9
2
,4
6
0

7
,4
4
0
,7
8
8

6
,7
6
1
,9
4
4

5
2
0
,3
3
5
,1
6
5

4
6
5
,2
6
9
,2
9
6

4
1
7
,4
1
2
,1
9
5

V
M
-1
h

3
4
.6
1
9

3
4
.5
7
4

2
7
.9
8
5

3
.2
1
9

2
.8
9
2

0
.7
3
8

1
8
,3
5
4
,3
2
5

1
8
,1
8
0
,7
4
8

1
4
,8
2
9
,5
2
7

1
6
1
,1
9
3
,4
0
0

1
6
4
,6
1
6
,3
1
5

1
3
5
,8
7
1
,7
9
5

V
M
-2
h

6
5
.2
8
1

6
8
.5
8
1

5
5
.8
6
2

4
.7
4
7

4
.3
4
6

0
.9
7
6

3
4
,6
1
9
,9
5
3

3
6
,2
2
5
,5
0
6

2
9
,6
1
1
,4
0
0

3
6
4
,1
0
2
,3
6
8

3
2
6
,4
4
8
,8
9
4

2
7
0
,8
0
3
,9
0
9

108

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

T
ab

le
7.
4
:
A
v
er
a
g
e
E
ra
se

C
o
u
n
t,

S
ta
n
d
a
rd

D
ev
ia
ti
o
n
,
th
e
C
o
u
n
ts

o
f
W
ri
te

an
d
R
ea
d
O
p
er
a
ti
o
n
s
o
f
b
a
s
e
l
i
n
e
,
B
E
T
a
n
d
S
A
W
(2
n
d

T
im

e) B
en

ch
m
a
rk

A
v
er
a
g
e
E
ra
se

C
o
u
n
t

S
ta
n
d
a
rd

D
ev

ia
ti
o
n

W
ri
te

O
p
er
a
ti
o
n
s

R
ea

d
O
p
er
a
ti
o
n
s

b
a
s
e
l
i
n
e

B
E
T

S
A
W

b
a
s
e
l
i
n
e

B
E
T

S
A
W

b
a
s
e
l
i
n
e

B
E
T

S
A
W

b
a
s
e
l
i
n
e

B
E
T

S
A
W

P
o
st
m
a
rk

P
M
-1
m

6
.5
7
2

6
.6
2
1

6
.8
3
9

1
.4
7
2

1
.3
2
8

0
.7
7
7

2
,9
7
7
,4
5
7

2
,9
9
6
,2
2
9

3
,1
1
7
,2
8
9

5
,6
0
3
,1
2
9

4
,3
4
6
,5
6
3

5
,7
9
0
,0
8
4

P
M
-2
m

1
2
.0
6
0

1
2
.1
7
3

1
2
.6
6
7

2
.3
9
8

2
.0
9
4

0
.8
6
4

5
,8
8
6
,8
7
9

5
,9
3
5
,5
7
6

6
,2
0
8
,2
0
0

8
,7
0
0
,5
3
9

8
,5
7
0
,9
6
8

9
,5
2
0
,8
7
7

P
M
-3
m

1
7
.4
7
6

1
7
.7
4
3

1
8
.4
6
9

3
.1
2
6

2
.6
9
3

0
.9
1
7

8
,7
9
1
,2
1
8

8
,8
8
0
,3
3
5

9
,2
8
4
,8
5
8

1
2
,8
1
7
,3
7
6

1
3
,0
5
7
,3
1
4

1
4
,6
4
6
,8
2
3

P
M
-4
m

2
3
.0
3
5

2
3
.3
7
9

2
4
.2
7
0

3
.8
7
7

3
.2
5
5

0
.9
4
2

1
1
,7
0
8
,4
5
9

1
1
,8
3
4
,9
5
4

1
2
,3
6
1
,0
8
7

1
7
,2
4
4
,8
2
6

1
9
,8
9
5
,4
5
2

1
9
,7
8
8
,9
9
8

P
M
-5
m

2
8
.5
0
9

2
8
.8
5
3

3
0
.0
8
5

4
.5
6
1

3
.7
5
2

0
.9
5
8

1
4
,6
1
0
,0
5
7

1
4
,7
6
6
,0
1
6

1
5
,4
4
2
,7
7
1

2
1
,4
7
8
,8
3
3

2
6
,0
9
0
,4
8
2

2
3
,7
8
2
,0
7
2

P
M
-6
m

3
4
.0
1
4

3
4
.4
3
1

3
5
.8
9
5

5
.0
9
7

4
.2
4
2

1
.0
0
4

1
7
,5
2
8
,2
0
1

1
7
,7
2
1
,0
3
5

1
8
,5
2
5
,8
0
6

2
5
,6
5
9
,2
5
1

2
8
,2
3
8
,3
9
3

3
3
,9
4
7
,2
3
7

P
M
-7
m

3
9
.6
2
6

4
0
.1
5
5

4
1
.8
6
1

5
.8
1
8

4
.8
1
1

0
.9
6
1

2
0
,5
0
3
,4
3
2

2
0
,7
5
2
,1
7
4

2
1
,6
8
8
,1
4
7

3
0
,1
9
1
,4
1
3

3
2
,7
7
8
,0
2
8

4
5
,0
9
8
,9
7
7

P
M
-8
m

4
5
.2
7
0

4
5
.9
0
7

4
7
.8
6
5

6
.6
0
2

5
.4
7
0

0
.9
8
7

2
3
,4
9
8
,7
8
2

2
3
,8
0
1
,5
1
0

2
4
,8
6
9
,8
2
2

3
4
,6
9
2
,8
9
5

3
6
,8
1
7
,1
0
8

5
9
,2
0
3
,6
4
7

P
M
-9
m

5
0
.9
0
0

5
1
.6
1
3

5
3
.7
9
9

7
.2
7
2

6
.0
9
8

0
.9
6
6

2
6
,4
7
8
,3
3
2

2
6
,8
0
2
,8
0
7

2
8
,0
1
4
,7
5
4

3
9
,7
8
0
,7
9
8

4
1
,2
7
0
,4
3
0

7
1
,7
0
0
,9
0
8

P
M
-1
0
m

5
6
.4
5
7

5
7
.1
7
2

5
9
.7
2
4

7
.8
6
1

6
.5
6
6

0
.9
8
9

2
9
,4
2
7
,2
1
8

2
9
,7
7
0
,7
7
3

3
1
,1
5
5
,6
5
9

4
4
,1
4
8
,9
4
5

4
8
,9
4
2
,2
4
4

4
7
,5
6
4
,4
9
0

F
il
eb

en
ch

F
S
-1
h

7
.7
3
1

6
.7
5
4

6
.6
9
5

0
.9
4
1

0
.8
1
6

0
.6
8
4

4
,0
9
1
,1
6
4

3
,5
5
3
,7
5
8

3
,5
3
8
,6
8
5

2
5
6
,1
8
7
,2
4
6

2
1
8
,8
8
6
,4
8
3

2
1
5
,5
2
7
,0
1
4

F
S
-2
h

1
5
.2
8
4

1
4
.5
5
3

1
4
.1
3
5

1
.2
9
6

1
.0
8
6

0
.8
3
7

8
,0
9
7
,9
6
3

7
,6
7
3
,3
4
9

7
,4
8
6
,0
3
6

5
0
8
,5
2
2
,7
8
7

4
8
1
,9
8
1
,8
8
0

4
6
2
,8
8
0
,6
3
6

V
M
-1
h

3
3
.2
7
6

3
4
.1
2
3

2
9
.7
5
8

3
.1
3
0

2
.8
3
3

0
.7
6
1

1
7
,6
4
2
,4
9
4

1
8
,0
0
3
,3
5
1

1
5
,7
6
9
,7
4
7

1
5
6
,9
0
1
,3
3
3

1
6
0
,3
0
9
,6
0
5

1
4
7
,3
6
3
,8
8
1

V
M
-2
h

6
6
.4
2
6

6
3
.8
7
0

6
1
.7
4
0

4
.8
7
3

4
.2
2
2

1
.0
0
3

3
5
,2
2
7
,3
5
9

3
3
,7
4
6
,9
0
3

3
2
,7
2
9
,1
5
0

3
1
6
,8
6
7
,9
9
5

3
8
5
,0
5
8
,1
8
2

2
7
7
,6
7
8
,5
2
2

109

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

T
ab

le
7.
5
:
A
ve
ra
g
e
E
ra
se

C
o
u
n
t,

S
ta
n
d
a
rd

D
ev
ia
ti
o
n
,
th
e
C
o
u
n
ts

o
f
W
ri
te

an
d
R
ea
d
O
p
er
a
ti
o
n
s
o
f
b
a
s
e
l
i
n
e
,
B
E
T
a
n
d
S
A
W
(3
rd

T
im

e) B
en

ch
m
a
rk

A
v
er
a
g
e
E
ra
se

C
o
u
n
t

S
ta
n
d
a
rd

D
ev

ia
ti
o
n

W
ri
te

O
p
er
a
ti
o
n
s

R
ea

d
O
p
er
a
ti
o
n
s

b
a
s
e
l
i
n
e

B
E
T

S
A
W

b
a
s
e
l
i
n
e

B
E
T

S
A
W

b
a
s
e
l
i
n
e

B
E
T

S
A
W

b
a
s
e
l
i
n
e

B
E
T

S
A
W

P
o
st
m
a
rk

P
M
-1
m

6
.5
6
8

6
.6
3
5

6
.8
2
8

1
.4
6
6

1
.3
4
2

0
.7
8
2

2
,9
7
5
,5
4
4

3
,0
0
5
,3
4
7

3
,1
1
2
,3
4
7

5
,2
6
9
,3
2
2

5
,4
2
3
,5
7
0

7
,0
8
2
,4
8
0

P
M
-2
m

1
2
.0
3
1

1
2
.2
0
1

1
2
.6
4
4

2
.3
8
2

2
.1
1
5

0
.8
6
6

5
,8
7
1
,6
5
5

5
,9
5
1
,3
4
9

6
,1
9
4
,7
1
3

8
,8
0
4
,9
5
4

1
0
,1
8
4
,4
7
1

9
,9
1
1
,9
5
0

P
M
-3
m

1
7
.5
0
4

1
7
.7
6
9

1
8
.4
4
5

3
.1
6
5

2
.7
1
8

0
.9
1
8

8
,7
7
3
,9
3
2

8
,8
9
0
,0
5
1

9
,2
7
2
,1
5
0

1
3
,1
8
0
,2
0
3

1
6
,2
6
2
,3
9
1

1
4
,9
8
2
,8
2
9

P
M
-4
m

2
3
.0
1
2

2
3
.4
0
7

2
4
.2
7
8

3
.8
3
7

3
.2
4
5

0
.9
6
4

1
1
,6
9
2
,8
8
2

1
1
,8
2
6
,1
5
7

1
2
,3
6
3
,7
3
2

1
7
,2
0
5
,7
0
3

1
7
,7
8
2
,5
0
0

1
9
,0
3
2
,6
4
8

P
M
-5
m

2
8
.4
4
6

2
8
.8
4
5

3
0
.0
6
7

4
.4
7
5

3
.7
7
6

0
.9
6
1

1
4
,5
7
7
,7
8
8

1
4
,7
6
0
,8
0
4

1
5
,4
3
3
,9
6
1

2
1
,4
6
0
,5
8
4

2
1
,6
5
2
,6
6
6

2
3
,5
2
5
,0
5
0

P
M
-6
m

3
3
.9
7
6

3
4
.4
4
9

3
5
.9
0
2

5
.1
6
3

4
.2
5
9

0
.9
7
9

1
7
,5
0
9
,9
4
2

1
7
,7
2
9
,3
8
3

1
8
,5
2
8
,6
4
9

2
6
,1
7
9
,4
7
2

2
7
,6
8
5
,9
0
2

3
7
,3
4
2
,5
6
6

P
M
-7
m

3
9
.5
6
9

4
0
.1
5
9

4
1
.8
7
2

5
.8
0
6

4
.8
3
1

0
.9
7
5

2
0
,4
7
1
,1
4
2

2
0
,7
5
8
,4
6
0

2
1
,6
9
2
,7
5
0

3
0
,7
1
6
,8
5
2

3
2
,4
8
3
,5
4
3

5
0
,4
6
5
,2
8
6

P
M
-8
m

4
5
.2
3
3

4
5
.9
4
6

4
7
.8
9
1

6
.5
8
1

5
.4
8
4

1
.0
1
2

2
3
,4
7
6
,2
7
9

2
3
,8
0
6
,5
4
5

2
4
,8
7
8
,5
9
5

3
6
,0
0
4
,2
3
3

4
0
,9
5
4
,8
5
3

6
1
,7
4
4
,0
9
9

P
M
-9
m

5
0
.8
2
0

5
1
.6
9
3

5
3
.8
0
8

7
.1
5
2

6
.1
7
6

0
.9
6
9

2
6
,4
3
7
,7
9
3

2
6
,8
2
8
,3
7
2

2
8
,0
1
4
,4
6
0

3
9
,5
2
4
,9
0
0

4
8
,3
0
8
,2
5
3

6
8
,4
8
0
,6
7
2

P
M
-1
0
m

5
6
.3
6
6

5
7
.3
9
2

5
9
.6
8
6

7
.8
4
9

6
.6
3
3

0
.9
7
4

2
9
,3
8
0
,8
3
6

2
9
,8
1
1
,4
8
5

3
1
,1
3
7
,1
8
0

4
4
,7
0
3
,2
3
7

4
4
,8
3
5
,6
6
3

4
7
,3
6
1
,6
3
2

F
il
eb

en
ch

F
S
-1
h

7
.9
3
5

7
.2
5
1

6
.8
9
3

0
.9
4
2

0
.8
4
2

0
.6
9
1

4
,2
0
0
,8
4
1

3
,8
2
5
,1
1
1

3
,6
4
5
,0
1
3

2
6
1
,1
5
2
,6
2
5

2
3
8
,4
1
3
,1
3
4

2
2
1
,0
2
3
,2
7
8

F
S
-2
h

1
5
.5
7
9

1
4
.2
9
5

1
4
.8
5
9

1
.3
3
4

1
.0
9
3

0
.8
5
2

8
,2
5
3
,1
3
5

7
,5
4
4
,6
9
9

7
,8
7
0
,9
2
4

5
2
6
,4
0
0
,7
1
0

4
7
5
,7
0
5
,3
9
3

4
8
4
,4
0
0
,9
7
2

V
M
-1
h

3
3
.5
9
2

3
4
.0
7
7

3
2
.6
3
8

3
.1
5
4

2
.9
2
0

0
.7
9
3

1
7
,8
1
0
,2
4
7

1
7
,9
8
4
,7
5
7

1
7
,2
9
6
,9
1
3

1
5
9
,5
7
4
,5
3
7

1
6
0
,9
2
4
,5
0
0

1
4
1
,3
0
5
,5
6
7

V
M
-2
h

6
6
.4
7
8

6
6
.0
2
9

6
3
.8
8
5

4
.7
9
4

4
.2
9
5

1
.0
5
7

3
5
,2
5
4
,7
9
9

3
4
,8
5
9
,1
5
4

3
3
,8
6
6
,4
8
2

3
2
7
,0
8
6
,8
4
8

3
2
2
,9
8
0
,0
5
2

2
9
6
,8
6
7
,3
2
0

110

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

T
ab

le
7.
6
:
A
v
er
a
g
e
E
ra
se

C
o
u
n
t
a
n
d
S
ta
n
d
a
rd

D
ev
ia
ti
o
n
o
f
5
k
,
1
0
k
,
1
5
k
,
2
0
k
a
n
d
2
5
k

B
en
ch
m
a
rk

A
ve
ra
g
e
E
ra
se

C
o
u
n
t

S
ta
n
d
a
rd

D
ev
ia
ti
o
n

5
k

1
0
k

1
5
k

2
0
k

2
5
k

5
k

1
0
k

1
5
k

2
0
k

2
5
k

P
os
tm

ar
k

P
M
-1
m

6
.8
2
2

6
.8
2
8

6
.8
3
1

6
.8
2
8

6
.8
3
2

0
.7
8
2

0
.7
8
2

0
.7
7
2

0
.7
9
2

0
.7
8
6

P
M
-2
m

1
2
.6
4
2

1
2
.6
4
4

1
2
.6
4
4

1
2
.6
5
6

1
2
.6
3
1

0
.8
7
3

0
.8
6
6

0
.8
6
6

0
.8
6
7

0
.8
5
2

P
M
-3
m

1
8
.4
4
8

1
8
.4
4
5

1
8
.4
3
3

1
8
.4
4
2

1
8
.4
5
2

0
.9
1
3

0
.9
1
8

0
.9
1
3

0
.9
0
0

0
.9
2
1

P
M
-4
m

2
4
.2
4
9

2
4
.2
7
8

2
4
.2
3
9

2
4
.2
6
0

2
4
.2
3
7

0
.9
4
2

0
.9
6
4

0
.9
7
3

0
.9
6
7

0
.9
5
2

P
M
-5
m

3
0
.0
3
7

3
0
.0
6
7

3
0
.0
5
8

3
0
.0
4
6

3
0
.0
4
1

0
.9
8
9

0
.9
6
1

0
.9
6
6

0
.9
6
3

0
.9
5
3

P
M
-6
m

3
5
.8
7
7

3
5
.9
0
2

3
5
.8
8
8

3
5
.8
9
1

3
5
.8
8
4

1
.0
0
0

0
.9
7
9

0
.9
9
2

0
.9
6
4

0
.9
7
8

P
M
-7
m

4
1
.8
4
8

4
1
.8
7
2

4
1
.8
4
3

4
1
.8
6
5

4
1
.8
2
3

0
.9
6
6

0
.9
7
5

0
.9
9
2

0
.9
5
9

0
.9
7
0

P
M
-8
m

4
7
.8
7
7

4
7
.8
9
1

4
7
.8
8
4

4
7
.8
9
6

4
7
.8
5
8

0
.9
8
0

1
.0
1
1

0
.9
8
5

0
.9
8
8

0
.9
6
8

P
M
-9
m

5
3
.7
9
7

5
3
.8
0
8

5
3
.8
3
2

5
3
.8
2
5

5
3
.8
0
6

0
.9
6
6

0
.9
6
9

0
.9
8
4

0
.9
8
5

1
.0
0
4

P
M
-1
0
m

5
9
.7
2
2

5
9
.6
8
6

5
9
.7
0
2

5
9
.6
3
5

5
9
.6
8
7

0
.9
7
8

0
.9
7
4

1
.0
0
9

0
.9
7
1

0
.9
9
5

F
il
eb

en
ch

F
S
-1
h

7
.6
6
4

6
.8
9
3

7
.0
1
6

7
.1
5
2

7
.3
7
8

0
.7
0
8

0
.6
9
1

0
.6
6
8

0
.6
9
2

0
.6
9
8

F
S
-2
h

1
5
.1
7
2

1
4
.8
5
9

1
4
.1
7
3

1
4
.2
3
4

1
4
.7
4
9

0
.9
0
8

0
.8
5
2

0
.8
4
5

0
.8
3
2

0
.8
6
8

V
M
-1
h

3
3
.4
2
2

3
2
.6
3
8

3
2
.7
4
1

3
1
.0
8
6

3
2
.8
5
7

0
.8
0
0

0
.7
9
3

0
.7
7
8

0
.7
8
6

0
.7
8
5

V
M
-2
h

6
3
.6
3
5

6
3
.8
8
5

6
2
.5
8
7

6
3
.9
7
1

6
3
.9
4
0

1
.0
3
2

1
.0
5
7

1
.0
1
9

1
.0
1
0

1
.0
6
2

111

CHAPTER 7. SAW: OS-ASSISTED WEAR LEVELING

Table 7.7: Average Erase Count, Standard Deviation and Service Time of lazy
and lazy-S

Trace
Average Erase Count Standard Deviation Service Time (second)

lazy lazy-S lazy lazy-S lazy lazy-S

PM-1m 7.887 7.876 2.952 2.184 1,556.628 1,554.672

PM-2m 17.670 17.622 4.352 2.888 3,294.608 3,286.003

PM-3m 27.436 27.395 4.481 3.364 5,029.318 5,022.122

PM-4m 37.263 37.067 6.310 3.627 6,775.204 6,740.659

PM-5m 47.056 46.739 7.159 3.484 8,513.718 8,457.832

PM-6m 56.904 56.667 7.833 4.027 10,263.168 10,221.351

PM-7m 66.756 66.518 8.458 4.127 12,014.693 11,972.629

PM-8m 76.791 76.521 9.103 4.126 13,795.465 13,747.889

PM-9m 86.744 86.437 9.586 4.229 15,564.870 15,510.796

PM-10m 96.480 96.183 10.089 4.329 17,295.008 17,242.518

FS-1h 8.25 8.236 3.256 2.431 1,619.643 1,616.433

FS-2h 17.415 17.312 4.833 3.258 3,246.716 3,228.453

Table 7.8: Average Erase Count, Standard Deviation and Service Time of BET
and BET-S

Trace
Average Erase Count Standard Deviation Service Time (second)

BET BET-S BET BET-S BET BET-S

PM-1m 7.759 7.759 2.932 1.519 1,534.515 1,534.153

PM-2m 17.400 17.400 4.379 1.785 3,246.938 3,246.937

PM-3m 27.048 27.048 5.488 13833 4,960.660 4,960.621

PM-4m 36.732 34.732 6.360 1.875 6,679.744 6,679.732

PM-5m 46.355 46.355 7.255 1.873 8,389.552 8,389.545

PM-6m 56.096 56.096 7.901 1.867 10,119.220 10,119.206

PM-7m 65.948 65.948 8.436 1.839 11,870.850 11,870.873

PM-8m 75.953 75.953 9.256 1.825 13,646.346 13,646.327

PM-9m 85.873 85.873 9.672 1.815 15,409.453 15,458.531

PM-10m 95.618 95.618 10.201 1.772 17,141.411 17,141.443

FS-1h 8.139 8.139 3.214 1.908 1,597.788 1,597.665

FS-2h 17.190 17.190 4.687 2.484 3,202.400 3,202.490

Table 7.9: Average Erase Count, Standard Deviation and Service Time of OWL
and O-SAW

Trace
Average Erase Count Standard Deviation Service Time (second)

OWL O-SAW OWL O-SAW OWL O-SAW

PM-1m 7.926 7.929 1.017 0.977 1,584.611 1,585.733

PM-2m 17.569 17.569 0.987 1.026 3,297.739 3,297.769

PM-3m 27.211 27.217 1.000 1.054 5,010.163 5,012.342

PM-4m 36.883 36.888 1.014 1.045 6,730.632 6,732.437

PM-5m 46.511 46.513 1.002 1.053 8,438.900 8,439.666

PM-6m 56.248 56.252 0.972 1.011 10,168.723 10,169.981

PM-7m 66.098 66.102 0.942 0.987 11,919.311 11,920.698

PM-8m 76.103 16.104 0.934 0.980 13,696.460 13,697.167

PM-9m 86.021 86.022 0.944 0.970 15,458.531 15,458.991

PM-10m 95.763 95.762 0.993 1.028 17,189.121 17,188.892

FS-1h 8.331 8.338 1.049 1.148 1,665.058 1,667.493

FS-2h 17.381 17.390 1.440 1.541 3,276.431 3,279.699

112

Chapter 8

Conclusion

8.1 Thesis Contributions

Three decades have passed since the invention of flash memory. The widespread

utilization of NAND flash memory-based storage devices requires that the man-

agement over flash memory must be effective and efficient. Traditional strategies

to manage flash device are not so sufficient today. Three new approaches have

been discussed in this thesis to show our efforts to explore the arts of developing

modules for flash memory management. They are as follows:

• Module-cooperative flash management. A module of the FTL focuses on

a specific aspect of flash management. One module can take advantage of

another one’s perspective to manage the flash device. In this thesis, we

have a deep cooperation between address mapping and wear leveling.

• Workload-adaptive flash management. Flash devices serve workloads to

store and access data. If access behaviors of workloads are correctly inter-

preted, the access performance of flash devices can be favourably improved.

We have attempted for address mapping and RAM buffer management.

• OS-assisted flash management. The OS has a global perspective of files

and workloads. The participation of the OS enables the FTL to utilize

the OS’s knowledge of data and files for flash memory management. An

algorithm with the OS-assisted feature has been devised for wear leveling.

The schemes proposed in this thesis have been respectively verified through

experiments. Their effectiveness is significant as reflected from experimental

113

CHAPTER 8. CONCLUSION

results. As for the efficiency, each of them could attain their corresponding goals

with marginal overheads. So we conclude that they are effective and efficient.

8.2 Future Directions

What we expect is that our contributions will initiate new explorations into flash

memory management that can further enhance the utilization of flash devices.

Even through flash-based products have been in market for quite a long time,

they are still not so mature as ferromagnetic hard disks. There is a capacious

field waiting for us to plough. For my future work, some possible directions are:

• A combination of the three said approaches. The above methods for flash

management modules are not isolated but can be organically combined.

For example, SAW already has the cooperation between wear leveling and

page-level address mapping with the presence of OS’s assistance.

• From performance or endurance to energy efficiency. Energy efficient stor-

age is essential for both hand-held devices and enterprise servers. We plan

to investigate the issue of power consumption of NAND flash devices. It

is surely based on the knowledge of innate characteristics of NAND flash

itself and the understanding of access behaviors of workloads.

• Big Data and cloud storage. Big Data and cloud storage are drawing

attentions of researchers and practitioners. As flash-based SSDs are widely

used for enterprise servers and data centers, we want to explore the impact

of the huge amount of data and networking environment on flash-based

storage devices.

Most of the above thoughts are primary and require comprehensive investi-

gation. Profits are supposed to be gained on access performance, energy con-

sumption or data reliability through implementations of these ideas. The future

of flash memory is bright. However, its inherent characteristics and the situa-

tions it may be exposed into bring in challenges as well as chances. A deeper

understanding of the flash device as well as the many various environments and

workloads is the key to advance our exploration. What we expect is that our

efforts can help to improve the utilization of NAND flash memory-based storage

devices which may in turn attract more attention to the upgrade of the secondary

storage and data management of computer systems.

114

Bibliography

[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark

Manasse, and Rina Panigrahy. Design tradeoffs for SSD performance. In

USENIX 2008 Annual Technical Conference on Annual Technical Confer-

ence, ATC’08, pages 57–70, Berkeley, CA, USA, 2008. USENIX Associa-

tion.

[2] AMD. Amd radeon ramdisk. http://www.radeonmemory.com/software 4.0.php,

2013.

[3] Amir Ban. Flash file system, April 1995. US 5404485 A.

[4] Amir Ban. Flash file system optimized for page-mode flash technologies,

August 1999. US 5937425 A.

[5] Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Visconti.

Introduction to flash memory. Proceedings of the IEEE, 91(4):489–502,

2003.

[6] Simona Boboila and Peter Desnoyers. Write endurance in flash drives:

measurements and analysis. In Proceedings of the 8th USENIX conference

on File and storage technologies, FAST’10, pages 1–14, Berkeley, CA, USA,

2010. USENIX Association.

[7] Joe Brewer and Manzur Gill. Nonvolatile memory technologies with em-

phasis on flash: A comprehensive guide to understanding and using flash

memory devices. Wiley-IEEE Press, 1st edition, 2008.

[8] Adrian M. Caulfield, Laura M. Grupp, and Steven Swanson. Gordon:

using flash memory to build fast, power-efficient clusters for data-intensive

applications. SIGPLAN Not., 44(3):217–228, March 2009.

[9] Li-Pin Chang. On efficient wear leveling for large-scale flash-memory stor-

age systems. In Proceedings of the 2007 ACM symposium on Applied com-

puting, SAC ’07, pages 1126–1130, New York, NY, USA, 2007. ACM.

115

BIBLIOGRAPHY

[10] Li-Pin Chang and Li-Chun Huang. A low-cost wear-leveling algorithm

for block-mapping solid-state disks. In Proceedings of the 2011 SIG-

PLAN/SIGBED conference on Languages, compilers and tools for embed-

ded systems, LCTES ’11, pages 31–40, New York, NY, USA, 2011. ACM.

[11] Li-Pin Chang and Tei-Wei Kuo. An efficient management scheme for large-

scale flash-memory storage systems. In Proceedings of the 2004 ACM sym-

posium on Applied computing, SAC ’04, pages 862–868, New York, NY,

USA, 2004. ACM.

[12] Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo. Real-time garbage collection

for flash-memory storage systems of real-time embedded systems. ACM

Trans. Embed. Comput. Syst., 3(4):837–863, November 2004.

[13] Li-Pin Chang and You-Chiuan Su. Plugging versus logging: a new ap-

proach to write buffer management for solid-state disks. In Proceedings

of the 48th Design Automation Conference, DAC ’11, pages 23–28, New

York, NY, USA, 2011. ACM.

[14] Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo. Improving flash

wear-leveling by proactively moving static data. IEEE Trans. Comput.,

59(1):53–65, January 2010.

[15] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Understanding in-

trinsic characteristics and system implications of flash memory based solid

state drives. In Proceedings of the eleventh international joint conference

on Measurement and modeling of computer systems, SIGMETRICS ’09,

pages 181–192, New York, NY, USA, 2009. ACM.

[16] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Hystor: making

the best use of solid state drives in high performance storage systems. In

Proceedings of the international conference on Supercomputing, ICS ’11,

pages 22–32, New York, NY, USA, 2011. ACM.

[17] Feng Chen, Tian Luo, and Xiaodong Zhang. CAFTL: a content-aware flash

translation layer enhancing the lifespan of flash memory based solid state

drives. In Proceedings of the 9th USENIX conference on File and stroage

technologies, FAST’11, Berkeley, CA, USA, 2011. USENIX Association.

[18] Hyunjin Cho, Dongkun Shin, and Young Ik Eom. KAST: K-associative

sector translation for NAND flash memory in real-time systems. In Pro-

ceedings of the Conference on Design, Automation and Test in Europe,

116

BIBLIOGRAPHY

DATE ’09, pages 507–512, 3001 Leuven, Belgium, Belgium, 2009. Euro-

pean Design and Automation Association.

[19] Yuan-Sheng Chu, Jen-Wei Hsieh, Yuan-Hao Chang, and Tei-Wei Kuo. A

set-based mapping strategy for flash-memory reliability enhancement. In

Proceedings of the Conference on Design, Automation and Test in Europe,

DATE ’09, pages 405–410, 3001 Leuven, Belgium, Belgium, 2009. Euro-

pean Design and Automation Association.

[20] Thomas Claburn. Google plans to use intel SSD storage in

servers. http://www.informationweek.com/storage/systems/google-plans-

to-use-intel-ssd-storage-in/207602745, May 2008.

[21] Intel Corporation. What are the advantages of TRIM and how can I

use it with my SSD? http://www.intel.com/support/ssdc/hpssd/sb/CS-

031846.htm.

[22] Peter Desnoyers. Analytic modeling of SSD write performance. In Pro-

ceedings of the 5th Annual International Systems and Storage Conference,

SYSTOR ’12, pages 12:1–12:10, New York, NY, USA, 2012. ACM.

[23] Linux Memory Technology Devices. UBI - unsorted block images, 2008.

http://www.linux-mtd.infradead.org/doc/ubi.html.

[24] Daniel Ellard, Michael Mesnier, Eno Thereska, Gregory R. Ganger, and

Margo Seltzer. Attribute-based prediction of file properties. Technical

Report 14-03, Harvard University, Cambridge, Massachusetts, December

2003.

[25] Eran Gal and Sivan Toledo. Algorithms and data structures for flash

memories. ACM Comput. Surv., 37(2):138–163, June 2005.

[26] Laura M. Grupp, Adrian M. Caulfield, Joel Coburn, Steven Swanson, Ei-

tan Yaakobi, Paul H. Siegel, and Jack K. Wolf. Characterizing flash mem-

ory: anomalies, observations, and applications. In Proceedings of the 42nd

Annual IEEE/ACM International Symposium on Microarchitecture, MI-

CRO 42, pages 24–33, New York, NY, USA, 2009. ACM.

[27] Laura M. Grupp, John D. Davis, and Steven Swanson. The bleak future of

NAND flash memory. In Proceedings of the 10th USENIX Conference on

File and Storage Technologies (FAST), FAST ’12, pages 17–24. USENIX,

February 2012.

117

BIBLIOGRAPHY

[28] Yong Guan, Guohui Wang, Yi Wang, Renhai Chen, and Zili Shao. BLog:

block-level log-block management for NAND flash memorystorage systems.

SIGPLAN Not., 48(5):111–120, June 2013.

[29] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. DFTL: a flash

translation layer employing demand-based selective caching of page-level

address mappings. In ASPLOS ’09: Proceeding of the 14th international

conference on Architectural support for programming languages and oper-

ating systems, pages 229–240, New York, NY, USA, 2009. ACM.

[30] Aayush Gupta, Raghav Pisolkar, Bhuvan Urgaonkar, and Anand Siva-

subramaniam. Leveraging value locality in optimizing NAND flash-based

SSDs. In Proceedings of the 9th USENIX conference on File and stroage

technologies, FAST’11, Berkeley, CA, USA, 2011. USENIX Association.

[31] John L. Hennessy and David A. Patterson. Computer architecture: A quan-

titative approach (the Morgan Kaufmann series in computer architecture

and design). Morgan Kaufmann, May 2002.

[32] Jen-Wei Hsieh, Tei-Wei Kuo, and Li-Pin Chang. Efficient identification

of hot data for flash memory storage systems. Trans. Storage, 2(1):22–40,

February 2006.

[33] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Roman

Pletka. Write amplification analysis in flash-based solid state drives. In

Proceedings of SYSTOR 2009: The Israeli Experimental Systems Confer-

ence, SYSTOR ’09, pages 10:1–10:9, New York, NY, USA, 2009. ACM.

[34] Yingbo Hu. MLC vs. SLC NAND flash in embedded systems. Technical

report, Micro Digital, Inc, September 2009.

[35] Po-Chun Huang, Yuan-Hao Chang, and Tei-Wei Kuo. Joint management

of ram and flash memory with access pattern considerations. In Proceedings

of the 49th Annual Design Automation Conference, DAC ’12, pages 882–

887, New York, NY, USA, 2012. ACM.

[36] Adrian Hunter. A brief introduction to the design of UBIFS, March 2008.

[37] Micron Technology Inc. Technical note: Design and use considerations for

NAND flash memory. Technical report, Micron Technology Inc., 2006.

[38] Micron Technology Inc. Small-block vs. large-block NAND flash devices.

technical report (TN-29-07). Technical report, Micron Technology Inc.,

May 2007.

118

BIBLIOGRAPHY

[39] Micron Technology Inc. Bad block management in NAND flash memories.

Technical report, Micron Technology, Inc., July 2010.

[40] Micron Technology Inc. TN-26-61: Wear-leveling in MicronR© NAND flash

memory. Technical report, Micron Technology, Inc, Oct 2011.

[41] Micron Technology, Inc. NAND flash memory datasheet

(MT29F16G08AJADAWP), Feburary 2012.

[42] Nikolaus Jeremic, Gero Mühl, Anselm Busse, and Jan Richling. Operating

system support for dynamic over-provisioning of solid state drives. In

Proceedings of the 27th Annual ACM Symposium on Applied Computing,

SAC ’12, pages 1753–1758, New York, NY, USA, 2012. ACM.

[43] Heeseung Jo, Jeong-Uk Kang, Seon-Yeong Park, Jin-Soo Kim, and Joon-

won Lee. FAB: flash-aware buffer management policy for portable me-

dia players. Consumer Electronics, IEEE Transactions on, 52(2):485–493,

2006.

[44] Dawoon Jung, Yoon-Hee Chae, Heeseung Jo, Jin-Soo Kim, and Joonwon

Lee. A group-based wear-leveling algorithm for large-capacity flash mem-

ory storage systems. In Proceedings of the 2007 international conference

on Compilers, architecture, and synthesis for embedded systems, CASES

’07, pages 160–164, New York, NY, USA, 2007. ACM.

[45] Jürgen Kaiser, Fabio Margaglia, and André Brinkmann. Extending SSD

lifetime in database applications with page overwrites. In Proceedings of

the 6th International Systems and Storage Conference, SYSTOR ’13, pages

11:1–11:12, New York, NY, USA, 2013. ACM.

[46] Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and Joonwon Lee. A

superblock-based flash translation layer for NAND flash memory. In EM-

SOFT ’06: Proceedings of the 6th ACM & IEEE International conference

on Embedded software, pages 161–170, New York, NY, USA, 2006. ACM.

[47] Sooyong Kang, Sungmin Park, Hoyoung Jung, Hyoki Shim, and Jae-

hyuk Cha. Performance trade-offs in using NVRAM write buffer for flash

memory-based storage devices. IEEE Trans. Comput., 58(6):744–758, June

2009.

[48] Jeffrey Katcher. Postmark: A new file system benchmark. Technical

Report TR3022, Network Appliance Inc., Oct. 1997.

119

BIBLIOGRAPHY

[49] Taeho Kgil, David Roberts, and Trevor Mudge. Improving NAND flash

based disk caches. In Proceedings of the 35th Annual International Sym-

posium on Computer Architecture, ISCA ’08, pages 327–338, Washington,

DC, USA, 2008. IEEE Computer Society.

[50] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. Revisiting storage

for smartphones. Trans. Storage, 8(4):14:1–14:25, December 2012.

[51] Hyojun Kim and Seongjun Ahn. BPLRU: a buffer management scheme

for improving random writes in flash storage. In Proceedings of the 6th

USENIX Conference on File and Storage Technologies, FAST’08, pages

16:1–16:14, Berkeley, CA, USA, 2008. USENIX Association.

[52] Jesung Kim, Jong Min Kim, Sam H. Noh, Sang Lyul Min, and Yookun

Cho. A space-efficient flash translation layer for CompactFlash systems.

IEEE Transactions on Consumer Electronics, 48:366–375, 2002.

[53] Youngjae Kim, Brendan Tauras, Aayush Gupta, and Bhuvan Urgaonkar.

FlashSim: A simulator for NAND flash-based solid-state drives. In Pro-

ceedings of the 2009 First International Conference on Advances in Sys-

tem Simulation, SIMUL ’09, pages 125–131, Washington, DC, USA, 2009.

IEEE Computer Society.

[54] Yohwan Koh. NAND flash scaling beyond 20nm. In Memory Workshop,

2009. IMW’09. IEEE International, pages 1–3. IEEE, 2009.

[55] Duckhoi Koo and Dongkun Shin. Adaptive log block mapping scheme for

log buffer-based FTL (flash translation layer). In IWSSPS 2009: Interna-

tional Workshop on Software Support for Portable Storage, 2009.

[56] Hunki Kwon, Eunsam Kim, Jongmoo Choi, Donghee Lee, and Sam H.

Noh. Janus-FTL: finding the optimal point on the spectrum between page

and block mapping schemes. In Proceedings of the tenth ACM international

conference on Embedded software, EMSOFT ’10, pages 169–178, New York,

NY, USA, 2010. ACM.

[57] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting

phase change memory as a scalable DRAM alternative. In Proceedings of

the 36th annual international symposium on Computer architecture, ISCA

’09, pages 2–13, New York, NY, USA, 2009. ACM.

120

BIBLIOGRAPHY

[58] Hyun-Seob Lee, Hyun-Sik Yun, and Dong-Ho Lee. HFTL: hybrid flash

translation layer based on hot data identification for flash memory. IEEE

Transactions on Consumuer Electronics, 55(4):2005–2011, 2009.

[59] Sang-Won Lee, Bongki Moon, and Chanik Park. Advances in flash memory

SSD technology for enterprise database applications. In Proceedings of the

35th SIGMOD international conference on Management of data, SIGMOD

’09, pages 863–870, New York, NY, USA, 2009. ACM.

[60] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sangwon

Park, and Ha-Joo Song. A log buffer-based flash translation layer using

fully-associative sector translation. ACM Trans. Embed. Comput. Syst.,

6(3):18, 2007.

[61] Seungjae Lee, Young-Taek Lee, Wook-Kee Han, Dong-Hwan Kim, Moo-

Sung Kim, Seung-Hyun Moon, Hyun Chul Cho, Jung-Woo Lee, Dae-Seok

Byeon, Young-Ho Lim, et al. A 3.3 V 4 Gb four-level NAND flash memory

with 90 nm CMOS technology. In Solid-State Circuits Conference, 2004.

Digest of Technical Papers. ISSCC. 2004 IEEE International, pages 52–

513. IEEE, 2004.

[62] Sungjin Lee, Dongkun Shin, Young-Jin Kim, and Jihong Kim. LAST:

locality-aware sector translation for NAND flash memory-based storage

systems. SIGOPS Oper. Syst. Rev., 42(6):36–42, 2008.

[63] Yong-Goo Lee, Dawoon Jung, Dongwon Kang, and Jin-Soo Kim. μ-FTL::

a memory-efficient flash translation layer supporting multiple mapping

granularities. In Proceedings of the 8th ACM international conference on

Embedded software, EMSOFT ’08, pages 21–30, New York, NY, USA, 2008.

ACM.

[64] Sang-Phil Lim, Sang-Won Lee, and Bongki Moon. FASTer FTL for

enterprise-class flash memory SSDs. Storage Network Architecture and

Parallel I/Os, IEEE International Workshop on, 0:3–12, 2010.

[65] Wen-Huei Lin and Li-Pin Chang. Dual greedy: Adaptive garbage collection

for page-mapping solid-state disks. In Design, Automation Test in Europe

Conference Exhibition (DATE), 2012, pages 117–122, 2012.

[66] Duo Liu, Tianzheng Wang, Yi Wang, Zhiwei Qin, and Zili Shao. A block-

level flash memory management scheme for reducing write activities in

PCM-based embedded systems. In Design, Automation Test in Europe

Conference Exhibition (DATE), 2012, pages 1447–1450, 2012.

121

BIBLIOGRAPHY

[67] Samsung Electronics Co. Ltd. XSR 1.5 bad block management. Technical

report, Samsung Electronics Co., Ltd, May 2007.

[68] Youyou Lu, Jiwu Shu, and Weimin Zheng. Extending the lifetime of flash-

based storage through reducing write amplification from file systems. In

Proceedings of the 11th USENIX conference on File and stroage technolo-

gies, FAST’13, Berkeley, CA, USA, 2013. USENIX Association.

[69] Dongzhe Ma, Jianhua Feng, and Guoliang Li. LazyFTL: a page-level flash

translation layer optimized for NAND flash memory. In Proceedings of

the 2011 international conference on Management of data, SIGMOD ’11,

pages 1–12, New York, NY, USA, 2011. ACM.

[70] Charles Manning. How YAFFS works, March 2012.

http://www.yaffs.net/sites/yaffs.net/files/HowYaffsWorks.pdf.

[71] Fujio Masuoka, Masamichi Asano, Hiroshi Iwahashi, Teisuke Komuro, and

Shinichi Tanaka. A new flash E2PROM cell using triple polysilicon tech-

nology. In 1984 International Electron Devices Meeting, volume 30, pages

464–467, 1984.

[72] Lucas Mearian. MySpace replaces all server hard disks with flash drives.

http://www.computerworld.com/s/article/9139280/MySpace replaces all

server hard disks with flash drives, October 2009.

[73] Michael Mesnier, Eno Thereska, Gregory R Ganger, Daniel Ellard, and

Margo Seltzer. File classification in self-* storage systems. In Proceedings

of International Conference on Autonomic Computing, pages 44–51. IEEE,

2004.

[74] Muthukumar Murugan and David. H. C. Du. Rejuvenator: A static wear

leveling algorithm for NAND flash memory with minimized overhead. In

Proceedings of the 2011 IEEE 27th Symposium on Mass Storage Systems

and Technologies, MSST ’11, pages 1–12, Washington, DC, USA, 2011.

IEEE Computer Society.

[75] Sai Krishna Mylavarapu, Siddharth Choudhuri, Aviral Shrivastava,

Jongeun Lee, and Tony Givargis. FSAF: file system aware flash trans-

lation layer for NAND flash memories. In Proceedings of the Conference

on Design, Automation and Test in Europe, DATE ’09, pages 399–404,

3001 Leuven, Belgium, Belgium, 2009. European Design and Automation

Association.

122

BIBLIOGRAPHY

[76] nandsim. How do I use NAND simulator? http://www.linux-

mtd.infradead.org/faq/nand.html, Feburary 2008.

[77] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write

off-loading: Practical power management for enterprise storage. Trans.

Storage, 4:10:1–10:23, November 2008.

[78] Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety,

and Antony Rowstron. Migrating server storage to SSDs: analysis of trade-

offs. In Proceedings of the 4th ACM European conference on Computer

systems, EuroSys ’09, pages 145–158, New York, NY, USA, 2009. ACM.

[79] Yangyang Pan, Guiqiang Dong, and Tong Zhang. Exploiting memory

device wear-out dynamics to improve NAND flash memory system perfor-

mance. In Proceedings of the 9th USENIX conference on File and stroage

technologies, FAST’11, pages 18–18, Berkeley, CA, USA, 2011. USENIX

Association.

[80] Chanik Park, Wonmoon Cheon, Jeonguk Kang, Kangho Roh, Wonhee

Cho, and Jin-Soo Kim. A reconfigurable FTL (flash translation layer) ar-

chitecture for NAND flash-based applications. ACM Trans. Embed. Com-

put. Syst., 7(4):1–23, 2008.

[81] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-soo Kim, and Joon-

won Lee. CFLRU: a replacement algorithm for flash memory. In Proceed-

ings of the 2006 international conference on Compilers, architecture and

synthesis for embedded systems, CASES ’06, pages 234–241, New York,

NY, USA, 2006. ACM.

[82] Young-Bog Park and D.K. Schroder. Degradation of thin tunnel gate

oxide under constant Fowler-Nordheim current stress for a flash EEPROM.

IEEE Transactions on Electron Devices, 45(6):1361–1368, 1998.

[83] Suraj Pathak, Y. C. Tay, and Qingsong Wei. Power and endurance aware

flash-PCM memory system. In Green Computing Conference and Work-

shops (IGCC), 2011 International, pages 1–6, 2011.

[84] Storage Performance Council. Storage Performance Council (SPC) storage

traces. http://traces.cs.umass.edu/, December 2009.

[85] Zhiwei Qin, Yi Wang, Duo Liu, and Zili Shao. Demand-based block-

level address mapping in large-scale NAND flash storage systems. In

Proceedings of the eighth IEEE/ACM/IFIP international conference on

123

BIBLIOGRAPHY

Hardware/software codesign and system synthesis, CODES/ISSS ’10, pages

173–182, New York, NY, USA, 2010. ACM.

[86] Zhiwei Qin, Yi Wang, Duo Liu, and Zili Shao. A two-level caching mecha-

nism for demand-based page-level address mapping in NAND flash memory

storage systems. In Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2011 17th IEEE, pages 157–166, 2011.

[87] Zhiwei Qin, Yi Wang, Duo Liu, Zili Shao, and Yong Guan. MNFTL:

an efficient flash translation layer for MLC NAND flash memory storage

systems. In Proceedings of the 48th Design Automation Conference, DAC

’11, pages 17–22, New York, NY, USA, 2011. ACM.

[88] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers.

Scalable high performance main memory system using phase-change mem-

ory technology. In Proceedings of the 36th annual international symposium

on Computer architecture, ISCA ’09, pages 24–33, New York, NY, USA,

2009. ACM.

[89] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital

integrated circuits: A design perspective. Prentice Hall, 2ed edition, 2004.

[90] John T Robinson. Data cache using dynamic frequency based replacement

and boundary criteria, August 1991. US Patent 5,043,885.

[91] Dongyoung Seo and Dongkun Shin. Recently-evicted-first buffer replace-

ment policy for flash storage devices. IEEE Transactions on Consumuer

Electronics, 54(3):1228–1235, August 2008.

[92] Liang Shi, Jianhua Li, Chun Jason Xue, Chengmo Yang, and Xuehai Zhou.

ExLRU: a unified write buffer cache management for flash memory. In Pro-

ceedings of the ninth ACM international conference on Embedded software,

EMSOFT ’11, pages 339–348, New York, NY, USA, 2011. ACM.

[93] Gyudong Shim, Youngwoo Park, and Kyu Ho Park. A hybrid flash trans-

lation layer with adaptive merge for SSDs. Trans. Storage, 6(4):15:1–15:27,

June 2011.

[94] Hyotaek Shim, Bon-Keun Seo, Jin-Soo Kim, and Seungryoul Maeng. An

adaptive partitioning scheme for dram-based cache in solid state drives. In

Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Sympo-

sium on, pages 1–12, 2010.

124

BIBLIOGRAPHY

[95] Ji-Yong Shin, Zeng-Lin Xia, Ning-Yi Xu, Rui Gao, Xiong-Fei Cai, Seun-

gryoul Maeng, and Feng-Hsiung Hsu. FTL design exploration in reconfig-

urable high-performance SSD for server applications. In Proceedings of the

23rd international conference on Supercomputing, ICS ’09, pages 338–349,

New York, NY, USA, 2009. ACM.

[96] M. Shrestha and Lihao Xu. A quantitative framework for modeling and

analyzing flash memory wear leveling algorithms. In GLOBECOM Work-

shops (GC Wkshps), 2010 IEEE, pages 1836–1840, 2010.

[97] Abraham Silberschatz, Peter B Galvin, and Greg Gagne. Operating system

concepts. J. Wiley & Sons, 2009.

[98] Linux MTD Subsystem. Memory technology device (MTD) subsystems

for linux. http://www.linux-mtd.infradead.org/index.html, October 2008.

[99] Guangyu Sun, Yongsoo Joo, Yibo Chen, Dimin Niu, Yuan Xie, Yiran

Chen, and Hai Li. A hybrid solid-state storage architecture for the per-

formance, energy consumption, and lifetime improvement. In High Per-

formance Computer Architecture (HPCA), 2010 IEEE 16th International

Symposium on, pages 1–12, 2010.

[100] File system and Storage Lab. Filebench benchmark, 2011.

http://sourceforge.net/projects/filebench/.

[101] BYU trace distribution center. TPC-C database benchmark traces.

http://tds.cs.byu.edu/tds/, 2001.

[102] Avishay Traeger, Erez Zadok, Nikolai Joukov, and Charles P. Wright. A

nine year study of file system and storage benchmarking. Trans. Storage,

4(2):5:1–5:56, May 2008.

[103] Chundong Wang and Weng-Fai Wong. ADAPT: Efficient workload-

sensitive flash management based on adaptation, prediction and aggre-

gation. In Proceedings of the 2012 IEEE 28th Symposium on Mass Storage

Systems and Technologies, MSST ’12, pages 1–12, Washington, DC, USA,

2012. IEEE Computer Society.

[104] Chundong Wang and Weng-Fai Wong. Extending the lifetime of NAND

flash memory by salvaging bad blocks. In 15th Design, Automation, and

Test in Europe (DATE 2012) conference, pages 260–263, March 2012.

125

BIBLIOGRAPHY

[105] Chundong Wang and Weng-Fai Wong. Observational wear leveling: an

efficient algorithm for flash memory management. In Proceedings of the

49th Annual Design Automation Conference, DAC ’12, pages 235–242,

San Francisco, California, 2012. ACM.

[106] Chundong Wang and Weng-Fai Wong. SAW: system-assisted wear leveling

on the write endurance of NAND flash devices. In Proceedings of the

50th Annual Design Automation Conference, DAC ’13, pages 164:1–164:9,

Austin, Texas, 2013. ACM.

[107] Chundong Wang and Weng-Fai Wong. TreeFTL: Efficient RAM manage-

ment for high performance of NAND flash-based storage systems. In 16th

Design, Automation, and Test in Europe (DATE 2013) conference, pages

374–379, March 2013.

[108] Yi Wang, Luis Angel D. Bathen, Nikil D. Dutt, and Zili Shao. Meta-Cure:

a reliability enhancement strategy for metadata in NAND flash memory

storage systems. In Proceedings of the 49th Annual Design Automation

Conference, DAC ’12, pages 214–219, New York, NY, USA, 2012. ACM.

[109] Yi Wang, Duo Liu, Meng Wang, Zhiwei Qin, Zili Shao, and Yong Guan.

RNFTL: a reuse-aware NAND flash translation layer for flash memory.

In Proceedings of the ACM SIGPLAN/SIGBED 2010 conference on Lan-

guages, compilers, and tools for embedded systems, LCTES ’10, pages 163–

172, New York, NY, USA, 2010. ACM.

[110] Qingsong Wei, Bozhao Gong, Suraj Pathak, and Y. C. Tay. FlashCoop:

A locality-aware cooperative buffer management for SSD-based storage

cluster. In Parallel Processing (ICPP), 2010 39th International Conference

on, pages 634–643, 2010.

[111] Qingsong Wei, Bozhao Gong, Suraj Pathak, Bharadwaj Veeravalli, Ling-

Fang Zeng, and Kanzo Okada. WAFTL: A workload adaptive flash trans-

lation layer with data partition. Mass Storage Systems and Technologies,

IEEE / NASA Goddard Conference on, 0:1–12, 2011.

[112] David Woodhouse. JFFS2: The journaling flash file system, version 2,

July 2003. http://sourceware.org/jffs2/jffs2.pdf.

[113] Chin-Hsien Wu and Tei-Wei Kuo. An adaptive two-level management

for the flash translation layer in embedded systems. In Computer-Aided

Design, 2006. ICCAD ’06. IEEE/ACM International Conference on, pages

601–606, 2006.

126

BIBLIOGRAPHY

[114] Guanying Wu and Xubin He. Delta-FTL: improving SSD lifetime via ex-

ploiting content locality. In Proceedings of the 7th ACM european confer-

ence on Computer Systems, EuroSys ’12, pages 253–266, New York, NY,

USA, 2012. ACM.

[115] Po-Liang Wu, Yuan-Hao Chang, and Tei-Wei Kuo. A file-system-aware

FTL design for flash-memory storage systems. In Proceedings of the Con-

ference on Design, Automation and Test in Europe, DATE ’09, pages 393–

398, 3001 Leuven, Belgium, Belgium, 2009. European Design and Automa-

tion Association.

[116] Ming-Chang Yang, Yuan-Hao Chang, Po-Chun Huang, and Tei-Wei Kuo.

Working-set-based address mapping for ultra-large-scaled flash devices.

In Proceedings of the eighth IEEE/ACM/IFIP international conference

on Hardware/software codesign and system synthesis, CODES+ISSS ’12,

pages 493–502, New York, NY, USA, 2012. ACM.

[117] Ming-Chang Yang, Yuan-Hao Chang, Che-Wei Tsao, and Po-Chun Huang.

New ERA: new efficient reliability-aware wear leveling for endurance en-

hancement of flash storage devices. In Proceedings of the 50th Annual

Design Automation Conference, DAC ’13, pages 163:1–163:6, New York,

NY, USA, 2013. ACM.

[118] Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. De-indirection for flash-based SSDs with name-

less writes. In Proceedings of the 10th USENIX conference on File and

Storage Technologies, FAST’12, pages 1–16, Berkeley, CA, USA, 2012.

USENIX Association.

127

