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Abstract 

Data storage is much needed in any type of device and there are multiple mechanisms for data 

storage which vary from the device to device but at the end it’s a magnetic drive which holds the 

data and stored in the form of digital format. One predominant data storage device is hard disk 

drive also called as HDD. Hard disk drives are used in a wide range of systems like computers, 

laptops and netbooks etc., it has magnetic platter which is used for reading and writing 

operations. (Hard disk drive, n.d.) With the emerging technologies and modularization of web 

application design architecture created a need for different kind of operating system and system 

architecture based on the functionality. If we want a server where files need to be placed it 

should be designed in such a way that it needs to be good at input and output operations (I/O). 

(How does a hard drive work?, 2018) If we want to store videos and stream, that server should be 

good at asynchronous streaming functionality. If we need to store the structured/un-structured 

data which can be pertained to any educational institution or an organization, we can use a 

database server to store this data in tables and it can be used. In general, we use hard disk drives 

to store any kind of data in all the servers, but there will be only changes in the system 

architecture. The concept of HDD utilization has been constant from past 20 years. There was a 

huge growth in the architectural design of operating systems used for hosting database servers, 

but when it comes to storage HDD’s have been used for many years. With the need for speed and 

faster operations from the perspective of storage, solid state drives come in to picture. (SSD 

Advantage, n.d.)They have a different kind of architecture when compared to HDD and they are 

called as SSD. This paper discusses the idea of using SSD’s instead of HDD’s in database 

servers. We created multiple database instances for SSD’s and HDD’s and also created multiple 

web applications using JAVA and connected to each of these database servers to access data via 

REST API’s. We have run multiple tests to compare the load time of all the different database 

instances and generated some visual analytics how it behaves when multiple/series of get 

operations made on the database with the REST API. This analysis will help in finding if there 

are any anomalies in the behavior with increase in throughput of read and write operations. 
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Chapter I: Introduction 

Introduction 
 

With the growing IT revolution there was a huge growth in the number of transactions 

that happened on the internet every day, typically meta-data and actual transactional information 

about this data is stored in relational databases which has tables containing rows and columns 

where each row is representing one transaction (What is a database server?, 2018). Increasing in 

number of transactions on a single database server demands faster read and write operations to 

the database, because one client tries to do read operation on the database at the same time some 

other client tries to do write operation which may cause latency issues. Apart from the database 

server configurations the storage media used for storing data in the form of tables is also reason 

for latency. To avoid latency and increase speed of read and write operations it is suggested to 

use SSD in place of HDD based on the business demand. 

Usage of SSD’s increased a lot in the recent past because of various advantages like 

performance, durability and power consumptions, etc. (SSD advantage, n.d.) Traditional hard 

drives have moving components which act as read/write head and whereas solid state drives are 

made up of static components which reduces latency in seek time. SSD’s also have non-volatile 

behavior in which if the flash memory is made of 3D TLC NAND-based flash memory, this 

technology is used in case if data persistence is needed even after power loss. Whereas on the 

other side we have DRAM based SSD’s which are capable of providing very fast access, but 

they need continuous power supply. They also have battery inside to copy data to back-up 

storage from RAM in case of power failures and this data will be restored back to RAM when 

power gets restored. DRAM is more expensive than NAND-based flash memory SSD’s (SSD 

advantage, n.d.) 
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In recent past there was a huge growth in the usage of number of business transactions 

that happened over internet. It leads to the need of storing of all these huge transactional or 

business-related information in databases and retrieve them back whenever needed. Traditionally 

different types of storage media like Microsoft Excel, Microsoft Access etc., was used but with 

the outburst of data they got shifted to web based applications containing database server as back 

end to store the data and retrieve them back when needed. To be faster apart from making 

changes to system level configurations we can also deploy SSD’s in database servers instead of 

HDD’s from the storage perspective. 

Problem Statement 

Performance is a much-needed aspect in any kind of servers to serve continuous requests 

without any latency, either it is a video streaming server or a database server. There are many 

ways which we can increase performance of a database like upgrading infrastructure and scaling 

application etc. In case of upgrading infrastructure, we can itemize it by multiple things like 

changing CPU capacity, RAM size etc., apart from the other upgrade we can do data storage 

media from standard disks to solid state drives. 

Retrieving data from databases by the applications on demand will become difficult with 

increase in size of data in the databases. To address this problem one thing we can do is use fast 

SSD’s which will be helpful to retrieve data quickly. Since many databases already have lot of 

data and we need to find ways to move the data from HDD to SDD safely. This paper discusses 

what can be achieved with respect to performance of database by migrating storage infrastructure 

from HDD to SSD by making some read and write operations on MySQL database, which was 

created on google cloud platform. This paper also demonstrates a comfortable way to migrate 

storage infrastructure, i.e., HDD to SSD of already existing MySQL database without loss of 
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data by creating images and setting up a new instance of the image with SSD on google cloud 

platform. 

Nature and Significance of the Problem 

With the huge growth of in the database servers it is tough to do read and write 

operations to databases. In order to address this problem, there should be some kind of upgrade 

need to be done in all aspects of system configuration and upgrade of storage media from HDD 

to SSD is one of the notable upgrade we can make.  

The reason behind marking this problem as significant is HDD’s can make 3,000 

input/output operations per second on a database where as SSD’s can make 15,000-40,000. 

Below table gives clear information about IOPS (Input / Output operation per second) and 

throughput comparisons between SSD’s and HDD’s (What is SSD (solid-state drive)? - 

definition from whatis.com, 2018). 

Table 1: Comparison of HDD’s and SSD’s (Storage options, n.d.) 
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Objective of the Study 

The main objective of this study is to analyze the components of solid-state drives and 

what kind of impact they can make when the storage infrastructure in database servers are 

upgraded to solid state drives from traditional hard disk drives, make some visual analytics with 

the results obtained by two database servers one with SSD and other with HDD and keeping rest 

of the configuration same. This study will also give glance about upgrading the storage device of 

existing database servers from HDD to SSD without loss of any data in it on google cloud 

platform. 

Research Questions 

The study questions include:  

1. What made SSD’s work faster than HDD’s with better performance and low latency? 

2. How far performance of database servers can be enhanced by deploying SSD’s in 

them?  

3. How to migrate the storage infrastructure of existing database servers from HDD’s to 

SSD’s in the context of database server is deployed in Google Cloud Platform? 

Definition of Terms 

Hard disk drive: This is a kind of storage media which uses magnetic storage mechanism 

which is used for reading (retrieve) and write (store) are accomplished using a device called 

platter, which is a rotating disk coated finely with magnetic material. Data access is performed in 

random-access manner which uses sequential or non-sequential fashion (Hard disk drive, 

n.d.).These are pre-dominant secondary storage devices and are non-volatile which retains data 

even power is off.  
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Solid state drive: Solid state drives are also kind of storage media which is comprised of 

static devices it has no movable devices like hard drives. It has a circuit board at a base level 

which is comprised of memory chips. SSD’s have very low rate of failure. These are more 

expensive than HDD’s hence these have more performance and less latency when compared to 

the previous (SSD advantage, n.d.). 

Database sever: A database server comprises of both hardware and software together. 

Typically, they act as a back-end software for a web application in client-server model (What is a 

database server?, 2018). It can also referred to as a high-end physical computer acts as host for 

database, it is also called as instance. All the machine level configurations of database server are 

irrespective relational database or non-relational database hosting on top of it. 

Google Cloud Platform: It is a public cloud platform in which google is offering 

computing services. It provides wide range of services like storage, computing and building 

applications (Google compute engine documentation | compute engine | Google cloud, 2017). 

Storage comes under infrastructure as a service, where it provides services like google cloud 

storage which is used to store large amount of structured and unstructured data. It also provides 

platform for storing non-relational data as well.  

Throughput: It is the measure of how much quantity of information can be processes by 

a system in a respective time period. It is the measure of speed in which amount of work that can 

be accomplished in a specific time, this time is also called as response time. It is desired to have 

high throughput with less response time (SearchNetworking, 2018). 
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Latency: Latency is the measure time taken to access specific data inside a server or it 

can be a measure of response time. Low latency is desired in any kind of server or operations 

(SearchNetworking, 2018). 

Summary 

In a brief, this chapter discusses about factors that make solid state drives stand out of 

other storage media. Performance with respect to IOPS (input/output operations per second) and 

latency issues with respect to response time were discussed here. How these parameters impact 

the performance of database servers installed with solid state drives. Challenges in upgrading 

storage infrastructure of database servers from hard disk drives to solid state drives and how we 

can upgrade storage infrastructure in google cloud platform from traditional hard drives to 

SSD’s. High level description few technical terms stressed in this paper. Finally, we have 

discussed about throughput and latency parameters as well. In the next chapter we will discuss 

about challenges with database servers installed with HDD’s, Google Cloud Platform and More 

functional and operational details about components of hard disk drives and solid-state drives.  
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Chapter II: Background and Literature Review 

Introduction 

There was a huge growth in the data in the enterprise domain, all this data is stored in 

database servers and it will be retrieved whenever needed. Growth in quantity of data leads to 

performance and latency issues. These issues can be handled by upgrading infrastructure of 

database servers, and the upgrade of storage media from hard disk drive to solid state drive is 

notable upgrade. One more challenge in this is to avoid any loss of data in case of existing 

upgrading or old database servers. To find out what made solid state drives work faster than hard 

disk drives? And why high performance and low latency is desired in database servers? We will 

examine the internal working structures of both solid-state drives and hard disk drives. This 

chapter discusses more about operational and functional aspects of components of both disks and 

need and importance of performance in database servers as well (SSD advantage, n.d.). 

Background Related to Problem 

Upgrade of database servers is much needed as data retrieval and storing operations will 

be challenging.  There will be notable increase in the performance and less latency when we 

upgrade storage from hard disk drive to solid state drive. The reason for high performance in the 

state drives is they don’t have any movable components internally, that’s why it is called as 

solid-state drive. They are built on a top of single circuit board which is comprised of memory 

chips (What is SSD (solid-state drive)? - definition from whatis.com, 2018). Therefore, going 

forward we will discuss more about internal components and working of SSD’s, HDD’s and 

storage media of database servers. 
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Literature Related to the Problem 

Database servers: It can be considered as a warehouse where a website saves and 

process data for different kinds of operations like generating analytics, populating dashboards 

and pulling reports etc. Typically, it can be considered as a system that is connected to internet 

which can be used for information storage or retrieval. In any client server application when a 

request is sent by any web client to database server and response is sent back to the client. In 

general database servers have dedicated operating system which is more compatible with read 

and write operations. Server configurations are based on the range of operations for which 

database server was deployed. But the database server is irrespective of kind of database has 

been deployed on top of the database server. Apart from data, we can also store files/images in a 

relational database in the form BLOB storage but for better performance it is advised to use 

dedicated file server (What is a database server?, 2018).  

Database server takes SQL requests from web client and executes those requests on top 

of database like MySQL residing inside of the server. For a better performance, multiple 

instances of database can be used and at the same time scaling can be done by increasing 

multiple instances of the databases with growth request throughput to the server. Database 

requests can be done in multiple ways through triggers, functions and database queries.  

 

Figure 1: MySQL client/server model (MySQL client/server model, n.d.) 
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We can use security functions as well inside which can be used to limited access to 

specific data inside the database (What is a database server?, 2018). There are some kind of 

database servers where we can use them as centralized database servers which can be used for 

identity management, where we can store credentials for giving access to websites, if we 

consider a use case of university which has multiple applications like course registrations, 

learning management system, student enrollment and student worker timesheet submission etc. 

Since all these applications are related to similar stakeholders, they can use same credentials to 

log in to all these applications and log in platform of this kind of systems is called as single sign 

on system. Where we can store login credentials in a single database server called as identity 

server and authorization can be done by validating data with this identity server. Since 

authentication to the applications will happen using the same identity server, this server should 

work with high performance and low latency. For this server to work efficiently, it should be 

deployed with high system configurations and apart from this data storage needed to be upgraded 

from hard disk drive to solid state drive.  

 

Figure 2: Client/server model (Software-architecture, n.d.) 



18 
 

Hard disk: A hard drive is a storage media which uses magnetic mechanism to store 

data/ information. Ideally it is a secondary storage media whereas RAM (Random Access 

Memory) is a primary storage memory (Hard disk drive, n.d.). Today there are wide range of 

hard drives available with wide range variants with speed, size, etc., and the very first hard drive 

was introduced by IBM in 1956 which was named as RAMAC. RAMAC stands for Random 

Access Method of Accounting and Control, the size of RAMAC about two refrigerators. Since it 

is big to operate it almost need entire room. Amount of data the very first RMAC can hold is 5 

megabytes of data and IBM used to lease this storage systems for a price $3200 per month. Later 

IBM introduced “Disk Packs” that increase capacity and decrease size to the extent they can, 

these were plugged with IBM main frame computers and the size of platters in this device was 

reduced from 24 inches to 14 inches. Each disk pack can hold about a size of 2 MB of data and it 

weighs about 9-pounds. Then after few years IBM introduced concept of inter connect which 

allows compatibility of storage systems of other vendors and then the outburst of hard disk 

manufacturing started by wide range of vendors. 

Computers were mostly used by people or organizations who can afford them before 

1970s. After that in early 1970s personal computers were released into market, with release of 

personal computers into consumer market there was a huge need in microchips which are needed 

to build systems and then slowly the prices got dropped. But the hard drive capacity of these 

computers is much less. Then in 1980s a startup company introduced hard drives about a size of 

5 MB for a price of $1500 which can be fit into any kind of personal computers and the name of 

this company is Shugart Technology, which was later changed to Seagate and Seagate well 

known in storage systems market till today.  
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 RAID technology: This concept was introduced in SIGMOD conference by few 

scientists from U.C. Berkley. The full form of RAID is “Redundant Array of Inexpensive Disks”. 

Main concept behind development of RAID is dividing read and write components into separate 

logical units so that a single logical unit can work productively with loose coupling and this 

makes data operations faster. There will be very less possibility of loss of data as well (What is 

RAID (redundant array of independent disks)?, 2018). RAID employs the concept of data 

mirroring and data stripping. Mirroring helps in copying the data from one disk to other disk and 

stripping is the concept of dividing hard drive into small parts called as sectors typically each 

sector has a size of 512 bytes. There will be RAID Controller between operating system and 

physical hard disk. RAID controller helps in protecting data from system crashes and increases 

performance as well. 

Working of hard disk drive: A hard drive is a sealed chamber which contains a spindle 

in middle of the sealed pack which is surrounded by disk platters. There will be a motor which is 

used to rotate the disks and there will be a second motor which is used to handle read and write 

head that stores and read data from the tracks of each platters. It has an actuator which will act as 

a stepper motor rotating read-write heads. Anti-vibration mount can be used to protect and avoid 

contact of hard drive from other components. Bezel is a cover which can be used to protect the 

chassis it acts as a mechanism to protect. There are few cases where entire hard drive is cover by 

a cabinet and few bezels accompanied with LED’s which will blink in cases when hard drive is 

in use (How does a hard drive work?, 2018). Platters rotate with a speed of 4500 to 7200 rpm 

and the parameter used to measure disk access time is milliseconds. Physical location of a 

magnetic disk is located using cylinder, track and sector locations and logical address block can 

be used for address mapping.  
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Figure 3: Internal structure of hard disk drive (Internal structure of hard disk drive, 2017) 

Solid state drive: A solid state drive stores data in solid-state flash memory and it is a 

non-volatile form of storage. Solid state drives will not have any movable components inside it, 

on the other side hard disk drive has a spindle and read/write head which handled using actuator. 

Solid state drives are comprised of an array of semiconductor memory organized in the form of 

disk using integrated circuits. Since it has no movable components and it comprises of array of 

semiconductors hence it is called as a solid state drive. The rapid growth in development and 

using solid state drives is need for high read/write performance. Apart from this SSD’s low 

latency in read access, the reason behind this is SSD’s use flash memory to store data and it 

allows reading data directly from flash SSD cell location. In recent past many organizations 

adopting solid state drives technology in their infrastructure and it includes servers with high-

performance and availability, laptops and any other kind of storage infrastructure (What is SSD 

(solid-state drive)? - definition from whatis.com, 2018).  
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The features SSD’s make it suitable for building database servers as well which need to 

serve lot of read/write operations in parallel. This technology is widely adopted and provided by 

cloud services as well, when we configure a virtual machine in a cloud infrastructure it provides 

option to us whether to create a virtual machine with hard disk drive or solid-state drive. There 

are wide range of cloud service providers who provide solid state drive infrastructure in the 

market like a\Amazon Web Services, Google Cloud Platform and Rackspace etc., 

 

Figure 4: Screenshot of option to select type of hard drive when creating a  

virtual machine in Google Cloud Platform 

 

NAND flash cell: Solid state drives comes with three form factors which makes easier 

for organizations to quickly flip from hard drives to solid state drives, it includes SSD can fit into 

the same HDD slots. SSD’s use NAND flash memory concept which use 8-piece pin to access 

the data. SSD’s has NAND flash memory containing single-level cell or multi-level cell and it 

stores 1-bit of data per cell and the recent solid drives are triple-level NAND flash cells 

(Zambelli, Micheloni, & Luca, 2018). 
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Table 2: Solid-State Storage Terms 

 

 

 

 

 

 

 

Working of solid-state drive: In hard disk drives data is stored in movable disks called 

spinning disks, whereas in solid state drives data is stored in pool of NAND flash drives. These 

NAND flashes are made up of gate transistors and these flashes are designed to retain charges 

even if power supply is not available. 

 

Figure 5: Simple flash cell design (Simple flash cell design, n.d.) 

Single-level Cell (SLC) 

This is a type NAND flash chip that store 

single bit of data in single chip cell. It is one 

of the fastest, highly reliable, most 

expensive and long-lasting kind of NAND 

flash memory 

Multi-level Cell (MLC) 

In this type of NAND flash chip, it stores 

two bits in a chip cell. It is not long lasting 

as SLC, slower and less expensive. 

Enterprise Multi-level cell 

(eMLC) 

It is sophisticated version of Multi-level 

Cell (MLC) it has a controller and software 

inside which is used to overcome some 

problems of MLC. In enterprise eMLC is 

highly recommended in database servers, 

application servers etc. 



23 
 

Above diagram illustrates design of simple flash cell, electrons are stored in float gate 

whereas 0 means charged and 1 means non-charged it different from what we think about 

electron charges in general whereas 0 means not charged and 1 as charged. All these flash cells 

are arranged on top of a grid and this grid is called as a block and there is other parameter called 

as page which is a row of a block. The size of pages varies and available as 2K, 4K, 8K, and 

16K, etc., and the size block depends on the size of pages. In general, the size of block typically 

varies between 256KB to 4MB. Read and write operations works at page level in a grid and 

whereas overwrite works at block level, Hence, it requires high level voltage to remove the data 

at block level. While writing to a single cell in a page it copies entire page to a buffer and update 

the page again with old content and new content (Hu, 2012). 

 

Figure 6: Blocks in solid state drives (Structure of SSD block , 2015) 

Literature Related to the Methodology 

The problem statement of this paper is to determine how performance of database server 

increased with upgrade of storage infrastructure from hard disk drive to solid state drive. This 

paper illustrates how to upgrade the storage infrastructure of existing database servers from hard 
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drive to solid state drive in the context of Google Cloud Platform (Google compute engine 

documentation | compute engine | Google Cloud, 2017). 

Functional analysis of database servers with hard drive and with solid state drive: 

Setting up of database servers on Google Cloud Environment can be done in multiple ways, we 

can use different services provided by Google to setup working environment for this study. This 

can be done by creating a virtual machine using Google computing engine which is a service 

provided by Google Cloud through its service model Infrastructure as a Service, we need to 

create a virtual machine on Google Cloud Platform and install MySQL as a service in it 

manually (How to set up MySQL on Google compute engine | solutions | Google Cloud, 2017). 

Google compute engine offers wide range of options to scale and manage performance of these 

virtual machines. Google cloud provides another database service called Cloud SQL which is a 

database service managed end-to-end by Google (Khan & Jan, 2011). It is easy to setup and 

maintain using simple dashboards, when we are setting up a Cloud SQL service on Cloud it will 

ask for type of database we want. It offers two database services one is MySQL service and 

PostgreSQL, for this study we need to select MySQL database service (Cloud SQL | Cloud SQL | 

Google Cloud, 2017). Other way we can deploy infrastructure needed for our study is to use 

Google Cloud Launcher, it is an amazing service offered google cloud, where we will get 

complete setup needed for the study as a single package. We just need to give type of storage we 

need and capacity of hard drive rest all will be managed by the system itself. 

 Which service need to be chosen: Cloud SQL service provides wide range of features 

apart from database service, other features includes maintaining timely backups, auto scaling and 

maintenance etc., but the limitations here are we cannot setup SUPER users on this and we can’t 

even use user-defined functionalities. If we want a custom image of MySQL which is provided 
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by third party, we can use google compute engine to deploy the custom service and do our study. 

Third option is we can use google cloud launcher which installs MySQL service as soon as we 

deploy virtual machine using cloud launcher (Google compute engine documentation | compute 

engine | Google Cloud, 2017). 
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Chapter III: Methodology 

Introduction  

In this chapter we will briefly discussing about how research will be done and what are 

the steps need to be taken to find how performance metrics change by flipping SSD and HDD in 

database servers and find if are any anomalies and saturation points in the behavior, setting up 

google cloud platform as well. Apart from we will be discussing hardware and software 

components needed to accomplish this research. 

Design of the Study 

The standard way to start a research is to adopt a specific framework which be either 

qualitative or quantitative. Sometimes it can be hybrid which involves both, we are using 

quantitative framework for this research. The goal of the project is to setup two database servers 

one with solid state drive and other hard drive, maintaining rest of the configuration same. 

Taking results of performance or response time of database operation in both servers and 

comparing them (Wiseman, n.d.). Analyzing the results and check when the performance 

actually changes and this research helps to check if a specific has to adopt solid state drive or not 

in their database servers. This research performed in cloud infrastructure: google cloud platform. 

We will be working on migrating storage infrastructure to solid state drive from hard disk drive 

as well, which is useful to flip from hard drive to solid state drive when the application is busy 

and we can flip back to hard drive when the application traffic less. In this way money spent on 

infrastructure can be saved. 

Data Collection 

In this research we use couple of database servers deployed on google cloud platform one 

with hard drive and the other with solid state drive with maintaining same configurations in both 
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the server instances. Once setup servers got completed, MySQL database need to be installed in 

both servers. Google Cloud Platform is an incentive of Google, Inc., which provides wide range 

of cloud services on-demand. We will perform multiple database operations (read/write) and 

both the database servers and take results for multiple throughputs and compare the latencies. 

Tools and Techniques  

Once data collected by following data collection process mentioned in the above, we will 

get the dataset and thus dataset is fed to data analysis tool called Tableau. Tableau has numerous 

special and outstanding features. Its effective information disclosure and investigation 

application enables you to answer important inquiries in seconds. You can utilize Tableau's 

intuitive interface to visualize data, investigate datasets perspectives, and even consolidate 

various databases effectively. It doesn't require any complicated scripting. 

Hardware and Software Environment 

This research involves setting up database servers on top of google cloud platform and 

we need to install MySQL database software in those servers. 

Software requirements: 

• Linux operating system 

• MySQL database software 

• Tableau reporting tool 

• Google Cloud Platform Console 

Hardware requirements: Since we are using google cloud platform there is no need of 

physical solid state drive and hard drive we just need a laptop or desktop to login into google 

cloud platform and manage research infrastructure. 
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Work in progress: In this chapter we will be discussing about the effort needed for 

successful completion of implementation aspect of the research. In the previous chapters from 

the beginning discusses about the brief and high-level idea what is going to be implemented at 

the end if research and then in literature survey we have identified what are all the concepts 

needed to be studied in depth and information need to gathered is mentioned, followed by 

implementation details in theory was discussed. In the coming chapters we will be discussing 

more about the practical implementations of theory discussed in the previous chapters. 
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Chapter IV: Analysis of Results 

Introduction 

In this chapter we will be discussing about the use case of the implementation, setting up 

multiple database servers with data sets of different sizes, collection data which need to be stored 

in the database servers. On the other side building web applications to use database servers with 

different sizes of datasets and finding the load time for the each of the different datasets using 

Postman for only one user and Jmeter for mimicking multiple users at the same time and check 

the performance scenarios with putting up much load (multiple users trying to access the data at 

same time).  

The use case we have chosen is a part of ecommerce system where the main ecommerce 

head is fetching the reviews from some other system. Most of the ecommerce sites pull reviews 

from third parties who maintain reviews of all the products and give the data based on the API 

call which include product details, ecommerce site will be having product details and it will call 

the reviews system with the product details and get the reviews and aggregate the data and 

provide it to the user. 

It looks like single system but ideally in the back end there will be multiple systems like 

tax calculation, inventory management, and reviews handling etc., behind scenes. We have used 

swagger UI which is an open source API documentation tool for testing the entire system and 

developed small application using spring boot and java. Multiple instances of same applications 

configured and integrated with multiple database systems with difference in the size of datasets 

by changing the properties of database servers. Applications were set up in the local environment 

and database servers were installed on the google cloud platform. 
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Figure 7: Ecommerce system interacting with multiple systems to get the data 

Environment Setup 

As shown in the figure above we have considered a use case where an ecommerce system 

will pull data from multiple systems from the back end and aggregate together to make a 

complete end to end system. If any of the data pipe get slow down entire call will get delayed 

and hence these systems need to be built in such a way that they should ensure high availability 

and security as well since they will be fulfilling requests from multiple clients. This platform was 

platform using java and spring boot framework, Jmeter tool was used to search for the 

performance testing and to data collected will analyzed using tableau software. All the individual 

systems in the use case were built as REST API’s and the communication among them was built 

using REST template. 

 REST: REST stands for representational state transfer and it is architecture using which 

web services are built. Web services are used in connecting one system with other system. It is 
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stateless mechanism. These days REST is used in large scale because of it is light weight, easy to 

maintain and highly scalable (Vasyl, 2016). These services can be used by third parties or any 

system using authentication like using api keys, oAuth mechanism, etc., and the usage can be 

captured and monetized using proxy layers or api gateways on top of API’s. Request to REST 

Api can be send either xml or json format we have used json format in this use case. Api will 

respond with HTTP status codes and responses. REST Api’s have multiple methods which can 

be used for communication which includes get, post, put, delete, patch and these operations will 

respond using response body and HTTP status codes based on the type of operation. 

 

Figure 8: Status codes representing HTTP responses (Working with HTTP status codes, 2017) 

 

Figure 9: HTTP methods and their meaning (Server-sandbox, n.d.) 
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Figure 10: Trends showing growth of web APT’s (Growth in web api's since 2005, n.d.) 

These days there was a huge growth in the usage of api’s in any kind of domain. In the 

use case all the four systems were built as a REST api’s and will be communicated using REST 

template and data will be exchanged in JSON format for individual system API documentation 

open-source swagger was used. 

Spring boot: Spring boot is a java-based framework and it is open source as well. It is 

highly used in micro service development using REST and Java. There was huge growth in the 

adoption of spring boot in micro service development by organization because it is light weight 

nature and loose coupling (Spring boot tutorial, 2018). It has an inbuilt web server within the 

framework which avoids the extra over head of maintaining web server infrastructure. Its 

compatibility with spring cloud framework and other cloud infrastructure helps a lot in 

developing cloud native web applications.  



33 
 

Advantages of spring boot: It made web development easy by automating the lot of 

common things in the programming development and reduces the amount of time needed for 

building applications. 

• It has lot of annotations which can be helpful in reducing lot of boilerplate code  

• Spring boot has lot of compatibility with other frameworks from spring, which helps 

a lot during integration of multiple systems. 

• It has lot of plugins which helps in increase the productivity of developers. 

• It has an embedded server and in-built databases like H2 which makes configurations 

very easy. 

• Only drawback with spring boot is it is bit confusing and complicated while 

migrating a legacy old project to spring boot, all the configurations need to be look 

into carefully. But new projects can be started very easily by using spring initializer. 

 

Figure 11: Spring boot adoption trends (Trends showing adoption of Spring boot, n.d.) 
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Rest template: Rest Template is a one of the component from spring-web and it can be 

used for communicating among restful web services. During this call authentication need to be 

included which can be used for authentication during API calls. It will return a response entity 

which contains HTTP status and body contains the response body based on the method of the 

API call (How to use spring resttemplate client for consuming restful webservice, 2018). In some 

cases, response will not be there based on the architecture or design of application. In such cases 

just call the api and forget. Proper logging needs to be implemented to track failures in the 

communication. 

 

Figure 12: REST web service flow (Rest presentation documents, n.d.) 

Java and JPA: Java is a high-level programming language used for developing 

enterprise-level web applications. There are multiple configurations available in java like J2SE, 

J2ME, and J2EE which is used based on the business need. It has one of best feature write once 

and run anywhere. Features of java include object oriented, platform independent, secure, robust, 

portable, multi-threaded, high performance, and distributed. We have used J2EE to develop our 
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applications mentioned in the use case. Java web applications will run inside a web container, 

which is configured inside a web server (Master microservices with spring boot and spring 

cloud, 2017). We have used JPA (Java Persistence API) for mapping database tables with java 

business objects and our databases deployed in google cloud platform. JPA has wide range of 

annotations needed for configuring java applications with database servers in declarative style. 

Java objects pertaining database objects are called as entities and each field in the entity 

represents a column in the table. This kind of mapping between java objects and database tables 

is called as object-relational mapping. 

 

Figure 13: Working of JPA repository (Data caching in JPA, n.d.) 

Data Presentation 

Around 12,000 records containing review details of different products has been collected 

and inserted into database. Different database instances have been setup on the cloud with 6,000, 

8,000, 10,000, 12,000 records in the reviews table of each of the instance. Similar kind of 

instances has been built with same configuration with only change as storage mechanism. At the 

same time 2 different database instances with hard disk drive and solid-state drive has been set 
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for e-cart system as well, which is the main head of the application. Infrastructure details related 

to the use case were mentioned below. After setting up the instances on the google cloud 

platform. All the instances have been started and records has been inserted to the each of the 

instances using insert database scripts. Below table states the infrastructure details related to 

database instances. 

Table 3: Details of Databases Configured 

Database instance 
name 

Number 
of records 

Description 

reviews-hdd-db-6000 6000 
Instance with hard disk drive and reviews table 
containing 6000 records. 

reviews-hdd-db-8000 8000 
Instance with hard disk drive and reviews table 
containing 8000 records. 

reviews-hdd-db-10000 10000 
Instance with hard disk drive and reviews table 
containing 10000 records. 

reviews-hdd-db-12000 12000 
Instance with hard disk drive and reviews table 
containing 12000 records. 

reviews-ssd-db-6000 6000 
Instance with solid state drive and reviews table 
containing 6000 records. 

reviews-ssd-db-8000 8000 
Instance with solid state drive and reviews table 
containing 8000 records. 

reviews-ssd-db-10000 10000 
Instance with solid state drive and reviews table 
containing 10000 records. 

reviews-ssd-db-12000 12000 
Instance with solid state drive and reviews table 
containing 12000 records. 

ecart-hdd-db NA Instance with ecart basic tables and storage as hard disk 
drive 

ecart-ssd-db NA Instance with ecart basic tables and storage as solid state 
drive 
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Setting up databases on cloud environment: 

 

Figure 14: Creating SQL instance 

 

Figure 15: Created all the MySQL instances on GCP as mentioned in Table 3 
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Figure 16: Created app ms-reviews using Intellij IDE with Spring boot and Java 

 

Figure 17: Configuring application with cloud database details 



39 
 

 

Figure 18: Created multiple configurations with the same app to hit different 

databases of different sizes 

 

Figure 19: Run dashboard showing running apps with different database  

servers back-ends for ms-reviews application 
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Figure 20: Run dashboard showing running apps with different database servers  

back-ends for e-cart application 

 

Figure 21: Swagger UI with the all operations in e-cart 



41 
 

 

Figure 22: Swagger-UI for all operations in reviews app 

 

Figure 23: Calling reviews API from e-cart API using REST template for integration 
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Figure 24: Details of each of the database in the cloud platform 

 

Figure 25: Configurations needed to connect with database in cloud platform 
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Figure 26: Cloud console to check the table details in cloud platform 

E-cart application code flow: (Micro-service 1). 

              

    

 

 

 

          E-cart Database on cloud platform 

Figure 27: Design flow of e-cart application 
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     Product Controller 

       Product Service 

 
     Product Repository 
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Above figure illustrates the flow or the design of e cart application, it will take a request 

from user and pass it to the controller, controller will make needed validations and pass it to the 

service, orchestration takes place here. Service will call the e cart database to get the products 

once it gets the details it set all the product details from database to the response object. 

After that it will make a call to the review application or reviews micro service with the 

product details from the e cart application. It will take product id from the product details and 

make a call to the review application using rest template call. It will collect all the reviews 

information from both databases and aggregates together as a single response and gives to the 

user. 

Review application code flow: (Micro-service 2). 

              

    

 

 

 

  Reviews Database on cloud platform 
 

Figure 28: Design flow of reviews application 
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Reviews Database on cloud platform 

Figure 29: Integration of ms-ecart and ms-reviews applications 
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Data Analysis 

 After setting up the environment, running apps and connecting them with 

databases in cloud environment, we need to do test runs and analyze the results. The tool we use 

for running tests is Jmeter. 

Testing the applications using Jmeter: Jmeter is used to check load and performance 

capabilities of web applications. It is an open-source tool from apache. We need to have Java in 

the system for Jmeter to work. For running this tool, download the application from apache.org 

website, after downloading successfully navigate to bin folder of the downloaded folder and run 

the Jmeter.bat file. After running the bat file Apache Jmeter will be opened and give test plan 

name as HDD vs SSD.  

 

 

Figure 30: Dashboard of Jmeter with HDD vs SSD test plan 
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Figure 31: Creating a HTTP request to hit a web application 

After creating test plan create a HTTP request in test plan to hit e-cart application which 

was connected to one the databases hosted in cloud environment. Request can be created by 

giving host name, protocol type, and port in which application was hosted and other request 

parameters in the request. Hit the run button on the menu bar at the top to run the tests and the 

results will get captured in the result tree (REST API testing, 2017). Same configuration needs to 

be prepared for all the different scenarios for different applications hosted. Below are the results 

after running it with different Configurations. 
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Figure 32: Results obtained by sending request to application with 6000 records (HDD) 

 

Figure 33: Results obtained by sending request to application with 6000 records (SSD) 

 

Figure 34: Results obtained by sending request to application with 8000 records (HDD) 
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Figure 35: Results obtained by sending request to application with 8000 records (SSD) 

 

Figure 36: Results obtained by sending request to application with 10000 records (HDD) 

 

Figure 37: Results obtained by sending request to application with 10000 records (SSD) 
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Figure 38: Results obtained by sending request to application with 12000 records (HDD) 

 

Figure 39: Results obtained by sending request to application with 12000 records (SSD) 

Summary 

In this chapter, we have created all the setup needed for our analysis, which includes 

creating web applications, setting up MySQL databases, adding needed configurations to connect 

applications with databases. After set-up is done, we have run the Load tests to find the load time 

for each of the application. Load tests were run on each of the application with the same request 

and captured the load time using Jmeter tool. 
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Chapter V: Introduction, Results, and Conclusion 

Introduction 

In this chapter, we will analyze the result obtained from Jmeter. After running the load 

tests the results are analyzed and generated graphs using Tableau tool. All the tests were ran 

using the same request only change will be the amount of data processing to generate the results. 

When the results of test runs are is uploaded to Tableau it will give interactive visual dynamics 

comparing hard disk drives (HDD’s) and solid-state drives (SSD’s). 

Discussion and Results 

Table 4: Results Obtained by Running Tests on HDD’s 

   

 

 

 

Table 5: Results Obtained by Running Tests on SSD’s 
 

Number of records Load time in SSD's (in ms) 

6000 5187 

8000 6067 

10000 9740 

12000 11649 

 

We can notice that with less number of records the amount of load time does not making 

much differences. But with increase in the size of database it is there was a spike differences of 

load times in the HDD’s and SSD’s. These days, web applications are designed with idea of 

loose coupling, independent functionality and ease of integration. Each of the application is setup 

and backed by its own database instance working solely for its one purpose following the 

principle of single responsibility. If we take systems like banking platform it can be divided 

Number of records Load time in HDD’s (in ms) 

6000 5047 

8000 6431 

10000 10922 

12000 16089 
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small number of applications for credit card operations, debit card operations, personal loans, 

mortgage loans, payment operations, promotional offers, teller operations, third party 

integrations like credit bureau operations and instant operations like instant credit cards and 

instant loans etc., for both prospective customers and current customers as well. This will end up 

creating lot of micro services backed by its own database all the services need to be worked with 

less processing time to complete the request and generate the required response.  

If we take a scenario of a prospective customer applying for credit card loan it may 

include multiple back transactions which includes capturing all the details of a personal applying 

credit card, job details and calling credit bureau check from third party site, calling promo codes 

service to find the all the possible offers for the person and pull them from database, Processing 

requests from archives if the applicant applied it very recently. If everything is fine aggregate all 

the details and call the APR engine to get the cash APR and purchase APR details. All these 

business operations need to be done in fraction of minutes and instant decision need to be 

provided. 

There are many things which need to concentrate to make these kinds of requests with 

less response time. Apart from code quality we need look into infrastructure and storage media 

as well, which will help in contributing to faster processing of requests and generating responses 

quickly. Building small applications with its own independent databases makes the design and 

architecture simple. 

It also helps a lot in maintenance as well. If all the functionalities are built into a single 

application it is very tough to make even a small change and scope of testing and quality 

assurance will increases.  
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Graphical representation of HDD’s vs SSD’s:  Bar graph representing the comparison 

of results obtained through Jmeter. We can notice from the bar graph the performance of can be 

identified well with growth of amount of data under process. If the data is very less and if the 

processing data is archived very frequently, we can continue using HDD’s. But if the frequency 

of transactions more it will result in increase of input and out operations (IOPS) making the 

application to work slow and eventually it make ramp down the system completely. 

 

Figure 40: Bar graph displaying performance differences of HDD’s and SSD’s 
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Figure 41: Line chart representing trends in changing of load time of HDD’s and  

SSD’s with change in the number of records 

 

Conclusion 

After setting up environments with SSD’s and HDD’s, both of them were tested by 

hitting with same HTTP requests using Jmeter. The response remains same irrespective of 

environment and size of database, only difference is number of records need to be processed for 

obtaining results in the database. More ever we can clearly identify the differences in 

performance in terms of load time has been increasing exponentially with increase in the number 

of records need to be processed. 

We have discussed about the key features of solid-state drives and its advantages over 

hard disk drives. We have also discussed about role of solid-state drives in the database servers 

which will be used as back end for web applications to store data. This paper also discussed 

about integrating independent micro services which are backed with database servers with 
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storage media as solid-state drives and finally deduced a graph representing the trends in 

performance in terms of load time. 

Future Work 

 With the help of this experiment we get to know the variation in the load time of 

responses with medium size datasets. This research can be extended by how by increasing the 

parallel requests at the same time and running the tests and analyze the results. At the same time 

this type of research can be done by setting up huge databases with series of continuous read and 

write operations where we can analyze the performance of caches as well.  
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Appendix 

Sample code for used for developing the web application for connecting it to the database 

deployed in cloud level is deployed here. 

ProductController.java 

@RestController 

@Api() 

@RequestMapping("/product-catalog") 

public class GCPProductsController { 

 

    @Autowired 

    private ProductsService productsService; 

 

    @GetMapping("/list-of-products") 

    @ResponseBody 

    public List<ProductsResponse> getProductList() { 

 

        return productsService.getProductCatalog(); 

    } 

 

    @GetMapping("/product-by-name") 

    @ResponseBody 

    public GCPProductResponseAPI getProductByName(@RequestParam(name =      

"productName") String productName){ 

 

        return productsService.getProductByName(productName); 

    } 

 

    @GetMapping("/{product-id}") 

    @ResponseBody 

    public GCPProductResponseAPI getProductById(@PathVariable(name = "product-

id") String productId) { 

 

        return productsService.getProductCatalogById(productId); 

    } 

} 
 
 

ProductService.java 

 

@Service 

public class ProductsService { 
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    @Autowired 

    private ProductsRespository productsRespository; 

 

    @Autowired 

    private MsReviewsClient client; 

 

    public List<ProductsResponse> getProductCatalog(){ 

 

        return productsRespository.findAll(); 

    } 

 

    public GCPProductResponseAPI getProductCatalogById(String productId) { 

 

        GCPProductResponseAPI gcpProductResponseAPI = new 

GCPProductResponseAPI(); 

 

        ProductsResponse productsResponse = 

productsRespository.findByUniqId(productId); 

 

        ReviewResponseAPI reviewResponseAPI = client.getReviews(); 

 

        gcpProductResponseAPI.setProductsResponse(productsResponse); 

        

gcpProductResponseAPI.setReviewResponseList(reviewResponseAPI.getReviewRespon

seList()); 

        return gcpProductResponseAPI; 

 

    } 

 

    public GCPProductResponseAPI getProductByName(String productName) { 

 

        GCPProductResponseAPI gcpProductResponseAPI = new 

GCPProductResponseAPI(); 

        ProductsResponse productsResponse = 

productsRespository.findByProductName(productName); 

        ReviewResponseAPI reviewResponseAPI = client.getReviews(); 

        gcpProductResponseAPI.setProductsResponse(productsResponse); 

        

gcpProductResponseAPI.setReviewResponseList(reviewResponseAPI.getReviewRespon

seList()); 

        return gcpProductResponseAPI; 

    } 

} 

 

public class GCPProductResponseAPI { 



62 
 

 

    @ApiModelProperty(name = "Product details") 

    private ProductsResponse productsResponse; 

 

    @ApiModelProperty(name = "List of reviews") 

    private List<ReviewResponse> reviewResponseList; 

 

    public ProductsResponse getProductsResponse() { 

        return productsResponse; 

    } 

 

    public void setProductsResponse(ProductsResponse productsResponse) { 

        this.productsResponse = productsResponse; 

    } 

 

    public List<ReviewResponse> getReviewResponseList() { 

        return reviewResponseList; 

    } 

 

    public void setReviewResponseList(List<ReviewResponse> reviewResponseList) { 

        this.reviewResponseList = reviewResponseList; 

    } 

} 

 

ReviewResponse.java 

 

public class ReviewResponse { 

 

    private String reviewerid; 

    private String productid; 

    private String reviewername; 

    private String reviewtext; 

    private String overall; 

    private String summary; 

 

    public String getReviewerid() { 

        return reviewerid; 

    } 

 

    public void setReviewerid(String reviewerid) { 

        this.reviewerid = reviewerid; 

    } 

 

    public String getProductid() { 

        return productid; 
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    } 

 

    public void setProductid(String productid) { 

        this.productid = productid; 

    } 

 

    public String getReviewername() { 

        return reviewername; 

    } 

 

    public void setReviewername(String reviewername) { 

        this.reviewername = reviewername; 

    } 

 

    public String getReviewtext() { 

        return reviewtext; 

    } 

 

    public void setReviewtext(String reviewtext) { 

        this.reviewtext = reviewtext; 

    } 

 

    public String getOverall() { 

        return overall; 

    } 

 

    public void setOverall(String overall) { 

        this.overall = overall; 

    } 

 

    public String getSummary() { 

        return summary; 

    } 

 

    public void setSummary(String summary) { 

        this.summary = summary; 

    } 

} 

 

ProductsRespository.java 

 

@Repository 

public interface ProductsRespository extends JpaRepository<ProductsResponse, Integer> 

{ 
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    ProductsResponse findByUniqId(String id); 

 

    ProductsResponse findByProductName(String productName); 

} 

 

ReviewController.java 

 

@RestController 

@Api() 

@RequestMapping("/get-product-reviews") 

public class ReviewsController { 

 

    @Autowired 

    private ReviewsService reviewsService; 

 

    @GetMapping("/") 

    @ResponseBody 

    public ReviewResponseAPI getReviews() { 

 

        List<ReviewResponse> reviews = reviewsService.getReviews(); 

        ReviewResponseAPI reviewResponseAPI = new ReviewResponseAPI(); 

        reviewResponseAPI.setReviewResponseList(reviews); 

        return reviewResponseAPI; 

    } 

 

@GetMapping("/{productId}") 

@ResponseBody 

public List<ReviewResponse> getReviewsByProductId(@PathVariable(name = "product 

id") String id) { 

 

        return reviewsService.getReviewsByProductId(id); 

    } 

} 

 

ReviewsService.java 

 

@Service 

public class ReviewsService { 

 

    @Autowired 

    private ReviewRepository reviewRepository; 

 

    public List<ReviewResponse> getReviews() { 

 

        return reviewRepository.findAll(); 
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    } 

 

    public List<ReviewResponse> getReviewsByProductId(String id) { 

 

        return reviewRepository.findByProductid(id); 

    } 

} 

 

ReviewRepository.java 

 

@Repository 

public interface ReviewRepository  extends JpaRepository<ReviewResponse,Integer> { 

 

    List<ReviewResponse> findByProductid(String productId); 

} 

 

           SwaggerConfiguration.java 

 

@Configuration 

@EnableSwagger2 

public class SwaggerConfiguration { 
 

     @Bean 

public Docket api() { 

        return new Docket(DocumentationType.SWAGGER_2) 

                .select() 

                .apis(RequestHandlerSelectors.any()) 

                .paths(Predicates.not(PathSelectors.regex("/error"))) 

                .build() 

                .apiInfo(apiInfo()); 

    } 

    private ApiInfo apiInfo() { 

        return new ApiInfo( 

                "Reviews micro service API", 
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                "Reviews micro service API.", 

                "1.0.0" 

                new Contact("Venkatesh Kandula", "", ""), 

                "License of API", "API license URL", Collections.emptyList()); 

    } 

} 
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