
St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

12-2018

Analysis of SSD’s Performance in Database Servers
Venkatesh Kandula
vkandula@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more
information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Kandula, Venkatesh, "Analysis of SSD’s Performance in Database Servers" (2018). Culminating Projects in Information Assurance. 71.
https://repository.stcloudstate.edu/msia_etds/71

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St. Cloud State University

https://core.ac.uk/display/232795692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/71?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Analysis of SSD’s Performance in Database Servers

by

Venkatesh Kandula

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

Master of Science in

Information Assurance

December, 2018

Committee members:

Mark Schmidt, Chairperson

Lynn Collen

Balasubramanian Kasi

2

Abstract

Data storage is much needed in any type of device and there are multiple mechanisms for data

storage which vary from the device to device but at the end it’s a magnetic drive which holds the

data and stored in the form of digital format. One predominant data storage device is hard disk

drive also called as HDD. Hard disk drives are used in a wide range of systems like computers,

laptops and netbooks etc., it has magnetic platter which is used for reading and writing

operations. (Hard disk drive, n.d.) With the emerging technologies and modularization of web

application design architecture created a need for different kind of operating system and system

architecture based on the functionality. If we want a server where files need to be placed it

should be designed in such a way that it needs to be good at input and output operations (I/O).

(How does a hard drive work?, 2018) If we want to store videos and stream, that server should be

good at asynchronous streaming functionality. If we need to store the structured/un-structured

data which can be pertained to any educational institution or an organization, we can use a

database server to store this data in tables and it can be used. In general, we use hard disk drives

to store any kind of data in all the servers, but there will be only changes in the system

architecture. The concept of HDD utilization has been constant from past 20 years. There was a

huge growth in the architectural design of operating systems used for hosting database servers,

but when it comes to storage HDD’s have been used for many years. With the need for speed and

faster operations from the perspective of storage, solid state drives come in to picture. (SSD

Advantage, n.d.)They have a different kind of architecture when compared to HDD and they are

called as SSD. This paper discusses the idea of using SSD’s instead of HDD’s in database

servers. We created multiple database instances for SSD’s and HDD’s and also created multiple

web applications using JAVA and connected to each of these database servers to access data via

REST API’s. We have run multiple tests to compare the load time of all the different database

instances and generated some visual analytics how it behaves when multiple/series of get

operations made on the database with the REST API. This analysis will help in finding if there

are any anomalies in the behavior with increase in throughput of read and write operations.

3

Table of Contents

 Page

List of Tables ... 5

List of Figures .. 6

Chapter

 I. Introduction .. 9

 Introduction .. 9

 Problem Statement ... 10

 Nature and Significance of the Problem .. 11

 Objective of the Study ... 12

 Research Questions .. 12

 Definition of Terms .. 12

 Summary .. 14

 II. Background and Literature Review ... 15

 Introduction .. 15

 Background Related to Problem .. 15

 Literature Related to the Problem .. 16

 Literature Related to the Methodology .. 23

 III. Methodology .. 26

 Introduction .. 26

 Design of the Study .. 26

 Data Collection .. 26

 Tools and Techniques .. 27

4

Chapter Page

 Hardware and Software Environment .. 27

 Timeline ... 28

 IV. Analysis of Results .. 29

 Introduction .. 29

 Environment Setup ... 30

 Data Presentation ... 35

 Data Analysis ... 46

 Summary .. 50

 V. Introduction, Results, and Conclusion ... 51

 Introduction .. 51

 Discussion and Results .. 51

 Conclusion ... 54

 Future Work ... 55

References .. 56

Appendix ... 60

5

List of Tables

Table Page

 1. Comparison of HDD’s and SSD’s ... 11

 2. Solid-State Storage Terms ... 22

 3. Details of Databases Configured ... 36

 4. Results Obtained by Running Tests on HDD’s ... 51

 4. Results Obtained by Running Tests on SSD’s ... 51

6

List of Figures

Figure Page

 1. MySQL client/server model ... 16

 2. Client/server model .. 17

 3. Internal structure of hard disk drive ... 20

 4. Screenshot of option to select type of hard drive when creating a virtual

 machine in Google Cloud Platform ... 21

 5. Simple flash cell design ... 22

 6. Blocks in solid state drivers ... 23

 7. Ecommerce system interacting with multiple systems to get the data 30

 8. Status codes representing HTTP responses ... 31

 9. HTTP methods and their meaning ... 31

 10. Trends showing growth of web APT’s .. 32

 11. Spring boot adoption trends ... 33

 12. REST web service flow ... 34

 13. Working of JPA repository .. 35

 14. Creating SQL instance ... 37

 15. Created all the MySQL instances on GCP as mentioned in Table 3 37

 16. Created app ms-reviews using Intellij IDE with Spring boot and Java 38

 17. Configuring application with cloud database details ... 38

 18. Created multiple configurations with the same app to hit different

 databases of different sizes .. 39

7

Figure Page

 19. Run dashboard showing running apps with different database servers

 back-ends for ms-reviews application ... 39

 20. Run dashboard showing running apps with different database servers

 back-ends for e-cart application ... 40

 21. Swagger UI with the all operations in e-cart ... 40

 22. Swagger-UI for all operations in reviews app ... 41

 23. Calling reviews API from e-cart API using REST template for integration 41

 24. Details of each of the database in the cloud platform .. 42

 25. Configurations needed to connect with database in cloud platform 42

 26. Cloud console to check the table details in cloud platform 43

 27. Design flow of e-cart application ... 43

 28. Design flow of reviews application ... 44

 29. Integration of ms-ecart and ms-reviews applications .. 45

 30. Dashboard of Jmeter with HDD vs SSD test plan ... 46

 31. Creating a HTTP request to hit a web application ... 47

 32. Results obtained by sending request to application with 6000 records (HDD) 48

 33. Results obtained by sending request to application with 6000 records (SSD) 48

 34. Results obtained by sending request to application with 8000 records (HDD) 48

 35. Results obtained by sending request to application with 8000 records (SSD) 49

 36. Results obtained by sending request to application with 10000 records (HDD) 49

 37. Results obtained by sending request to application with 10000 records (SSD) 49

 38. Results obtained by sending request to application with 12000 records (HDD) 50

8

Figure Page

 39. Results obtained by sending request to application with 12000 records (SSD) 50

 40. Bar graph displaying performance differences of HDDs and SDD’s 53

 41. Line chart representing trends in changing of load time of HDD’s and

 SDD’s with change in the number of records .. 54

9

Chapter I: Introduction

Introduction

With the growing IT revolution there was a huge growth in the number of transactions

that happened on the internet every day, typically meta-data and actual transactional information

about this data is stored in relational databases which has tables containing rows and columns

where each row is representing one transaction (What is a database server?, 2018). Increasing in

number of transactions on a single database server demands faster read and write operations to

the database, because one client tries to do read operation on the database at the same time some

other client tries to do write operation which may cause latency issues. Apart from the database

server configurations the storage media used for storing data in the form of tables is also reason

for latency. To avoid latency and increase speed of read and write operations it is suggested to

use SSD in place of HDD based on the business demand.

Usage of SSD’s increased a lot in the recent past because of various advantages like

performance, durability and power consumptions, etc. (SSD advantage, n.d.) Traditional hard

drives have moving components which act as read/write head and whereas solid state drives are

made up of static components which reduces latency in seek time. SSD’s also have non-volatile

behavior in which if the flash memory is made of 3D TLC NAND-based flash memory, this

technology is used in case if data persistence is needed even after power loss. Whereas on the

other side we have DRAM based SSD’s which are capable of providing very fast access, but

they need continuous power supply. They also have battery inside to copy data to back-up

storage from RAM in case of power failures and this data will be restored back to RAM when

power gets restored. DRAM is more expensive than NAND-based flash memory SSD’s (SSD

advantage, n.d.)

10

In recent past there was a huge growth in the usage of number of business transactions

that happened over internet. It leads to the need of storing of all these huge transactional or

business-related information in databases and retrieve them back whenever needed. Traditionally

different types of storage media like Microsoft Excel, Microsoft Access etc., was used but with

the outburst of data they got shifted to web based applications containing database server as back

end to store the data and retrieve them back when needed. To be faster apart from making

changes to system level configurations we can also deploy SSD’s in database servers instead of

HDD’s from the storage perspective.

Problem Statement

Performance is a much-needed aspect in any kind of servers to serve continuous requests

without any latency, either it is a video streaming server or a database server. There are many

ways which we can increase performance of a database like upgrading infrastructure and scaling

application etc. In case of upgrading infrastructure, we can itemize it by multiple things like

changing CPU capacity, RAM size etc., apart from the other upgrade we can do data storage

media from standard disks to solid state drives.

Retrieving data from databases by the applications on demand will become difficult with

increase in size of data in the databases. To address this problem one thing we can do is use fast

SSD’s which will be helpful to retrieve data quickly. Since many databases already have lot of

data and we need to find ways to move the data from HDD to SDD safely. This paper discusses

what can be achieved with respect to performance of database by migrating storage infrastructure

from HDD to SSD by making some read and write operations on MySQL database, which was

created on google cloud platform. This paper also demonstrates a comfortable way to migrate

storage infrastructure, i.e., HDD to SSD of already existing MySQL database without loss of

11

data by creating images and setting up a new instance of the image with SSD on google cloud

platform.

Nature and Significance of the Problem

With the huge growth of in the database servers it is tough to do read and write

operations to databases. In order to address this problem, there should be some kind of upgrade

need to be done in all aspects of system configuration and upgrade of storage media from HDD

to SSD is one of the notable upgrade we can make.

The reason behind marking this problem as significant is HDD’s can make 3,000

input/output operations per second on a database where as SSD’s can make 15,000-40,000.

Below table gives clear information about IOPS (Input / Output operation per second) and

throughput comparisons between SSD’s and HDD’s (What is SSD (solid-state drive)? -

definition from whatis.com, 2018).

Table 1: Comparison of HDD’s and SSD’s (Storage options, n.d.)

12

Objective of the Study

The main objective of this study is to analyze the components of solid-state drives and

what kind of impact they can make when the storage infrastructure in database servers are

upgraded to solid state drives from traditional hard disk drives, make some visual analytics with

the results obtained by two database servers one with SSD and other with HDD and keeping rest

of the configuration same. This study will also give glance about upgrading the storage device of

existing database servers from HDD to SSD without loss of any data in it on google cloud

platform.

Research Questions

The study questions include:

1. What made SSD’s work faster than HDD’s with better performance and low latency?

2. How far performance of database servers can be enhanced by deploying SSD’s in

them?

3. How to migrate the storage infrastructure of existing database servers from HDD’s to

SSD’s in the context of database server is deployed in Google Cloud Platform?

Definition of Terms

Hard disk drive: This is a kind of storage media which uses magnetic storage mechanism

which is used for reading (retrieve) and write (store) are accomplished using a device called

platter, which is a rotating disk coated finely with magnetic material. Data access is performed in

random-access manner which uses sequential or non-sequential fashion (Hard disk drive,

n.d.).These are pre-dominant secondary storage devices and are non-volatile which retains data

even power is off.

13

Solid state drive: Solid state drives are also kind of storage media which is comprised of

static devices it has no movable devices like hard drives. It has a circuit board at a base level

which is comprised of memory chips. SSD’s have very low rate of failure. These are more

expensive than HDD’s hence these have more performance and less latency when compared to

the previous (SSD advantage, n.d.).

Database sever: A database server comprises of both hardware and software together.

Typically, they act as a back-end software for a web application in client-server model (What is a

database server?, 2018). It can also referred to as a high-end physical computer acts as host for

database, it is also called as instance. All the machine level configurations of database server are

irrespective relational database or non-relational database hosting on top of it.

Google Cloud Platform: It is a public cloud platform in which google is offering

computing services. It provides wide range of services like storage, computing and building

applications (Google compute engine documentation | compute engine | Google cloud, 2017).

Storage comes under infrastructure as a service, where it provides services like google cloud

storage which is used to store large amount of structured and unstructured data. It also provides

platform for storing non-relational data as well.

Throughput: It is the measure of how much quantity of information can be processes by

a system in a respective time period. It is the measure of speed in which amount of work that can

be accomplished in a specific time, this time is also called as response time. It is desired to have

high throughput with less response time (SearchNetworking, 2018).

14

Latency: Latency is the measure time taken to access specific data inside a server or it

can be a measure of response time. Low latency is desired in any kind of server or operations

(SearchNetworking, 2018).

Summary

In a brief, this chapter discusses about factors that make solid state drives stand out of

other storage media. Performance with respect to IOPS (input/output operations per second) and

latency issues with respect to response time were discussed here. How these parameters impact

the performance of database servers installed with solid state drives. Challenges in upgrading

storage infrastructure of database servers from hard disk drives to solid state drives and how we

can upgrade storage infrastructure in google cloud platform from traditional hard drives to

SSD’s. High level description few technical terms stressed in this paper. Finally, we have

discussed about throughput and latency parameters as well. In the next chapter we will discuss

about challenges with database servers installed with HDD’s, Google Cloud Platform and More

functional and operational details about components of hard disk drives and solid-state drives.

15

Chapter II: Background and Literature Review

Introduction

There was a huge growth in the data in the enterprise domain, all this data is stored in

database servers and it will be retrieved whenever needed. Growth in quantity of data leads to

performance and latency issues. These issues can be handled by upgrading infrastructure of

database servers, and the upgrade of storage media from hard disk drive to solid state drive is

notable upgrade. One more challenge in this is to avoid any loss of data in case of existing

upgrading or old database servers. To find out what made solid state drives work faster than hard

disk drives? And why high performance and low latency is desired in database servers? We will

examine the internal working structures of both solid-state drives and hard disk drives. This

chapter discusses more about operational and functional aspects of components of both disks and

need and importance of performance in database servers as well (SSD advantage, n.d.).

Background Related to Problem

Upgrade of database servers is much needed as data retrieval and storing operations will

be challenging. There will be notable increase in the performance and less latency when we

upgrade storage from hard disk drive to solid state drive. The reason for high performance in the

state drives is they don’t have any movable components internally, that’s why it is called as

solid-state drive. They are built on a top of single circuit board which is comprised of memory

chips (What is SSD (solid-state drive)? - definition from whatis.com, 2018). Therefore, going

forward we will discuss more about internal components and working of SSD’s, HDD’s and

storage media of database servers.

16

Literature Related to the Problem

Database servers: It can be considered as a warehouse where a website saves and

process data for different kinds of operations like generating analytics, populating dashboards

and pulling reports etc. Typically, it can be considered as a system that is connected to internet

which can be used for information storage or retrieval. In any client server application when a

request is sent by any web client to database server and response is sent back to the client. In

general database servers have dedicated operating system which is more compatible with read

and write operations. Server configurations are based on the range of operations for which

database server was deployed. But the database server is irrespective of kind of database has

been deployed on top of the database server. Apart from data, we can also store files/images in a

relational database in the form BLOB storage but for better performance it is advised to use

dedicated file server (What is a database server?, 2018).

Database server takes SQL requests from web client and executes those requests on top

of database like MySQL residing inside of the server. For a better performance, multiple

instances of database can be used and at the same time scaling can be done by increasing

multiple instances of the databases with growth request throughput to the server. Database

requests can be done in multiple ways through triggers, functions and database queries.

Figure 1: MySQL client/server model (MySQL client/server model, n.d.)

17

We can use security functions as well inside which can be used to limited access to

specific data inside the database (What is a database server?, 2018). There are some kind of

database servers where we can use them as centralized database servers which can be used for

identity management, where we can store credentials for giving access to websites, if we

consider a use case of university which has multiple applications like course registrations,

learning management system, student enrollment and student worker timesheet submission etc.

Since all these applications are related to similar stakeholders, they can use same credentials to

log in to all these applications and log in platform of this kind of systems is called as single sign

on system. Where we can store login credentials in a single database server called as identity

server and authorization can be done by validating data with this identity server. Since

authentication to the applications will happen using the same identity server, this server should

work with high performance and low latency. For this server to work efficiently, it should be

deployed with high system configurations and apart from this data storage needed to be upgraded

from hard disk drive to solid state drive.

Figure 2: Client/server model (Software-architecture, n.d.)

18

Hard disk: A hard drive is a storage media which uses magnetic mechanism to store

data/ information. Ideally it is a secondary storage media whereas RAM (Random Access

Memory) is a primary storage memory (Hard disk drive, n.d.). Today there are wide range of

hard drives available with wide range variants with speed, size, etc., and the very first hard drive

was introduced by IBM in 1956 which was named as RAMAC. RAMAC stands for Random

Access Method of Accounting and Control, the size of RAMAC about two refrigerators. Since it

is big to operate it almost need entire room. Amount of data the very first RMAC can hold is 5

megabytes of data and IBM used to lease this storage systems for a price $3200 per month. Later

IBM introduced “Disk Packs” that increase capacity and decrease size to the extent they can,

these were plugged with IBM main frame computers and the size of platters in this device was

reduced from 24 inches to 14 inches. Each disk pack can hold about a size of 2 MB of data and it

weighs about 9-pounds. Then after few years IBM introduced concept of inter connect which

allows compatibility of storage systems of other vendors and then the outburst of hard disk

manufacturing started by wide range of vendors.

Computers were mostly used by people or organizations who can afford them before

1970s. After that in early 1970s personal computers were released into market, with release of

personal computers into consumer market there was a huge need in microchips which are needed

to build systems and then slowly the prices got dropped. But the hard drive capacity of these

computers is much less. Then in 1980s a startup company introduced hard drives about a size of

5 MB for a price of $1500 which can be fit into any kind of personal computers and the name of

this company is Shugart Technology, which was later changed to Seagate and Seagate well

known in storage systems market till today.

19

 RAID technology: This concept was introduced in SIGMOD conference by few

scientists from U.C. Berkley. The full form of RAID is “Redundant Array of Inexpensive Disks”.

Main concept behind development of RAID is dividing read and write components into separate

logical units so that a single logical unit can work productively with loose coupling and this

makes data operations faster. There will be very less possibility of loss of data as well (What is

RAID (redundant array of independent disks)?, 2018). RAID employs the concept of data

mirroring and data stripping. Mirroring helps in copying the data from one disk to other disk and

stripping is the concept of dividing hard drive into small parts called as sectors typically each

sector has a size of 512 bytes. There will be RAID Controller between operating system and

physical hard disk. RAID controller helps in protecting data from system crashes and increases

performance as well.

Working of hard disk drive: A hard drive is a sealed chamber which contains a spindle

in middle of the sealed pack which is surrounded by disk platters. There will be a motor which is

used to rotate the disks and there will be a second motor which is used to handle read and write

head that stores and read data from the tracks of each platters. It has an actuator which will act as

a stepper motor rotating read-write heads. Anti-vibration mount can be used to protect and avoid

contact of hard drive from other components. Bezel is a cover which can be used to protect the

chassis it acts as a mechanism to protect. There are few cases where entire hard drive is cover by

a cabinet and few bezels accompanied with LED’s which will blink in cases when hard drive is

in use (How does a hard drive work?, 2018). Platters rotate with a speed of 4500 to 7200 rpm

and the parameter used to measure disk access time is milliseconds. Physical location of a

magnetic disk is located using cylinder, track and sector locations and logical address block can

be used for address mapping.

20

Figure 3: Internal structure of hard disk drive (Internal structure of hard disk drive, 2017)

Solid state drive: A solid state drive stores data in solid-state flash memory and it is a

non-volatile form of storage. Solid state drives will not have any movable components inside it,

on the other side hard disk drive has a spindle and read/write head which handled using actuator.

Solid state drives are comprised of an array of semiconductor memory organized in the form of

disk using integrated circuits. Since it has no movable components and it comprises of array of

semiconductors hence it is called as a solid state drive. The rapid growth in development and

using solid state drives is need for high read/write performance. Apart from this SSD’s low

latency in read access, the reason behind this is SSD’s use flash memory to store data and it

allows reading data directly from flash SSD cell location. In recent past many organizations

adopting solid state drives technology in their infrastructure and it includes servers with high-

performance and availability, laptops and any other kind of storage infrastructure (What is SSD

(solid-state drive)? - definition from whatis.com, 2018).

21

The features SSD’s make it suitable for building database servers as well which need to

serve lot of read/write operations in parallel. This technology is widely adopted and provided by

cloud services as well, when we configure a virtual machine in a cloud infrastructure it provides

option to us whether to create a virtual machine with hard disk drive or solid-state drive. There

are wide range of cloud service providers who provide solid state drive infrastructure in the

market like a\Amazon Web Services, Google Cloud Platform and Rackspace etc.,

Figure 4: Screenshot of option to select type of hard drive when creating a

virtual machine in Google Cloud Platform

NAND flash cell: Solid state drives comes with three form factors which makes easier

for organizations to quickly flip from hard drives to solid state drives, it includes SSD can fit into

the same HDD slots. SSD’s use NAND flash memory concept which use 8-piece pin to access

the data. SSD’s has NAND flash memory containing single-level cell or multi-level cell and it

stores 1-bit of data per cell and the recent solid drives are triple-level NAND flash cells

(Zambelli, Micheloni, & Luca, 2018).

22

Table 2: Solid-State Storage Terms

Working of solid-state drive: In hard disk drives data is stored in movable disks called

spinning disks, whereas in solid state drives data is stored in pool of NAND flash drives. These

NAND flashes are made up of gate transistors and these flashes are designed to retain charges

even if power supply is not available.

Figure 5: Simple flash cell design (Simple flash cell design, n.d.)

Single-level Cell (SLC)

This is a type NAND flash chip that store

single bit of data in single chip cell. It is one

of the fastest, highly reliable, most

expensive and long-lasting kind of NAND

flash memory

Multi-level Cell (MLC)

In this type of NAND flash chip, it stores

two bits in a chip cell. It is not long lasting

as SLC, slower and less expensive.

Enterprise Multi-level cell

(eMLC)

It is sophisticated version of Multi-level

Cell (MLC) it has a controller and software

inside which is used to overcome some

problems of MLC. In enterprise eMLC is

highly recommended in database servers,

application servers etc.

23

Above diagram illustrates design of simple flash cell, electrons are stored in float gate

whereas 0 means charged and 1 means non-charged it different from what we think about

electron charges in general whereas 0 means not charged and 1 as charged. All these flash cells

are arranged on top of a grid and this grid is called as a block and there is other parameter called

as page which is a row of a block. The size of pages varies and available as 2K, 4K, 8K, and

16K, etc., and the size block depends on the size of pages. In general, the size of block typically

varies between 256KB to 4MB. Read and write operations works at page level in a grid and

whereas overwrite works at block level, Hence, it requires high level voltage to remove the data

at block level. While writing to a single cell in a page it copies entire page to a buffer and update

the page again with old content and new content (Hu, 2012).

Figure 6: Blocks in solid state drives (Structure of SSD block , 2015)

Literature Related to the Methodology

The problem statement of this paper is to determine how performance of database server

increased with upgrade of storage infrastructure from hard disk drive to solid state drive. This

paper illustrates how to upgrade the storage infrastructure of existing database servers from hard

24

drive to solid state drive in the context of Google Cloud Platform (Google compute engine

documentation | compute engine | Google Cloud, 2017).

Functional analysis of database servers with hard drive and with solid state drive:

Setting up of database servers on Google Cloud Environment can be done in multiple ways, we

can use different services provided by Google to setup working environment for this study. This

can be done by creating a virtual machine using Google computing engine which is a service

provided by Google Cloud through its service model Infrastructure as a Service, we need to

create a virtual machine on Google Cloud Platform and install MySQL as a service in it

manually (How to set up MySQL on Google compute engine | solutions | Google Cloud, 2017).

Google compute engine offers wide range of options to scale and manage performance of these

virtual machines. Google cloud provides another database service called Cloud SQL which is a

database service managed end-to-end by Google (Khan & Jan, 2011). It is easy to setup and

maintain using simple dashboards, when we are setting up a Cloud SQL service on Cloud it will

ask for type of database we want. It offers two database services one is MySQL service and

PostgreSQL, for this study we need to select MySQL database service (Cloud SQL | Cloud SQL |

Google Cloud, 2017). Other way we can deploy infrastructure needed for our study is to use

Google Cloud Launcher, it is an amazing service offered google cloud, where we will get

complete setup needed for the study as a single package. We just need to give type of storage we

need and capacity of hard drive rest all will be managed by the system itself.

 Which service need to be chosen: Cloud SQL service provides wide range of features

apart from database service, other features includes maintaining timely backups, auto scaling and

maintenance etc., but the limitations here are we cannot setup SUPER users on this and we can’t

even use user-defined functionalities. If we want a custom image of MySQL which is provided

25

by third party, we can use google compute engine to deploy the custom service and do our study.

Third option is we can use google cloud launcher which installs MySQL service as soon as we

deploy virtual machine using cloud launcher (Google compute engine documentation | compute

engine | Google Cloud, 2017).

26

Chapter III: Methodology

Introduction

In this chapter we will briefly discussing about how research will be done and what are

the steps need to be taken to find how performance metrics change by flipping SSD and HDD in

database servers and find if are any anomalies and saturation points in the behavior, setting up

google cloud platform as well. Apart from we will be discussing hardware and software

components needed to accomplish this research.

Design of the Study

The standard way to start a research is to adopt a specific framework which be either

qualitative or quantitative. Sometimes it can be hybrid which involves both, we are using

quantitative framework for this research. The goal of the project is to setup two database servers

one with solid state drive and other hard drive, maintaining rest of the configuration same.

Taking results of performance or response time of database operation in both servers and

comparing them (Wiseman, n.d.). Analyzing the results and check when the performance

actually changes and this research helps to check if a specific has to adopt solid state drive or not

in their database servers. This research performed in cloud infrastructure: google cloud platform.

We will be working on migrating storage infrastructure to solid state drive from hard disk drive

as well, which is useful to flip from hard drive to solid state drive when the application is busy

and we can flip back to hard drive when the application traffic less. In this way money spent on

infrastructure can be saved.

Data Collection

In this research we use couple of database servers deployed on google cloud platform one

with hard drive and the other with solid state drive with maintaining same configurations in both

27

the server instances. Once setup servers got completed, MySQL database need to be installed in

both servers. Google Cloud Platform is an incentive of Google, Inc., which provides wide range

of cloud services on-demand. We will perform multiple database operations (read/write) and

both the database servers and take results for multiple throughputs and compare the latencies.

Tools and Techniques

Once data collected by following data collection process mentioned in the above, we will

get the dataset and thus dataset is fed to data analysis tool called Tableau. Tableau has numerous

special and outstanding features. Its effective information disclosure and investigation

application enables you to answer important inquiries in seconds. You can utilize Tableau's

intuitive interface to visualize data, investigate datasets perspectives, and even consolidate

various databases effectively. It doesn't require any complicated scripting.

Hardware and Software Environment

This research involves setting up database servers on top of google cloud platform and

we need to install MySQL database software in those servers.

Software requirements:

• Linux operating system

• MySQL database software

• Tableau reporting tool

• Google Cloud Platform Console

Hardware requirements: Since we are using google cloud platform there is no need of

physical solid state drive and hard drive we just need a laptop or desktop to login into google

cloud platform and manage research infrastructure.

28

Work in progress: In this chapter we will be discussing about the effort needed for

successful completion of implementation aspect of the research. In the previous chapters from

the beginning discusses about the brief and high-level idea what is going to be implemented at

the end if research and then in literature survey we have identified what are all the concepts

needed to be studied in depth and information need to gathered is mentioned, followed by

implementation details in theory was discussed. In the coming chapters we will be discussing

more about the practical implementations of theory discussed in the previous chapters.

29

Chapter IV: Analysis of Results

Introduction

In this chapter we will be discussing about the use case of the implementation, setting up

multiple database servers with data sets of different sizes, collection data which need to be stored

in the database servers. On the other side building web applications to use database servers with

different sizes of datasets and finding the load time for the each of the different datasets using

Postman for only one user and Jmeter for mimicking multiple users at the same time and check

the performance scenarios with putting up much load (multiple users trying to access the data at

same time).

The use case we have chosen is a part of ecommerce system where the main ecommerce

head is fetching the reviews from some other system. Most of the ecommerce sites pull reviews

from third parties who maintain reviews of all the products and give the data based on the API

call which include product details, ecommerce site will be having product details and it will call

the reviews system with the product details and get the reviews and aggregate the data and

provide it to the user.

It looks like single system but ideally in the back end there will be multiple systems like

tax calculation, inventory management, and reviews handling etc., behind scenes. We have used

swagger UI which is an open source API documentation tool for testing the entire system and

developed small application using spring boot and java. Multiple instances of same applications

configured and integrated with multiple database systems with difference in the size of datasets

by changing the properties of database servers. Applications were set up in the local environment

and database servers were installed on the google cloud platform.

30

Figure 7: Ecommerce system interacting with multiple systems to get the data

Environment Setup

As shown in the figure above we have considered a use case where an ecommerce system

will pull data from multiple systems from the back end and aggregate together to make a

complete end to end system. If any of the data pipe get slow down entire call will get delayed

and hence these systems need to be built in such a way that they should ensure high availability

and security as well since they will be fulfilling requests from multiple clients. This platform was

platform using java and spring boot framework, Jmeter tool was used to search for the

performance testing and to data collected will analyzed using tableau software. All the individual

systems in the use case were built as REST API’s and the communication among them was built

using REST template.

 REST: REST stands for representational state transfer and it is architecture using which

web services are built. Web services are used in connecting one system with other system. It is

31

stateless mechanism. These days REST is used in large scale because of it is light weight, easy to

maintain and highly scalable (Vasyl, 2016). These services can be used by third parties or any

system using authentication like using api keys, oAuth mechanism, etc., and the usage can be

captured and monetized using proxy layers or api gateways on top of API’s. Request to REST

Api can be send either xml or json format we have used json format in this use case. Api will

respond with HTTP status codes and responses. REST Api’s have multiple methods which can

be used for communication which includes get, post, put, delete, patch and these operations will

respond using response body and HTTP status codes based on the type of operation.

Figure 8: Status codes representing HTTP responses (Working with HTTP status codes, 2017)

Figure 9: HTTP methods and their meaning (Server-sandbox, n.d.)

32

Figure 10: Trends showing growth of web APT’s (Growth in web api's since 2005, n.d.)

These days there was a huge growth in the usage of api’s in any kind of domain. In the

use case all the four systems were built as a REST api’s and will be communicated using REST

template and data will be exchanged in JSON format for individual system API documentation

open-source swagger was used.

Spring boot: Spring boot is a java-based framework and it is open source as well. It is

highly used in micro service development using REST and Java. There was huge growth in the

adoption of spring boot in micro service development by organization because it is light weight

nature and loose coupling (Spring boot tutorial, 2018). It has an inbuilt web server within the

framework which avoids the extra over head of maintaining web server infrastructure. Its

compatibility with spring cloud framework and other cloud infrastructure helps a lot in

developing cloud native web applications.

33

Advantages of spring boot: It made web development easy by automating the lot of

common things in the programming development and reduces the amount of time needed for

building applications.

• It has lot of annotations which can be helpful in reducing lot of boilerplate code

• Spring boot has lot of compatibility with other frameworks from spring, which helps

a lot during integration of multiple systems.

• It has lot of plugins which helps in increase the productivity of developers.

• It has an embedded server and in-built databases like H2 which makes configurations

very easy.

• Only drawback with spring boot is it is bit confusing and complicated while

migrating a legacy old project to spring boot, all the configurations need to be look

into carefully. But new projects can be started very easily by using spring initializer.

Figure 11: Spring boot adoption trends (Trends showing adoption of Spring boot, n.d.)

34

Rest template: Rest Template is a one of the component from spring-web and it can be

used for communicating among restful web services. During this call authentication need to be

included which can be used for authentication during API calls. It will return a response entity

which contains HTTP status and body contains the response body based on the method of the

API call (How to use spring resttemplate client for consuming restful webservice, 2018). In some

cases, response will not be there based on the architecture or design of application. In such cases

just call the api and forget. Proper logging needs to be implemented to track failures in the

communication.

Figure 12: REST web service flow (Rest presentation documents, n.d.)

Java and JPA: Java is a high-level programming language used for developing

enterprise-level web applications. There are multiple configurations available in java like J2SE,

J2ME, and J2EE which is used based on the business need. It has one of best feature write once

and run anywhere. Features of java include object oriented, platform independent, secure, robust,

portable, multi-threaded, high performance, and distributed. We have used J2EE to develop our

35

applications mentioned in the use case. Java web applications will run inside a web container,

which is configured inside a web server (Master microservices with spring boot and spring

cloud, 2017). We have used JPA (Java Persistence API) for mapping database tables with java

business objects and our databases deployed in google cloud platform. JPA has wide range of

annotations needed for configuring java applications with database servers in declarative style.

Java objects pertaining database objects are called as entities and each field in the entity

represents a column in the table. This kind of mapping between java objects and database tables

is called as object-relational mapping.

Figure 13: Working of JPA repository (Data caching in JPA, n.d.)

Data Presentation

Around 12,000 records containing review details of different products has been collected

and inserted into database. Different database instances have been setup on the cloud with 6,000,

8,000, 10,000, 12,000 records in the reviews table of each of the instance. Similar kind of

instances has been built with same configuration with only change as storage mechanism. At the

same time 2 different database instances with hard disk drive and solid-state drive has been set

36

for e-cart system as well, which is the main head of the application. Infrastructure details related

to the use case were mentioned below. After setting up the instances on the google cloud

platform. All the instances have been started and records has been inserted to the each of the

instances using insert database scripts. Below table states the infrastructure details related to

database instances.

Table 3: Details of Databases Configured

Database instance
name

Number
of records

Description

reviews-hdd-db-6000 6000
Instance with hard disk drive and reviews table
containing 6000 records.

reviews-hdd-db-8000 8000
Instance with hard disk drive and reviews table
containing 8000 records.

reviews-hdd-db-10000 10000
Instance with hard disk drive and reviews table
containing 10000 records.

reviews-hdd-db-12000 12000
Instance with hard disk drive and reviews table
containing 12000 records.

reviews-ssd-db-6000 6000
Instance with solid state drive and reviews table
containing 6000 records.

reviews-ssd-db-8000 8000
Instance with solid state drive and reviews table
containing 8000 records.

reviews-ssd-db-10000 10000
Instance with solid state drive and reviews table
containing 10000 records.

reviews-ssd-db-12000 12000
Instance with solid state drive and reviews table
containing 12000 records.

ecart-hdd-db NA Instance with ecart basic tables and storage as hard disk
drive

ecart-ssd-db NA Instance with ecart basic tables and storage as solid state
drive

37

Setting up databases on cloud environment:

Figure 14: Creating SQL instance

Figure 15: Created all the MySQL instances on GCP as mentioned in Table 3

38

Figure 16: Created app ms-reviews using Intellij IDE with Spring boot and Java

Figure 17: Configuring application with cloud database details

39

Figure 18: Created multiple configurations with the same app to hit different

databases of different sizes

Figure 19: Run dashboard showing running apps with different database

servers back-ends for ms-reviews application

40

Figure 20: Run dashboard showing running apps with different database servers

back-ends for e-cart application

Figure 21: Swagger UI with the all operations in e-cart

41

Figure 22: Swagger-UI for all operations in reviews app

Figure 23: Calling reviews API from e-cart API using REST template for integration

42

Figure 24: Details of each of the database in the cloud platform

Figure 25: Configurations needed to connect with database in cloud platform

43

Figure 26: Cloud console to check the table details in cloud platform

E-cart application code flow: (Micro-service 1).

 E-cart Database on cloud platform

Figure 27: Design flow of e-cart application

 Product Request

 Product Controller

 Product Service

 Product Repository

44

Above figure illustrates the flow or the design of e cart application, it will take a request

from user and pass it to the controller, controller will make needed validations and pass it to the

service, orchestration takes place here. Service will call the e cart database to get the products

once it gets the details it set all the product details from database to the response object.

After that it will make a call to the review application or reviews micro service with the

product details from the e cart application. It will take product id from the product details and

make a call to the review application using rest template call. It will collect all the reviews

information from both databases and aggregates together as a single response and gives to the

user.

Review application code flow: (Micro-service 2).

 Reviews Database on cloud platform

Figure 28: Design flow of reviews application

 Review Request

 Review Controller

 Review Service

 Review Repository

45

Reviews Database on cloud platform

Figure 29: Integration of ms-ecart and ms-reviews applications

 Product Request

 Product Controller

 e-cart database

Product Service

Reviews Client

 Review Request (product id)

 Review Controller

 Review Service

 Review Repository

46

Data Analysis

 After setting up the environment, running apps and connecting them with

databases in cloud environment, we need to do test runs and analyze the results. The tool we use

for running tests is Jmeter.

Testing the applications using Jmeter: Jmeter is used to check load and performance

capabilities of web applications. It is an open-source tool from apache. We need to have Java in

the system for Jmeter to work. For running this tool, download the application from apache.org

website, after downloading successfully navigate to bin folder of the downloaded folder and run

the Jmeter.bat file. After running the bat file Apache Jmeter will be opened and give test plan

name as HDD vs SSD.

Figure 30: Dashboard of Jmeter with HDD vs SSD test plan

47

Figure 31: Creating a HTTP request to hit a web application

After creating test plan create a HTTP request in test plan to hit e-cart application which

was connected to one the databases hosted in cloud environment. Request can be created by

giving host name, protocol type, and port in which application was hosted and other request

parameters in the request. Hit the run button on the menu bar at the top to run the tests and the

results will get captured in the result tree (REST API testing, 2017). Same configuration needs to

be prepared for all the different scenarios for different applications hosted. Below are the results

after running it with different Configurations.

48

Figure 32: Results obtained by sending request to application with 6000 records (HDD)

Figure 33: Results obtained by sending request to application with 6000 records (SSD)

Figure 34: Results obtained by sending request to application with 8000 records (HDD)

49

Figure 35: Results obtained by sending request to application with 8000 records (SSD)

Figure 36: Results obtained by sending request to application with 10000 records (HDD)

Figure 37: Results obtained by sending request to application with 10000 records (SSD)

50

Figure 38: Results obtained by sending request to application with 12000 records (HDD)

Figure 39: Results obtained by sending request to application with 12000 records (SSD)

Summary

In this chapter, we have created all the setup needed for our analysis, which includes

creating web applications, setting up MySQL databases, adding needed configurations to connect

applications with databases. After set-up is done, we have run the Load tests to find the load time

for each of the application. Load tests were run on each of the application with the same request

and captured the load time using Jmeter tool.

51

Chapter V: Introduction, Results, and Conclusion

Introduction

In this chapter, we will analyze the result obtained from Jmeter. After running the load

tests the results are analyzed and generated graphs using Tableau tool. All the tests were ran

using the same request only change will be the amount of data processing to generate the results.

When the results of test runs are is uploaded to Tableau it will give interactive visual dynamics

comparing hard disk drives (HDD’s) and solid-state drives (SSD’s).

Discussion and Results

Table 4: Results Obtained by Running Tests on HDD’s

Table 5: Results Obtained by Running Tests on SSD’s

Number of records Load time in SSD's (in ms)

6000 5187

8000 6067

10000 9740

12000 11649

We can notice that with less number of records the amount of load time does not making

much differences. But with increase in the size of database it is there was a spike differences of

load times in the HDD’s and SSD’s. These days, web applications are designed with idea of

loose coupling, independent functionality and ease of integration. Each of the application is setup

and backed by its own database instance working solely for its one purpose following the

principle of single responsibility. If we take systems like banking platform it can be divided

Number of records Load time in HDD’s (in ms)

6000 5047

8000 6431

10000 10922

12000 16089

52

small number of applications for credit card operations, debit card operations, personal loans,

mortgage loans, payment operations, promotional offers, teller operations, third party

integrations like credit bureau operations and instant operations like instant credit cards and

instant loans etc., for both prospective customers and current customers as well. This will end up

creating lot of micro services backed by its own database all the services need to be worked with

less processing time to complete the request and generate the required response.

If we take a scenario of a prospective customer applying for credit card loan it may

include multiple back transactions which includes capturing all the details of a personal applying

credit card, job details and calling credit bureau check from third party site, calling promo codes

service to find the all the possible offers for the person and pull them from database, Processing

requests from archives if the applicant applied it very recently. If everything is fine aggregate all

the details and call the APR engine to get the cash APR and purchase APR details. All these

business operations need to be done in fraction of minutes and instant decision need to be

provided.

There are many things which need to concentrate to make these kinds of requests with

less response time. Apart from code quality we need look into infrastructure and storage media

as well, which will help in contributing to faster processing of requests and generating responses

quickly. Building small applications with its own independent databases makes the design and

architecture simple.

It also helps a lot in maintenance as well. If all the functionalities are built into a single

application it is very tough to make even a small change and scope of testing and quality

assurance will increases.

53

Graphical representation of HDD’s vs SSD’s: Bar graph representing the comparison

of results obtained through Jmeter. We can notice from the bar graph the performance of can be

identified well with growth of amount of data under process. If the data is very less and if the

processing data is archived very frequently, we can continue using HDD’s. But if the frequency

of transactions more it will result in increase of input and out operations (IOPS) making the

application to work slow and eventually it make ramp down the system completely.

Figure 40: Bar graph displaying performance differences of HDD’s and SSD’s

5047
6431

10922

16089

5187
6067

9740

11649

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

6000 8000 10000 12000

N
u

m
b

er
 o

f
R

ec
o

rd
s

Load time

Performance of SSD's vs HHD's

Load time in HDD’s (in ms) Load time in SSD's (in ms)

54

Figure 41: Line chart representing trends in changing of load time of HDD’s and

SSD’s with change in the number of records

Conclusion

After setting up environments with SSD’s and HDD’s, both of them were tested by

hitting with same HTTP requests using Jmeter. The response remains same irrespective of

environment and size of database, only difference is number of records need to be processed for

obtaining results in the database. More ever we can clearly identify the differences in

performance in terms of load time has been increasing exponentially with increase in the number

of records need to be processed.

We have discussed about the key features of solid-state drives and its advantages over

hard disk drives. We have also discussed about role of solid-state drives in the database servers

which will be used as back end for web applications to store data. This paper also discussed

about integrating independent micro services which are backed with database servers with

5047
6431

10922

16089

5187
6067

9740

11649

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

6000 8000 10000 12000

N
u

m
b

er
 o

f
R

ec
o

rd
s

Load time

Performance of SSD's vs HHD's

Load time in HDD’s (in ms) Load time in SSD's (in ms)

55

storage media as solid-state drives and finally deduced a graph representing the trends in

performance in terms of load time.

Future Work

 With the help of this experiment we get to know the variation in the load time of

responses with medium size datasets. This research can be extended by how by increasing the

parallel requests at the same time and running the tests and analyze the results. At the same time

this type of research can be done by setting up huge databases with series of continuous read and

write operations where we can analyze the performance of caches as well.

56

References

Cloud SQL | Cloud SQL | Google Cloud. (2017). Retrieved from google: https://cloud.

google.com/sql/docs/.

Data caching in JPA. (n.d.). Retrieved from http://www.thejavageek.com: http://www.

thejavageek.com/wp-content/uploads/2014/05/jpa-caching.png.

Google compute engine documentation | compute engine | Google Cloud. (2017). Retrieved from

google: https://cloud.google.com/compute/docs/.

Growth in web api's since 2005. (n.d.). Retrieved from https://www.programmableweb.com/:

https://www.programmableweb.com/sites/default/files/growth-in-web-apis-since-

2005_0.png.

Hard disk drive. (n.d.). retrieved from wikipedia: https://en.wikipedia.org/wiki/ hard_disk_drive.

How does a hard drive work? (2018). Retrieved from explain that stuff: http://www.

explainthatstuff.com/harddrive.html.

How to set up MySQL on google compute engine | solutions | google cloud. (2017). Retrieved

from google: https://cloud.google.com/solutions/setup-mysql.

How to use spring resttemplate client for consuming restful webservice. (2018, September).

Retrieved from https://grokonez.com: c/java-integration/use-spring-resttemplate-client-

consuming-restful-webservice.

Hu, J. (2012). Improving performance of solid state drives in enterprise. Lincoln.

Internal structure of hard disk drive. (2017, January). Retrieved from https://thetechhacker.com:

https://i0.wp.com/thetechhacker.com/wp-content/uploads/2017/01/hdd-components.jpg.

Khan, K., & Jan, A. (2011). Evaluating google app engine for enterprise application

development. Karlskrona.

57

Master microservices with spring boot and spring cloud. (2017, 12). Retrieved from

https://www.codejava.net: https://www.codejava.net/frameworks/hibernate/java-

hibernate-jpa-annotations-tutorial-for-beginners.

MySQL client/server model. (n.d.). Retrieved from http://softwsp.com/: ttp://download.softwsp.

com/sites/13/2015/10/mysql-database-server-win-005.png.

Rest api testing. (2017, 05). Retrieved from https://www.blazemeter.com: https://www.

blazemeter.com/blog/rest-api-testing-how-to-do-it-right.

Rest presentation documents. (n.d.). Retrieved from https://image.slidesharecdn.com/:

https://image.slidesharecdn.com/rest-presentation-121213012311-phpapp02/95/rest-

presentation-15-638.jpg?cb=1355361849.

Searchnetworking. (2018). Retrieved from what is throughput: http://searchnetworking

.techtarget.com/definition/throughput.

Server-sandbox. (n.d.). Retrieved from http://kikobeats.github.io: http://kikobeats.github.io/

server-sandbox/03.%20services/http/01.%20introduction.html.

Simple flash cell design. (n.d.). Retrieved from https://eeherald.s3.amazonaws.com:

https://eeherald.s3.amazonaws.com/uploads/ckeditor/pictures/oldarticleimages/flash_cell

_structure.jpg.

Software-architecture. (n.d.). Retrieved from http://tutorials.jenkov.com: http://tutorials.

jenkov.com/images/software-architecture/client-server-2.png.

Spring boot tutorial. (2018, June). Retrieved from https://www.baeldung.com: https://www.

baeldung.com/spring-boot-start.

58

SSD advantage. (n.d.). Retrieved from insight: https://www.insight.com/content/dam/insight-

web/en_us/article-images/whitepapers/partner-whitepapers/

the%20ssd%20advantage.pdf.

Storage options. (n.d.). Retrieved from https://cloud.google.com: https://cloud.google.

com/compute/docs/disks/.

Structure of SSD block . (2015, 07). Retrieved from https://www.extremetech.com:

https://www.extremetech.com/wp-content/uploads/2015/07/diagram-1.png.

Trends showing adoption of Spring boot. (n.d.). Retrieved from https://pbs.twimg.com:

https://pbs.twimg.com/media/dbxadjyv0aaqb2h.jpg:large.

Vasyl, R. (2016, August). A beginner’s tutorial for understanding restful api. Retrieved from

https://mlsdev.com: https://mlsdev.com/blog/81-a-beginner-s-tutorial-for-understanding-

restful-api.

What is a database server? (2018). Retrieved from techopedia: https://www.techopedia.

com/definition/441/database-server.

What is RAID (redundant array of independent disks)? (2018). retrieved from searchstorage:

http://searchstorage.techtarget.com/definition/raid.

What is SSD (solid-state drive)? - definition from whatis.com. (2018). Retrieved from

searchstorage: http://searchstorage.techtarget.com/definition/ssd-solid-state-drive.

Wiseman, T. (n.d.). The effects of an ssd on sql server performance. Retrieved from

timothyawiseman: https://timothyawiseman.wordpress.com/2012/07/29/the-effects-of-an-

ssd-on-sql-server-performance/.

59

Working with HTTP status codes. (2017, 06). Retrieved from https://codeteddy.com:

https://codeteddy.com/2017/06/06/create-api-with-asp-net-core-day-3-working-with-http-

status-codes-in-asp-net-core-api/.

Zambelli, C., Micheloni, R., & Luca, C. (2018). Impact of the nand flash power supply on solid

state drives reliability and performance. IEEE.

60

Appendix

Sample code for used for developing the web application for connecting it to the database

deployed in cloud level is deployed here.

ProductController.java

@RestController

@Api()

@RequestMapping("/product-catalog")

public class GCPProductsController {

 @Autowired

 private ProductsService productsService;

 @GetMapping("/list-of-products")

 @ResponseBody

 public List<ProductsResponse> getProductList() {

 return productsService.getProductCatalog();

 }

 @GetMapping("/product-by-name")

 @ResponseBody

 public GCPProductResponseAPI getProductByName(@RequestParam(name =

"productName") String productName){

 return productsService.getProductByName(productName);

 }

 @GetMapping("/{product-id}")

 @ResponseBody

 public GCPProductResponseAPI getProductById(@PathVariable(name = "product-

id") String productId) {

 return productsService.getProductCatalogById(productId);

 }

}

ProductService.java

@Service

public class ProductsService {

61

 @Autowired

 private ProductsRespository productsRespository;

 @Autowired

 private MsReviewsClient client;

 public List<ProductsResponse> getProductCatalog(){

 return productsRespository.findAll();

 }

 public GCPProductResponseAPI getProductCatalogById(String productId) {

 GCPProductResponseAPI gcpProductResponseAPI = new

GCPProductResponseAPI();

 ProductsResponse productsResponse =

productsRespository.findByUniqId(productId);

 ReviewResponseAPI reviewResponseAPI = client.getReviews();

 gcpProductResponseAPI.setProductsResponse(productsResponse);

gcpProductResponseAPI.setReviewResponseList(reviewResponseAPI.getReviewRespon

seList());

 return gcpProductResponseAPI;

 }

 public GCPProductResponseAPI getProductByName(String productName) {

 GCPProductResponseAPI gcpProductResponseAPI = new

GCPProductResponseAPI();

 ProductsResponse productsResponse =

productsRespository.findByProductName(productName);

 ReviewResponseAPI reviewResponseAPI = client.getReviews();

 gcpProductResponseAPI.setProductsResponse(productsResponse);

gcpProductResponseAPI.setReviewResponseList(reviewResponseAPI.getReviewRespon

seList());

 return gcpProductResponseAPI;

 }

}

public class GCPProductResponseAPI {

62

 @ApiModelProperty(name = "Product details")

 private ProductsResponse productsResponse;

 @ApiModelProperty(name = "List of reviews")

 private List<ReviewResponse> reviewResponseList;

 public ProductsResponse getProductsResponse() {

 return productsResponse;

 }

 public void setProductsResponse(ProductsResponse productsResponse) {

 this.productsResponse = productsResponse;

 }

 public List<ReviewResponse> getReviewResponseList() {

 return reviewResponseList;

 }

 public void setReviewResponseList(List<ReviewResponse> reviewResponseList) {

 this.reviewResponseList = reviewResponseList;

 }

}

ReviewResponse.java

public class ReviewResponse {

 private String reviewerid;

 private String productid;

 private String reviewername;

 private String reviewtext;

 private String overall;

 private String summary;

 public String getReviewerid() {

 return reviewerid;

 }

 public void setReviewerid(String reviewerid) {

 this.reviewerid = reviewerid;

 }

 public String getProductid() {

 return productid;

63

 }

 public void setProductid(String productid) {

 this.productid = productid;

 }

 public String getReviewername() {

 return reviewername;

 }

 public void setReviewername(String reviewername) {

 this.reviewername = reviewername;

 }

 public String getReviewtext() {

 return reviewtext;

 }

 public void setReviewtext(String reviewtext) {

 this.reviewtext = reviewtext;

 }

 public String getOverall() {

 return overall;

 }

 public void setOverall(String overall) {

 this.overall = overall;

 }

 public String getSummary() {

 return summary;

 }

 public void setSummary(String summary) {

 this.summary = summary;

 }

}

ProductsRespository.java

@Repository

public interface ProductsRespository extends JpaRepository<ProductsResponse, Integer>

{

64

 ProductsResponse findByUniqId(String id);

 ProductsResponse findByProductName(String productName);

}

ReviewController.java

@RestController

@Api()

@RequestMapping("/get-product-reviews")

public class ReviewsController {

 @Autowired

 private ReviewsService reviewsService;

 @GetMapping("/")

 @ResponseBody

 public ReviewResponseAPI getReviews() {

 List<ReviewResponse> reviews = reviewsService.getReviews();

 ReviewResponseAPI reviewResponseAPI = new ReviewResponseAPI();

 reviewResponseAPI.setReviewResponseList(reviews);

 return reviewResponseAPI;

 }

@GetMapping("/{productId}")

@ResponseBody

public List<ReviewResponse> getReviewsByProductId(@PathVariable(name = "product

id") String id) {

 return reviewsService.getReviewsByProductId(id);

 }

}

ReviewsService.java

@Service

public class ReviewsService {

 @Autowired

 private ReviewRepository reviewRepository;

 public List<ReviewResponse> getReviews() {

 return reviewRepository.findAll();

65

 }

 public List<ReviewResponse> getReviewsByProductId(String id) {

 return reviewRepository.findByProductid(id);

 }

}

ReviewRepository.java

@Repository

public interface ReviewRepository extends JpaRepository<ReviewResponse,Integer> {

 List<ReviewResponse> findByProductid(String productId);

}

 SwaggerConfiguration.java

@Configuration

@EnableSwagger2

public class SwaggerConfiguration {

 @Bean

public Docket api() {

 return new Docket(DocumentationType.SWAGGER_2)

 .select()

 .apis(RequestHandlerSelectors.any())

 .paths(Predicates.not(PathSelectors.regex("/error")))

 .build()

 .apiInfo(apiInfo());

 }

 private ApiInfo apiInfo() {

 return new ApiInfo(

 "Reviews micro service API",

66

 "Reviews micro service API.",

 "1.0.0"

 new Contact("Venkatesh Kandula", "", ""),

 "License of API", "API license URL", Collections.emptyList());

 }

}

	St. Cloud State University
	theRepository at St. Cloud State
	12-2018

	Analysis of SSD’s Performance in Database Servers
	Venkatesh Kandula
	Recommended Citation

	tmp.1547146617.pdf.x15DJ

