16 research outputs found

    Compiler verification meets cross-language linking via data abstraction

    Get PDF
    Many real programs are written in multiple different programming languages, and supporting this pattern creates challenges for formal compiler verification. We describe our Coq verification of a compiler for a high-level language, such that the compiler correctness theorem allows us to derive partial-correctness Hoare-logic theorems for programs built by linking the assembly code output by our compiler and assembly code produced by other means. Our compiler supports such tricky features as storable cross-language function pointers, without giving up the usual benefits of being able to verify different compiler phases (including, in our case, two classic optimizations) independently. The key technical innovation is a mixed operational and axiomatic semantics for the source language, with a built-in notion of abstract data types, such that compiled code interfaces with other languages only through axiomatically specified methods that mutate encapsulated private data, represented in whatever formats are most natural for those languages.National Science Foundation (U.S.) (Grant CCF-1253229)United States. Defense Advanced Research Projects Agency (Agreement FA8750-12-2-0293)United States. Dept. of Energy. Office of Science (Award DE-SC0008923

    Verified Compilers for a Multi-Language World

    Get PDF
    Though there has been remarkable progress on formally verified compilers in recent years, most of these compilers suffer from a serious limitation: they are proved correct under the assumption that they will only be used to compile whole programs. This is an unrealistic assumption since most software systems today are comprised of components written in different languages - both typed and untyped - compiled by different compilers to a common target, as well as low-level libraries that may be handwritten in the target language. We are pursuing a new methodology for building verified compilers for today\u27s world of multi-language software. The project has two central themes, both of which stem from a view of compiler correctness as a language interoperability problem. First, to specify correctness of component compilation, we require that if a source component s compiles to target component t, then t linked with some arbitrary target code t\u27 should behave the same as s interoperating with t\u27. The latter demands a formal semantics of interoperability between the source and target languages. Second, to enable safe interoperability between components compiled from languages as different as ML, Rust, Python, and C, we plan to design a gradually type-safe target language based on LLVM that supports safe interoperability between more precisely typed, less precisely typed, and type-unsafe components. Our approach opens up a new avenue for exploring sensible language interoperability while also tackling compiler correctness

    Decomposing Logical Relations with Forcing

    Get PDF
    Logical relations have now the maturity to deal with program equivalence for realistic programming languages with features likes recursive types, higher-order references and first-class continuations. However, such advanced logical relations---which are defined with technical developments like step-indexing or heap abstractions using recursively defined worlds---can make a proof tedious. A lot of work has been done to hide step-indexing in proofs, using Gödel-Löb logic. But to date, step-indexes have still to appear explicitely in particular constructions, for instance when building recursive worlds in a stratified way. In this paper, we go one step further, proposing an extension of Abadi-Plotkin logic with forcing construction which enables to encapsulate reasoning about step-indexing or heap in different layers. Moreover, it gives a uniform and abstract management of step-indexing for recursive terms or types and for higher-order references

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 24th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 28 regular papers presented in this volume were carefully reviewed and selected from 88 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 30th European Symposium on Programming, ESOP 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 24 papers included in this volume were carefully reviewed and selected from 79 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 29th European Symposium on Programming, ESOP 2020, which was planned to take place in Dublin, Ireland, in April 2020, as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The actual ETAPS 2020 meeting was postponed due to the Corona pandemic. The papers deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems
    corecore