1,411 research outputs found

    Distributed Object Medical Imaging Model

    Get PDF
    Abstract- Digital medical informatics and images are commonly used in hospitals today,. Because of the interrelatedness of the radiology department and other departments, especially the intensive care unit and emergency department, the transmission and sharing of medical images has become a critical issue. Our research group has developed a Java-based Distributed Object Medical Imaging Model(DOMIM) to facilitate the rapid development and deployment of medical imaging applications in a distributed environment that can be shared and used by related departments and mobile physiciansDOMIM is a unique suite of multimedia telemedicine applications developed for the use by medical related organizations. The applications support realtime patients’ data, image files, audio and video diagnosis annotation exchanges. The DOMIM enables joint collaboration between radiologists and physicians while they are at distant geographical locations. The DOMIM environment consists of heterogeneous, autonomous, and legacy resources. The Common Object Request Broker Architecture (CORBA), Java Database Connectivity (JDBC), and Java language provide the capability to combine the DOMIM resources into an integrated, interoperable, and scalable system. The underneath technology, including IDL ORB, Event Service, IIOP JDBC/ODBC, legacy system wrapping and Java implementation are explored. This paper explores a distributed collaborative CORBA/JDBC based framework that will enhance medical information management requirements and development. It encompasses a new paradigm for the delivery of health services that requires process reengineering, cultural changes, as well as organizational changes

    Offshore telementored ultrasound: a quality assessment study

    Get PDF
    Background Telementored ultrasound (US) connects experts to novices through various types of communication and network technologies with the overall aim to bridge the medical imaging gap between patients’ diagnostic needs and on-site user experience. The recurrent theme in previous research on remote telementored US is the limited access to US machines and experienced users. This study was conducted to determine whether telementored US was feasible in a remote offshore setting. The aim was to assess if an onshore US expert can guide an offshore nurse through focused US scanning protocols by connecting an US machine to existing videoconference units at the offshore hospitals and to evaluate the diagnostic quality of the images and cineloops procured. Results The diagnostic quality of cineloops was scored on a five-point scale. The percentage of cineloops suitable for interpretation (score 3 ≥) for the FATE and e-FAST protocols was 96.4 and 79.1. Lung sliding and seashore sign could be identified in all volunteers. The scan time for the FAST protocol (n = four scanning positions), FATE protocol (n = six scanning positions) and both lungs (n = two scanning positions) was 1 min 20 s, 4 min 15 s and 32 s, respectively. Conclusion A novice US user can be guided by a remote expert through focused US protocols within an acceptable time frame and with good diagnostic quality using existing communication and network systems found onboard offshore oil rigs.publishedVersio

    Video Communication in Telemedicine

    Get PDF

    Wireless Communication Options for a Mobile Ultrasound System

    Get PDF
    A mobile ultrasound system has been developed, which makes ultrasound examinations possible in harsh environments without reliable power sources, such as ambulances, helicopters, war zones, and disaster sites. The goal of this project was to analyze three different wireless communication technologies that could be integrated into the ultrasound system for possible utilization in remote data applications where medical information may be transmitted from the mobile unit to some centralized base station, such as an emergency room or field hospital. By incorporating wireless telecommunication technology into the design, on site medical personnel can be assisted in diagnostic decisions by remote medical experts. The wireless options that have been tested include the IEEE 802.11g standard, mobile broadband cards on a 3G cellular network, and a mobile satellite terminal. Each technology was tested in two phases. In the first phase, a client/server application was developed to measure and record general information about the quality of each link. Four different types of tests were developed to measure channel properties such as data rate, latency, inter-arrival jitter, and packet loss using various signal strengths, packet sizes, network protocols, and traffic loads. In the second phase of testing, the H.264 Scalable Video Codec (SVC) was used to transmit real-time ultrasound video streams over each of the wireless links to observe the image quality as well as the diagnostic value of the received video stream. The information gathered during both testing phases revealed the abilities and limitations of the different wireless technologies. The results from the performance testing will be valuable in the future for those trying to develop network applications for telemedicine procedures over these wireless telecommunication options. Additionally, the testing demonstrated that the system is currently capable of using H.264 SVC compression to transmit VGA quality ultrasound video at 30 frames per second (fps) over 802.11g while QVGA resolution at frame rates between 10 and 15 fps is possible over 3G and satellite networks

    Distributed Network, Wireless and Cloud Computing Enabled 3-D Ultrasound; a New Medical Technology Paradigm

    Get PDF
    Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people

    Computer-Assisted Algorithms for Ultrasound Imaging Systems

    Get PDF
    Ultrasound imaging works on the principle of transmitting ultrasound waves into the body and reconstructs the images of internal organs based on the strength of the echoes. Ultrasound imaging is considered to be safer, economical and can image the organs in real-time, which makes it widely used diagnostic imaging modality in health-care. Ultrasound imaging covers the broad spectrum of medical diagnostics; these include diagnosis of kidney, liver, pancreas, fetal monitoring, etc. Currently, the diagnosis through ultrasound scanning is clinic-centered, and the patients who are in need of ultrasound scanning has to visit the hospitals for getting the diagnosis. The services of an ultrasound system are constrained to hospitals and did not translate to its potential in remote health-care and point-of-care diagnostics due to its high form factor, shortage of sonographers, low signal to noise ratio, high diagnostic subjectivity, etc. In this thesis, we address these issues with an objective of making ultrasound imaging more reliable to use in point-of-care and remote health-care applications. To achieve the goal, we propose (i) computer-assisted algorithms to improve diagnostic accuracy and assist semi-skilled persons in scanning, (ii) speckle suppression algorithms to improve the diagnostic quality of ultrasound image, (iii) a reliable telesonography framework to address the shortage of sonographers, and (iv) a programmable portable ultrasound scanner to operate in point-of-care and remote health-care applications

    Telemedicine Network in Pediatric Cardiology: The Case of Tuscany Region in Italy

    Get PDF
    Four years ago, a telemedicine project in diagnosis and care of congenital cardiac malformations was developed in Tuscany interconnecting the Heart Hospital of Gabriele Monasterio Tuscany Foundation (FTGM) in Massa with main clinical centers around the region. Both live and store-and-forward tele-echocardiography were implemented, while the FTGM medical record system was applied for collaborative reporting. Mobile medical-grade carts, equipped with videoconferencing and computer units, were installed at main neonatology/pediatric centers throughout the Tuscany region. Today, 13 hospitals are connected to the network, while the MEYER Pediatric University Hospital (MEYER) in Firenze has recently adhered to the project, as HUB center jointly with FTGM, so enabling H24 telemedicine service in pediatric cardiology throughout the region. So far, more than 200 patients were diagnosed and followed by telemedicine
    corecore