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Abstract

Ultrasound imaging works on the principle of transmitting ultrasound waves into the body and

reconstructs the images of internal organs based on the strength of the echoes. Ultrasound imaging

is considered to be safer, economical and can image the organs in real-time, which makes it widely

used diagnostic imaging modality in health-care. Ultrasound imaging covers the broad spectrum

of medical diagnostics; these include diagnosis of kidney, liver, pancreas, fetal monitoring, etc.

Currently, the diagnosis through ultrasound scanning is clinic-centered, and the patients who are

in need of ultrasound scanning has to visit the hospitals for getting the diagnosis. The services of

an ultrasound system are constrained to hospitals and did not translate to its potential in remote

health-care and point-of-care diagnostics due to its high form factor, shortage of sonographers, low

signal to noise ratio, high diagnostic subjectivity, etc. In this thesis, we address these issues with an

objective of making ultrasound imaging more reliable to use in point-of-care and remote health-care

applications. To achieve the goal, we propose (i) computer-assisted algorithms to improve diagnostic

accuracy and assist semi-skilled persons in scanning, (ii) speckle suppression algorithms to improve

the diagnostic quality of ultrasound image, (iii) a reliable telesonography framework to address

the shortage of sonographers, and (iv) a programmable portable ultrasound scanner to operate in

point-of-care and remote health-care applications.

The objective of developing computer-assisted algorithms is to improve the diagnostic accuracy,

nullify the bias caused due to the skill of a sonographer and to assist the semi-skilled technicians

in diagnosis. Ultrasound scanning covers the broad diagnostic spectrum and involves high sub-

jectivity in scanning, and hence computer-assisted algorithms need to be designed and engineered

for each organ specifically. Here we focus on to develop computer-assisted algorithm for the typi-

cal problem in ultrasound diagnosis. The nonalcoholic fatty liver disease (NAFLD) is the leading

cause of dysfunction of the liver and diagnosis of NAFLD through ultrasound imaging involves high

subjectivity due to the minute variations observed in the characteristics of liver images across all

grades of fatty liver. The quantification of fatty liver will be analyzed based on the characteristics of

parenchymal texture, periportal veins, and diaphragm. The texture characteristics like morphology,

echogenicity and homogeneity vary with the proportion of the fat in the liver, while the visibility

of the diaphragm and periportal veins diminishes with the proportion of fat. Here, we propose two

computer-assisted algorithms for NAFLD, one for characterization of ultrasonic fatty liver texture,

while other for detection of diagnostically significant regions. As the texture properties vary with

the concentration of fat, we formulate grading of fatty liver as a texture discrimination problem.
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The scattering coefficients which give the stable and invariant representation for images are used

as features for classifying the texture of a liver. To assist semi-skilled persons in scanning and to

reduce the sonographers time in fatty liver diagnosis, we propose an algorithm for detection of the

diaphragm, periportal veins, and texture of liver parenchyma. The signal to noise ratio of ultrasound

images is very low due to the presence of speckle noise. Speckle delineates the boundaries of the

organs, masks fine information about tissues, increase the variance between pixels thus reducing the

diagnostic quality in ultrasound images. To enhance diagnostic quality, we propose a sparsity-based

despeckling algorithm to effectively suppress the speckle noise. To address the shortage of sonogra-

phers in remote health-care, we propose a reliable web real-time communication (WebRTC) based

streaming application. With the proposed application, the semi-skilled person can transmit the

scanned ultrasound video in real-time to the expert-end for getting the diagnosis, and also it helps

the semi-skilled person to get the real-time assistance from the sonographers in scanning the pa-

tients. Finally, to operate an ultrasound scanner in remote and point-of-care diagnostics, we propose

a single system-on-chip based portable ultrasound scanning system. The proposed contributions on

computer-assisted algorithms, image enhancement algorithms, WebRTC based telesonography and

portable ultrasound scanner will leverage the potentiality of ultrasound diagnosis to use more reliably

in point-of-care and remote diagnostics.
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Chapter 1

Introduction to Ultrasound

Imaging

1.1 Introduction

Medical ultrasound scanning is a diagnostic imaging modality which works on the

principle of transmitting ultrasound waves into the body and reconstructs the images

of internal organs based on the strength of the echoes. Depending on the type of

application, ultrasound scanners are typically operated in 1-18 MHz frequency range.

The resolution of the scanner is proportional to the frequency at which the device is

operated, which is subjected to the depth of the organ scanned. Ultrasound scanners

are operated at a higher frequency range of 7-18 MHz to image superficial structures

like thyroid, breast, muscles, etc., since the high frequency gives better resolution of

the tissues. The high-frequency ultrasound waves suffer from poor penetration due

to high attenuation. Hence organs located at higher depths such as kidney, liver,

pancreas, spleen, etc., are imaged with a low frequency ranging from 1-6 MHz [3].

Ultrasound scanning is the widely used diagnostic imaging modality in health-care

due to following advantages [4]:

• Uses non-ionizing sound waves for sensing, hence considered to be the safest
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imaging technology.

• Inexpensive compared to other imaging technologies like Magnetic Resonance

Imaging (MRI), Computed Tomography (CT), etc.

• Have the capability to image the organs and moving structures like blood flow,

cardiac motion, fetus, etc., in real-time.

• Covers a wide spectrum of medical diagnostics, which includes kidney, liver,

pancreas, fetus monitoring, gynecology, cardiology, etc.

In addition to the above advantages, the ultrasound scanners add a lot of value

in emergency health-care. For example, in situations like severe accidents, internal

bleeding from the organs is the most serious threat to survival. Neither the injuries

nor the bleeding may be apparently seen. Under the circumstances, the ultrasound

scanning is very useful as a preliminary scan to pinpoint the location, cause and

severity of hemorrhage, thus helping the doctors to take timely actions which can

save the lives of patients [5]. Currently, the diagnosis through ultrasound scanning

is hospital-centered, and the patients who are in need of ultrasound scanning has to

visit the hospitals for getting the diagnosis. Conventional ultrasound scanners used

in hospitals shown in Fig. 1.1 are placed on a cart positioned at a fixed location in

hospitals. Ultrasound scanning is performed by the medical professionals trained in

sonography known as sonologists.

1.2 Challenges

Despite being safer, economical and real time-imaging capability, ultrasound scanners

have not been used to its fullest extent in health-care. Some of the bottlenecks

encountered in maximum utilization of this technology are:

• Form factor: The conventional ultrasound scanners are of high form factor,

and hence it becomes difficult to carry the ultrasound scanners to the patient’s
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Figure 1.1: Conventional ultrasound scanners (Siemens Acuson SC2000), used in current practice.

bedside to offer point-of-care (PoC) diagnostics.

• Shortage of sonographers: There is a severe shortage in the number of sono-

graphers available to meet the current demand globally [6–8].

• Low diagnostic accuracy: The ultrasound images are contained with low

signal to noise ratio, poorly defined organ boundaries, low contrast, etc., resulting

in low diagnostic accuracy.

• Prenatal gender determination act: The ultrasound scanners have been

used for gender determination of fetus, from where parents are opting for gender-

selective abortions. This lead to a decline in the male-female sex ratio which is

associated with lot more social issues. To prevent this, Government of India

brought an amendment called Prenatal Gender Determination Act in the year

1994, which says that ultrasound scanning should only be used inside the hospital

premises, and the sonographers should not reveal the gender of the fetus. These

constrain the use of ultrasound scanners outside the hospital premises which

limits the applications of ultrasound diagnostics to operate in PoC and remote

health-care applications [8, 9].
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1.3 Contributions

Considering the potentiality and limitations of ultrasound scanning in health-care,

in this thesis, we focus on developing a reliable ultrasound technology customized

for PoC and remote health-care diagnostics. The objective is realizable only if the

ultrasound scanner is compact and comes with assistive technologies such that even

a semi-skilled person is able to scan the patients in remote settings. As shown in

Fig. 1.2, the contributions we made in this thesis to achieve the objective of taking

ultrasound scanning from clinic centered diagnostics to PoC diagnostics are:

• Computer-assisted diagnostics:

Ultrasound scanning covers a broad diagnostic spectrum and involves high sub-

jectivity in scanning, and hence developing universal computer-assisted algo-

rithms for complete ultrasound imaging is infeasible. The computer-assisted

diagnostics need to be designed and engineered for each organ specifically. Here

we focus on the development of a computer-assisted diagnostics for the represen-

tative problem in ultrasound diagnosis. Quantification of fat in the liver through

ultrasound imaging is challenging, involves high subjectivity and carries a high

clinical significance [10]. In this thesis, we propose a novel computer-assisted

diagnostic algorithm for quantifying the fat in the liver. The characteristics of

texture vary with the density of fat present in the liver hence we formulated

quantification of fat in the liver as a texture discrimination problem. To char-

acterize the texture of liver, we propose a scattering coefficient feature based

classification. The propose algorithm can nullify the bias caused due to the skill

of a sonographer and also assist the sonographers to take the decisions with high

confidence.

• Detection of diagnostically significant regions:

In ultrasound images, the diagnostic information is present only in particular

regions called as the region of interest (RoI). The accuracy of diagnosis in ultra-

4



Ultrasound Scanner for 
Point-of-Care diagnostics

Computer-aided 
diagnosis

Non-alcoholic Fatty 
liver disease-

Review

Fatty liver Texture 
classification based on 
Curvelet transform and 

SVD based features

Fatty liver Texture 
classification based on 
Scattering Transform 

Coefficients

Automated Detection of 
Diaphragm, homogeneous 

texture, and Periportal 
veins

De-noising
WebRTC based 
Telesonography

Portable 
Ultrasound Scanner 

Figure 1.2: Contributions made in the thesis for making ultrasound scanning more reliable to operate
at PoC and remote diagnostics.

sound imaging depends on detection and analysis of these regions. Automatic

detection of these regions in ultrasound images will benefit in many ways: (i)

assist the semi-skilled person to know whether the scanned image has the repre-

sentative information useful for diagnosis, (ii) in the development of automated

diagnostic algorithms, and (iii) to validate the presence of representative regions

in images before transmitting it to the cloud or the expert-end for analysis in

telesonography applications and (iv) to diagnose more patients in less time as it

reduces the time taken by the sonographer in detecting the RoI. In this thesis,

we propose algorithms for detecting diagnostically significant regions correspond

to nonalcoholic fatty liver disease. Diaphragm, periportal veins and homoge-

neous texture of liver parenchyma are the three RoI’s analyzed for diagnosing

the nonalcoholic fatty liver disease. The shape and size of each RoI is organ spe-

cific hence we propose a specific algorithm for detecting diaphragm, periportal

veins and homogeneous texture of liver parenchyma. The diaphragm is detected

based on active contour segmentation, Viola Jones algorithm and GIST descrip-
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tor, where periportal veins are detected using Viola Jones and GIST descriptor

and homogeneous texture is detected based on histogram features and connected

components algorithm.

• Image enhancement algorithms:

The ultrasound images are affected by speckle noise which is multiplicative in

nature. The speckle noise appears like dense granules and small worm-like struc-

tures conveying no significant information in the ultrasound image. Speckle noise

occurs when the wavelength of sound is greater than the dimension of scanning

tissue. Under this condition, the tissue will scatter the ultrasound wave that

impinged on it. The scattered waves will randomly interfere with each other

at the receiver side forming speckle noise. If the interference patterns add con-

structively it will result in bright spots or if the interference patterns add de-

structively it will result in black spots in an image resulting in granularity and

small worm-like structures in an ultrasound image. Speckle noise masks the fine

information about the tissues, delineates the boundaries of organ, thus reducing

the diagnostic information present in the image. In this thesis, we propose a

speckle suppression algorithm based on sparsity to suppress the speckle noise in

ultrasound images.

• Telesonography:

In general, telesonography addresses the lack of sonographers by allowing non-

expertise or semi-skilled persons to scan the patients in remote health-care and

transmit the scanned data to the expert-end for diagnosis. In conventional

telesonography, the ultrasound video is lossy encoded with H.264/H.265 and

transmitted to the expert end via wired or wireless communication technolo-

gies [11, 12]. These kind of techniques are high bandwidth demanding and did

not adapt to the network conditions resulting in underutilization of the network

resources and poor quality of service, making it unreliable for real-time telesonog-
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raphy applications. In this thesis, we propose a web real-time communication

(WebRTC) framework for reliable telesonography, where the end-users can con-

nect with each other and share ultrasound video enabling real-time telediagnosis.

The developed application is a server-based service and end-users does not need

to have any installed software or plugins in their computing platforms to con-

nect the other-end for establishing the connection and streaming the ultrasound

video, thus enabling reliable real-time telediagnosis.

• Portable ultrasound scanner:

As the conventional ultrasound scanners cannot be used in point-of-care diagnos-

tics due to its high form factor, we propose a programmable portable ultrasound

hardware framework based on a single system-on-chip. The system is designed

for 16-channel and comes with adequate external interfaces to integrate with

devices like finger-print scanner, the global positioning system (GPS), communi-

cation modules, etc., to ensure that the ultrasound scanning can be used securely

in remote health-care environments.

1.4 Database Acquisition

The entire database used for developing CAD algorithms in this thesis is acquired

from Asian Institute of Gastroenterology, Hyderabad, Telangana, India. The liver

ultrasound images are acquired using 3.5 MHz curved array transducer with clinical

Seimens S1000 ultrasound scanning system. The ultrasound images are captured to

a depth of 15 cm by adjusting focal zone to the center of the organ to obtain minimal

beam diffraction. Due to low inter and intra diagnosing agreement of fatty liver, we

considered the opinion of three sonographers independently in labeling each image.

All the three sonographers have more than 10 years of experience in ultrasonography.

The images with 100% agreement between the sonographers are only considered for

the analysis. The liver database of 657 labeled ultrasound images corresponding
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to NAFLD is acquired in the process. These includes 203 Normal, 173 Grade I,

157 Grade II and 124 Grade III ultrasound images. Apart from liver images, we also

collected a ultrasound kidney database of 600 images, 10 liver and 5 spleen ultrasound

videos.

1.5 Thesis Overview

The thesis consists of four parts, in first part, we present problems associated in de-

veloping computer-aided diagnostics in ultrasound scanning, in particular we focus

on developing algorithms for quantifying the fat content in the liver and detection

of diagnostically significant regions corresponding to fatty liver. In the second part,

we present speckle suppression algorithm to improve the diagnostic quality in ultra-

sound images. In the third part, we present the WebRTC framework for real-time

telesonography. In the fourth part, we present the hardware framework for ultrasound

scanning system designed for portability and PoC diagnostics.

The thesis is organized in the following way:

In Chapter 2, we present the significance and challenges involved in grading the

nonalcoholic fatty liver through ultrasound imaging. We discuss the methodologies

employed in the literature regarding the quantification of fat in the liver and also

we briefly mention about contribution towards the development of computer-assisted

algorithms in quantifying the fat in the liver.

In Chapters 3 & 4, we present the computer-assisted algorithms for quantifica-

tion of fat in ultrasonic images, here we propose two novel algorithms one based on

curvelet transform, and other based on scattering coefficients. The scattering coef-

ficient features proved very effective in representing the texture of fatty liver which

replicated in achieving good classification accuracy. The performance of the proposed

algorithms are compared with widely used texture features.

In chapter 5, we present an algorithm for the detection of diagnostically significant
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regions useful for diagnosing the fatty liver. The algorithm is developed to detect the

regions like the diaphragm, periportal veins, and texture of liver parenchyma, which

are representative for grading the fatty liver. In Chapter 6, we present a sparsity-

based de-speckling algorithm for effective suppression of speckle noise in ultrasound

images. In Chapter 7, we present the WebRTC framework for real-time telesonogra-

phy. In Chapter 8, we present the hardware prototype of the system-on-chip (SoC)

based portable ultrasound scanner designed for point-of-care applications. We sum-

marize the entire thesis and potential future works in Chapter 9.
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Chapter 2

Nonalcoholic Fatty Liver Disease

2.1 Introduction

Accumulation of excess fat in liver cells is an abnormal condition of a liver known

as a nonalcoholic fatty liver disease (NAFLD). It is etiologically associated with the

hepatic manifestation of metabolic syndrome, specifically insulin resistance. Also,

NAFLD is associated with obesity, type 2 diabetes, hyperlipidemia, side effects of

certain medications, cardiovascular diseases, etc. NAFLD is one of the leading causes

of liver dysfunction and is rapidly growing health problem in the world. It is expected

that up to 30% of general population in the developed countries have the condition

of NAFLD [13]. NAFLD is observed in 80-90% of obese patients, 30-50% of diabetic

patients and 90% of hyperlipidemia patients [14]. If the underlying problem associated

with NAFLD is not detected and treated, then NAFLD can progress into chronic liver

diseases. From recent investigations, it is found that 50% of patients with NAFLD

have led to fibrosis, 15% of patients with NAFLD have led to liver cirrhosis, while 3%

of patients with NAFLD have led to liver failure resulting in liver transplantation [15].

Early and accurate detection of fatty liver becomes crucial to prevent liver suffer from

chronic diseases.
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Table 2.1: Grading and condition of NAFLD based on the percentage of fat present in the liver.

NAFLD Degree of steotosis Grading Condition

Simple Steotosis <5% Grade 0 Normal

NASH

5-33% Grade I Mild

33 -66% Grade II Moderate

>66% Grade III Severe

Figure 2.1: Graphical representation of NAFLD, yellow patches represents the fat or triglycerides
(a) Normal, (b) Grade I, (c) Grade II, and (d) Grade III fatty liver.

The severity of NAFLD is characterized by the density of fatty granules accumu-

lated in the tissues of a liver [16]. The visual representation regarding the presence

of fatty granules corresponding to different grades of the nonalcoholic fatty liver is

shown in Fig. 2.1 [1]. Brunt et al. categorized NAFLD into simple steatosis (Normal

or Grade 0) and nonalcoholic steatohepatitis (NASH). NASH is further categorized

into Grade I, Grade II and Grade III, as shown in Table. 2.1 [16]. If the concentration

of fat in the liver is less than 5%, then the liver is considered as Grade 0 which is

treated as a normal condition. If the concentration of fat in the liver is in between

5–33%, then the liver is considered to be in Grade I condition. Higher concentra-

tion of fat levels in liver such as 33–66% is considered as Grade II, and greater than

66% is considered as Grade III respectively. In general, Grade 0 and Grade I does

not have an impact on the functionality of the liver and does not need medication.
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Grade II and Grade III conditions impact the functionality of the liver and patients

need medical attention to prevent the liver progressing into chronic diseases.

Fatty liver diagnosis is done through invasive and noninvasive procedures; inva-

sive methods include biopsies, blood tests, etc., while noninvasive method includes

imaging techniques like ultrasound scanning, Magnetic Resonance Imaging (MRI)

and Computed Tomography (CT). Invasive procedures are painful, and it is associ-

ated with complications like infections, bleeding, bile leakage, etc. Hence, doctors

recommend for noninvasive imaging procedures. Ultrasound scanning is widely used

imaging modality for diagnosing the fatty liver since it offers real-time imaging, safer

and economical compared to MRI and CT. Unlike MRI and CT (where images are

captured automatically by systems without manual intervention), ultrasound scan-

ning is performed by humans resulting in high subjectivity. Strauss et al. [10] reported

that there is a mean interobserver and intraobserver agreement of 72% and 76% re-

spectively in detecting the normal livers from the fatty livers, while quantifying the

severity of fat there is a mean interobserver and intraobserver agreement of 47-59%

and 59-64% respectively. Hence there is a need for developing computer-aided diag-

nostics (CAD) algorithms to nullify the bias caused due to the subjectivity in scanning

and also to accurately quantify the fat in the liver.

Developing of CAD algorithms is challenging in ultrasound imaging due to the

complexity involved from both technology and a human perspective. From technology

perspective, ultrasound images contain a low signal to noise ratio, poorly defined

organ boundaries, low contrast, obscuration of organs due to acoustic shadows, etc.

From the human perspective, ultrasound scanning and diagnosis is performed by the

sonographer, and hence the diagnosis will be biased to the skill of a sonographer.

Also, the characteristics of the scanned organ vary with the anatomy of a patient,

which includes age, height, gender, body mass index, position, and position of the

transducer used to scan the organs, etc. CAD algorithms are developed based on RF

data or completely formed ultrasound images. Current clinical ultrasound machines
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do not have provision to acquire the raw echo data directly, and requires an expensive

research interface [17] for acquiring the data. Depending on the depth of scan and

analog to digital converter (ADC) resolution, the generated RF data for a single scan

line is of very high dimension (for example, scanning to a depth of 10 cm, with ADC

operating at 40 MHz will result in a total of 5200 samples per scan line) which makes

it difficult to develop the machine learning algorithms. Hence researchers are mainly

focused on developing CAD algorithms based on the images. The images needed for

developing the CAD algorithms can be acquired from clinical ultrasound machines

without any need for having external research interfaces. In addition to this, no

additional effort is needed from the sonographers to capture these images, since it is

inherent in the process of diagnosing the patients.

The liver ultrasound images corresponding to different grades of fatty liver is shown

in Fig. 2.2, we can infer that there are minute variations in the characteristics of the

image across different grades of fatty liver. The quantification of fat in the liver

through ultrasound scanning is done by perceiving information in three regions of the

liver such as a diaphragm, periportal veins, and texture of liver parenchyma. The

characteristics of these regions change accordingly with the severity of fat present

in the liver. The diaphragm, periportal veins, and texture of liver parenchyma of

ultrasonic images is shown in Fig. 2.3. The visual characteristics of the RoI correspond

to different grades of fatty liver is discussed in Table. 2.2. Based on the combined

characteristics of these regions, sonographers quantify the severity of fat present in

the liver.

2.2 Literature Survey

In literature, most of the research is focused on classifying normal liver with other liver

diseases such as fatty, cirrhosis, hepatocellular carcinoma (HCC), fibrosis, etc [18–23].

While classification, authors have considered all grades (Grade I, Grade II and Grade
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Normal

  Grade I

  Grade II

  Grade III

Figure 2.2: Ultrasound images correspond to different grades of nonalcoholic fatty liver. Images in
each row belong to single category. We can observe minute differences in the characteristics of RoI
across all grades of fatty liver images.

III) of fatty liver as one class, and further discrimination within the fatty liver is not

addressed extensively. Accurate quantification of fat in the liver carries paramount

importance in liver diagnosis. For example in liver transplantation, even a Grade I

fatty liver donor can increase the potentiality of liver failure in the recipient and also

there is a high probability that the donor will get diseased [24,25]. The patients who

undergo liver resections with Grade III fatty liver are expected to suffer from post-

operative complications [26]. Detecting the severity of fatty liver is of high importance

such that the patients can take appropriate precautions to avoid the complications

associated with the NAFLD.
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Figure 2.3: Ultrasonic liver images. Diaphragm region is enclosed with red contour, regions en-
closed with yellow boxes indicates periportal veins and regions enclosed in white boxes represents
homogeneous texture.

Table 2.2: Characteristics of diaphragm, periportal veins and texture of liver parenchyma correspond
to different grades of fatty liver [1], [2].

Category Characteristics

Normal Visible echogenicity with visible periportal and diaphragm. The texture
of liver parenchyma appears coarser and rugged.

Grade I
Increased hepatic echogenicity with visible periportal and diaphragmatic
echogenicity. The texture appears less coarser and smooth.

Grade II
Increased hepatic echogenicity with imperceptible periportal echogenicity with
partial obscuration of diaphragm. The texture appears more smooth and finer.

Grade III
Increased hepatic echogenicity with imperceptible periportal echogenicity and
obscuration of diaphragm. The texture appears diffused and more finer.

Some of the image diagnostic methodologies appeared in literature in quantification

of fat in the liver are:

Lupsor et al. [27] quantified the grades based on the attenuation coefficient (AC)

and gray level co-occurrence matrix (GLCM) entropy features and concluded that

the AC performs better compared to GLCM entropy features. The AC is computed

by considering the pixel values along the vertical line (depth) of the image, while

the GLCM entropy feature is computed from a rectangular region cropped from the

homogeneous texture parenchyma of a liver. The authors computed the AC from

RoI corresponding to the vertical straight line almost spanning the entire ultrasound

image. Due to this, even a small change in one of the gain knobs of time gain

compensation will change the statistics of the attenuation coefficients which will have

an impact on the final classification accuracy.

Semra et al. [28] quantified the fatty content based on the gray relational grade

(GRG) feature computed between liver and kidney parenchyma, here authors have
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considered the database having both the liver and kidney organs present in the same

image. The authors used multiple RoI’s corresponding to liver and kidney parenchyma

and used gray relational grade as a feature in doing classification. In this methodology,

a cross-labeling of RoI’s will have a significant impact on the classification accuracy.

Dan Mihai et al. [29], considered two RoIs from the liver for feature extrac-

tion, these features include: minimum attenuation (MIA) and maximum attenua-

tion (MAA), maximum value for region (MAV), minimum value for region (MIV),

median for liver (ML) parenchyma and median for kidney (MK) parenchyma. The

features are extracted from the region of interest cropped from the liver and kidney

parenchyma, and a dichotomy structure is employed for classification. Similar to [28],

the authors considered the database having both liver and kidney organs present in

the same image. The authors considered RoI covering the image region all over the

liver parenchyma to compute the attenuation values. It is difficult to get a RoI of the

large size without hepatic and portal veins, and also there is a need to validate the

algorithm on a larger database

In [30], Cristian et al. used AC, backscattering coefficient (BS) and fit error (FE)

as features to classify the different grades of the fatty liver. The features are extracted

along the three vertical lines of the liver parenchyma.The authors consider RoI as three

vertical lines spanning from top to bottom of the image. Extracting the features from

three vertical lines is highly subjective to time gain compensation knobs, and getting

the three RoIs without hepatic and portal veins is highly constrained.

In [1], Yin-Yin Liao et al. extracted multiple features from the radio frequency

(RF) and liver ultrasound image, these include texture features, signal to noise ratio

(SNR) and slope of the center frequency downshift (SCFD). Texture features include

auto-correlation (AUC), sum average (SA) and sum variance (SV). The texture fea-

tures are extracted from the RoI cropped from the liver parenchyma, while the AC

and BS features are extracted from the RF data, the classification is done using a

multinominal logistic model (MLM). Authors have dealt only with three classifica-
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Table 2.3: Methodologies proposed in the literature for grading the fatty liver. Notations:- N:
Normal, GI: Grade I, GII: Grade II, GIII: Grade III, the notation (N,GI) is considered as one class.

Authors Features Classifier Database Performance measure

M Lupsor et al. [27] AC SA
N: 24

NASH: 96

AUROC:
Nvs GI: 0.951,

N, GI vs GII, GIII: 0.879,
N, GI, GII vs GIII: 0.859

Semra Icer et al. [28] GRG SA

N:45
GI: 30,
GII: 55,
GIII: 10

AUROC:
N vs GI : 0.975,
GI vs GII: 0.958,
GII vs GIII: 0.949

Dan Mihai et al. [29]
MIA, MAA, MAV,

MIV, ML, MK
RF

N:10, GI: 70,
GII: 33, GIII: 7.

Accuracy:
91.7%

Cristian Vicas et al.
[30]

AC, BS,
FE

SVM

N: 25,
GI: 32;
GII: 37,
GIII: 17.

AUROC:
N vs GI, GII, GIII: 0.84,
N, GI vs GII, GIII: 0.73,
N, GI, GII vs GIII: 0.66

Yin-Yin Liao et al. [1]
AUC, SA,
SV, SNR,

SCFD, AC, BS
MLM

N: 151,
Mild NAFLD: 127,

Severe NAFLD: 106.

AUROC:
N vs mild NAFLD: 0.73,
N vs Severe NAFLD:0.81

tions namely: Normal, mild NAFLD and severe NAFLD. Classification of moderate

NAFLD is not discussed.

The brief summary regarding the methodologies proposed in the literature in quan-

tifying the fatty liver is reported in Table. 2.3. Few authors reported performance in

terms of area under receiver operating characteristic (AUROC), while others analyzed

performance based on the accuracy. The methodologies employed in the literature

are diversified as the authors considered liver ultrasound images with spleen, liver

ultrasound images with the kidney to quantify the fat in the liver, while Yin-Yin Liao

et al. [1] considered multiple features corresponding to RF data and texture features

to quantify the fatty content in the liver. Hence, we cannot have one common agree-

ment to judge the performance of the proposed algorithms. In all the methodologies

employed in the literature, authors have extracted features from more than one RoI,

which includes pixels along wave propagation and homogeneous texture regions to

classify the fatty liver. The methodologies employed in the literature are moderately

successful in classifying the fatty content in the liver.

In this thesis, we propose a computer-aided diagnosis algorithm for quantifying
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the fat in the liver based on the texture properties of liver parenchyma. Unlike the

methodologies employed in the literature, we have considered only texture of liver

parenchyma as RoI to quantify fat in the liver which makes it less subjective to the

scanning parameters of the ultrasound machine and needs minimum intervention to

crop the RoI from an image

We made following contributions to the development of a computer-assisted diag-

nostic algorithm for quantifying the fat in the liver.

• We propose a novel feature extraction scheme based on curvelet transform and

SVD based features for characterizing the texture of liver.

• We propose a scattering network-based classification algorithm for quantifying

the fat in the liver.

The performance of the proposed algorithm is compared with popularly used tex-

ture features. The database for developing the algorithms are acquired by collabora-

tively working with the sonographers in the scanning process.

2.3 Summary

In this chapter, we presented the importance of accurately quantifying the fat in liver

and role played by ultrasound imaging in fatty liver diagnosis. In general, Doctors

prefer ultrasound imaging over MRI and CT due to its safer, economical and real-

time imaging capability. Quantifying the fat in the liver through ultrasound imaging

is considered to be highly subjective due to the minute variations observed in the char-

acteristics of fatty liver. It is inferred that there is very low inter and intra-agreement

between the sonographers in grading the fatty liver, resulting in diagnostic uncer-

tainty. Computer-assisted algorithms are needed to nullify the subjectivity caused

due to the skill of the sonographers. We also discussed about different methodologies

proposed in the literature in quantifying the fat in the liver and their limitations and

also briefly discussed about the contributions of the thesis towards the development
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of computer-aided diagnostics. In the next chapter, we propose a novel computer-

assisted algorithm to characterize the texture of NAFLD based on curvelet transform

and SVD based features.
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Chapter 3

NAFL Texture Classification based

on Curvelet transform and SVD

3.1 Introduction

The texture properties of liver parenchyma in ultrasound image varies with the sever-

ity of fat present in the liver [18, 31, 32]. Sonographers quantize the fatty content of

the liver based on texture structural and perceptual properties of a liver; these include

texture morphology, echogenicity, and degree of diffusion. The texture corresponds

to different grades of NAFL is shown in Fig. 3.1. Visually, a minute difference is ob-

served in textures correspond to different grades of fatty liver. The texture of normal

liver appears coarser and rugged, and it becomes finer and finer as the concentration

of fat increases.

As the properties of liver parenchymal texture is associated with the concentration

of fat, we formulated the grading of fatty liver as a texture discrimination problem.

In literature, features like gray-level co-occurrence matrix GLCM [20, 22, 33–35],

gray-level run-length matrices (GLRLM) [22,35,36], Gabor [35,37], GIST [35], Laws

texture measures [34], multi-resolution analysis [35, 38, 39] have been widely used in

characterizing the ultrasonic texture of Normal, Fibrosis, HCC and cirrhosis diseases.
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Figure 3.1: Textures corresponding to different grades of NAFL where images in each row belong to
single class.

These features are moderately successful in classifying the texture of a liver, hence

more than one set of features have been used for achieving higher classification accu-

racies [35, 40–44]. In this thesis, we propose a novel feature extraction scheme based

on curvelet transform and singular value decomposition technique to effectively rep-

resent the texture of liver for classification. The effectiveness of the propose features

is evaluated with the K-nearest neighbor and cubic kernel SVM classifier.
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3.2 Curvelet Transform and SVD based Characterization of

Ultrasonic Liver Texture

The texture of ultrasonic fatty liver varies with concentration of fat in the liver. For

Normal liver texture appears very rugged, irregular and coarser in nature. The coarse-

ness and irregularities of the texture reduces and becomes smoother and smoother

as the concentration of fat increases. We also inferred that the texture of normal

liver consist scars like structures that appears as curves. The texture properties like

irregularities, coarseness and smoothness of the texture can be captured by extracting

the gradient information of the texture. Higher the irregularity and coarseness better

is the gradient magnitude. Curvelet transform has the ability to capture the gradient

information with respect to different scales, orientations and space. In addition, it

has the property of representing the finer curves in the texture due to its anisotropic

scaling property. Hence, it prompted us to apply Curvelet transform on the image to

capture the gradient properties and irregularities in the texture. Curvelet transform

decomposes the image into sub-bands extracting the gradient information localized

to scale, space and orientation. The total number of curvelet coefficients collectively

present in all the sub-bands is of high dimension, which becomes difficult to model or

to train a classifier. To get compact and efficient representation for each decomposed

image, SVD technique is applied. The mean of the singular values is computed for

each sub-band and considered as a feature representation for the texture [45]. Cu-

bic kernel SVM and K- Nearest Neighbor (KNN) classifiers are used to analyze the

performance of the propose feature extraction scheme in quantifying the fat in the

liver.

The block diagram representation of the propose algorithm used for quantifying

the texture of fatty liver is shown in Fig. 3.2. Initially, the curvelet transform is

applied to the image texture decomposing the image into different subbands. SVD

is applied to each subband for computing the singular values. The mean of singular
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Figure 3.2: Block diagram representation of the propose method for quantifying the texture of a
fatty liver.

values is then used as a feature to train the cubic SVM classifier.

3.2.1 Curvelet Transform

Curvelet transform was proposed by E. Candes and D. Donoho [46] to overcome

the drawbacks of the conventional wavelet transform. The conventional wavelets lack

directional representations, which lead to directional wavelets such as Gabor wavelets,

curvelets, etc. Gabor wavelets can capture the direction information isotropically but

lack direction sensitivity which is addressed with the curvelet transform.

One of the crucial tasks in image classification is to extract the representative fea-

tures from an image. The features may be lines, edges, curves, textures, etc. The fea-

tures are characterized with respect to scale, location, direction, geometry, etc., which

motivated researchers to use scale-space filtering and multiresolution transforms for

feature extraction. Curvelets are multiresolution transforms localized in scale, space,

and direction, and gives superior performance in representing the texture, edges and
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curves. Curvelets combined with other methodologies gave good results in various

image processing applications like denoising [47], image representations [48], image

enhancements [49], etc. Recently, curvelet transforms have been widely applied in

medical image processing for developing automated diagnostic algorithms. In [50],

Nayak et al. used curvelet transform for feature extraction to classify normal and

pathological brain MR images. In [51], retinal blood vessels are effectively detected

with high accuracy using the curvelet transform. In [52], curvelet transform with

entropy features is used for automatic classification of normal and abnormal liver

ultrasound images.

The objective of applying curvelet transform here is to enhance the finest curves

present in the texture image with respect to different scales and orientations. The

high directional sensitivity of the curvelets are obtained with the wedge functions,

which makes it represent the curves more efficiently than the traditional wavelets.

Curvelets give optimal sparse representation for the objects with C2 singularities.

The wavelet approximation f̃ for smooth object f with C2 singularity or discontinu-

ity using best m term wavelet thresholding can be obtained with ||f − f̃ ||22 ≈ m−1,

while curvelet approximation f̃ cm will give ||f − f̃ cm||22 ≈ Cm−2(logm)3, resulting in

a small asymptotic error compared to any other representations. Curvelets are mul-

tiscale transforms with strong direction characteristics, and the elements are highly

anisotropic at fine scales with support following the parabolic scaling width≈ length2.

To briefly explain the curvelet transform, we introduce the following notations, x

is a spatial variable in R2, w is a frequency variable, r and θ represents the polar

coordinates in the frequency domain. To construct the system of curvelet functions

for each scale j, we define a window function Uj in Fourier domain as

Uj(r, θ) = 2
−3j
4 W (2−jr)V (

(2b
j
2
cθ

2π
), (3.1)
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where b j
2
c is the floor of j

2
, W (r) and V (t) are the real valued, smooth and nonnegative

windows supported on r ∈ (1/2, 2) and t ∈ [−1, 1] respectively. The support of Uj will

be a polar wedge defined over the support of W and V . The Uj(w) is equivalent to the

Fourier transform of mother curvelet ψj(x) defined in Eq. 3.2. The system of curvelets

at scale 2−j is acquired by translating and rotating the ψj, where the sequence of

equispaced rotation angles is given by θl = 2π · 2−[ j2 ] · l, where l = 0, 1, 2.... such that

0 ≤ θl < 2π. With the sequence of translation parameter k = (k1, k2) ∈ Z2, the

curvelet function at scale 2−j, orientation θl and position x
(j,l)
k = R−1θl (k12

−j, k22
− j

2 )

is defined as

ψj,l,k(x) = ψj(Rθl(x− x
(j,l)
k )), (3.2)

where Rθ represent rotations of θ radians The curvelet coefficients c of an element

f ∈ R2 is obtained as

c(j, l, k) :=< f, ψj,l,k >=

∫
R

f(x)ψj,l,k(x)dx. (3.3)

The digital curvelet transforms are always computed in the frequency domain. The

curvelet coefficients in frequency domain is computed as

c(j, l, k) :=
1

(2π)2

∫
f̂(w)ψ̂j,l,k(w)dw (3.4)

=
1

(2π)2

∫
f̂(w)Uj(Rθlw)ei<xk(j,l),w>dw.

Implementation of curvelet transform known as the first generation of curvelets is

very complicated. Candes and Donoho proposed a simpler and fast second generation

transform called fast discrete curvelet transform (FDCT) [53]. FDCT is implemented

in two versions namely wrapping of specially selected Fourier samples and unequally

spaced fast Fourier transforms (USFFT), both having same computational complex-

ity. In this work, we used USFFT based curvelet transform. Considering an n × n
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image in Cartesian arrays of the form f [t1, t2], 0 ≤ t1, t2 < n, the curvelet transform

of an image using USFFT is obtained in the following way.

1. The Fourier samples of the input arrays are obtained by applying a 2D fast

Fourier transform (FFT) as

f̂ [n1, n2] =
n−1∑

t1,t2=0

f [t1, t2]e
−i2π(n1t1+n2t2)/n;−n/2 ≤ n1, n2 < n/2. (3.5)

2. For each pair of scale j and angle l, Fourier samples f̂ [n1, n2 − n1tanθl] are

obtained from interpolating f̂ [n1, n2] for n1, n2 ∈ Pj, where

Pj = {(n1, n2) : n10 ≤ n1 < n10 + L1,j;n20 ≤ n2 < n20 + L2,j},

where, L1,j and L2,j are the length and width of a rectangle, (n10, n20) are the

pixel index corresponding to bottom of the rectangle.

3. The interpolated samples are then multiplied with a frequency window Ũj to

obtain

f̃j,l[n1, n2] = f̂ [n1, n2 − n1tanθl]Ũj[n1, n2]. (3.6)

4. Curvelet coefficients are obtained by applying the inverse 2D FFT.

CD(j, l, k) =
∑

n1,n2∈PJ

f̃j,l[n1, n2]e
i2π(k1n1/L1,j+k2n2/L2,j). (3.7)

The curvelet coefficients corresponding to the texture of liver parenchyma is shown

in Fig. 3.3, the difference in finer details of the texture corresponding to different

grades is better visualized in the curvelet coefficients which is not obvious in the

original texture.

3.2.2 SVD

In general, the classification of images via wavelet models are built by modeling the

wavelet coefficients [54–56]. The number of wavelet coefficients in each sub-image is
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Figure 3.3: The curvelet coefficients of different grades of fatty liver texture. (a) Normal, (b) Grade I,
(c) Grade II, (d) Grade III of size 128×128. We can observe discrimination in the curvelet coefficients
corresponding to different grades of fatty liver, which is not obvious in the texture image.

of very high dimension, and hence it is complex to model the data. To reduce the di-

mension of the wavelet coefficients, features such as energy, mean, standard deviation,

fractal dimensions, etc., have been exclusively used for classifying the texture. These

features are moderately successful in characterizing the texture of a liver. Hence it

prompted researchers to use more than one set of features to represent the texture of

a liver [40]. To quantify the curvelet coefficients in each subband and to get the good

representation, SVD is applied on each sub-image. SVD is widely used in image clas-

sification algorithms [45] image de-noising [57], dimensionality reduction [58], solving

system of linear equations [59], etc. If Ci is the curvelet transformation coefficient

matrix then SVD of Ci, which is of the size M × N is obtained as
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Ci = Pi
∑
i

QT
i , (3.8)

here, Pi is a M × N orthogonal matrix with Eigenvectors as columns of CiC
T
i , Qi

is a N×N orthogonal matrix whose Eigenvectors are columns of CT
i Ci, and

∑
i is

a N×N diagonal matrix with singular values σ1, σ2 . . . . . . σn arranged in decreasing

order σ1 ≥ σ2 ≥ σ3 · · · ≥ σn ≥ 0. The singular values are computed as the squareroot

of the Eigenvalues of a matrix CiC
T
i or CT

i Ci. The mean of the singular values
∑

i

are computed and considered as a feature for each decomposed image.

3.2.3 Classifiers

The algorithm is evaluated using two supervised algorithms support vector machine

(SVM) and KNN classifier. The brief introduction regarding the classifiers is given

below.

SVM

SVM learns a model from the training features that separate the different classes.

SVM is a binary classifier, hence to classify more than two classes One-vs-One ap-

proach is used. SVM works only with linearly separable data, to work with linearly

non-separable data, SVM is operated with kernel operators. In this study, we used

SVM with a cubic kernel of order three for classification [60]. The inbuilt SVM

function available in the MATLAB 2017a version is used in the experiment

KNN

The KNN classify the incoming feature by computing K nearest neighbors with the

training features. The nearest neighbors between the feature vectors are computed

based on the Euclidean norm. The features in the training example which have less

distance with the feature that has to be classified is considered as the nearest neighbor.
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Figure 3.4: Liver ultrasound image. Rectangular boxes in the image represents the texture used for
classification.

The classification is done based on a majority voting rule. In this study, we analyzed

the performance by fixing K=5.

3.3 Database for Analysis

The database used in the analysis consists of 196 Normal, 173 Grade I, 157 Grade II

and 124 Grade III images. The texture in all the images is cropped in the homoge-

neous regions of liver parenchyma as shown in the Fig. 3.4. The ultrasound images

are acquired using 3.5 MHz curved array transducer with clinical Seimens S1000 ul-

trasound scanning system. The ultrasound images are captured to a depth of 15 cm

by adjusting the focal zone to the center of the organ for minimal beam diffraction.

Care is taken that the texture is free from blood vessels, acoustic shadows, hepatic

and portal veins. Each sample cropped from the image is of size 78×100. Multiple

samples are cropped from the same image ensuring overlapping samples does not

contain more than half of the pixels in common, which is similar to the methodology

adapted in [39], [40], [61]. The analysis is carried on a database consisting of 1000

texture patches of a liver, where each category consists of 250 images.
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Table 3.1: Accuracy of the propose algorithm with respect to the features computed for wedges of
each scale.

Accuracy
Scale Feature size Real Complex

KNN SVM KNN SVM
1 1 64.7 25.8 64.3 27.9
2 8 53.8 54.4 52.8 51.7
3 16 63.4 62.6 67.7 67.6
4 16 76.4 75.0 79.1 79.4
5 32 89.9 88.8 90.6 90.9
6 32 88.4 88.7 89.7 88.7
7 1 48.9 25.9 50.6 25.5

Table 3.2: Accuracy of the propose algorithm

Image size Scale Feature size Accuracy

Real Complex
KNN SVM KNN SVM

128 × 128 7 106 93.9 95.0 93.7 95.7

3.4 Results

The proposed algorithm is evaluated with ten-fold cross-validation scheme. The per-

formance of the algorithm is measured using accuracy as a metric, which is termed

as the ratio of correctly classified images to the total number of images tested. To

apply the curvelet transform, the image is resized to 128 × 128 as to get more num-

ber of features. The individual accuracy of the features correspond to each scale in

quantifying the fatty liver is shown in Table. 3.1. The accuracy of the features corre-

spond to wedges of first three scales are very low, while wedges correspond to scales

4, 5 and 6 performed moderately, and at the scale 7, the classification accuracy is

very poor. The maximum classification accuracy is given by the features computed

at the scale 5 by complex curvelet transform. The proposed features computed over

complex curvelet transform gave maximum classification accuracy of 95.7% for cubic

SVM classifier.

30



0 20 40 60 80 100 120

Features

1

2

3

4

5

6

7

8

9

lo
g 

( 
M

ea
n)

Normal

Grade I

Grade II

Grade III

J:7

J:1

J:2
J:3

J:4

J:5

J:6

(a)

0 20 40 60 80 100 120

Features

-1

0

1

2

3

4

5

6

7

lo
g 

(s
ta

nd
ar

d 
de

vi
at

io
n 

)

Normal
Grade I
Grade II
Grade III

J:1

J:3

J:4 J:5

J:6

J:7

J:2

(b)

Figure 3.5: (a) Log mean and (b) Log standard deviation of the features of Normal, Grade I, Grade
II and Grade III fatty liver is computed over 250 images of each class. J in the figure correspond to
the features in each sub-band. Log of mean and log of standard deviation of features are considered
for better visual representation. At scales J=2,3 and 4, the log mean of the Normal texture is found
higher, followed by Grade I, II and III respectively, whereas the log mean of Normal, Grade II and
Grade III found to be equal at J=5 and 6 respectively.
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Table 3.3: Confusion matrix of the propose algorithm.

Predicted Class
True Class Normal Grade I Grade II Grade III
Normal (250) 242 7 0 1
Grade I (250) 7 228 5 10
Grade II (250) 0 3 247 0
Grade III (250) 0 7 3 240

3.4.1 Statistical Analysis of the Features

The Fig. 3.5, refer the log of mean and log of standard deviation for the proposed

features computed over 250 images for each category. The features correspond to

sub-bands at J=2, J=3 and J=4 we can infer a clear distinction in the mean of the

sub-bands across all grades of fatty liver. The features of the normal liver had high

mean followed by Grade I, Grade II and Grade III respectively. At scale J=5 and

J=6 Grade II possessed high mean compared to Normal, Grade II and Grade III

categories. High standard deviation is observed for all the curvelet transform based

features.

3.4.2 Confusion Matrix

The confusion matrix for the proposed algorithm based on curvelet transform and

SVD based features is shown in Table. 3.3. Normal, Grade I, Grade II and Grade III

images classified with an accuracy of 96.8%, 91.2%, 98.8% and 96% respectively for

complex curvelet coefficients.

From confusion matrix, we infer that seven images of the Normal liver are misclas-

sified as Grade I fatty liver, one image as Grade III and a clear distinction is observed

between Normal and Grade II classes. While classifying Grade I, twenty-two images

are misclassified, out of which seven images are classified as Normal, five images as

Grade II and ten images as Grade III respectively. Since Grade I lies between Normal

and Grade II categories, misclassifications of Grade I to Normal and Grade II can

be justifiable, but surprisingly ten images of Grade I are misclassified as Grade III.
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In classifying the Grade II images, three images are misclassified as Grade I, and

a clear distinction is observed between Grade II and Normal, Grade II and Grade

III classes. Ten images of Grade III fatty liver are misclassified, out of which seven

images are misclassified as Grade I and three images as Grade II respectively. It is

worthy to note that only seven images of Grade I are misclassified as Normal, and

no image of Grade II and, Grade III are misclassified as Normal which is crucial in

medical diagnostics. The misclassification between the textures have mainly occurred

between Grade I and Grade III classes. Considering all the three Grades I, II and

III as positive cases (images with disease) and Normal images as negative cases, the

propose algorithm resulted with a sensitivity of 95.3% (715 images out of 750 fatty

liver images correctly classified as diseased) and specificity of 96.8% (242 images out

of 250 normal liver images classified correctly as normal) respectively. The computa-

tions are performed on an Intel Core i7 processor with 16 GB RAM running with 2.8

GHz clock cycle using MATLAB. The proposed algorithm took 0.3 seconds to classify

the texture image.

3.5 Summary

In this chapter, we formulated the grading of fatty liver as a texture discrimination

problem and classified the texture by representing with a novel feature extraction

scheme based on curvelet transform and SVD based features. From the experimen-

tal analysis, we can infer that classification accuracy is increased with more detail

coefficients. The amount of detail information extracted from the curvelet transform

is the constraint to the size of the image and hence we can not get further gradient

information useful for classification. To overcome the limitation, in the next chapter,

we propose a scattering network-based features for fatty liver texture classification.

Scattering network provides as many number of features extracting different levels of

information from the texture image useful for classification.
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Chapter 4

NAFL Texture Classification based

on Scattering Coefficients

4.1 Introduction

In this chapter, we propose an algorithm for fatty liver texture classification based on

scattering coefficients (SC) features [62]. SC give stable invariant image representa-

tions for deformations, and preserves high-frequency information which is useful for

classification.

4.1.1 Scattering Coefficients

The SC are invariant to global translations and Lipschitz continuous to local defor-

mations, thus providing good features for classification [62]. SC are computed via in-

variant scattering convolution network (ISCN) architecture [63] as shown in Fig. 4.1.

ISCN builds the invariant representations by progressively cascading wavelet trans-

form with modulus and averaging operators. Since the high-frequency components

are the main source of instability, the ISCN successively maps high-frequency wavelet

coefficients to lower frequencies and averages the lower frequencies to get transla-

tional invariant representation. Deformation invariance to the features is obtained
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Figure 4.1: ISCN architecture. The red bubbles correspond to the SC matrix. * indicates the
convolution operator and m defines the depth of the network.

by the wavelet transform since wavelets are localized waveforms which are stable to

deformations. In ISCN architecture (shown in Fig. 4.1), the red bubble indicates the

SC while the white bubble indicates the propagator signal |.| on which low pass fil-

tering generates the SC. Mathematically, SC are obtained by progressively cascading

wavelet transform with modulus and averaging operators. In the zeroth layer of the

network, the image is convolved with a low pass scaling function φ defined as

Layer 0, Sx(0) : f(x) ? φ2J , (4.1)

where f(x) represents an image, φ(x)2J = 2−2Jφ(2−Jx) represent Gaussian low pass

filter, J denotes the largest scale space variable and ? denotes the convolution oper-

ation.

In the first layer, modulus of the complex wavelet transform of an image is con-

volved with a low pass filter.

Layer 1, Sx(λ1) : | f(x) ? ψλ1 | ? φ2J , (4.2)

where ψλ1(x) = 2−2j1ψ(2−j1rθx) represents all the rotated and dilated versions of

the band pass wavelets with λ1 = (2j1 , θ), 0 ≤ j1 < J , j1, is a scale space variable,

and rθ represent group of rotations computed as θ: 2πl/L, where 0≤ l < L. The

SC Sx(λ1) extracted at Eqn. 4.2 is equivalent to SIFT descriptors [64]. The f ?

ψλ computes gradient of an image at different directions and scales capturing high
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frequency. Since high frequency is the source of variability, modulus operator applied

on f(x) ? ψ is interpreted as nonlinear demodulator that pushes wavelet coefficient

energy towards lower frequencies, which is captured by φ2J . Additionally, modulus

operator avoids the wavelet coefficients leading to zero while averaging which result

in loss of information. The ψ is a complex wavelet which is of the form

ψ = ψa + iψb, (4.3)

where ψa and ψb denotes real and imaginary parts of wavelet. The modulus operator

on complex wavelet is computed by

| ψ |= (ψ2
a + ψ2

b )
1/2. (4.4)

The translation invariance is obtained by averaging the modulus of complex wavelet

coefficients. The averaging operation i.e., convolution of φ2J with | f(x) ? ψ | will

result in a shift invariance. Here, Morlet wavelet is chosen for ψ, defined as

ψ(x) = e−|x|
2/(2σ2)α(ei.x.ζ − β). (4.5)

The Morlet wavelet is obtained by multiplying the Gaussian window with a complex

exponential. Here β is adjusted such that the area under the wavelet becomes zero.

In simulations, the parameters σ, ζ are set to 0.8 and 3π/4 respectively.

The SC of the second layer is obtained as

Layer 2, Sx(λ1, λ2) : | f(x) ? ψλ1 | ? ψλ2 | ? φ2J , (4.6)

where ψλ1 corresponds to all scales and rotations, while ψλ2 corresponds only to

the scales j2 < j1, since the second order interference coefficients are negligible for

j2 ≥ j1 [62]. The coefficients obtained in the second layer extract co-occurrence

information of the image at two scales 2j1 and 2j2 corresponding to two different
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orientations, which is interpreted as a interaction coefficients, hence called as SC [65].

Similarly, the network is extended to deeper layers in the following way.

Layer m, Sx(λ1 . . . λm) : || · · · | f(x) ? ψλ1 | ? ψλ2 | . . . (4.7)

· · · | ? ψλm | ? φ2J .

The high frequencies lost in averaging with φ are retained by convolving the signal

with wavelet coefficients at higher scales, suppressing the phase, and averaging the

signal with φ2J . Every time the image convolved with ψ or φ, the resultant image is

down sampled by a corresponding filter scale 2j to reduce the computations. The SC

matrix obtained at each node is of dimension [M/2J−1, N/2J−1], where M,N are the

dimensions of an image. For the ultrasonic image of size [78, 100] and for length J = 4,

the SC matrix will be of dimension [10, 13] with each coefficient locally invariant to

a width of eight pixels. The ISCN network will result in 1, 32, 384 SC matrices from

layer 0, 1 and 2 respectively, constituting a total of 417 SC matrices.

As the depth of the network increases, more invariant and discriminative features

for classification can be obtained [63]. To visualize the discriminative nature of SC

corresponding to the texture of different grades of fatty liver, the disk covering the

entire frequency support of image is displayed as sectors as shown in Fig. 4.2 [63]. If

ψ(w) is the Fourier transform centered at frequency η, then ψ(w)2−jr has a support

centered at 2−jr with bandwidth proportional to 2−j. Each sector in the disk corre-

sponds to local Fourier transform energy of an image over support of ψλ(w). From

Fig. 4.2, we can infer that SC give discriminative features for different grades of fatty

liver both in the second and third layer.

The SC obtained after the first layer is embedded with information about the SC

from where it is propagated from the previous layers. The efficacy of the features

extracted from ISCN in classification lies in extracting the representations which are

not present in the previous layer. To decorrelate the redundant information present
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Figure 4.2: Perceptual difference observed in SC (4 scales and 8 orientations) of the fatty liver. (a),
(d), (g), (j). Texture pattern of Normal, Grade I, Grade II, Grade III fatty liver respectively. (b),
(e), (h), (k). First layer SC of Normal, Grade I, Grade II, Grade III respectively. (c), (f), (i), (l).
Second layer SC of Normal, Grade I, Grade II, Grade III respectively.

in deeper layers, the SC are normalized by dividing children node Sx(λ1, λ2) with

corresponding parent node Sx(λ1), known as transfer SC [66].

4.1.2 Compressed Transfer SC Features

For image size [78, 100], we will obtain a 417 SC matrices (for j=4, L=8 and m=2).

The dimension of the SC is approximately seven times greater than image size which

makes it difficult to model or to train the classifier. In [67], authors have summed SC

along rows or columns of SC matrix obtaining a vector representation for each SC

matrix, here much more compact representation is obtained by summing all the SC

present in each matrix Sq as given below

feature(q) =
M∑
m=1

N∑
n=1

Sq(m,n), (4.8)

here q indicates the index of the feature, m and n represent the index of the transfer

SC in Sq. The Sq denotes the SC matrix extracted from all the networks layers.
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The normalized SC along with the SC corresponding to zero-th and first layer are

collectively used as features for classification.

The computational complexity of computing SC is in the order ofO((rθ/3)m T log T ),

where T = M ×N denotes the number of pixels present in an image.

The efficiency of SC features is evaluated with EKNN classifier. In EKNN clas-

sifier, instead of using a single classifier, multiple KNN classifiers with subspace of

features per classifier have been used in classification. The optimal number of classi-

fiers, the number of features per classifier and number of nearest neighbors used for

each classifier are determined by cross-validation. The unseen feature is classified by

combining the outputs of all the classifiers and decision is made on a majority voting

rule.

4.2 Results

4.2.1 Optimal Scale and Orientation of a ISCN

To determine optimal ISCN architecture for achieving maximum classification accu-

racy, the propose algorithm is tested with various configurations of scales and ori-

entations for a network depth m = 2. The accuracy of SC features with respect to

different scales and orientations is shown in Table. 4.1. The results are presented for

transfer SC features with EKNN classifier using ten-fold cross-validation scheme [30].

For EKNN classifier, number of learners is fixed to 30, subspace dimension of features

for each classifier is taken half of its feature size. The classification accuracy increased

with increase in scales and orientations. Maximum accuracy of 98.2% is achieved at

four scales and eight orientations. Further increase in scales and orientations did

not improve the classification accuracy. The maximum accuracy of 98.2% is further

increased to 98.8% by optimal selection of parameters in the EKNN classifier.
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Table 4.1: Accuracy(%) of the SC features for different scales and orientations with EKNN classi-
fier, depth of the network m = 2 and size of the image 78×100. Features from all the layers are
concatenated as a single feature vector and used in classification. For EKNN classifier, number of
learners is fixed to 30, subspace dimension of features is taken half of feature size.

Orientations (L)
Scales (j) 1 2 3 4 5 6 7 8

2 74.4 88.1 90.1 91.4 90.9 92.2 93.3 94.8
3 83.2 91.0 93.0 95.5 94.9 96.5 96.9 97.4
4 88.3 92.9 94.6 95.2 96.2 96.9 98.0 98.2
5 87.6 93.3 95.4 96.1 96.5 97.6 96.9 97.8
6 91.5 94.6 95.5 95.9 96.2 96.1 95.6 96.2

4.2.2 Parameter Selection of EKNN classifier.

The optimal parameters for EKNN classifier are computed hierarchically. For ex-

ample, SC features for 4 scales and 8 orientations with network depth 2, optimal

parameters are computed in the following way. Initially, the optimal nearest neigh-

bors are computed using the 10 fold cross validation as shown in Fig. 4.3a. For K=1,

2 and 5 nearest neighbors, the cross-validation error is low, and it is 3.9%, 4.2%, and

4.8% respectively, and error tends to increase with an increase in nearest neighbors.

Since K = 1 is susceptible to noise, we preferred K=5 over K = 1 despite its low

error loss. The Fig. 4.3b shows the 10 fold classification error with respect to the

number of randomly selected features. KNN gave minimum classification error 1.2%

when the number of randomly selected features is 93. The error rate is high if the

number of randomly selected features are less and also tend to increase slightly if the

number of randomly selected features are more than 93. The error rate is high when

the number of features are less since less number of features does not provide enough

information or clues for classification. As the number of features increases, informa-

tion about data increases hence the error rate decreases and achieves minimum at one

stage. Further increase in features will create a confusion in the data as the features

will contradict each other resulting in increase in the error rate. By setting K=5 and

the number of randomly selected features to 93, the optimal learners are computed

as shown in Fig. 4.3c. For 63 learners, the EKNN resulted in the lowest error rate of
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1.2%. However the same low error rate can be obtained for 65, 85 and more than 90

learners, we chose 63 learners in this case as the computational complexity increases

with an increase in the number of learners.

4.2.3 Statistical Analysis of SC Features

The correlation between the SC features and different grades of fatty liver is analyzed

by computing the mean and standard deviation of the SC of 250 images of each class.

The mean and standard deviation of the SC with respect for different grades of fatty

liver is shown in Fig. 4.4 and Fig. 4.5. It is observed that the mean of SC features

is reduced with the increase in the severity of fat in the liver. This is justified as the

SC quantifies the gradient information correspond to different scales and orientations.

The smoothness of the ultrasonic texture varies proportionally with the severity of

the fat [18], representing low gradient information and results in the low magnitude of

SC. From the first layer statistics, we can infer a clear distinction is observed between

the SC features across all grades of fatty liver. Similar to first layer SC features,

the mean of second layer SC features reduced with an increase in the severity of fat,

except the mean of Grade II fatty liver is found to be lower than the Grade III fatty

liver.

4.2.4 Confusion Matrix

The confusion matrix of SC features with EKNN classifier is shown in Table. 4.2.

The proposed algorithm classified Normal image texture with an accuracy of 98.8%,

Grade I with an accuracy of 96.8 %, Grade II with an accuracy of 100%, and Grade

III with an accuracy of 99.6% respectively. We can infer that only three images of

Normal texture get misclassified, out of which two images are classified as Grade I,

one image as Grade II, and a clear distinction is observed between Normal and Grade

III images. While classifying the Grade I, eight Grade I images get misclassified, out

of which two images are classified as Normal, five images as Grade II and one image
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Figure 4.3: Optimal parameter selection of EKNN classifier for SC features (a). Performance of
KNN with respect to K, (b) Performance of KNN classifier with respect to the random selection of
the number of features, (c) Performance of KNN classifier with respect to the number of learners.
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Figure 4.4: Correlation of first layer SC features with the diseases. (a) Mean and (b) standard
deviation (Std.) of the first layer SC features for Normal, Grade I, Grade II and Grade III fatty
liver computed over 250 images of each class.
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Figure 4.5: Correlation of second layer SC features with the diseases (a) Mean and (b) standard
deviation of the second layer SC features for Normal, Grade I, Grade II and Grade III fatty liver
computed over 250 images of each class. 44



Table 4.2: Confusion matrix for the SC features extracted for ISCN for network depth m = 2 with
EKNN classifier.

Predicted Class
True Class Normal Grade I Grade II Grade III
Normal (250) 247 2 1 0
Grade I (250) 2 242 5 1
Grade II (250) 0 0 250 0
Grade III (250) 0 0 1 249

as Grade III. Since the characteristics of Grade I liver texture lies in between the

Normal and Grade II the misclassification’s of Grade I images to Normal and Grade

II are justifiable. Grade II images classified with an accuracy of 100% and a clear

distinction is observed between Grade II and Normal, Grade I and Grade III classes.

For Grade III, only one image is misclassified as Grade II, and a clear distinction is

observed between Grade III and Normal, Grade I classes.

Considering Grade I, II and III as positive and Normal images as negative classes,

the proposed algorithm gave a sensitivity of 98.8% and a specificity of 98.8% . It is

also worthy to note that no images of Grade II and Grade III are classified as Normal

and Grade I, which is crucial in medical diagnostics since the patient needs medical

attention under the circumstances.

4.3 Popularly used Texture Features

The performance of SC features in classification is compared with widely used ultra-

sonic texture features. The brief introduction regarding these features are explained

below:

4.3.1 GLCM Features

GLCM features capture the spatial relationship between the pixels present in an

image. The spatial relationship between the pixels is characterized regarding how

often two pixels with intensities i and j occur in the specific direction and distance [68].

To extract the texture features, four GLCM’s corresponding to directions 00, 450, 900
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and 1350, with distance between two pixels as one unit is computed [40]. From each

GLCM, 13 features were extracted, these include angular second moment, contrast,

correlation, variance, inverse difference moment, sum average, sum variance, sum

entropy, entropy, difference variance, difference entropy, and two features regarding

information measures of correlation. For four GLCM’s, a total of 52 features were

computed.

4.3.2 GLRLM Features

The GLRLM features capture the texture information by computing the run-length of

a pixel with specific gray value occurring in a specific direction [69]. Eleven GLRLM

features corresponding to each direction 00, 450, 900, 1350 are computed, constitut-

ing a total of 44 features. The GLRLM features include short run emphasis, long

run emphasis, gray-level nonuniformity, run length nonuniformity, run percentage,

low gray-level run emphasis, high gray level run emphasis, short-run low gray level-

emphasis, short-run high gray-level emphasis, long run low gray-level emphasis and

long run high gray-level emphasis [70].

4.3.3 Laws Texture Features

In this approach, each image is convolved with a set of nine 5 × 5 masks to cap-

ture the local variation in the texture. The convolution masks are generated from

the following vectors: L5 = [1 4 6 4 1]; E5 = [−1 − 2 0 2 1]; S5 = [−1 0 2 0 − 1];

R5 = [1 − 4 6 − 4 1]. The vector L5 detect the center weighted local average,

E5 detect the edges, S5 detect the spots, R5 detect the ripples. The 2D convo-

lution masks are obtained by computing the outer product of the vectors such as

L5E5, L5R5, E5S5, S5S5, R5R5, L5S5, E5E5, E5R5 and S5R5. For example, the mask

S5R5 is computed as [−1 0 2 0 − 1]× [1 − 4 6 − 4 1]T . After applying these convolu-

tion masks on the image, the energy is computed over the coefficients of the convolved

image resulting in nine features for single image [34].
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4.3.4 GIST Features

GIST captures the gradient information with respect to different scales and orienta-

tions for different parts of the image giving a rough description of a surface [71]. GIST

features are computed in the following way. Initially, the image is convolved with 32

Gabor filters generated by 4 scales and 8 orientations resulting in 32 feature maps.

Each feature map is divided into 16 regions which are obtained by partitioning the

image into a 4 × 4 grid, and coefficients in each region are averaged. All the averaged

values corresponding to 32 feature maps are concatenated resulting in a total of 512

features. These features are used to represent the texture of liver parenchyma [72].

4.3.5 Multiresolution Features

Multiresolution feature extracts the texture information by decomposing the im-

age into sub images with various resolutions. Multiresolution framework proposed

in [39], [40] have been used for comparison. The images are decomposed using

M-band wavelet and Gabor filter bank. From each decomposed sub-image, en-

ergy is computed from each sub-band, and considered as a feature for classifica-

tion. Using M-band wavelet, the image is decomposed into 45 sub images, result-

ing in 45 M-band wavelet energy (Wav-Energy) features. Gabor filter bank with

five radial frequencies (
√

2/25,
√

2/24,
√

2/23,
√

2/22and
√

2/21) and six orientations

(00, 300, 600, 900, 1200 and 1500) have been used for obtaining a total of 30 sub images.

Energy in each Gabor sub images (Gabor-Energy) is computed and considered as a

feature for representing the texture.

4.3.6 Comparative Analysis

The accuracy of popularly used texture features with respect to KNN, cubic kernel

SVM and EKNN classifiers in grading the texture of fatty liver is shown in Table. 4.3.

The number of nearest neighbors for KNN classifier is set to five, while for cubic kernel

SVM classifier, the inbuilt SVM function available in the MATLAB 2017a version is
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Table 4.3: Performance of the popularly used texture features in grading the fatty liver. CT+ SVD
refers to the features proposed in chapter. 3

Features KNN SVM EKNN
GLCM 86.7 92.3 91.4

GLRLM 85.8 92.4 90.4
Laws 82.9 88.5 91.6
GIST 80.8 90.1 88.7

Wavelet Energ 87.5 90.4 88.2
Gabor Energ 87.4 92.8 91.1

CT+SVD 93.7 95.7 94.5
SC features 94.0 96.5 98.8

used in the experiments.

GLCM and GLRLM feature performed better with SVM classifier resulting with

an accuracy of 92.3% and 92.4% respectively, while Laws texture measure resulted

in better accuracy for EKNN classifier with an accuracy of 91.6%. GIST descriptor

performed better with 90.1% accuracy for the SVM classifier. The energy features

extracted from wavelet sub-band and Gabor coefficients performed better with an

accuracy of 90.4% and 92.8% with SVM classifier. The curvelet transform and SVD

based features performed better than the texture features proposed in the literature

with an accuracy of 95.7% with SVM classifier, whereas the SC features resulted with

a maximum accuracy of 98.8% with EKNN classifier performing better than all the

texture features. The translational invariant representation, frequency preservation

of the network along with its discriminative representation for the textures proved

very effective for achieving higher classification accuracy from SC features. This is

justified as the INSN preserves the frequency information and extracts the different

levels of gradient information from the texture. For example, the first layer SC

gave SIFT type descriptor and second layer SC gives complementary information for

classification. The first layer SC gave the similar performance compared to the Gabor

wavelets in classifying the texture, but when we use the second layer SC along with

first layer SC, the classification is significantly improved. The significant difference in

classification compared to conventional wavelets is obtained due to second layer SC

features.
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4.4 Summary

In literature, researchers are mainly focused on classifying normal liver with respect

to the fatty liver and not much emphasis is laid on further quantification of fat

in the liver. Accurate quantification of fat in the liver is essential to access the

functionality of the liver and to prevent the complications associated with fatty liver

diseases. In this study, we tried to quantify the fatty content in the liver based on

the discrimination observed in the characteristics of the homogeneous texture of liver

parenchyma. We used SC based features to represent the texture of a liver which

proved very effective in classifying the texture with EKNN classifier. The proposed

algorithm classified the textures correspond to different grades of fatty liver with an

accuracy of 98.8%. The performance of the SC features is compared with widely used

texture features in representing the texture of ultrasonic liver and the results show

that the proposed SC features perform better than the texture features proposed in

the literature.

The proposed algorithm is developed based on the analysis of homogeneous texture

of liver parenchyma, and hence to apply the proposed algorithm on the complete

images, the user has to mark region of interest to apply the algorithm. In general,

there are instances where the texture of liver parenchyma is heterogeneous, under

those circumstances, the proposed algorithm may result in erroneous result. In these

circumstances, analyzing the characteristics of the diaphragm and periportal veins

will help in accurately quantifying the fat in the liver. Detecting these regions will

help in developing robust automated diagnostic algorithms. In the next chapter, we

propose an algorithm for detection of diagnostically significant regions pertaining to

fatty liver.
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Chapter 5

Detection of Diagnostically

Significant Regions of NAFL

5.1 Introduction

The severity of fat in ultrasonic liver images is quantified based on characteristics of

three regions in the image namely diaphragm, periportal veins and texture of liver

parenchyma. The characteristics of these regions vary with the severity of fat in the

liver, and is subjected to low signal to noise ratio, low contrast, poorly defined organ

boundaries, etc., hence locating these regions in ultrasound images is challenging task

for the sonographers and the accuracy of the diagnosis is mainly influenced based on

the perception of these region of interest (RoI). As the characteristics of each RoI

differ from other RoIs, we propose a specific algorithm for detecting each RoI. The

accuracy of detecting diaphragm is computed as the efficiency of algorithm in placing

at-least one bounding box on the diaphragm of liver parenchyma, while the accuracy

of detecting periportal veins is computed as the ratio of total number of periportal

veins detected to the total number of periportal veins present. The accuracy of the

algorithm in detecting the homogeneous region is seen as its ability to place at-least

one RoI inside the liver parenchyma.
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The block diagram representation of the propose algorithm in detecting each RoI

is shown in Fig. 5.1. The framework consists of three independent algorithms each

specifically designed for detecting RoI of a diaphragm, periportal veins and texture

of liver parenchyma. The description regarding the detection of each RoI is discussed

in the following sections.

5.2 Diaphragm Detection

The diaphragm is the primary muscle used in the process of inspiration, or inhalation.

It is a dome-shaped sheet of muscle present into the lower ribs. The diaphragm is

situated above the liver and appears as slanted ‘U’ shape with an upper part trimmed

in the liver ultrasound image. The shape, size and length of a diaphragm depends

on the anatomy of patient and position of the probe used to acquire the liver images.

Since the diaphragm lies above the liver, it appears in a lower left portion of the

ultrasound image when captured from a subxiphoid view [73]. The block diagram

representation of the propose algorithm for detecting RoI of a diaphragm is shown

in Fig. 5.2. Initially, Viola Jones (VJ) algorithm [74] is used to detect the RoI of a

diaphragm. VJ algorithm which is primarily proposed for detecting faces in real-time

also proved that the same framework is effective in detecting other parts like noses,

eyes, upper body parts, cars, stop signs, etc. Recently VJ algorithm has been used

in medical image analysis to detect organs such as carotid artery, kidney, pelvis and

proximal femur of a hip joint, etc [75], [76]. The VJ algorithm works in three stages

namely feature extraction, AdaBoost training and cascade of classifiers. The brief

description regarding the VJ algorithm is discussed below.

5.2.1 Feature Extraction

Haar-like features are derived from the kernels [77], few of these kernels are shown

in Fig. 5.3. The white region in kernel correspond to weight w0=-1 and black region
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Figure 5.1: Block diagram representation of the propose algorithm for detection of RoI’s in the liver
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diaphragm and (b) Algorithm used to reduce the FP’s resulted from VJ algorithm.

corresponds to w1=+1. The value of these features are then computed using the

formula f(x) = w0r0 + w1r1, where f(x) is the response of a given Haar-like feature

to the input image x, w0 is the weight of the black area r0 and w1 is the weight of the

black area r1. The number of pixels in areas r0 and r1 vary because the features are

generated for various possible combinations and positions in a given window. These

dimensions start from the single pixel and extend up to the size of given window.

The features generated using these kernels are independent of image content. The

process of feature generation is explained as follows: considering kernel in Fig. 5.3(a),

which is initially of two-pixel column width (one pixel white and one-pixel black),

the feature value of f(x) is computed. The kernel is shifted from the top left of the

image by one pixel, and new feature value is calculated. Similarly, the kernel is then

moved across the complete image until it reaches the right bottom of the image with
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all features computed. Hence the features are evaluated hundreds of times as kernel

moves across all the rows of the image and every time new feature value is updated in

the feature list. Later the kernel is increased to the four-pixel width (two white pixels

and two black pixels), and the process is repeated to get new feature values. The

process is repeated for all the kernels, capturing all variations in size and position.

Computing sum of pixels in a given area is a computationally expensive procedure.

To address these an intermediate image representation called integral image approach

is employed [78].

Figure 5.3: Kernels used to extract Haar like features from the images.

5.2.2 AdaBoost based Learning and Cascade Architecture

Evaluating a large number of features for detecting an object in an image is highly

expensive, to address this an AdaBoost algorithm is used [79]. An AdaBoost learning

algorithm is used to select the best features and to train the classifiers that use

them. AdaBoost builds the strong classifier as a weighted linear combination of weak

learners, where weak learners are chosen as decision stumps. To improve the detection

rate, a cascade of classifiers architecture is used. Each cascade classifier is trained with

a combination of weak learners. The complexity of detecting the RoI increases with

an increase in the number of cascaded classifiers. The cascaded classifier architecture

improves the detection rate by eliminating the non-RoI’s in the earlier stages of the

cascaded classifiers.

Initially, the VJ algorithm is trained with positive and negative training images.

The negative and positive images used in training the VJ algorithm for detecting RoI

of a diaphragm is shown in Fig. 5.4 and Fig. 5.5 respectively. The positive images are
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Figure 5.4: Images used as positive examples in training the VJ algorithm for detection of diaphragm.

extracted by cropping RoI of a diaphragm from overlapping regions of liver ultrasound

images.

The size of the diaphragm used in training the VJ algorithm is varied in the range

of 48 × 48 to 64 × 78 pixels. The entire region of the diaphragm is not considered

for training due to the complex and varied structure of the diaphragm. While for the

negative training images, care is taken that the images do not contain shapes appear

as the diaphragm. We choose kidney ultrasound image as negative training examples

since no part of the kidney image resemble like a diaphragm. The VJ algorithm is

trained with 741 labeled diaphragms and 50 kidney images. 741 labeled diaphragms

are obtained from 200 images by cropping the overlapping regions on the diaphragm.

The RoI’s detected by the VJ algorithm is shown in Fig. 5.6.

Although VJ algorithm results with high accuracy in detecting the diaphragm,

it suffers from high false positives (FP’s). While developing CAD algorithms, care

should be taken that the algorithm will result in less number of FP’s, since analyzing
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Figure 5.5: Images used as negative examples in training the VJ algorithm for detection of di-
aphragm. All these images belongs to the kidney.

the FP’s for diagnosis will lead to the faulty diagnosis. The VJ algorithm mostly

detected border of vein walls and nonhomogeneous texture regions as FP’s. To elim-

inate FP’s, the second stage of classification algorithm trained with true positives

(TP’s) and FP’s resulted from VJ algorithm is developed. The TP’s and FP’s are

obtained by testing the VJ algorithm on the training data. The second stage of the

classification algorithm is developed based on the GIST descriptor and cubic SVM

classifier. The features for classification framework is chosen based on the experimen-

tation analysis. The classification framework is evaluated with popularly used texture

features such as Histogram of Oriented Gradients (HOG) [80], histogram features and

GIST descriptor [71] with SVM classifier, Out of all these features, GIST descriptor

performed better in classifying TP’as and FP’s.
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Figure 5.6: The red rectangular boxes indicates the FP’s and the yellow rectangular boxes indi-
cates the true positives. (a), (b) Result of the VJ algorithm in detecting the diaphragm. (c), (d)
Elimination of the FP’s after applying GIST based cubic kernel SVM classification.

5.2.3 GIST Descriptor based Cubic SVM Classifier

The block diagram representation regarding the classification between TP’s and FP’s

is shown in Fig. 5.2(b). The TP’s and FP’s resulted from VJ algorithm is of different

size. Hence in developing the algorithm, all the TP’s and FP’s images are resized

to a fixed size of 64 × 64 pixels, this size is chosen based on the cross-validation.

From each resized image, GIST descriptor is extracted. GIST descriptor gives the low

dimensional representation of the scene by extracting the spatial envelope of an image

[81]. GIST represent the features like naturalness, ruggedness, openness, roughness

and expansion of a scene [82]. GIST descriptor from each image is extracted in the

following way. Initially, the image is convolved with 32 Gabor filters corresponding

to four scales and eight orientation resulting in 32 feature maps. Each feature map

is divided into 4×4 grid resulting in 16 regions. The coefficients of each region is

averaged resulting in 16 features for each feature map. The averaged values of all

32 feature maps will result in a total of 16×32=512 GIST descriptor. The extracted
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features are then used to train the cubic SVM classifier. The classifier is trained with

250 TP’s and 896 FP’s images resulted from the VJ algorithm. With 5 fold cross-

validation scheme, the algorithm resulted with an accuracy of 94.6% in classifying

TP’s and FP’s.

After applying the GIST descriptor based cubic SVM classification, the FP’s have

been significantly reduced. But the output of this algorithm will not give the complete

detection of the diaphragm. For complete detection of the diaphragm, active contour-

based segmentation [83], active shape modeling (ASM) [84] algorithms can be used.

ASM model fails due to high non-rigidness in the shape of the diaphragm. Hence

we employed active contour-based segmentation for detecting the entire contour of a

diaphragm.

5.2.4 Active Contour based Segmentation

Segmenting RoI in ultrasound image poses a lot of difficulties due to large varia-

tions observed in the diaphragm from image to image. The active contour model

(ACM) [83] helps to obtain closed object contour as a segmentation result under the

circumstances of noise and poorly defined boundaries. Active contour is a curve evo-

lution algorithm which confirms to the image edges. In active contour, we initialize

the curve and try to optimize it towards its lower energy. The energy of the curve is

defined as

E(c) = Einternal(c) + Eexternal(c), (5.1)

where Einternal(c): depends on the shape of the curve given by

Einternal(c) =

∫ 1

0

α||cl(s)||2ds+ β||cll(s)||2ds, (5.2)

In Eqn. 5.2, the 1st term determines amount of stretch in the curve and 2nd term

represents the smoothness of the curve. If the curve is relaxed it has low energy,

suppose if it has stretched then the curve will have high energy. Similarly if the curve
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Figure 5.7: Block diagram representation for the active contour model based segmentation of a
diaphragm.

Figure 5.8: Blue box indicates manual initialization, red lines indicates the segmented diaphragm
and yellow line indicates the manual segmentation. We can observe there is a strong resemblance
between manual segmentation and active contour based segmentation.

is too curvy it has high energy and vice versa. Here α and β are the weights which

controls stretch and smoothness of the curve. The Eexternal(c) deals with the image

intensity or edges of an image.

Eexternal(c) =

∫ 1

0

−||∇I(c(s))||2ds (5.3)

If there is no edge then Eexternal becomes zero or if there is an strong edge then

the Eexternal will be lower due to negative of gradient of the image. Likewise the

curve evolve towards the lower energy conforming to the edges of an image. The

energy components in active contour are converted into forces. When the external and

internal forces balance each other, we get the minimum energy. Contour displacement

stops if minimum energy is reached or the specified number of iterations are over.

The block diagram representation for the active contour-based segmentation is

shown in the Fig. 5.7. The result of active contour after manual initialization is

shown in the Fig. 5.8. Here, we can see there is a close agreement between active

contour segmentation and manual segmentation. Many variants of active contours

like gradient vector flow [85], balloon model [86], diffusion snakes [87], active contours
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with edges [83], geodesic active contours [88], etc., have been proposed in the literature

for effective segmentation. Here, we employed active contours with edges algorithm

for segmenting the diaphragm.

5.3 Periportal Vein Detection

The framework used to detect RoI for diaphragm also worked effectively in detecting

the periportal veins. The segmentation algorithm is not employed for periportal vein

detection since the entire vein is enclosed inside the RoI. Periportal veins are detected

in two stages, in the initial stage, VJ algorithm is used to detect the periportal veins.

The positive training images used to train the VJ algorithm is shown in Fig. 5.9. In

general, more than one periportal vein vessels will appear in liver ultrasonic images.

Hence all the visible periportal veins are considered in training the VJ algorithm.

The size of cropped images employed in training the VJ algorithm is in the range of

15 × 25 to 32 × 42 pixels. The positive training images are extracted by cropping

the periportal veins corresponding to all grades of fatty liver. We used the same

negative training images (refer Fig. 5.5,) which we have used for training the VJ

algorithm for detecting the diaphragm detection. Care is taken that kidney images

used in negative training examples do not have cyst abnormalities since the cyst in

kidney resembles as periportal vein in the liver ultrasound image. The VJ algorithm

is trained with 829 labeled periportal veins and 50 kidney images. The VJ algorithm

has resulted in both TP’s and FP’s as shown in Fig. 5.10. The regions where there

is enough contrast in images are detected as FP’s, since the periportal veins also

provide similar contrast in their respective spatial locations. To eliminate the FP’s, a

second stage classifier algorithm with GIST descriptor and quadratic SVM classifier

is employed. The second stage classifier algorithm is trained with TP’s and FP’s

of the VJ algorithm which is developed for detecting the periportal veins. Before

training the classifier, the sizes of all TP’s and FP’s are resized to a standard 32 ×
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Figure 5.9: Images used in training the VJ algorithm for detecting the periportal veins.

32-pixel size, this size is chosen based on empirical analysis. The second stage of the

classification algorithm is trained with 350 images of TP’s and 200 images of FP’s

resulted from the VJ algorithm. With 5 fold cross-validation, the GIST descriptor

based quadratic SVM classifier resulted in an accuracy of 93.7% in classifying TP’s

and FP’s of periportal veins.

5.4 Homogeneous Texture Detection

The block diagram representation regarding the detection of RoI for homogeneous

textures in liver parenchyma is shown in Fig. 5.11. To avoid homogeneous region

lying outside the liver parenchyma, the organ is segmented manually before applying

the algorithm. Since the texture does not have any shape specific information, the VJ

algorithm performed poorly in detecting the homogeneous RoI in a liver. The liver

mainly consists of periportal veins, the texture of liver parenchyma and diaphragm.

Therefore, the RoI detection for homogeneous texture is framed as a binary classifi-

cation problem, where one class belongs to RoI of homogeneous texture regions and
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Figure 5.10: Automated periportal vein detection. Red boxes indicates the FP’s and yellow boxes
indicates TP’s. (a), (b) Performance of the VJ algorithm in detecting the periportal veins. (c), (d)
Performance of the algorithm after applying the GIST feature based quadratic SVM classifier.

another class belongs to RoI’s of the diaphragm and periportal veins. The homo-

geneous texture is better represented with histogram features; these include mean,

variance, skewness and kurtosis. The histogram appeared symmetry for homogeneous

texture and nonsymmetry for nonhomogeneous texture regions giving discriminative

representation across the homogeneous and nonhomogeneous RoI’s. The homoge-

neous RoI’s in liver parenchyma is detected using a sliding window based approach.

A window of size 64× 64 with the sliding length of 32 pixels is chosen for the analysis.

The Gaussian SVM classifier is used to discriminate homogeneous and nonhomoge-

neous regions based on the histogram features. The homogeneous texture patches

used in training the classifier is shown in Fig. 5.12. A total of 400 homogeneous

textures and 550 diaphragm and periportal images extracted from all grades of fatty

liver is used in training the Gaussian SVM classifier. The sliding window model re-

sulted with 100% accuracy in detecting the homogeneous texture regions along with

the FP’s. The FP’s are resulted due to periportal veins. Since the periportal veins

62



  

Sliding window 
Model based
 Patch extraction

Nonhomogeneous 
texture patches

Homogeneous 
texture patches

Histogram 
feature 

extraction

Gaussian 
SVM

Histogram 
feature 

extraction

Liver 
Ultrasound

 image

RoI's of homogeneous 
texture (includes TP's and 
FP's)

RoI's of 
Homogeneous

 texture

Connected 
Components

 algorithm

Count the number
 of pixels in each

 blob

Greater than
 threshold

Less or equal to
 threshold

RoI  
eliminated

RoI  
detected

(a)

(b)

Figure 5.11: Algorithm for detecting RoI correspond to homogeneous texture of liver parenchyma.

appears as blobs, we eliminated the FP’s by detecting the blobs in the homogeneous

region. This is done by using a connected components algorithm [89]. The connected

components algorithm is applied in the following way. Initially each detected homo-

geneous texture is binarized by setting a threshold to 20. The value 20 is chosen

based on the empirical analysis. The pixels with intensity value less than 20 is set to

‘1’, while the pixels with intensity greater than or equal to threshold 20 is set to ‘0’.

Then the number of pixels in each blob is computed by fixing a connectivity to 6.

It is observed that we can eliminate all FP’s present in the liver parenchyma whose

pixel count in each blob is more than 150. The optimal values for the connected

components algorithm is chosen based on empirical analysis. The performance of the

propose algorithm in detecting the homogeneous textures is shown in Fig. 5.13. The

multiple RoI’s are obtained for the homogeneous texture since the parenchyma covers

wide area in the liver.
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Figure 5.12: Homogeneous texture patches used to train the classifier for RoI detection of texture.

Figure 5.13: Performance of the propose algorithm in detecting RoI for homogeneous patches. Yellow
boxes indicates the RoI of homogeneous texture patterns corresponding to liver parenchyma.

64



5.5 Database for Training and Testing

A total of 200 images were used in training process; these include 80 Normal, 45 Grade

I, 40 Grade II and 35 Grade III images. The propose algorithm is tested with two sets

of database, one consisting of 180 images which include 75 Normal, 60 Grade I and

45 Grade II images respectively, here Grade III images are not considered due to high

obscuration of the RoI’s. The second database consists 157 liver images. The images

used in the first test case has not been used in the second test case. Performance of the

proposed algorithm on the first database gives the overall accuracy of the algorithm

in detecting the RoI’s, while testing on the second database gives the performance of

the algorithm on individual categories of different grades of fatty liver.

5.6 Results

The VJ algorithm is trained by setting following parameters: the number of cascade

classifiers=5, merge threshold=80, window enlargement in each step is set to 1.1 with

sliding window shifted by one pixel. The VJ algorithm detects the RoI using slid-

ing window approach due to which multiple detections will occur for each RoI. The

multiple detections are eliminated by merging all the overlapped detections by tak-

ing an average of the coordinates of detected RoI’s. Decreasing the merge threshold

increased the number of FP’s along with TP’s and vice-versa. The optimal merge

threshold of 80 is chosen based on the empirical analysis. The VJ algorithm used

7, 9, 11, 13 and 19 features at each stage of cascaded classifiers respectively. The

performance of the propose algorithm in detecting RoI for a diaphragm when VJ al-

gorithm trained with different false alarm rates is shown in Table. 5.1. The algorithm

is tested on 180 liver ultrasound images. The maximum classification accuracy of

97% is obtained at a false alarm rate of 0.5. Here the VJ algorithm detected the

diaphragm with an accuracy of 98.2% with 450 FP’s, after applying the GIST based

cubic SVM classifier, FP’s has been significantly reduced to 113.
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Table 5.1: The accuracy of the propose algorithm for placing the RoI on a diaphragm.

False
alarm rate

Performance of Viola Jones
algorithm

Performance of the algorithm after applying
GIST descriptor + cubic SVM classifier

Accuracy(%) FP’s Accuracy(%) FP’s
0.1 91.0 160 85.0 14
0.2 93.5 194 87.4 21
0.3 94.7 260 89.7 44
0.4 96.0 390 96.0 78
0.5 98.2 450 97.0 113

Table 5.2: Accuracy of the propose algorithm in detecting the periportal veins

False alarm
rate

Performance of
Viola Jones algorithm

Performance of the algorithm after applying
GIST descriptor + Quadratic SVM classifier

Accuracy
(%)

False
Positive

Accuracy
(%)

False
Positive

0.1 89.7 84 84.0 9
0.2 91.7 131 87.0 15
0.3 93.0 141 89.6 16
0.4 94.9 314 90.7 25
0.5 96.0 425 91.0 43

The performance of propose algorithm in detecting the periportal veins is shown in

Table. 5.2. The VJ algorithm used 7, 8, 10, 11 and 14 features in each cascaded stage

respectively. The optimal trade-off between TP’s and FP’s is obtained at a merge

threshold of 50. The propose algorithm detected periportal veins with a maximum

accuracy of 91% for the VJ algorithm when trained with a false alarm rate of 0.5. The

VJ algorithm detected periportal veins with a maximum accuracy of 96% with 425

FP’s. After applying GIST descriptor with quadratic SVM classifier, the number of

FP’s have significantly reduced to 43, which in turn also reduced the overall detection

accuracy of periportal veins from 96% to 91%.

The histogram based Gaussian SVM classifier detected the RoI for homogeneous

texture with 100% accuracy. The algorithm resulted in multiple RoI’s for homoge-

neous textures along with FP’s. The FP’s are completely removed using the connected

components algorithm.
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Table 5.3: Accuracy of the propose algorithm in detecting the RoI’s with respect to different grades
of fatty liver.

Category Database Diaphragm (%) Periportal veins (%)

Normal 48 97.5 93.7
Grade I 33 95.5 92.3
Grade II 45 93.2 90.8
Grade III 31 65.7 80.3

5.6.1 Performance of the Propose Algorithm with Respect to Different

Grades of Fatty Liver.

The performance of the proposed algorithm in detecting the RoI with respect to

different grades of fatty liver is presented in this section. The proposed algorithm

is tested on a database consisted of 157 ultrasound images which include 48 normal,

33 Grade I, 45 Grade II and 31 Grade III images. For Normal, Grade I and Grade

II images, the diaphragm and periportal veins are visible or partially visible to the

normal eye. For 31 images of Grade III fatty liver, only for 15 images the diaphragm

and periportal veins are partially visible, whereas for other images diaphragm and

periportal veins are totally obscured and is not visible to the human eye. The accuracy

of the proposed algorithm corresponding to different grades of the fatty liver is shown

in Table. 5.3. The proposed algorithm detected diaphragm and periportal veins of

the normal liver with an accuracy of 97.5% and 93.7% respectively. The accuracy of

detecting diaphragm and periportal veins get reduced with an increase in the severity

of the fat which resulted in obscuration of RoI. Even there is a high obscuration of RoI

for Grade III fatty liver, the proposed algorithm detected diaphragm and periportal

veins with an accuracy of 65.7% and 80.3% respectively. The classification accuracy is

only computed for the images where diaphragms and periportal veins are perceivable

to the human eye. For the images where diaphragm and periportal veins are not

visible, the algorithm did not detect any RoI in the region with zero FP’s. The

proposed algorithm detected RoI for homogeneous patches with a 100% accuracy

for all the liver ultrasound images. Since the organ boundaries are not visible in
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Table 5.4: A brief summary regarding the performance of the propose algorithm in detecting each
RoI.

RoI detection Remarks

Diaphragm

The bounding boxes enclosing some part of the diaphragm is detected using
the VJ and GIST descriptor based cubic SVM classifier. The detected RoI is
then used to initialize the active contour algorithm to detect the entire diaphragm.
The bounding box position of RoI enclosing the diaphragm did not have an
effect in detecting the entire contour of diaphragm since the active contour algorithm
tends to capture the strong edges. The accuracy of detecting diaphragm decreased
with increase in severity of fat in the liver due to obscuration of diaphragm.

Periportal
veins

The bounding boxes enclosing periportal veins is detected using the VJ and GIST
descriptor based quadratic SVM classifier. All the detected RoI’s are completely
enclosed within the RoI. The accuracy of detecting periportal veins decreased with
increase in severity of fat in the liver due to obscuration of periportal veins.

Homogeneous
texture

The RoI’s are detected using the combination of histogram features based Gaussian
SVM classifier and connected components algorithm. The algorithm resulted
in multiple overlapping RoI’s, and the end user can select an appropriate number of
RoI’s depending on the application. The accuracy of detecting RoI for homogeneous
texture did not effected with the severity of fat present in the liver.

Figure 5.14: Performance of the propose algorithm in detecting the RoI’s. The region enclosed with
red color represents the diaphragm, green boxes indicate the detection of periportal veins and blue
boxes indicates the RoI of a homogeneous texture.

Grade III fatty liver ultrasound images, the RoI’s detected outside the liver image

is not recognizable. The brief remarks regarding the performance of the propose

algorithm in detecting each RoI is discussed in Table. 5.4. The result of the proposed

algorithm in detecting the diaphragm, periportal veins and homogeneous texture of

liver parenchyma is shown in Fig. 5.14.
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5.6.2 Segmentation Accuracy

The accuracy of segmenting the diaphragm and periportal veins is measured using

the Dice coefficient which is given by

D =
2(A ∩B)

|A|+ |B|
, (5.4)

A and B represents the segmentation resulted due to two different procedures re-

spectively. |.| represents cardinality. D lies in between 0 and 1, the higher the value

better is the agreement between the segmentation procedures. For diaphragm detec-

tion, the mean D for manual initialized active contour segmentation to the manually

segmented diaphragm is 0.60 is obtained, for manually initialized active contour to

automated segmentation a mean D of 0.71 is obtained and for manual segmentation

to the automated segmentation a mean D 0.59 is obtained. The mean D values are

computed for 32 images, which consist of 10 Normal, 10 Grade I, 10 Grade II and

2 Grade III ultrasound images. A difference of 0.1 is observed in mean D between

manually initialized active contour and automated segmentation procedure showing

a close resemblance between manually initialized and automatically initialized active

contour segmentation. While in the detection of periportal veins, the proposed al-

gorithm resulted with a mean D of 0.71 when tested on 40 labeled periportal veins,

which consist of 10 labeled periportal veins in each Normal, Grade I, Grade II and

Grade III.

The experiments are performed on a Windows desktop computer with Intel Core

i7 processor, 16 GB RAM running with 2.8 GHz clock using MATLAB 2017a version.

For an image of size 500 × 650, the algorithm took approximately 2.42 s for detecting

RoI of a diaphragm, 2.5 s for segmenting the diaphragm after initialization, 4.3 s for

periportal detection and 2.3 s for homogeneous texture detection.
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5.7 Summary

In this chapter, we proposed an algorithm for detection of diagnostically significant

regions of fatty liver namely diaphragm, periportal veins and homogeneous texture

in ultrasonic liver images. Since the characteristics of these regions vary with the

fatty content of the liver, it poses a serious challenge in detecting these regions. The

proposed algorithm detected RoI of diaphragm, periportal veins and homogeneous

texture of liver with an accuracy of 97%, 91% and 100% respectively. The accuracy

of the proposed algorithm in detecting the RoI’s in fatty liver decreased with increase

in the severity of fat in the liver, this is justifiable since the visibility of diaphragm

and periportal veins reduces with the severity of the disease. In literature, computer-

aided algorithms developed for diagnosing the fatty liver involves manual intervention

to crop the RoI’s, hence making the algorithms semi-automated. The proposed al-

gorithm eliminates the need for manual intervention except for homogeneous texture

detection, which can be used to develop accurate and automated diagnostic algo-

rithms. The proposed algorithm benefits the sonographers to diagnose more number

of patients by reducing the time needed to locate RoI’s in the ultrasound image. The

proposed algorithm can also be used to assist the semi-skilled persons to know whether

the scanned image has representative information for diagnosis before transmitting it

to the expert or cloud for analysis.
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Chapter 6

Sparseland Model for Speckle

Suppression

6.1 Introduction

Ultrasound images are inherently affected by a multiplicative noise called speckle.

The speckle appears as small worms or snake like structures in the image revealing

no significant information about the tissue structure and so it is considered as noise.

Speckle is uncorrelated with respect to spatial, temporal and frequency of operation of

ultrasound probe. The uncorrelated property of speckle is used to suppress the noise

at RF acquisition stage using different compounding techniques [90]. In frequency

compounding, the same imaging sector is scanned with multiple frequencies and the

corresponding RF signals are averaged. Phase compounding involves averaging the

RF data acquired by scanning the same position with multiple probe positions [91].

Compounding techniques are employed in the ultrasound machines at a cost of in-

creased computations. Speckle suppression also done after complete formation of an

ultrasound image by estimating the random behavior of speckles in the image.

Mathematically speckle can be modeled as sum of large number of complex phasors

which results in constructive and destructive interference at the receiver side [92]. The
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constructive interference leads to bright spots and destructive interference leads to

dark spots similar to dense salt and pepper like noise in the image. The intensity of

envelop detected RF data J(m, n) affected by speckle noise is given as

J(m,n) = (P (m,n) ∗ I(m,n)) N×(m,n) (6.1)

where the multiplicative noise N×(m,n) is sample wise independent of past, future

samples and uncorrelated to the image pixel value I(m, n), P(m, n) is the point

spread function (PSF) of the ultrasound imaging system, (m,n) represents the spatial

position of the tissue in the scan plane. The log transformation, which is used to

compress the dynamic range of envelope detected data in ultrasound imaging system

modify the multiplicative model into an additive model.

J(m,n)al = (P (m,n) ∗ I(m,n))al +N+(m,n) (6.2)

N+(n,m) is the additive noise term and suffix al represents the term after log com-

pression. The behavior of I(m,n) in fully formed image is modeled as summation of

complex phasors in a random walk model which results bright pixels due to construc-

tive interference and dark pixels due to destructive interference [92].

I(m,n) =

p∑
1

ap(m,n) ejϕp(m,n) (6.3)

p is a positive integer which is generally considered very large, ap and ϕp are ampli-

tudes and phases of scattering echoes from tissues.

Smoothing the image is one common solution seen in literature to address speckle

suppression. These techniques differs from one another based on smoothing criteria

employed to determine the degree of smoothness. The operation of the filter on

a particular pixel depends upon local statistics of the pixel surrounding around it.
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These filters are biased to the size of the window used for finding local statistics and

smoothing.

Sparse and redundant representations over learned dictionaries looks promising

for image deblurring [93] and denoising applications [94]. In this thesis, we show

how sparse and redundant representation over learned dictionaries of speckle affected

ultrasound image effectively leads to speckle suppression. The propose algorithm is

tested individually on coherent, diffused speckle pattern images and real time ultra-

sound B-mode (Liver and Kidney) images. Coherent speckles in the ultrasound image

appears as dense salt and pepper like noise and diffusion speckle pattern appears as

small worm like structures. The speckle suppression is performed on images, which

is generated from Matlab using K-wave toolbox [95]. The performance of the algo-

rithm is evaluated based on how efficiently it can smooth the image by preserving

mean and reducing the standard deviation in homogeneous region. The performance

is compared with widely used speckle reduction filters like Frost [96], Lee [97] and

Speckle reduction anisotropic diffusion (SRAD) filters [98].

6.2 Representation of an Image Over Sparse and Redundant

Over-Complete Dictionary.

6.2.1 Problem formulation

Sparse modeling is used in many image processing applications like denoising, in-

painting, mosaicing etc. Speckle suppression in ultrasound images is mathematically

formulated in the following way.

min f(X) =
1

2
‖ X − Y ‖22 +G(X) (6.4)

Y : Given measurements.

X : Unknown to be recovered.
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Y is the speckle image and we want to recover clean image X. We do not want to

recover the image that is not to far from the noisy image and that is the penalization

that we have here i.e.,‖ X−Y ‖22. ‖ X−Y ‖22 gives the mean square error between the

speckle image and restored image. In Eqn. 6.4, ‖ X − Y ‖22 also seen as variance of

speckle noise. The image that minimizes Eqn. 6.4 is noisy image itself and so we have

not done much. The second term in Eqn. 6.4 indicates the prior information regarding

the image that has to be recovered. This is simply a Bayesian point of view, adapting

the Maximum-A-Posterior (MAP) estimation and the basic idea is computing the

X that minimizes f(X). Eqn. 6.4 is seen as prior and likelihood estimation with

probabilistic interpretation. In this scenario we choose a prior to be

G(X) = λ ‖ α ‖0 (6.5)

where ‖ α ‖0 gives sparsity of the signal representing number of non-zero coeffi-

cients.

6.2.2 Sparseland Modeling of an Image.

To construct sparse modeling of an image, we will begin by constructing the sparse

model for overlapping fixed image patches [94]. An image patch of size
√
m ×

√
m

pixels is arranged lexicographically as single column x ∈ <m. To define a sparseland

model for this column vector, we need to construct a dictionary of size D ∈ <m×k. If

k > m then the dictionary is said to be overcomplete and it is redundant. We simplify

the model assuming the matrix D is fixed and it is known to us. Every image patch

x in the image is represented sparsely over the dictionary by solving

α̂ = argmin
α
‖ α ‖0 s.t Dα ≈ x (6.6)

s.t stands for such that.
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we will get ‖ α ‖0� m. Mathematically speaking, the signal is represented by a linear

combination of few column vectors of redundant dictionary matrix D. The constraint

Dα ≈ x is equivalent to ‖ Dα −X ‖22 ≤ ε, ε is the magnitude of error allowed. We

need to define the parameter Q such that ‖ α ‖00≤ Q � m. It states that it uses

atmost Q columns of D for representing the image patch.

We have (ε, Q,D) with us and need to find the sparse representation α̂

α̂ = argmin
α
‖ α ‖0 subject to ‖ Dα− Y ‖22< Th (6.7)

Th is the error allowed and the recovered image is given by Dα̂ = X̂. The optimization

of Eqn. 6.7 is an NP hard problem and cannot be solved as it is. Eqn. 6.7 can be

solved using relaxation and greedy algorithms by modifying the equation as

α̂ = argmin
α
‖ Dα− Y ‖22 + µ ‖ α ‖1 (6.8)

Orthogonal matching pursuit (OMP) optimization algorithm is employed for obtain-

ing the α̂ due to its efficiency and simplicity. .

6.2.3 Despeckling of Image from Local Patches.

Despeckling an ultrasound image Y of size
√
M ×

√
M where M � m is done by

constructing a larger dictionary. The larger dictionary is obtained by just scaling the

dictionary of image patch containing the basis of curvelet or contourlet transforms

[99]. This is not possible if we use small and fixed dictionary D ∈ <m×k. We can solve

this problem by another way by tiling the results of all patches in the image forming

the complete despeckled image. Blocking artifacts is seen on the resulted image due

to tiling of patches and is overcomed by constructing the dictionary for overlapping

patches and averaging the results of the patches accordingly [100].

Considering every patch in the image belonging to sparseland model (ε, Q,D),

75



MAP estimator can be rewritten as

{αij, X} = arg min
αij ,X

λ ‖ X − Y ‖22 +
∑
ij

µij ‖ αij‖0 +
∑
ij

‖ Dαij −BijX ‖22 (6.9)

The first term in the equation represents the error between the recovered image

and noise image. Bij is binary image used to extract the patch of an image of size
√
m ×

√
m. Eqn. 6.9 has two unknowns αij, X and is solved by fixing X = Y and

seeking for α̂ij. The optimum value of α̂ij for each image patch is obtained by solving

α̂ij = argmin
α
µij ‖ α ‖0 + ‖ Dα− xij ‖22 (6.10)

OMP algorithm is employed to obtain α̂ij for each image patch by picking one column

at a time from a dictionary and stopping it when ‖ Dα−xij ‖22< Th. This is operated

for every image patch of size
√
m×
√
m one at a time on sliding window model basis.

Eqn. 6.9 is in quadratic form and its closed form solution is given by

−
X = (λI +

∑
ij

BT
ijBij)

−1(λY +
∑
ij

BT
ijDα̂ij) (6.11)

Eqn. 6.11 is seen as averaging the result of sparseland model of shifted overlapping

patches of a speckle image. We formulated all the above equations assuming the

dictionary matrix D is given to us. Various dictionaries are proposed in the literature

and we choose to have discrete cosine transform as dictionary due its uncorrelated

basis structure which tends to have high sparsity. We have to update the parameters

D and αij based on the image patches iteratively unless the required condition is

met. D and αij can be updated using patches from a set of clean images or from

the corrupted image itself. D is the common dictionary used to represent all the

patches in the image. In this thesis, we updated D and αij using the patches from
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the speckled image. The final generalized problem is formulated as

X = arg min
{αij}ij ,X,D

λ ‖ X − Y ‖22 +
∑
ij

‖ Dαij −BijX ‖22 s.t ‖ αij‖0 < Q (6.12)

Algorithm 1: Algorithm for finding Sparse representation of an image.

1. In Eqn. 6.12, we have to fix three terms X, D and αij . To find this, we are going to fix two
terms and find the third term. Let us fix X=Y and overcomplete dictionary D with DCT.

2. Repeat J times

• Sparse matrix update using OMP algorithm, Compute sparse vector αij for each
patch BijX

∀ij min
αij

‖ α ‖0 s.t
∑
ij

‖ BijX −Dα ‖22≤ ε

• Dictionary update stage: update each atom a=1,2,...k in D by
-Find the set of blocks in image that uses this atom va = {(i, j)|αij(a) 6= 0}
-Find the corresponding error for each index (i, j) ∈ wa

eaij = BijXij −
∑
n 6=a

dnαij(n) (6.13)

-Matrix E is formed with columns {eaij}(ij)∈wa

-Ea is factorized as U∇V T using SVD algorithm. Fix the updated dictionary column dl
be the first column of U. Coefficients of {αaij}(ij)∈wa

is updated by the entries of V
multiplied by ∇(1, 1). Iteration of step 2 is called K-SVD.

3. Now D and αij known, compute X by

−
X = (λI +

∑
ij

BTijBij)
−1(λY +

∑
ij

BTijDα̂ij) (6.14)

which is a simple averaging of shifted patches.

(i, j) in Eqn. 6.14 corresponds to spatial location of image patch in the image.

Representing the image with few number of columns naturally reduces the noise and

averaging the patches leads to smoothness of the image. The algorithm for finding

sparseland model for speckle suppression is shown in Algorithm.1.

The sparseland model algorithm for speckle suppression requires to initialize few

parameters, they are listed below.

1. Initial dictionary : overcomplete DCT.
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2. Overlapping stepsize ∆: Interval between neighboring blocks.

3. Sigma: used to determine the target error for sparse-coding each block.

4. Training block T: Number of blocks extracted for training.

5. Dict D :Dictionary size.

6. Block size
√
m×

√
m: size of image patch to process.

7. Iteration number I: number of K-SVD training iterations to perform.

8. λ: Specifies the relative weight attributed to the noisy input signal in determining

the output.

Table 6.1: K-wave parameters used to simulate the ultrasound image is shown in Fig. 6.3(a)

Transducer width 14.1593 mm (64 grid points)

Number of elements 64

Number of active elements 64

Element width 221.2389 um (1 grid points)

Sound speed 1540 m/s

Focus distance 30 mm

Elevation focus distance 30 mm

The order of complexity for each pixel in sparseland model is of the order O(mkQJ),

where m is patch size, k is number of columns in dictionary, Q is the sparsity of

each column in coefficient matrix and J is number of stages used for updating the

dictionary.

6.3 Results

The performance of the algorithm is evaluated based on four types of ultrasound

images, namely simulated coherent and fully formed speckle, real liver and kidney

ultrasound images. The experiment is conducted by varying the parameters listed in
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Table 6.2: Performance of the propose speckle suppression algorithm in suppressing the speckle
noise. Reg. 1 and Reg. 2 corresponds to the homogeneous region correspond to Fig. 3.2

Mean Std. SNR

Noisy
Reg. 1 31.23 12.21 2.5
Reg. 2 121.95 19.9 6.12

Frost
Reg. 1 31.10 5.89 5.3
Reg. 2 121.29 10.29 11.78

Lee
Reg. 1 30.10 5.18 5.8
Reg. 2 122.0 10.77 11.32

SRAD
Reg. 1 39.42 4.4 8.95
Reg. 2 167 10.18 16.40

Proposed
Reg. 1 27.68 2.7 10.25
Reg. 2 121.63 6.1 19.93

Figure 6.1: Red Box represents Region 1 (Reg. 1) and Green Box represents Region 2 (Reg. 2)

section II. The optimal suppression based on smoothing of homogeneous regions is

obtained for the values σ=4, I=20, λ=6 by fixing parameters T=40000, dictionary

size D-8 x 256, Block size- 8 x 8. The window size for computing local statistics of

Lee and Frost is fixed at 5 x 5. The performance of the SRAD filter is fixed for 30

iterations. The performance of the filter in suppressing the speckle noise is analyzed

based on conventional speckle signal to noise ratio (SNR) [101], which is computed as

ratio of mean of the pixels to the standard deviation of pixels present in homogeneous

region of an image. The Table. 6.2 shows the SNR computed for two homogeneous

regions for the Fig. 6.1, we can infer that the propose speckle suppression filter has

significantly enhanced the SNR compared to other filters. The Frost, Lee, SRAD

filters able to preserve the mean in de-speckled image, while the propose filter able to

reduce the standard deviation of the pixels resulting in high SNR compared to other

filters.

The performance of Frost, Lee, SRAD and proposed method in suppressing the
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Figure 6.2: (a). Coherent Speckle image, De-speckling performance of (b) Frost, (c) Lee, (d) SRAD,
(e) Proposed method.

Figure 6.3: (a) Scattering phantom (b) Simulated ultrasound image of Scattering phantom. De-
speckling performance of (c) Frost, (d) Lee, (e) SRAD, and (f) Proposed method.

Figure 6.4: (a) Kidney ultrasound image. De-speckling performance of (b) Frost, (c) Lee, (d) SRAD,
(e) Proposed method.

Figure 6.5: (a) Liver ultrasound image. De-speckling performance of (b) Frost, (c) Lee, (d) SRAD,
(e) Proposed method.
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speckle noise is shown in Fig. 6.2, we can infer from the despeckled images that the

granular noise has been effectively suppressed from the proposed de-speckling filter.

To know the performance of the filter on fully formed speckle, an ultrasound phan-

tom image is generated in Matlab using K-Wave tool box. The K-wave parameter

specifications used for generating an ultrasound image for the template Fig. 6.3(a)

are shown in Table. 6.1. The small snake like structures in the image in Fig. 6.3(b)

corresponds to speckle patterns.We can infer that the proposed speckle suppression

filter effectively suppressed the small worm like structures in the despeckled image

compared to other filters. Fig. 6.4 and Fig. 6.5 shows the performance of filters on

kidney and liver images respectively. From visual analysis, we can infer that the

diagnostic quality of ultrasound image is enhanced using sparseland model compar-

atively to Frost, Lee and SRAD filters. The algorithm is implemented in MATLAB

7.9 version on core i5 processor with 2.8 GHz clock speed. Sparseland model took

10.2 seconds for execution for an image of size 256×256.

6.4 Summary

Presence of speckle noise in ultrasound images is one of the reason for having low

diagnostic accuracy for ultrasound scanning. To enhance the diagnostic quality in

ultrasound images, we proposed an speckle suppression filter based on sparse rep-

resentation of the image patch. The proposed algorithm proved very effective in

suppressing the speckle noise thus enhancing the diagnostic quality in ultrasound im-

ages. With the proposed de-speckling filter, sonographers can infer more information

from the despeckled ultrasound images which will help them to do accurate diagnosis.
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Chapter 7

WebRTC Framework for

Telesonography

7.1 Introduction

Ultrasound scanners does not translated to its potential in remote diagnostic health-

care due to shortage of sonographers. Telesonograhy addresses the shortage of sono-

graphers by allowing semi-skilled persons to scan the patients in remote areas and

send it to the sonographer sitting elsewhere for getting the diagnosis. In conventional

telesonography applications, the ultrasound video is encoded and transmitted to the

expert end via wired or wireless communication technologies [11, 12], these kind of

techniques are high bandwidth demanding and does not adapt to the network con-

ditions resulting in under utilization of the network resources and poor quality of

service. In telesonography, an inherent assumption is made that the scanned and

transmitted ultrasound video sent to the expert or cloud is always representative

enough for doing diagnosis which may not always hold good due to semi-skilled na-

ture of the expertise. To have a reliable real-time telesonography, the semi-skilled

person must able to connect distantly located expertise and transmit the scanned

data in real-time for getting diagnosis.
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Figure 7.1: Architecture of WebRTC based telesonography.

Internet-based videophone services become more popular due to the widespread

availability of the Internet connectivity, computing power, information and communi-

cation technologies. Video chat applications like Skype, Facebook, Google Hangouts,

Facetime, WebRTC, etc., are some of the most popularly used video streaming ap-

plications. These video chat applications come with inbuilt rate control mechanisms

that adapt to variable bandwidth, packet loss, delay, jitter, and packet error providing

real-time better quality of service.

In this chapter, we propose a WebRTC (Web Real-Time Communication) based

framework for real-time telesonography. WebRTC is a server-based service, where two

end users can access the service to share multimedia data in a peer-to-peer fashion.

The end users need to have only HTML5 supported browsers in their computing

platforms for sharing ultrasound data making telesonography more reliable. The

graphical representation of WebRTC based telesonography is shown in Fig. 7.1.

The quality of ultrasound video delivered to the end-user is analyzed by varying

network settings at the transmitter side in a controlled manner. Liver ultrasound

video is considered for the analysis. The performance of WebRTC is evaluated based
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on the subjective quality analysis [102–104]. Subjective analysis is quantified by

computing mean opinion scores (MOS) of the subjects for various network settings.

We report for minimum network conditions needed for acceptable video quality for

telediagnosis in particular to liver ultrasound video.

7.2 WebRTC

WebRTC [105] is a revolutionary technology providing browsers real-time commu-

nication capabilities with a set of application programming interfaces (APIs) and

communication protocols. WebRTC is an open source project supported by Google,

Mozilla, and Opera. The standardization of WebRTC is jointly developed by world

wide web consortium (W3C) and the Internet engineering task force (IETF). The

set of real-time communication protocols is standardized by IETF, while APIs are

standardized by W3C.

Before WebRTC, to enable voice and video services within the browser, the user

has to install that particular service real-time communication stack as a plugin (for

example Skype, Google hangouts, etc.). The multimedia communication stack is built

into the web browser internals with WebRTC. Hence the developers can make use of

HTML5 APIs for developing multimedia services. WebRTC uses real-time congestion

control algorithm proposed by Google [106]. WebRTC did not standardize the signal-

ing protocol, and the users can choose any pre-existing signaling protocol like session

initiation protocol, jingle, etc. WebRTC eliminates the need for installing third-party

plugins like flash players, customized multimedia stacks for playing multimedia con-

tent making it widely adaptable in developing videophone services [107].

WebRTC provides a peer-to-peer communication by extending client-server se-

mantics. In general, WebRTC uses Trapezoidal or Triangle architectural web server

models. In WebRTC Trapezoid model, both browsers are running a web applica-

tion downloaded from a different server, while in Triangle model both browsers are
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Figure 7.2: WebRTC network architecture.

running the same web application downloaded from the same webpage. Here, we em-

ployed the Triangle model web architecture as shown in Fig. 7.2. The web application

is implemented on a dedicated server using nodejs [108]. To traverse firewalls and

NATs, we run multiple TURN servers on dedicated machines. Websockets is used for

signaling between browsers and server. WebRTC supported browsers Google Chrome

and Firefox are used to establish a connection with a web server and to download the

WebRTC javascript to configure the browser internals during call establishment. If

the end points are behind NATs and firewalls, the media data flows through TURN

servers else it flows directly between endpoints. The server application is run on an

Intel core i7 processor with 16 GB RAM running on a 2.8 GHz clock cycle.

7.3 Experimental Setup

To study the performance of the WebRTC framework with respect to various network

settings, we built a custom-made test bed. Two clients running a specific videophone

service are connected to a Network Address Translation (NAT) router. Each host

is connected wirelessly to the Internet through Wi-Fi router and consisted a private

IP address. NEWT [109], a software-based network emulator tool is used to control

the network parameters like bandwidth, packet loss, delay and packet error at the

transmitter side. The ultrasound video is injected into videophone service using a
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(a) (b) (c)

Figure 7.3: Region of interest (bounded with markers) seen by the sonographers for doing diagnosis.
(a) Liver parenchyma accessed through texture and echogenecity, (b) Diaphragm visibility, (c) Artery
and vein visibility.

virtual video camera tool Manycam [110]. The streaming videos are recorded using

the CamStudio screen recording software [111].

7.3.1 Details of Ultrasound Video Considered for Study

In this study, the quality of delivered ultrasound video is analyzed for 169 different

network settings with three subjects. Normal liver ultrasound video is considered for

the subjective analysis. Liver diagnosis is characterized based on liver parenchyma

along with visualization of the intrahepatic portal and vein vessel borders, and di-

aphragm. Even a slight diffusion in texture results in diagnosing the liver as higher

grades [112]. The regions particularly seen in liver ultrasound image for diagnosis are,

texture morphology, diaphragm, artery, and vein vessel visibility is shown in Fig. 7.3.

The liver ultrasound video used in the study is captured using Siemens S1000 ultra-

sound scanner with a convex probe operating at 4 MHz frequency. The images are

acquired to a depth of 15 cm with 15 frames per second for a duration of 10 s. The

video is recorded in avi format with a 770 × 1024 resolution. The captured ultrasound

video contains the images of normal liver showing parenchyma, diaphragm, hepatic

and portal vein as shown in Fig. 7.4, these images are sampled at a frequency of one

second for visualization.
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Figure 7.4: Images sampled from test ultrasound video at a sampling frequency of one second.

7.4 Subjective Quality Analysis

The subjective quality analysis is carried out with three experts who are trained in ul-

trasonography. They are presently working as sonographers in Hyderabad, India. For

subjective analysis, we followed the procedure similar to Double Stimulus Continu-

ous Quality Scale variant II methodology which is recommended in ITU-R BT.500-11

document [113, 114]. The streaming video is viewed on a laptop monitor with 1366

× 768 screen resolution. The laptop ran with Microsoft Windows 7 operating system

with Intel Core i5 processor, 4 GB RAM, and 2.6 GHz clock cycle. Before taking the

ratings, the subjects are made aware of the artifacts caused due to streaming applica-

tions. The subjects are asked to rate for a particular network configuration on a scale

having categories namely “Bad”, “Poor”,“Fair”, “Good” and “Excellent”. These

categories are translated into 1, 2, 3, 4 and 5 values respectively. The unimpaired

video is considered to be of excellent quality. A rating of 5 is the highest value in the

scale given to the ultrasound video, which is having the same clinical information to

that of the unimpaired video. A rating of 4 is given to the video for which there is

slight distortion in clinical information and still, the video is good enough for doing

the diagnosis. A rating of 3 is given to the video for which there is a minor loss in

the clinical information and still acceptable for doing the diagnosis. A rating below 3
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is given for diagnostically unacceptable video. The ratings are given on a continuity

scale such that the subjects do not undergo uncertainty in rating the video between

two categories (integers). The results of a particular video instance are computed by

presenting MOS. The MOS µ̄j for a particular network configuration is given by

µ̄j =
1

N

N∑
i

µij, (7.1)

where µij: score of observer i for test configuration j, N : number of observers. Like-

wise the scores are computed for each network configuration.

7.5 Results

The subjective analysis is conducted with respect to variation in network parameters

like delay, bandwidth, packet error at the transmitter side. The quality of video

delivered at the receiver side is analyzed by setting Bandwidth (BW) at 2000, 1800,

1600, 1400, 1200, 1000, 800, 600, 500, 400, 300, 200, 100 kbps, Delays (DL) at 0, 50,

100, 200, 500, 1000 ms and Packet Error (PE) at 1%, 2%, 3%, 4%, 5%, 6%, 7% . For

each setting in DL, and PE, the quality of ultrasound video is analyzed by varying

the BW from 2 Mbps to 100 kbps. This results in an evaluation of 169 videos per

videophone service. Since every user has to give a rating for 169 videos, the subjective

analysis is carried out in multiple sessions. In each session, subjective evaluation is

carried out for 25 to 30 instances based on their individual comfort. No repetition is

done due to the evaluation of a large number of instances. The rejection of subjects

is not considered since it consisted of only three subjects.

Fig. 7.5 present MOS for WebRTC application in delivering reliable ultrasound

video for diagnosis, the MOS are plotted for bandwidth vs delays and bandwidth vs

packet error. WebRTC delivered reliable ultrasound video for BW greater than 1400

kbps tolerating up to 500 ms delay and for BW greater than 1600 kbps tolerating up to

4% PE. The ultrasound video delivered through WebRTC framework was deteriorated
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Figure 7.5: MOS for WebRTC for different network configurations
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(a) (b) (c)

Figure 7.6: Frames captured at (a) DL:200 ms, BW: 800 kbps, PE=0 %. (b) DL:0 ms, BW: 2000 kbps,
PE=5 % (c) DL:0 ms, BW: 800 kbps, PE=2 %. We can observe the image regions get smoothened due to
the streaming artifacts loosing of texture characteristics in the image.

with spatial and temporal artifact’s. Spatial artifact’s like blocking and ringing are

observed, and it is affected nonuniformly in the streamed ultrasound video. Temporal

artifact’s like frame freezing and frame dropping are observed in affecting the quality

of experience of the user. Spatial artifacts deteriorated the video quality by morphing

the edge regions and smoothing the texture making the image to loose diagnostic

quality. Frame dropping and freezing had less impact on diagnosis especially in

scenarios like liver ultrasound videos where fewer frame rates are enough for diagnosis.

In our subjective study, the subjects are found to be more sensitive to spatial artifacts

than temporal artifact’s. For reference, the quality of liver images sampled at different

network configurations of a streaming video is shown in Fig. 7.6

7.6 Summary

In this chapter, we propose a WebRTC based video streaming application in deliver-

ing the ultrasound video for real-time telesonography applications. We analyzed the

performance of WebRTC under different network conditions in delivering the live ul-

trasound video. An inference is made that, we can deliver a reliable ultrasound video if

the network bandwidth has BW greater than 1400 kbps tolerating up to 500 ms delay

(with PE=0%) and for BW greater than 1600 kbps tolerating up to 4% PE (with DL=
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0 ms). Recent advancements in IoT and multi-media communications significantly

improved the standards in healthcare which introduced a new paradigm in patient

monitoring and diagnostic healthcare. Since smartphone, tablet and laptop-based ul-

trasound scanners are coming with Internet connectivity, our study in evaluating the

performance of WebRTC service will give future directions in using these services. In

this study, the performance of WebRTC framework is evaluated by varying bandwidth

for different delays and packet error. The performance of the WebRTC framework

is not evaluated for combinations where packet loss, delay and packet error occurs

simultaneously which is taken as future extension of this work.
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Chapter 8

SoC based Portable Ultrasound

Scanning System for PoC

Applications

8.1 Introduction

The services of ultrasound scanning are centralized to hospitals and did not translate

to its potential in PoC diagnostics due to its high form factor. Recent advancements

in computing platforms like field programmable gate arrays (FPGAs), graphical pro-

cessing units (GPUs), digital signal processors (DSPs), application specific integrated

circuit (ASIC), etc., reduced the size of the ultrasound scanning system to the portable

level [115–117]. PoC diagnostics enables fast and instantaneous diagnostics and has

the potentiality to save lives especially in critical care situations like accidents, causal-

ities, military, etc. [5], [118]. The desired characteristics of the portable ultrasound

scanner such as low form factor, low cost, low power consumption can be obtained

with ASIC’s [5], [116]. But, the systems developed on ASIC is specifically meant for

targeted consumer applications, hence in a continuously evolving field like ultrasound,

further up-gradation of the system is not possible which acts as a serious limitation
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on the system. Hence researchers are focused on programmable computing platforms

for developing portable ultrasound scanning (PUS) systems [119]. Developing the

portable ultrasound scanner (PUS) on programmable computing platforms allows for

easy up-gradation and validation of the new algorithms. Motivated by this reason,

researchers have used DSP processors for implementing the ultrasound signal pro-

cessing algorithms [117, 119]. Implementing the entire ultrasound signal processing

on a DSP processor poses a serious challenge in executing computationally intensive

beamforming algorithms due to limited data rate capability. Due to high program-

ming flexibility and support of high data rates, the FPGA’s are highly reliable to

perform complete ultrasound signal processing algorithms [117], to control and coor-

dinate between different processing modules on FPGA, a separate ARM processor is

used. This makes the entire system cumbersome and also results in high form factor

due to the need for an additional general purpose processor. Some of the primary

issues found in conventional and portable ultrasound scanning systems are:

1. Since the ultrasound scanners are meant for imaging, there is no provision for

accessing the raw RF data from the scanner, which will be very much helpful in

easy validation of the new algorithms and also in developing the computer-aided

algorithms. At present, most of the computer-aided diagnosis (CAD) is based on

the image based analytics [19,24]. But it is proved that robust CAD algorithms

can be developed by directly working on the RF echo data [120, 121], presently,

there is a no provision in acquiring the RF data from the clinical ultrasound

scanners. To acquire the raw RF data from the clinical ultrasound scanners, we

need to use highly expensive interfaces [17], [122].

2. In programmable ultrasound scanners, not much focus has been laid in providing

the debug interfaces, which will be needed while updating the PUS with new

algorithms [115,116].

In addressing these issues, we propose a programmable PUS that can not only
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be used for PoC diagnosis, but also for acquiring the clinical RF data that can be

used for research activities. The main contributions and implications of the propose

programmable PUS are:

• We propose a programmable PUS using a single SoC, thus achieving miniaturiza-

tion, and provided with adequate external interfaces for more reliable diagnosis.

• The proposed PUS is provided with JTAG and UART ports for efficient debug-

ging of FPGA and the ARM processor respectively.

• Provision is provided to acquire the raw RF echo data, which can be used for

developing highly accurate computer-aided algorithms, thus eliminating the need

for having expensive research interfaces.

In this chapter, we present a programmable Zynq SoC (Xilinx Inc., San Jose, CA)

based hardware architecture for implementing complete PUS system customized for

PoC diagnostics. The Zynq SoC XC7Z045FBG676 is a hybrid processor that comes

with both FPGA and ARM Cortex A9 processor. The propose system is developed for

16 channels and has the provision to extend for 32 channels. To make the ultrasound

scanning more reliable to use in terms of connectivity, the system is provided with

external interfaces like Ethernet, memory card slot, HDMI port, VGA port, two USB

OTG ports and RS232. A Wi-Fi module can be interfaced with propose PUS to

transfer the image data wirelessly to the mobile computing platforms.

8.2 A Single SoC based Portable Ultrasound Scanning Sys-

tem

The overall block diagram representation of the propose PUS system is shown in

Fig. 8.1 and the corresponding hardware implementation at circuit level is shown in

Fig. 8.2. Based on the functionality, the ultrasound signal processing is categorized

into front-end, mid-end and back-end processing modules [3]. Dedicated hardware is
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Figure 8.1: Block diagram representation of the proposed PUS representing the different signal
processing modules present in the ultrasound scanner. AXI represent advanced extensible interface.

developed for front-end processing, while the mid-end and back-end processing algo-

rithms are implemented on the SoC. The front-end processing deals with transducer

excitation and data acquisition module. Dedicated hardware is developed to meet the

high-speed real-time data processing requirements. Mid-end and back-end processing

modules deal with signal processing algorithms required for image formation from the

RF data, and it is implemented on the FPGA.

The board is provided with VGA and HDMI ports that are directly connected to

the FPGA such that the monitors can be connected to display the scanned images.

The onboard USB 2.0 can be used for interfacing with other computing platforms

like smart phones, tablets, etc. for performing other ultrasound signal processing

algorithms, and also can be used as a display device. All other external ports are

interfaced with an on-chip ARM processor. The board is provided with a 2 GB RAM

and a secure digital (SD) card slot for storing the scanned data and for running a

Linux operating system for ARM processor at 667 MHz clock frequency. The onboard
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Figure 8.2: Circuit level implementation of the proposed PUS. Here SoC comes with a combination
of processing system (PS) and programming logic (PL).

Ethernet port can be used to transfer the data with 10/100/1000 Mbps speed, which

can be used to transfer or upload the scanned data to the server or cloud for central

storage.

The front-end processing module consists of hardware circuitry needed for exciting

the transducer elements, transmit beamforming and signal conditioning algorithms

like low noise amplification and time gain compensation. Since these algorithms

needed to be performed in real-time, a dedicated hardware module is employed to

execute these algorithms.

A voltage of ±80 V is needed for exciting the transducer elements, this voltage is

generated by high voltage (HV) pulser MAX14808 IC (Maxim Integrated, SanJose,

California, United States), each HV pulser can excite 8 channels at a time and hence

two HV pulsers are employed to excite the 16 channels. For performing transmit
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beamforming, LM 96570 IC (Texas Instruments, Dallas, USA) has been used, each

IC can be programmed to generate the delay pattern for 8 channels. The RF data

is acquired using AFE 5809 (Texas Instruments, Dallas, USA) via HV pulser. The

AFE consist of high-speed analog to digital converter (ADC) capable of operating at

a max of 65 MHz sampling frequency with 12 bit resolution, similar to beamformer

and HV pulser, AFE is also capable of operating for max of 8 channels, and hence

two IC’s are employed to receive the signals from the 16 channels. The output of

the AFE is transferred to the FPGA for RF data processing, which includes envelope

detection, log compression and scan conversion algorithms.

8.3 Hardware Prototype

The prototype of the proposed PUS is shown in Fig. 8.3. The transducer consisted

of 64-elements with 96 pin header. The PCB board is provided with a pin header to

hold the transducer probe firmly while scanning. The same pin header can be used

to connect both linear and curvilinear probe. The specifications of the developed

PUS is shown in Table. 8.1. The monitor can be connected to the board via VGA or

through HDMI port. The PUS is provided with all the necessary resources needed for

complete clinical ultrasound scanning system. To obtain compact size for the PUS,

the developed hardware circuitry for the front-end processing, power management

circuitry, external interfaces and Zynq SoC are fabricated on an eight-layer printed

circuit board.

8.4 Summary

In this chapter, we presented the programmable hardware framework for portable ul-

trasound scanning system based on a single SoC. The propose PUS is provided with

external interfaces to connect other modules like global positioning system (GPS) for
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Figure 8.3: A Single SoC based programmable portable ultrasound scanner.

Table 8.1: Specifications of the propose programmable PUS.

Mode Specifications

Size 235 mm x 205 mm
Weight 0.45 kg
Probe 5 MHz, 64 elements, linear and curvilinear array probe

Display 15 inch LCD, Resolution - 1366 x 768, Input : VGA
CPU Dual core ARM cortex A9 processor

System memory 2 GB DDR2 (SDRAM), 256 MB (flash)
FPGA XC7Z045FBG676

Processor ARM cortex A9 processor
Peripherals USB 2.0 host and client, UART, Ethernet, HDMI and VGA

Scanning mode B-Mode

tracking, biometric authentication for security, Wi-Fi models for IoT compatibility,

etc. which will be beneficial while operating in remote healthcare. The developed

hardware framework can be used for testing of novel portable ultrasound signal pro-

cessing algorithms and also provides the provision to access the raw RF data, which

will be useful for developing computer-aided diagnostic algorithms.

Note: The hardware development of portable ultrasound scanner is result of collab-

orative work carried with M.Tech research assistants namely Punit Kumar, Chandra

Sekhar, Vivek Akkala, Arun Kumar and project staff namely Suresh Puli and Harsha
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Ponduri. It took a time duration of three years to develop the working prototype of

the proposed portable ultrasound scanner.
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Chapter 9

Summary and Future Scope

In this chapter, we summarize the work presented so far. Subsequently, we discuss

broader impact of the contributions of this dissertation in ultrasound imaging, and

the future scope of this work.

9.1 Summary

Despite being safer, economical and having real-time imaging capability, the ultra-

sound scanners have not been leveraged to its fullest extent in health-care. There are

many reasons, among which shortage of sonographers, low diagnostic accuracy leave

room for improvement. Against this backdrop, we attempted to provide engineering

perspectives in ultrasound diagnostic imaging that involves image-based analysis and

diagnostics, reliable telesonography development of portable ultrasound scanning sys-

tem. To this end, acknowledging that ultrasound diagnosis being a vast discipline,

highly subjective and comprehensive coverage is infeasible. We targeted on problems

which pose a significant challenge in both clinically and also from engineering per-

spective. In particular, we focused on developing algorithms to assist semi-skilled

persons to scan the patients in remote areas, these include (i) automated diagno-

sis (ii) development of portable ultrasound scanning system, and (iii) IoT enabled

telesonography. In this endeavor, we come to know that, finding universal solutions
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for whole gamuts of ultrasound imaging is unrealistic. Instead, we find that under-

standing specific problems and developing problem-specific solutions were found to

be robust and clinically deployable. Accordingly, our perspective on ultrasound imag-

ing is categorized into image analysis, telesonography and development of portable

ultrasound scanning system.

The ultrasound datasets for developing automated diagnostics is not publicly avail-

able for research activities. Due to subjectivity involved in ultrasound scanning, de-

veloping the organized ultrasound data sets is highly challenging. In this regard, we

developed ultrasound datasets for the nonalcoholic fatty liver disease. Further, by

using these datasets, we proposed an algorithm for quantifying the fatty content in

the liver. In addition, we also proposed an algorithm for detecting the diagnosti-

cally significant regions corresponding to fatty liver. Ultrasound images are affected

by speckle noise which reduces the diagnostic quality, in this regard, we proposed

speckle suppression algorithm for enhancing the image quality. To address the short-

age of sonographers, we proposed a WebRTC based IoT enabled telesonography and

conducted subjective video quality analysis to evaluate the performance of the pro-

posed system. We developed a programmable portable ultrasound scanning system

based on single SoC for research and point-of-care diagnostics.

9.2 Future Scope

As future scope of this thesis, we are focused on achieving following objectives:

9.2.1 Image Analytics

1. We will develop an automated algorithm based on multiple RoIs detected from

chapter 5. We will investigate appropriate features to be used for representing

each RoI, weights given for each RoI in classifying the fatty liver. Since the char-

acteristics of fatty liver changes accordingly with the severity of fatty liver, we
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will explore ordinal classification framework for automated grading of fatty liver.

We also explore Grey theory to capture the uncertainty observed in ultrasound

images.

2. As WebRTC framework proved reliable for real-time telesonography, we will

develop and integrate automated organ validation algorithms to WebRTC to

validate whether the scanned data has representative information useful for di-

agnosis before transmitting to the expert. This will reduce the effort and time

spent by the sonographer to diagnose the patients, and also guides the semi-

skilled person to scan appropriately to acquire the representative information

from the patients.
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