15,612 research outputs found

    An Energy-efficient Multi-channel MAC Protocol for Cluster Based Wireless Sensor Networks

    Get PDF
    Abstract The research on wireless multimedia sensor networks (WMSNs) becomes more popular recently because multimedia sensor nodes largely improve the capability of wireless sensor networks for event description. WMSNs need large bandwidth to deliver multimedia contents effectively using energy-constrained sensor nodes because transmitting multimedia contents, such as video or audio clips, involves a large amount of data. In this paper, we propose an energy efficient, scalable and collision free multichannel medium access control protocol for cluster-based WMSNs to achieve high throughput, low medium access delay and high energy efficiency. The proposed MAC integrates the merits of frequency and time division principles to effectively utilize channels and timeslots assigned to sensor nodes. The proposed MAC also uses energy efficient techniques to reduce the number of nodes needed to send data to the cluster head. The proposed MAC is based on clustered network topology, and the protocol employs a simple algorithm for assigning channels among clusters to enable simultaneous non-interfering data collection. Intra-cluster transmissions are scheduled by cluster head (CH) based on time slot. CHs aggregate the gathered data and forward it over inter-CH paths to the base-station based on minimum spanning tree routing. Distinct channels are adopted by the independent branches of the inter-CH routing tree. The proposed MAC minimizes energy consumption by allowing nodes to stay in sleeping mode for the longest duration. Simulation demonstrated superiority of proposed MAC in terms of convergent rate, throughput and delay performance when compared with well-known protocol MMSN. With the low MAC delay feature, our protocol is suitable for applications of real time multimedia traffic sensing and transmitting, such as remote monitoring of hospital patients and fire spots

    MAC protocols for low-latency and energy-efficient WSN applications

    Get PDF
    Most of medium access control (MAC) protocols proposed for wireless sensor networks (WSN) are targeted only for single main objective, the energy efficiency. Other critical parameters such as low-latency, adaptivity to traffic conditions, scalability, system fairness, and bandwidth utilization are mostly overleaped or dealt as secondary objectives. The demand to address those issues increases with the growing interest in cheap, low-power, low- distance, and embedded WSNs. In this report, along with other vital parameters, we discuss suitability and limitations of different WSN MAC protocols for time critical and energy-efficient applications. As an example, we discuss the working of IEEE 802.15.4 in detail, explore its limitations, and derive efficient application-specific network parameter settings for time, energy, and bandwidth critical applications. Eventually, a new WSN MAC protocol Asynchronous Real-time Energy-efficient and Adaptive MAC (AREA-MAC) is proposed, which is intended to deal efficiently with time critical applications, and at the same time, to provide a better trade-off between other vital parameters, such as energy-efficiency, system fairness, throughput, scalability, and adaptivity to traffic conditions. On the other hand, two different optimization problems have been formulated using application-based traffic generating scenario to minimize network latency and maximize its lifetime

    Implementation and Deployment Evaluation of the DMAMAC Protocol for Wireless Sensor Actuator Networks

    Get PDF
    The increased application of wireless technologies including Wireless Sensor Actuator Networks (WSAN) in industry has given rise to a plethora of protocol designs. These designs target metrics ranging from energy efficiency to real-time constraints. Protocol design typically starts with a requirements specification, and continues with analytic and model-based simulation analysis. State-of- the-art network simulators provide extensive physical environment emulation, but still have limitations due to model abstractions. Deployment testing on actual hardware is therefore vital in order to validate implementability and usability in the real environment. The contribution of this article is a deployment testing of the Dual-Mode Adaptive MAC (DMAMAC) protocol. DMAMAC is an energy efficient protocol recently proposed for real-time process control applications and is based on Time Division Multiple Access (TDMA) in conjunction with dual-mode operation. A main challenge in implementing DMAMAC is the use of a dynamic superframe structure. We have successfully implemented the protocol on the Zolertia Z1 platform using TinyOS (2x). Our scenario- based evaluation shows minimal packet loss and smooth mode-switch operation, thus indicating a reliable implementation of the DMAMAC protocol.publishedVersio

    Implementation and Deployment Evaluation of the DMAMAC Protocol for Wireless Sensor Actuator Networks

    Get PDF
    The increased application of wireless technologies including Wireless Sensor Actuator Networks (WSAN) in industry has given rise to a plethora of protocol designs. These designs target metrics ranging from energy efficiency to real-time constraints. Protocol design typically starts with a requirements specification, and continues with analytic and model-based simulation analysis. State-of- the-art network simulators provide extensive physical environment emulation, but still have limitations due to model abstractions. Deployment testing on actual hardware is therefore vital in order to validate implementability and usability in the real environment. The contribution of this article is a deployment testing of the Dual-Mode Adaptive MAC (DMAMAC) protocol. DMAMAC is an energy efficient protocol recently proposed for real-time process control applications and is based on Time Division Multiple Access (TDMA) in conjunction with dual-mode operation. A main challenge in implementing DMAMAC is the use of a dynamic superframe structure. We have successfully implemented the protocol on the Zolertia Z1 platform using TinyOS (2x). Our scenario- based evaluation shows minimal packet loss and smooth mode-switch operation, thus indicating a reliable implementation of the DMAMAC protocol.publishedVersio

    Radio Access Techniques for Energy Effcient and Energy Harvesting based Wireless Sensor Networks

    Get PDF
    Traditional Wireless Sensor Networks (WSN) rely on batteries with finite stored energy. In the future with billions of such devices, it will be difficult to replace and dispose their batteries, which can cause a huge environmental threat. Hence, research is being done to eliminate batteries from sensor devices and replace them with harvesters. These harvesters can power the sensor network nodes by extracting energy from ambient sources. Harvesters are already being implemented in many real-life applications like structural health monitoring, environment monitoring and body area networks. A sensor network of multiple energy harvesting enabled devices is known as Energy Harvesting based Wireless Sensor Network (EH-WSN). For uninterrupted operation of EH-WSN, radio protocols must consider the energy harvesting constraints; (i) energy harvesting process unpredictability and; (ii) energy harvesting rate variations in time and space. EH-WSN comes with unique traits which discourage the use of existing WSNs radio protocols, as most of existing protocols are focussed on decreasing the energy consumption and increasing the network lifetime. This thesis work focusses on modifying an existing energyefficient Multipath Rings (MPR) routing protocol for low-power and low-bandwidth EH-WSN and evaluating its performance through simulations. Firstly, the topology setup phase is revised by implementing a new ring formation scheme for better data reliability. Secondly, controlled flooding of data packets is used by enabling selective forwarding, which leads to decrease in network traffic and overall energy consumption. Lastly, every node is equipped with a neighbors’ table on-board which helps in making energy-related routing decisions in multi-hop networks. A periodic energy update packet transmission helps in keeping latest neighbor information. This modified version of MPR routing protocol is called Energy Harvesting based Multipath Rings (EH-MPR) routing. This work also provides a comprehensive survey on existing MAC and Routing protocols for energy efficient and energy harvesting based WSNs. Through this work, the main constraints on using existing energy-efficient protocols for EH-WSN are discussed and depicted with the help of network simulations. The effects of using fixed duty cycle for energy harvesting enabled sensor nodes are outlined by simulating T-MAC (adaptive duty cycle) against S-MAC (fixed duty cycle). For all evaluation metrics, T-MAC outperformed S-MAC. Using Castalia’s realistic wireless channel and radio model, EH-MPR is simulated for low-power, low-data rate and low bandwidth (1 MHz) networks where satisfactory results are obtained for sub-GHz frequencies (433 MHz and 868 MHz). Next, the modified EH-MPR protocol is compared with original MPR routing under practical deployment scenarios. The metrics in consideration are successful packet transmissions, energy consumption, energy harvested-to-consumed ratio and failed packets. After thorough simulations, it was concluded that although the packet success rate is approximately equal for both protocols, EH-MPR has advantages over original MPR routing protocol in terms of energy cost and uninterrupted operations

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Comparison of CSMA based MAC protocols of wireless sensor networks

    Full text link
    Energy conservation has been an important area of interest in Wireless Sensor networks (WSNs). Medium Access Control (MAC) protocols play an important role in energy conservation. In this paper, we describe CSMA based MAC protocols for WSN and analyze the simulation results of these protocols. We implemented S-MAC, T-MAC, B-MAC, B-MAC+, X-MAC, DMAC and Wise-MAC in TOSSIM, a simulator which unlike other simulators simulates the same code running on real hardware. Previous surveys mainly focused on the classification of MAC protocols according to the techniques being used or problem dealt with and presented a theoretical evaluation of protocols. This paper presents the comparative study of CSMA based protocols for WSNs, showing which MAC protocol is suitable in a particular environment and supports the arguments with the simulation results. The comparative study can be used to find the best suited MAC protocol for wireless sensor networks in different environments.Comment: International Journal of AdHoc Network Systems, Volume 2, Number 2, April 201
    corecore