2,629 research outputs found

    Painterly rendering techniques: A state-of-the-art review of current approaches

    Get PDF
    In this publication we will look at the different methods presented over the past few decades which attempt to recreate digital paintings. While previous surveys concentrate on the broader subject of non-photorealistic rendering, the focus of this paper is firmly placed on painterly rendering techniques. We compare different methods used to produce different output painting styles such as abstract, colour pencil, watercolour, oriental, oil and pastel. Whereas some methods demand a high level of interaction using a skilled artist, others require simple parameters provided by a user with little or no artistic experience. Many methods attempt to provide more automation with the use of varying forms of reference data. This reference data can range from still photographs, video, 3D polygonal meshes or even 3D point clouds. The techniques presented here endeavour to provide tools and styles that are not traditionally available to an artist. Copyright © 2012 John Wiley & Sons, Ltd

    A Frequency Analysis and Dual Hierarchy for Efficient Rendering of Subsurface Scattering

    Get PDF
    International audienceBSSRDFs are commonly used to model subsurface light transport in highly scattering media such as skin and marble. Rendering with BSSRDFs requires an additional spatial integration, which can be significantly more expensive than surface-only rendering with BRDFs. We introduce a novel hierarchical rendering method that can mitigate this additional spatial integration cost. Our method has two key components: a novel frequency analysis of subsurface light transport, and a dual hierarchy over shading and illumination samples. Our frequency analysis predicts the spatial and angular variation of outgoing radiance due to a BSSRDF. We use this analysis to drive adaptive spatial BSSRDF integration with sparse image and illumination samples. We propose the use of a dual-tree structure that allows us to simultaneously traverse a tree of shade points (i.e., pixels) and a tree of object-space illumination samples. Our dual-tree approach generalizes existing single-tree accelerations. Both our frequency analysis and the dual-tree structure are compatible with most existing BSSRDF models, and we show that our method improves rendering times compared to the state of the art method of Jensen and Buhler

    GenPluSSS: A Genetic Algorithm Based Plugin for Measured Subsurface Scattering Representation

    Full text link
    This paper presents a plugin that adds a representation of homogeneous and heterogeneous, optically thick, translucent materials on the Blender 3D modeling tool. The working principle of this plugin is based on a combination of Genetic Algorithm (GA) and Singular Value Decomposition (SVD)-based subsurface scattering method (GenSSS). The proposed plugin has been implemented using Mitsuba renderer, which is an open source rendering software. The proposed plugin has been validated on measured subsurface scattering data. It's shown that the proposed plugin visualizes homogeneous and heterogeneous subsurface scattering effects, accurately, compactly and computationally efficiently

    Directional Dipole Model for Subsurface Scattering

    Get PDF
    Rendering translucent materials using Monte Carlo ray tracing is computationally expensive due to a large number of subsurface scattering events. Faster approaches are based on analytical models derived from diffusion theory. While such analytical models are efficient, they miss out on some translucency effects in the rendered result. We present an improved analytical model for subsurface scattering that captures translucency effects present in the reference solutions but remaining absent with existing models. The key difference is that our model is based on ray source diffusion, rather than point source diffusion. A ray source corresponds better to the light that refracts through the surface of a translucent material. Using this ray source, we are able to take the direction of the incident light ray and the direction toward the point of emergence into account. We use a dipole construction similar to that of the standard dipole model, but we now have positive and negative ray sources with a mirrored pair of directions. Our model is as computationally efficient as existing models while it includes single scattering without relying on a separate Monte Carlo simulation, and the rendered images are significantly closer to the references. Unlike some previous work, our model is fully analytic and requires no precomputation.</jats:p

    Separable Subsurface Scattering

    Get PDF
    In this paper, we propose two real-time models for simulating subsurface scattering for a large variety of translucent materials, which need under 0.5 ms per frame to execute. This makes them a practical option for real-time production scenarios. Current state-of-the-art, real-time approaches simulate subsurface light transport by approximating the radially symmetric non-separable diffusion kernel with a sum of separable Gaussians, which requires multiple (up to 12) 1D convolutions. In this work we relax the requirement of radial symmetry to approximate a 2D diffuse reflectance profile by a single separable kernel. We first show that low-rank approximations based on matrix factorization outperform previous approaches, but they still need several passes to get good results. To solve this, we present two different separable models: the first one yields a high-quality diffusion simulation, while the second one offers an attractive trade-off between physical accuracy and artistic control. Both allow rendering of subsurface scattering using only two 1D convolutions, reducing both execution time and memory consumption, while delivering results comparable to techniques with higher cost. Using our importance-sampling and jittering strategies, only seven samples per pixel are required. Our methods can be implemented as simple post-processing steps without intrusive changes to existing rendering pipelines

    An emperical model for heterogeneous translucent objects

    Get PDF
    We introduce an empirical model for multiple scattering in heterogeneous translucent objects for which classical approximations such as the dipole approximation to the di usion equation are no longer valid. Motivated by the exponential fall-o of scattered intensity with distance, di use subsurface scattering is represented as a sum of exponentials per surface point plus a modulation texture. Modeling quality can be improved by using an anisotropic model where exponential parameters are determined per surface location and scattering direction. We validate the scattering model for a set of planar object samples which were recorded under controlled conditions and quantify the modeling error. Furthermore, several translucent objects with complex geometry are captured and compared to the real object under similar illumination conditions

    BSSRDF estimation from single images

    Get PDF
    We present a novel method to estimate an approximation of the reflectance characteristics of optically thick, homogeneous translucent materials using only a single photograph as input. First, we approximate the diffusion profile as a linear combination of piecewise constant functions, an approach that enables a linear system minimization and maximizes robustness in the presence of suboptimal input data inferred from the image. We then fit to a smoother monotonically decreasing model, ensuring continuity on its first derivative. We show the feasibility of our approach and validate it in controlled environments, comparing well against physical measurements from previous works. Next, we explore the performance of our method in uncontrolled scenarios, where neither lighting nor geometry are known. We show that these can be roughly approximated from the corresponding image by making two simple assumptions: that the object is lit by a distant light source and that it is globally convex, allowing us to capture the visual appearance of the photographed material. Compared with previous works, our technique offers an attractive balance between visual accuracy and ease of use, allowing its use in a wide range of scenarios including off-the-shelf, single images, thus extending the current repertoire of real-world data acquisition techniques

    A Biophysically-Based Model of the Optical Properties of Skin Aging

    Get PDF
    This paper presents a time-varying, multi-layered biophysically-based model of the optical properties of human skin, suitable for simulating appearance changes due to aging. We have identified the key aspects that cause such changes, both in terms of the structure of skin and its chromophore concentrations, and rely on the extensive medical and optical tissue literature for accurate data. Our model can be expressed in terms of biophysical parameters, optical parameters commonly used in graphics and rendering (such as spectral absorption and scattering coefficients), or more intuitively with higher-level parameters such as age, gender, skin care or skin type. It can be used with any rendering algorithm that uses diffusion profiles, and it allows to automatically simulate different types of skin at different stages of aging, avoiding the need for artistic input or costly capture processes

    Subsurface Scattering-Based Object Rendering Techniques for Real-Time Smartphone Games

    Get PDF
    Subsurface scattering that simulates the path of a light through the material in a scene is one of the advanced rendering techniques in the field of computer graphics society. Since it takes a number of long operations, it cannot be easily implemented in real-time smartphone games. In this paper, we propose a subsurface scattering-based object rendering technique that is optimized for smartphone games. We employ our subsurface scattering method that is utilized for a real-time smartphone game. And an example game is designed to validate how the proposed method can be operated seamlessly in real time. Finally, we show the comparison results between bidirectional reflectance distribution function, bidirectional scattering distribution function, and our proposed subsurface scattering method on a smartphone game
    corecore