
COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds 2013; 24:43–64

Published online 11 May 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav.1435

RESEARCH ARTICLE

Painterly rendering techniques: a state-of-the-art
review of current approaches†

Siddharth Hegde*, Christos Gatzidis and Feng Tian

Bournemouth University, School Of Design, Engineering and Computing, Talbot Campus, Poole House, Fern Barrow, Poole, Dorset,
BH12 5BB, UK

ABSTRACT

In this publication we will look at the different methods presented over the past few decades which attempt to recreate
digital paintings. While previous surveys concentrate on the broader subject of non-photorealistic rendering, the focus of
this paper is firmly placed on painterly rendering techniques. We compare different methods used to produce different
output painting styles such as abstract, colour pencil, watercolour, oriental, oil and pastel. Whereas some methods demand
a high level of interaction using a skilled artist, others require simple parameters provided by a user with little or no artis-
tic experience. Many methods attempt to provide more automation with the use of varying forms of reference data. This
reference data can range from still photographs, video, 3D polygonal meshes or even 3D point clouds. The techniques
presented here endeavour to provide tools and styles that are not traditionally available to an artist. Copyright © 2012 John
Wiley & Sons, Ltd.

KEYWORDS

graphics; non-photorealistic rendering; NPR; survey; painterly

*Correspondence

Siddharth Hegde, Bournemouth University, School Of Design, Engineering and Computing, Talbot Campus, Poole House, Fern
Barrow, Poole, Dorset, BH12 5BB, UK.
E-mail: shegde@bournemouth.ac.uk

1. INTRODUCTION

Unlike photographs or photorealistic images, painterly
style paintings are traditionally created by artists who try to
strategically place their brushstrokes to focus viewer atten-
tion on specific regions and create the perception of depth
through the use of colours [1] and by changing the size,
shape and placement of strokes [2]. Durand [3] suggested
that the goal of the artist is to represent and convey prop-
erties through the use of a brushstroke and not to recreate
them as seen in a photograph or photorealistic rendering.
By avoiding too much detail, the artist aims to invoke
our imagination [4] and allows us to fill in the gaps. For
generations, the act of creating a painting could only be
performed by artists whose skills are acquired over a long
period of time. Furthermore, creating animated sequences
manually in this style, the works in [5] and [6] require hun-
dreds of man hours for every minute of output [7]. This
style is distinctively dissimilar to most computer-generated

†Re-use of this article is permitted in accordance with the Terms

and Conditions set out at http://wileyonlinelibrary.com/onlineopen#

OnlineOpen_Terms

animations we observe today, which generally have sharp
boundaries and a mechanical look and feel that is different
from hand-created paintings. In this paper, we will look at
some techniques that attempt to create animated paintings
quickly and easily.

Unlike previous surveys on non-photorealistic rendering
(NPR) techniques [8,9], our focus is placed on the derived
narrower field of specific methods that are able to produce
painterly style output. Hence, techniques that cover NPR
styles such as hatching, stippling and pen-and-ink will not
be reviewed in this paper.

We start this paper by reviewing low-level techniques
that try to simulate traditional artistic tools such as brushes,
medium and surface. In the next section, we explore tech-
niques that attempt to determine properties of individ-
ual brushstrokes automatically. Following this, we present
methods that manage to generate painterly style output
without explicitly creating individual strokes. An overview
of this paper and a detailed hierarchical structure of the
content covered can be seen in Figure 1. Once all stroke-
based methods are reviewed, we present a table that
summarises the different painterly styles each method is
capable of producing. In the conclusion, we explore some
open contemporary challenges in creating digital paintings.

Copyright © 2012 John Wiley & Sons, Ltd. 43

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/19792932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A review of painterly rendering techniques S. Hegde, C. Gatzidis and F. Tian

Painterly rendering
techniques

Low level physical
simulation

BrushesMedium and 
Surface models

Stroke properties

Abstraction

Position and
Density

Orientation

Width and 
Length (Shape)

Ordering

Colour and 
Texture

Temporal Coherence
(Animating strokes)

Implicit strokes

Figure 1. A hierarchical overview of this paper.

2. LOW-LEVEL PHYSICAL
SIMULATION

A significant amount of research has been carried out in
order to help artists carry their skills over to the digital
world. These methods simulate traditional tools used in
painting such as brushes, mediums and the interaction of
the medium with the brush, canvas or surface.

2.1. Brushes

In this section, we look at different methods that attempt to
simulate the physics of a real brush. Some methods focus
on specific brush types, whereas others provide a more
generic framework.

Strassmann [10] presented a set of techniques to simu-
late the brush and ink used to create a traditional Japanese
sumi-e style painting. The author modelled a brush by
using a one-dimensional array of bristles. The work in the
paper presents algorithms to approximate the interaction
of the individual bristles in a brush with (i) the ink, (ii)
the neighbouring bristles and (iii) the paper as a stroke
is painted. The bristles are all assigned a shade of grey
upon performing the virtual act of dipping. A bristle can
randomly obtain ink from neighbouring bristles even after
it has run dry. Applying pressure on the brush causes the
bristles to spread out. Because of the lack of an appropri-
ate input device at the time, the path that a stroke takes
must be created manually by defining a spline from a set of
nodes. Every node must then be assigned properties such
as pressure and time that the brush will reference when it
reaches that node. Assigning properties to these nodes can
at best be a tedious trial-and-error process, which a tradi-
tional artist is not accustomed to doing. Additionally, the
algorithms presented in this research only handle grey
ink tones.

Sousa and Buchanan [11,12] modelled the footprints of
tools used in pencil drawings (pencil lead, blenders and
erasers) as a series of vertices that define a polygon. An
additional vertex defines the centre point of the footprint.
The final shape of the footprint is scaled along an axis
on the basis of the azimuth and elevation the tool makes
with the surface (paper). Although each of these tools inter-
act differently with the amount of pigment (lead material)
deposited on the paper, the underlying interaction is based
on the pressure at discreet points inside this polygon. Pres-
sure coefficients are defined at each vertex and the centre
point. The polygon is broken up into a triangle fan and the
applied pressure is linearly interpolated to determine the
pressure at arbitrary points inside the polygon.

In [13], Lee allowed the user to define the path of a
stroke by moving a brush in real time. In addition to this,
Lee’s brush is based on a 3D model of the bristles. Here, the
interaction of each bristle with the paper plane is based on
the elastic properties of the individual bristles that make up
the brush. The author derived two algorithms on the basis
of the amount of force applied on the brush. One is based
on a soft brush model to be used if the pressure on the brush
is less than a critical force, whereas the second algorithm
is used in all other cases. Furthermore, the paper presents
a proof of concept system that runs in real time and basic
methods to account for the paper texture and the diffusion
of ink deposited on the paper. Unfortunately, there is a dis-
tinct limitation to shades of grey ink and a single type of
brush used in oriental paintings.

Baxter et al. [14] also presented a real-time system
that is based on 3D models of popular brushes used in
acrylic and oil paintings. Moreover, their methods could
be extended to other types of brushes as well. Their system
is integrated with a haptic device that gives the user a sense
of touch and pressure as the brush moves on the paper. In
addition to this, the system allows the user to move the vir-
tual brush with six degrees of freedom, allowing artists to

44 Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



S. Hegde, C. Gatzidis and F. Tian A review of painterly rendering techniques

quickly transfer their skills into the digital domain. Their
application makes visual deformations to the brush head
on the basis of concepts from cloth dynamics, although the
sense of pressure is provided by a set of faster piecewise
linear functions. The authors also simulated the interaction
of paint already deposited on the paper by accounting
for common painting techniques such as blending, drying,
glazing and bidirectional paint transfer between ink on the
paper and on the brush. Finally, the authors also allowed
coloured inks to be used, thereby providing significant
improvements over previously reviewed methods.

Zwicker et al. created an application that can be used to
paint on point-based surfaces [15]. They presented a gen-
eral framework that allows users to create brushes that can
be employed to change attributes of the points, such as their
position, orientation and colour. In the case of painting, the
user initially provides a global parameterisation of the sur-
face by matching points on the surface to a texture map.
When a brush interacts with the surface, a local param-

eterisation is calculated by approximating a plane in the
neighbourhood of the points. The points are orthogonally
projected onto this local plane and are assigned coordinates
defined on the surface of the plane. In order to avoid any
loss in detail, the surface is resampled to match the foot-
print of the brush. The colour is sampled from a texture and
transferred to the points. An overview of the process can be
seen in Figure 2. Adams et al. [16] extended these tech-
niques to create an application specifically designed for
painting on point-based surfaces. Similar to [14], they inte-
grated their application with a haptic feedback device with
six degrees of freedom. On this occasion, the brush surface
itself is modelled using point sets. This is performed so that
there is no loss in detail during painting. Brushes are mod-
elled using a mass spring-based skeletal system and points
surround this skeleton to define the surface of the brush.
Different types of brushes can be modelled by creating and
aligning one or more tips. In addition to this, tips may split
when painting on surfaces with high curvature (shown in

Figure 2. Process flow when painting a point-based surface [15].

Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd. 45
DOI: 10.1002/cav



A review of painterly rendering techniques S. Hegde, C. Gatzidis and F. Tian

Figure 3. Brush that splits depending on the curvature of the
underlying surface [16].

Figure 3). This is accomplished by checking the normals of
the points that intersect with the footprints brush tip. If the
angle between the normal vectors is greater than a certain
threshold, the brush splits into two planes instead of just
one. This has the additional advantage of reducing errors
in parameterisation when points are projected onto planes
in regions of high curvature. Bidirectional paint transfer
takes place by calculating the depth of the brush’s surface
points. Points on the surface may be dynamically upsam-
pled to match the point density of the brush. This makes
sure that no details are lost. Finally, after a stroke has been
painted, the previously upsampled points will be downsam-
pled depending on the deviation in the stroke colour. This
way, an optimal number of points is maintained at all times.

2.2. Medium, Surface Models and
Their Interaction

Curtis et al. [17] simulated brushstrokes in water colour
paintings. Different watercolour effects are simulated on

the basis of actual physical observations of real water
colour strokes. Some of the simulations made are edge
darkening by calculating evaporation of water around the
borders of a stroke, granulation using a granulation factor,
colour glazing using the Kumbelka-Munk model and back-
runs by using shallow fluid dynamics. These effects can be
seen in Figure 4. The model keeps track of the wetness
of the paper, paper height and granularity which affect the
absorption and diffusion of pigment at a point.

Takagi et al. [18] modelled paper used in pencil draw-
ings as a 3D discretely sampled data set. The authors
modelled the fundamental materials of paper such as pulp
and loading matter as long deformed cylinders and flat
broad cylinders (discs), respectively. The proportion of
long cylinders to discs determines the smoothness of paper
just as the proportion of pulp to loading matter does in
real paper. This volume is discretely sampled at regular
intervals to generate the 3D paper volume. When the head
of a drawing brush (pencil lead) touches a voxel, a lead
voxel is shaved off if the voxel is below other voxels
in the direction of the brush movement or the brush is
in contact with a loading matter voxel. If the current
brush is set to be an eraser or blending tool, the brush
head only interacts with lead voxels when they come
in contact with each other. In the case of the blending
tool, the lead voxels are relocated while erasers remove
the lead voxels altogether. This method aims to recreate
the paper structure from the most fundamental building
blocks. This might be excessive as only the surface voxels
are used in all painting operations. Furthermore, main-
taining a 3D volume needs considerably more memory
and it is computationally inefficient to process and render
this volume.

In an attempt to present a general framework in order
to define different paper textures, Lee [19] introduced the
concept of a paper element (papel). This is analogous to
the concept of pixels in a digital image. Each papel con-
tains information on how the different fibres are connected
to neighbouring papels. The fibres act as capillary tubes
causing water and pigment particles to diffuse. Diffusion is
simulated at discreet time steps during which exchanges of
ink take place between papels. With the use of the concept
of papels, different types of paper textures can be recre-
ated virtually. Although this technique does not directly
consider the height of the paper surface, this can be car-
ried out by modifying the properties of individual papels.

Figure 4. Different watercolour effects: (a) dry brush, (b) edge darkening, (c) backruns, (d) granulation, (e) flow effects and
(f) glazing [17].

46 Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



S. Hegde, C. Gatzidis and F. Tian A review of painterly rendering techniques

Despite the fact that detailed discussions on paper models
and diffusion of ink are presented, there are no consider-
ations made for coloured inks and the interaction of ink
already deposited on the paper.

In [20], Chu and Tai presented ideas similar to Lee’s
and extended them to include the absorption and drying
of ink. The painting surface is modelled as three layers: (i)
the surface layer, where the ink is initially transferred from
the brush; (ii) the flow layer, where the physical simula-
tions are made; and (iii) the fixture layer, where the final
position of the ink particles is determined. Simulations are
made at discreet points on a grid at discreet time steps. Dif-
ferent effects such as dispersion, boundary roughening and
edge darkening are approximated by calculating the flow of
ink between a point and its immediate and diagonal neigh-
bours by using a modified incompressible Lattice Boltz-
mann equation. Properties of the ink such as its viscosity
and evaporation rate can be defined by the user and can
affect the strokes. Finally, the authors also accounted for
the density of fibres and substances (alum) applied onto the
paper to control the absorption of ink using texture maps. A
comparison between real ink flow effects and those recre-
ated using the techniques presented in [20] can be seen in
Figure 5.

In addition to providing a brush model, Sousa and
Buchanan [11,12] modelled the paper texture as a
deformable height field. When a pencil (brush) interacts
with the paper, the amount of lead (pigment) deposited is
calculated on the basis of the difference in height in the
local neighbourhoods, the pencil’s grading and pressure at
that point. At the same time, the authors proposed deform-
ing the height of the paper, just as a normal pencil would
on the basis of the pressure applied and grading. The meth-
ods in the publications are based on detailed and careful
observations and analysis of the actual physical properties
of paper and the different materials that make up the lead in
a pencil. Unfortunately, the work presented in these papers
does not allow different colours to be used.

Lee et al. [21] attempted to create an interactive applica-
tion to simulate the creation of Jackson Pollock’s style of
abstract paintings. In order to simulate the flow of paint
in 3D and in real time, the authors broke the model in
two parts. The first determines the width of the stream
by using a one-dimensional Navier-Stokes equation. The
second part simulates the 3D flow path of paint using
discrete points.

Chu et al. [22] presented techniques to accurately simu-
late the smearing of colour when a stroke is drawn on top
of another stroke. The authors argued that previous tech-
niques caused excessive blurring that is not seen in real
paintings when the oil or pastel is used as the medium.
They identified two reasons for this. (i) Blurring is caused
by repeated upsampling and downsampling when the bris-
tles of a brush pick up paint from the canvas and transfer
it back. This is solved by creating a pickup texture that is
the same resolution as the canvas. This texture is masked
by the footprint of the brush. (ii) Blurring is also caused by
footprints left that are picked up immediately. This causes
a wet look that is not seen when using pastels. This prob-
lem is rectified by creating a copy of the canvas that is
updated only outside the current pickup texture’s bound-
ary. The user is given an option to disable this, so that a
wet look can still be generated. Using this method prevents
displacement of the ink caused when the bristles are tuned.
However, the authors did not account for the amount of
ink already deposited on the canvas or picked up by the
brush. Additionally, thin translucent layers of paint are not
accounted for. An example of several brushstrokes smeared
using this method can be seen in Figure 6.

The aforementioned methods aim to provide the user
with realistic and fine levels of control over each stroke.
These techniques require a very high degree of user
interaction and do not use any kind of reference images
or other forms of data to assist the user. The user must be a
skilled artist and the techniques are designed to retain the
artist’s skills, which were acquired over a long time. The

Figure 5. Comparison of different ink flow effects recreated using the technique presented in [20]. Top row shows images of real
ink flow effects, whereas bottom row shows images of ink flow effects simulated using the technique presented in [20]: (a) feathery

pattern, (b) light fringes, (c) branching pattern, (d) boundary roughening and (e) boundary darkening.

Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd. 47
DOI: 10.1002/cav



A review of painterly rendering techniques S. Hegde, C. Gatzidis and F. Tian

Figure 6. Smearing of overlapping brushstrokes using tech-
niques presented in [22].

direct integration of these methods into a more automated
system will present us with a very challenging optimisation
problem as there are several dimensions, so specifying the
desired result would be a complex task to undertake.

3. STROKE GENERATION

In a painting, a stroke is the fundamental unit just as a
pixel is in a digital image. Artists use different mediums,
surfaces and brushes to create their own unique styles. In
a similar way, authors present techniques that work best
for creating output in one or more given styles. Different
algorithms require varying degrees of expertise and user
intervention over the process of generating the final output.
The final output is generally in the form of a static image
or animated video sequence that aims to recreate the same
properties found in a human-created art piece. Different
methods try to achieve this common goal by using different
algorithms to determine the properties of a stroke. These
properties are generally its (i) position and density, (ii) path
and orientation, (iii) length and width, (iv) ordering, (v)

colour and (vi) temporal coherence. In the following sec-
tions, we will review the different methods employed to
achieve this.

3.1. Abstraction

The process of rendering using strokes abstracts the input
data to a large extent. However, this method provides a uni-
form level of abstraction across the output. Artists, on the
other hand, vary properties of strokes in order to abstract
regions of less interest and focus our attention to certain
regions of the painting. We will first review the differ-
ent techniques used to estimate importance as they will
be referred to when we describe different methods used to
determine properties of strokes.

Mao et al. [23] abstracted an image by segmenting the
input image into regions. This is carried out by merging
regions when the difference between their histograms is
less than a certain threshold. Small regions are merged with
larger neighbours to prevent small specks from being gen-
erated. Yamamoto et al. [24] extended this technique to
colour images by checking theL2 norm between colours in
the CIE-LAB colour space. Papari et al. [25] proposed an
abstraction filter on the basis of the fact that an artist gen-
erally discards texture information but preserves the edges
present in an image. The authors extended the Kuwahara
filter [26] by making it more robust to noise and improving
its output in highly textured regions of an image. This is
carried out by calculating the Gaussian weighted mean and
standard deviations inN sectors of a disc centred at a pixel.
An example of the output produced using this technique is
shown in Figure 7. Gooch et al. [27] made use of depth
information to modify properties of the strokes. However,
depth information may not always be available. In this
case, importance of a region must be estimated in other
ways. Santella and DeCarlo [28] determined importance at
a point by tracking which parts of an image a user looks
at. The authors argued that the more time a user spends
looking at a certain part of an image, the more important
it must be. A set of locations where the user’s eyes fixated

(a) (b)

Figure 7. (a) A reference image and (b) the reference image abstracted using techniques presented in [25].

48 Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



S. Hegde, C. Gatzidis and F. Tian A review of painterly rendering techniques

on are collected using an eye tracker and an importance
map is generated from this. Although this is a very good
way of calculating importance, it is subjective and requires
human subjects, which can be a severely time-consuming
and expensive process. Collomosse and Hall [29] also gen-
erated an importance map referred to as a salience image.
An example of this can be seen in Figure 8(c). The sig-
nificance of a pixel at a certain location is based on the
first and second partial derivatives of the image convolved
using a Gaussian kernel. The significance of a pixel’s value
is computed with respect to its neighbours. This method
essentially computes the importance of a pixel based on its
variance, suggesting that more important points are located
in regions in which there is much change. Xu et al. [30]
used a similar theory to determine important points in a
3D point cloud. They combined the variation of colour
and normals to estimate the feature degree (importance)
of a point. Zhao and Zhu [31] determined the abstraction
level of an image after the user has segmented the image
into a tree structure. The scene in the image and the dif-
ferent nodes of the tree are classified manually depending
on the materials of the objects within them. An example
of this hierarchical classification can be seen in Figure 9.
Optionally, this classification may be done automatically

using the texton boost algorithm as used by Lin et al. [32].
Once the image is segmented and classified, the importance
of each segment is based on the probability that a certain
type of material appears in a particular type of a scene.
The probability is based on a database developed by Yao
et al. [33].

3.2. Position and Density

One of the first challenges with generating strokes is deter-
mining their location. One of the key challenges with this
method is ensuring that there are no unwanted holes in the
output painting. This has to factor in the stroke’s cover-
age area. Because, for many methods, calculating the exact
boundaries of a stroke may be computationally prohibitive,
methods generally resort to overlapping multiple strokes to
ensure there are no holes.

Haeberli [34] avoided this problem by requiring the user
to manually position each stroke. Kalnins [35] required the
user to place a few strokes. These strokes are used as tem-
plates and are then replicated at other locations by calculat-
ing the distance of the template strokes from feature lines.
Others took a more automated approach. Litwinowicz

(a) (b)

(c) (d)

Figure 8. Painterly rendering achieved using salience maps as presented by Collomosse and Hall [29]: (a) superquadric strokes used
in this method, (b) a reference image, (c) salience map of the reference image and (d) output produced using this method.

Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd. 49
DOI: 10.1002/cav



A review of painterly rendering techniques S. Hegde, C. Gatzidis and F. Tian

Figure 9. A reference image hierarchically segmented and classified by materials in each region as implemented in [31,50].

[36] placed strokes at alternate pixel locations to ensure
there are no holes in the output. Park and Yoon [37]
placed strokes at locations where a randomly generated
value exceeds the probability threshold. Hertzmann [38]
and Schlechtweg et al. [39] placed the starting points of a
stroke at locations where the intermediate output differs in
a greater amount than a certain threshold from a reference
image. In a later work, Hertzmann [40] ensured sufficient
coverage and avoided adding new strokes by reposition-
ing existing strokes. This is carried out by including an
energy termEcov for the coverage and another energy term
Enstr for the number of strokes. Shiraishi and Yamaguchi
[41] attempted to estimate the area of the strokes by gen-
erating an intensity image using the 0th image moments.
Initial locations for the strokes are determined from this

intensity image by using a halftoning algorithm by Velho
and Gomes [42]. Strokes are later iteratively repositioned
by first calculating a difference sub-image centred at each
stroke’s location. The strokes are then repositioned to the
centroid of this difference image. Mao et al. [23] deter-
mined the density of strokes by generating noise at a
density based on the tone of the underlying image. The
strokes will be implicitly generated by the use of a low-
pass filter. Yamamoto et al. [24] extended this technique
to generate coloured output by determining the two most
prominent colours for each region. Implicit strokes for
each colour are generated in two layers. The density of
strokes in each layer is based on a duotone algorithm
that determines the proportion each colour must be used
to achieve the target colour. Meier [43] and Kowalski

50 Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



S. Hegde, C. Gatzidis and F. Tian A review of painterly rendering techniques

et al. [44] attached strokes to the surface of a 3D object
randomly on the basis of a user-defined density parameter.
Kowalski et al. [44] allowed the user to later move indi-
vidual strokes by parameterizing the 3D surface. Schmid
et al. [45] allowed the user to place strokes in 3D space on
the basis of level sets defined by proxy geometry. With the
parameters adjusted in an energy minimisation function, a
stroke can be optimised to stick to a given level set or span
a range. An example of the different tools made possible
using this technique can be seen in Figure 10. This gives
an artist the freedom to easily paint volumetric effects such
as clouds, smoke and fur that would have been difficult to
do so previously. Way et al. [46] used the dot product of
the normalised view vector and surface normal to deter-
mine the density of strokes in a certain location. This way,
there will be a higher density of strokes along the silhouette
of an object, thus highlighting object boundaries.

3.3. Orientation and Path

The next task is to align the strokes to a particular direction.
Haeberli [34] allowed the user to decide the orientation
of each stroke by calculating the direction of movement.
Haeberli also suggested automatically aligning strokes per-
pendicular to the gradient vector at a point in the image.
This is based on observing artists who orient their strokes
in the direction where there is minimal change in colour.
Gradient vectors can be calculated quickly using a Sobel
filter. Litwinowicz [36], Hertzmann [38], Collomosse and
Hall [29] and Santella and DeCarlo [28] used this strategy
to align their strokes. This method works well in high-
frequency regions where there is much variation in colour.
In regions where the colour is similar to neighbouring
pixels, the gradient vector tends to point in arbitrary direc-
tions. Litwinowicz [36] addressed this problem by check-
ing the gradient magnitude. A small gradient magnitude
would mean an unpredictable gradient vector direction. In
this case, the direction is interpolated using radial basis
functions from neighbouring regions with a large gradient
magnitude. Lee et al. [47] used optical flow to calculate the
direction of motion from the reference video to determine
the orientation of strokes representing flowing elements
such as clouds and water. Shiraishi and Yamaguchi [41]
used image moments to determine an angle � to which
their strokes will be aligned to. When a 3D surface is
being processed, the orientation can be based on the 3D
surface normals as shown by Meier [43]. In [48], Xu and
Chen assigned an importance factor referred to as a feature
degree to 3D points in a point cloud. The method of least
squares is then used to fit a line to points with a high feature
degree. Later in [30], Xu et al. used this line to determine
the direction of a stroke. Mao et al. [23] and Yamamoto
et al. [24] generated a vector field to be used with the
line integral convolution (LIC) algorithm. This is carried
out by transforming the pixels in the local neighbourhood
of the point into the frequency domain using the Fourier

transform. The most prominent direction is determined by
comparing the sum of powers at small angles.

Once the initial direction of a stroke is determined, its
path must be set. Haeberli [34], Litwinowicz [36], Meier
[43] and Shiraishi and Yamaguchi [41] used short straight
strokes. Because the strokes are short, there is no need
to generate a curved path. Hertzmann [38] generated long
curved strokes by using a series of connected short straight
lines. Each line segment is oriented perpendicular to the
gradient direction at the point where the line starts. This
method suffers from the same problem seen when using
gradient directions to determine initial orientation of a
stroke. Hertzmann [40] later improved upon this technique
by iteratively refining the path using energy minimisation.
Another option, implemented by Santella and DeCarlo
[28], is to continue moving in the same direction when
the gradient magnitude at a point is low. Others such as
Olsen et al. [49] used a higher threshold on the gradi-
ent magnitude and used a radial basis function to define
a smoother and less varying vector field within regions of
a segmented image. The user is given the option of inter-
actively modifying the vector field using fluid dynamics.
Gooch et al. [27] generated stroke paths by calculating
B-splines from the medial axis of a segmented image.
Holes within the regions are removed and borders of
the segmented regions are smoothed using morphological
operations. This method used without any alteration would
generate a large number of very short strokes. To avoid this,
the authors merged the medial lines of two segments if the
difference in colour, direction and distance is within a cer-
tain threshold. Zeng et al. [50] used the primal sketch algo-
rithm of Guo et al. [51] to define a vector field to be used by
the strokes. In the case of 3D objects, we have additional
information on the objects and strokes can follow surface
curvature and feature lines, as demonstrated by Chi [52].

3.4. Width and Length

The width and length of a stroke can determine the style of
the output painting and play a particularly important role.

Haeberli [34], Litwinowicz [36] and Meier [43] gen-
erated short strokes to give the output an impression-
istic style. Litwinowicz [36] suggested a method where
strokes are clipped when they encounter an edge so that
strokes do not cross over object borders. Hertzmann’s
methods [38,40] have the capability of generating longer
strokes abstracting the input reference image. Collomosse
and Hall [29] determined the shape of a stroke by using
superquadric equation .x=a/2=˛ C .y=b/2=˛ . ˛ controls
the shape of the stroke, making the stroke rectangu-
lar as it approaches 0 and star shaped as it approaches
1. a and b are normalised and control the eccentric-
ity of the superquadric. The difference between a and
b is proportional to the gradient magnitude, resulting in
elongated strokes in regions with well-defined edges and
rounder strokes in regions with less variation in colour.
The superquadric strokes used in the method can be seen

Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd. 51
DOI: 10.1002/cav



A review of painterly rendering techniques S. Hegde, C. Gatzidis and F. Tian

Figure 10. The stroke positioning tools made possible by adjusting the weights of an energy minimisation function in [45].

Figure 11. Layering used by composite strokes of different widths into the final output as implemented by Hays and Essa [54].

in Figure 8(a). Mao et al. [23] and Yamamoto et al. [24]
controlled the width of their implicit strokes by varying the
granularity of the noise. Length of the stroke is controlled
by varying the length of the convolution kernel used in
LIC [53].

3.5. Ordering

Hertzmann [38] was one of the first researchers in the area
who realised that ordering strokes according to their thick-
ness is a common practice used by artists. The work by him
and others such as Park and Yoon [37] and Hays and Essa
[54] generates output by using multiple layers. Each layer
uses a low-pass filtered version of the reference image used
by the upper layer. This way, the amount of detail avail-
able to a layer reduces with its depth and the width of the
strokes used on each layer is increased. The layers are com-
posited to generate the final output. See Figure 11 for an
example. In [27], Gooch et al. provided the user an option
of compositing different layers generated using completely
different reference image source data. This allows us to
easily place an object in front of different backgrounds.
Ordering of strokes will be randomised within each layer
with the use of this method. Shiraishi and Yamaguchi [41]

suggested ordering strokes according to their area instead.
In this case, calculating the stroke area is computationally
efficient as the authors assumed all strokes to be rectan-
gles. A shortcoming of this technique is that the shape of all
strokes in a painting is restricted to being short and straight.
Collomosse and Hall [29] ordered strokes on the basis of a
salience map (see Section 3.1).

3.6. Colour and Texture

There are several methods in which the texture and colour
of a stroke can be determined. Methods presented by
Haeberli [34], Litwinowicz [36], Hertzmann [38] and
several other authors sample the reference image’s colour
at the position where the stroke is placed. In the case of
Haeberli [34] and Litwinowicz [36], the stroke colour is
blended with a stroke texture to add detail to individual
strokes. This is a simple and fast method that works well
if there is little variance in the colour under the footprint
of the stroke. In an extension of his work, Hertzmann [40]
and others such as Schlechtweg et al. [39] and Hays and
Essa [54] used the average colour under the stroke. Chen
et al. [55] also used the average colour, but they sampled
the average colour from Voronoi cells. The cells acquire

52 Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



S. Hegde, C. Gatzidis and F. Tian A review of painterly rendering techniques

Figure 12. Example of two colour palettes selected in [57] by examining the work of two artists (Berann and Niehues).

the average colour of the underlying pixels of the refer-
ence frame. Yamamoto et al. [24] decided the two most
prominent colours within each region by checking the dif-
ference between the colours in the region with a predefined
palette. Once the two colours have been determined, the
Neugebauer duotone printing algorithm is used to deter-
mine proportion of each colour so that strokes may be
generated in the same proportion. Luft and Deussen [56]
and Braktova et al. [57] decided the colours from a care-
fully selected palette of colours, determined by studying
similar types of paintings created by artists. An example of
such a palette can be seen in Figure 12. Zeng et al. [50],
Zhao and Zhu [31] and Lin et al. [32] used a brushstroke
texture on the basis of the material classification of a region
of the painting. The texture is sampled from a database of
stroke textures created manually by artists for each type of
material. Xie et al. [58] generated the stroke texture pro-
cedurally. The footprint of the brushstroke is divided into
six segments. Each segment is assigned a texture from a
sample of six styles (see Figure 13). The textures in the dif-
ferent segments are blended to generate a seamless stroke.
Hsu et al. [59] provided a detailed description of textur-
ing individual strokes. They included techniques to handle
self-overlapping strokes by removing overlapping points,
texturing strokes in regions of high curvature by adding
additional points and the parameterisation of the stroke
footprint so that a texture can be mapped onto it.

Colours of strokes may be modified locally on the basis
of different factors. Gooch et al. [27] modified the colour
of a stroke on the basis of the depth at the point. Santella
and DeCarlo [28] increased the contrast along edges and
increased saturation on the basis of the importance of a
region (see Section 3.1). Zeng et al. [50] adjusted the
colour temperature of the strokes within a painting depend-
ing on the scene. This is carried out by observing the colour
temperature shift in paintings created by expert artists.

Figure 13. Six different brushstroke styles used by Xie et al.
[58]. Each stroke is divided into six segments. The texture used
in each segment is presented as smaller strokes above each

stroke style.

3.7. Temporal Coherence

A considerable amount of recent research has focused on
generating temporally coherent strokes that are capable of
creating animated paintings. This area of research has the
potential of making a new visual style available to ani-
mators and directors that previously required hundreds or
even thousands of man hours in order to achieve manually.
Key challenges within this area are (i) detecting motion
of objects, (ii) transforming strokes along with the objects

Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd. 53
DOI: 10.1002/cav



A review of painterly rendering techniques S. Hegde, C. Gatzidis and F. Tian

and (iii) modifying the properties of strokes in a temporally
coherent way to avoid popping or scintillation.

3.7.1. Detecting Object Transformation.

When video is used, optical flow is a popular method
to track movement between frames. Litwinowicz [36],
Hertzmann and Perlin [60], Olsen et al. [49] and Lu et al.
[61] used optical flow to move strokes. Unfortunately, opti-
cal flow algorithms fail to accurately track motion between
frames. In an attempt to overcome this, Park and Yoon [37]
combined optical flow with edge detection. The movement
of pixels between consecutive frames is stored in 2D vector
fields called motion maps. The authors created two motion
maps. One is a strong motion map, which stores the vec-
tors for pixels on edges. All pixels that lie between the old
position and the new position are also stored in this motion
map. The other is a weak motion map, where the vectors
for regions around the edges are stored. The remaining pix-
els acquire motion vectors from these pixels. An overview
of this process can be seen in Figure 14. Lin et al. [32]
did not use optical flow. Feature points at locations of high
frequency are detected using scale-invariant feature trans-
form. A gradient histogram is generated at these points. In
low-frequency regions, the authors used maximally stable
extremal regions [62] to generate a colour histogram of the
pixels within the region. Feature points assigned to two dif-
ferent segments in two frames are mapped to each other by
minimizing a difference metric. A snapshot of the different
feature tracking techniques used can be seen in Figure 15.
Because the techniques employed here are tuned to smooth
movement of the underlying objects, they are unable to
accurately recreate rapid movement and detect occlusions
and sudden appearances of objects.

A side effect from using methods such as these is a build
up of stroke density in certain locations, while holes tend
to appear at other locations. Hertzmann and Perlin [60]

added new strokes at locations where the colour differ-
ence between the output and the reference image is greater
than a certain threshold. Litwinowicz [36] generated a
Delaunay triangulated mesh. New strokes are added at
locations where the area of a triangle is greater than a cer-
tain threshold. In a similar way, strokes are removed if they
come too close to each other.

Hays and Essa [54] added new strokes at locations where
gaps form in the output. Collomosse et al. [63] suggested
an offline approach where the video sequence is treated as
3D volume data in space and time. Individual frames are
segmented using the EDISON algorithm [64] and regions
are merged between frames. A Catmull-Rom patch is fit-
ted to the boundary of these regions to create a smooth
surface in 3D, as can be seen in Figure 16. A 2D tensor
field is calculated at each slice of each object in the time
domain. The 2D tensor field holds the transformation of
2D points within the object between frames. Zhang et al.
[7] detected and used flow lines from a video sequence con-
taining water to direct motion of their strokes. The problem
becomes simpler when using 3D objects. Lu et al. [61] gen-
erated motion vectors by using the projection matrix of the
previous frame to reproject a vertex’s position and com-
pare it with its current position. Others such as Meier [43]
and Kaplan et al. [65] attached strokes to particles on the
surface of a 3D object and transformed it along with the
object. In Figure 17, we look at an overview of how the dif-
ferent stroke colouring, orientation and sizing techniques
come together to produce the final output as presented in
Meier’s work.

3.7.2. Modifying Properties of Strokes in a

Temporally Coherent Way.

Hays and Essa [54] prevented rapid changes by limiting
the rate of change of a stroke’s property such as its location
and colour. New strokes are gradually faded in, whereas

Figure 14. Combining strong and weak motion maps to calculate motion between frames [37].

54 Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



S. Hegde, C. Gatzidis and F. Tian A review of painterly rendering techniques

Figure 15. Different methods used to track points between two frames in [32]: (a) features in a texture region, (b) features in a
textureless region, (c) gradient histogram, (d) color histogram and (e) motion consistency.

Figure 16. Stroke surfaces generated from a video volume [63].

old ones are faded out to prevent popping. Collomosse
et al. [63] prevented scintillation by removing regions
that do not exist for more than 0.25 seconds. Surrounding

objects expand to occupy the void space. Lin et al. [32]
tried to minimise movement by deforming a stroke with the
use of the feature point locations. In addition to this, they

Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd. 55
DOI: 10.1002/cav



A review of painterly rendering techniques S. Hegde, C. Gatzidis and F. Tian

Figure 17. An overview of the 3D painterly system presented by Meier [43].

dampened stroke movement in the space and time to pre-
vent rapid movement of strokes. Unfortunately, this does
not work very well when objects move rapidly in a scene.

When rendering strokes on 3D objects, Kaplan et al.
[65] suggested scaling up the size of strokes when objects
move closer to the viewpoint. If stroke density is to be
maintained, Xu and Chen’s method [48] can be used. Here,
points at which strokes are rendered are randomly and con-
tinually added or removed depending on the distance of the
viewpoint from the object.

4. IMPLICIT STROKES

Instead of rendering individual strokes, some methods
manage to achieve painterly style output by using image
processing techniques.

Bousseau et al. [66] attempted to create watercolour
style paintings without explicitly simulating brushstrokes.
Instead, base colours are generated by segmenting an
image by using a mean shift algorithm. Various phenom-
ena seen in a watercolour painting are simulated through
the modification of the base colours. Flow effect is sim-
ulated using a Perlin noise layer, granulation using sum
of Gaussians and the paper texture is determined by scan-
ning different papers. Edge darkening and rough boundary
edges are simulated by using the gradient of the segmented
image and the dry brush effect is produced by threshold-
ing the height of the paper texture. The degree to which
each of these effects contributes to the final output can be
controlled by the user.

In an attempt to generate better results by using opti-
cal flow, Bousseau et al. [67] extended their previous
work [66] to include video. Because this method does not
explicitly create strokes, only the underlying textures that
simulate the flow, dry brush and granulation effects in a
watercolour painting need to be distorted according to the
underlying motion, in order to prevent a shower door effect.
Segmentation of individual frames are made temporally
coherent by using a 3D structuring element for the morpho-
logical region boundary smoothing operations. The third
dimension is in the time domain and the structuring ele-
ment tapers as the frames progress away from the current
frame. The other watercolour simulations are just image fil-
ters that work on a per-pixel basis. The underlying textures
are distorted and blended using bidirectional optical flow.
One optical flow is calculated as normal from the begin-
ning of the video sequence going forward and the other
in reverse from the end of the video. With the use of two
motion flow calculations, more robust distortions can be
achieved. An example of the distortions produced using
this technique can be seen in Figure 18. Because optical
flow is not accurate, errors can build up over time. This
is handled by resetting back to the original texture after a
certain period.

Normally, texture transfer algorithms generate a result
image (R) by using colours from a source image (S )
while trying to maintain the texture information from a
target image (T ). These algorithms are based on colour
information. Lee et al. [68] extended the standard texture
transfer algorithms to replicate brushstroke styles from a
source painting by using directional information in the tar-
get image. An overview of the algorithm can be seen in

56 Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



S. Hegde, C. Gatzidis and F. Tian A review of painterly rendering techniques

(a)

(b)

(c)

(d)

Figure 18. Bidirectional texture distortion as implemented in [67] is demonstrated on a checkerboard texture: (a) the original refer-
ence frames, (b) the checkerboard texture distorted in the forward direction, (c) the checkerboard texture distorted in the reverse

direction and (d) the checkerboard texture distorted by combining the forward and reverse directions.

Figure 19. The directional texture transfer algorithm [68].

Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd. 57
DOI: 10.1002/cav



A review of painterly rendering techniques S. Hegde, C. Gatzidis and F. Tian

(a)

(b)

Figure 20. (a) The different stages to generate the tone maps and (b) the output [69].

Figure 19. The algorithm initialises R with random pixels
from S . The result R is then iteratively updated by check-
ing for the best candidate in the local neighbourhood of
each pixel. In this case, the best candidate is determined by
including directional information.

Yen et al. [69] also utilised a texture transfer algorithm
to paint 3D geometry by using brushstroke styles from a
sample painting. The advantage of using this method is that
the user can select regions of the painting whose style is to
be replicated. This is achieved by segmenting the source
painting and selecting particular regions to be used. An
overview of their algorithm can be seen in Figure 20(a).
The strokes are aligned using vector fields. The authors
presented techniques to normalise the width of the strokes
that are referenced from the painting. The user draws two
parallel lines in each selected region to indicate the number
of strokes between them. It is assumed that the number of
strokes between these two lines remains the same in all seg-
ments. Stroke alignment is carried out automatically using
texture synthesis. Key maps are produced for each region
selected by the user. The synthesised key maps have uni-
form stroke width and alignment. A range of intermediate
tones are generated automatically using blending because
the regions selected by the user would generally only con-
tain a few tones. Finally, the strokes are rendered onto the
3D model with the use of texture splatting. Discontinuities
between different tone maps are avoided using hardware
interpolation. The strokes can be animated coherently over
the surface of the mesh by moving the textures. The final
output can be seen in Figure 20(b).

The methods of Yen et al. [69] assume that the refer-
ence painting contains only straight strokes. Also, there
is no distinction made between stroke texture and colour.
Kulla et al. [70] overcame these shortcomings by using a
slightly different approach to painting 3D meshes. They
required the user to create an image strip that contains vary-
ing texture and colour. The texture and colour is separated
during preprocessing and blended back during rendering.
This way, a user is offered the flexibility to change only
the colours and keep the stroke textures the same or vice
versa. A 3D mesh is then rendered in the painterly style
using different techniques. One such technique is based on
texture quilting. The quilting method is modified to reduce
discontinuities between blocks. Another method converts
the image strip into a 3D texture. In order to reduce seams
within the texture, a texture blending method is used to
blend each individual texture block’s edges with its cen-
tres. Some modifications are also made to make the output
temporally coherent. Unlike the methods presented by Yen
et al. [69], the authors do not make any effort to align
the strokes.

Hertzmann et al. [71] provided a more specialised
framework that can perform texture transfer in addition
to other image filtering operations. Given a pair of source
images, a source image and a filtered version of the source
image, the application tries to approximate the parame-
ters used in different image filters. These filters are then
applied to a target image. The filter parameters are approx-
imated using machine learning algorithms. The application
is capable of producing painterly style output by learning

58 Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



S. Hegde, C. Gatzidis and F. Tian A review of painterly rendering techniques

Figure 21. A sample input source images (A and A0) along with the target input images (B) with the result output (B0) produced using
techniques presented in [71].

several artistic filters and is capable of producing oil,
watercolour and other artistic style images. One drawback
of this method is that it needs the original source image
used, which may not always be available. An example of
the outputs that can be produced can be seen in Figure 21.

Another popular choice for simulating strokes is the
LIC algorithm [53]. Originally created to visualise vec-
tor fields, it is used by many techniques to create painterly
style output.

Mao et al. [23] and Yamamoto et al. [24] used the
LIC algorithm to generate pencil strokes. Properties of
the strokes such as the length are controlled by varying
the length of the convolution kernel. Width is controlled
by varying the granularity of the underlying noise that is
used as the source texture. Finally, the direction of the
stroke is varied by generating a vector field within each
region. Although the methods presented by these authors
vary properties only within certain regions of the image,

Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd. 59
DOI: 10.1002/cav



A review of painterly rendering techniques S. Hegde, C. Gatzidis and F. Tian

Table I. Summary of painterly techniques reviewed.

Method Source data Output style AE Auto TC

BKTS06 [66] Img, 3D Watercolour None High Yes
BNTS07 [67] Video Watercolour None High Yes
BST09 [57] HF Panorama maps Novice High No
CH02 [29] Img Painterly None High No
CRH05 [63] Video Painterly, CTN Medium Medium Yes
CTM08 [55] LV with 3D Watercolour None High Yes
GCS02 [27] Img Painterly None High No
Hae90 [34] Img Painterly None Medium No
HAY04 [54] Img, Video Painterly None High Yes
Her98 [38] Img Painterly None High No
Her02 [40] Img, Video Painterly None High Yes
HP00 [60] Video Painterly None High Yes
HMIA01 [71] Img + Ref SBR None Medium No
KGC00 [65] 3D SBR Novice High Yes
KMM02 [35] 3D SBR Medium Medium Yes
KMN99 [44] 3D SBR Novice High Yes
KUL03 [70] 3D Painterly Medium High Yes
KYP11 [72] Img, Video Painterly None High Yes
LD06 [56] Plant geom Watercolour None High Yes
LEE09 [47] Video Painterly None High No
Lit97 [36] Img, Video Painterly None High Yes
LSF10 [61] Video, 3D Painterly None High Yes
LSRY10 [68] Img + Ref Painterly None High No
LZL10 [32] Video Painterly None Medium Yes
MAO01 [23] Image Pencil None High No
Mei96 [43] 3D Painterly Novice Medium Yes
MGS06 [52] 3D Painterly None High Yes
OMG05 [49] Img Painterly None Medium No
PPC07 [25] Img Painterly None High No
PY08 [37] Video Painterly None High Yes
SAA02 [28] Img Painterly None Medium No
SIMC07 [74] Img SBR None Medium No
STRB05 [39] 3D SBR None High Yes
SY00 [41] Img Painterly None High No
WAY02 [46] Plant geom Oriental None High Yes
XLSN10 [58] Img Sumi-e Novice Medium No
YAM04 [24] Img Pencil None High No
YN07 [69] 3D + Ref Painterly None High Yes
XUPW04 [30] Point set Painterly None High Yes
ZCZ09 [7] Video Oriental None High Yes
ZZ10 [31] Img Abstract None Medium No
ZZXZ09 [50] Img Painterly None Medium No

3D: 3D mesh geometry; AE, artistic expertise; Auto, level of automation over the process; CTN, cartoon; HF, height field with land
cover data; Img, 2D images; LV, live video; Ref, reference painted image; SBR, stroke-based output (painterly, mosaic, stippling and
hatching); TC, temporal coherence.

more variation could be achieved by generating reference
maps that determine stroke properties at every point within
the image without the need to generate individual strokes.
Kyprianidis et al. [72] overcame these limitations by esti-
mating the second fundamental tensor at each point. The
LIC algorithm uses the minor eigenvector of the tensor to
smooth the image without affecting its edges. The length
of the LIC convolution kernel is controlled by the cur-
vature at that point. In low-contrast regions, the tensor is
interpolated from neighbouring regions as it can be signif-
icantly affected by noise. Once smoothing is performed,

the authors suggested using a directional sharpening filter
to enhance edges that might be smoothed. The smoothing
and sharpening are carried out over several iterations until
the desired abstraction level is achieved.

5. CONCLUSIONS AND
FUTURE WORK

In this paper, we have reviewed several techniques
that have been proposed to create digital paintings. We

60 Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



S. Hegde, C. Gatzidis and F. Tian A review of painterly rendering techniques

observed a trend where early works such as [34,36,38]
address basic issues in painting, whereas later research
such as [31,35,50] focused on more challenging topics
such as providing a generic framework for stroke-based
techniques and abstracting details like a real artist would.
Such methods allow us to create and experiment with
content in new styles that would be prohibitively expen-
sive using traditional techniques. Another challenge in this
area is temporal coherence. From the methods that we
reviewed, we found the work by Lin et al. [32] to pro-
duce comparatively robust results. Even with this, however,
several shortcomings, including tracking scene changes,
rapid motion between frames, translucent objects and fluid
motion, are not addressed. Using 3D geometry can pro-
vide more robust results, but none of the methods reviewed
address translucent and deformable objects.

In Table I, we present a summary of the different
methods reviewed in this paper. The table offers a quick
overview as to the reference data used by each method and
the output styles generated. None of the low-level tech-
niques are listed, as the output generated by these meth-
ods depends on the artistic expertise of the user using
the system.

Although automation is desired, no method is perfect;
hence, it is always favourable to provide tools so that the
user can further define the final output. Methods such as
[35,63,65] try to automate the entire process but always
provide the user with tools required to tweak the output
at any point. This is important because an artist would
inevitably like to fine tune the final style of the out-
put. Unfortunately, such methods would not work when
real-time output is needed.

Finally, although many methods do provide tests and
comparisons, such comparisons can be restricted to metrics
such as computational efficiency and ease of use. While
some properties of a proposed technique such as tempo-
ral coherence are easier to judge, other properties such as
abstraction and style of output are more difficult to assess,
as these are meant to invoke one’s individual imagination.
This is particularly pertinent to painterly styles. Gooch
et al. [73] suggested a few methods to test NPR tech-
niques. Most methods discussed in [73] are more relevant
to NPR techniques that attempt to produce output for use
in technical illustrations, medical imaging and educational
purposes. A final option is to judge the output by conduct-
ing Turing tests, but even this might be too restrictive as
computer generated painterly output may well define a new
style, just as 8-bit or pixel art has done in the past. As
long as a proposed method is visually appealing to a large-
enough audience, it can be argued that it can potentially be
seen as a reasonably valid contribution in this field.

REFERENCES

1. Gooch A, Gooch B, Shirley P, Cohen E. A non-
photorealistic lighting model for automatic techni-
cal illustration, In Proceedings of the 25th Annual

Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’98, Orlando, Florida, USA,
1998.

2. DeCarlo D, Santella A. Stylization and abstraction of
photographs, In Proceedings of the 29th Annual Con-
ference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’02, San Antonio, Texas, USA,
2002; 769–776.

3. Durand F. An invitation to discuss computer depiction,
In Proceedings of the 2nd International Symposium on
Non-Photorealistic Animation and Rendering, NPAR
’02, Annecy, France; 111–124.

4. Solso RL. Cognition and the Visual Arts. MIT Press,
Cambridge, Massachusetts, USA, 1996.

5. Petrov A. The old man and the sea, Montreal, 1999.
6. Te W. Shan shui qing, China, 1988.
7. Zhang SH, Chen T, Zhang YF, Hu SM, Martin

R. Video-based running water animation in Chinese
painting style. Science in China Series F: Information
Sciences 2009; 52(2): 162–171.

8. Lansdown J. Expressive rendering: a review of non-
photorealistic techniques. IEEE Computer Graphics
and Applications 1995; 15: 29–37.

9. Hertzmann A. A survey of stroke-based rendering.
IEEE Computer Graphics and Applications 2003; 23:
70–81.

10. Strassmann S. Hairy brushes. Proceedings of the 13th
Annual Conference on Computer Graphics and Inter-
active Techniques 1986; 20(4): 225–232.

11. Sousa MC, Buchanan JW. Observational model of
blenders and erasers in computer-generated pencil
rendering, In Graphics Interface, Kingston, Ontario,
Canada, 1999; 157–166.

12. Sousa MC, Buchanan JW. Observational models
of graphite pencil materials, In Computer Graphics
Forum, Interlaken, Switzerland, 2000; 27–49.

13. Lee J. Simulating oriental black-ink painting. IEEE
Computer Graphics and Applications 2002; 19(3):
74–81.

14. Baxter B, Scheib V, Lin MC, Manocha D. DAB: inter-
active haptic painting with 3D virtual brushes, In SIG-
GRAPH ’01, Los Angeles, California, USA, 2001;
461–468.

15. Zwicker M, Pauly M, Knoll O, Gross M. Pointshop
3D: an interactive system for point-based surface edit-
ing. In ACM Transactions on Graphics (TOG), SIG-
GRAPH. ACM, New York, NY, USA; 322–329.

16. Adams B, Wicke M, Dutré P, Gross M, Pauly M,
Teschner M. Interactive 3D painting on point-sampled
objects, In Eurographics Symposium on Point-Based
Graphics, Zurich, Switzerland, 2004; 59–66.

17. Curtis CJ, Anderson SE, Seims JE, Fleischer
KW, Salesin DH. Computer-generated watercolor,

Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd. 61
DOI: 10.1002/cav



A review of painterly rendering techniques S. Hegde, C. Gatzidis and F. Tian

In Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques, SIG-
GRAPH ’97, Los Angeles, California, USA, 1997;
421–430.

18. Takagi S, Fujishiro I, Nakajima M. Volumetric mod-
eling of colored pencil drawing, In Proceedings of
the 7th Pacific Conference on Computer Graphics and
Applications, IEEE Computer Society, Seoul, Korea,
1999; 250–258.

19. Lee J. Diffusion rendering of black ink paintings using
new paper and ink models. Computers & Graphics
2001; 25(2): 295–308.

20. Chu NS, Tai CL. Moxi: real-time ink dispersion
in absorbent paper. ACM Transactions on Graphics
(TOG) 2005; 24(3): 504–511.

21. Lee S, Olsen SC, Gooch B. Interactive 3D fluid jet
painting, In Proceedings of the 4th International Sym-
posium on Non-Photorealistic Animation and Render-
ing, NPAR ’06, Annecy, France, 2006; 97–104.

22. Chu N, Baxter W, Wei LY, Govindaraju N.
Detail-preserving paint modeling for 3D brushes,
In Proceedings of the 8th International Sympo-
sium on Non-Photorealistic Animation and Rendering,
NPAR ’10, Annecy, France, 2010; 27–34.

23. Mao X, Nagasaka Y, Imamiya A. Automatic gener-
ation of pencil drawing from 2D images using line
integral convolution, In CAD/Graphics, volume 9,
Kunming, China, 2001; 240–248.

24. Yamamoto S, Mao X, Imamiya A. Colored pencil filter
with custom colors, In Proceedings of the 12th Pacific
Conference on Computer Graphics and Applications,
Seoul, Korea, 2004; 329–338.

25. Papari G, Petkov N, Campisi P. Artistic edge and
corner enhancing smoothing. IEEE Transactions on
Image Processing October 2007; 16(10): 2449–2462.

26. Kuwahara M, Hachimura K, Eiho S, Kinoshita M.
Processing of RI-angiocardiographic images. Digital
Processing of Biomedical Images 1976: 187–203.

27. Gooch B, Coombe G, Shirley P. Artistic vision:
painterly rendering using computer vision techniques,
In Proceedings of the 2nd International Symposium
on Non-Photorealistic Animation and Rendering, June,
NPAR ’02, Annecy, France, 2002; 83–ff.

28. Santella A, DeCarlo D. Abstracted painterly render-
ings using eye-tracking data, In Proceedings of the 2nd
International Symposium on Non-Photorealistic Ani-
mation and Rendering, NPAR ’02, Annecy, France;
75–ff.

29. Collomosse JP, Hall PM. Painterly rendering using
image salience, In Proceedings of the 20th Eurograph-
ics UK Conference, Leicester, UK, 2002; 122–128.

30. Xu H, Gossett N, Chen B. Pointworks: abstraction and
rendering of sparsely scanned outdoor environments,

In Proceedings of the 15th Eurographics Workshop
on Rendering Techniques, Norköping, Sweden, 2004;
21–23.

31. Zhao M, Zhu SC. Sisley the abstract painter, In Pro-
ceedings of the 8th International Symposium on Non-
Photorealistic Animation and Rendering, NPAR ’10,
Annecy, France, 2010; 99–107.

32. Lin L, Zeng K, Lv H, Wang Y, Xu Y, Zhu SC.
Painterly animation using video semantics and fea-
ture correspondence, In Proceedings of the 8th Inter-
national Symposium on Non-Photorealistic Animation
and Rendering, NPAR ’10, Annecy, France, 2010;
73–80.

33. Yao B, Yang X, Zhu SC. Introduction to a large-scale
general purpose ground truth database: methodology,
annotation tool and benchmarks, In Proceedings of the
6th international conference on Energy minimization
methods in computer vision and pattern recognition,
Ezhou, China, 2007; 169–183.

34. Haeberli P. Paint by numbers: abstract image represen-
tations. Proceedings of the 17th Annual Conference on
Computer Graphics and Interactive Techniques 1990;
24(4): 207–214.

35. Kalnins RD, Markosian L, Meier BJ, Kowalski MA,
Lee JC, Davidson PL, Webb M, Hughes JF, Finkelstein
A. WYSIWYG NPR: drawing strokes directly on 3D
models. ACM Transactions on Graphics (TOG) 2002;
21(3): 755–762.

36. Litwinowicz P. Processing images and video for an
impressionist effect, In Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’97, Los Angeles, California,
USA, 1997; 407–414.

37. Park Y, Yoon K. Painterly animation using motion
maps. Graphical Models 2008; 70(1-2): 1–15.

38. Hertzmann A. Painterly rendering with curved brush
strokes of multiple sizes, In Proceedings of the 25th
Annual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH ’98, Orlando, Florida,
USA, 1998; 453–460.

39. Schlechtweg S, Germer T, Strothotte T. RenderBots–
Multi-Agent systems for direct image generation,
In Computer Graphics Forum, volume 24, Dublin,
Ireland, 2005; 137–148.

40. Hertzmann A. Paint by relaxation, In Computer
Graphics International (CGI’01), Hong Kong, China,
2001; 47–54.

41. Shiraishi M, Yamaguchi Y. An algorithm for auto-
matic painterly rendering based on local source image
approximation, In Proceedings of the 1st Interna-
tional Symposium on Non-Photorealistic Animation
and Rendering, NPAR ’00, Annecy, France, 2000;
53–58.

62 Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



S. Hegde, C. Gatzidis and F. Tian A review of painterly rendering techniques

42. Velho L, de Miranda Gomes J. Digital halftoning
with space filling curves, In Proceedings of the 18th
Annual Conference on Computer Graphics and Inter-
active Techniques, volume 25 of SIGGRAPH ’91,
Los Angeles, California, USA, July 1991; 81–90.

43. Meier BJ. Painterly rendering for animation, In Pro-
ceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’96,
New Orleans, Louisiana, USA, 1996; 477–484.

44. Kowalski MA, Markosian L, Northrup JD, Bourdev L,
Barzel R, Holden LS, Hughes JF. Art-based rendering
of fur, grass, and trees, In Proceedings of the 26th
Annual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH ’99, Los Angeles,
California, USA, 1999; 433–438.

45. Schmid J, Senn MS, Gross M, Sumner RW. Over-
Coat: an implicit canvas for 3D painting, In ACM
SIGGRAPH 2011 papers, SIGGRAPH ’11, ACM,
New York, NY, USA, 2011; 28:1–28:10.

46. lor Way D, ru Lin Y, chung Shih Z. The synthesis of
trees chinese landscape painting using silhouette and
texture strokes. Journal of WSCG 2002; 10: 499–506.

47. Lee H, Lee CH, Yoon K. Motion based painterly
rendering, In Computer Graphics Forum, volume 28,
Munich, Germany, 2009; 1207–1215.

48. Xu H, Chen B. Stylized rendering of 3D scanned real
world environments, In Proceedings of the 3rd Inter-
national Symposium on Non-Photorealistic Animation
and Rendering, NPAR ’04, Annecy, France, 2004;
25–34.

49. Olsen SC, Maxwell BA, Gooch B. Interactive vec-
tor fields for painterly rendering, In Proceedings of
Graphics Interface 2005, Kelowna, British Columbia,
Canada, 2005; 241–247.

50. Zeng K, Zhao M, Xiong C, Zhu SC. From image
parsing to painterly rendering. ACM Transactions on
Graphics (TOG) 2009; 29(1): 1–11.

51. Guo C, Zhu SC, Wu YN. Primal sketch: integrat-
ing structure and texture. Computer Vision and Image
Understanding 2007; 106(1): 5–19.

52. Ming-Te Chi TYL. Stylized and abstract painterly ren-
dering system using a multiscale segmented sphere
hierarchy. IEEE Transactions on Visualization and
Computer Graphics 2006; 12: 61–72.

53. Cabral B, Leedom LC. Imaging vector fields using
line integral convolution, In Proceedings of the 20th
Annual Conference on Computer Graphics and Inter-
active Techniques, Anaheim, California, USA, 1993;
263–270.

54. Hays J, Essa I. Image and video based painterly
animation, In Proceedings of the 3rd Interna-
tional Symposium on Non-Photorealistic Animation
and Rendering, NPAR ’04, Annecy, France, 2004;
113–120.

55. Chen J, Turk G, MacIntyre B. Watercolor inspired
non-photorealistic rendering for augmented reality, In
Proceedings of the 2008 ACM Symposium on Vir-
tual Reality Software and Technology, VRST ’08,
Bordeaux, France, 2008; 231–234.

56. Luft T, Deussen O. Real-time watercolor illustrations
of plants using a blurred depth test, In Proceedings
of the 4th International Symposium on Non-
Photorealistic Animation and Rendering, NPAR ’06,
Annecy, France, 2006; 11–20.

57. Bratkova M, Shirley P, Thompson WB. Artistic ren-
dering of mountainous terrain. ACM Transactions on
Graphics (TOG) 2009; 28(4): 1–17.

58. Xie N, Laga H, Saito S, Nakajima M. IR2s: interac-
tive real photo to sumi-e, In Proceedings of the 8th
International Symposium on Non-Photorealistic Ani-
mation and Rendering, NPAR ’10, Annecy, France,
2010; 63–71.

59. Hsu SC, Lee IHH, Wiseman NE. Skeletal strokes, In
Proceedings of the 6th Annual ACM Symposium on
User Interface Software and Technology, UIST ’93,
Atlanta, Georgia, USA, 1993; 197–206.

60. Hertzmann A, Perlin K. Painterly rendering for video
and interaction, In Proceedings of the 1st International
Symposium on Non-Photorealistic Animation and Ren-
dering, NPAR ’00, Annecy, France, 2000; 7–12.

61. Lu J, Sander PV, Finkelstein A. Interactive painterly
stylization of images, videos and 3D animations, In
Proceedings of the 2010 ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games, I3D ’10,
Washington DC, USA, 2010; 127–134.

62. Matas J, Chum O, Urban M, Pajdla T. Robust
wide-baseline stereo from maximally stable extremal
regions. Image and Vision Computing 2004; 22(10):
761–767.

63. Collomosse JP, Rowntree D, Hall PM. Stroke surfaces:
temporally coherent artistic animations from video.
IEEE Transactions on Visualization and Computer
Graphics 2005; 11: 540–549.

64. Christoudias CM, Georgescu B, Meer P. Synergism in
low level vision, In Pattern Recognition, 2002. Pro-
ceedings. 16th International Conference on, volume 4,
Quebec, Canada, 2005; 150–155.

65. Kaplan M, Gooch B, Cohen E. Interactive artistic
rendering, In Proceedings of the 1st International
Symposium on Non-Photorealistic Animation and Ren-
dering, NPAR ’00, Annecy, France, 2000; 67–74.

66. Bousseau A, Kaplan M, Thollot J, Sillion FX. Inter-
active watercolor rendering with temporal coherence
and abstraction, In Proceedings of the 4th Interna-
tional Symposium on Non-Photorealistic Animation
and Rendering, NPAR ’06, Annecy, France, 2006;
141–149.

Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd. 63
DOI: 10.1002/cav



A review of painterly rendering techniques S. Hegde, C. Gatzidis and F. Tian

67. Bousseau A, Neyret F, Thollot J, Salesin D.
Video watercolorization using bidirectional tex-
ture advection, In ACM SIGGRAPH 2007 papers,
SIGGRAPH ’07, San Diego, California, USA, 2007.

68. Lee H, Seo S, Ryoo S, Yoon K. Directional texture
transfer, In Proceedings of the 8th International Sym-
posium on Non-Photorealistic Animation and Render-
ing, NPAR ’10, Annecy, France, 2010; 43–48.

69. Yen CR, Chi TYLM-T, Lin WC. Stylized rendering
using samples of a painted image. IEEE Transactions
on Visualization and Computer Graphics 2007; 14:
468–480.

70. Kulla CD, Tucek JD, Bailey RJ, Grimm CM. Using
texture synthesis for non-photorealistic shading from
paint samples, In 11th Pacific Conference on Com-
puter Graphics and Applications (PG’03), Canmore,
Canada, 2003; 477–481.

71. Hertzmann A, Jacobs CE, Oliver N, Curless B,
Salesin DH. Image analogies, In Proceedings of the
28th Annual Conference on Computer Graphics and
Interactive Techniques, Los Angeles, California, USA,
2001; 327–340.

72. Kyprianidis JE, Kang H. Image and video abstraction
by coherence-enhancing filtering. Computer Graphics
Forum 2011; 30(2): 593–602. Proceedings Eurograph-
ics 2011.

73. Gooch AA, Long J, Ji L, Estey A, Gooch BS. View-
ing progress in non-photorealistic rendering through
Heinlein’s lens, NPAR ’10. ACM, Annecy, France,
2010. 165–171.

74. Schwarz M, Isenberg T, Mason K, Carpendale S.
Modeling with rendering primitives: an interactive
non-photorealistic canvas, In Proceedings of the
5th International Symposium on Non-Photorealistic
Animation and Rendering, NPAR ’07, San Diego,
California, USA, 2007; 15–22.

AUTHORS’ BIOGRAPHIES

Siddharth Hegde is a PhD candi-
date at Bournemouth University, UK,
at the School of Design, Engineer-
ing and Computing (Creative Tech-
nology Research Group). His current
area of research is non-photorealistic
rendering. He graduated from
Kingston University, London, with
an MSc in Computer Vision and

Image Analysis. He has a keen interest in computer graph-
ics and technology in general.

Christos Gatzidis is a Senior Lec-
turer in Creative Technology at
Bournemouth University, UK. Addi-
tionally, he is a Visiting Research
Fellow at the School of Informatics,
Department of Information Science,
City University London, where he
completed his PhD, titled ’Evaluat-
ing Non-Photorealistic Rendering for

3D Urban Models in the Context of Mobile Navigation’.
Furthermore, he has a Masters in Arts in Computer Ani-
mation from Teesside University and a BSc in Computer
Studies (Visualisation) from the University of Derby. He
has contributed to several refereed conference, book and
journal publications and is also a member of the advisory
board of three journals and various international program
conference committees.

Feng Tian is an Associate Profes-
sor in the School of Design, Engi-
neering and Computing (DEC) at
Bournemouth University, UK. His
research focuses on computer graph-
ics, computer animation, NPR and
so on. He has published over 50
papers in peer-reviewed international
journals and conferences. Prior to

joining Bournemouth University, he was an Assistant Pro-
fessor in the School of Computer Engineering, Nanyang
Technological University (NTU), Singapore.

64 Comp. Anim. Virtual Worlds 2013; 24:43–64 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/cav


