1,095 research outputs found

    On the complexity of finding and counting solution-free sets of integers

    Get PDF
    Given a linear equation L\mathcal{L}, a set AA of integers is L\mathcal{L}-free if AA does not contain any `non-trivial' solutions to L\mathcal{L}. This notion incorporates many central topics in combinatorial number theory such as sum-free and progression-free sets. In this paper we initiate the study of (parameterised) complexity questions involving L\mathcal{L}-free sets of integers. The main questions we consider involve deciding whether a finite set of integers AA has an L\mathcal{L}-free subset of a given size, and counting all such L\mathcal{L}-free subsets. We also raise a number of open problems.Comment: 27 page

    A Free Boundary Characterisation of the Root Barrier for Markov Processes

    Full text link
    We study the existence, optimality, and construction of non-randomised stopping times that solve the Skorokhod embedding problem (SEP) for Markov processes which satisfy a duality assumption. These stopping times are hitting times of space-time subsets, so-called Root barriers. Our main result is, besides the existence and optimality, a potential-theoretic characterisation of this Root barrier as a free boundary. If the generator of the Markov process is sufficiently regular, this reduces to an obstacle PDE that has the Root barrier as free boundary and thereby generalises previous results from one-dimensional diffusions to Markov processes. However, our characterisation always applies and allows, at least in principle, to compute the Root barrier by dynamic programming, even when the well-posedness of the informally associated obstacle PDE is not clear. Finally, we demonstrate the flexibility of our method by replacing time by an additive functional in Root's construction. Already for multi-dimensional Brownian motion this leads to new class of constructive solutions of (SEP).Comment: 31 pages, 14 figure

    Vertex and edge covers with clustering properties: complexity and algorithms

    Get PDF
    We consider the concepts of a t-total vertex cover and a t-total edge cover (t≥1), which generalise the notions of a vertex cover and an edge cover, respectively. A t-total vertex (respectively edge) cover of a connected graph G is a vertex (edge) cover S of G such that each connected component of the subgraph of G induced by S has at least t vertices (edges). These definitions are motivated by combining the concepts of clustering and covering in graphs. Moreover they yield a spectrum of parameters that essentially range from a vertex cover to a connected vertex cover (in the vertex case) and from an edge cover to a spanning tree (in the edge case). For various values of t, we present NP-completeness and approximability results (both upper and lower bounds) and FTP algorithms for problems concerned with finding the minimum size of a t-total vertex cover, t-total edge cover and connected vertex cover, in particular improving on a previous FTP algorithm for the latter problem

    Decoherence in quantum walks - a review

    Get PDF
    The development of quantum walks in the context of quantum computation, as generalisations of random walk techniques, led rapidly to several new quantum algorithms. These all follow unitary quantum evolution, apart from the final measurement. Since logical qubits in a quantum computer must be protected from decoherence by error correction, there is no need to consider decoherence at the level of algorithms. Nonetheless, enlarging the range of quantum dynamics to include non-unitary evolution provides a wider range of possibilities for tuning the properties of quantum walks. For example, small amounts of decoherence in a quantum walk on the line can produce more uniform spreading (a top-hat distribution), without losing the quantum speed up. This paper reviews the work on decoherence, and more generally on non-unitary evolution, in quantum walks and suggests what future questions might prove interesting to pursue in this area.Comment: 52 pages, invited review, v2 & v3 updates to include significant work since first posted and corrections from comments received; some non-trivial typos fixed. Comments now limited to changes that can be applied at proof stag

    Quantum walk speedup of backtracking algorithms

    Full text link
    We describe a general method to obtain quantum speedups of classical algorithms which are based on the technique of backtracking, a standard approach for solving constraint satisfaction problems (CSPs). Backtracking algorithms explore a tree whose vertices are partial solutions to a CSP in an attempt to find a complete solution. Assume there is a classical backtracking algorithm which finds a solution to a CSP on n variables, or outputs that none exists, and whose corresponding tree contains T vertices, each vertex corresponding to a test of a partial solution. Then we show that there is a bounded-error quantum algorithm which completes the same task using O(sqrt(T) n^(3/2) log n) tests. In particular, this quantum algorithm can be used to speed up the DPLL algorithm, which is the basis of many of the most efficient SAT solvers used in practice. The quantum algorithm is based on the use of a quantum walk algorithm of Belovs to search in the backtracking tree. We also discuss how, for certain distributions on the inputs, the algorithm can lead to an exponential reduction in expected runtime.Comment: 23 pages; v2: minor changes to presentatio

    Model-independent pricing with insider information: a Skorokhod embedding approach

    Get PDF
    In this paper, we consider the pricing and hedging of a financial derivative for an insider trader, in a model-independent setting. In particular, we suppose that the insider wants to act in a way which is independent of any modelling assumptions, but that she observes market information in the form of the prices of vanilla call options on the asset. We also assume that both the insider's information, which takes the form of a set of impossible paths, and the payoff of the derivative are time-invariant. This setup allows us to adapt recent work of Beiglboeck, Cox and Huesmann (2016) to prove duality results and a monotonicity principle, which enables us to determine geometric properties of the optimal models. Moreover, we show that this setup is powerful, in that we are able to find analytic and numerical solutions to certain pricing and hedging problems
    corecore