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a b s t r a c t

Given a linear equation L, a set A of integers is L-free if A does not contain any ‘non-trivial’
solutions to L. This notion incorporates many central topics in combinatorial number
theory such as sum-free and progression-free sets. In this paper we initiate the study of
(parameterised) complexity questions involvingL-free sets of integers. Themain questions
we consider involve deciding whether a finite set of integers A has an L-free subset of a
given size, and counting all such L-free subsets. We also raise a number of open problems.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Sets of integers which do not contain any solutions to some linear equation have received a lot of attention in the
field of combinatorial number theory. Two particularly well-studied examples are sum-free sets (sets avoiding solutions to
the equation x + y = z) and progression-free sets (sets that do not contain any 3-term arithmetic progression x, y, z or
equivalently avoid solutions to the equation x + z = 2y). A lot of effort has gone into determining the size of the largest
solution-free subset of {1, . . . , n} and other sets of integers, and into computing (asymptotically) the number of (maximal)
solution-free subsets of {1, . . . , n}.

In this paper we initiate the study of the computational complexity of problems involving solution-free subsets. We are
primarily concerned with determining the size of the largest subset of an arbitrary set of integers A which avoids solutions
to a specified linear equation L; in particular, we focus on sum-free and progression-free sets, but many of our results also
generalise to larger families of linear equations. For suitable equations L, we demonstrate that the problem of deciding
whether A contains a solution-free subset of size at least k is NP-complete (see Section 2); we further show that it is hard
to approximate the size of the largest solution-free subset within a factor (1 + ϵ) (see Section 3), or to determine for a
constant c < 1 whether A contains a solution-free subset of size at least c|A| (see Section 6). On the other hand, in Section 5
we see that the decision problem is fixed-parameter tractable when parameterised by either the cardinality of the desired
solution-free set, or by the number of elements of A we can exclude from such a set. We also consider the complexity, with
respect to various parameterisations, of counting the number of solution-free sets of a specified size (see Section 7): while
there is clearly no polynomial-time algorithm in general, the problem is fixed-parameter tractable when parameterised by
the number of elements we can exclude from A; we show that there is unlikely to be a fixed-parameter algorithm to solve
the counting problem exactly when the size of the solution-free sets is taken as the parameter, but we give an efficient
approximation algorithm for this setting. Finally, in Section 8 we consider all of these questions in a variant of the problem,
where we specify that a given solution-free subset B ⊂ A must be included in any solution.
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Many of our results are based on the fact that we can set up polynomial-time reductions in both directions between our
problem and (different versions of) the well-known hitting set problem for hypergraphs. In particular, in Section 2.1 we
provide a construction that has several applications throughout the paper. In Section 4 we also derive some new lower-
bounds on the size of the largest solution-free subset of an arbitrary set of integers for certain equations L, which may be
of independent interest. Our approach here utilises a trick of Alon and Kleitman [3] which transfers the problem into the
setting of solution-free sets in cyclic groups.

Our aim is to provide a thorough introduction to the study of (parameterised) complexity questions involving L-free sets
of integers. As such, some of the results presented have straightforward proofs, such as the parameterised complexity results
discussed in Section 5, whilst other proofs are more involved. However, even the simplest of our results lead to natural open
questions. In Section 9 we collect together a number of open problems which we hope will stimulate further interest in the
topic.

In the remainder of this section, we give some background on solution-free sets in Section 1.1 and review the relevant
notions from the study of computational complexity in Section 1.2. In Section 1.3 we outline the main results of the paper.

1.1. Background on solution-free sets

Consider a fixed linear equation L of the form

a1x1 + · · · + aℓxℓ = b (1)

where a1, . . . , aℓ, b ∈ Z. We say that L is homogeneous if b = 0. If∑
i∈[k]

ai = b = 0

then we say that L is translation-invariant. (Here [k] denotes the set {1, . . . , k}.) Let L be translation-invariant. Then notice
that (x, . . . , x) is a ‘trivial’ solution of (1) for any x. More generally, a solution (x1, . . . , xk) to L is said to be trivial if there
exists a partition P1, . . . , Pℓ of [k] so that:

(i) xi = xj for every i, j in the same partition class Pr ;
(ii) For each r ∈ [ℓ],

∑
i∈Pr ai = 0.

A set A of integers is L-free if A does not contain any non-trivial solutions to L. If the equation L is clear from the context,
then we simply say A is solution-free.

1.1.1. Sum-free sets
A set S (of integers or elements of a group) is sum-free if there does not exist x, y, z in S such that x + y = z. The topic of

sum-free sets has a rich history spanning a number of branches of mathematics. In 1916 Schur [42] proved that, given r ∈ N,
if n is sufficiently large, then any r-colouring of [n] := {1, . . . , n} yields a monochromatic triple x, y, z such that x + y = z.
(Equivalently, [n] cannot be partitioned into r sum-free sets.) This theorem was followed by other seminal related results
such as van der Waerden’s theorem [46], and ultimately led to the birth of arithmetic Ramsey theory.

Paul Erdős had a particular affinity towards sum-free sets. In 1965 he [20] proved one of the cornerstone results in the
subject: every set of nnon-zero integersA contains a sum-free subset of size at least n/3. Employing the probabilisticmethod,
Alon and Kleitman [3] improved this bound to (n+1)/3 and further, Kolountzakis [33] gave a polynomial time algorithm for
constructing such a sum-free subset. Then, using a Fourier-analytical approach, Bourgain [11] further improved the bound
to (n+2)/3 in the case when A consists of positive integers. Erdős [20] also raised the question of determining upper bounds
for this problem: recently Eberhard, Green and Manners [18] asymptotically resolved this important classical problem by
proving that there is a set of positive integers A of size n such that A does not contain any sum-free subset of size greater
than n/3+o(n). This result raises the question of whether one can decide efficientlywhether a set A of non-negative integers
contains a sum-free subset of size at least c|A| for some c > 1/3. As we shall see in Section 6, the answer is likely to be no.

In Section 7 we consider the complexity, with respect to various parameterisations, of counting the number of sum-free
sets of a specified size. A number of important questions concerning (counting) sum-free sets were raised in two papers of
Cameron and Erdős [13,14]. In [13], Cameron and Erdős conjectured that there are Θ(2n/2) sum-free subsets of [n]. Here, the
lower bound follows by observing that the largest sum-free subset of [n] has size ⌈n/2⌉; this is attained by the set of odds
in [n] and by {⌊n/2⌋ + 1, . . . , n}. Then, for example, by taking all subsets of [n] containing only odd numbers one obtains at
least 2n/2 sum-free subsets of [n]. After receiving much attention, the Cameron–Erdős conjecture was proven independently
by Green [28] and Sapozhenko [40]. Given a set A of integers we say S ⊆ A is a maximal sum-free subset of A if S is sum-free
and it is not properly contained in another sum-free subset of A. Cameron and Erdős [14] raised the question of how many
maximal sum-free subsets there are in [n]. Very recently, this question has been resolved via a combinatorial approach by
Balogh, Liu, Sharifzadeh and Treglown [7,8].

Sum-free sets have also received significant attention with respect to groups. One highlight in this direction is work of
Diananda and Yap [15] and Green and Ruzsa [29] that determines the size of the largest sum-free subset for every finite
abelian group. In each case the largest sum-free set has size linear in the size of the abelian group. Another striking result in
the area follows from Gowers’ work on quasirandom groups. Indeed, Gowers [27] proved that there are non-abelian groups
for which the largest sum-free subset has sublinear size, thereby answering a question of Babai and Sós [5]. See the survey
of Tao and Vu [44] for a discussion on further problems concerning sum-free sets in groups.
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1.1.2. Progression-free sets
A set S (of integers or elements of a group) is progression-free if there does not exist distinct x, y, z in S such that x+y = 2z.

The study of progression-free sets has focused on similar questions to those relating to sum-free sets.
Unlike in the case of sum-free sets, one cannot ensure that every finite set of non-zero integers contains a progression-

free subset of linear size. Indeed, a classical result of Roth [36] implies that the largest progression-free subset of [n] has size
o(n). This has led to much interest in determining good bounds on the size of such a subset of [n]. See [10,19,30,39] for the
state-of-the-art lower and upper bounds for this problem.

Roth’s theorem has been generalised in various directions; most famously via Szemerédi’s theorem [43] which ensures
that, if n is sufficiently large, every subset of [n] of linear size contains arithmetic progressions of arbitrary length. Analogues
of Roth’s theorem have also been considered for finite abelian groups; see, for example, [12,24,34].

As in the case of sum-free sets, it is also natural to ask for the number of progression-free subsets of [n]. More generally,
Cameron and Erdős [13] raised the question of how many subsets of [n] do not contain an arithmetic progression of length
k. Significant progress on the problem has recently been made in [6,9,41].

We remark that there has also beenmuchwork onL-free sets other than the cases of sum-free and progression-free sets;
see for example [32,37,38].

1.2. Computational complexity

In this paper we are concerned with determining which problems related to solution-free sets of integers are compu-
tationally tractable. In the first instance, we seek to classify decision problems as either belonging to the class P (i.e. being
solvable in polynomial time) or beingNP-hard and so unlikely to admit polynomial-time algorithms. For further background
on computational complexity, the classes P and NP, and polynomial-time reductions we refer the reader to [26].

When dealing with sets of positive integers as input, it should be noted that the amount of space required to represent
the input depends both on the cardinality of the set and on the magnitude of the numbers in the set. Given any finite set
A ⊆ Z, wewritemax(A) andmin(A) for the elements of Awhose values aremaximumandminimum respectively; we further
define max∗(A) := max{|a| : a ∈ A} and min∗(A) := min{|a| : a ∈ A}. We write size(A) for the number of bits required to
represent A, and note that there exist positive constants c1 and c2 such that

c1 max{|A| log(min∗(A)), log(max∗(A))} ≤ size(A) ≤ c2|A| log(max∗(A)).

We therefore consider a problem involving the set A to belong to P if it can be solved by an algorithmwhose running time is
bounded by a polynomial function of size(A); note that this is true if and only if the running time is bounded by a polynomial
function of |A| log(max∗(A)). If A = {a1, . . . , an}, we will assume that A is stored in such a way that, given i, we can read the
element ai in time O(log(|ai|)).

There are two basic operations which wewill need to consider in almost all of the algorithms and reductions discussed in
this paper. First of all, we often need to determine whether a given ℓ-tuple (x1, . . . , xℓ) is a solution to the ℓ-variable linear
equation L. Note that we assume throughout that ℓ and all coefficients in L are constants, but x1, . . . , xℓ are taken to be
part of the input; thus, allowing for the time required to carry out the necessary arithmetic operations, we can certainly
determine whether (x1, . . . , xℓ) is a solution in time O(log(max1≤i≤ℓ|xi|)).

Secondly, we will in many cases need to determine whether a given set A ⊆ Z is L-free. We can do this in a naive way by
considering all possible ℓ-tuples, and checking for each one whether it is a solution. Since there are |A|

ℓ possible ℓ-tuples,
we see by the reasoning above that we can complete this procedure in time O

(
|A|

ℓ
· log2 (max∗(A))

)
. Note that, as ℓ is a

constant, this is a polynomial-time algorithm in terms of size(A).
In this paper, wewill also discuss the parameterised complexity of various decision problems involving solution-free sets.

Parameterised complexity provides a multivariate framework for the analysis of hard problems: if a problem is known to be
NP-hard, so that we expect the running-time of any algorithm to depend exponentially on some aspect of the input, we can
seek to restrict this exponential blow-up to one or more parameters of the problem rather than the total input size. This has
the potential to provide an efficient solution to the problem if the parameter(s) in question are much smaller than the total
input size. A parameterised problem with total input size n and parameter k is considered to be tractable if it can be solved
by a so-called fpt-algorithm, an algorithm whose running time is bounded by f (k) · nO(1), where f can be any computable
function. Such problems are said to belong to the complexity class FPT. The primary method for showing that a problem is
unlikely to belong to FPT is to show that it is hard for some classW [t] (where t ≥ 1) in theW-hierarchy (see [23] for a formal
definition of these classes). When reducing one parameterised problem to another in order to demonstrate the hardness of
a parameterised problem, we have to be a little more careful than with standard NP-hardness reductions: as well as making
sure that we can construct the new problem instance efficiently, we also need to ensure that the parameter value in the new
problem depends only on the parameter value in the original problem.

Let Σ be a finite alphabet. We define a parameterised decision problem to be a pair (Π, κ) where Π : Σ∗
→ {YES, NO}

is a function and κ : Σ∗
→ N is a parameterisation (a polynomial-time computable mapping). Then, an fpt-reduction from

(Π, κ) to (Π ′, κ ′) is an algorithm A such that

(1) A is an fpt-algorithm;
(2) given a yes-instance of Π as input, A outputs a yes-instance of Π ′, and given a no-instance of Π as input, A outputs a

no-instance of Π ′;
(3) there is a computable function g such that, if I is the input to A, then κ ′ (A(I)) ≤ g (κ(I)).
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For further background on the theory of parameterised complexity we refer the reader to [17,23]. We will also consider
parameterised counting problems in Section 7, and relevant notions will be introduced at the start of this section.

1.3. Summary of results

We conclude the introduction by informally stating the main results of the paper, just in the cases of sum-free and
progression-free sets:

• We prove that the problem of determining whether a finite set of integers contains a sum-free (or progression-free)
subset of a given size is NP-complete (see Theorem 4).

• We prove that the problem of determining whether a finite set of integers A contains a sum-free subset covering a cth
proportion of A is NP-complete for any fixed c > 1/3 (see Theorem 18). This complements the aforementioned result
of Erdős [20] that ensures any such set A contains a sum-free subset of size at least |A|/3.

• In contrast, the problem of determining whether a finite set of integers A contains a progression-free subset covering
a cth proportion of A is NP-complete for any fixed c > 0 (see Theorem 19).

• In Theorem 8 we show that it is unlikely one can efficiently approximate the size of the largest sum-free (and
progression-free) subset in a finite set of integers.

• It is essentially trivial to see that the problem of determining whether a finite set of integers A contains a sum-
free (or progression-free) subset of a given size k is in FPT, when parameterised by k (see Proposition 12). Using
[23, Theorem 1.14], it is straightforward to conclude the same assertion holds if instead we parameterise by |A| − k.

• A result of Thurley [45] easily implies that the analogous problem, for counting the number of sum-free (or
progression-free) subsets of A of a given size k, belongs to FPT when parameterised by |A| − k (see Theorem 20).

• Perhaps surprisingly, it is unlikely that this problem is in FPT when instead we parameterise by k (see Theorem 23).

2. The decision problem

In this section, we consider the following problem, where L is any fixed linear equation.

L-Free Subset
Input: A finite set A ⊆ Z and k ∈ N.
Question: Does there exist an L-free subset A′

⊆ A such that |A′
|= k?

We show that this problem is closely related to thewell-knownHitting Setproblem, and exploit this relationship to show
that the problem is NP-complete for a large family of equations L, including those defining both sum-free and progression-
free sets. On the other hand, we see that the problem is polynomially solvable whenever L is a linear equation with only two
variables.

We begin in Section 2.1 by showing how to construct an instance of L-Free Subset that corresponds in a specific way
to a given hypergraph; we will make use of this same construction to prove many results in later sections of the paper. We
exploit this construction to give an NP-completeness proof in Section 2.2, before considering the two-variable case in 2.3.

2.1. A useful construction

In this section we describe the main construction we will exploit throughout the paper, and prove its key properties.
Recall that an ℓ-uniform hypergraph is a hypergraph in which every edge has size exactly ℓ. Given any set X and ℓ ∈ N, we
write Xℓ for the set of ordered ℓ-tuples whose elements belong to X .

Lemma 1. Let L be a linear equation a1x1 + · · · + aℓxℓ = by where each ai ∈ N and b ∈ N are fixed, and let H = (V , E) be an
ℓ-uniform hypergraph. Then we can construct in polynomial time a set A ⊆ N with the following properties:

(1) A is the disjoint union of two sets A′ and A′′, where |A′
| = |V | and |A′′

| = |E|;
(2) there exist bijections φV : A′

→ V and φE : A′′
→ E;

(3) for every (x1, . . . , xℓ, y) ∈ Aℓ+1, we have that (x1, . . . , xℓ, y) is a non-trivial solution to L if and only if x1, . . . , xℓ ∈ A′,
y ∈ A′′ and {φV (x1), . . . , φV (xℓ)} = φE(y);

(4) log(max(A)) = O(|V |).

Proof. Write a := max1≤j≤ℓaj and set d := 2ℓa2b2. Let V =: {v1, . . . , vn} denote the vertex set of H . Define

A′
:= {bdi : i ∈ [n]}

and

A′′
:=
{
(a1di1 + a2di2 + · · · + aℓdiℓ ) : i1 < i2 < · · · < iℓ and vi1vi2 . . . viℓ ∈ E

}
.
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Further, define φV : A′
→ V by setting φV (bdi) = vi for all i ∈ [n], and note that φV is a well-defined bijection. We define

φE : A′′
→ E by setting φE(a1di1 + a2di2 + · · · + aℓdiℓ ) = vi1vi2 . . . viℓ where i1 < i2 < · · · < iℓ and vi1vi2 . . . viℓ ∈ E; to

see that φE is also a well-defined bijection it suffices to observe that, by the uniqueness of base-d representation of natural
numbers, there is a unique way to write any y ∈ A′′ in the form a1di1 + a2di2 + · · · + aℓdiℓ . It follows from the bijectivity of
φV and φE that we have defined A′ so that for each vertex vi ∈ V there is a unique number bdi ∈ A′ associated with it, and
defined A′′ so that for each edge vi1vi2 . . . viℓ ∈ E there is a unique number (a1di1 + a2di2 + · · · + aℓdiℓ ) ∈ A′′ associated with
it. Define A := A′

∪ A′′. Given H we produce A in time O((|V | + |E|) log bd|V |) = O(nℓ+1).
Notice that conditions (1), (2) and (4) of the lemma immediately hold. To prove (3) note that it suffices to prove the

following claim.

Claim. The only non-trivial solutions (x1, x2, . . . , xℓ, y) to L in A are such that each xj = bdij ∈ A′ for some i1 < i2 < · · · < iℓ
and y = (a1di1 + a2di2 + · · · + aℓdiℓ ) ∈ A′′.

To prove the claim it is helpful to consider the natural numbers working in base d. We will use the coordinate notation
[c0, c1, c2, . . . ] to denote the natural number c0d0 + c1d1 + c2d2 + · · · . So with respect to this notation, each bdi ∈ A′ has a
zero in each coordinate except the ith coordinate, which takes value b. Each (a1di1 + a2di2 + · · · + aℓdiℓ ) ∈ A′′ takes value aj
in its ijth coordinate, and zero otherwise.

Suppose we have x1, . . . , xt ∈ A for some t ∈ N. Define coord(x1, . . . , xt ) to be the set of all integers i ≥ 0 such that
for at least one of the elements xj in {x1, . . . , xt}, the ith coordinate of xj is non-zero. Note that (since d is sufficiently large
compared with the ai and b) we have |coord(x)| = 1 for all x ∈ A′ and |coord(y)| = ℓ for all y ∈ A′′. Moreover, for any
x, x′

∈ A, coord(x) = coord(x′) if and only if x = x′.
Suppose (x1, . . . , xℓ, y) is a non-trivial solution to L in A. (Note the choice of L ensures the only trivial solutions to L are

such that x1 = · · · = xℓ = y.) Crucially we defined d to be large with respect to the ai and b. Thus, coord(x1, . . . , xℓ) =

coord(a1x1 +a2x2 +· · ·+aℓxℓ). That is, in coordinate notation, the coordinates of (a1x1 +a2x2 +· · ·+aℓxℓ) that are non-zero
are precisely those coordinates that are non-zero in at least one of the xj. So this gives us that coord(x1, . . . , xℓ) = coord(by).

If y ∈ A′ then |coord(by)| = 1. Note in this case we obtain a contradiction if |coord(x1, . . . , xℓ)| ≥ 2. So it must be the case
that x1 = · · · = xℓ and x1 ∈ A′. This means that there is some i ∈ [n] such that x1 = · · · = xℓ = bdi; y = bdi; and further
a1 + · · · + aℓ = b. Thus (x1, . . . , xℓ, y) is a trivial solution to L, a contradiction to our assumption.

Therefore y ∈ A′′. Write y = a1di1 + a2di2 + · · · + aℓdiℓ where i1 < i2 < · · · < iℓ. Suppose that all of the xj lie in A′′.
Then since coord(x1, . . . , xℓ) = coord(by), we must have that x1 = · · · = xℓ = y. This implies a1 + · · · + aℓ = b and hence
(x1, . . . , xℓ, y) is a trivial solution to L, a contradiction.

Next suppose there is at least one xj ∈ A′′ and at least one xj′ ∈ A′. Without loss of generality, wemay assume that there is
some 1 ≤ ℓ′

≤ ℓ − 1 so that x1, . . . , xℓ′ ∈ A′′ and xℓ′+1, . . . , xℓ ∈ A′. Since coord(x1, . . . , xℓ) = coord(by), we must have that
x1 = · · · = xℓ′ = y. Furthermore, as a1x1 +· · ·+ aℓxℓ = bywe have that a1x1 +· · ·+ aℓ′xℓ′ < by and thus a1 +· · ·+ aℓ′ < b.
In particular, coord((b − a1 − · · · − aℓ′ )y) = {i1, . . . , iℓ}. Therefore, as aℓ′+1xℓ′+1 + · · · + aℓxℓ = (b − a1 − · · · − aℓ′ )y,
this implies coord(aℓ′+1xℓ′+1 + · · · + aℓxℓ) = {i1, . . . , iℓ}. However, since ℓ′

≥ 1 and xℓ′+1, . . . , xℓ ∈ A′, we have that
|coord(aℓ′+1xℓ′+1 + · · · + aℓxℓ)| < ℓ, a contradiction.

Altogether this implies that each xj ∈ A′. The claim, and therefore lemma, now immediately follows. □

A relationship between independent sets in H and L-free subsets of A now follows easily.

Corollary 2. Let L be a linear equation a1x1 + · · · + aℓxℓ = by where each ai ∈ N and b ∈ N are fixed, and let H = (V , E) be an
ℓ-uniform hypergraph. Let A and A′′ be as in Lemma 1 on input H andL. Then, for any k ∈ N, there is a one-to-one correspondence
between independent sets of H of cardinality k and the L-free subsets of A of cardinality |A′′

| + k which contain all the elements
of A′′.

Proof. The corollary follows immediately from Lemma 1. Indeed, let φV and φE be as in Lemma 1. Given an independent set
I of H , note that φ−1

V (I) ∪ A′′ is an L-free subset of A of size |I| + |A′′
|; by bijectivity of φV , the L-free subsets corresponding

to independent sets I1 ̸= I2 are distinct. Further, given any L-free subset S ∪ A′′ of A of size |S| + |A′′
|, we have that φV (S)

is an independent set in H of size |S|; again, by bijectivity of φV , we obtain a unique independent set for each such L-free
subset. □

Finally, if we are only interested in the existence of independent sets, we can drop one of the conditions on the L-free
subsets.

Corollary 3. Let L be a linear equation a1x1 + · · · + aℓxℓ = by where each ai ∈ N and b ∈ N are fixed, and let H = (V , E) be an
ℓ-uniform hypergraph. Let A and A′′ be as in Lemma 1 on input H and L. Then, for any k ∈ N, H contains an independent set of
cardinality k if and only if A contains an L-free subset of cardinality |A′′

| + k.

Proof. By Corollary 2, it suffices to show that, if A contains an L-free subset of cardinality |A′′
| + k, then in fact A contains

such a subset which includes all elements of A′′. To see this, let A1 be an L-free subset of A of size |A′′
| + k which does not



224 K. Meeks, A. Treglown / Discrete Applied Mathematics 243 (2018) 219–238

contain all elements of A′′; we will show how to construct an L-free subset of equal or greater size which does have this
additional property.

Suppose y ∈ A′′ such that y ̸∈ A1. By Lemma 1(3) there is a unique choice of x1, . . . , xℓ ∈ A such that (x1, . . . , xℓ, y) is a
non-trivial solution to L in A. If one of these xj does not lie in A1 we add y to A1 without creating a solution to L. Otherwise,
arbitrarily remove one of the xj from A1 and replace it with y. Repeating this process, we obtain an L-free subset which
contains A′′ and is at least as large as A1. □

2.2. The case of three or more variables

The next result shows that for a range of linear equations,L-Free Subset isNP-complete. For example, the result includes
the cases when L is x + y = z (i.e. sum-free sets) and x + y = 2z (i.e. progression-free sets). To prove that L-Free Subset is
NP-hard we will use a reduction from the following NP-complete problem [26]. Recall that a hitting set S in a hypergraph H
is a collection of vertices such that every edge in H contains at least one vertex from S.

ℓ-Hitting Set
Input: An ℓ-uniform hypergraph H and s ∈ N.
Question: Does H contain a hitting set of size s?

Theorem 4. Let L be a linear equation of the form a1x1 + · · · + aℓxℓ = by where each ai ∈ N and b ∈ N are fixed and ℓ ≥ 2.
Then L-Free Subset is NP-complete.

Proof. Recall from the discussion in Section 1.2 that we can determine in time polynomial in size(A) whether a set A is
L-free, so L-Free Subset is in NP. To show that the problem is NP-complete, we give a reduction from ℓ-Hitting Set.

Let (H, s) be an instance of ℓ-Hitting Set. We construct A and A′′
⊆ A as in Lemma 1 under input H and L (taking time

polynomial in size(A)). It suffices to show that H has a hitting set of size s if and only if A contains an L-free subset of size
k := |A| − s.

Observe that H has a hitting set of size s if and only if it has an independent set of size |H| − s; by Corollary 3, this holds
if and only if A has an L-free subset of size |A′′

| + |H| − s = |A| − s = k. □

Note that since Lemma 1 outputs a set A of natural numbers, we have actually proved the following stronger result.

Theorem 5. Let L be a linear equation of the form a1x1 + · · · + aℓxℓ = by where each ai ∈ N and b ∈ N are fixed and ℓ ≥ 2.
Then L-Free Subset is NP-complete, even if the input set A is a subset of N.

2.3. The two variable case

For any linear equation L in two variables, it is straightforward to see that L-Free Subset is in P. Our strategy here is to
reduce to the problem of finding an independent set (rather than reducing from this problem as in the previous section) and
to note that the graph we create must have a very specific structure.

Theorem 6. Fix any linear equation L in two variables. Then L-Free Subset is in P.

Proof. Let A = {a1, . . . , an} ⊆ Z, and let k ∈ N. We now construct G to be the graph with vertex set A, where aiaj ∈ E(G)
precisely when (ai, aj) is a non-trivial solution to L. Note that we can construct G in time bounded by a polynomial function
of size(A). The construction of G ensures that a set A′

⊆ A is L-free if and only if A′ is an independent set in G.
Notice that a vertex x could lie in a loop. However, in this case x is not adjacent to any other vertex in G. All other vertices

in G have degree at most 2. Thus, G is a collection of vertex-disjoint paths, cycles, isolated vertices and loops. The largest
independent set in both a path and an even cycle on t vertices is ⌈t/2⌉; the largest independent set in an odd cycle on t
vertices is ⌊t/2⌋. So in timeO(n) we can determine the size of the largest independent set in G, and thus whether A contains
an L-free subset of size k. □

3. Approximating the size of the largest L- Free Subset

Thus far we have focused on decision problems involving solution-free sets (‘‘Does the set A contain a solution-free set
of a certain size?’’), but it is also natural to consider a maximisation problem: ‘‘What is the size of the largest solution-free
subset of A?’’ An efficient algorithm to answer the decision problem can clearly be used to solve the maximisation problem,
as we can repeatedly run our decision algorithmwith different target sizes; however, as we have demonstrated in Section 2
that in many cases such an algorithm is unlikely to exist, it makes sense to ask whether we can efficiently approximate the
optimisation problem. We define the maximisation version of L-Free Subset formally as follows.
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Maximum L-Free Subset
Input: A finite set A ⊆ Z.
Question:What is the cardinality of the largest L-free subset A′

⊆ A?

Given any instance I of an optimisation problem,wedenote by opt(I) the value of the optimal solution to I (so, for example,
the cardinality of the largest solution-free subset). Given a constant ρ > 1, we say that an approximation algorithm for the
maximisation problem has performance ratio ρ if, given any instance I of the problem, the algorithm will return a value x
such that

1 ≤
opt(I)

x
≤ ρ.

Note that there is a trivial approximation algorithm for Maximum Sum-Free Subset with performance ratio 3: if we always
return |A|/3 then, as |A|/3 ≤ opt(A) ≤ |A|, we have 1 ≤

opt(A)
|A|/3 ≤ 3 as required.

Wemight hope to improve on this to obtain, given arbitrary positive ϵ, an approximation algorithm forMaximum L-Free
Subsetwith performance ratio 1+ϵ. However, wewill show in this section that in certain cases this is no easier than solving
the problem exactly. Specifically, we show that for a large family of 3-variable linear equations (including those defining
sum-free and progression-free sets), there is no polynomial-time approximation scheme unless P = NP.

A polynomial-time approximation scheme (PTAS) for a maximisation problem is an algorithm which, given any instance I
of the problem and a constant ϵ > 0, returns, in polynomial-time, a value x such that

1 ≤
opt(I)

x
≤ 1 + ϵ.

Note that the exponent of the polynomial is allowed to depend on ϵ.
The complexity class APX contains all optimisation problems (whose decision version belongs to NP) which can be

approximated within some constant factor in polynomial time; this class includes problems which do not admit a PTAS
unless P = NP, so one way to demonstrate that an optimisation problem is unlikely to admit a PTAS is to show that it is hard
for the class APX. In order to show that a problem is APX-hard (and so does not admit a PTAS unless P = NP), it suffices to
give a PTAS reduction from another APX-hard problem.

Definition. Let Π1 and Π2 be maximisation problems. A PTAS reduction from Π1 to Π2 consists of three polynomial-time
computable functions f , g and α such that:

(1) for any instance I1 of Π1 and any constant error parameter ϵ, f produces an instance I2 = f (I1, ϵ) of Π2;
(2) if ϵ > 0 is any constant and y is any solution to I2 such that opt(I2)

|y| ≤ α(ϵ), then x = g(I1, y, ϵ) is a solution to I1 such
that opt(I1)

|x| ≤ 1 + ϵ.

We cannot immediately deduce results about the inapproximability ofMaximumL-Free Subset fromCorollary 3 together
the inapproximability of Independent Set, as the cardinality of the largest L-free subset in A will in general be dominated
by the cardinality of A′′. However, we can instead reduce from Max IS-3, the problem of finding the size of a maximum
independent set in a graph of maximum degree 3, which was shown to be APX-hard by Alimonti and Kann [2]. For this
reduction we imitate the approach of Froese, Janj, Nichterlein and Niedermeier [25], who obtained a result analogous to
Lemma 1 when reducing 3-Hitting Set to the problem of finding a maximum subset of points in general position.

Corollary 3 implies that we have a polynomial-time reduction from 3-IS to L-Free Subset (for suitable L) in which
|A′′

| ≤
3|V |

2 . Since it is also well-known that in any graph G on n vertices with maximum degree at most ∆, every maximal
independent set has cardinality at least n

∆+1 (if the independent set is smaller than this, there must be some vertex which
does not have any neighbour in the set and so can be added to the independent set), it follows that for every maximal
independent set U in Gwe have |U | ≥

|V |

4 ≥
1
6 |A

′′
|.

Using this observation, we can now define a PTAS reduction from Max IS-3 to Maximum L-Free Subset for certain
3-variable equations.

Lemma 7. Let L be a linear equation of the form a1x1 + a2x2 = by, where a1, a2, b ∈ N are fixed. Then there is a PTAS reduction
fromMax IS-3 toMaximum L-Free Subset.

Proof. We define the functions f , g and α as follows.
First, we let f be the function which, given an instance G of Max IS-3 (where G = (V , E)) and any ϵ > 0, outputs the set

A = φ−1
V (V )∪φ−1

E (E) ⊆ N described in Lemma 1; we know from Lemma 1 that we can construct this set in polynomial time.
Next suppose that B is an L-free subset in A. We can construct in polynomial time a set B̃, with |̃B| ≥ |B|, such that

(1) φ−1
E (E) ⊆ B̃; and

(2) B̃ is a maximal L-free subset of A.
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If B fails to satisfy the first condition, we can use the method of Corollary 3 to obtain a set with this property, and if the
resulting set is not maximal we can add elements greedily until this condition is met. We now define g to be the function
which, given an L-free set B ⊆ A and any ϵ > 0, outputs φV (̃B \ φ−1

E (E)).
Finally, we define α to be the function ϵ ↦→ 1 +

ϵ
7 . Let us denote by opt(G) the cardinality of the maximum independent

set in G, and by opt(A) the cardinality of the largestL-free subset in A. Note that opt(A) = opt(G)+|E|. To complete the proof,
it suffices to demonstrate that, whenever B is an L-free subset in A such that opt(A)

|B| ≤ α(ϵ) = 1 +
ϵ
7 , we have opt(G)

|I| ≤ 1 + ϵ,
where I := φV (̃B \ φ−1

E (E)). Observe that

opt(A)
|B|

≤ 1 +
ϵ

7

⇒
opt(A)

|̃B|
≤ 1 +

ϵ

7

⇒
|E| + opt(G)

|E| + |I|
≤ 1 +

ϵ

7

⇒
|E| + opt(G)

|I|
≤

(
1 +

ϵ

7

)(
|E| + |I|

|I|

)
⇒

opt(G)
|I|

≤

(
1 +

ϵ

7

)
|E|

|I|
+

(
1 +

ϵ

7

)
−

|E|

|I|

=
ϵ

7
|E|

|I|
+ 1 +

ϵ

7
.

Sincewe know that |E| ≤
3|V |

2 and, by our assumptions onmaximality of B̃ and hence I , we also know that |I| ≥
|V |

4 , it follows
that |E|

|I| ≤ 6. We can therefore conclude that

opt(A)
|B|

≤ 1 +
ϵ

7
⇒

opt(G)
|I|

≤ 6
ϵ

7
+ 1 +

ϵ

7
= 1 + ϵ,

as required. □

We now obtain our main inapproximability result as an immediate corollary.

Theorem 8. Let L be a linear equation of the form a1x1 + a2x2 = by, where a1, a2, b ∈ N are fixed. Then Maximum L-Free
Subset is APX-hard.

4. L-free subsets of arbitrary sets of integers

In much of the rest of this paper, we prove complexity results which hold whenever we can guarantee that our input set
Awill contain a reasonably large L-free subset. We already know that this is the case for sum-free subsets (in which case an
arbitrary input set A of non-zero integersmust contain a sum-free subset of size at least (|A|+1)/3); in this sectionwe extend
this result to amuch larger family of linear equations, proving that, given any homogeneous non-translation-invariant linear
equationL, every finite set of non-zero integers contains anL-free set of linear size. Note that a homogeneous linear equation
L is non-translation-invariant if and only if it can be written in the form a1x1 +· · ·+ akxk = b1y1 +· · ·+ bℓyℓ for some fixed
ai, bi ∈ Nwhere a1 + · · · + ak ̸= b1 + · · · + bℓ.

For this we will use a trick of Alon and Kleitman [3] which transfers the problem into the setting of solution-free sets in
cyclic groups. We also utilise the following simple observation.

Observation 9. Consider a homogeneous linear equation L of the form a1x1 + · · · + akxk = b1y1 + · · · + bℓyℓ for some fixed
ai, bi ∈ N where a1 + · · · + ak > b1 + · · · + bℓ. Then the interval

I :=

[⌊
(b1 + · · · + bℓ)n
a1 + · · · + ak

⌋
+ 1, n

]
is L-free.

Note that Observation 9 is immediate since (a1 + · · · + ak)min(I) > (b1 + · · · + bℓ)max(I).

Theorem 10. Consider a non-translation-invariant homogeneous linear equation L. There exists some λ = λ(L) > 0 such that,
if n ∈ N is sufficiently large, then any set Z ⊆ Z \ {0} so that |Z | = n contains an L-free subset of size more than λn.

Proof. Suppose that L is of the form a1x1 + · · · + akxk = b1y1 + · · · + bℓyℓ for some fixed ai, bi ∈ Nwhere a1 + · · · + ak ̸=

b1 + · · · + bℓ. Observation 9 implies that there is some λ′
= λ′(L) > 0 such that, if m′

∈ N is sufficiently large, then [m′
]

contains an L-free subset of size at least λ′m′. We say a subset S of a group G is L-free if S contains no solutions to L. Set
c := max{(a1 + · · · + ak), (b1 + · · · + bℓ)}.
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Claim. There is some λ := λ′/(2c) > 0 such that, if m ∈ N is sufficiently large, then Zm contains an L-free subset of size at least
λm that does not contain the zero element.

To prove the claim, suppose that m ∈ N is sufficiently large and define m′
:= ⌊m/c⌋. Note a set S ⊆ {1, . . . ,m′

} is
an L-free subset of Zm if and only if S is an L-free subset of [m′

]. Indeed, suppose for a contradiction there is a solution
(x1, . . . , xk, y1, . . . , yℓ) to L in {1, . . . ,m′

} ⊆ Zm that is not a solution to L when viewed as a subset of [m′
]. So viewing

x1, . . . , xk, y1, . . . , yℓ as integers we have that a1x1 + · · · + akxk ̸= b1y1 + · · · + bℓyℓ however, a1x1 + · · · + akxk ≡

b1y1 + · · · + bℓyℓ mod m. Thus the difference between a1x1 + · · · + akxk and b1y1 + · · · + bℓyℓ is at least m. This yields a
contradiction since, by the definition ofm′, neither of these numbers is bigger thanm.

Thus, as [m′
] contains anL-free subset of size at least λ′m′

≥ λm,Zm contains anL-free subset of size at least λm avoiding
the zero element, proving the claim.

The rest of the proof modifies the argument presented in [4, Theorem 1.4.1] that shows every set of n non-zero integers
contains a sum-free subset of size more than n/3. Let n ∈ N be sufficiently large and consider any set Z = {z1, . . . , zn} of
non-zero integers. Let p be a prime so that p > 2max(Z). Since n is sufficiently large and p > n, by the claim we have that
Zp contains an L-free subset S so that |S| ≥ λp and additionally 0 ̸∈ S.

Choose an integer xuniformly at random from {1, 2, . . . , p−1}, anddefine d1, . . . , dn by di ≡ xzi mod pwhere 0 ≤ di < p.
For every fixed 1 ≤ i ≤ n, as x ranges over all numbers 1, 2, . . . , p − 1, then di ranges over all non-zero elements of Zp.
Therefore, P(di ∈ S) = |S|/(p − 1) > λ. So the expected number of elements zi such that di ∈ S is more than λn. Thus, there
is some choice of x with 1 ≤ x < p and a subset Z ′

⊆ Z of size |Z ′
| > λn such that xzi (mod p) ∈ S for all zi ∈ Z ′. Since S is

L-free in Zp, and L is homogeneous, this implies Z ′ is an L-free set of integers, as desired. □

In the case when L is translation-invariant, Ruzsa [37] observed that the largest L-free subset of [n] has size o(n). So one
cannot prove an analogue of Theorem 10 for such equations L.

The next result follows immediately from Theorem 10.

Theorem 11. Consider a non-translation-invariant homogeneous linear equation L. There exists some λ = λ(L) > 0 such that
every finite set Z ⊆ Z \ {0} contains an L-free subset of size more than λ|Z |.

Note that is necessary to restrict our attention to sets Z ⊆ Z \ {0} here since Z := {0} does not contain a non-empty
L-free subset.

It is natural to ask how large λ(L) can be in the previous theorem. Let C(L) denote the set of all positive reals κ so that
Theorem 11 holds with κ playing the role of λ, and define C′(L) analogously nowwith respect to Theorem 10. We claim that
C(L) = C′(L). It is immediate that C(L) ⊆ C′(L). To see that there is no λ ∈ C′(L) \ C(L) consider the following observation:
Suppose Z ⊆ Z \ {0} is such that it does not contain an L-free subset of size more than λ|Z | for some λ > 0. Set z := |Z |.
Then for every n ∈ N there is a set Z ′

⊆ Z \ {0} of size zn such that it does not contain an L-free subset of size more than
λ|Z ′

|. Indeed, writing cZ as shorthand for {cz : z ∈ Z}, one can choose Z ′ to be the union of c1Z, . . . , cnZ where the cis are
positive integers chosen to ensure the sets ciZ are pairwise disjoint. (Notice we required that 0 ̸∈ Z to ensure this.)

Define

κ(L) := sup(C(L)).

Write L as a1x1 +· · ·+ akxk = b1y1 +· · ·+ bℓyℓ for some fixed ai, bi ∈ Nwhere a1 +· · ·+ ak > b1 +· · ·+ bℓ. We remark
that it is easy to check in the statement of Theorem 10, and therefore Theorem 11, one can set

λ(L) =
1
2c

(
1 −

b1 + · · · + bℓ

a1 + · · · + ak

)
(2)

where here we define c := max{(a1 + · · · + ak), (b1 + · · · + bℓ)}. That is, κ(L) ≥
1
2c

(
1 −

b1+···+bℓ

a1+···+ak

)
.

In the case when L is x + y = z we know that κ(L) = 1/3 and this supremum is attained. Indeed, recall that every set of
n non-zero integers has a sum-free subset of size at least (n + 1)/3 [3] whilst there are sets of positive integers A of size n
such that A does not contain any sum-free subset of size greater than n/3 + o(n) [18]. It would be interesting to determine
κ(L) for other equations L.

Problem. Determine κ(L) for non-translation-invariant homogeneous linear equations L.

5. Parameterised complexity of the decision problem

Once one knows that a problem is NP-hard, there is interest in identifying the specific properties of a problem instance
which contribute to the hardness; as mentioned in Section 1.2, one of the most natural ways to do this is to analyse the
problem from the perspective of parameterised complexity, with the goal of establishing which parameterisations do or do
not allow the design of fpt-algorithms. In this section we make two straightforward observations about the complexity of
L-Free Subset with respect to two natural parameterisations, namely the number of elements in the sum-free subset (k)
and the number of elements not in this subset (|A| − k).
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First, consider parameterisation by k. Note that whenever L satisfies the conditions of Theorem 11 we know that there
exists an explicit constant λ = λ(L) > 0 such that any finite set A ⊂ Z \ {0} contains an L-free subset of size at least λ|A|.
Thus, if |A| is large enough compared with k we can immediately answer yes; otherwise |A| is bounded by a function of k
and so we can solve the problem by brute force in time bounded by a function of k. This gives the following result.

Proposition 12. Let L be a non-translation-invariant homogeneous linear equation. Then L-Free Subset, parameterised by k, is
in FPT.

To deal with the dual parameterisation |A| − k, we use the fact that the following problem is known to belong to FPT
[23, Theorem 1.14].

p-card-Hitting Set
Input: A hypergraph G = (V , E) and s ∈ N.
Parameter: s + d, where d = maxe∈E |e|.
Question: Does G contain a hitting set of cardinality s?

The strategy is then to reduce L-Free Subset to p-card-Hitting Set.

Lemma 13. Let L be any fixed linear equation with ℓ variables, and let A ⊆ Z be finite. Then we can construct, in time
polynomial in size(A), a hypergraph G on |A| vertices inwhich every edge contains atmost ℓ vertices, such that there is a one-to-one
correspondence between L-free subsets of A of cardinality k and hitting sets in G of cardinality |A| − k.

Proof (Sketch Proof). Suppose without loss of generality that L is of the form a1x1 + · · · + aℓxℓ = b, where a1, . . . , aℓ, b ∈ Z.
Let G be the hypergraph with vertex set A and edge set

E := {{x1, . . . , xℓ} : (x1, . . . , xℓ) is a non-trivial solution to L} .

Note that x1, . . . , xℓ are not necessarily all distinct, so while every edge in E contains at most ℓ vertices, an edge may contain
strictly fewer than ℓ vertices. There is then a one-to-one correspondence between hitting sets of cardinality k in G andL-free
subsets of cardinality |A| − k in A. □

The fixed parameter tractability of our problem with respect to the parameter |A| − k now follows immediately.

Theorem 14. Let L be any fixed linear equation. Then L-Free Subset, parameterised by |A| − k, belongs to FPT.

Proposition 12 and Theorem 14 raise the question of what other natural parameterisations of L-Free Subset yield
tractability. We discuss this further in Section 9.

6. L-free subsets covering a given fraction of elements

We know, by Theorem 4, that there is unlikely to be a polynomial time algorithm to decide whether a set A has an L-free
subset of size k, for arbitrary k ∈ N. It is therefore natural to ask whether we can efficiently solve a restricted version of the
problem in which we want to determine whether a finite set A of (non-zero) integers contains an L-free subset that houses
some fixed proportion of the elements of A. Given any linear equation L and 0 < ε < 1, we define the following problem.

ε-L-Free Subset
Input: A finite set A ⊆ Z \ {0}.
Question: Does there exist an L-free subset A′

⊆ A such that |A′
|≥ ε|A|?

In the case when L is x + y = z we refer to ε-L-Free Subset as ε-Sum-Free Subset. Note that ε-L-Free Subset concerns
finite sets of non-zero integers A; thus, the definition of κ(L) (given in Section 4) immediately implies that ε-L-Free Subset
is in P for all ε ≤ κ(L), as in this case every instance is a yes-instance.

Further, recall from Section 1.2 that, given any fixed linear equation L, we can decide in time polynomial in size(A′)
whether a set A′

⊆ Z is L-free, so ϵ-L-Free Subset clearly belongs to NP.
We will show in Section 6.2 that, for certain choices of L and ϵ, the ϵ-L-Free Subset problem is no easier than L-Free

Subset. For this, we will actually restrict our attention to the case when we have input set A ⊆ N. In this case, we need to be
able to add elements to Awithout creating any additional solutions; we prove results about this in Section 6.1.
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6.1. Extending sets without creating additional solutions

In Section 6.2, and also later in Section 7, wewillmake use of the following lemma,which allows us to extend setswithout
creating additional solutions to an equation.

Lemma 15. Suppose L is a linear equation ax+ by = cz where a, b, c ∈ N are fixed and a+ b ̸= c. Suppose A ⊆ N is a finite set
and t ∈ N so that t > |A|. Then there is a set B ⊆ N such that:

(i) |B| = t;
(ii) A ⊆ B;
(iii) the only solutions to L in B lie in A;
(iv) max(B) = O

(
t(max(A))2

)
.

Moreover, B can be computed in time polynomial in size(A) and t.

Proof. Write m := max(A) and set τ := min{
c

a+b ,
a+b
c }. Define N ∈ N to be the smallest natural number so that

⌊τN⌋ ≥ 2(a+b+c)m andN−⌊τN⌋ ≥ t . This choice ofN means that ⌊τ (N−1)⌋ < 2(a+b+c)m or (N−1)−⌊τ (N−1)⌋ < t .
Thus,

N ≤ max
{

t
1 − τ

,
2(a + b + c)m

τ

}
+ 1. (3)

By Observation 9 and the choice of N , [N] contains an L-free subset I ′ so that

I ′ ⊆ [⌊τN⌋ + 1,N]

and |I ′| = t − |A|.
Chebyshev’s theorem implies that there is a prime p so that abcm < p < 2abcm. Set I ′′ := pI ′ and let B := A ∪ I ′′. Note

that we can clearly determine N and hence construct I ′ in time bounded by a polynomial function of size(A) and t . We can
determine an appropriate value for p (and then construct I ′′) by exhaustively searching the specified interval and testing for
primality in polynomial time (using the AKS test [1]). This set immediately satisfies (ii) and, since p > m, A and I ′′ are disjoint
so (i) is satisfied. Moreover, it follows from (3) and the choice of p that max(B) ≤ max

{
2abctm
1−τ

,
4m2abc(a+b+c)

τ

}
+ 2abcm =

O
(
t(max(A))2

)
, so (iv) is satisfied.

To see that (iii) is satisfied, we first observe that there are no solutions to L in I ′′. Since min(I ′′) > 2(a + b + c)m it is
easy to check that there are no solutions to L in B which consist of two elements from A and one element from I ′′. Suppose
there is a solution to L in Bwhich consists of two elements z1, z2 from I ′′ and one element z3 from A. Consider the case when
az1 + bz2 = cz3 (the other cases follow identically). Since every element of I ′′ is divisible by pwe have that p divides cz3. So
as c < p this implies p must divide z3. However, no element of A is divisible by p since max(A) = m < p, a contradiction.
Hence B satisfies condition (iii). This completes the proof. □

We can also prove an analogous result for equations L of the form ax+by = cz where a, b, c ∈ N are fixed and a+b = c.
To do so, we will need the following fact.

Fact 16. Suppose L is a linear equation ax+ by = cz where a, b, c ∈ N are fixed; a+ b = c; and a ≤ b. Given any x1 < x2 < x3
that form a solution (x, y, z) to L in N, we have that x2 plays the role of z and cx2 > ax3.

Proof. Consider any x1 < x2 < x3 that form a solution (x, y, z) to L in N. Note that since a + b = c , we have
cx3 > max{(ax1 + bx2), (ax2 + bx1)}. Thus x3 cannot play the role of z. Further, x2 must play the role of z. Indeed, otherwise
x1 plays the role of z and then we have ax + by > cz, a contradiction. Altogether this implies that cx2 > ax3. □

Lemma 17. Suppose L is a linear equation ax+ by = cz where a, b, c ∈ N are fixed and a+ b = c. Suppose A ⊆ N is a finite set
and t ∈ N. Then there is a set B ⊆ N such that:

(i) |B| = |A| + t;
(ii) A ⊆ B;
(iii) the only non-trivial solutions to L in B lie in A;
(iv) max(B) = 2 (max(A)) ct .

Moreover, B can be computed in time polynomial in t and size(A).

Proof. Without loss of generality assume that a ≤ b. Note that (x, y, z) is a non-trivial solution to L if and only if (x, y, z) is
a solution to L with x, y, z distinct.

Set m := max(A), and define A′
:= {c i · 2m : i ∈ [t]}; we can clearly construct B in time polynomial in t and size(A). We

claim that B := A ∪ A′ is our desired set. Certainly (i), (ii) and (iv) follow immediately.
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We now prove (iii). Suppose x1 < x2 < x3 form a solution (x, y, z) to L in A′. Then by Fact 16 wemust have that cx2 > ax3.
However, by definition of A′, ax3 ≥ x3 ≥ cx2, a contradiction. So A′ does not contain any non-trivial solutions to L. The same
argument shows that there are no non-trivial solutions to L in Bwhich contain two elements from A′ and one element from
A. Finally suppose x1 < x2 < x3 form a solution (x, y, z) to L in B where x1, x2 ∈ A and x3 ∈ A′. As before we must have that
cx2 > ax3. However, ax3 > acm ≥ cx2 by definition of A′, a contradiction. This proves (iii). □

Lemma 17 will be applied in the next subsection to prove that for any equation L as in its statement, ε-L-Free Subset is
NP-complete for any 0 < ε < 1.

6.2. Hardness of ε-L-Free Subset

In this section we show that, in two specific cases, ε-L-Free Subset is NP-complete. We begin with the case of sum-free
subsets. Note that if ε ≤

1
3 then the problem is trivially in P as, by the aforementioned result of Erdős [20], the answer is

always ‘‘yes’’; also if ε = 1 then it suffices to check whether the input set is sum-free (which can be done in polynomial
time). We now demonstrate that the problem is NP-complete for all other values of ε. Recall that, given a set X ⊆ N and
y ∈ N, we write yX as shorthand for {yx : x ∈ X}.

Theorem 18. Given any rational 1/3 < ε < 1, ε-Sum-Free Subset is NP-complete.

Proof. Recall that ε-Sum-Free Subset belongs to NP. To show that the problem is NP-hard, we describe a reduction from
Sum-Free Subset (restricted to inputs A ⊆ N), shown to be NP-hard in Theorem 5.

Suppose that (A, k) is an instance of Sum-Free Subsetwhere A ⊆ N. Wewill define a set B ⊆ N such that B has a sum-free
subset of size at least ε|B| if and only if A has a sum-free subset of size k. The construction of B depends on the value k.

First suppose that k ≤ ε|A|. Set

d :=

⌈
ε|A| − k
1 − ε

⌉
,

so that d is the least positive integer such that ε(|A| + d) ≤ k + d and hence ⌈ε(|A| + d)⌉ = k + d. Note that d = O(|A|). By
Lemma 15 we can construct, in time polynomial in size(A) and d, a set B ⊆ N of size |A|+d such that B has a sum-free subset
of size k + d if and only if A has a sum-free subset of size k. By the choice of d, we know that B has a sum-free subset of size
k+ d if and only if B has a sum-free subset of size at least ε(|A| + d); so B is a yes-instance for ε-Sum-Free Subset if and only
if (A, k) is a yes-instance for Sum-Free Subset.

Now suppose k > ε|A|. The result of Eberhard, Green and Manners [18] implies that there is a set S ⊆ N such that the
largest sum-free subset of S has size precisely ε′

|S| where 1/3 < ε′ < ε. In particular, through an exhaustive search, one can
construct such a set S. Crucially, S is independent of our input (A, k) (so size(S), |S| and max(S) are all fixed constants).

Set

r :=

⌈
k − ε|A|

(ε − ε′)|S|

⌉
,

and note that r = O(|A|). Set m := max(A), m′
:= max(S), and define di := 3im(m′)i−1 for each 1 ≤ i ≤ r . Note that

log dr = O(r + logm), so for each 1 ≤ i ≤ r , we can represent the set diS in space O(size(A)). Now define

A∗
:= A ∪

⋃
1≤i≤r

diS.

The choice of the di ensures the only solutions to x + y = z in A∗ are such that x, y, z ∈ A or x, y, z ∈ diS for some i ∈ [r].
The largest sum-free set in diS is of size ε′

|S| = ε′
|diS|. Define k∗

:= k + rε′
|S|, and observe that A has a sum-free subset

of size k if and only if A∗ has a sum-free subset of size k∗. By definition of r , rε′
|S| ≤ rε|S| + ε|A| − k, so we see that

k∗
≤ ε(|A| + r|S|) = ε|A∗

|. Now we can argue precisely as in the first case: from A∗ one can construct a set B in time
polynomial in size(A) so that A∗ has a sum-free subset of size k∗ if and only if B has a sum-free subset of size at least ε|B|.
In particular, B will be a yes-instance for ε-Sum-Free Subset if and only if (A, k) is a yes-instance for Sum-Free Subset, as
required. □

We are also able to prove an NP-completeness result in the only other cases of three-variable equations L where κ(L)
is known, using a slight variation on the method of Theorem 18. In particular, the following result covers the case of
progression-free sets. Recall that if L is translation-invariant, Ruzsa [37] observed that the largest L-free subset of [n] has
size o(n) (and so κ(L) = 0).

Theorem 19. Consider any rational 0 < ε < 1 and let L denote the equation ax + by = cz where a, b, c ∈ N and a + b = c.
Then ε-L-Free Subset is NP-complete.
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Proof. Fix ε and L as in the statement of the theorem; we will assume without loss of generality that b ≥ a. Recall that
ε-L-Free Subset is in NP. To show NP-hardness, we once again give a reduction from L-Free Subset (restricted to inputs
A ⊆ N), shown to be NP-hard in Theorem 5.

Suppose that (A, k) is an instance of L-Free Subset, where A ⊆ N. We will define a set B ⊆ N such that B has an L-free
subset of size at least ε|B| if and only if A has an L-free subset of size k. The construction of B depends on the value k.

First suppose that k ≤ ε|A|. As in the proof of Theorem 18, we define d so that ⌈ε(|A| + d)⌉ = k+ d. By Lemma 17 we can
construct, in time bounded by a polynomial function of size(A), a set B ⊆ N of size |A| + d such that (by conditions (i)–(iii) of
the lemma) B has an L-free subset of size k + d if and only if A has an L-free subset of size k. By our choice of d, this means
that B is a yes-instance to ε-L-Free Subset if and only if (A, k) is a yes-instance to L-Free Subset.

Now suppose k > ε|A|. Since the largest L-free subset of [n] has size o(n), we can find by exhaustive search a set S ⊆ N
such that the largest L-free subset of S has size ε′

|S| for some 0 < ε′ < ε. Crucially, S is independent of our input (A, k) (so
|S|, max(S) and size(S) are all fixed constants).

As in the proof of Theorem 18, we set

r :=

⌈
k − ε|A|

(ε − ε′)|S|

⌉
.

Setm := max(A),m′
:= max(S), and define di := 3ic im(m′)i−1 for each 1 ≤ i ≤ r . Note that, for each di, we can represent the

set diS in space O(size(A)). Observe also that max(A) < min(d1S) and, for 1 ≤ i ≤ r − 1, max(diS) < min(di+1S).
Now set

A∗
:= A ∪

⋃
1≤i≤r

diS.

We claim that the only solutions to ax + by = cz in A∗ are such that x, y, z ∈ A or x, y, z ∈ diS for some i ∈ [r]. To see this,
first suppose there are x1 < x2 < x3 in A∗ so that x3 ∈ diS for some i ∈ [r], x2 ̸∈ diS, and x1, x2, x3 form a solution to L. Then
by Fact 16 we have that cx2 > ax3. However, we also know that, if i > 1, ax3 ≥ x3 ≥ di = 3cm′di−1 > cm′di−1 ≥ cx2; if i = 1
then ax3 ≥ 3acm > cm ≥ cx2. In either case this gives a contradiction. Next suppose there are x1 < x2 < x3 in A∗ so that
x2, x3 ∈ diS for some i ∈ [r], x1 ̸∈ diS, and x1, x2, x3 form a solution to L. Suppose i > 1. Then di divides x2 and x3 and so, by
Fact 16, di divides ax1 or bx1. In particular, we have that bx1 ≥ di. However, since x1 ̸∈ diS, we have that x1 ≤ di−1m′ and so
bx1 ≤ cm′di−1 < 3cm′di−1 = di, a contradiction. The case i = 1 yields an analogous contradiction. Altogether this indeed
proves the only solutions (x, y, z) to L in A∗ are such that x, y, z ∈ A or x, y, z ∈ diS for some i ∈ [r].

Now we can continue as in the proof of Theorem 18. Note that the largest L-free set in diS is of size ε′
|S| = ε′

|diS|, and
set k∗

:= k + rε′
|S|, so that A has an L-free subset of size k if and only if A∗ has an L-free subset of size k∗. By definition of

r , we have k∗
≤ ε(|A| + r|S|) = ε|A∗

|, so we can now argue precisely as in the first case to obtain a set B such that B is a
yes-instance to ε-L-Free Subset if and only if (A, k) is a yes-instance to L-Free Subset. □

7. Counting solution-free subsets of a given size

As mentioned in the introduction, much of the previous work on sum-free (and more generally solution-free) sets has
focused on counting problems. In this sectionwe consider suchquestions in the (parameterised) complexity setting. Consider
the following counting problem.

#Given-Size L-Free Subset
Input: A finite set A ⊆ Z and k ∈ N.
Question: Howmany L-free subsets of A have cardinality exactly k?

It is clear that, whenever L satisfies the conditions of Theorem 4, there cannot be any polynomial-time algorithm for this
problem unless P = NP, as such an algorithm would certainly tell us whether or not the number of such subsets is zero
and hence solve the decision problem. However, it is interesting to consider the complexity of the counting problem with
respect to the parameterisations k and |A| − k, as we saw in Section 5 that the decision problem is tractable with respect to
both of these parameterisations.

In Section 7.2 we show that the counting problem is in FPT when parameterised by |A| − k; similar to the proof of
Theorem 14, this result relies on a reduction to a counting version of Hitting Set. In contrast, we show in Section 7.3 that,
for certain equations L, the counting problem is unlikely to admit an fpt-algorithm when parameterised by k; however, in
many cases there is an efficient parameterised algorithm to solve this problem approximately, as we will see in Section 7.4.
We begin in Section 7.1 with some background on the theory of parameterised counting complexity.

7.1. Parameterised counting complexity

Wemake use of the theory of parameterised counting complexity developed by Flum and Grohe [22,23]. LetΣ be a finite
alphabet. A parameterised counting problem is formally defined to be a pair (Π, κ) where Π : Σ∗

→ N0 is a function
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and κ : Σ∗
→ N is a parameterisation (a polynomial-time computable mapping). Flum and Grohe define two types of

parameterised counting reductions, fpt parsimonious reductions and fpt Turing reductions. The latter is more flexible than the
former, as it does not require us to preserve the number of witnesses as we transform between problems; rather wemust be
able to compute the number of witnesses in one problem using information about the number of witnesses in one or more
instances of the other problem, which allows us to make use of several standard techniques for counting reductions (such
as polynomial interpolation and matrix inversion).

Definition. An fpt Turing reduction from (Π, κ) to (Π ′, κ ′) is an algorithm A with an oracle to Π ′ such that

(1) A computes Π ,
(2) A is an fpt-algorithm with respect to κ , and
(3) there is a computable function g : N → N such that for all oracle queries ‘‘Π ′(I ′) = ?’’ posed by A on input I we have

κ ′(I ′) ≤ g (κ(I)).

In this case we write (Π, κ) ≤
fpt
T (Π ′, κ ′).

There is an analogue of the W-hierarchy for counting problems; in order to demonstrate that a parameterised counting
problem is unlikely to belong to FPT it suffices to show that it is hard (with respect to fpt-Turing reductions) for the first
level of this hierarchy, #W[1] (see [23] for the formal definition of the class #W[1]).

A parameterised counting problem is considered to be efficiently approximable if it admits a fixed parameter tractable
randomised approximation scheme (FPTRAS), which is defined as follows:

Definition. A fixed parameter tractable randomised approximation scheme (FPTRAS) for a parameterised counting problem
(Π, κ) is a randomised approximation scheme that takes an instance I of Π (with |I| = n), and rational numbers ε > 0 and
0 < δ < 1, and in time f (κ(I)) · g(n, 1/ε, log(1/δ)) (where f is any computable function, and g is a polynomial in n, 1/ε and
log(1/δ)) outputs a rational number z such that

P[(1 − ε)Π (I) ≤ z ≤ (1 + ε)Π (I)] ≥ 1 − δ.

7.2. Parameterisation by the number of elements not included in the solution-free set

In this section we show that the counting problem, parameterised by |A|−k, is in FPT. This is a straightforward extension
of the argument used for the decision problem in Section 5: since there is a one-to-one correspondence between L-free
subsets of cardinality k and hitting sets of cardinality |A| − k in the construction described in Lemma 13, we can also make
use of parameterised algorithms for counting hitting sets to count L-free subsets. Thurley [45] describes an fpt-algorithm
for the following counting version of the problem.

#p-card-Hitting Set
Input: A hypergraph G = (V , E) and s ∈ N.
Parameter: s + d, where d = maxe∈E |e|.
Question: Howmany hitting sets in G have cardinality exactly s?

As for Theorem 14, our result now follows immediately.

Theorem 20. Let L be any fixed linear equation. Then #Given-Size L-Free Subset, parameterised by |A| − k, belongs to FPT.

7.3. Parameterisation by the cardinality of the solution-free set

In contrast with the positive result in the previous section, we now show that there is unlikely to be an fpt-algorithm
with respect to the parameter k to solve #Given-Size L-Free Subset. To do this, we give an fpt-Turing reduction from the
following problem, which can easily be shown to be #W[1]-hard by means of a reduction from p-#Clique (shown to be
#W[1]-hard in [22]), along the same lines as the proof of the W[1]-hardness of p-Multicolour Clique in [21].

p-#Multicolour Clique
Input: A graph G = (V , E), and a partition of V into k sets V1, . . . , Vk.
Parameter: k
Question: Howmany k-vertex cliques in G contain exactly one vertex from each set V1, . . . , Vk?

When reducing from p-Multicolour Clique or its counting version, it is standard practice to assume that, for each
1 ≤ i < j ≤ k, the number of edges from Vi to Vj is equal. We can make this assumption without loss of generality
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because we can easily transform an instance which does not have this property to one which does without changing
the number of multicolour cliques; note that if the input does not already satisfy this condition then k ≥ 3. We set
q := max{e(Vi, Vj) : 1 ≤ i < j ≤ k} (where e(A, B) denotes the number of edges with one endpoint in A and the other
in B), and for any pair of sets (Vi, Vj) where e(Vi, Vj) = q′ < q, we add vertices {u1, . . . , uq−q′} to Vi and {w1, . . . , wq−q′} to Vj,
and the set of edges {urwr : 1 ≤ r ≤ q − q′

}; note that the largest cliques created by this process contain two vertices.
We in fact reduce p-#Multicolour Clique to a multicolour version of #Given-Size L-Free Subset, defined as follows.

p-#Multicolour L-Free Subset
Input: A k-tuple of disjoint subsets A1, . . . , Ak ⊆ Z.
Parameter: k
Question: Howmany L-free subsets of A =

⋃
1≤i≤k Ai contain exactly one element from each set A1, . . . , Ak?

It is easy to give an fpt-Turing reduction from p-#Multicolour L-Free Subset to #Given-Size L-Free Subset parame-
terised by k.

Lemma 21. Let L be a linear equation. Then p-#Multicolour L-Free Subset≤
fpt
T #Given-Size L-Free Subset (where #Given-

Size L-Free Subset is parameterised by k).

Proof. Let (A1, . . . , Ak) be the input to an instance of p-#Multicolour L-Free Subset. For each non-empty I ⊆ [k], we can
use our oracle toL-Free Subset to findNI , the number ofL-free subsets of cardinality exactly k in the set

⋃
i∈IAi. This requires

Θ(2k) oracle calls, and for each oracle call the parameter value is the same as for the original problem. We can now use an
inclusion–exclusion method to compute the number of L-free subsets of size k in A that contain exactly one number from
each of the sets Ai: this is precisely∑

∅̸=I⊆[k]

(−1)k−|I|NI . □

The main work in the reduction is in the next lemma, where we show that p-#Multicolour Clique can be reduced to
p-#Multicolour L-Free Subset for certain equations L.

Lemma 22. Let L be a linear equation of the form a1x1 + a2x2 = by, where a1, a2, b ∈ N are fixed. Then p-#Multicolour
Clique ≤

fpt
T p-#Multicolour L-Free Subset.

Proof. Let (G, {V1, . . . , Vk}) be the input to an instance of p-#Multicolour Clique, where G = (V , E), and for each
1 ≤ i < j ≤ k let Ei,j denote the set of edges between Vi and Vj. We may assume that |Ei,j| = q for each 1 ≤ i < j ≤ k and
that each Vi is an independent set.

Suppose that V = {v1, . . . , vn}. We begin by constructing a set A ⊆ N as in Lemma 1; note that |A| = O(|V |
2) and

log(max(A)) = O(|V |), so |A| log(max(A)) = O(|V |
3). We partition A′ into k subsets A1, . . . , Ak, where Ai := φ−1

V (Vi), and A′′

into
(k
2

)
subsets Ai,j (for 1 ≤ i < j ≤ k) where Ai,j := φ−1

E (Ei,j).
Now let t ∈

{
1, . . . ,

(k
2

)}
. We define Xt ⊆ N to be a set of t

(k
2

)
< k4 natural numbers disjoint from A, chosen so that every

solution toL in A∪Xt is contained in A. Without loss of generality, wemay assume that k4 < |V | (otherwisewewould be able
to execute a brute force approach in time bounded by a function of k alone), so it follows from Lemmas 15 and 17 that we
can construct such a set Xt in time bounded by a polynomial function of |A| log(max(A)), and hence by a polynomial function
of |V |. Moreover, the space required to represent Xt is also bounded by a polynomial function of |V |. We now partition Xt
arbitrarily into

(k
2

)
sets X i,j

t for 1 ≤ i < j ≤ k, each of size exactly t . The set Ai,j[t] is then defined to be Ai,j ∪ X i,j
t . We set

A[t] :=

⋃
1≤i≤k

Ai ∪

⋃
1≤i<j≤k

Ai,j[t].

It follows from Lemma 1 and the construction of A[t] that the only solutions to L in A[t] are of the form a1x1 + a2x2 = by,
where y corresponds to an edge whose endpoints are the vertices corresponding to x1 and x2. We will say that a subset of
A[t] is colourful if it contains precisely one element from each set Ai (for 1 ≤ i ≤ k) and one element from each set Ai,j[t] (for
1 ≤ i < j ≤ k).

Let N(A[t]) denote the number of L-free subsets of A[t] that are colourful. We can compute the value of N(A[t]) using a
single call to our oracle for p-#MulticolourL-Free Subsetwith input (A1, . . . , Ak, A1,2[t], . . . , Ak−1,k[t]); note that the total
size of the instance in such an oracle call is bounded by h(k) · |V |

O(1) for some function h, and that the value of the parameter
in our oracle call depends only on k.

Given any subset U ⊆ V such that |U ∩ Vi| = 1 for each 1 ≤ i ≤ k, let us denote by N(A[t],U) the number of colourful
L-free subsets of A[t] whose intersection with A′ is precisely φ−1

V (U). We now claim that

N(A[t],U) = (q + t)(
k
2)−e(U)(q + t − 1)e(U),
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where e(U) denotes the number of edges in the subgraph of G induced by U . To see that this is true, suppose that U =

{w1, . . . , wk}, where wi ∈ Vi for each i. If wi and wj are not adjacent, then we can choose freely any element of Ai,j[t] to add
to the set, without risk of creating a solution to L, so there are

⏐⏐Ai,j[t]
⏐⏐ = q + t possibilities for the element of Ai,j[t] in the

set; on the other hand, if wi and wj are adjacent, we must avoid the element of Ai,j[t] corresponding to wiwj, so there are⏐⏐Ai,j[t]
⏐⏐− 1 = q + t − 1 possibilities for the element of Ai,j[t] in the set. Since we can choose each element of A′′ to include

in the set independently of the others, this gives the expression above for N(A[t],U).
Observe now that

N(A[t]) =

∑
U⊆V

|U∩Vi |=1 for each 1≤i≤k

N(A[t],U)

=

∑
U⊆V

|U∩Vi |=1 for each 1≤i≤k

(q + t)(
k
2)−e(U)(q + t − 1)e(U).

For 0 ≤ j ≤
(k
2

)
, let Cj denote the number of subsets U ⊂ V such that |U ∩ Vi| = 1 for each 1 ≤ i ≤ k and e(U) = j. We can

then rewrite the expression above as

N(A[t]) =

(k2)∑
j=0

Cj(q + t)(
k
2)−j(q + t − 1)j.

If we now define

p(z) =

(k2)∑
j=0

Cjz(
k
2)−j(z − 1)j,

it is clear that p is a polynomial in z of degree
(k
2

)
, and moreover that p(z) = N(A[z − q]). Thus if we know the value of p(z)

for
(k
2

)
+ 1 distinct values of z, we can interpolate in polynomial time to determine all the coefficients of p; we can obtain

the required values of p(z) by using our oracle to evaluate N(A[t]) for t ∈ {0, 1, . . . ,
(k
2

)
}.

To complete the reduction we must demonstrate that, once we know the coefficients of p(z), it is straightforward to
calculate the number of multicolour cliques in G. We will in fact argue that we only need to determine the constant term of
p(z). Note that, if 0 ≤ j <

(k
2

)
, then z is a factor of Cjz(

k
2)−j(z − 1)j. Thus the constant term of p(z) is the same as the constant

term of the polynomial

C(k2)z
(k2)−(k2)(z − 1)(

k
2) = C(k2)(z − 1)(

k
2).

This constant term is

C(k2)(−1)(
k
2),

so the absolute value of the constant term in p(z) is precisely C(k2). But C(k2) is by definition the number of subsets U ⊆ V

such that |U ∩ Vi| = 1 for each i and e(U) =
(k
2

)
, that is the number of multicolour cliques in G.

This completes the fpt-Turing reduction from p-#Multicolour Clique to p-#Multicolour L-Free Subset. □

The main result of this section now follows immediately from Lemmas 21 and 22.

Theorem 23. Let L be a linear equation of the form a1x1 + a2x2 = by where a1, a2, b ∈ N are fixed. Then #Given-Size L-Free
Subset, parameterised by k, is #W[1]-hard with respect to fpt-Turing reductions.

7.4. Approximate counting

For 3-variable homogeneous linear equationsL, we have seen that there is unlikely to be an fpt-algorithm,with parameter
k, to solve #Given-Size L-Free Subset exactly; however, the problem does admit an FPTRAS (for any non-translation-
invariant homogeneous linear equation L). We prove the following result, following the method of [35, Lemma 3.4].

Lemma 24. Let L be any non-translation-invariant homogeneous linear equation. Let A ⊂ Z be finite and k ∈ N, and let N denote
the number of elements of A(k) that are L-free. Then, for every ε > 0 and δ ∈ (0, 1) there is an explicit randomised algorithm
which outputs an integer α, such that

P[|α − N| ≤ ε · N] ≥ 1 − δ,

and runs in time at most f (k)q(size(A), ε−1, log(δ−1)), where f is a computable function, q is a polynomial.

Proof (Sketch Proof). The algorithm uses a simple randomised sampling method: we repeatedly select a random subset of A
of cardinality k, and check whether it is L-free. After completing a suitable number of trials, we conclude that the observed
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proportion of L-free subsets is a good estimate for the overall proportion of such subsets. In order for this conclusion to be
valid (without requiring a prohibitively large number of trials) we need to know that the proportion of L-free subsets of
size k in A is reasonably large (at least 1

f (k)q̃(size(A)) , where f is any computable function and q̃ is any polynomial). This follows
immediately (if |A| is sufficiently large compared with k; otherwise we can count exactly by brute force in time bounded by
a function of k) from the fact that, by Theorem 11 A must contain a large L-free subset B, and any subset of B of size k will
necessarily be L-free. □

The existence of an FPTRAS now follows immediately.

Theorem 25. Let L be any non-translation-invariant homogeneous linear equation. Then #Given-Size L-Free Subsetadmits an
FPTRAS.

8. An extension version of the problem

A natural variant of the problem L-Free Subset is to ask whether, given A ⊆ Z and an (L-free) subset B ⊂ A, there is an
L-free subset of A of cardinality kwhich contains B. This problem can be stated formally as follows.

L-Free Subset Extension
Input: A finite set A ⊆ Z, a set B ⊂ A and k ∈ N.
Question: Does there exist an L-free subset A′

⊆ A such that B ⊆ A′ and |A′
|= k?

We canmake certain easy deductions about the complexity of this problem from the resultswehave already proved about
L-Free Subset. Notice thatwe can easily define a reduction fromL-Free Subset toL-Free Subset Extension by setting B = ∅;
the next result follows immediately from this observation together with Theorem 4.

Proposition 26. Let L be a linear equation of the form a1x1 + · · ·+ aℓxℓ = by where each ai ∈ N and b ∈ N are fixed and ℓ ≥ 2.
Then L-Free Subset Extension is NP-complete, and the problem is para-NP-complete parameterised by |B|.

Perhaps the most obvious parameterisation of this problem to consider is k − |B|, the number of elements we want to
add to the set B. It is straightforward to adapt our earlier results to demonstrate that, in the case of three-term equations,
the problem is unlikely to admit an fpt-algorithm with respect to this parameterisation.

Proposition 27. Let L be a linear equation of the form a1x1 + a2x2 = by, where a1, a2, b ∈ N are fixed. Then L-Free Subset
Extension is W[1]-hard, parameterised by k − |B|.

Proof. We prove this result by means of a reduction from theW[1]-complete problem p-Independent Set, which is defined
as follows.

p-Independent Set
Input: A graph G and k ∈ N.
Parameter: k
Question: Does G contain an independent set of cardinality k?

TheW[1]-completeness of this problem can easily be deduced from that of p-Clique, shown to beW[1]-complete in [16].
Let (G, k′) be the input to an instance of p-Independent Set. Once again, we rely on the construction in Lemma 1 to give

us the set A in our instance of L-Free Subset Extension; we set B := A′′ and k := |B| + k′ (so the parameter of interest in our
instance of L-Free Subset Extension is equal to the solution size in the instance of p-Independent Set). By Corollary 2, we
know that there is a one-to-one correspondence between independent sets in G of cardinality k′ and L-free subsets of A of
cardinality |A′′

| + k′ that contain A′′, so it follows immediately that (A, B, k) is a yes-instance for L-Free Subset Extension if
and only if (G, k′) is a yes-instance for p-Independent Set. □

On the positive side, we observe that we can once again make use of fpt-algorithms for p-card-Hitting Set if we consider
L-Free Subset Extension parameterised by the number of elements of A that are not included in the subset. Note that the
standard bounded search tree method for p-card-Hitting Set (or its counting version) [23, Theorem 1.14] in fact gives an
fpt-algorithm to find all hitting sets of size k. As it is easy to check in time polynomial in size(A) whether a given hitting set
in the hypergraph defined in the proof of Lemma 13 contains a vertex corresponding to an element of B, we can use this
method to count L-free subsets of A that contain B (and hence to decide whether there is at least one).

Proposition 28. Let L be any fixed linear equation. Then L-Free Subset Extension, parameterised by |A| − k, belongs to FPT;
the same is true for the counting version of the problem with this parameterisation.
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Finally, we consider parametrising simultaneously by the number of elements we wish to add to B and the size of the set
B; this is equivalent to parametrising by k, the total size of the desired L-free subset.

Proposition 29. Let L be a linear equation of the form a1x1 + a2x2 = by, where a1, a2, b ∈ N are fixed and a1 + a2 ̸= b. Then
L-Free Subset Extension, parameterised by k, belongs to FPT.

Proof. Let (A, B, k) be an instance of L-Free Subset Extension. If k < |B| then this is necessarily a no-instance, so we may
assume without loss of generality that k ≥ |B|; we may also assume that B is L-free (we can check this in polynomial time
and if B contains a solution to L we immediately return NO).

As a first step in our algorithm, we delete from A every a ∈ A \ B such that B ∪ {a} is not L-free: note that this does not
change the number of L-free subsets containing B, as such an a cannot belong to any set of this kind. We call the resulting
set A1, and note that we can construct A1 in time polynomial in size(A). Note that no set containing 0 can be L-free, so we
know that 0 ̸∈ A1.

Fix the constant λ = λ(L) as in Eq. (2). Our algorithm proceeds as follows. If |A1| <
( 6|B|+1

λ

)
(k−|B|)+|B|, we exhaustively

consider all k-element subsets of A1 and check if they form an L-free subset; if |A1| ≥
( 6|B|+1

λ

)
(k − |B|) + |B| then we return

YES. To see that this is an fpt-algorithm, note that, if |A1| <
( 6|B|+1

λ

)
(k− |B|)+ |B|, then |A1| = O(k2), so we can perform the

exhaustive search in time depending only on k. It is clear that we will return the correct answer whenever we perform the
exhaustive search; in order to prove correctness of the algorithm, it remains to show that, if |A1| ≥

( 6|B|+1
λ

)
(k − |B|) + |B|,

then we must have a yes-instance.
To see that this is true, we first prove that there exists a large set A2 ⊆ A1 such that B ⊆ A2 and no solution to L in A2

involves an element of B. We will call a triple (x, y, z) ∈ A3
1 bad if a1x + a2y = bz. By construction of A1, note that every bad

triple contains at most one element of B. We aim to bound the number of bad triples containing some fixed u ∈ A1 \ B and
at least one element of B. First, we also fix v ∈ B, and bound the number of bad triples which contain both u and v. If we fix
the positions of u and v in a triple, there is at most one w ∈ A1 \ B such that w completes the triple; as there are 6 options
for the choice of positions of u and v in the triple, this means there are in total at most 6 bad triples involving both u and v.
Summing over all possibilities for v, we see that there are at most 6|B| bad triples involving any fixed u ∈ A1 \ B and at least
one element of B.

We can therefore greedily construct a set C ⊆ A1 \ B of size at least |A1|−|B|
6|B|+1 such that every bad triple in B ∪ C is entirely

contained in C . Indeed, initially set C := ∅ and A′
:= A1 \ B. Move an arbitrary element u of A′ to C and delete all elements

of A′ that form a bad triple with u and at least one element of B; by the reasoning above, this involves deleting at most 6|B|
elements of A′. Repeat this process until A′

= ∅, and note that C is as desired; set A2 := B ∪ C .
Now observe that every L-free subset of cardinality k − |B| in C can be extended to an L-free subset of A2 of cardinality

k which contains B. We know from Theorem 11 that there exists an L-free subset C ′
⊆ C of cardinality at least λ|C | (where

λ is the constant defined in Eq. (2)). B ∪ C ′ is then an L-free subset of A, and has cardinality at least

|B| + λ

(
|A1| − |B|
6|B| + 1

)
≥ |B| + λ

(( 6|B|+1
λ

)
(k − |B|) + |B| − |B|
6|B| + 1

)
= k,

so we should indeed return YES. □

We note that the argument used in this proof can be adapted to demonstrate the existence of an FPTRAS for the counting
version of this problem, using the ideas from Lemma 24. However, there is unlikely to be an fpt-algorithm to solve the
counting version exactly, as we can easily reduce #Given-Size L-Free Subset to this problem (with the same parameter) by
setting B = ∅.

9. Conclusions and open problems

We have shown that the basic problem of deciding whether a given input set A ⊆ Z contains an L-free subset of size at
least k is NP-complete when L is any linear equation of the form a1x1 + · · ·+ aℓxℓ = by (with ai, b ∈ N and ℓ ≥ 2), although
the problem is solvable in polynomial time whenever L is a linear equation with only two variables. We also demonstrated
that the maximisation version of the problem is APX-hard for equations L of the form a1x1 + a2x2 = by (with a1, a2, b ∈ N).

Two natural questions arise from these results. First of all, in our NP-hardness reduction, we construct a set A where
max(A) is exponential in terms of |A|: is this problem in fact stronglyNP-complete, so that it remains hard even if all elements
of A are bounded by some polynomial function of |A|? Secondly, can either the NP-completeness proof or the APX-hardness
proof be generalised to other linear equations L? A natural starting point for an equation that is not covered by Theorem 4
would perhaps be the case of Sidon sets (i.e. x + y = z + w).

On the positive side, we saw that the decision problem belongs to FPT for any homogeneous non-translation-invariant
equation L when parameterised by the cardinality of the desired L-free subset, and that it belongs to FPT for any linear
equation L with respect to the dual parameterisation (the number of elements of A not included in the L-free subset).
While we have considered two natural parameterisations here, there is another natural parameterisation that we have not
considered. We know that, for certain linear equations, there is some function c∗

L such that every set A ⊆ Z is certain
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to contain an L-free subset of cardinality at least c∗
L(|A|). It is therefore natural to consider the complexity parameterised

above this lower-bound: what is the complexity of determining whether a given subset A ⊆ Z contains an L-free subset of
cardinality at least c∗

L(|A|) + k, where k is taken to be the parameter? The main difficulty in addressing this question is that
the exact value of c∗

L is not known for any linear equations L: even in the case of sum-free subsets, we only know that the
bound on c∗

L is of the form |A|

3 + o(|A|).
We also considered the complexity of determining whether a set A ⊆ Z \ {0} contains an L-free subset containing a

fixed proportion ε of its elements. We demonstrated that this problem is alsoNP-complete for the case of sum-free sets, and
also for L-free sets whenever L is a 3-variable translation-invariant linear equation. It would be interesting to investigate
how far these results can be generalised to other linear equations: given any non-translation-invariant, homogeneous linear
equation L and any rational κ(L) < ε < 1, is ε-L-Free Subset NP-complete?

Concerning the complexity of counting L-free subsets, we have addressed the problem of counting L-free subsets
containing exactly k elements. For equations L covered by theNP-hardness result of Theorem 4, even approximate counting
is hard: there is no FPRAS for arbitrary k unless NP = RP (as if we could count approximately we could, with high
probability, determine whether there is at least one L-free subset of size k). We also considered the complexity of this
problem parameterised separately by k and |A| − k.

However, there are other natural counting problems we have not addressed here. For example, we might want to count
the total number of L-free subsets of any size; here the decision problem (‘‘Is there an L-free subset of any size?’’) is
trivial, so there is no immediate barrier to an efficient counting algorithm. Alternatively, we might want to count the
total number of maximal L-free sets. Our results do not have any immediate consequences for either of these problems,
but the corresponding counting versions of the extension problem are necessarily #P-complete: by Corollary 2, we have a
polynomial-time reduction to this problem from that of counting all (maximal) independent sets in an arbitrary ℓ-uniform
hypergraph; for ℓ = 2 and ℓ = 3 this problemwas shown to be #P-complete by Greenhill [31], andwe can easily add further
dummy vertices to each edge (and then require that the elements corresponding to the dummy vertices are included in our
L-free subset) to deal with larger values of ℓ.
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