11,411 research outputs found

    A Data Science Course for Undergraduates: Thinking with Data

    Get PDF
    Data science is an emerging interdisciplinary field that combines elements of mathematics, statistics, computer science, and knowledge in a particular application domain for the purpose of extracting meaningful information from the increasingly sophisticated array of data available in many settings. These data tend to be non-traditional, in the sense that they are often live, large, complex, and/or messy. A first course in statistics at the undergraduate level typically introduces students with a variety of techniques to analyze small, neat, and clean data sets. However, whether they pursue more formal training in statistics or not, many of these students will end up working with data that is considerably more complex, and will need facility with statistical computing techniques. More importantly, these students require a framework for thinking structurally about data. We describe an undergraduate course in a liberal arts environment that provides students with the tools necessary to apply data science. The course emphasizes modern, practical, and useful skills that cover the full data analysis spectrum, from asking an interesting question to acquiring, managing, manipulating, processing, querying, analyzing, and visualizing data, as well communicating findings in written, graphical, and oral forms.Comment: 21 pages total including supplementary material

    PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation

    Full text link
    High-performance computing has recently seen a surge of interest in heterogeneous systems, with an emphasis on modern Graphics Processing Units (GPUs). These devices offer tremendous potential for performance and efficiency in important large-scale applications of computational science. However, exploiting this potential can be challenging, as one must adapt to the specialized and rapidly evolving computing environment currently exhibited by GPUs. One way of addressing this challenge is to embrace better techniques and develop tools tailored to their needs. This article presents one simple technique, GPU run-time code generation (RTCG), along with PyCUDA and PyOpenCL, two open-source toolkits that support this technique. In introducing PyCUDA and PyOpenCL, this article proposes the combination of a dynamic, high-level scripting language with the massive performance of a GPU as a compelling two-tiered computing platform, potentially offering significant performance and productivity advantages over conventional single-tier, static systems. The concept of RTCG is simple and easily implemented using existing, robust infrastructure. Nonetheless it is powerful enough to support (and encourage) the creation of custom application-specific tools by its users. The premise of the paper is illustrated by a wide range of examples where the technique has been applied with considerable success.Comment: Submitted to Parallel Computing, Elsevie

    Julia: A Fresh Approach to Numerical Computing

    Get PDF
    Bridging cultures that have often been distant, Julia combines expertise from the diverse fields of computer science and computational science to create a new approach to numerical computing. Julia is designed to be easy and fast. Julia questions notions generally held as "laws of nature" by practitioners of numerical computing: 1. High-level dynamic programs have to be slow. 2. One must prototype in one language and then rewrite in another language for speed or deployment, and 3. There are parts of a system for the programmer, and other parts best left untouched as they are built by the experts. We introduce the Julia programming language and its design --- a dance between specialization and abstraction. Specialization allows for custom treatment. Multiple dispatch, a technique from computer science, picks the right algorithm for the right circumstance. Abstraction, what good computation is really about, recognizes what remains the same after differences are stripped away. Abstractions in mathematics are captured as code through another technique from computer science, generic programming. Julia shows that one can have machine performance without sacrificing human convenience.Comment: 37 page

    Inviwo -- A Visualization System with Usage Abstraction Levels

    Full text link
    The complexity of today's visualization applications demands specific visualization systems tailored for the development of these applications. Frequently, such systems utilize levels of abstraction to improve the application development process, for instance by providing a data flow network editor. Unfortunately, these abstractions result in several issues, which need to be circumvented through an abstraction-centered system design. Often, a high level of abstraction hides low level details, which makes it difficult to directly access the underlying computing platform, which would be important to achieve an optimal performance. Therefore, we propose a layer structure developed for modern and sustainable visualization systems allowing developers to interact with all contained abstraction levels. We refer to this interaction capabilities as usage abstraction levels, since we target application developers with various levels of experience. We formulate the requirements for such a system, derive the desired architecture, and present how the concepts have been exemplary realized within the Inviwo visualization system. Furthermore, we address several specific challenges that arise during the realization of such a layered architecture, such as communication between different computing platforms, performance centered encapsulation, as well as layer-independent development by supporting cross layer documentation and debugging capabilities

    Selection of Statistical Software for Solving Big Data Problems: A Guide for Businesses, Students, and Universities

    Get PDF
    The need for analysts with expertise in big data software is becoming more apparent in today’s society. Unfortunately, the demand for these analysts far exceeds the number available. A potential way to combat this shortage is to identify the software taught in colleges or universities. This article will examine four data analysis software—Excel add-ins, SPSS, SAS, and R—and we will outline the cost, training, and statistical methods/tests/uses for each of these software. It will further explain implications for universities and future students

    The RAppArmor Package: Enforcing Security Policies in R Using Dynamic Sandboxing on Linux

    Get PDF
    The increasing availability of cloud computing and scientific super computers brings great potential for making R accessible through public or shared resources. This allows us to efficiently run code requiring lots of cycles and memory, or embed R functionality into, e.g., systems and web services. However some important security concerns need to be addressed before this can be put in production. The prime use case in the design of R has always been a single statistician running R on the local machine through the interactive console. Therefore the execution environment of R is entirely unrestricted, which could result in malicious behavior or excessive use of hardware resources in a shared environment. Properly securing an R process turns out to be a complex problem. We describe various approaches and illustrate potential issues using some of our personal experiences in hosting public web services. Finally we introduce the RAppArmor package: a Linux based reference implementation for dynamic sandboxing in R on the level of the operating system
    • …
    corecore