
JSS Journal of Statistical Software
November 2013, Volume 55, Issue 7. http://www.jstatsoft.org/

The RAppArmor Package: Enforcing Security

Policies in R Using Dynamic Sandboxing on Linux

Jeroen Ooms
University of California, Los Angeles

Abstract

The increasing availability of cloud computing and scientific super computers brings
great potential for making R accessible through public or shared resources. This allows
us to efficiently run code requiring lots of cycles and memory, or embed R functionality
into, e.g., systems and web services. However some important security concerns need to
be addressed before this can be put in production. The prime use case in the design
of R has always been a single statistician running R on the local machine through the
interactive console. Therefore the execution environment of R is entirely unrestricted,
which could result in malicious behavior or excessive use of hardware resources in a shared
environment. Properly securing an R process turns out to be a complex problem. We
describe various approaches and illustrate potential issues using some of our personal
experiences in hosting public web services. Finally we introduce the RAppArmor package:
a Linux based reference implementation for dynamic sandboxing in R on the level of the
operating system.

Keywords: R, security, Linux, sandbox, AppArmor.

1. Security in R: Introduction and motivation

The R project for statistical computing and graphics (R Core Team 2013) is currently one of
the primary tool-kits for scientific computing. The software is widely used for research and
data analysis in both academia and industry, and is the de-facto standard among statisticians
for the development of new computational methods. With support for all major operating sys-
tems, a powerful standard library, over 3000 add-on packages and a large active community, it
is fair to say that the project has matured to a production-ready computation tool. However,
practices in statistical computation have changed since the initial design of R in 1993 (Ihaka
1998). Internet access, public cloud computing (Armbrust et al. 2010), live and open data and
scientific super computers are transforming the landscape of data analysis. This is only the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Journal of Statistical Software

https://core.ac.uk/display/478955225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/

2 RAppArmor: Enforcing Security Policies in R

beginning. Sharing of data, code and results on social computing platforms will likely become
an integral part of the publication process (Stefanski et al. 2013). This could address some of
the hardware challenges, but also contribute towards reproducible research and further social-
ize data analysis, i.e., facilitate learning, collaboration and integration. These developments
shift the role of statistical software towards more general purpose computational back-ends,
powering systems and applications with embedded analytics and visualization.

However, one reason developers might still be reluctant to build on R is concerns regarding
security and management of shared hardware resources. Reliable software systems require
components which behave predictably and cannot be abused. Because R was primarily de-
signed with the local user in mind, security restrictions and unpredictable behavior have not
been considered a major concern in the design of the software. Hence, these problems will
need to be addressed somehow before developers can feel comfortable making R part of their
infrastructure, or convince administrators to expose their facilities to the public for R based
services. It is our personal experience that the complexity of managing security is easily
underestimated when designing stacks or systems that build on R. Some of the problems are
very domain specific to scientific computing, and make embedding R quite different from em-
bedding other software environments. Properly addressing these challenges can help facilitate
wider adoption of R as a general purpose statistical engine.

1.1. Security when using contributed code

Building systems on R has been the main motivation for this research. However, security is a
concern for R in other contexts as well. As the community is growing rapidly, relying on social
courtesy in contributed code becomes more dangerous. For example, on a daily basis, dozens
of packages and package updates are submitted to the Comprehensive R Archive Network
(CRAN; Ripley 2011). These packages contain code written in R, C, Fortran, C++, Java,
etc. It is unfeasible for the CRAN maintainers to do a thorough audit of the full code that
is submitted, every time. Some packages even contain pre-compiled Java code for which the
source is not included. Furthermore, R packages are not signed with a private key as is the
case for, e.g., packages in most Linux distributions, which makes it hard to verify the identity
of the author. As CRAN packages are automatically built and installed on hundreds, possibly
thousands of machines around the world, they form an interesting target for abuse. Hence
there is a real danger of packages containing malicious code making their way unnoticed into
the repositories. Risks are even greater for packages distributed through channels without
any form of code review, for example by e-mail or through the increasingly popular GitHub
repositories (Torvalds and Hamano 2010; Dabbish, Stuart, Tsay, and Herbsleb 2012).

In summary, it is not overly paranoid of the R user to be a bit cautious when installing and
running contributed code downloaded from the internet. However, things do not have to be
as critical as described above. Controlling security is a good practice, even when there are no
immediate reasons for concern. Some users simply might want to prevent R from accidentally
erasing files or interfering with other activities on the machine. Making an effort to ensure R
is running safely with no unnecessary privileges can be reassuring to both user and system
administrator, and might one day prevent a lot of trouble.

1.2. Sandboxing the R environment

This paper explores some of the potential problems, along with approaches and methods of

Journal of Statistical Software 3

securing R. Different aspects of security in the context of R are illustrated using personal
experiences and examples of bad or malicious code. We will explain how untrusted code can
be executed inside a sandboxed process. Sandboxing in this context is a somewhat informal
term for creating an execution environment which limits capabilities of harmful and undesired
behavior. As it turns out, R itself is not very suitable for implementing such access control
policies, and the only way to properly enforce security is by leveraging features from the
operating system. To exemplify this approach, an implementation based on AppArmor is
provided which can be used on Linux distributions as the basis for a sandboxing toolkit. This
package is used throughout the paper to demonstrate one way of addressing issues.

However, we want to emphasize that we do not claim to have solved the problem. This paper
mostly serves as an introduction to security for the R community, and hopefully creates some
awareness that this is a real issue moving forward. The RAppArmor package is one approach
and a good starting point for experimenting with dynamic sandboxing in R. However it mostly
serves as a proof of concept of the general idea of confining and controlling an R process. The
paper describes examples of use cases, threats, policies and anecdotes to give the reader a
sense of what is involved with this topic. Without any doubt, there are concerns beyond
the ones mentioned in this paper, many of which might be specific to certain applications or
systems. We hope to invoke a discussion in the community about potential security issues
related to using R in different scenarios, and encourage those comfortable with other platforms
or who use R for different purposes to join the discussion and share their concerns, experiences
and solutions.

2. Use cases and concerns of sandboxing R

Let us start by taking a step back and put this research in perspective by describing some
concrete use cases where security in R could be a concern. Below three simple examples of
situations in which running R code in a sandbox can be useful. The use cases are ordered by
complexity and require increasingly advanced sandboxing technology.

Running untrusted code

Suppose we found an R package in our e-mail or on the internet that looks interesting, but we
are not quite sure who the author is, and if the package does not contain any malicious code.
The package is too large for us to inspect all of the code manually, and furthermore it contains
a library in a foreign language (e.g., C++, Fortran) for which we lack the knowledge and insight
to really understand its implications. Moreover, programming style (or lack thereof) of the
author can make it difficult to assess what exactly is going on (IOCCC 2012). Nevertheless we
would like to give the package a try, but without exposing ourselves to the risk of potentially
jeopardizing the machine.

One solution would be to run untrusted code on a separate or virtual machine. We could
either install some local virtualization software, or rent a VPS/cloud server to run R remotely,
for example on Amazon EC2. However this is somewhat cumbersome and we will not have
our regular workflow available: in order to put the package to the test on our own data, we
first need to copy our data, scripts, files and package library, etc. Some local virtualization
software can be configured for read-only sharing of resources between host and guest machine,
but we would still need separate virtual machines for different tasks and projects. In practice,

4 RAppArmor: Enforcing Security Policies in R

managing multiple machines is a bit unpractical and not something that we might want to
do on a daily basis. It would be more convenient if we could instead sandbox our regular R
environment for the duration of installing and using the new package with a tailored security
policy. If the sandbox is flexible and unobtrusive enough not to interfere with our daily
workflow, we could even make a habit out of using it each time we use contributed code
(which to most users means every day).

Shared resources

A second use case could be a scenario where multiple users are sharing a single machine. For
example, a system administrator at a university is managing a large computing server and
would like to make it available to faculty and students. This would allow them to run R
code that requires more computing power than their local machine can handle. For example
a researcher might want to do a simulation study, and fit a complex model a million times
on generated datasets of varying properties. On her own machine this would take months to
complete, but the super computer can finish the job overnight. The administrator would like
to set up a web service for this and other researchers to run such R scripts. However he is
worried about users interfering with each other’s work, or breaking anything on the machine.
Furthermore he wants to make sure that system resources are allocated in a fair way such
that no single user can consume all memory or CPU on the system.

Embedded systems and services

There have numerous efforts been made to facilitate integration of R functionality into 3rd
party systems, both for open source and proprietary purposes. Major commercial vendors
like Oracle Corporation, IBM and SAS Institute Inc. have included R interfaces in their
products. Examples of open source interfaces from popular general purpose languages are
RInside (Eddelbuettel and Francois 2011), which embeds R into C++ environments, and JRI
which embeds R in Java software (Urbanek 2011, 2013a). Similarly, rpy2 (Moreira and Warnes
2006; Gautier 2008) provides a Python interface to R, and RinRuby is a Ruby library that
integrates the R interpreter in Ruby (Dahl and Crawford 2009). littler provides hash-bang
(i.e., scripts starting with #!/some/path) capability for R (Horner and Eddelbuettel 2011).
The Apache2 module rApache (mod_R) (Horner 2011) makes it possible to run R scripts from
within the Apache2 web server. Heiberger and Neuwirth (2009) provide a series of tools to call
R from DCOM clients on Windows environments, mostly to support calling R from Microsoft
Excel. Finally, RServe is a TCP/IP server which provides low level access to an R session
over a socket (Urbanek 2013b).

The third use case originates from these developments: it can be summarized as confining
and managing R processes inside of embedded systems and services. This use case is largely
derived from our personal needs: we are using R inside various systems and web services to
provide on-demand calculating and plotting over the internet. These services need to respond
quickly and with minimal overhead to incoming requests, and should scale to serve many jobs
per second. Furthermore the systems need to be stable, requiring that jobs should always
return within a given time frame. Depending on the user and the type of job, different security
restrictions might be appropriate. Some services specifically allow for execution of arbitrary
R code. Also we need to dynamically enforce limits on the use of memory, processors and disk
space on a per process basis. These requirements demand a more flexible and finer degree of

Journal of Statistical Software 5

control over the process privileges and restrictions than the first two use cases. It encouraged
us to explore more advanced methods than the conventional tools and has been the most
central motivation of this research.

2.1. System privileges and hardware resources

The use cases described above outline motivations and requirements for an R sandbox. Two
inter-related problems can be distinguished. The first one is preventing system abuse, i.e.,
use of the machine for malicious or undesired activity, or completely compromising the ma-
chine. The second problem is managing hardware resources, i.e., preventing excessive use by
constraining the amount of memory, CPU, etc. that a single user or process is allowed to
consume.

System abuse

The R console gives the user direct access to the operating system and does not implement
any privilege restrictions or access control policies to prevent malicious use. In fact, some
of the basic functionality in R assumes quite profound access to the system, e.g., read ac-
cess to system files, or the privilege of running system shell commands. However, running
untrusted R code without any restrictions can get us in serious trouble. For example, the
code could call the system() function from where any shell commands can be executed. But
also innocent looking functions like read.table() can be used to extract sensitive infor-
mation from the system, e.g., read.table("/etc/passwd") lists all users on the system or
readLines("/var/log/syslog") exposes system log information.

Even an R process running as a non-privileged user can do a lot of harm. Potential perils
include code containing or downloading a virus or security exploit, or searching the system
for sensitive personal information. Appendix B.2 demonstrates a hypothetical example of a
simple function that scans the home directory for documents containing credit card numbers.
Another increasing global problem are viruses which make the machine part of a so called
“botnet”. Botnets are large networks of compromised machines (“bots”) which are remotely
controlled to used for illegal activities (Abu Rajab, Zarfoss, Monrose, and Terzis 2006). Once
infected, the botnet virus connects to a centralized server and waits for instructions from
the owner of the botnet. Botnets are mostly used to send spam or to participate in DDOS
attacks: centrally coordinated operations in which a large number of machines on the internet
is used to flood a target with network traffic with the goal of taking it down by overloading
it (Mirkovic and Reiher 2004). Botnet software is often invisible to the user of an infected
machine and can run with very little privileges: simple network access is sufficient to do most
of its work.

When using R on the local machine and only running our own code, or from trusted sources,
these scenarios might sound a bit far fetched. However, when running code downloaded
from the internet or exposing systems to the public, this is a real concern. Internet security
is a global problem, and there are a large number of individuals, organizations and even
governments actively employing increasingly advanced and creative ways of gaining access to
protected infrastructures. Especially servers running on beefy hardware or fast connections are
attractive targets for individuals that could use these resources for other purposes. But also
servers and users inside large companies, universities or government institutions are frequently
targeted with the goal of gathering confidential information. This last aspect seems especially

6 RAppArmor: Enforcing Security Policies in R

relevant, as R is used frequently in these types of organizations.

Resource restrictions

The other category of problems is not necessarily related to deliberate abuse, and might even
arise completely unintentionally. It involves proper management, allocation and restricting
of hardware.

It is fair to say that R can be quite greedy with system resources. It is easy to run a command
which will consume all of the available memory and/or CPU, and does not finish executing
until manually terminated. When running R on the local machine through the interactive
console, the user will quickly recognize a function call that is not returning timely or is
making the machine unresponsive. When this happens, we can easily interrupt the process
prematurely by sending a SIGINT, i.e., pressing CTRL+C in Linux or ESC in Windows. If this
does not work we can open the task manager and tell the operating system to kill the process,
and if worst comes to worst we can decide to reboot our machine.

However, when R is embedded in a system, the situation is more complicated and we need
to cover these scenarios in advance. If an out-of-control R job is not properly detected and
terminated, the process might very well run indefinitely and take down our service, or even
the entire machine. This has actually been a major problem that we personally experienced
in an early implementation of a public web service for mixed modeling (Ooms 2010) which
uses the lme4 package (Bates, Maechler, and Bolker 2011). What happened was that users
could accidentally specify a variable with many levels as the grouping factor. This causes the
design matrix to blow up even on a relatively small dataset, and decompositions will take
forever to complete. To make things worse, lme4 uses a lot of C code which does not respond
to time limits set by R’s setTimeLimit() function. Appendix B.4 contains a code snippet
that simulates this scenario. When this would happen, the only way to get things up and
running again was to manually login to the server and reset the application.

Unfortunately this example is not an exception. The behavior of R can be unpredictable,
which is an aspect easily overlooked by (non-statistician) developers. When a system calls
out to, e.g., an SQL or PHP script, the procedure usually runs without any problems and the
processing time is proportional to the size of the data, i.e., the number of records returned
by SQL. However, in an R script many things can go wrong, even though the script itself is
perfectly fine. Algorithms might not converge, data might be rank-deficient, or missing values
throw a spanner in the works. Statistical computing is full of such intrinsic edge-cases and
unexpected caveats. Using only tested code or predefined services does not entirely guarantee
smooth and timely completion of R jobs, especially if the data is dynamic. When embedding
R in systems or shared facilities, it is important that we acknowledge this facet and have
systems in place to manage jobs and mitigate problems without manual intervention.

3. Various approaches of confining R

The current section introduces several approaches of securing and sandboxing R, with their
advantages and limitations. They are reviewed in the context of our use cases, and evaluated
on how they address the problems of system abuse and restricting resources. The approaches
are increasingly low-level : they represent security on the level of the application, R software
itself and operating system respectively. As will become clear, we are leaning towards the

Journal of Statistical Software 7

opinion that R is not very well suited to address security issues, and the only way to do proper
sandboxing is on the level of the operating system. This will lead up to the RAppArmor
package introduced in Section 4.

3.1. Application level security: Predefined services

The most common approach to prevent malicious use is simply to only allow a limited set of
predefined services, that have been deployed by a trusted developer and cannot be abused.
This is generally the case for websites containing dynamic content though, e.g., CGI or PHP
scripts. Running arbitrary code is explicitly prevented and any possibility to do so anyway
is considered a security hole. For example, we might expose the following function as a web
service:

R> liveplot <- function (ticker) {

+ url <- paste("http://ichart.finance.yahoo.com/table.csv?s=",

+ ticker, "&a=07&b=19&c=2004&d=07&e=13&f=2020&g=d&ignore=.csv",

+ sep = "")

+ mydata <- read.csv(url)

+ mydata$Date <- as.Date(mydata$Date)

+ myplot <- ggplot2::qplot(Date, Close, data = mydata,

+ geom = c("line", "smooth"), main = ticker)

+ print(myplot)

+ }

The function above downloads live data from the public API at Yahoo Finance and creates
an on-demand plot of the historical prices using ggplot2 (Wickham 2009). It has only one
parameter: ticker, a character string identifying a stock symbol. This function can be
exposed as a predefined web service, where the client only supplies the ticker argument.
Hence the system does not need to run any potentially harmful user-supplied R code. The
client sets the symbol to, e.g., "GOOG" and the resulting plot can be returned in the form of
a PNG image or PDF document. This function is actually the basis of the “stockplot” web
application (Ooms 2009); an interactive graphical web application for financial analysis which
still runs today.

Limiting users and clients to a set of predefined parameterized services is the standard solution
and reasonably safe in combination with basic security methods. For example, Rserve can be
configured to run with a custom uid, umask, chroot. However in the context of R, predefined
services severely limit the application and security is actually not fully guaranteed. We can
expose some canned calculations or generate a plot as done in the example, but beyond that
things quickly becomes overly restrictive. For example in case of an application that allows
the user to fit a statistical model, the user might need to be able to include transformations
of variables like I(cos(x^2)) or cs(x, 3). Not allowing a user to call any custom functions
makes this hard to implement.

What distinguishes R from other statistical software is that the user has a great deal of control
and can do programming, load custom libraries, etc. A predefined service takes this freedom
away from the user, and at the same time puts a lot of work in the hands of the developer
and administrator. Only they can expose new services and they have to make sure that all
services that are exposed cannot be abused in some way or another. Therefore this approach

8 RAppArmor: Enforcing Security Policies in R

is expensive, and not very social in terms of users contributing code. In practice, anyone that
wants to publish an R service will have to purchase and manage a personal server or know
someone that is willing to do so. Also it is still important to set hardware limitations, even
when exposing relatively simple, restricted services. We already mentioned the example of the
lme4 web application, where a single user could accidentally take down the entire system by
specifying an overly complex model. But actually even some of the most basic functionality
in R can cause trouble with problematic data. Hence, even restricted predefined R services
are not guaranteed to consistently return smooth and timely. These aspects of statistical
computing make common practices in software design not directly generalize to R services,
and are easily under appreciated by developers and engineers with a limited background in
data analysis.

Code injection

Finally, there is still the risk of code injection. Because R is a very dynamic language, evalua-
tions sometimes happen at unexpected places. One example is during the parsing of formulas.
For example, we might want to publish a service that calls the lm() function in R on a fixed
dataset. Hence the only parameter supplied by the user is a formula in the form of a character
vector. Assume in the code snippet below that the userformula parameter is a string that
has been set through some graphical interface.

R> coef(lm(userformula, data = cars))

For example the user might supply a string "speed ~ dist" and the service will return the
coefficients. On first sight, this might seem like a safe service. However, formulas actually
allow for the inclusion of calls to other functions. So even though userformula is a character
vector, it can be used to inject a function call:

R> userformula <- "speed ~ dist + system("whoami")"

R> lm(userformula, data = cars)

In the example above, lm() will automatically convert userformula from type character to
a ‘formula’, and subsequently execute the system("whoami") command. Hence even when
a client supplies only simple primitive data, unexpected opportunities for code injection can
still arise. Therefore it is important when using this approach, to sanitize the input before
executing the service. One way is by setting up the service such that only alphanumeric
values are valid parameters, and use a regular expression to remove any other characters,
before actually executing the script or service:

R> myarg <- gsub("[^a-zA-Z0-9]", "", myarg)

3.2. Sanitizing code by blacklisting

A less restrictive approach is to allow users to push custom R code, but inspect the code
before evaluating it. This approach has been adopted by some web sites that allow users to
run R code, like Banfield (1999) and Chew (2012). However, given the dynamic nature of the
R language, malicious calls are actually very difficult to detect and such security is easy to
circumvent. For example, we might want to prevent users from calling the system() function.

Journal of Statistical Software 9

One way is to define some smart regular expressions that look for the word“system” in a block
of code. This way it would be possible to detect a potentially malicious call like this:

R> system("whoami")

However, it is much more difficult to detect the equivalent call in the following block:

R> foo <- get(paste("sy", "em", sep = "st"))

R> bar <- paste("who", "i", sep = "am")

R> foo(bar)

And indeed, it turns out that the services that use this approach are fairly easy to trick.
Because R is a dynamic scripting language, the exact function calls might not reveal themselves
until runtime, when it is often too late. We are actually quite convinced that it is nearly
impossible to really sanitize an R script just by inspecting the source code.

An alternative method to prevent malicious code is by defining an extensive blacklist of
functions that a user is not allowed to call, and disable these at runtime. The sandboxR
package (Daroczi 2013) does this to block access to all R functions providing access to the
file system. It evaluates the user-supplied code in an environment in which all blacklisted
functions are masked from the calling namespace. This is fairly effective and provides a
barrier against smaller possible attacks or casual errors. However, the method relies on
exactly knowing and specifying which functions are safe and which are not. The package
author has done this for the thousands of R functions in the base package and we assume he
has done a good job. But it is quite hard to maintain and cumbersome to generalize to other
R packages (by default the method does not allow loading other packages). Everything falls if
one function has been overlooked or changes between versions, which does make the method
vulnerable. Furthermore, in R even the most primitive functions can be exploited to tamper
with scoping and namespaces, so it is unwise to rely solely on this for security.

Moreover, even when sanitizing of the code is successful, this method does not limit the use
of hardware resources in any way. Hence, additional methods are still required to prevent
excessive use of resources in a public environment. Packages like sandboxR should probably
only be used to supplement system level security as implemented in the RAppArmor package.
They can be useful to detect problematic calls earlier on and present informative errors naming
a specific forbidden function rather than just ”permission denied”. But blacklisting solutions
are not waterproof and should not be considered a full security solution.

3.3. Sandboxing on the level of the operating system

One can argue that managing resources and privileges is something that is outside the domain
of the R software, and is better left to the operating system. The R software has been designed
for statistical computing and related functionality; the operating system deals with hardware
and security related matters. Hence, in order to really sandbox R properly without imposing
unnecessary limitations on its functionality, we need to sandbox the process on the level of
the operating system. When restrictions are enforced by the operating system instead of R
itself, we do not have to worry about all of the pitfalls and implementation details of R. The
user can interact freely with R, but will not be able to do anything for which the system does
not grant permission.

10 RAppArmor: Enforcing Security Policies in R

Some operating systems offer more advanced capabilities for setting process restrictions than
others. The most advanced functionality is found in UNIX like systems, of which the most
popular ones are either BSD based (FreeBSD, OSX, etc.) or Linux based (Debian, Ubuntu,
Fedora, Suse, etc.). Most UNIX like systems implement some sort of ULIMIT functionality
to facilitate restricting availability of hardware resources on a per-process basis. Furthermore,
both BSD and Linux provide various mandatory access control (MAC) systems. On Linux,
these are implemented as kernel modules. The most popular ones are AppArmor (Bauer
2006), SELinux (Smalley, Vance, and Salamon 2001) and Tomoyo Linux (Harada, Horie, and
Tanaka 2004). MAC gives a much finer degree of control than standard user-based privileges,
by applying advanced security policies on a per-process basis. Using a combination of MAC
and ULIMIT tools we can do a pretty decent job in sandboxing a single R process to a point
where it can do little harm to the system. Hence we can run arbitrary R code without losing
any sleep over potentially jeopardizing the machine. Unfortunately, this approach comes at
the cost of portability of the software. As different operating systems implement very different
methods for managing processes and privileges, the solutions will be to a large extend OS
specific. In our implementation we have tried to hide these system calls by exposing R
functions to interact with the kernel. Going forward, eventually these functions could behave
somewhat OS specific, abstracting away technicalities and providing similar functionality on
different systems. But for now we limit ourselves to systems based on the Linux kernel.

4. The RAppArmor package

The current section describes some security concepts and how an R process can be sand-
boxed using a combination of ULIMIT and MAC tools. The methods are illustrated using
the RAppArmor package: an implementation based on Linux and AppArmor. AppArmor
(“Application Armor”) is a security module for the Linux kernel. It allows for associating
programs and processes with security profiles that restrict the capabilities and permissions
of that process. There are two ways of using AppArmor. One is to associate a single, static
security profile with every R process. This can be done only by the system administrator
and does not require our R package (see also Section 4.9). However, this is usually overly
restrictive. We want more flexibility to set different policies, priorities and restrictions for
different users or tasks.

The RAppArmor package exposes R functions that interface directly to Linux system calls
related to setting privileges and restrictions of a running process. Besides applying security
profiles, RAppArmor also interfaces to the prlimit call in Linux, which sets RLIMIT (re-
source limit) values on a process (RLIMIT is the Linux implementation of ULIMIT). Linux
defines a number of RLIMIT’s, which restrict resources like memory use, number of pro-
cesses, and stack size. More details on RLIMIT follow in Section 4.7. Using RAppArmor, the
sandboxing functionality is accessible directly from within the R session, without the need for
external tools or programs. Once RAppArmor is installed, any user can apply security profiles
and restrictions to the running process; no special permissions are required. Furthermore, it
allowed us to create the eval.secure() function: an abstraction which mimics eval(), but
has additional parameters to evaluate a single call under a given uid, priority, security policy
and resource restrictions.

The RAppArmor package brings the low level system security methods all the way up to level
of the R language. Using eval.secure(), different parts of our code can run with different

Journal of Statistical Software 11

security restrictions with minimal overhead, something we call dynamic sandboxing. This is
incredibly powerful in the context of embedded services, and opens the door to applications
which explicitly allow for arbitrary code execution; something that previously always had to
be avoided for security reasons. This enables a new approach to socialize statistical computing
and lies at the core of the OpenCPU framework (Ooms 2013), which exposes a public HTTP
API to run and share R code on a central server.

4.1. AppArmor profiles

Security policies are defined in profiles which form the core of the AppArmor software. A
profile consists of a set of rules specified using AppArmor syntax in an ASCII file. The Linux
kernel translates these rules to a security policy that it will enforce on the appropriate process.
A brief introduction to the AppArmor syntax is given in Section 5.1. The appendix of this
paper contains some example profiles that ship with the RAppArmor package to get the user
started. When the package is installed through the Debian/Ubuntu package manager (e.g.,
using apt-get) the profiles are automatically copied to /etc/apparmor.d/rapparmor.d/.
Because profiles define file access permissions based the location of files and directories on
the file system, they are to some extent specific to a certain Linux distribution, as different
distributions have somewhat varying conventions on where files are located. The example
profiles included with RAppArmor are based on the file layout of the r-base package (and its
dependencies) by Bates and Eddelbuettel (2004) for Debian/Ubuntu, currently maintained
by Dirk Eddelbuettel.

The RAppArmor package and the included profiles work “out of the box” on Ubuntu 12.04
(Precise) and up, Debian 7.0 (Wheezy) and up. The package can also be used on OpenSuse
12.1 and up, however Suse systems organize the file system in a slightly different way than
Ubuntu and Debian, so the profiles need to be modified accordingly. The RAppArmor website
contains some specific instructions regarding various distributions.

Again, we want to emphasize that the package should mostly be seen as a reference imple-
mentation to demonstrate how to create a working sandbox in R. The RAppArmor package
provides the tools to set security restrictions and example profiles to get the user started.
However, depending on system and application, different policies might be appropriate. It is
still up to the administrator to determine which privileges and restrictions are appropriate
for a certain system or purpose. The example profiles are merely a starting point and need
fine-tuning for specific applications.

4.2. Automatic installation

The RAppArmor package consists of R software and a number of example security profiles.
On Ubuntu it is easiest installed using binary builds provided through launchpad:

$ sudo add-apt-repository ppa:opencpu/rapparmor

$ sudo apt-get update

$ sudo apt-get install r-cran-rapparmor

Binaries in this repository are built for the version of R that ships with the operating system.
To get builds for R version 3.0 and up, use repository ppa:opencpu/rapparmor-dev instead.
The r-cran-rapparmor package can also be built from source using something along the lines
of the following:

12 RAppArmor: Enforcing Security Policies in R

$ wget http://cran.r-project.org/src/contrib/RAppArmor_0.8.3.tar.gz

$ tar xzvf RAppArmor_0.8.3.tar.gz

$ cd RAppArmor/

$ debuild -uc -us

$ cd ..

$ sudo dpkg -i r-cran-rapparmor_0.8.3-precise1_amd64.deb

The r-cran-rapparmor package will automatically install required dependencies and security
profiles. The security profiles are installed in /etc/appamor.d/rapparmor.d/.

4.3. Manual installation

On distributions for which no system installation package is available, manual installation is
required. Start with installing required dependencies:

$ sudo apt-get install r-base-dev libapparmor-dev apparmor apparmor-utils

Note that R version 2.14 or higher is required. Also the system needs to have an AppAr-
mor enabled Linux kernel. After dependencies have been installed, install RAppArmor from
CRAN:

$ wget http://cran.r-project.org/src/contrib/RAppArmor_0.8.3.tar.gz

$ sudo R CMD INSTALL RAppArmor_0.8.3.tar.gz

This will compile the C code and install the R package. After the package has been installed
successfully, the security profiles need to be copied to the apparmor.d directory:

$ cd /usr/local/lib/R/site-library/RAppArmor/

$ sudo cp -Rf profiles/debian/* /etc/apparmor.d/

Finally, the AppArmor service needs to be restarted to load the new profiles. Also we do not
want to enforce the global R profile at this point:

$ sudo service apparmor restart

$ sudo aa-disable usr.bin.r

This should complete the installation. To verify if everything is working, start R and run the
following code:

R> library("RAppArmor")

R> aa_change_profile("r-base")

If the code runs without any errors, the package has successfully been installed.

4.4. Linux security methods

The RAppArmor package interfaces to a number of Linux system calls that are useful in the
context of security and sandboxing. The advantage of calling these directly from R is that
we can dynamically set the parameters from within the R process, as opposed to fixing them

Journal of Statistical Software 13

for all R sessions. Hence it is actually possible to execute some parts of an application in a
different security context than other parts.

The package implements many functions that wrap around Linux C interfaces. However it
is not required to study all of these functions. To the end user, everything in the package
comes together in the powerful and convenient eval.secure() function. This function mimics
eval(), but it has additional parameters that define restrictions which will be enforced to a
specific evaluation. An example:

R> myresult <- eval.secure(myfun(), RLIMIT_AS = 10 * 1024 * 1024,

+ profile = "r-base")

This will call myfun() with a memory limit of 10MB and the r-base security profile (which
is introduced in Section 5.2). The eval.secure() function works by creating a fork of the
current process, and then sets hard limits, uid and AppArmor profile on the forked process,
before evaluating the call. After the function returns, or when the timeout is reached, the
forked process is killed and cleaned up. This way, all of the one-way security restrictions can
be applied, and evaluations that happen inside eval.secure() will not have any side effects
on the main process.

4.5. Setting user and group ID

One of the most basic security methods is running a process as a specific user. Especially
within a system where the main process has superuser privileges (which could be the case,
for example, in a webserver), switching to a user with limited privileges before evaluating
any code is a wise thing to do. We could even consider a design where every user of the
application has a dedicated user account on the Linux machine. The RAppArmor package
implements the functions getuid(), setuid(), getgid(), setgid(), which call out to the
respective Linux system calls. Users and groups can either be specified by their name, or as
integer values as defined in the /etc/passwd file.

R> library("RAppArmor")

AppArmor LSM is enabled.

Current profile: none (unconfined).

R> system("whoami")

root

R> getuid()

[1] 0

R> getgid()

[1] 0

14 RAppArmor: Enforcing Security Policies in R

R> setgid(1000)

R> setuid(1000)

R> getgid()

[1] 1000

R> getuid()

[1] 1000

R> system("whoami")

jeroen

The user/group ID can also be set inside the eval.secure() function. In this case it will not
affect the main process; the UID is only set for the time of the secure evaluation.

R> eval(system("whoami", intern = TRUE))

[1] "root"

R> eval.secure(system("whoami", intern = TRUE), uid = 1000)

[1] "jeroen"

R> eval(system("whoami", intern = TRUE))

[1] "root"

Note that in order for setgid() and setuid() to work, the user must have the appropriate
capabilities in Linux, which are usually restricted to users with superuser privileges. The
getuid() and getgid() functions can be called by anyone.

4.6. Setting task priority

The RAppArmor package implements interfaces for setting the scheduling priority of a pro-
cess, also called its nice value or niceness. Linux systems use a priority system with 40
priorities, ranging from −20 (highest priority) to 19 (lowest priority). By default most pro-
cesses run with nice value 0. Users without superuser privileges can only increase this value,
i.e., lower the priority of the process. In RAppArmor the getpriority and setpriority

functions change the priority of the current session:

R> getpriority()

[1] 0

Journal of Statistical Software 15

R> setpriority(10)

[1] 10

R> system("nice", intern = TRUE)

[1] "10"

R> setpriority(5)

Error in setpriority(5) :

Failed to set priority. The caller attempted to lower a process priority,

but did not have the required privilege.

Again, the eval.secure() function is used to run a function or code block with a certain
priority without affecting the priority of the main R session:

R> getpriority()

[1] 0

R> eval.secure(system("nice", intern = TRUE), priority = 10)

[1] "10"

R> getpriority()

[1] 0

4.7. Linux resource limits (RLIMIT)

Linux defines a number of RLIMIT values that can be used to set resource limits on a process
(Free Software Foundation 2012). The RAppArmor package has functions to get/set the
following RLIMIT values:

� RLIMIT_AS – The maximum size of the process’s virtual memory (address space).

� RLIMIT_CORE – Maximum size of core file.

� RLIMIT_CPU – CPU time limit.

� RLIMIT_DATA – The maximum size of the process’s data segment.

� RLIMIT_FSIZE – The maximum size of files that the process may create.

� RLIMIT_MEMLOCK – Number of memory that may be locked into RAM.

16 RAppArmor: Enforcing Security Policies in R

� RLIMIT_MSGQUEUE – Maximum number of bytes that can be allocated for POSIX mes-
sage queues.

� RLIMIT_NICE – Specifies a ceiling to which the process’s nice value (priority).

� RLIMIT_NOFILE – Limit maximum file descriptor number that can be opened.

� RLIMIT_NPROC – Maximum number of processes (or, more precisely on Linux, threads)
that can be created by the user of the calling process.

� RLIMIT_RTPRIO – Ceiling on the real-time priority that may be set for this process.

� RLIMIT_RTTIME – Limit on the amount of CPU time that a process scheduled under a
real-time scheduling policy may consume without making a blocking system call.

� RLIMIT_SIGPENDING – Limit on the number of signals that may be queued by the user
of the calling process.

� RLIMIT_STACK – The maximum size of the process stack.

For all of the above RLIMIT values, the RAppArmor package implements a function which
name is equivalent to the non-capitalized name of the RLIMIT value. For example to get/set
RLIMIT_AS, the user calls rlimit_as(). Every rlimit_*() function has exactly 3 parameters:
hardlim, softlim, and pid. Each argument is specified as an integer value. The pid argument
points to the target process. When this argument is omitted, the calling process is targeted.
When the softlim is omitted, it is set equal to the hardlim. When the function is called
without any arguments, it returns the current limits.

The soft limit is the value that the kernel enforces for the corresponding resource. The hard
limit acts as a ceiling for the soft limit: an unprivileged process may only set its soft limit
to a value in the range from 0 up to the hard limit, and (irreversibly) lower its hard limit.
A privileged process (under Linux: one with the CAP_SYS_RESOURCE capability) may make
arbitrary changes to either limit value (Free Software Foundation 2012).

R> rlimit_as()

$hardlim

[1] 1.845e+19

$softlim

[1] 1.845e+19

R> A <- rnorm(1e7)

R> rm(A)

R> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 230219 6.2 467875 12.5 350000 9.4

Vcells 211018 1.7 8773042 67.0 10211897 78.0

Journal of Statistical Software 17

R> rlimit_as(10*1024*1024)

$hardlim

[1] 10485760

$softlim

[1] 10485760

R> A <- rnorm(1e7)

Error: cannot allocate vector of size 76.3 Mb

Note that a process owned by a user without superuser privileges can only modify RLIMIT
to more restrictive values. However, using eval.secure(), a more restrictive RLIMIT can
be applied to a single evaluation without any side effects on the main process:

R> library("RAppArmor")

R> A <- eval.secure(rnorm(1e7), RLIMIT_AS = 10 * 1024 * 1024)

Error: cannot allocate vector of size 76.3 Mb

R> A <- rnorm(1e7)

The exact meaning of the different limits can be found in the RAppArmor package documen-
tation (e.g., ?rlimit_as) or in the documentation of the distribution, e.g., Canonical, Inc
(2012).

4.8. Activating AppArmor profiles

The RAppArmor package implements three calls to the Linux kernel related to applying
AppArmor profiles: aa_change_profile, aa_change_hat and aa_revert_hat. Both the
aa_change_profile and aa_change_hat functions take a parameter named profile: a char-
acter string identifying the name of the profile. This profile has to be preloaded by the kernel,
before it can be applied to a process. The easiest way to load profiles is to copy them to the
directory /etc/apparmor.d/ and then run sudo service apparmor restart.

The main difference between a profile and a hat is that switching profiles is an irreversible
action. Once the profile has been associated with the current process, the process cannot call
aa_change_profile again to escape from the profile (that would defeat the purpose). The
only exception to this rule are profiles that contain an explicit change_profile directive.
The aa_change_hat function on the other hand is designed to associate a process with a
security profile in a way that does allow it to escape out of the security profile. In order to
realize this, the aa_change_hat takes a second argument called magic_token, which defines
a secret key that can be used to revert the hat. When aa_revert_hat is called with the same
magic_token that was used in aa_change_hat, the security restrictions are relieved.

Using aa_change_hat to switch in and out of profiles is an easy way to get started with
RAppArmor and test some security policies. However it should be emphasized that using

18 RAppArmor: Enforcing Security Policies in R

hats instead of profiles is also a security risk and should be avoided in production settings. It
is important to realize that if the code running in the sandbox can find a way of discovering
the value of the magic_token (e.g., from memory, command history or log files), it will be able
to escape from the sandbox. Hence aa_change_hat should only be used to prevent general
purpose malicious activity, e.g., when testing a new R package. When hosting services or
otherwise exposing an environment that might be specifically targeted, hackers could write
code that attempts to find the magic token and revert the hat. Therefore it is recommended
to only use aa_change_profile or eval.secure() in production settings. When a profile
is applied to a process using aa_change_profile or eval.secure(), the kernel will keep
enforcing the security policy on the respective process and all of its children until they die,
no matter what.

The RAppArmor package ships with a profile called testprofile which contains a hat called
testhat. We use this profile to demonstrate the functionality. The profiles have been defined
such that testprofile allows access to /etc/group but denies access to /etc/passwd. The
testhat denies access to both /etc/passwd and /etc/group.

R> library("RAppArmor");

R> result <- read.table("/etc/passwd")

R> aa_change_profile("testprofile")

Switching profiles...

R> passwd <- read.table("/etc/passwd")

Error in file(file, "rt") : cannot open the connection

In addition: Warning message:

In file(file, "rt") : cannot open file '/etc/passwd': Permission denied

R> group <- read.table("/etc/group")

R> mytoken <- 13337

R> aa_change_hat("testhat", mytoken)

Setting Apparmor Hat...

R> passwd <- read.table("/etc/passwd")

Error in file(file, "rt") : cannot open the connection

In addition: Warning message:

In file(file, "rt") : cannot open file '/etc/passwd': Permission denied

R> group <- read.table("/etc/group")

Error in file(file, "rt") : cannot open the connection

In addition: Warning message:

In file(file, "rt") : cannot open file '/etc/group': Permission denied

Journal of Statistical Software 19

R> aa_revert_hat(mytoken);

Reverting AppArmor Hat...

R> passwd <- read.table("/etc/passwd")

Error in file(file, "rt") : cannot open the connection

In addition: Warning message:

In file(file, "rt") : cannot open file '/etc/passwd': Permission denied

R> group <- read.table("/etc/group")

Just like for setuid() and rlimit_*() functions, eval.secure() can be used to enforce
an AppArmor security profile on a single call, witout any side effects. The eval.secure()

function uses aa_change_profile and is therefore most secure.

R> out <- eval(read.table("/etc/passwd"))

R> nrow(out)

[1] 68

R> out <- eval.secure(read.table("/etc/passwd"), profile = "testprofile")

Error in file(file, "rt") : cannot open the connection

4.9. AppArmor without RAppArmor

The RAppArmor package allows us to dynamically load an AppArmor profile from within an
R session. This gives a great deal of flexibility. However, it is also possible to use AppArmor
without the RAppArmor package, by setting a single profile to be loaded with any running
R process.

To do so, the RAppArmor package ships with a profile named usr.bin.r. At the installation
of the package, this file is copied to /etc/apparmor.d/. This file is basically a copy of the
r-user profile in Appendix A.3, however with a small change: where r-user defines a named
profile with

profile r-user {

...

}

the usr.bin.r file defines a profile specific to a filepath:

/usr/bin/R {

...

}

20 RAppArmor: Enforcing Security Policies in R

When using the latter syntax, the profile is automatically associated every time the file
/usr/bin/R is executed (which is the script that runs when R is started from the shell).
This way we can set some default security restrictions for our daily work. Profiles tied to a
specific program can be activated only by the administrator using:

$ sudo aa-enforce usr.bin.r

This will enforce the security restrictions on every new R process that is started. To stop
enforcing the restrictions, the administrator can run:

$ sudo aa-disable usr.bin.r

After disabling the profile, the R program can be started without any restrictions.

Note that the usr.bin.r profile does not grant permission to change profiles. Hence, once the
usr.bin.r profile is in enforce mode, we cannot use the eval.secure() or aa_change_profile
functions from the RAppArmor package to change into a different profile, as this would be a
security hole:

R> library("RAppArmor")

AppArmor LSM is enabled.

Current profile: /usr/bin/R (enforce mode)

R> aa_change_profile("r-user")

Switching profiles...

Getting task confinement information...

Error in aa_change_profile("r-user") :

Failed to change profile from: /usr/bin/R to: r-user.

Note that this is only allowed if the current profile has a

directive "change_profile -> r-user".

4.10. Learning using complain mode

Finally AppArmor allows the administrator to set profiles in complain mode, which is also
called learning mode.

$ sudo aa-complain usr.bin.r

This is useful for developing new profiles. When a profile is set in complain mode, security
restrictions are not actually enforced; instead all violations of the security policy are logged to
the syslog and kern.log files. This is a powerful way of creating new profiles: a program can
be set in complain mode during regular use, and afterwards the log files can be used to study
violations of the current policy. From these violations we can determine which permissions
need to be added to the profile to make the program work under normal behavior. AppArmor
even ships with a utility named aa-logprof which can help the administrator by parsing these
log files and suggesting new rules to be added to the profile. This is a nice way of debugging
a profile, and figure out which permissions exactly a program requires to do its work.

Journal of Statistical Software 21

5. Profiling R: Defining security policies

The “hard” part of the problem is actually profiling R. With profiling we mean defining the
policies: which files and directories should R be allowed to read and write to? Which external
programs is it allowed to execute? Which libraries or shared modules it allowed to load, etc.
We want to minimize ways in which the process could potentially damage the system, but we
do not want to be overly restrictive either: preferebly, users should be able to do anything
they normally do in R. Because R is such a complete system with a big codebase and a wide
range of functionality, the base system actually already requires quite a lot of access to the
file system.

As often, there is no “one size fits all” solution. Depending on which functionality is needed
for an application we might want to grant or deny certain privileges. We might even want to
execute some parts of a process with tighter privileges than other parts. For example, within
a web service, the service process should be able to write to system log files, which should not
be writable by custom code from a user. We might also want to be more strict on some users
than others, e.g., allow all users to run code, but only allow privileged users to install a new
package.

5.1. AppArmor policy configuration syntax

The AppArmor policy configuration syntax is used to define the access control profiles in
AppArmor. Other mandatory access control systems might implement different functionality
and require other syntax, but in the end they address mostly similar issues. AppArmor is
quite advanced and provides access control over many of the features and resources found in
the Linux kernel, e.g., file access, network rules, Linux capability modes, mounting rules, etc.
All of these can be useful, but most of them are very application specific. Furthermore, the
policy syntax has some meta functionality that allows for defining subprofiles and includes.

The most important form of access control which will be the focus of the remaining of the
section are file permission access modes. Once AppArmor is enforcing mandatory access
control, a process can only access files and directories on the system for which it has explicitly
been granted access in its security profile. Because in Linux almost everything is a file (even
sockets, devices, etc) this gives a great deal of control. AppArmor defines a number of access
modes on files and directories, of which the most important ones are:

� r – read file or directory.

� w – write to file or directory.

� m – load file in memory.

� px – discrete profile execute of executable file.

� cs – transition to subprofile for executing a file.

� ix – inherit current profile for executing a file.

� ux – unconfined execution of executable file (dangerous).

22 RAppArmor: Enforcing Security Policies in R

Using this syntax we will present some example profiles for R. Because the profiles are defined
using absolute paths of system files, we will assume the standard file layout for Debian and
Ubuntu systems. This includes files that are part of r-base and other packages that are used
by R, e.g., texlive, libxml2, bash, libpango, libcairo, etc.

5.2. Profile: r-base

Appendix A.1 contains a profile that we have named r-base. It is a fairly basic and general
profile. It grants read/load access to all files in common shared system directories, e.g.,
/usr/lib, /usr/local/lib, /usr/share, etc. However, the default profile only grants write
access inside /tmp, not in, e.g., the home directory. Furthermore, R is allowed to execute any
of the shell commands in /bin or /usr/bin for which the program will inherit the current
restrictions.

R> library("RAppArmor")

R> aa_change_profile("r-base")

Switching profiles...

R> list.files("/")

character(0)

R> list.files("~")

character(0)

R> file.create("~/test")

[1] FALSE

R> list.files("/tmp")

character(0)

R> install.packages("wordcloud")

Error opening file for reading: Permission denied

R> library("ggplot2")

R> setwd(tempdir())

R> pdf("test.pdf")

R> qplot(speed, dist, data=cars)

R> dev.off()

null device

1

Journal of Statistical Software 23

R> list.files()

[1] "downloaded_packages"

[2] "libloc_107_669a3e12.rds"

[3] "libloc_118_46fd5f8e.rds"

[4] "libloc_128_97f33314.rds"

[5] "pdf6d1117f7d683"

[6] "repos_http%3a%2f%2fcran.stat.ucla.edu%2fsrc%2fcontrib.rds"

[7] "test.pdf"

R> file.remove("test.pdf")

[1] TRUE

The r-base profile effectively protects R from most malicious activity, while still allowing
access to all of the libraries, fonts, icons, and programs that it might need. One thing to
note is that the profile does not allow listing of the contents of /tmp, but it does allow full rw
access on any of its subdirectories. This is to prevent one process from reading/writing files
in the temp directory of another active R process (given that it cannot discover the name of
the other temp directory).

The r-base profile is a quite liberal and general purpose profile. When using AppArmor
in a more specific application, it is recommended to make the profile a bit more restrictive
by specifying exactly which of the packages, shell commands and system libraries should be
accessible by the application. That could prevent potential problems when vulnerabilities are
discovered in some of the standard libraries.

5.3. Profile: r-compile

The r-base profile does not allow access to the compiler, nor does it allow for loading (m) or
execution (ix) of files in places where it can also write. If we want user to be able to compile,
e.g., C++ code, the policy needs grant access to the compiler. Assuming GCC is installed,
the following lines can be added to the profile:

/usr/include/** r,

/usr/lib/gcc/** rix,

/tmp/** rmw,

Note especially the last line. The combination of w and m access modes allows R to load a
shared object into memory after installing it in a temporary directory. This does not come
without a cost: compiled code can potentially contain malicious code or even exploits that
can do harm when loaded into memory. If this privilege is not needed, it is generally recom-
mended to only allow m and ix access modes on files that have been installed by the system
administrator. The new profile including these rules ships with the package as r-compile

and is also printed in Appendix A.2.

After adding the lines above and reloading the profile, it should be possible to compile a
package that contains C++ code and install it to somewhere in /tmp:

24 RAppArmor: Enforcing Security Policies in R

R> eval.secure(install.packages("wordcloud", lib = tempdir()),

+ profile = "r-compile")

trying URL 'http://cran.stat.ucla.edu/src/contrib/wordcloud_2.0.tar.gz'

downloaded 36 Kb

* installing *source* package 'wordcloud' ...

** package 'wordcloud' successfully unpacked and MD5 sums checked

** libs

g++ -I/usr/share/R/include -DNDEBUG

-I"/usr/local/lib/R/site-library/Rcpp/include"

-fpic -O3 -pipe -g -c layout.cpp -o layout.o

g++ -shared -o wordcloud.so layout.o

-L/usr/local/lib/R/site-library/Rcpp/lib

-lRcpp -Wl,-rpath,/usr/local/lib/R/site-library/Rcpp/lib

-L/usr/lib/R/lib -lR

installing to /tmp/RtmpFCM6WS/wordcloud/libs

** R

** data

** preparing package for lazy loading

** help

*** installing help indices

** building package indices

** testing if installed package can be loaded

* DONE (wordcloud)

The downloaded source packages are in

'/tmp/RtmpFCM6WS/downloaded_packages'

5.4. Profile: r-user

Appendix A.3 defines a profile named r-user. This profile is designed to be a nice balance
between security and freedom for day to day use of R. It extends the r-compile profile with
some additional privileges in the user’s home directory. The variable @{HOME} is defined in
the /etc/apparmor.d/tunables/global include that ships with AppArmor and matches the
location of the user home directory, i.e., /home/jeroen/. If a directory named R exists inside
the home directory (e.g /home/jeroen/R/), R has both read and write permissions here.
Furthermore, R can load and execute files in the directories i686-pc-linux-gnu-library

and x86_64-pc-linux-gnu-library inside of this directory. These are the standard locations
where R installs a user’s personal package library.

With the r-user profile, we can do most of our day to day work, including installing and
loading new packages in our personal library, while still being protected against most malicious
activities. The r-user profile is also the basis of the default usr.bin.r profile mentioned in
Section 4.9.

Journal of Statistical Software 25

5.5. Installing packages

An additional privilege that might be needed in some situations is the option to install pack-
ages to the system’s global library, which is readable by all users. In order to allow this, a
profile needs to include write access to the site-library directory:

/usr/local/lib/R/site-library/ rw,

/usr/local/lib/R/site-library/** rwm,

With this rule, the policy will allow for installing R packages to the global site library. How-
ever, note that AppArmor does not replace, but supplements the standard access control
system. Hence if a user does not have permission to write into this directory (either by stan-
dard Unix access controls or by running with superuser privileges), it will still not be able to
install packages in the global site library, even though the AppArmor profile does grant this
permission.

6. Concluding remarks

In this paper the reader was introduced to some potential security issues related to the use of
the R software. We hope to have raised awareness that security is an increasingly important
concern for the R user, but also that addressing this issue could open doors to new applications
of the software. The RAppArmor package was introduced as an example that demonstrates
how some security issues could be addressed using facilities from the operating system, in this
case Linux. This implementation provides a starting point for creating a sandbox in R, but
as was emphasized throughout the paper, it is still up to the administrator to actually design
security policies that are appropriate for a certain application or system.

Our package uses the AppArmor software from the Linux kernel, which works for us, but this
is just one of the available options. Linux has two other mandatory access control systems
that are worth exploring: Tomoyo Linux and SELinux. Especially the latter is known to
be very sophisticated, but also extremely hard to set up. Other technology that might be
interesting is provided by Linux CGroups. Using CGroups, control of allocation and security
is managed by hierarchical process groups. The more recent LXC (Linux Containers) build on
CGroups to provide virtual environments which have their own process and network space. A
completely different direction is suggested by renjin (Bertram 2012), a JVM-based interpreter
for the R Language. If R code can be executed though the JVM, we might be able to use
some tools from the Java community to address similar issues. Finally the TrustedBSD project
provides advanced security features which could provide a foundation for sandboxing R on
BSD systems.

However, regardless of the tools that are used, security always comes down to the trade off
between use and abuse. This has a major human aspect to it, and is a learning process
in itself. A balance has to be found between providing enough freedom to use facilities as
desired, yet minimize opportunities for undesired activity. Apart from technical parameters,
a good balance also depends on factors like what exactly constitutes undesired behavior and
the relation between users and provider. For example a process using 20 parallel cores might
be considered abusive by some administrators, but might actually be regular use for a MCMC
simulation server. Security policies are not unlike legal policies in the sense that they will not
always immediately work out as intended, and need to evolve over time as part of an iterative

26 RAppArmor: Enforcing Security Policies in R

process. It might not be until an application is put in production that users start complaining
about their favorite package not working, or that we find the system being abused in a way
that was hard to foresee. We hope that our research will contribute to this process and help
take a step in the direction of a safer R.

Acknowledgments

We owe gratitude to several people who have been specifically helpful in the course of this
research. Things would not have been possible without their valuable criticism, support and
feedback. Among others these include Dirk Eddelbuettel and Michael Rutter for providing
excellent packages for the Debian and Ubuntu distributions on which we largely build our
implementation. Daróczi Gergely and Aleksandar Blagotić for always being “early adopters”
(guinea pigs) and putting things to the test. And finally John Johansen, Seth Arnold and
Steve Beattie have been very helpful (and patient) by providing support and feedback through
the AppArmor mailing lists.

References

Abu Rajab M, Zarfoss J, Monrose F, Terzis A (2006). “A Multifaceted Approach to Under-
standing the Botnet Phenomenon.” In Proceedings of the 6th ACM SIGCOMM Conference
on Internet Measurement, pp. 41–52.

Armbrust M, et al. (2010). “A View of Cloud Computing.” Communications of the ACM,
53(4), 50–58.

Banfield J (1999). “Rweb: Web-Based Statistical Analysis.” Journal of Statistical Software,
4(1), 1–15. URL http://www.jstatsoft.org/v04/i01/.

Bates D, Eddelbuettel D (2004). “Using R on Debian: Past, Present, and Future.” Pre-
sented at “useR! 2004”, Vienna, Austria, URL http://www.R-project.org/conferences/

useR-2004/abstracts/Eddelbuettel+Bates+Gebhardt.pdf.

Bates D, Maechler M, Bolker B (2011). lme4: Linear Mixed-Effects Models Using S4 Classes.
R package version 0.999375-39, URL http://CRAN.R-project.org/package=lme4.

Bauer M (2006). “Paranoid Penguin: An Introduction to Novell AppArmor.” Linux Journal,
2006(148), 13. URL http://www.linuxjournal.com/article/9036.

Bertram A (2012). renjin: JVM-Based Interpreter for R. URL http://code.google.com/

p/renjin/.

Canonical, Inc (2012). Ubuntu 12.04 Precise Manual: GETRLIMIT(2). URL http://manpages.

ubuntu.com/manpages/precise/man2/getrlimit.2.html.

Chew K (2012). Cloudstat: Analyze Big Data with R in the Cloud. URL http://www.

cloudstat.org/.

http://www.jstatsoft.org/v04/i01/
http://www.R-project.org/conferences/useR-2004/abstracts/Eddelbuettel+Bates+Gebhardt.pdf
http://www.R-project.org/conferences/useR-2004/abstracts/Eddelbuettel+Bates+Gebhardt.pdf
http://CRAN.R-project.org/package=lme4
http://www.linuxjournal.com/article/9036
http://code.google.com/p/renjin/
http://code.google.com/p/renjin/
http://manpages.ubuntu.com/manpages/precise/man2/getrlimit.2.html
http://manpages.ubuntu.com/manpages/precise/man2/getrlimit.2.html
http://www.cloudstat.org/
http://www.cloudstat.org/

Journal of Statistical Software 27

Dabbish L, Stuart C, Tsay J, Herbsleb J (2012). “Social Coding in GitHub: Transparency
and Collaboration in an Open Software Repository.” In Proceedings of the ACM 2012
Conference on Computer Supported Cooperative Work, pp. 1277–1286.

Dahl DB, Crawford S (2009). “RinRuby: Accessing the R Interpreter from Pure Ruby.”
Journal of Statistical Software, 29(4), 1–18. URL http://www.jstatsoft.org/v29/i04/.

Daroczi G (2013). The sandboxR Package: Filtering “Malicious” Calls in R. URL https:

//github.com/Rapporter/sandboxR.

Eddelbuettel D, Francois R (2011). RInside: C++ Classes to Embed R in C++ Applications.
R package version 0.2.4, URL http://CRAN.R-project.org/package=RInside.

Free Software Foundation (2012). GETRLIMIT – Linux Programmer’s Manual. URL http:

//www.kernel.org/doc/man-pages/online/pages/man2/setrlimit.2.html.

Gautier L (2008). rpy2: A Simple and Efficient Access to R from Python. URL http:

//rpy.sourceforge.net/rpy2.html.

Harada T, Horie T, Tanaka K (2004). “Task Oriented Management Obviates Your Onus
on Linux.” In Linux Conference. URL http://sourceforge.jp/projects/tomoyo/

document/lc2004-en.pdf.

Heiberger R, Neuwirth E (2009). R Through Excel: A Spreadsheet Interface for Statistics,
Data Analysis, and Graphics. Springer-Verlag, New York.

Horner J (2011). rApache: Web Application Development with R and Apache. URL http:

//www.rapache.net/.

Horner J, Eddelbuettel D (2011). littler: A Scripting Front-End for GNU R. Version 0.1.5,
URL http://dirk.eddelbuettel.com/code/littler.html.

Ihaka R (1998). “R: Past and Future History.” In Proceedings of the 30th Symposium on the
Interface, pp. 392–396.

IOCCC (2012). “The International Obfuscated C Code Contest.” URL http://www.ioccc.

org/.

Mirkovic J, Reiher P (2004). “A Taxonomy of DDoS Attack and DDoS Defense Mechanisms.”
ACM SIGCOMM Computer Communication Review, 34(2), 39–53.

Moreira W, Warnes GR (2006). “RPy: R from Python.” URL http://rpy.sourceforge.

net/rpy/README.

Ooms J (2009). Stockplot Web Application: A Web Interface for Plotting Historical Stock
Values. URL http://rweb.stat.ucla.edu/stockplot.

Ooms J (2010). lme4 Web Application: A Web Interface for the R Package lme4. URL
http://rweb.stat.ucla.edu/lme4.

Ooms J (2013). OpenCPU: Producing and Reproducing Results. URL http://www.opencpu.

org/.

http://www.jstatsoft.org/v29/i04/
https://github.com/Rapporter/sandboxR
https://github.com/Rapporter/sandboxR
http://CRAN.R-project.org/package=RInside
http://www.kernel.org/doc/man-pages/online/pages/man2/setrlimit.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/setrlimit.2.html
http://rpy.sourceforge.net/rpy2.html
http://rpy.sourceforge.net/rpy2.html
http://sourceforge.jp/projects/tomoyo/document/lc2004-en.pdf
http://sourceforge.jp/projects/tomoyo/document/lc2004-en.pdf
http://www.rapache.net/
http://www.rapache.net/
http://dirk.eddelbuettel.com/code/littler.html
http://www.ioccc.org/
http://www.ioccc.org/
http://rpy.sourceforge.net/rpy/README
http://rpy.sourceforge.net/rpy/README
http://rweb.stat.ucla.edu/stockplot
http://rweb.stat.ucla.edu/lme4
http://www.opencpu.org/
http://www.opencpu.org/

28 RAppArmor: Enforcing Security Policies in R

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Ripley BD (2011). “The R Development Process.” Presented at “useR! 2011”, Warwick,
United Kingdom, URL http://www.R-project.org/conferences/useR-2011/invited/

user2011_Ripley.pdf.

Smalley S, Vance C, Salamon W (2001). “Implementing SELinux as a Linux Security
Module.” NAI Labs report #01-0043. URL http://www.nsa.gov/research/_files/

publications/implementing_selinux.pdf.

Stefanski L, et al. (2013). “The Future of Publication in the Statistical Sciences.” Report of the
ASA Panel on The Future of Publications, American Statistical Association. URL http://

magazine.amstat.org/wp-content/uploads/2013an/FuturePublicationsReport.pdf.

Torvalds L, Hamano J (2010). GIT: Fast Version Control System. URL http://git-scm.

com/.

Urbanek S (2011). JRI: Java-R Interface. URL http://www.rforge.net/JRI/index.html.

Urbanek S (2013a). rJava: Low-Level R to Java Interface. R package version 0.9-4, URL
http://CRAN.R-project.org/package=rJava.

Urbanek S (2013b). Rserve: Binary R Server. R package version 0.6-8.1, URL http:

//CRAN.R-project.org/package=Rserve.

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New
York.

http://www.R-project.org/
http://www.R-project.org/conferences/useR-2011/invited/user2011_Ripley.pdf
http://www.R-project.org/conferences/useR-2011/invited/user2011_Ripley.pdf
http://www.nsa.gov/research/_files/publications/implementing_selinux.pdf
http://www.nsa.gov/research/_files/publications/implementing_selinux.pdf
http://magazine.amstat.org/wp-content/uploads/2013an/FuturePublicationsReport.pdf
http://magazine.amstat.org/wp-content/uploads/2013an/FuturePublicationsReport.pdf
http://git-scm.com/
http://git-scm.com/
http://www.rforge.net/JRI/index.html
http://CRAN.R-project.org/package=rJava
http://CRAN.R-project.org/package=Rserve
http://CRAN.R-project.org/package=Rserve

Journal of Statistical Software 29

A. Example profiles

This appendix prints some of the example profiles that ship with the RAppArmor pack-
age. To load them in AppArmor, an ASCII file with these rules needs to be copied to the
/etc/apparmor.d/ directory. After adding new profiles to this directory they can be loaded
in the kernel by running sudo service apparmor restart. The r-cran-rapparmor package
that can be built on Debian and Ubuntu does this automatically during installation. Once
profiles have been loaded in the kernel, any user can apply them to an R session using either
the aa_change_profile or eval.secure() function from the RAppArmor package.

A.1. Profile: r-base

#include <tunables/global>

profile r-base {

#include <abstractions/base>

#include <abstractions/nameservice>

/bin/* rix,

/etc/R/ r,

/etc/R/* r,

/etc/fonts/** mr,

/etc/xml/* r,

/tmp/** rw,

/usr/bin/* rix,

/usr/lib/R/bin/* rix,

/usr/lib{,32,64}/** mr,

/usr/lib{,32,64}/R/bin/exec/R rix,

/usr/local/lib/R/** mr,

/usr/local/share/** mr,

/usr/share/** mr,

}

A.2. Profile: r-compile

#include <tunables/global>

profile r-compile {

#include <abstractions/base>

#include <abstractions/nameservice>

/bin/* rix,

/etc/R/ r,

/etc/R/* r,

/etc/fonts/** mr,

/etc/xml/* r,

/tmp/** rmw,

30 RAppArmor: Enforcing Security Policies in R

/usr/bin/* rix,

/usr/include/** r,

/usr/lib/gcc/** rix,

/usr/lib/R/bin/* rix,

/usr/lib{,32,64}/** mr,

/usr/lib{,32,64}/R/bin/exec/R rix,

/usr/local/lib/R/** mr,

/usr/local/share/** mr,

/usr/share/** mr,

}

A.3. Profile: r-user

#include <tunables/global>

profile r-user {

#include <abstractions/base>

#include <abstractions/nameservice>

capability kill,

capability net_bind_service,

capability sys_tty_config,

@{HOME}/ r,

@{HOME}/R/ r,

@{HOME}/R/** rw,

@{HOME}/R/{i686,x86_64}-pc-linux-gnu-library/** mrwix,

/bin/* rix,

/etc/R/ r,

/etc/R/* r,

/etc/fonts/** mr,

/etc/xml/* r,

/tmp/** mrwix,

/usr/bin/* rix,

/usr/include/** r,

/usr/lib/gcc/** rix,

/usr/lib/R/bin/* rix,

/usr/lib{,32,64}/** mr,

/usr/lib{,32,64}/R/bin/exec/R rix,

/usr/local/lib/R/** mr,

/usr/local/share/** mr,

/usr/share/** mr,

}

Journal of Statistical Software 31

B. Security unit tests

This appendix prints a number of unit tests that contain malicious code and which should be
prevented by any sandboxing tool.

B.1. Access system files

Usually R has no business in the system logs, and these are not included in the profiles. The
code chunk below attempts to read the syslog file.

R> readSyslog <- function() {

+ readLines("/var/log/syslog")

+ }

When executing this with the r-user profile, access to this file is denied, resulting in an error:

R> eval.secure(readSyslog(), profile = "r-user")

Switching profiles...

Error in file(con, "r") : cannot open the connection

B.2. Access personal files

Access to system files can to some extend by prevented by running processes as non privi-
leged users. But it is easy to forget that also the user’s personal files can contain senstive
information. Below a simple function that scans the Documents directory of the current user
for files containing credit card numbers.

R> findCreditCards <- function() {

+ pattern <- "([0-9]{4}[-]){3}[0-9]{4}"

+ files <- list.files("~/Documents", full.names = TRUE, recursive = TRUE)

+ for (filename in files) {

+ if (file.info(filename)$size > 1e6) next

+ doc <- readLines(filename)

+ results <- gregexpr(pattern, doc)

+ output <- unlist(regmatches(doc, results))

+ if (length(output) > 0)

+ cat(paste(filename, ":", output, collapse = "\n"), "\n")

+ }

+ }

This example prints the credit card numbers to the console, but it would be just as easy to
post them to a server on the internet. For this reason the r-user profile denies access to the
user’s home directory, except for the ∼/R directory.

B.3. Limiting memory

When a system or service is used by many users at the same time, it is important that we cap
the memory that can be used by a single process. The following function generates a large
matrix:

32 RAppArmor: Enforcing Security Policies in R

R> memtest <- function() {

+ A <- matrix(rnorm(1e7), 1e4)

+ }

When R tries to allocate more memory than allowed, it will throw an error:

R> A <- eval.secure(memtest(), RLIMIT_AS = 1000 * 1024 * 1024)

R> rm(A)

R> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 193074 10.4 407500 21.8 350000 18.7

Vcells 299822 2.3 17248096 131.6 20301001 154.9

R> A <- eval.secure(memtest(), RLIMIT_AS = 100 * 1024 * 1024)

Error: cannot allocate vector of size 76.3 Mb

B.4. Limiting CPU time

Suppose we are hosting a web service and we want to kill jobs that do not finish within
5 seconds. Below is a snippet that will take much more than 5 seconds to complete on most
machines. Note that because R calling out to C code, it will not be possible to terminate
this function prematurely using R’s setTimeLimit() or even using CTRL+C in an interactive
console. If this would happen inside of a bigger system, the entire service might become
unresponsive.

R> cputest <- function() {

+ A <- matrix(rnorm(1e7), 1e3)

+ B <- svd(A)

+ }

In RAppArmor we have actually two different options to deal with this. The first one is
setting the RLIMIT_CPU value. This will cause the kernel to kill the process after 5 seconds:

R> system.time(x <- eval.secure(cputest(), RLIMIT_CPU = 5))

user system elapsed

0.004 0.000 5.110

R> print(x)

NULL

However, this is actually a bit of a harsh measure: because the kernel automatically terminates
the process after 5 seconds we have no control over what should happen when this happens,
nor can we throw an informative error. Setting RLIMIT_CPU is a bit like starting a job with a
self-destruction timer. A more elegant solution is to terminate the process from R using the
timeout argument from the eval.secure() function. Because the actual job is processed in
a fork, the parent process stays responsive, and is used to kill the child process.

Journal of Statistical Software 33

R> system.time(x <- eval.secure(cputest(), timeout = 5))

Error: R call did not return within 5 seconds. Terminating process.

Timing stopped at: 4.748 0.26 5.007

One could even consider a Double Dutch solution by setting both timeout and a slightly
higher value for RLIMIT_CPU, so that if all else fails, the kernel will end up killing the process
and its children.

B.5. Fork bomb

A fork bomb is a process that spawns many child processes, which often results in the operating
system getting stuck to a point where it has to be rebooted. Performing a fork bomb in R is
quite easy and requires no special privileges:

R> forkbomb <- function() {

+ repeat {

+ parallel::mcparallel(forkbomb())

+ }

+ }

Do not call this function outside sandbox, because it will make the machine unresponsive.
However, inside our sandbox we can use RLIMIT_NPROC to limit the number of processes the
user is allowed to own:

R> eval.secure(forkbomb(), RLIMIT_NPROC = 20)

RLIMIT_NPROC:

Previous limits: soft=39048; hard=39048

Current limits: soft=20; hard=20

Error in mcfork() :

unable to fork, possible reason: Resource temporarily unavailable

Note that the process count is based on the Linux user. Hence if the same Linux user already
has a number of other processes, which is usually the case for non-system users, the cap has
to be higher than this number. Also note that in some Linux configurations, the root user is
exempted from the RLIMIT_NPROC limit.

Different processes owned by a single user can enforce different NPROC limits, however in
the actual process count all active processes from the current user are taken into account.
Therefore it might make sense to create a separate Linux system user that is only used to
process R jobs. That way RLIMIT_NPROC actually corresponds to the number of concurrent
R processes. The eval.secure arguments uid and gid can be used to switch Linux users
before evaluating the call. E.g to add a system user in Linux, run:

$ sudo useradd testuser --system -U -d/tmp -c"RAppArmor Test User"

If the main R process has superuser privileges, incoming call can be evaluated as follows:

R> eval.secure(run_job(), uid = "testuser", RLIMIT_NPROC = 10, timeout = 60)

34 RAppArmor: Enforcing Security Policies in R

Affiliation:

Jeroen Ooms
Department of Statistics
University of California, Los Angeles
E-mail: jeroen.ooms@stat.ucla.edu
URL: http://jeroenooms.github.io/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 55, Issue 7 Submitted: 2012-08-03
November 2013 Accepted: 2013-04-10

mailto:jeroen.ooms@stat.ucla.edu
http://jeroenooms.github.io/
http://www.jstatsoft.org/
http://www.amstat.org/

	Security in R: Introduction and motivation
	Security when using contributed code
	Sandboxing the R environment

	Use cases and concerns of sandboxing R
	Running untrusted code
	Shared resources
	Embedded systems and services

	System privileges and hardware resources
	System abuse
	Resource restrictions

	Various approaches of confining R
	Application level security: Predefined services
	Code injection

	Sanitizing code by blacklisting
	Sandboxing on the level of the operating system

	The AppArmor package
	AppArmor profiles
	Automatic installation
	Manual installation
	Linux security methods
	Setting user and group ID
	Setting task priority
	Linux resource limits (RLIMIT)
	Activating AppArmor profiles
	AppArmor without RAppArmor
	Learning using complain mode

	Profiling R: Defining security policies
	AppArmor policy configuration syntax
	Profile: r-base
	Profile: r-compile
	Profile: r-user
	Installing packages

	Concluding remarks
	Example profiles
	Profile: r-base
	Profile: r-compile
	Profile: r-user

	Security unit tests
	Access system files
	Access personal files
	Limiting memory
	Limiting CPU time
	Fork bomb

