75 research outputs found

    A proposition of 3D inertial tolerancing to consider the statistical combination of the location and orientation deviations

    Get PDF
    Tolerancing of assembly mechanisms is a major interest in the product life cycle. One can distinguish several models with growing complexity, from 1-dimensional (1D) to 3-dimensional (3D) (including form deviations), and two main tolerancing assumptions, the worst case and the statistical hypothesis. This paper presents an approach to 3D statistical tolerancing using a new acceptance criterion. Our approach is based on the 1D inertial acceptance criterion that is extended to 3D and form acceptance. The modal characterisation is used to describe the form deviation of a geometry as the combination of elementary deviations (location, orientation and form). The proposed 3D statistical tolerancing is applied on a simple mechanism with lever arm. It is also compared to the traditional worst-case tolerancing using a tolerance zone

    Tolerancing: Managing uncertainty from conceptual design to final product

    Get PDF
    Variability is unavoidable in the realization of products. While design must specify ideal geometry, it shall also describe limits of variability (tolerances) that must be met in order to maintain proper product function. Although tolerancing is a mature field, new manufacturing processes and design methodologies are creating new avenues of research, and modelling standards must also evolve to support these processes. In addition, the study of uncertainty has produced widely-accepted methods of quantifying variability, and modern tolerancing tools should support these methods. The challenges introduced by new processes and design methodologies continue to make tolerancing research a fertile and productive area

    A framework for tolerance modeling based on parametric space envelope

    Get PDF
    Geometric dimensioning and tolerancing (GD&T) tolerance standards are widely used in industries across the world. A mathematical model to formulate tolerance specifications to enable comprehensive tolerance analysis is highly desirable but difficult to build. Existing methods have limited success on this with form and profile tolerance modeling as a known challenge. In this paper, we propose a novel tolerance modeling framework and methodology based upon parametric space envelope, a purposely built variation tool constructed from base parametric curve. Under proposal, geometric variation (deviation as well as deformation) is modeled and linked to envelope boundary control points’ movement. This indirect tolerance modeling brings various benefits. It is versatile and can handle full set of tolerances specified under GD&T standards including form, profile, and runout tolerance. The proposal can deal with complex manufacturing part and is capable of providing modeling accuracy required by many applications. The proposed approach has added advantage of facilitating integration of various computer-aided systems to meet emerging industry demands on tolerancing in a new era of digital manufacturing. The proposed methodology is illustrated and verified with an industrial case example on a two-part assembly

    A bi-objective robust inspection planning model in a multi-stage serial production system

    Get PDF
    International audienceIn this paper, a bi-objective mixed-integer linear programming (BOMILP) model for planning of an inspection process used to detect nonconforming products and malfunctioning processors in a multi-stage serial production system is presented. The model involves two inter-related decisions: 1) which quality characteristics need what kind of inspections (i.e., which-what decision) and 2) when the inspection of these characteristics should be performed (i.e., when decision). These decisions require a trade-off between the cost of manufacturing (i.e., production, inspection and scrap costs) and the customer satisfaction. Due to inevitable variations in the manufacturing systems, a global robust BOMILP (RBOMILP) is developed to tackle the inherent uncertainty of the concerned parameters (i.e., production and inspection times, errors type I and II, misadjustment and dispersion of the process). In order to optimally solve the presented RBOMILP model, a meta-heuristic algorithm, namely differential evolution (DE) algorithm, is combined with the Taguchi and Monte Carlo methods. The proposed model and solution algorithm are validated through a real industrial case from a leading automotive industry in France

    A bi-objective robust inspection planning model in a multi-stage serial production system

    Get PDF
    In this paper, a bi-objective mixed-integer linear programming (BOMILP) model for planning of an inspection process used to detect nonconforming products and malfunctioning processors in a multi-stage serial production system is presented. The model involves two inter-related decisions: 1) which quality characteristics need what kind of inspections (i.e., which-what decision) and 2) when the inspection of these characteristics should be performed (i.e., when decision). These decisions require a trade-off between the cost of manufacturing (i.e., production, inspection and scrap costs) and the customer satisfaction. Due to inevitable variations in the manufacturing systems, a global robust BOMILP (RBOMILP) is developed to tackle the inherent uncertainty of the concerned parameters (i.e., production and inspection times, errors type I and II, misadjustment and dispersion of the process). In order to optimally solve the presented RBOMILP model, a meta-heuristic algorithm, namely differential evolution (DE) algorithm, is combined with the Taguchi and Monte Carlo methods. The proposed model and solution algorithm are validated through a real industrial case from a leading automotive industry in France

    Digital Twins in Industry

    Get PDF
    Digital Twins in Industry is a compilation of works by authors with specific emphasis on industrial applications. Much of the research on digital twins has been conducted by the academia in both theoretical considerations and laboratory-based prototypes. Industry, while taking the lead on larger scale implementations of Digital Twins (DT) using sophisticated software, is concentrating on dedicated solutions that are not within the reach of the average-sized industries. This book covers 11 chapters of various implementations of DT. It provides an insight for companies who are contemplating the adaption of the DT technology, as well as researchers and senior students in exploring the potential of DT and its associated technologies

    Algorithms for Geometric Optimization and Enrichment in Industrialized Building Construction

    Get PDF
    The burgeoning use of industrialized building construction, coupled with advances in digital technologies, is unlocking new opportunities to improve the status quo of construction projects being over-budget, delayed and having undesirable quality. Yet there are still several objective barriers that need to be overcome in order to fully realize the full potential of these innovations. Analysis of literature and examples from industry reveal the following notable barriers: (1) geometric optimization methods need to be developed for the stricter dimensional requirements in industrialized construction, (2) methods are needed to preserve model semantics during the process of generating an updated as-built model, (3) semantic enrichment methods are required for the end-of-life stage of industrialized buildings, and (4) there is a need to develop pragmatic approaches for algorithms to ensure they achieve required computational efficiency. The common thread across these examples is the need for developing algorithms to optimize and enrich geometric models. To date, a comprehensive approach paired with pragmatic solutions remains elusive. This research fills this gap by presenting a new approach for algorithm development along with pragmatic implementations for the industrialized building construction sector. Computational algorithms are effective for driving the design, analysis, and optimization of geometric models. As such, this thesis develops new computational algorithms for design, fabrication and assembly, onsite construction, and end-of-life stages of industrialized buildings. A common theme throughout this work is the development and comparison of varied algorithmic approaches (i.e., exact vs. approximate solutions) to see which is optimal for a given process. This is implemented in the following ways. First, a probabilistic method is used to simulate the accumulation of dimensional tolerances in order to optimize geometric models during design. Second, a series of exact and approximate algorithms are used to optimize the topology of 2D panelized assemblies to minimize material use during fabrication and assembly. Third, a new approach to automatically update geometric models is developed whereby initial model semantics are preserved during the process of generating an as-built model. Finally, a series of algorithms are developed to semantically enrich geometric models to enable industrialized buildings to be disassembled and reused. The developments made in this research form a rational and pragmatic approach to addressing the existing challenges faced in industrialized building construction. Such developments are shown not only to be effective in improving the status quo in the industry (i.e., improving cost, reducing project duration, and improving quality), but also for facilitating continuous innovation in construction. By way of assessing the potential impact of this work, the proposed algorithms can reduce rework risk during fabrication and assembly (65% rework reduction in the case study for the new tolerance simulation algorithm), reduce waste during manufacturing (11% waste reduction in the case study for the new panel unfolding and nesting algorithms), improve accuracy and automation of as-built model generation (model error reduction from 50.4 mm to 5.7 mm in the case study for the new parametric BIM updating algorithms), reduce lifecycle cost for adapting industrialized buildings (15% reduction in capital costs in the computational building configurator) and reducing lifecycle impacts for reusing structural systems from industrialized buildings (between 54% to 95% reduction in average lifecycle impacts for the approach illustrated in Appendix B). From a computational standpoint, the novelty of the algorithms developed in this research can be described as follows. Complex geometric processes can be codified solely on the innate properties of geometry – that is, by parameterizing geometry and using methods such as combinatorial optimization, topology can be optimized and semantics can be automatically enriched for building assemblies. Employing the use of functional discretization (whereby continuous variable domains are converted into discrete variable domains) is shown to be highly effective for complex geometric optimization approaches. Finally, the algorithms encapsulate and balance the benefits posed by both parametric and non-parametric schemas, resulting in the ability to achieve both high representational accuracy and semantically rich information (which has previously not been achieved or demonstrated). In summary, this thesis makes several key improvements to industrialized building construction. One of the key findings is that rather than pre-emptively determining the best suited algorithm for a given process or problem, it is often more pragmatic to derive both an exact and approximate solution and then decide which is optimal to use for a given process. Generally, most tasks related to optimizing or enriching geometric models is best solved using approximate methods. To this end, this research presents a series of key techniques that can be followed to improve the temporal performance of algorithms. The new approach for developing computational algorithms and the pragmatic demonstrations for geometric optimization and enrichment are expected to bring the industry forward and solve many of the current barriers it faces

    Smart Sensing in Advanced Manufacturing Processes: Statistical Modeling and Implementations for Quality Assurance and Automation

    Get PDF
    With recent breakthroughs in sensing technology, data informatics and computer networks, smart manufacturing with intertwined advanced computation, communication and control techniques promotes the transformation of conventional discrete manufacturing processes into the new paradigm of cyber-physical manufacturing systems. The cybermanufacturing systems should be predictive and instantly responsive to incident prevention for quality assurance. Thus, providing viable in-process monitoring approaches for real-time quality assurance is one essential research topic in cybermanufacturing system to allow a closed-loop control of the processes, ensure the quality of products, and consequently improve the whole shop floor efficiency. However, thus far, such in-process monitoring tools are still underdeveloped on the following counts: • For precision/ultraprecision machining processes, most sensor-based change detection approaches are reticent to the anomalies since they largely root in the stationary assumption whilst the underlying dynamics under precision machining processes exhibit intermittent patterns. Therefore, existing approaches are feeble to detect subtle variations which are detrimental to the process; • For shaping processes that realize complicated geometries, currently there is no viable tool to allow a noncontact monitoring on surface morphology evolution that measures critical dimensioning criteria in real time. • For precision machining processes, we aim to present advanced smart sensing approaches towards characterizations of the process, specifically, microdynamics reflecting the fundamental cutting mechanisms as well as variations of microstructure of the material surfaces. To address these gaps, this dissertation achieves the following contributions: • For precision and ultraprecision machining processes, an in-situ anomaly detection approach is provided which allows instant prevention from surface deterioration. The method could be applied to various (ultra)precision processes of which most underlying systems are unknow and always exhibit intermittency. Extensive experimental studies suggest that the developed model can detect in-situ anomalies of the underlying dynamic intermittency; • For shaping processes that require noncontact in-process monitoring, a vision-based monitoring approach is presented which rapidly measures the geometric features during forming process on sheet-based workpieces. Investigations into laser origami sheet forming processes suggest that the presented approach can provide precise geometric measurements as feedback in real time for the control loop of the sheeting forming processes in cybermanufacturing systems. • As for smart sensing for precision machining, an advanced in-process sensing/ monitoring approach [including implementations of Acoustic Emission (AE) sensor, the associated data acquisition system and developed advanced machine/deep learning methods] is introduced to connect the AE characteristics to microdynamics of the precision machining of natural fiber reinforced composites. The presented smart sensing framework shows potentials towards real-time estimations/predictions of microdynamics of the machining processes using AE features
    • …
    corecore