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ABSTRACT

 
The aim of this thesis was to design, construct and validate a model to be used for 

enhancing the performance of competitive cyclists in road time trials. Modelling can be an 

effective tool for identifying methods to enhance performance in sports with a high 

mechanical component such as cycling. The thesis questioned whether an effective road 

cycling model could be built. Existing models were analysed and found to have insufficient 

predictive accuracy to make them effective under general time trial conditions. It was 

hypothesised that an effective and generalised model could be developed.  

 
A computer simulation model was constructed that extended the functionality of existing 

models. The three-dimensional model combined the bicycle, rider and environment in a 

single parameterised system which simulated road cycling at high frequency. Three model 

components were validated against published benchmark studies. Firstly, a pedalling 

model was compared to an experimental benchmark study. Modelled vertical pedal force 

normalised root mean squared error (NRMSE) was 9.5% and horizontal pedal force 

NRMSE was 8.8% when compared to the benchmark. Both these values were below the 

10% error level which a literature analysis indicated as the limit for validity. Modelled 

crank torque NRMSE was 4.9% and the modelled crank torque profile matched the 

benchmark profile with an R2 value of 0.974. A literature analysis indicated R2>0.95 was 

required for validity. Secondly, bicycle self-stability was evaluated against a benchmark 

model by comparing the eigenvalues for weave and capsize mode. Weave mode error level 

of 9.3% was less than the 10% error considered the upper limit for validity. Capsize mode 

error could not be evaluated as the modelled profile did not cross zero. Thirdly, modelled 

rear tyre cornering stiffness was qualitatively compared with the results of an experimental 

study. The experimental study reported mean cornering stiffness of 60N/deg at 3 degrees 

slip angle, 10 degrees camber and 330N vertical load. This compared well with a model 

simulation which generated mean cornering stiffness of 62N/deg at 3 degrees slip angle, 4 

degrees camber and 338N load. 

 

Experimental validation comprised a field case study and a controlled field time trial using 

14 experienced cyclists. In the former study, modelled completion time was 1% less than 

actual time. In the latter study, model prediction over a 4 km time trial course was found to 

be within 1.4±1.5 % of the actual time (p=0.008). 

 
The validated model was used to test potential performance enhancement strategies. A 

strategy of power variation in response to gradient changes had been previously proposed, 
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but never experimentally confirmed. The thesis model predicted a 4% time advantage for a 

variable power strategy compared to a constant power strategy. This was confirmed 

experimentally in field trials when 20 cyclists obtained a significant (p<0.001) time 

advantage of 2.9±1.9 %. The model also predicted a 1.2% time advantage if power was 

varied in head/tail wind conditions on an out-and-back time trial course. A 2% time 

advantage was obtained in field trials but was not statistically significant (p=0.06). 

 
A final investigation examined the sensitivity of model prediction to variances in 

assumptions and initial conditions. An important sensitivity was the aerodynamic 

coefficient which could cause time differences of up to 6%. Tyre forces were also found to 

be a critical factor in the accuracy of model prediction. 

 

The thesis investigation confirmed the hypothesis that an effective and generalised model 

could be built and used to predict performance in road time trials. 
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PREFACE

 

Thesis Outline 

This thesis presents the design, construction and validation of a computer 

simulation model to be used for identifying performance enhancement strategies for 

competitive cyclists in road time trials. 

 

Thesis Structure 

• Review the development and current state of modelling in cycling. 

• Construct an effective and generalised cycling simulation model that combines 

bicycle, rider and environment. 

• Validate the model against the literature in respect of pedalling, bicycle stability 

and tyre performance. 

• Validate the model against time trial experiments conducted in the field. 

• Utilise the validated model to predict performance enhancements and confirm 

predictions experimentally. 

• Analyse the sensitivity of model predictions to initial assumptions and 

parameter variation. 
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CHAPTER ONE

RATIONALE AND LITERATURE REVIEW 

 

1.1 Introduction 

This thesis was undertaken because the author was a competitive cyclist and wished to 

identify mechanisms and strategies for improving the performance of cyclists in road time 

trials. Existing studies have tended to approach performance enhancement from a 

physiological perspective (Hagberg et al., 1981; Buchanan and Weltman, 1985; Lucia et al, 

1999; Stepto et al., 2001) or from a mechanical perspective (Kyle and Burke, 1984; Kautz 

and Hull, 1993; di Prampero et al., 1979; Martin and Spirduso, 2001). Some mechanically-

based studies have used modelling to identify performance enhancements since mechanical 

parameters and relationships can usually be quantified with greater precision than 

physiological factors (Olds et al., 1995; Martin et al., 1998). A modelling approach enables 

iterative simulations to reduce optimal parameter combinations to a small subset prior to 

field testing, thus reducing both time and cost (Olds, 2001). However, a limited number of 

models have been identified that simulated field conditions and there has been some doubt 

as to the effectiveness of  such models in predicting performance for general time trial 

conditions (Atkinson et al., 2003). If these limitations were confirmed, the aim of the thesis 

was to develop an effective and generalised model for the purpose of enhancing the 

performance of competitive cyclists in road time trials. Definitions for 'effectiveness' and 

'generalised' are presented in section 1.2.3. Performance enhancement was defined as a 

reduction in completion time over a road time trial course. A model in this context meant a 

computer simulation that reproduced the features of a bicycle, rider and environment that 

substantially affected performance. 

 

The structure of the thesis departs somewhat from convention in that it presents an 

extended rationale before reviewing the literature. This approach was adopted because the 

aim of the thesis and the associated research question were determined at the outset and did 

not evolve from the literature review. The aim of improving time trial performance of road 

cyclists through modelling first required the following question to be answered: 'Can an 

effective and generalised model of road cycling be constructed?'.  The rationale therefore 

conducted an analysis of existing models to see if the question had already been answered. 

If no qualifying models were found, it was hypothesised that an effective and generalised 

model could be built. The main content of the thesis then became the design, construction 
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and validation of such a model. The literature review constituted the first stage in the 

design process by analysing existing models to identify their technology, functionality, 

strengths and omissions in order to guide the development of a new model. The next stage 

(Chapter 2) was to source a suitable multi-body modelling software package and build the 

model components and functionality identified from the literature review. Chapters 3 to 7 

validated that model and Chapters 8 to 10 used the validated model to identify and test 

some performance enhancement strategies. However, the bulk of such work is planned to 

be conducted as post-doctoral research. 

 

1.2 Rationale 

1.2.1 Cycling Model Justification 

A large number of mechanical variables influence the performance of a competitive 

cyclist, potentially requiring extensive field testing to identify optimal combinations. The 

extended time scale inherent in this approach is often unfeasible suggesting that alternative 

methods would be of considerable assistance in developing performance enhancements. 

Computer simulation provides such an alternative if a comprehensive and valid model can 

be built. Potential mechanical performance enhancements can then be relatively quickly 

identified and evaluated using the model. Only those that show potential are then 

progressed to field trials (Olds, 2001; Atkinson et al., 2003; Popov et al., 2010).  

 

1.2.2 Study Delimitation 

Cycling models were excluded from consideration if they fell into the following categories: 

(1) Mass-start or team races where the effects of tactics and drafting make mechanical 

performance enhancement difficult to quantify. (2) Time trial (T/T) models that did not 

validate their predictions against field experiment or race results. Time trial models 

validated against laboratory trials have reduced ecological validity (Jobson et al., 2007; 

Jobson et al., 2008). (3) Models based on metabolic energy expenditure in cycling 

(Hettinga et al., 2009) or the mechanical energy balance (Broker and Gregor, 1994). 

Consideration of physiological factors associated with energy models or the power level 

input by the rider would have required a separate investigation from that conducted to 

investigate mechanical factors. It was fully acknowledged that the ability of competitive 

cyclists to achieve and maintain high power levels was a key factor in time trial 

performance. However, inclusion of physiological modelling and field trials measuring 

energy expenditure would have greatly exceeded the limit on thesis size. Rider power 

levels were therefore taken as a 'known variable' while being kept within the range of 

commonly reported values. 
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1.2.3 Definitions 

A model can take many forms in scientific investigations; in this work it refers to any 

system that predicts performance in cycling. A key aspect of a model is defining its 

validity. From a philosophical perspective, models are similar to hypothesis in that they 

can never be proved true but only false (Kuhn, 1970; Popper, 1959). In the scientific 

context, models can be seen as representations that guide further study, but are not 

amenable to proof or unequivocal validity (Murray-Smith, 1995). At best, therefore, a valid 

model can be defined (Oreskes et al., 1994) as one that has an acceptable probability of: (1) 

confirming experimental data, (2) confirming the results of other similar models, (3) 

confirming preconceptions based on experience. This thesis utilises all three criteria and 

also uses the term 'effectiveness'' which has similar connotations and might be thought 

synonymous. However, validity is evaluated for each of the sub-components of the model 

while effectiveness is only applied to the complete model results. Effectiveness without 

validity could conceivably be due to a fortunate combination of invalid model sub-

components. 

 

Effectiveness in this thesis has been defined as the percentage error between actual time 

trial completion time and model predicted completion time. No widely accepted 

effectiveness threshold could be identified from the literature and, therefore, one had to be 

established by examining relevant data. An initial approach was to identify the within-

subject coefficient of variation (CV) (CV% = (standard deviation/mean)x100) from 

experimental cycling studies. The only identified field study (Paton and Hopkins, 2006) 

analysed completion time CV in a small number of international road time trials. They 

found within-subject CV ranged 1.8% to 2.0% over five races with course lengths that 

varied from 17 to 75 km. This error can principally be divided into biological variation and 

environmental variation (wind, hills, road surface, corners) with some equipment 

measurement error. Biological variation can generally be ascertained from laboratory 

ergometer time trials. Studies have reported ergometer 20 km and 40 km time trial CV's as 

follows: 1.1% and 0.1% (Palmer et al., 1996),  0.7% (Smith et al., 2001), 0.9% (Lindsay et 

al., 1996),  0.9% (Laursen et al., 2003), 1.9%  and 2.1% (Sporer and McKenzie, 2007), 

1.0% and 0.1% (Hickey et al., 1992), 1.2% and 0.6% (Zavorsky et al., 2007). The 1.1% 

average of these CV's was considered to be largely attributable to biological variation since 

environmental conditions were likely to be largely constant in a laboratory. Some part of 

these CV's must also have been due to measurement error which, for an SRM ergometer, is 

quoted by the manufacturer at ~2%. It can be concluded that measurement error largely 



 

16 

cancelled out in the above studies where durations were greater than 20 minutes and is 

therefore ignored in this analysis. The ~0.9% balance of error in the study of Paton and 

Hopkins (2006) can therefore be attributed to environmental error. 

  

Another approach to calculating environmental error was to analyse the percentage 

variation in the mean completion time for the top 50 finishers in the UK National 10 mile 

time trial over the last 10 years. A 1.7% variation in time, thought to be primarily due to 

changes in environmental conditions, was calculated from the National 10 mile time trial 

results posted by Cycling Time Trials UK (http://www.cyclingtimetrials.org.uk) [Accessed 

17 August 2011]. Support for this figure was provided by informal questioning of the 

experienced competitive cyclists who participated in the field trials presented later in this 

thesis. The cyclists considered a 1.7% variance in time due to environmental conditions as 

being typical when posed as a 23 s variation on a 23 minute time for a 10 mile time trial. 

Additional evidence as to the typical variations in performance intrinsic to cycling on the 

road comes from the times of the 2006 UK 25 mile time trial champion. Nine completion 

times for 25 mile competitions over 2006 were recorded (www.beninstone.com/page2.htm) 

[Accessed 3 September 2008] and ranged from 49.55 min to 52.65 min. This range of ~6% 

over a single distance is considered typical for elite time trialists and it seems unlikely that 

such variation could be attributed to physiological 'off-days' or equipment factors, leaving 

the environment as the likely determinant. Anecdotal evidence suggests that gradient, wind 

and corners are the main factors (Schmidt, 1994). 

 

 Therefore, the 'effective' percentage error level of model predicted time against actual time 

is set at ≤2.8% comprising the 1.1% biological error for repeated measurements described 

above and a 1.7% environmental error. This is somewhat higher than the ~2% reported by 

Paton and Hopkins (2006). Their figure may have been lower due to only examining 

world-class professional cyclists. It should be noted that the analysis conducted in the 

above paragraphs is largely guided by informed judgement. Therefore, the final level set 

for effectiveness is not 'true' in any absolute sense but is considered to be 'empirically 

adequate' (van Fraassen, 1980). 

 

A 'generalised' model is defined as one that is not hard-coded to any particular set of 

parameters and conditions. Model parameters and coefficients can often be specified to 

generate acceptable results for a given set of conditions. The model must be virtually re-

written if those conditions change appreciably (Yeardon et al., 2006). In the context of a 

road cycling time trial, a generalised model allows parameters for environment, bicycle 
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and rider to be loaded prior to a simulation and a completion time generated without any 

changes to the model's structure or logic. 

  

1.2.4 Existing Model Evaluation 

Cycling models that predicted performance on the track or in road time trials were 

analysed to establish their accuracy and generality of application. Although the research 

question only applied to road modelling, track studies were included in this analysis to 

provide a wider context in which to evaluate the road model findings. An opportunity for a 

new model would be identified if existing models were found to fail the effectiveness 

criteria specified above. It is important to note that not all the values presented in the 

following analyses were reported directly by the studies examined. Where required data 

was missing, values were deduced and approximated only where sufficient and relevant 

source data was provided. 

 

1.2.4.1 Track Cycling Models 

Studies that experimentally validated a track cycling model are listed in Table 1.1. The 

mean error level of the models was 2.6%. The modelled results presented in the table were 

mean values calculated over a number of participants which was considered acceptable. 

More accurate predictions could be expected from a model parameterised to a specific 

individual (i.e. a model initialised with generalised parameters is likely to have less 

predictive accuracy than one initialised with a rider's individual characteristics). It should 

be noted that in track cycling, finishing position is more sensitive to percentage error than 

in road events due to the smaller spread of finishing times. For example, in the 2008 World 

Championships the top 10 competitors in the 1000 m were separated by 1.5 s. The 

predicted finishing position varied by five places if the prediction error increased by <1%. 
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Table 1.1 Error level of track cycling models 

 
Times were not presented in the study of Martin et al. (2006) listed in the above table. The 

study reported a high correlation between modelled times and experimental times for three 

world class track cyclists (Pearson R2 = 0.989) but did not quantify the absolute or 

percentage time error although the graphical results suggested the error was small (<1%). It 

should be noted that use of Pearson's correlation coefficient can lead to an artificially high 

correlation compared to an interclass correlation (Atkinson and Nevill, 1998).  Times were 

also not presented in Bassett et al. (1999). The study summarised the results of 14 track 

tests completed by various individuals at various locations. All the tests were conducted at 

52.27 kph and propulsive power output measured by an SRM power meter was then 

compared to the modelled power requirement. A 5.5% difference was found between the 

modelled power output and the actual power output which equated approximately to a 

1.8% time error if power had been held constant. The reduction from a 5.5% power 

difference to a 1.8% time error is explained by the fact that propulsive power output 

increases with the cube of aerodynamic resistance (Garcia-Lopez et al., 2008). In a track 

environment, aerodynamic resistance could be considered to constitute 95% of total 

resistance (Lukes et al., 2005). 

 

Reference 
Distance 

(m) 

Model 
Time 

(s) 

Actual 
Time (s) 

Model 
Time Error 

(s) 

Error 
(%) 

Model 
Power 
Source 

Comment 

Capelli et al., 
(1998) 

1,024 83 
81  

(±2.1) 
+2 2.5% VO2 

Outdoor, Concrete, 
Track Bike 

Capelli et al., 
(1998) 

2,048 163 
169 

(±3.4) 
-6 3.3% VO2 

Outdoor, Concrete, 
Track Bike 

Capelli et al., 
(1998) 

5,121 414 
437 

(±13.3) 
-23 5.2% VO2 

Outdoor, Concrete, 
Track Bike 

Ingen Schenau et 
al., (1992) 

1,000 64.4 64.1 +0.3 0.5% VO2 
Actual times from 1990 
World Championships 

Ingen Schenau et 
al., (1992) 

4,000 281.3 272.6 +9 3.2% VO2 
Actual times from 1990 
World Championships 

de Koning et al., 
(1999) 

1,000 61.5 62.3 -0.8 1.3% VO2 
Actual times from 1998 
World Championships 

de Koning et al., 
(1999) 

4,000 256 263 -7 2.7% VO2 
Actual times from 1998 
World Championships 

Olds et al., (1993) 4,000 332 
340 

(±14.1) 
-8 2.3% VO2 

Outdoor, Concrete, Road 
Bike 

Bassett et al., 
(1999) 

Speed of 
52.27 kph 

Power 
412 W 

Power 
420 W 

Power 
RMSE 
=23 W 

Power 
Error 

=5.5% 
SRM 

Power error converts to 
~1.8% time error 

Martin et al., 
(2006) 

250, 500, 
1000 

    SRM 
R2 of 0.989 between 

predicted and actual times 
but no data presented 
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1.2.4.2 Road Time Trial Models 

Three modelling methodologies predicting road time trial performance have been reported 

in the literature: (1) Correlation methods have predicted completion times from 

anthropometric or physiological variables (Table 1.2). (2) Completion times have been 

predicted from laboratory ergometer trials (Table 1.3). (3) 'First Principles' models have 

been developed that predict completion times (Table 1.4). 

 

An average error level of 5.1 % was calculated for the correlation-based studies analysed 

in Table 1.2. It was considered important in this analysis to extract values that would be 

meaningful to an athlete or coach rather than to conduct a purely statistical analysis. 

Anecdotal evidence suggested that prediction error in absolute time was more meaningful 

to competitors than relative percentage errors. Coefficient of determination value (R2) was 

usually reported by the studies but would possibly be of less relevance to an individual 

athlete than the standard error of the estimate (SEE) indicating scatter or variability in the 

prediction. The time error at two SEE was considered a meaningful measure of the extent 

of the prediction error that could occur for a non-outlier individual. The Actual Error 

column in Table 1.2 therefore presents this value. 
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Table 1.2 Road cycling models: differences between anthropometric or physiologically 
based prediction of T/T performance and actual field T/T time. 

Study Distance Predicted 
Time 

Actual 
Error 

% 
Error 

Regression 
Parameter(s) 

R2 SEE 
(minutes) 

Hawley and 
Noakes, 1992 

20 km 
(F) 37:00 min 

±2.0 
min* 5.4 Wmax 0.83 1.6  

Anton et al., 
2007 

6.7 km 
(H) 

18:40 min 
±1.3 
min* 

7.1 Wmax·B/Mass 0.44 0.77  

Anton et al., 
2007 

14 km 
(F) 

19:35 min 
±0.3 
min* 

1.7 Wmax 0.81 0.27  

Coyle et al., 
1991 

40 km 
(F) 

57:30 min ±2.5 
min* 

4.4 Av. 1 hr power 
output 

0.77 1.8  

Smith, 2008 40 km 
(F) 

61:30 min  ±4.5 
min 

7.3 Wmax 0.17 3.1  

Heil et al., 
2001 

6.2 km 
(H) 

15:42 min ±0.5 
min 

3.1 Wmax·B/Mass 0.84 0.55  

Heil et al., 
2001 

12.5 km 
(H) 

24:30 min 
±1.2 
min 

5.0 Wmax·B/Mass 0.94 1.0  

Smith et al., 
1999 

17 km 
(F) 

26:24 min 
±1.1 
min 

4.2 CP·B/Mass 0.81 N/A 

Smith et al., 
1999 

40 km 
(F) 

59:30 min 
±3.1 
min 

5.2 CP·B/Mass 0.85 N/A 

Balmer et al., 
2000 

16.1 km 
(F) 

22:34 min 
±1.2 
min 

5.3 Wmax·B/Mass 0.41 1.1  

Nichols et 

al., 1997 
13.5 km 

(F) 
23:36 min 

±0.75 
min 

3.2 
Power output at 
lactate threshold 

0.83 0.53  

Nichols et 

al., 1997 
20 km 

(F) 
37:18 min ±1.75 

min* 
4.7 Power output at 

lactate threshold 
0.78 1.29  

Hoogeveen et 
al., 1999 

40 km 
(F) 

57:58 min N/A N/A 
VO2 at 

anaerobic 
threshold 

0.82 N/A 

Nevill et al., 
2005 

40.23 
km (F) 

61:21 min ±5.5 
min* 

8.9 VO2max/ 
B/Mass-0.32 0.45 N/A 

Nevill et al., 
2005 

26 km 
(F) 

40:40 min ±3.0 
min* 

7.3 VO2max/ 
B/Mass-0.32 

0.6 N/A 

Nevill et al., 
2005 

40 km 
(F) 

55:10 min ±3.2 
min* 

5.8 VO2max/ 
B/Mass-0.32 

0.3 N/A 

Nevill et al., 
2006 

40 km 
(F) 

57:08 min 
±2.5 
min* 

4.4 Wmax·B/Mass 0.96 N/A 

Hopkins and 
McKenzie, 

1994 

40 km 
(F) 

61:42 min 
±1.9 
min 

3.1 
Power output at 

anaerobic 
threshold 

0.7 N/A 

Notes: Wmax=maximal aerobic power output; B/Mass=body mass; VO2max = maximal 
oxygen uptake. (F)=Flat, (H)=Hill. SEE=Standard error of the estimate, * = Estimated. 
N/A=Not available. CP=Critical Power 
 

An average error level of 6.4 % was calculated for the ergometer-based studies analysed in 

Table 1.3. It was apparent from the analysis that field time trials had to be run on largely 

flat, straight, windless courses if comparison with ergometer prediction was to be 
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successful. This was due to the difficulty of reproducing environmental conditions on an 

ergometer. 

 

Table 1.3 Road cycling models: Differences between ergometer predictions of T/T 
performance and actual field T/T time. 

Study Distance 
Predicted 

Time 
Actual Error 

% 
Error 

R2 
SEE 

(minutes) 
Jobson et al., 

2007 
40.23 
km (F) 

60:12 min +2.5 min 4.2 0.69 2.4  

Jobson et al., 
2008 

40.23 
km (U) 

57:06 min +3.7 min 6.5 0.79 1.5  

Smith et al., 
2001 

40 km 
(F) 

54:21 min +3.1 min 5.7 N/A N/A 

Palmer et al., 
1996 

40 km 
(F) 

56:24 min +5.0 min 8.9 0.96 N/A 

Palmer et al., 
1996 

40 km 
(F) 

56:24 min +3.8 min 6.7 0.96 N/A 

Notes: (F)=Flat, (U)=Undulating, * = Estimated. N/A=Not available 
 

First Principles models have predicted performance from bicycle/rider equations of motion 

and environmental forces (Table 1.4). These have been relatively successful compared to 

the previous two categories as might be expected from modelling based on a firm 

relationship to real-world physical laws. However, the models analysed were not forward 

integration models and, therefore, specified fixed parameter values for the duration of a 

simulation which restricted their effectiveness when applied to variable courses and 

conditions.  

 

Table 1.4 Road cycling models: differences between First Principle model prediction of 
T/T performance and actual field T/T time. 

Study Distance 
Predicted 

Value 
Actual Error % Error R2 

SEE 
 (W) 

Martin et 

al., 1998 
0.47 km 

(F) 
172±15.2 

W 
+0.8±14.7 W 0.5 0.97 2.7  

Olds et al., 
1995 

26 km 
(F) 

42:38 min +1.65 min 3.87 0.79 N/A 

Notes: (F)=Flat, N/A=Not available 
 

1.2.4.3 Comparison of Track and Road Models 

The error level in road time trial models of between 3.9% and 6.4% was consistently 

higher than the 1% to 2.6% found in track models and also higher than the 2.8% specified 

as acceptable for this study. It is suggested that the higher error levels for road models can 

largely be explained by a failure to adequately account for the variations in environmental 

resistive forces such as gradient and wind velocity/direction that may occur frequently in 

road cycling. The largest of these effects is considered to be gradient variation. The critical 
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effect of gradient can be seen in a field study conducted on an effectively windless airfield 

taxiway with a gradient of only 0.5% (Martin et al., 1998). Despite the apparently flat 

course, gravity accounted for up to 20% of the total resistive force when travelling at a 

steady-state speed of 7 m/s. The contribution to resistance from environmental wind has 

also been modelled as a constant. However, this is rarely the case due to variations in 

strength and direction arising from the effects of topography and changes in route 

direction. Rolling resistance as a constant will have a lesser distorting effect, but road 

surface friction is variable (Kyle, 1994) and steering to follow a path which will always 

generate tyre slip resistance (Kyle, 1984; Sharp, 2008). 

 

Track models validated on an indoor track require no adjustment for gradient, wind or 

surface although some adjustment is required for changes in forces and velocities induced 

by the track banking (e.g. normal force on the tyres, Craig and Norton (2001)). Studies 

conducted on outdoor tracks have predominantly reported wind <1 m/s and smooth 

concrete surfaces. The studies presented in Table 1.1 have not made adjustment for these 

factors despite identifying them as possible sources of error. Bassett et al. (1999) suggested 

that the higher model error level sometimes reported for outdoor track testing is a 

consequence of these omitted factors  

 

Finally, many road models assume a steady-state condition as time to accelerate at the start 

is a negligible proportion of overall time (Martin et al., 2006; Olds, 2001). However, 

acceleration/deceleration is an inherent consequence of the environmental resistance 

variations that occur constantly in road cycling on even the flattest courses. Failure to 

adequately account for the rate of resistance changes increases the error level in road 

cycling models. This can only be satisfactorily addressed with a high frequency of model 

simulation that senses the changes and immediately generates an appropriate response.  

 

1.2.5 Rationale Summary  

Error level in models developed for individual events on the track was found to be 

typically 2.6% while the error level for equivalent road time trial models was typically 

5.3%. While track error levels met model effectiveness criteria, those for road cycling did 

not and were, therefore, considered too high to guide mechanical performance 

enhancement adequately. It is considered that the latter was due to incomplete modelling of 

the combined rider, bicycle and environment and insufficient frequency of model 

simulation. If mechanical performance is to be effectively enhanced, a need exists for a 

new comprehensive and integrated road time trial model that is simulated at a high 
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frequency. The hypothesis of this thesis is that an effective and generalised road cycling 

model can be built and subsequently used to predict performance enhancements. 

 

1.3 Literature Review 

The analysis above provides the rationale for this thesis and identifies a requirement for a 

new road cycling model. The remainder of this chapter examines studies that provide 

evidence on the features and functions that should be incorporated in the new model if it is 

to fulfil its purpose. 

 

The published research is analysed under the headings of sports science literature and 

mechanical engineering literature. A combination of research from both disciplines 

provides a broad base of expertise which will assist the new model to meet its design 

objectives. It is, however, interesting to note the absence of cross-citations between the two 

disciplines. The sports science literature has been primarily concerned with human systems 

and therefore contributed mostly to rider biomechanics while the engineering literature has 

been primarily concerned with machines and contributed mostly to bicycle dynamics. The 

analysis is conducted using the hierarchical structure shown in Figure 1.1.  

  

Figure 1.1 Literature structure of bicycle/rider modelling. 
 
1.3.1 Sports Science Studies 
Performance in competitive cycling has been predicted by computer simulation models 

since the early 1970's in order to assist with athlete selection (Humara, 2000), training 

enhancement (Broker et al., 1993), injury mechanisms (McLean et al., 2003), optimising 

equipment (Yoshihuku and Herzog, 1996), performance optimisation (van Soest and 

Casius, 2000) and quantification of performance factors such as joint torques that cannot 

be realistically measured (Gregersen et al., 2006). Models relevant to this thesis have 
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predominantly simulated the biomechanics of the pedalling action or the translational 

dynamics of the bicycle/rider and these are analysed below.  

 

1.3.1.1 Pedalling Models 

The objective of most pedalling research has been to either optimise performance or 

elucidate motor control mechanisms in human movement (based on neural strategies to 

coordinate muscle activation) (Raasch and Zajac, 1999; Zajac et al., 2003). A common 

model aim has been to optimise input parameters such as: saddle position (Gonzalez and 

Hull, 1989), crank length (Martin and Spirduso, 2001), cadence (Redfield and Hull, 

1986b), ankle angle profile (Chapman et al., 2007; Price and Donne, 1997), pedal/foot 

position (Gregersen et al., 2006) or chainring shape (Kautz and Hull, 1995). Other models  

have sought to minimise an objective function such as internal work (Neptune and van den 

Bogert, 1998), joint torques (Marsh et al., 2000), muscle stress (Hull et al., 1988), effective 

pedal force (Redfield and Hull, 1986a) and muscular work (Neptune and Hull, 1998).  

Models have also sought to maximise metabolic efficiency (Smith et al., 2005) and 

maximise power output (Yoshihuku and Herzog, 1996). 

 

The main determinant of pedalling performance is the torque generated by leg muscle 

contraction but an experimental analysis of pedalling is constrained by the difficulty of 

directly measuring leg joint torques without invasive surgery. One solution to this problem 

has been to use a forward dynamics model which generates neural commands to activate 

individual leg muscles (Otten, 2003; Erdemir et al., 2007). The resulting joint torques 

could then be derived as a function of muscle parameters such as length, cross sectional 

area, moment arm, force/length/velocity relationship, tendon slack length, pennation and 

actuation timing (Lloyd and Besier, 2003). Hip, knee and ankle torques have been input to 

models that output total force applied to the pedal in cycling (Neptune and Hull, 1998; 

Buchanan et al., 2005; Hakansson and Hull, 2007; Neptune and Hull, 1999; van Soest and 

Casius, 2000). The kinematiclly constrained nature of pedalling also enabled less 

sophisticated forward dynamics models to generate realistic pedal forces and motion when 

only net joint torques were input to the model rather than individual muscle excitations 

(Runge et al., 1995; Kautz and Hull, 1995). A weakness of forward dynamics models can 

be their dependency on approximations of muscle activation magnitude/timing obtained 

from EMG analysis. A further weakness can be their reliance on estimated joint torques 

obtained from inverse dynamics studies (Neptune and Kautz, 2001). Their strength is an 

ability to make prediction of outcomes for novel conditions that is not possible with 

inverse dynamics models. 



 

25 

 

Inverse dynamics models provide an alternative method for examining pedalling, utilising 

a technique where leg joint torques are calculated 'backwards' from measured pedal forces 

and limb motion. While avoiding the complexity and uncertainty of muscle modelling, 

these models generally calculate a 'net' joint torque which does not account for 

agonist/antagonist co-activations, passive energy storage and the contribution of bi-

articular muscles (Van Ingen Schenau et al., 1992). Nevertheless, the bulk of pedalling 

models fall into this category with computed joint torques being used to actuate closed-

loop five bar linkages comprising three leg segments, the crank and seat post (Hull and 

Jorge, 1985; Fregly et al., 1996; Smak et al., 1999; Kautz et al., 1991). Inverse dynamics 

analysis tends to be descriptive of a specific condition whereas a forward dynamics model 

has the capability to make predictions for conditions that are not specified a priori. In 

consequence, a forward dynamics model is likely to be required if a generalised model for 

predicting road time trial performance is to be developed.  

  

Hull et al. (1991) investigated the concept of internal work by developing a pedalling 

model that demonstrated a key advantage of modelling when optimising performance. 

Internal work was defined as work done by muscles to accelerate/decelerate the leg 

segments during the reciprocating motion of pedalling, but which was not transferred to 

bicycle propulsion. Internal work reduction would therefore increase efficiency. A number 

of theoretical eccentric chainring profiles were modelled and 'pedalled', each one 

differently minimising changes in segment velocity which was assumed to be the main 

source of internal work. A maximum 48% reduction of internal work was obtained but the 

excess of metabolic work over external work was found to be less than 9 W on 200 W 

suggesting that segment velocity (internal work) was not a major factor in efficiency. 

Modelling therefore provided a method of investigation that enabled the study to be 

conducted without the manufacture of a large number of differently profiled chainrings. 

 

It should be noted that none of the pedalling optimisations reported in the above studies 

have been confirmed in field cycling trials. The model outputs have generally been 

validated against data obtained from subjects pedalling on a static ergometer but the 

optimisations have not been confirmed in road cycling where they might be confounded by 

bicycle translation and rotation in three dimensions. 
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1.3.1.2 Bicycle Translation Models 

Translation is defined as the motion of the bicycle/rider in a longitudinal, lateral or vertical 

direction. The key literature relating to bicycle translation has been summarised in section 

1.2 (Rationale) but a more extensive analysis is included here. Three types of study that 

predict bicycle translation have been identified. Firstly, 'goodness-of-fit' models correlate 

one or more anthropometric or physiological parameters (e.g. subject mass or maximal 

oxygen consumption) to time trial performance and derive equations that use the 

parameter(s) as a performance predictor (Coyle et al., 1991; Balmer et al., 2000; Anton et 

al., 2007; Laursen et al., 2003). This approach does not include terms that account for the 

variations in resistive forces that occur in field cycling (e.g. gradient, wind, and corners) 

and, therefore, implicitly assumes field conditions are identical to a laboratory ergometer. 

However, studies have shown that forces resulting from pedalling, steering, balancing and 

path tracking have a significant effect on the dynamics of bicycle translation which casts 

doubt on approaches that ignore them (Roland and Lynch, 1972; Cole and Khoo, 2001; 

Meijaard et al., 2007; Sharp, 2008). In the second method, experimental time trials have 

been completed on a laboratory ergometer configured with a resistive force that emulated 

environmental resistances and field performance predicted from the result. To be 

mechanically valid in the field, this approach requires the ergometer to be programmed 

with the interaction of bicycle dynamics and environmental factors at each time instant 

over a course. For example, Ordinance Survey maps show gradient changes at 10 m 

intervals over a typical undulating time trial course (i.e. approximately every 10 s) whereas 

many ergometers can only be programmed to change resistive force at ≥1 minute intervals. 

This would mean that actual changes of gradient (and associated cyclist work) that 

occurred within a one minute time period would not be implemented by the ergometer until 

the start of the next time period. The ergometer's resistance due to gradient would therefore 

not accurately reflect an actual course. In the worst case, nearly a minute of severe actual 

climbing could be implemented in the ergometer resistance setting as a flat road . 

 

The third method can be characterised as 'first principles' models (Olds, 2001) which use 

physical laws to build power demand/supply relationships which are then parameterised 

from experimental observations. Such models allow 'what if' questions to be answered by 

changing parameters and predicting the response of output variables without the necessity 

for experimental measurement (variables may be un-measurable in some instances). First 

principles models can broadly be divided into models where the parameters and 

relationships remain constant over the duration of a simulation and those where parameters 

are changed systematically throughout the simulation (defined for the purpose of this thesis 
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as pacing models). The constant parameter models calculate propulsive forces (i.e. power 

output the cyclist generates at the crank) less forces resisting forward motion 

(gravitational, aerodynamic, rolling, frictional, inertial) in order to arrive at a predicted 

steady state velocity for a given power output. A power supply/demand model (Olds, 

2001) will, in some cases, include physiological factors in arriving at the available power 

supply (Olds, 1998). Acceleration/deceleration may also be modelled, most notably in 

track cycling where standing starts and banked turns introduce clear speed variations (de 

Koning et al., 1999). 

 

An early study (di Prampero et al., 1979) attempted to quantify resistive forces (primarily 

aerodynamic) by towing a cyclist at various constant speeds behind a car for 100 m on a 

straight, smooth, flat, windless car racing circuit and measuring the tension in the tow rope. 

Expressions were presented for aerodynamic, rolling, and gravitational resistive forces. 

Although the total resistive forces were known from the experiment, there was no means to 

verify the proportionate allocation proposed by the authors. A significant advance in 

bicycle translation modelling was reported in a study by Olds et al. (1995) which was one 

of the first to validate a model against field time trials. The model applied weightings and 

relationships to a large number of parameters that either contributed to bicycle propulsion 

(mainly athlete physiological capacity) or resisted motion (mainly aerodynamic, gradient 

and rolling forces). Results from 41 field trials over a 26 km course were compared to 

model predictions with errors ranging from +6 min to -3 min on a mean time of ~43 min. 

Unfortunately the field trials were not controlled, precluding separation of errors into those 

due to the accuracy of the propulsive/resistive force equations and those due to one or 

more subjects performing below their laboratory-measured capability. The course profile 

was also not representative of a typical time trial since a 6.5 km straight, flat (mean 

gradient <0.5%), windless (0.77 m/s) course was used four times in opposite directions 

with the clock stopped for each turn. 

 

Bicycle translation modelling took a major step forward when Martin et al. (1998) 

eliminated the physiological performance predictions that were not accounted for in the 

Olds et al., (1995) model. This highlighted the effects on performance of forces resisting 

motion. An SRM power meter (Schoberer Rad Messtechnik GmbH, Julich, DE) was 

validated and aerodynamic resistance forces quantified in a wind tunnel before a model 

was developed and validated in controlled field trials over a 472 m course. (The SRM is a 

device that measures power applied by the rider to the crank by sensing crank torque and 

angular velocity). Reversing the usual approach, speed was controlled over the course 
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(runs at 7, 9 and 11 m/s) and then power output measured by the SRM power meter was 

compared with power output predicted by the model. A mean power output of 172.8 W 

was found for the field trial versus 178 W predicted by the model with a standard error of 

measurement of 2.7 W and R2 > 0.99. However, the course on an airport perimeter track 

was untypical of road cycling being short (~56 s), flat (0.3% gradient) and straight with a 

wind speed of ~2.4 m/s at ~90° (implying almost nil environmental wind effect (Kyle, 

1994)). Furthermore, acceleration effects were largely ignored as subjects crossed the start 

line at the target speed and largely maintained that speed throughout. Any model 

developed in this thesis should simulate the effects of environmental wind and gradient 

that occurs in a typical road time trial. 

 

1.3.1.3 The Effect of Pedalling on Translation 

Pedalling is the engine of bicycle translation which makes it surprising that no pedalling 

model has been identified that activates a bicycle translation model. Logically, this 

activation is required if a cycling model is to emulate real-world cycling correctly. 

Numerous bicycle translation models have been presented with propulsion provided by an 

idealised power output rather than from pedal forces or joint torques (Swain, 1997; 

Jeukendrup et al., 2000). The ability of these models to reproduce field bicycle translation 

might be questioned, particularly as variable resistive forces in road cycling would make it 

surprising for a pedalling cyclist to constantly produce an unvarying power output. Any 

model developed in this thesis should be able to generate bicycle propulsion from the 

cyclist's pedalling and simulate that propulsion at a frequency that reflects the changes in 

forces over a pedal cycle. 

 

1.3.1.4 The Effect of Gradient and Wind on Translation 

Pacing models developed for time trials have predicted the effect of different gradients and 

wind speed or direction on performance usually with the objective of optimising rider race 

strategy to changes in the environment (Maronski, 1994; Swain, 1997; Atkinson and 

Brunskill, 2000; Gordon, 2005; Atkinson et al., 2007a; Atkinson et al., 2007b). A strategy 

of systematically varying power output in response to changes in gradient and wind is 

typically calculated such that a rider's overall race time is minimised. Foster et al. (1993) 

investigated the effects of varying speed over a simulated 2 km course on an ergometer 

while resistive forces were held constant and found that completion time was minimised 

with a constant speed. This basic concept underlies all mechanical pacing strategies as it 

can be proved mathematically that constant speed over a course (with or without resistance 

variations) will always be fastest (Maronski, 1994; Gordon, 2005). Variation in power 
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output then becomes the mechanism to reduce variation in speed during a race although 

this is constrained by the rider's physiological capacity (Liedl et al., 1999). The earliest 

pacing studies utilised the general cycling model of di Prampero (1979) to investigate 

strategies that minimised race time in response to changes in course wind speed or 

direction and gradient (Swain, 1997). Swain's findings confirmed that any variation in 

propulsion that served to reduce speed variance would reduce course time regardless of the 

responsible resistive force or its characteristics (assuming the same work done). The extent 

of power output variance applied by the rider was the single most important controllable 

variable when attempting to minimise completion time. Power variance has usually been 

presented as a ± percentage variance against a constant power output strategy. Values 

implemented in studies have ranged from ±5% on 224 W (Atkinson et al., 2007a) through 

±10% on 289 W (Atkinson et al., 2007b) to ±20% on 435 W (Gordon, 2005). The average 

climbing/descending gradient is also a critical parameter with the above three studies 

applying variances of ±5%, ±10% and ±2.5% respectively. Lastly, climbing distance as a 

proportion of total distance influences completion time. The above studies all applied 

idealised profiles of 50% (i.e. equal constant gradient climbing and descending). The study 

of Atkinson et al. (2007a) implemented a 5% power output and 5% gradient variance with 

a resulting 2.3% time saving. The study of Gordon (2005) implemented only a 2.5% 

gradient variance but a 20% power output variance and reported a time saving of 1.6%. 

Atkinson et al. (2007b) reported a 7.9% time saving for a 10% gradient variance, 

demonstrating that gradient is a major variable in deciding how much time can be saved 

with a constant versus variable power output strategy. In essence, a variable power output 

strategy will only be effective on hilly time trial courses. The time saving occurs because 

more time is spent on the ascent than on the descent and therefore the speed on the ascent 

has a greater effect on the overall time. 

 

As an additional observation, it has been shown mathematically (Gordon, 2005) that a 

variable power output strategy can generate a greater time saving over a steep climb and 

gradual descent compared to an equivalent balanced climb/descent (e.g. a 10% ascent and 

2% descent versus a 6% ascent/descent over the same distance with mean power output the 

same). Gordon (2005) also demonstrate the non-linear increase in time saving with 

gradient by increasing gradient from 3.5% to 5.25% on a balanced  idealised climb with 

the associated potential time saving increasing from 100 s to 200 s (physiological 

limitations were ignored). 
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It is interesting to note that studies which vary wind resistance (out and back course with 

head/tail wind) show much less time saving in response to power variation than changes in 

gradient. Swain (1997) reported a normalised 0.8% saving for ±4.4 m/s wind, Atkinson 

and Brunskill (2000) reported a 0.1% saving for a ±2.2 m/s wind and Atkinson et al. 

(2007b) reported a 0.7% saving for a ±2 m/s wind. These results are to be expected as 

power requirement increases with the cube of air velocity while the power response to 

gradient increase is nearly linear.   

 

The models of Swain (1997) and di Prampero (1979) were not validated in laboratory or 

field trials. One concern was the aerodynamic equations of di Prampero which could be 

questioned on the grounds that they were derived from data obtained whilst towing a 

cyclist behind a vehicle. The above models were possibly not validated in the field because 

their theoretical construct was based on a simplified representation of gradient and wind 

forces which was not realisable in the real world. In particular, symmetrical 

increase/decrease in resistive forces were applied at arbitrary intervals and the models were 

constrained to planar motion which excluded  the effects of three dimensional translation 

and rotation required for a bicycle/rider to stay upright and follow a path. 

 

In summary, whilst most pacing models provide important contributions to theory, they 

have not been validated in the field and their application in field cycling should therefore 

be treated with caution.  Logically a complete road cycling model requires input of path 

tracking and gradient data at a rate that adequately reproduces a real course consistent with 

measurement accuracy. Without the facility to include and examine these effects, a model 

is at risk of oversimplifying the problem. Wind and gradient generally change continuously 

in the field rather than in the fixed and balanced fashion at a few time points assumed in 

most pacing models. Any model developed in this thesis must have the capability to 

numerically integrate a solution to the equations of motion at sufficiently small time steps 

to account for frequent changes in environmental conditions.  

 

1.3.1.5 Translation Model Limitations 

It has been suggested (Olds, 2001; Martin et al., 2006) that bicycle translation models often 

require extension if they are to predict field performance effectively. Most models from the 

sports science literature treat the bicycle/rider as a single machine with one longitudinal 

degree of freedom (but no lateral or vertical translation) and no rotational degrees of 

freedom (i.e. no yaw, roll or pitch). In addition, most existing models have no steering 

torque, no tyre forces, no rider body lean, no steering geometry effects (trail or steering 
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axis inclination), no pedalling torque profile, no pedalling/roll interaction, no gear changes 

and acceleration effects only associated with standing start races (deKoning et al., 1999). 

One consequence of these limitations is that propulsive and resistive forces are often 

measured and modelled at frequencies specified in many seconds or even minutes. In 

reality, many input variables change on a second-by-second basis. A study that reports a 

good model/experimental fit from a single measurement taken at the end of a trial may 

conceal wide divergences at intermediate time points.  

 

The above omissions suggest that a general limitation of existing models is the small 

number of parameters and relationships included in the equations of motion and the low 

simulation frequency. Models that predict optimum power output over a course can 

therefore be questioned when conditions are not tightly controlled. Real-world field 

cycling consists of continuously changing resistive forces changes generated from a wide 

range of parameters with periods measured in seconds (Euler et al., 1999). It is likely that 

some of the bicycle/rider mechanisms included in a comprehensive model will have 

limited effect on performance and there is little evidence enabling these factors to be 

identified a priori. Hatze (2005) considered it essential that a model should be developed 

with the most complete set of functions possible, which could then be reduced once 

validated outputs were available to control the process. Other limitations of sports science 

translation models when predicting real-world cycling performance include: (1) 

Translation models are not constructed from multiple bodies that comprise a bicycle/rider 

and cannot therefore model the effects of such a structure on performance (e.g. frame twist, 

wheel flex and rider body lean). (2) Pedalling model optimisation predictions have not 

usually been validated by a translating bicycle/rider system in a field context. (3) Where 

models have been validated by field trials, they have often been run over straight, flat, 

windless courses which tend to confirm model predictions but are not typical of most road 

cycling. 

 
 

1.3.2 Mechanical Engineering Studies 

The dynamics of single track vehicles is an established discipline within mechanical 

engineering that includes the bicycle, motorcycle and scooter. The bicycle/rider as a 

machine is subject to the well established mechanical laws that define the dynamics of 

rigid bodies. In classical mechanics, Newton (1686) and Euler (1775) identified the 

essential components of rigid body translation and rotation (point mass, constraints, joints, 

forces) and established the free body principal based on applied forces and reaction forces, 

encapsulated in the characteristic Newton-Euler equations of motion. A re-formulation of 
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Newtonian mechanics in terms of kinetic and potential energy by Lagrange in 1788, 

contributed a major advance in simplifying equation derivation. The resulting differential-

algebraic equations (DAE) and ordinary differential equations (ODE) have become the 

predominant method used to the present day. Early applications of rigid body dynamics 

were often directed at investigating biomechanical problems with a particular emphasis on 

human locomotion. Research areas included human walking (Fischer, 1906), total body 

motion (Chaffin, 1969), bipedal stability (Vukobratovic et al., 1970) and a complete 

representation of the human body (Huston and Passerello, 1971). 

 

Building rigid body models was computationally constrained until the late 1960's as the 

numerical methods required for solving non-linear differential equations were often 

impractical by hand. Computer developments removed this constraint and led to the 

publication of numerical formalisms (Hooker and Margulies, 1965; Roberson and 

Wittenberg, 1967) that created a new branch of mechanics entitled Multibody System 

Dynamics. Continuing growth in computer power also facilitated symbolic manipulation of 

the equations of motion, enabling simplified and more efficient expressions to be obtained 

(Levinson, 1977; Schiehlen and Kreuzer, 1977). In the 1970's, finite element analysis was 

also applied to creating bicycle models with an emphasis on investigating bicycle stability. 

Notably, the software package SPACAR was released by the University of Delft and is still 

in widespread use (van Soest et al., 1992). Finally, the current state-of-the-art comprises 

unified modelling, simulation and animation software packages which include previously 

unavailable facilities to model friction, impact and closed kinematic chains together with 

links to computer aided design (CAD) input and hardware programming output. Multibody 

system dynamics is now a major branch of mechanics in its own right (Schiehlen, 1997), 

utilising software modelling to solve engineering problems in industries such as rail and 

road vehicle design (ADAMS (www.mscsoftware.com)), aerospace (Vortex (www.cm-

labs.com)), civil engineering (FEDEM (www.fedem.com)) and robotics (Dymola 

(www.dynasim.se)). An important development in mechanical modelling was the release 

in 2002 of SimMechanics (www.mathworks.com) which, for the first time, made 

modelling of mechanical systems (such as a bicycle/rider) accessible to non-

mathematicians since the equations of motion were automatically derived by the software. 

Similar integrated packages since released include BikeSim (www.carsim.com), 20-Sim 

(www.20sim.com) and Simpack (www.simpack.com). 
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1.3.2.1 Single Track Vehicle Dynamics 

 In engineering, single track vehicles pose the 'inverted pendulum' stability problem (i.e. 

they do not remain upright when at rest). The bicycle has been extensively modelled since 

the invention of the safety bicycle by John Starley in 1885, usually with the objective of 

identifying the mechanics that keep a moving uncontrolled bicycle upright and deriving 

governing equations of motion. Bicycle dynamics studies have generally only considered 

the mechanics of the uncontrolled vehicle (i.e. no rider although the rider body has 

sometimes been included as an inert mass). Models developed over the last 100 years can 

generally be divided into three groups: Firstly, qualitative discussions of bicycle dynamics, 

too reduced to capture a bicycle's self-balancing capacity (Maunsell, 1946; Jones, 1970; 

Den Hartog, 1948; Le Henaff, 1987; Olsen and Papadopoulos, 1988).  Secondly, models 

with insufficient mass and geometry to allow self-stability or with control inputs that 

overrode uncontrolled steer dynamics (Timoshenko and Young, 1948; Lowell and McKell, 

1982; Getz and Marsden, 1995; Fajans, 2000; Astrom et al., 2005; Limebeer and Sharp, 

2006). Thirdly, some thirty rigid body dynamics models have been identified that include 

bicycle mass, geometry and steering characteristics sufficient to enable self-stability 

together with their governing equations of motion (Wipple, 1899; Carvallo, 1900; Dohring, 

1955; Weir, 1972; Eaton, 1973; Psiaki, 1979; Sharp, 1971; Van Zytveld, 1975; Collins, 

1963; Singh, 1964; Rice and Rowland, 1970; Roland and Massing, 1971; Roland and 

Lynch, 1972; Roland, 1973; Koenen, 1983; Franke et al., 1990; Meijaard et al., 2007). 

More recently, the research emphasis has moved from stability to control with studies 

investigating the control logic necessary for a bicycle to track a defined path (Yavin, 1999; 

Getz and Hedrick, 1995; Getz, 1995; Frezza and Beghi, 2006). 

. 
A typical bicycle model contains a limited number of dynamic variables that can be 

adjusted to achieve either stability or control objectives. These are presented in 

diagrammatic form below to provide an overview. The mechanics of cycling are analysed 

under three categories: Firstly, the bicycle is analysed in respect of the main variables 

which specify its motion (Figure 1.2). Principally these are translation in forward, lateral 

and vertical directions and rotation about these axes, defined respectively as roll, pitch and 

yaw. Additionally, steering is initiated about an inclined steering axis and propulsion is 

generated by rotation of the rear wheel. Secondly, the rider is analysed in respect of both 

motion and forces that contribute to bicycle stability and translation (Figure 1.3). 

Principally these are upper body lean/weight transfer together with steering torque and 

crank torque from pedalling. It should be noted that the Figures are intended as a 

simplifying conceptual representation and therefore omit the interactions between 

components.  Thirdly, the main environmental factors are considered comprising gradient, 
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path tracking and aerodynamic resistance (Figure 1.4). In each diagram, input to the system 

is shown on row 2 and the resulting effect on row 3. 

 

Figure 1.2 Bicycle modelling. Angles/positions/forces (derivatives computed as required). 
 

Figure 1.3 Rider modelling. Positions/forces (derivatives computed as required). 
 

Figure 1.4 Environmental modelling. Angles/positions (derivatives computed as required). 
 

1.3.2.2 Vehicle Stability 

Translational stability was the first problem to attract the attention of the scientific 

community once the design of the 'three triangle' Rover safety bicycle was stabilised 

towards the end of the 19th century. It is interesting to realise that bicycle development in 

the 1890's was a leading edge technology for the time and therefore drew considerable 
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scientific attention. In mechanical engineering terms, a bicycle was similar to the well 

known problem of balancing an inverted pendulum on a moving cart. Longitudinal cart 

translation to overcome the pendulum's natural tendency to capsize mirrored a bicycle's 

inherent tendency to capsize at slow speeds, presenting an interesting challenge when 

formulating the equations of motion that kept a bicycle upright. Research into bicycle 

stability has generally proceeded on the basis of 'no rider control' even when a rider mass 

was included as an inert addition to the bicycle rear frame. This seemingly somewhat 

unworldly method of analysis was (and is) based on the assumption that bicycle designers 

were seeking to achieve some combination of stability and manoeuvrability independently 

of a rider. Since there would always be some delay between environmental changes and 

rider compensatory inputs, an optimal design would be achieved if the instantaneous 

response of the bicycle (i.e. uncontrolled) conformed to the design objectives. It also 

proved surprisingly difficult to describe a bicycle mathematically, a challenge which was 

first seriously addressed by a Cambridge undergraduate, Francis Whipple, in 1899. 

Whipple formally derived generalised linear (upright, straight-running) and non-linear 

(steering, rolling) equations of motion for the bicycle (Wipple, 1899) although it took 

nearly 100 years before both were confirmed as essentially correct (Hand, 1988; Meijaard 

and Schwab, 2006). It is perhaps a measure of Whipple’s original achievement that the 

complexity of his non-linear equations precluded their being solved until sufficient 

computer power was available to solve them numerically. 

 

Over the period 1900 to the 1950's, numerous authors developed governing equations of 

motion for the bicycle and also investigated the factors which influenced the self-stability 

(i.e. no rider control) of a straight-ahead moving bicycle in response to small lateral 

perturbations. Studies reported on the dynamics of steering response (Timoshenko and 

Young, 1948), bicycle roll (with and without a fixed rider) (Rice and Rowland, 1970; Van 

Zytveld, 1975), geometry (e.g. steering axis inclination and trail) (Papadopoulos, 1987) 

and wheel gyroscopic effects (Den Hartog, 1948). However, few of the published 

equations were validated by reference to other work and subsequent analysis (Hand, 1988) 

has shown that errors and/or omissions were not uncommon (Bower, 1915; Pearsall, 1922).  

 

A recent study examined the majority of previous work and having corrected all 

identifiable errors, created a unified product claimed as the definitive benchmark equations 

of motion for an uncontrolled bicycle (Meijaard et al., 2007). An experimental study was 

generally supportive of the model predictions although the confirmation was not supported 

with statistical data (Kooijman et al., 2008).  
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 The dynamics of a motorcycle has many similarities to the bicycle particularly when 

examining stability with no rider input. Due to the involvement of motorcycle 

manufacturers from the mid 1950's onwards, an increasing contribution to the single track 

vehicle literature was provided from motorcycle and scooter studies (Dohring, 1955; Sing 

and Goel, 1971; Sharp, 1971). These added to the growing accumulation of generalised 

equations of motion although few were checked for validity against other derivations. The 

stability orientation of single track vehicle research also started to migrate towards a wider 

consideration of the real-world factors affecting a single track vehicle being ridden on the 

road. Most notably, motorcycle researchers started to include tyre forces in their equations 

since they were clearly critical to performance at higher vehicles speed and vehicle weight 

(Sing, 1964; Sharp, 1971; Weir 1972; Eaton, 1973). Beneficially, tyre force analysis then 

'trickled-down' to improve the accuracy of bicycle research (Rice and Roland, 1970; 

Roland and Massing, 1971; Roland and Lynch, 1972). Other factors were introduced that 

made studies more realistic including propulsion and drag forces (Collins, 1963), an active 

rider (Van Zytveld, 1975) and vehicle acceleration (Lobas, 1978; Limebeer et al., 2001). A 

shift in research emphasis from vehicle stability to control resulted from developments in 

control engineering and from the formal quantification by Sharp (1971) of the weave, 

wobble and capsize modes. These modes clarified the previously known fact (Whipple, 

1899) that self-stability only occurred within a narrow speed band while stability at other 

speeds required varying degrees of explicit control. 

 

Despite some question marks over the real-world relevance of single track vehicle stability 

studies, they will be discussed at length as the model to be constructed for this thesis will 

be validated against uncontrolled bicycle stability models from the literature. It is 

important therefore to specify the assumptions which underlie such models and which 

should be emulated if the thesis model is to be compared. The main features are as follows: 

 

• The single track bicycle is composed of four rigid bodies comprising two wheels, a 

rear frame (possibly including rigid inert rider) and a front frame hinged to the rear 

frame along an inclined steering axis. 

• Wheels are rigid, non-slipping, knife-edge discs with a single ground contact point. 

• Wheels are holonomically constrained in the normal (vertical) direction (i.e. they 

must remain on the ground). They exhibit no slip and are therefore non-

holonomically constrained in the longitudinal and lateral directions. A non-

holonomic constraint has the characteristic that the bicycle position at any instant is 
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unknown unless the time history of the wheel path is also known. In mathematical 

terms, the bicycle’s position cannot be found by integration of its velocity. 

• The effects of propulsive and resistive forces are ignored. 

• Responses are measured over a range of speeds with speed held constant for each 

measurement run. 

• There are no control ( steering, roll) inputs 

• Finally a linearised model must be extracted from what is likely to be a model with 

many non-linear features (e.g. steering/roll inputs, path tracking, and acceleration). 

Essentially this represents the bicycle as a system that is in upright equilibrium and 

moving straight ahead at a constant velocity. 

 

1.3.2.3 Weave, Wobble and Capsize Modes 

These modes describe the stability response of an uncontrolled single track vehicle running 

straight-ahead at various speeds when perturbed by a small lateral force. It is initially 

surprising to find a considerable proportion of the vehicle dynamics literature measuring 

these responses given that they ignore any control applied by a rider. In the early years of 

bicycle research, this probably reflected interest in how a bicycle remained upright. In 

more recent times, matching the uncontrolled stability results of previous models has 

primarily been used to confirm a new model’s validity (Weir, 1972; Franke et al., 1990). It 

is also important to note that theoretical stability studies are more important in motorcycle 

research where the higher speeds can make instability on the road life-threatening 

(Evangelou et al., 2006; Limebeer et al., 2002). 

 

The capsize mode is specified as the upper speed where uncontrolled roll and steering 

responses to a small perturbation are unable to prevent the bicycle falling due to gravity 

(Sharp, 1971). Capsize mode is normally associated with a slow, non-oscillatory toppling 

of the bicycle at speeds above approximately 6 m/s. In reality this instability is so slight 

that it is likely to be easily and unconsciously corrected by a rider. Weave mode describes 

a slow oscillation between left leaning/left steering and vice-versa when the upright 

uncontrolled bicycle is perturbed at speeds from approximately 0.5 to 4.3 m/s (Limebeer 

and Sharp, 2006). Again a rider perceives little difficulty in controlling weave mode except 

perhaps at very low speeds (i.e. close to performing a track stand). Wobble mode is more 

significant to a cyclist as it describes the rapid oscillation (4- 10 Hz) of the steering 

assembly (bars, forks, front wheel) that can occur at speeds above 10 m/s, often on a fast 

descent (Sharp, 1985). Vehicle models that reflect this phenomenon usually include a tyre 

model and thus have been largely confined to motorcycle research where higher speed, 
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performance and safety requirements have justified the development of sophisticated tyre 

models.  However, the phenomenon is experienced by cyclists and therefore, with the 

addition of recently available tyre parameters (Seffen et al., 2001; Limebeer and Sharp, 

2006), should be observable in a complete bicycle model. The instability starts with an 

imbalance in the front assembly that oscillates the steering from side to side. The problem 

is exacerbated when rider corrective action coincides with the oscillation rather than 

opposing it. Stability is usually restored through some combination of speed change, riding 

position and reduced handlebar grip although an increase in steering damping may be 

required to cure the problem at source (Sharp, 2001). 

 

It has proved difficult to experimentally validate the stability responses obtained from 

models particularly at the higher speeds required for motorcycles. Instrumented 

motorcycles have been developed by a number of researchers (Dohring, 1955; Eaton, 

1973; Koenen, 1983) but all require a rider to input sufficient perturbation to initiate a 

weave, wobble or capsize response. Such input is difficult to measure with accuracy. The 

low resolution of instrumentation can also conceal experimental capsize, weave, wobble 

responses suggesting that the subtlety of stability modes measured on a model have limited 

application to a vehicle on the road where a controller (the rider) is likely to  be correcting 

stability issues instinctively. In the case of the bicycle, studies with various degrees of 

implementation rigour have attempted to construct a machine that is uncontrollable. They 

have generally found that major changes to the vehicles geometry are required before the 

vehicle becomes uncontrollable to an experienced rider (Jones, 1970; Astrom et al., 2005). 

One study attempted to experimentally validate the stability modes of an uncontrolled 

bicycle using an indoor sports hall and later repeated the tests on a large treadmill 

(Kooijman et al., 2008). A rider-less bicycle instrumented for steering angle, speed, yaw 

and roll was accelerated to a desired speed by being pushed by the researcher who then 

applied a perturbation by striking the saddle laterally. A good fit with the modelled 

stability responses was reported such that the three stability modes could be identified and 

they occurred over the speed ranges predicted. However, it should be noted that while the 

results clearly supported the theoretical predictions, this was not confirmed in a statistical 

sense as no attempt was made to quantify the variations in response that would occur by 

chance. 

 

1.3.2.4 Bicycle Controllers 

This review of bicycle models has so far considered uncontrolled single track vehicles 

where a bicycle or motorcycle is 'launched' at a defined speed without a rider or controller 
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and the resulting stability response measured. This establishes the basic dynamic 

characteristics of a bicycle which must be incorporated into a bicycle/rider model if it is to 

accurately represent real world cycling. It also enables the thesis model to be validated 

against established models that have been built on similar principles. 

 

The uncontrolled bicycle is only the first stage in the progression to a comprehensive 

bicycle/rider model that can accurately emulate the performance of a competitive cyclist in 

the field. The next stage adds a controller to the model (either human or programmatic) in 

order to generate inputs additional to those which are an intrinsic result of the bicycle 

geometry (Astrom et al., 2005). Bicycle controllers have become increasingly complex 

over the last 25 years in parallel with the development of control theory and the emergence 

of control engineering as a discrete discipline (Vaculin et al., 2004). While the main impact 

of new control techniques has been in industries such as aerospace, automotive and 

robotics, they have also been applied to single track vehicles which provide a surprisingly 

challenging control problem (Seffen et al., 2001). In particular, bicycle and motorcycle 

uncontrolled stability models that had previously identified a narrow self-stability speed 

range have been extended to include a controller that maintains the vehicle in an 

equilibrium upright orientation over a wider range of speeds (Chen and Dao, 2010). This 

was followed by the development of steady state cornering controllers and finally to full 

path-tracking controllers that emulate the control inputs of a rider following a typical 

horizontal road profile (Popov et al., 2010; Rowell et al., 2010; Sharp, 2007).  

 

1.3.2.5 Bicycle Control Theory 

Before examining the literature relating to bicycle control, it is important to summarise the 

underlying dynamics of bicycle steering. Essentially roll and steering interact to achieve 

both stability and path tracking, although the sequence of bicycle response will be different 

depending on an initial steering or roll input. A roll input will cause the steering of a static 

or moving bicycle to turn in the direction of the lean due to varying combinations of the 

trail, steering axis angle (castor), fork centre-of-mass offset and gyroscopic forces (Fajans, 

2000). Trail is defined as the longitudinal distance between the front tyre contact point and 

the steering axis intersection with the ground (Astrom et al., 2005). Most studies that 

model uncontrolled bicycle stability commence a stability trial by applying a lateral 

perturbation, say from the left side (Schwab et al., 2005). This generates bicycle lean to the 

right which thus causes the steering to turn right. However, the momentum of the 

bicycle/rider mass continues straight ahead resulting in the bicycle/rider rolling leftwards. 

The steering response again follows the bicycle lean so now switches to steer left and, in 
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an uncontrolled bicycle, the whole cycle is repeated until the oscillations subside or the 

bicycle falls. Similarly, a right turn steering input causes the bicycle to roll left followed by 

the steering also turning left which then causes the bicycle to roll right and so on until the 

oscillation again subsides or the bicycle capsizes. In control theory terminology, the 

bicycle can be described as a non-minimum phase system or more colloquially as requiring 

counter-steer to initiate a turn (Sharp and Limebeer, 2001). 

 

Numerous studies have identified the origins of the forces that are responsible for the 

linked roll/steer responses (Jackson and Dragovan, 2000; Le Henaff, 1987; Fajans, 2000; 

Cox, 1997). Three steering torques are generated, the most important of which originates 

from the moment arm created by the front tyre contact point displacement from the 

steering axis (the mechanical trail). During a turn, the road exerts a lateral tyre force at the 

contact point which applies a moment about the steering axis and thus acts to reduce the 

steering angle (i.e. straightens out the turn). This straightening effect increases with the 

square of the bicycle velocity and thus directional stability increases with speed. A second 

steering torque originates from a gyroscopic effect that seeks to maintain the front wheel 

angular momentum by increasing the steering angle in the direction of a lean. This torque 

increases in proportion to bicycle velocity (but note that if there is no lean, gyroscopic 

forces act to keep the steering pointing straight ahead). Finally the gravitational force 

acting in the normal direction on the front tyre increases a turn due to the trail/centre of 

mass location and is independent of speed. 

 

Three roll torques are also generated by a moving bicycle which can be combined to 

achieve a steady state turn. Steering input initiates a turn which generates centripetal 

acceleration into the turn. Gravity applies a roll torque dropping the bicycle/rider towards 

the inside of the turn, while inertial force acting in the direction of original travel tries to 

keep the bicycle/rider upright. Additionally there is a small torque rotating the bicycle 

upright due to the effect of yaw acceleration. Clearly, all the steering and roll torques must 

be coordinated and balanced to achieve any desired turn and it is perhaps surprising that 

the human controller can achieve this without control inputs from the handlebars during 

riding 'hands-off'. However, hands-off riding is controlled by small lateral rider centre-of-

mass shifts (Fajans, 2000) which rolls the bicycle in the opposite direction and initiates 

steering in that direction (often incorrectly attributed solely to body lean) (Kirshner, 1979). 

This process is further complicated by the out-of-plane pedalling forces that introduce 

bicycle roll together with matched upper body lean (Jackson and Dragovan, 2000). It is 
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important to note that no previous models have been identified that include all these forces 

necessary for a model to fully replicate road cycling.  

 

1.3.2.6 Theoretical Compared to Field Cycling 

The above description of bicycle dynamics emphasises some fundamental differences 

between uncontrolled stability studies and a model that must accurately represent the 

forces that control a bicycle and rider in the field. In the field, a turn cannot usually be 

initiated by roll input unless some transient external force (e.g. road camber or side wind) 

is applied to the bicycle/rider ensemble (Fajans, 2000). A rider can of course lean their 

upper body laterally while maintaining steering direction (an intrinsic feature of pedalling) 

but this is achieved by moving the bicycle in the opposite direction such that total mass 

remains over the two support points represented by the tyre contact patches. A turn is 

almost invariably initiated by a steering input which must be a counter-steer in order to 

generate a roll in the desired direction of turn (Limebeer and Sharp, 2006). Almost all turns 

are therefore generated by counter-steering although the cyclist is usually unaware of the 

process. A valid field cycling model should primarily initiate path tracking through 

steering input rather than upper body movement with roll angle being a resultant dependant 

on bicycle geometry, inertias and speed (unless side winds are also being modelled). 

 

1.3.2.7 Straight Running Control 

The first application of  control theory to bicycle modelling introduced a control scheme 

that maintained upright straight-ahead equilibrium over a wider range of speeds than was 

achievable in uncontrolled self-stability (Suryanarayanan et al., 2002; Getz and Marsden, 

1995). However, these controllers were primarily concerned with maintaining the bicycle 

upright and did not attempt to control the bicycle to track a specified heading. For 

example, a change of bicycle heading would be expected as a result of the lateral 

perturbation commonly introduced during stability analysis but any such response has 

generally been neither measured nor controlled. More complete applications of control 

theory have therefore sought to constrain the bicycle to follow a straight path following a 

lateral perturbation (Beznos et al., 1998). However such a task is not representative of most 

real-world cycling as an external force creates the control problem, a condition which 

would only occasionally occur (usually due to environmental wind and/or lateral road 

camber). Never-the-less, these studies established the central concept of a relationship 

between roll angle and steering angle although the most common sequence is likely to be a 

steering input initiating a roll response. Models in this category (as with most bicycle 

models) lack an active rider which would greatly increases the complexity of the control 
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problem by introducing factors such as upper body lean, rider weight transfer, handle-bar 

couple and out-of-plane pedalling moments. As with all uncontrolled stability modelling, 

an idealised bicycle is assumed which runs at constant speed with no propulsive forces to 

create rear wheel torque and the associated chain tension, gearing and crank angular 

velocity.   

 

1.3.2.8 Steady-State Turning 

Maintaining a bicycle in a constant radius turn can be considered a control problem of 

intermediate complexity between that of straight running and complex path tracking. The 

underlying principle of balancing roll and steer remains unchanged. Centripetal force 

combined with bicycle inertia will tend to lean the bicycle away from the centre of the 

turn. This motion can be opposed by gravitational force due to leaning the bicycle into the 

turn such that a steady state turn radius can be achieved (Sharp, 2001). Numerous studies 

have presented the equations of motion that maintain this balance, with steer angle and 

bicycle velocity being the main control inputs (Cossalter and Lot, 2002; Tanaka and 

Murakami, 2004). Chen and Dao (2006) noted that maintaining a stable turn was relatively 

trivial for a human but demanding for an unmanned bicycle controller. They addressed the 

problem by developing a 'fuzzy' controller which essentially mimicked human logic using 

a decision tree of the type 'If roll angle and change in roll angle are negative and large, then 

steering angle should be negative and large'. Their controller was also of particular interest 

being one of the few implemented in the Matlab/Simulink environment used in this 

research. 

 

A study from the leading bicycle/motorcycle research group at Imperial College, London 

(Limebeer and Sharma, 2008) considered the effects of acceleration/braking in a turn and 

noted that wobble-mode damping improves under acceleration and degrades under 

braking. The latter finding would appear to reinforce the anecdotal perception of road 

cyclists that the bicycle can become unstable when braking hard for a corner at the bottom 

of a steep hill. However, this study did emphasise the theoretical mathematics at the 

expense of the effective application required for the development of a realistic road time 

trial model. The modelled acceleration of 1 ms-2 would have required considerable force 

application by the cyclist on the handlebars and pedals (with associated roll, yaw and steer 

effects) but the model assumed smooth 'invisible hand' propulsion. Clearly investigations 

must isolate conditions and declare assumptions, but the results remain theoretical until 

they are extended to include the missing real-world factors. 
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1.3.2.9 Path Tracking 

Following a complex path which changes continuously in unpredictable ways is one of the 

most challenging tasks facing a bicycle model that seeks to emulate field cycling. The first 

problem is to define the path at an acceptable resolution and then to structure the data in a 

format that provides input to the bicycle tracking controller. A path is often defined by 

lateral deviations from a longitudinal vector which may be specified in the local or global 

coordinate system (Getz, 1995; Frezza and Beghi, 2006). Additionally, the radius of turns 

may be specified (Getz and Hendrick, 1995), sometimes by a sine function (Yavin, 1999). 

 

A controller then faces the two essentially separate tasks of tracking the defined path and 

preventing the bicycle from falling. Assuming a human rider, the principal control inputs 

are steer torque and bicycle velocity although the latter is largely pre-determined in a 

competitive situation where minimising course time is the objective function. As steer 

torque affects both path tracking and bicycle stability, a conflict can result in neither 

objective being met. The approach adopted by most models is to implement separate 

controllers for stability and tracking with the former meeting its objectives first and then 

providing input to the latter (Frezza et al., 2004; Miyagishi et al., 2003). 

 

Considering the tracking controller, two methodologies are commonly utilised to maintain 

the bicycle on the required path. The first can be described as 'preview' (Sharp, 2007) 

where a look-ahead controller maintains a constantly updated register of the locations of a 

defined number of forward track points. This data then generates the required steering 

torque to follow the path and keep the bicycle upright while taking account of velocity, 

roll, and centripetal/gravitational forces. A second and less exact approach can be 

described as compensatory tracking (Chen and Dao, 2006) where a controller examines the 

tracking time history and sets the steering torque to bring the bicycle to the next predicted 

track location. Such a controller is relatively simple to implement by setting the derivative 

gain in a proportional integral derivative (PID) controller, but noticeably lags the change of 

direction that occurs in a pronounced turn. However, the effect can be minimised in a 

model with a variable time step solver where the time step interval reduces when states are 

changing rapidly such that results are usually satisfactory for a course with <45° changes 

in direction. 

 

1.3.2.10 Limitations of Vehicle Dynamics Studies 

The limitations of existing vehicle dynamics models when simulating real-world cycling 

can be summarised as follows: (1) Studies often develop powerful models but do not apply 
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them to real-world cycling by limiting investigations to vehicle stability and control under 

restricted conditions. (2) There is an emphasis on developing models to satisfy theoretical 

objectives with limited progression of the theoretical underpinnings into practical 

application in models that replicate road cycling. (3) Relatively simple linear models tend 

to be developed as they are more amenable to mathematical manipulation whereas realistic 

cycling models are inherently non-linear. For example, the quadratic relationship between 

forward speed and air resistance. (4) Most existing models make assumptions that preclude 

the prediction of performance outcomes. For example, an initially fixed vehicle speed is 

usually specified and maintained for the duration of a trial. (5) The bicycle tends to be 

represented in a model by four rigid bodies (two wheels and front/rear frames). A 

geometry that excludes handlebars, saddle and cranks largely precludes the modelling of 

pedalling and upper body forces that originate from the rider 

 

1.4 Conclusion 

A valid cycling model is potentially an important tool for sports scientists who seek to 

identify mechanical performance enhancements prior to incurring the time and cost of field 

testing. However, existing road cycling models exhibit poor performance prediction when 

applied to generalised time trial courses. This lack of an effective cycling model is partly 

attributable to the division in previous research between the mechanics of the bicycle and 

the biomechanics of the rider. A model for road time trial courses is therefore required 

which improves on the predictive capability of existing models. A review of the literature 

has identified the limited capacity of existing models to combine bicycle, rider and 

environmental factors in a single unified system simulated at a frequency that reflects the 

changes in resistive forces in the field. A new model that incorporates these features could 

enable more accurate predictions to be made, add to understanding and lead to new 

questions for resolution. The model to be developed in this thesis is intended to meet these 

requirements and enable cyclists and their coaches to identify mechanisms for enhancing 

competitive performance. 
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CHAPTER TWO

MODEL DESIGN 

 

2.1 Introduction 

The model design objective was to simulate all aspects of a cyclist riding over a road time 

trial course. A numerical model of the bicycle, rider and environment was required which 

could simulate road cycling and thus allow experimental analysis of the modelled system. 

The model was intended to represent the main features observed during cycling. The 

design philosophy followed Hatze (2005) in that only by including all possible features and 

functions could those that were important be identified.  

 

The system was developed in SimMechanics and Simulink which are toolboxes of Matlab 

(version 7.5) (The Mathworks, Natick, MA, USA) and have similar functionality to the 

multibody dynamics software packages discussed in section 1.3.2. A mechanical machine 

was built by linking rigid bodies with joints and applying initial conditions including 

inertial properties, degrees of freedom, coordinate systems, constraints and applied forces. 

Equations of motion based on Newton's second law were automatically derived by the 

system and then solved by forward numerical integration (Wood and Kennedy, 2003; 

Schlotter, 2003). The machine could be viewed as an animation which allowed visual trial-

and-error tuning where parameter data was not available. For example, rider upper body 

roll angle could be set from empirical experience. This feature was also useful to identify 

errors. For example,  some errors in 'ankling' profiles were identified by visual inspection. 

 

The model developed with SimMechanics progressed through a number of versions over a 

period of four years. Each version developed and validated some component or function of 

the system before the final validation of the complete unified model. Model enhancements 

were subsequently incorporated without further validation of the enhancement in isolation, 

where this was considered to not impact on overall system validity. Examples included 

changes in rider elbow angle, bicycle drive shaft position and reduction of model 

maximum time-step size to 0.2 s. Development proceeded as an iterative cycle of testing, 

feedback and modification. 

 

This chapter presents a broad description of the model design and functionality. The 

detailed technical documentation enabling other researchers to reproduce the model is 
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presented on an attached CD-ROM with an index in Appendix 1. Different versions of the 

model were current at the time of each experiment described in Chapters 3 to 9 (Table 2.1). 

Although the results reported in each chapter are dependent on the level of model 

development at that time, it is considered that this was always sufficient for the issue 

investigated. In general, progressively more demanding experiments were matched by a 

progressively more comprehensive model. 

 

Table 2.1  Model software versions utilised in each experiment 

Version Released Chapter Applied Main Features Comment 

V1 Nov 2007 
3 

 (Pedalling) 
Pedalling rider, static 

bike 
 

V2 Sept 2008 
4 

(Self-Stability) 
Dynamic bike, inert 

rider 
 

V3 May 2009 
5 

(Tyres) 
Bike+rider with rear 

hub propulsion 
Full gear system. 

Upper body motion 

V3 " 
6 

(Case Study) " " 

V4 Apr 2010 7 
(Controlled Trials) 

Bike+rider with pedal 
force propulsion 

Gears removed. 

Enhanced upper body 

V4 " 
8 

(Gradient) 
" " 

V5 Jan 2011 
9 

(Wind) 
Bike+rider with joint 

torque propulsion 
Wind data updated 

continuously 

. 

Model functionality was implemented both physically and analytically. For example, 

power generation at the crank could activate the rear wheel analytically (i.e. by torque, 

angular velocity and power equations) or physically when the two were connected by gears 

and drive shafts. 

 

2.2 Modelling Software 

The model structure was divided into three linked areas comprising the bicycle, the rider 

and the environment. Each area contained sub-models that represented functions such as  

aerodynamics, transmission, steering, and tyre forces (Appendix 1) (Table 2.2). 
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Table 2.2  Model structure outline 

Bicycle Rider Environment 

16 rigid bodies with 
dimension/mass/inertia 

14 body segments 
Course track (from digital 
map) 

3D translation and rotation 
freedom 

Symmetrical two legged 
pedalling Course gradient  

Holonomic + non-holonomic 
wheel constraints 

Cyclic vertical/horizontal pedal 
force (phased 180°) 

Bicycle/rider 
aerodynamics 

Tyres (slip/camber forces, 
aligning/overturning moments) 

Synchronised bicycle-rider roll 
Environmental wind 
speed/direction 

Geometry (COM, steer axis, 
trail, wheelbase) 

Balance, counter-steering and 
path following 

 

Transmission Torso and arm rotation  

Frame + wheel flex   

 

SimMechanics models rigid-body machines as blocks linked by lines which specify the 

geometric and kinematic relationship between bodies. Each body has a locally attached 

reference frame which enables body locations to be specified in any combination of global 

and local coordinates systems including implicit references to adjoining bodies. Joints add 

degrees-of-freedom (DOF) between bodies. Joints can be activated with forces or torques 

and initial conditions can be set. Forces can also be applied to rigid bodies with gravity 

being inbuilt but definable. Constraint and driver blocks allow limits to be placed on 

degrees-of-freedom as well as providing functions such as gears and rolling wheels. Bodies 

are linked with lines that essentially represent 2-way 'action-reaction' physical connections 

providing implicit inertial effects throughout the system. The machine's motion is 

simulated by numerically integrating its dynamics using a variable-step ordinary 

differential equation (ODE) solver (ode45 Dormand-Prince) operating to defined 

tolerances. This eliminates the requirement to explicitly state or solve equations of motion. 

The thesis model operated in forward dynamics mode such that force applied to the model 

resulted in motion subject to specified constraints (e.g. non-slipping wheels, leg hyper-

extension prevention, limited upper body lean, and non-backlash transmission). A 3D 

visualisation tool assisted development by providing real-time graphical feedback when the 

model was simulated, enabling the results of design decisions to be evaluated interactively. 

 

Simulink is an environment for building dynamic simulation systems. It provides an 

interactive graphical environment and a customizable set of block libraries that allow the 
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user to design, simulate, implement, and test a variety of time-varying systems. The block-

and-line construction appears similar to SimMechanics but with the important difference 

that blocks represent logical/mathematical functions and connecting lines carry data. 

Simulink essentially provides the programming language for activating, controlling and 

monitoring the SimMechanics physical machine. Links are provided to base Matlab, 

enabling Matlab functions and programmes to be incorporated in the design when required. 

The system finally developed in this thesis comprised 653 linked Simulink and 

SimMechanics blocks with 817 initial condition parameters specified within 197 blocks. 

Blocks included rigid bodies, joints, constants, constraints, controllers, lookups, functions, 

gains, and grounds with the complete system having a total of 46 DOF. DOF have been 

variously defined (Pennestri et al., 2005) but the definition adopted here is 'the number of 

parameters needed to specify the spatial pose of a linkage'. 

 

Equations of motion are automatically derived by SimMechanics and assumed to be 

mathematically correct. This is a reasonable assumption given that SimMechanics is 

widely used for mission-critical applications in industry and has been the main 

development tool for both the Mars Orbiter by Lockheed Martin (Lockheed, 2006) and a 

NASA re-entry vehicle (NASA, 2004). An important consequence of this assumption is to 

free developer time from mathematical calculation and instead enable concentration on 

accurately configuring the physical structure and dynamical laws that govern a bicycle and 

rider in motion. No published SimMechanics models of the bicycle have been identified 

but several models have been published for motorcycles which have been validated by 

comparing the results of linearised stability analyses with those obtained from hand 

calculation. 

 

The thesis model was constructed hierarchically with various levels shown as follows: 

Figure 2.1 provides a conceptual overview of the model design. Areas in bold include PID 

control systems. Figure 2.2 highlights the 'block and connecting line' structure of 

SimMechanics/Simulink. Figure 2.3 shows parameter specification of a single 

SimMechanics block. Parameters include segment mass, inertia tensor, centre of gravity, 

dimensions and initial orientation with respect to the model's global or local coordinate 

systems. The detailed model structures are too extensive to be reproduced in print but are 

shown in full on the accompanying CD. 
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Figure 2.1 Conceptual design of the thesis model. 
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Figure 2.2 Example of a Simulink/SimMechanics model. 
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Figure 2.3 Parameters for a single SimMechanics block. 
 
 
 
 
A 3D 'stick man' visualisation of the model is shown in Figure 2.4 and ellipsoids 

representing segment inertias are added in Figure 2.5. 

 
Figure 2.4 Model 'stick man' representation (two massless connectors link the bicycle/rider 
to the motion origin and the centre of mass). 
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Figure 2.5 Model visualisation with ellipsoids representing segment inertias. 

 

2.3 Bicycle Model 

2.3.1 Configuration 

The bicycle and rider were laterally symmetrical about the x-z plane with the left side 

being defined as contra-lateral and the right side as ipsi-lateral. The bicycle reference 

configuration was defined as stationary, upright, straight-ahead equilibrium with no 

steering angle and the ipsi lateral crank arm pointing vertically upwards. The model was 

configured with a globally-fixed right handed orthogonal coordinate system comprising 

longitudinal x axis, lateral y axis and vertical z axis (Figure 2.6). The system viewed from 

the rear in the reference configuration gave positive axis orientations of x = forward, y = 

left and z = up. 
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Figure 2.6 Bicycle axes direction and orientation 

 

A right handed steering axis was orientated positively upwards. A global coordinate 

system was generally used to specify body locations although a local coordinate system 

was used where it simplified the construction. The global origin was located at the rear 

wheel/ground contact point for the convenience of making all system dimensions positive. 

Gravity acted downwards at 9.81 ms-2. The bicycle had DOF for longitudinal, lateral and 

vertical translation together with roll, yaw and pitch rotation. A 'motion origin' was defined 

as the ensemble centre of mass (COM) in the reference configuration projected vertically 

to the ground plane (x-y plane). Additional DOF were enabled for rotation of the steer axis, 

chainring/cranks and both wheels (see Appendix 2 for axis orientations). 

 
The ipsi lateral crank arm pointing vertically upwards was specified as zero degrees and 

named 'top dead centre' (TDC). The ipsi lateral crank arm rotated clockwise through 360 

degrees in a cycle with its position when pointing vertically downwards defined as 'bottom 

dead centre' (BDC). A single COM was specified for the complete bicycle/rider and 

located by application of a force balance. The longitudinal COM was found by balancing 

the system about the z-axis. Gravity was then changed to act longitudinally and the system 

re-balanced about the x-axis followed by iterative z-axis and x-axis balancing to arrive at a 
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stable COM. The centre of pressure (COP) was calculated using the SimMechanics 

visualisation tool which displayed bicycle/rider frontal area. The frontal area was divided 

into rider head, rider torso+arms and rider legs+bicycle. Each area was measured and input 

to the following algorithm: 

L L U U W W

L U W

A d A d A d
COP

A A A

+ +
=

+ +
 

where COP was centre of pressure relative to COM, A was surface area, d was centre of 

surface area vertical distance to COM and subscripts L, U and W represented the three 

surface areas  (http://www.grc.nasa.gov/WWW/K-12/airplane/bga.html) [Accessed 14 

February 2009]. The COP, COM and motion origin were located in inertial space by means 

of massless connectors linked to the bicycle frame. 

 

2.3.2 Frame 

The dimensions and mass of the bicycle were taken from measured values for a 

commercially available bicycle which measured 59 cm vertically from the crank spindle to 

the top tube (Figure 2.7). Pilot trials suggested that the choice of frame size had a small 

effect on performance which was subsequently largely confirmed by the sensitivity 

analysis conducted in Chapter 10. A larger than average frame size was selected in order to 

emphasise any effects due to frame flex. A front and rear frame were specified separately 

with the rear frame comprised of six rigid bodies modelled as tubes plus the rear wheel. 

The front frame comprised handle bars, stem, fork and front wheel and was connected to 

the rear frame by a steering joint with its axis inclined upwards at 72 degrees to the left 

horizontal. Only one seat stay, chain stay and fork arm were modelled and placed on the 

bicycle longitudinal centre line since SimMechanics allowed separate rigid bodies to 

occupy the same physical space without penalty. The mass of each body was obtained by 

weighing or by reference to the manufacturer's specifications. The inertia tensor of each 

body was derived from its dimensions, mass and density using algorithms provided by 

SimMechanics. Flexibility was built into the frame by enabling the steering joint to 

additionally rotate about the longitudinal axis (x-axis). A spring/damper was placed on this 

rotation axis to control the level of flex. The main bicycle parameters are listed in Table 

2.3. 
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Figure 2.7 Bicycle structure 
 
Table 2.3  Bicycle parameters 

Parameter Front 
Frame 

Rear 
Frame 

Complete 
Bicycle 

Comment 

No. of Bodies 5 11 16  

Mass (kg) 2.8 5.9 8.7 includes accessories 

Trail (m) 0.065    

Steer Axis (°) 72    

Wheel Radius (m) 0.35 0.35   

Wheelbase (m)   1.01  

COM (x,y,z) (m)   (0.52, 0, 1.01) includes rider 

COP (x,y,z) (m)   (0.53, 0, 0.9) includes rider 

2.3.3 Wheels 

Both wheels were modelled as symmetrical knife-edge rigid discs rotating about a lateral 

hub axis. The inertial mass of each wheel was distributed evenly between the hub and the 

rim utilising SimMechanics algorithms for a rotating disc. Wheel rotation and translation 

were related by a non-holonomic constraint which enforced pure rolling without slip. 

Holonomic constraints controlled each wheel's relationship to the ground. In version V4 

and V5, a sine function controlled wheel (and frame) vertical oscillation simulating road 

surface and tyre vertical compliance. The tyres were not modelled in a physical sense but 
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the forces and torques generated by the front and rear tyre were derived analytically and 

applied to the wheel hub (see Tyre Model, Chapter 5). 

 
2.3.4 Wheel Stiffness 

Wheel lateral flexibility was modelled by enabling additional hub rotation about the x-axis 

with the level of flex being controlled by a spring/damper. Correctly modelling this feature 

was important for bicycle performance as narrow rims and long spokes make bicycle 

wheels particularly susceptible to lateral flex. This is evidenced by the front wheel rim 

rubbing the brake blocks when pedalling out of the saddle (Tew and Sayers, 1999).  Both 

the vertical (z axis) and lateral (y axis) stiffness of bicycle wheels can affect performance 

but anecdotal evidence from competitive cyclists suggests the latter is critical for fast 

stable cornering (Roues Artisanales, 2008). Vertical compliance has been studied in detail 

(Hull et al., 1996; Minguez and Vogwell, 2008; Redfield, 2005) but largely applied to the 

rough surfaces encountered in mountain-bike cycling. The front and rear wheels lateral 

stiffness was modelled separately to obtain the correct oversteer/understeer attitude when 

cornering during the path-following task. A comprehensive analysis of lateral stiffness for 

67 pairs of wheels (front and rear) covering most of the major wheel types/manufacturers 

was conducted by Damon Rinard (www.sheldonbrown.com/rinard/wheel/index.htm) 

[Accessed 5 April 2009]. Each wheel was held horizontally by the hub in a jig and 

deflection at the unconstrained rim was measured when a weight representing typical 

lateral force was applied vertically at four separate locations around the circumference. 

Rear wheels were tested from both sides as stiffness was affected by the rear hub offset 

that accommodated the cassette. Results from three widely used racing wheels that covered 

a range of stiffness values are shown in Table 2.4. In addition, the linearity of rim 

deflection was assessed using the default load of 115N and loads of ±10%. Deflection was 

found to be predominantly linear within that force range (R2 = 0.98). 

 
Table 2.4  Wheel rim deflection under 115 N load. 

 
Bontrager 

RaceLite 

Campagnolo 

Neucleon 

Mavic 

Kysirium 

Mean 

Deflection 

Front Wheel 
Deflection (mm) 

1.35 (24) 1.98 (22) 2.11 (18) 1.81 

Rear Wheel 
Deflection (mm) 1.61 (28) 1.96 (24) 2.84 (20) 2.14 

Notes.  Number of wheel spokes shown in brackets. 
           All rear values are mean of left side/right side deflection. 
 Measurement error (SD) of ±0.05 mm. 
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The above values have been largely confirmed by a separate study which found a 1 mm 

rim deflection in response to a 60 N lateral force for a wheel with 1.6 mm spokes, a '4x' 

lacing pattern and a 795 mm4 lateral moment of inertia (Gavin, 1996). 

 

Once wheel flexibility values had been obtained from the literature, the bicycle model was 

modified to incorporate lateral wheel flex. It was implemented by the addition of an x axis 

rotation to the wheel hub joint where previously only y axis rotation provided forward 

rolling. A spring/damper was connected to the x axis rotation in order to implement the 

required degree of wheel flex. A wheel model was fixed in a jig and spring/damper gains 

obtained by applying a 155 N lateral force to the rim until the mean deflection from Table 

2.4 was obtained. Damping values were set to give a force rise rate which reached steady 

state in ~100 ms (Verma et al., 1980). A spring constant of 136 N/m and a damping 

constant of 3 deg/s were obtained for the front wheel with the equivalent values for the rear 

wheel being 116 N/m and 2.6 deg/s respectively. These values are considered to be 

realistic as it has been shown in the tyre model (Chapter 5) that lateral force on a cornering 

bicycle wheel is in the region of 60 N per degree of slip angle which is consistent with the 

115 N applied in the above analysis.  

 

2.3.5 Transmission 

A laterally orientated crank spindle was located at the junction of the bicycle frame seat 

tube and down tube (Figure 2.7) rotating about a lateral axis (y-axis). Crank arms were 

welded at 90 degrees to each end of the crank spindle and orientated in 180 degrees 

opposition. Conceptual pedals were positioned at the end of each crank arm but 

incorporated in the foot. The drive transmission from the crank to the rear wheel was 

physically modelled in versions V4 and V5 as follows: Gear wheels fitted to the crank 

spindle and rear axle connected a rotating drive shaft running longitudinally from the crank 

spindle to the rear axle. The drive shaft transmitted propulsive torque from the crank to the 

rear wheel. The final drive ratio was defaulted to 2.86:1 although the numbers of teeth on 

the gear wheels were adjustable to change the ratio. Frictional losses in the drive train were 

not modelled. All model versions calculated power at the rear wheel in order to match the 

great majority of field trials which measured power at the rear wheel. If transmission 

friction loss is modelled in the future, it can be noted that a power loss of ~2.5% has been 

proposed by Kyle (1988) while Martin et al. (2006) calculated a loss of 6 W at a mean 

power output of 255 W.  
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 2.3.6 Balance 

The model included gravitational forces and therefore the bicycle had to be actively 

controlled to remain upright (e.g. as for an inverted pendulum). Balance was maintained 

with a proportional-integral-derivative (PID) controller that countered roll by applying a 

steering torque in the direction of any fall. The resulting steering torque was then modified 

by a second PID that ensured the bicycle tracked a defined path (see Path Tracking below). 

 

2.3.7 Steering 

Steering was modelled as a joint torque applied at the steering axis linking the front and 

rear frames. The effects of the steering function were dependent on the front frame 

geometry that primarily comprised the steering axis inclination (72 degrees), wheelbase 

(1.01 m) and trail (0.065 m) and are shown in Figure 2.7. Trail was a critical parameter as 

it regulated the roll and steer necessary to keep the bicycle upright due to its influence on 

the degree of front-end pitch that occurred with steering (Roland,1973). Bicycle pitch due 

to roll and steering was calculated in the model to check correct functioning of the steering 

mechanism meeting the requirement for such analysis presented by Roland (1973). 

 

2.4 Rider model 

2.4.1 Structure 

The rider was constructed from 14 rigid bodies as listed in Table 2.5 and graphically 

presented in Figure 2.8. Generic body segment parameters were obtained from Slaughter 

and Lohman (1976) with the exception of leg segments and inertias which were obtained 

from a reference study (Redfield and Hull, 1986a). Simulations used these generic 

parameters unless rider weight was varied to analytically calculate gravitational and tyre 

resistance force. The pelvis was fixed to the top of the bicycle seat tube, the forearms to the 

handle bars and the feet to the pedals. Segments were symmetrically distributed about the 

sagittal plane. The leg and arm segments were linked by frictionless revolute joints 

enabling rotation about the y-axis while the shoulders and hips which were modelled by 

spherical joints. The rider torso had a rotational DOF about the pelvis (x axis rotation) 

which was defined as 'lean' in contrast to 'roll' for the bicycle about the same axis. The foot 

was assumed to be fixed to the pedal (via a cleat) and therefore the two bodies were 

represented by a single segment linking the ankle joint to the crank arm. 
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Table 2.5 Generic rider body parameters 

Segment Mass (kg) Length (m) Moment of Inertia (kg·m
2
) 

(x y z axes) 
Foot + Pedal (2)  2.1 0.203 (0.0003 0.002 0.002) 

Shank (2)  6.54 0.433 (0.0024 0.05413 0.05413) 

Thigh (2)  14.72 0.393 (0.009 0.10183 0.10183) 

Pelvis 0.5 0.26 (0.0012 0.0034 0.0034) 

Torso  36.7 0.49 (0.16 1.02293 1.02293) 

Shoulders  0.5 0.42 (0.0004 0.003 0.003) 

Head  4.9 0.24 (0.02814 0.03282 0.03282) 

Upper Arm (2)  4.1 0.28 (0.0008 0.00811 0.00811) 

Lower Arm + Hand (2)  3.2 0.33 (0.0008 0.00795 0.00795) 
Trochanteric Length*  0.89  
Hip to Crank (vertical)  0.693  
Hip to Crank (horizontal)  0.212  

Note: Total mass is shown for (2) segments while inertia is shown for a single segment. 
* distance from proximal aspect of greater trochanter to bottom of foot with leg straight. 
 

 
              Figure 2.8 Rider body segments. 
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2.4.2 Reference study 

The dimensions and mass of each leg segment were important for pedalling simulation so 

values were taken from a 'reference' study (Redfield and Hull, 1986a) and used in 

simulations. Redfield and Hull (1986a) was defined as 'REF' since its data had been widely 

used in bicycle pedalling studies (Hull and Jorge, 1985; Jorge and Hull, 1986; Redfield and 

Hull 1986b). The REF study reported kinematic and kinetic pedalling data collected from 

three experienced male cyclists who rode their own bicycles on rollers at a workrate of 200 

W (two-legs) and a seated cadence of 80 rpm. Segment inertial data were determined 

according to procedures outlined by Drillis and Contini (1966) while subject mass and 

anthropometric data were taken from a representative subject in the study of Jorge and Hull 

(1986). The REF study measured normal and tangential pedal forces in the sagittal plane 

for one leg using an instrumented pedal and averaged the data over two trials. Associated 

crank and pedal angles were simultaneously recorded by rotary potentiometers. Foot/pedal 

angle was approximated to a sine wave by fitting the measured foot/pedal angle data to a 

Fourier series. Segment acceleration was derived analytically from the crank motion, pedal 

motion and leg geometry and then combined with pedal force and inertial data in an 

inverse dynamics analysis to obtain ankle, knee and hip joint torques over a cycle. All the 

above data was variously used in different model versions as reported below. 

 

Body segment moments of inertia were reported about the lateral axis (y axis) by the 

studies above. However, the 3D thesis model required an inertia tensor specified as a 3x3 

matrix requiring a minimum of the three diagonal values (representing rotation about the 

three principal axes). Diagonal values were therefore approximated geometrically using 

ellipsoid algorithms available within SimMechanics and segment shape/volume/density 

data from Hanavan (1964). These generic values were applied in all simulations. 

2.4.3 Pedalling 

Each leg together with the seat tube and crank arm was modelled as a closed-loop 5-bar 

linkage with one DOF at the ankle and a common DOF at the crank spindle. The crank 

angle in model versions V3 and V4 was a consequence of the propulsion method (rear hub 

torque or pedal forces). The ankle angle ('ankling') in those versions was specified by an 

interpolated lookup file that monitored foot/pedal orientation relative to the right horizontal 

at each degree of crank rotation. Experimentally measured foot/pedal angle over a cycle 

was digitised from the REF study to create the lookup file (Figure 2.9). The lookup file 

defined the right foot/pedal angle at each crank angle with a mirrored left foot/pedal 

lookup file offset by 180 degrees. A constraint placed across the ankle then obtained the 
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crank angle at each time step and accessed the interpolated lookup file to find and 

implement the associated foot/pedal angle. 
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Figure 2.9 Foot/pedal angle relative to the right horizontal (negative values signify toe 
above the horizontal) 
 
The ankle angle in versions V1 and V5 was an uncontrolled consequence of the magnitude 

and timing of the joint torque profiles applied at the hip, knee and ankle. 

 

2.4.4 Propulsion 

Three different bicycle/rider propulsion systems were utilised depending on the model 

version number. Version V3 was propelled by direct application of torque to the rear wheel 

hub. Cadence was then controlled with a gear system and torque adjusted to achieve the 

required power. In consequence, pedal and rider leg motion were driven 'backwards' from 

the wheel hub. In version V4, the bicycle/rider was propelled by application of vertical and 

horizontal forces to each pedal. The pedal force profile for the ipsi-lateral pedal over a 

cycle was obtained from pedal force data measured in our laboratory for power values of 

130, 200, 270, 340 and 410 W (Bailey et al., 2006). The model used this data in 2D lookup 

tables that returned vertical and horizontal pedal force at each time step from the 

interpolated input of power and crank angle. Forces for the contra-lateral pedal were 

implemented as 180 degrees offset to the ipsi-lateral pedal. To maintain the integrity of this 

system, power output was continuously measured at the rear wheel hub and any divergence 

between command and achieved power was corrected by dynamic adjustment of the pedal 
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forces. Thus while pedalling forces are normally a result of leg joint torques, in this model 

the leg pedalling motion was driven by pedal forces. Finally, in version V5 bicycle/rider 

propulsion was driven by leg joint torques as described for the static pedalling study in 

Chapter 3. 

2.4.5 Upper Body 

A PID controlled upper body lean about the x-axis, synchronised in opposition to the 

bicycle roll generated by pedalling. This maintained the ensemble COM above the 

wheelbase (corrected for the effects of centripetal force). The extent of the lean was 

estimated from a video filmed from behind a cyclist competing in a time trial. Upper body 

rotations about the y-axis and z-axis and were not considered to be of sufficient magnitude 

to require inclusion in the current model. The rider's arms were passively fixed to the 

handlebars such that initial arm bend combined with spherical joints provided enough 

tolerance to accommodate the lean and the steering.  

2.4.6 Cadence 

An analytical gear system was developed for version V3 which automatically maintained 

cadence within a range of 80-100 rpm by varying the chainwheel/cassette sprocket ratio. 

The system selected combinations from a 53/39 chainring and a 10-speed 12-27 sprocket 

cassette that implemented a valid cadence in response to the balance of resistive and 

propulsive forces at each time step (the gears were typical of those used by competitive 

cyclists). The system started from rest in the small chainring (39) and the lowest sprocket 

(27) and changed up/down through the sprockets and chainrings sequentially. The 

chainring change logic is in Figure 2.10. 
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.  
 Figure 2.10  Chainring change logic. 
 

This strategy incurred some additional gear changes at highest/lowest sprocket values 

compared to strategies which took advantage of gear ratio overlap between the chainrings 

but the latter were beyond the scope of this model. The system freewheeled when speed 

was too high for the available gears (i.e. descending steep hills) and the associated 

power/torque went to zero (not negative which would have represented braking). Once 

approximate steady state bicycle velocity was achieved, gear changes primarily occurred 

due to gradient changes, with a rapid sequence of changes to smaller gears being 

noticeable at the onset of a steep hill. In the field, gear changes incur a power loss during 

the brief period when crank torque is reduced as the chain moves across 

sprockets/chainring. This can be a critical performance factor on a hill as bicycle/rider 

momentum is lost during the change period such that crank torque in the new gear may be 

inefficiently high if the period is extended. To emulate this effect, each gear change 

incurred an arbitrary performance penalty of 25% reduction in power for 0.25 seconds. In 

the absence of any published research, these values were obtained by iteratively tuning the 

model until its behaviour was similar to practical experience. 

 
In versions V4 and V5, drive force was physically transmitted from the crank to the rear 

axle requiring a physical rather than analytical gear system. Pending physical gear box 

development, cadence was uncontrolled being a resultant of the applied torque and 

resistive forces. Cadence was therefore automatically adjusted at each time step such that 

its product with applied torque matched the commanded power output. Over the 

experimental time trial course, the gradient and power values resulted in a cadence range 
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of 70 to 115 rpm. These values that were considered acceptable for a competitive cyclist. 

An initial-condition velocity of 10 m/s was implemented in field trials to simulate a rolling 

start.  

 

2.5 Environment Modelling 

2.5.1 Path tracking 

Single track vehicle path tracking has been extensively studied in the literature (Popov et 

al., 2010; Rowell et al., 2010; Sharp, 2007) and can be broadly divided into schemes that 

apply 'compensatory tracking' or 'preview tracking'. The latter anticipates future road 

direction and applies steering inputs in advance to minimise tracking error. The technique 

is more complex but more accurate (Sharp, 2007) than compensatory tracking which 

applies a corrective steering input only at the time a tracking error is identified. A simple 

compensatory tracking scheme was used in the present model as low bicycle speed and fast 

steering response resulted in minimal tracking error. 

  
The control scheme for following the path track was as follows: A desired path was 

marked on a digital map and converted to grid reference comprising easting and northing 

coordinates at defined intervals along the path. These co-ordinates were then loaded into a 

two column lookup file with longitudinal displacement from the start in column 1 and 

associated lateral displacement in column 2. The compass heading (north, east, south or 

west) closest to the intended bicycle start direction was defined as the map longitudinal (x) 

axis and the orthogonal co-ordinate direction defined as the map lateral (y) axis. 

SimMechanics initial conditions required that the bicycle pointed along the positive 

bicycle longitudinal (x) axis (effectively due east). The map longitudinal axis was therefore 

aligned with the bicycle longitudinal axis to minimise steering correction at simulation 

start. At each time step, the model checked the bicycle longitudinal displacement and 

found the interpolated longitudinal displacement in the lookup file. The bicycle lateral 

displacement was then compared with the interpolated map lateral displacement and the 

error generated corrective steering action.  

 

Additionally, the height of easting/northing co-ordinates was required at each time step in 

order to calculate the resistive force due to gravity. Initially these were obtained from 

Ordinance Survey (Memory-Map Ltd, Aldermaston, UK) but it was found that this data 

was insufficiently accurate. The resolution was 50 m horizontally and 10 m vertically with 

intervening gradient estimated by linear interpolation. Height data obtained by laser aerial 
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mapping was therefore purchased (www.centremapslive.com) [Accessed 28 November 

2009] with 5 m horizontal and 1 m vertical resolution. 

  

The thesis model required a control scheme that responded to both tracking error and 

bicycle roll in order to maintain the bicycle upright and follow the path. Studies have 

specified rider lean as an important control variable for implementing a tracking task in 

bicycle and motorcycle models (Weir, 1972; Peterson and Hubbard, 2008). However, 

existing models have not included a pedalling cyclist and have therefore neglected the 

bicycle roll and steer that occurs within a pedal cycle as a result of the offset pedal force 

applied during the down-stroke. In road cycling, this roll is countered by rider lean and 

steer with the resulting forces/motions generating an oscillatory path over a pedal cycle. 

Additionally, side winds generate roll independent of rider action which must be countered 

by steering input. It can be noted that small rider lateral weight shift on the saddle can steer 

the bicycle in 'hands-off' riding (VanZytveld, 1975) but this was considered too specialised 

for a general purpose model. 

 

In the thesis model, steering input controlled roll to keep the bicycle upright by 

maintaining the COM gravitational vector (as modified by centripetal force) above the 

support line linking the front and rear tyre contact patches. Simultaneously, steering input 

responded to path tracking error in order to implement path-following. This was 

implemented via a PID controller that monitored the combined roll and tracking error and 

calculated the necessary steering response. Identifying appropriate PID gain values was 

critical in this process. Proportional gain was generally set low as only small steering angle 

changes were required for quite large direction changes. Derivative gain was set high since 

direction changes incurred considerable bicycle/rider oscillation unless strongly damped.  

 

In model versions V2 and V3, the PID output activated steering angle. Steering angle 

rather than steer torque was used in these versions as it resulted in lower tracking error 

with no apparent unrealistic mechanical effects (the small kinematic effect of steering 

torque on the rider's arms was ignored). Rider body lean was required to simply oppose the 

bicycle roll generated by steering and thus maintain the ensemble COM above the wheel 

base (allowing for centripetal effects). In model versions V4 and V5, PID output activated 

steering torque. This method modelled bicycle velocity and turn radius more accurately 

when following a circular path although its slower response generated a greater path-

following error. However, the numerical solver reduced the integration time step when the 
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error variance increased (primarily during cornering) and thus achieved a root mean 

squared error (RMSE) between the actual and desired path that averaged less than 1 m. 

 

2.5.2 General Resistive Forces 

Aerodynamic and gradient resistances were modelled analytically (i.e. by Simulink 

equations) and applied in the x-axis and y-axis of the global coordinate system at the 

bicycle/rider COP (aerodynamic) and COM (gravitational). Rolling resistance was 

incorporated in the tyre model, while inertial resistance due to acceleration required no 

explicit modelling as it was applied implicitly by SimMechanics. 

 

2.5.3 Aerodynamic resistance 

The induced air flow due to bicycle motion was modified by both the speed and direction 

of the environmental wind in order to calculate the apparent air flow. Apparent air flow 

was resolved into x and y components before calculating the resistive forces applied to the 

bicycle/rider COP with the following expression 
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= ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅
     (1) 

where the  x and y subscripts denote the longitudinal and lateral axes respectively, FA was 

the aerodynamic resistive force, V was the apparent air velocity, p was the air density and 

CDA was the coefficient of drag area (drag multiplied by frontal area). Initial values were 

set at p=1.22 kg.m3 (typical sea level) and CDA=0.3 which was typical for an average sized 

cyclist on a road racing bicycle without tribars (Martin et al., 1998; Kyle, 1994).  

 

CDA was estimated for individual participants in Chapters 7, 8 and 9. Frontal area was 

calculated from regression equations based on height and weight (Heil, 2001; Heil, 2002). 

Form drag was estimated from bike type defined as full T/T bike, road bike with tribars or 

standard road bike (Bassett et al., 1999). It was assumed that bike type defined riding 

position and that a full T/T bike included a rider with aerodynamic helmet and overshoes. 

Any changes in surface drag were ignored as they have been shown to be a small 

component of total drag (Brownlie et al., 2010; Gibertini et al., 2010). CDA was the 

product of frontal area and form drag although the two were interdependent so no absolute 

value for form drag was defined (Bassett et al., 1999). In all cases, the estimated CDA was 

compared against experimental data present in Kyle (1994) to ensure that values were 

realistic.  
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The CDA value was modified dynamically throughout a simulation due to changes in the 

road/bicycle heading relative to the apparent air flow. Adjustments were those presented in 

Martin et al. (1998). The air density was held constant as trials were conducted in similar 

environmental conditions with respect to temperature, pressure and humidity (Olds et al., 

1995). The yaw angle of the bicycle from the right horizontal was monitored to ensure the 

resistive forces were applied as values opposing motion. 

 

2.5.4 Enviromental Wind 

 Environmental wind strength and direction were specified with initial values although 

both could be varied during a trial if dynamically measured profiles were available. The 

wind vector was resolved into x and y axis components with the following expressions 
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= ⋅

= ⋅
      (2) 

where VW was the wind velocity and Wθ was the wind angle from the right horizontal. The 

resolved components were then subtracted from the induced air velocities measured on the 

x-axis and y-axis to arrive at the apparent air velocities for each axis. The model re-

calculated the effect of wind on apparent air velocity at each time step because the 

bicycle/road direction changed continuously. 

 

2.5.5 Gravitational Forces 

SimMechanics allowed the road to be inclined such that the appropriate gravitational 

forces were automatically applied physically. However, the gradient could not be changed 

during a simulation making the method unrepresentative of a real road course. The gradient 

changed frequently in the field trials so the component of the gravitational force which 

aligned with the velocity vector of the cyclist/cycle ensemble was calculated analytically 

and applied at each time step to determine the propulsive or retarding effect of gravity at 

that instant. The following expression was used for the calculation: 

sin(arctan( ))G RF M g G= ⋅ ⋅       (3) 

where FG was the applied gravitational force, M was the ensemble mass, g was the 

environmental gravitational force and GR the gradient as a decimal. The effect of gradient 

on rolling resistance was considered negligible over the utilised courses and therefore 

ignored. The bicycle/rider was not rotated about the y axis to reflect the slope of the 

ground as the effect on pedalling has been found to be minimal (Caldwell et al., 1998). The 

resistive force was resolved into x-axis and y-axis values and then applied in opposition to 

the ensemble direction of travel at each time step. 
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2.5.6 Acceleration/Deceleration 

 Inertial resistance acts when the bicycle/rider accelerates or decelerates. It is measured as 

the change in kinetic energy (KE) separated into a component arising from the 

wheels/chainwheel rotation (KER) and a component arising from the translation of the 

ensemble (KET) as follows: 

2 2

2 2
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    (4) 

where f subscript indicates final velocity, i subscript indicates initial velocity, I moment of 

inertia and ω angular velocity. Under acceleration, additional power must be supplied by 

the rider to increase KE which remains elevated until reduced by subsequent deceleration. 

It can be noted that KE changes should be accounted-for in so-called 'steady-state' cycling 

as power variations over a crank cycle continuously accelerate/decelerate the bicycle 

(Hanson et al., 2002; Fregly et al., 1996). In addition, acceleration/deceleration is an 

intrinsic feature of all cycling on the road due to the constant change (however small) in 

one or more of the resistive forces (Atkinson et al., 2007c). All inertial forces were 

internally computed and applied by SimMechanics from rigid body mass/velocity data 

requiring no explicit programming. 

 

2.6 Summary 

This chapter describes the construction of a model that meets the requirements specified in 

Chapter 1. The model combined a bicycle, rider and the environment in a single unified 

structure in order to effectively represent road time trial cycling. The model was a 

generalised tool built from first principles such that it could represent a wide range of 

competitive riders and conditions. Simulations were implemented in forward dynamics 

mode which reproduces real world conditions where input forces result in output motion. 

Equations of motion were solved at <1 s intervals enabling the model to predict 

performance at a frequency which closely simulated the constant change of conditions 

occurring in field road cycling. The following chapters will validate this model against the 

literature and field trials. 
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CHAPTER THREE

PEDALLING VALIDATION 

 

3.1 Introduction 

The purpose of this chapter is to asses the validity of the V1 version of the thesis model 

(see Table 2.1). This version simulated a rider pedalling on a static bicycle which was 

functionally equivalent to an ergometer. Redfield and Hull (1986a) (previously defined as 

'REF') was used as the benchmark against which to assess the validity of the pedalling 

component of the full thesis model. REF used pedal forces and crank torque obtained 

experimentally as inputs to an inverse dynamics model that calculated leg joint torques. 

The forward dynamics V1 model reversed this process by inputting these joint torques and 

outputting the resulting pedal forces and crank torque. Model validity was quantified by 

tracking the error between the V1 model outputs and the REF inputs over a pedal cycle. 

The concept of validating a forward dynamics human movement model by tracking its 

outputs against equivalent values obtained from an experimental inverse dynamics analysis 

is well established (Neptune and Hull, 1998; Pandy, 2001; Otten, 2003; Zajac et al., 2003; 

Erdemir et al., 2007; Buchanan et al., 2004). The outputs of other studies that measured 

pedal forces and crank torque generated by pedalling were also examined to confirm that 

the REF study was representative.  

 
Most pedalling model validity studies have utilised one of two approaches: either 1) a 

forward dynamics model where the activation of muscles (or joint torques) is propagated 

forward to yield pedal forces which are compared with empirical data; or 2) the alternative 

inverse dynamics methodology where pedal force and limb motion are measured 

experimentally and propagated 'backwards' to obtain net joint torques. A forward dynamics 

model has the advantage of being able to predict outcomes for novel conditions whereas an 

inverse dynamics analysis is essentially descriptive of a specific condition (Olds, 2001). 

The typical structure of a forward dynamics model is shown in Figure 3.1 and that model 

was employed here, but without the muscle activation phase since muscle physiology and 

mechanics was outside the scope of this investigation. 

  
Figure 3.1  Forward dynamics methodology applied to pedalling 
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3.2 Validity Definition 

Pedalling validation studies are rare in the literature, making it necessary also to consider 

studies examining motor control mechanisms in human movement where the underlying 

principles are similar (primarily neural strategies to coordinate muscle activation). The 

utility of a model depends on its validity but no 'gold standard' has been identified for the 

validation of musculo-skeletal models and there is little agreement on either the model 

outputs that should be compared with experimental data or the level of convergence 

between the two data sets that confers validity. Studies have utilised root mean squared 

error (RMSE), coefficients of determination (linear regression) and standard deviations 

(SD) to compare model and experimental data. Subjective judgment based on visual 

examination of graphs is sometimes used as a validation method. For example, a vertical 

jump study (Seth and Pandy, 2004) used joint torques obtained from an experimental 

inverse dynamics analysis as the input to two different types of forward dynamics model to 

compare their respective ground reaction forces (GRF). Results were not quantified, but 

presented qualitatively with comments such as "the tracking results reproduced the desired 

GRF's with good accuracy" (Seth and Pandy, 2004, page 3) combined with reference to 

descriptive graphs rather than to specific numerical data. 

 

Even where quantitative results were presented, the imprecision of 'validity' remained due 

to the lack of an established criterion. For example, a study examining elbow flexion 

compared a three-muscle forward dynamics model prediction of elbow joint torque with an 

experimental inverse dynamics computation (Challis and Kerwin, 1994). The model was 

considered valid when an apparent 5.5% RMSE was obtained. A visual examination of the 

presented graphs suggested an error nearer 10% using an RMSE normalised to the data 

range (NRMSE) (Cahouet et al., 2002). In a subsequent study (Challis, 1997), the previous 

model was claimed as valid because the RMSE percentage was smaller than the inherent 

error of an inverse dynamics analysis. However, no evidence was presented of inverse 

dynamics error levels or why a lower error level should confer validity. A similar lack of 

validity 'standards' was apparent in a study by Seth and Pandy (2007) who examined joint 

torques in a vertical jump computed by various methodologies. These authors decided that 

the criterion values (described as 'actual') should be those predicted by a forward dynamics 

parameter optimisation model. Declaring model derived data to be a criterion is unusual, 

certainly in respect of joint torques where the baseline is usually derived from inverse 

dynamics analysis of experimental data. However, as noted by Seth and Pandy (2007), the 

inherent error of inverse dynamics (Runge et al., 1995; Risher et al., 1997; Kuo, 1998; 
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Silva and Ambrosio, 2004)) does not necessarily confer any greater validity than a forward 

dynamics parameter optimisation approach. 

 

Standard deviation has also been used as a validity measure. For example, a recumbent 

pedalling study compared pedal forces, joint moments and crank torque predicted by a 

forward dynamics model with data computed by inverse dynamics analysis of 

experimental data for sixteen subjects (Hakansson and Hull, 2007). A tracking method was 

employed where the model muscle activation was optimised to minimise the RMSE 

between the model and experimental results. The model was considered valid if one or less 

standard deviations separated the model data from the mean experimental values but no 

RMSE values were reported. Thelen et al. (2003) validated a forward dynamics model 

against experimental data by reporting both standard deviation and RMSE in a pedalling 

study that examined tangential and radial pedal forces. They considered their model to be 

valid when model values were within 1 SD of experimental data and also reported absolute 

RMSE values of 17 N and 37 N respectively for the two pedal force vectors. However 

RMSE values in isolation give little indication of validity and NRMSE values were not 

presented. Calculating NRMSE by estimation from the presented graphs suggests values of 

approximately 4% and 9% respectively which could therefore be taken to indicate a valid 

model in the view of Thelen et al. (2003). 

 

Validation based on linear regression analysis between experimental data and model 

results has been utilised in a number of modelling studies. Lloyd and Besier (2003) 

investigated knee torque in a running study where experimental values calculated from 

inverse dynamics were compared to the predictions of an EMG based forward dynamics 

model. A coefficient of determination (R2) of ~0.95 was reported for a representative 

subject with a slope of ~0.93 and a y intercept of ~3.1 N.m. A 'mean residual error' was 

also calculated to indicate the magnitude of the residual error about the least squares 

regression line although the term was not defined and would likely be zero if interpreted 

literally. Reported error values for knee torque were 4.9 - 7.8 N.m suggesting that RMSE 

was actually being measured. Residual scatter should perhaps be termed 'standard error of 

the estimate' (SEE) rather than RSME although the two are functionally equivalent here. 

Calculating NRMSE from the presented graphs in order to enable comparison with other 

studies suggests values of approximately 4% to 5%, adding to the evidence that values near 

this level are required for support of validity.  
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A gait study also used regression analysis to quantify validity by comparing joint torques 

computed by an EMG-driven forward dynamics model with values derived from an 

experimental inverse dynamics approach (White and Winter, 1992). Coefficients of 

determination ranged from 0.72 to 0.97 for the ankle, knee and hip joints. The authors 

showed a more comprehensive approach to model validation by reporting RMSE values of 

10 to 20 N.m and NRMSE values of 23% to 72%. The authors speculated that the 

divergence could result from erroneous inverse dynamics calculations and/or inaccurate 

equations contained in the model but despite the high error levels they still declared "the 

closeness with which the joint moment curves matched in the present study supports using 

the modelling approach" (White and Winter, 1992, page 1). The low coefficients and the 

high NRMSE values make this assertion questionable. 

 

Another gait study (Buchanan et al., 2005) presented what they characterised as a 'hybrid' 

approach where joint moments from an inverse dynamics analysis were compared with the 

predictions of a forward dynamics model. Muscle parameters in the forward dynamics 

model were adjusted until convergence was achieved with the inverse dynamics calculated 

values. If the parameters in this calibration process remained physiologically reasonable, 

the forward dynamics model could then be used to predict joint torques when completely 

novel tasks were undertaken (although only for individuals with similar characteristics). 

This was confirmed when the model predicted ankle moments against experimental data 

with an RMSE of 7.1 N.m and an R2 value of 0.94. The two data sets closely tracked a 

presented graph and the NRMSE could be estimated from the graph at 9%. 

 

Forward dynamics models of conventional bicycle pedalling are rare and only one has 

been identified that quantified model validation. Neptune and Hull (1998) developed a 

pedalling model driven by 15 muscle actuators per leg at a cadence of 90 rpm and a 

workrate of 225 W. Muscle activation was optimised to minimise a composite of the 

tracking error for horizontal/vertical pedal forces, crank torque and net leg joint torques. 

Experimental data for the comparison was obtained from 6 experienced cyclists riding their 

own bicycles on an ergometer. Tracking error (referred to as RMS in the study) was 

calculated as a composite value, being the sum of the squared residuals for each tracked 

quantity normalised by the inter-subject variability for that quantity. The reported results 

relevant to validation showed that model force and torque data were 'almost always' within 

1 SD of experimental data. Digitisation of presented graphs should have enabled RMSE 

and NRMSE to be calculated, but unfortunately only tracking error quantities were shown 

which could not be re-processed. 
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In summary, the consensus of human movement modelling studies would suggest that a 

forward dynamics model can be considered valid if it tracks experimental data with 

standard deviation ≤1SD, coefficient of determination R2 >0.95 or NRMSE <10%. Those 

values were therefore adopted as the validity benchmarks for this chapter. The aim of the 

chapter was to establish if the pedal forces/crank torque predicted by the V1 model met 

one or more of the validity measures when compared to the REF values.  

 

3.3 Methods 

3.3.1 Model Specification 

A 3D model comprising rider pelvis, leg segments, bicycle seat tube and cranks was 

constructed utilising the geometry and parameters specified in sections 2.3 and 2.4 which 

were considered typical for a competitive cyclist (Redfield and Hull, 1986a). A single body 

fixed in the global reference frame represented the bicycle seat tube. Lateral bodies at the 

lower and upper ends of the seat tube represented the crank spindle and rider hips 

respectively. The left and right legs were represented by four segments (thigh, shank, 

combined foot/pedal and crank arm) linked to the common seat tube by the crank spindle 

and rider pelvis. Viewed from the side, each leg therefore operated as a closed loop five-

bar planar linkage constrained to move in the sagittal plane (Figure 3.2). Frictionless 

revolute joints linked the segments of each leg at the hip, knee, ankle, pedal spindle and 

crank spindle. The right and left crank arms were fixed to the crank spindle with 'weld' 

joints but with 180 degree opposed orientation. The seat tube length was set to 

geometrically prevent knee hyperextension when the pedal was at the lowest point in its 

trajectory while allowing for an 'ankling' motion. 

 
          Figure 3.2 Visualisation of pedalling model at TDC. 
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This system had three DOF: one for each ankle angle and one being a common crank 

angle. Simulations started from the reference configuration. The model was activated by 

hip, knee and ankle torque profiles obtained from the REF study and a resistive torque and 

gear ratio was applied to achieve performance consistent with the REF study (200 W and 

80 rpm). In emulation of the REF, all inputs and outputs in this evaluation related to the 

ipsi-lateral leg unless otherwise specified. Control strategy for the contra-lateral leg was 

applied symmetrically but 180 degrees out-of-phase. To confirm the REF study as 

representative, similar inverse dynamics pedalling studies were identified (Table 3.1) and 

their kinematic and kinetic profiles compared with the REF. Tracked quantities for 

validation were: 

• Pedal force (horizontal and vertical) over a cycle 

•  Crank torque over a cycle. 

 
Table 3.1 Summary of pedalling models in the literature that reported forces and torques.  

ID Study Power (W) 
Cadence 

(rpm) 
Comment 

REF Redfield and Hull (1986a) 200 80 REF study 

Hull Hull and Jorge (1985) 200 80 ** 

Redfield Redfield and Hull (1986b) 196 100 No ankle data 

Fregly Fregly et al. (1996) 225 75 Hip and ankle 
signs reversed 

Smak Smak et al. (1999) 250 120 Hip and ankle 
signs reversed 

Coyle Kautz et al. (1991) 250 90 Pedal forces only 

Stone Stone and Hull (1995) 300 84 Pedal forces only 

Kautz Kautz and Hull (1993) 250 90 Pedal forces only 

Neptune Neptune and Hull (1998) 225 90  

** Ankle, knee and hip positive and negative directions of rotation are reversed from the 
published data to provide a consistent presentation in this study 
 

3.3.2 Assumptions and Approximations 

The REF study assumed the pelvis was fixed immovably to the seat tube and the model 

reproduced this assumption to enable the comparison. In reality, at medium to high 

intensities, some 3% of total power can be transferred from the upper body to the legs 

through pelvis rotation (Van Ingen Schenau et al., 1990). It was considered that the 

resulting error in joint torque calculation was a reasonable approximation given the likely 

minimal effect on speed over a time trial course which was the relevant objective of the 

thesis model. The same conclusion was reached by Neptune and Hull (1995) in their 

similar study. 
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The REF study measured the foot/pedal angle over a cycle experimentally and concluded 

that the data could be adequately approximated by a sine wave. That profile was then used 

in their simulation. In consequence, the REF study inverse dynamics calculations could 

assume constant crank angular velocity throughout a cycle. However, this could not be 

replicated in the V1 model as accelerations/decelerations were intrinsically generated by 

the magnitude and timing of the joint torque profiles. It should be noted that an assumption 

of constant crank angular velocity within a cycle, while simplifying inverse dynamics 

computations by removing crank acceleration, is not a realistic representation of actual 

pedalling (Chen et al., 2001; Fregly et al., 1996; Hansen et al., 2002; Brown et al., 1996). 

Generally it has been shown that crank angular velocity increases in the region of 

horizontal crank orientation and decreases in the region of vertical crank orientation. 

 

It was found that the REF study combination of limb lengths and saddle height resulted in 

knee hyperextension when implemented in the V1 model. Hyper-extension occurred when 

the foot had insufficient toe-down orientation at BDC. This could have been due to a 73° 

seat angle in the REF compared to a 72° angle in the thesis model. Alternatively, it may 

have been a consequence of the V1 model ankling being a result of the joint torques, 

whereas REF explicitly controlled ankle angle with a sine wave. Continuous pedalling was 

enabled in the model by lowering the saddle 0.04 m which was likely to have had minimal 

effect on the results. 

 

The REF model comprised a single leg with a second leg implicitly included. The inputs 

and outputs for real single leg pedalling would have been substantially different (Martin et 

al., 2002). The thesis model applied two legged pedalling to conform to the REF. 

 

3.3.3 Data Capture 

The V1 model built from the REF data was simulated in forward dynamics mode, driven 

by the leg joint torque profiles reported by the REF. An initial condition cadence of 80 rpm 

was applied and mean values for horizontal pedal force, vertical pedal force and crank 

torque calculated over 4 cycles. Outputs over this duration were predominantly steady-state 

with minimal distortion from start-up transients. Pedal forces and crank torque were 

interpolated at one degree of crank angle over the cycle. The REF vertical pedal force, 

horizontal pedal force and crank torque data were obtained from the published results by 

digitising the presented graphs and interpolating at one degree of crank angle. 
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3.3.4 Data Analysis 

A tracking problem was defined to compare the pedal forces and crank torque output by 

the model against the equivalent experimental data that formed the input to the REF study. 

The model and REF data were examined to establish their difference at each one degree of 

crank angle and a quantity computed that represented that difference over the cycle. 

Differences were expressed as absolute RMSE, normalised NRMSE, area under the curve 

(AUC) and simple arithmetic mean (Mean). AUC values represented the impulse over the 

duration of the simulation. For AUC and Mean, horizontal pedal forces were treated as 

absolute (eliminating a zero sum) and percentage variance quantified the V1 model relative 

to the REF. The use of AUC and Mean data enables insights that are concealed by the 

'directionless' nature of RMSE and NRMSE values. RMSE was computed from the 

following expression: 
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where Max0 and Min0 are functions that identify the maximum and minimum values in a 

data set. 

 

A linear regression analysis compared the REF and model crank torque as an additional 

method of quantifying the tracking error. Coefficient of determination (R2), regression 

slope and y intercept were calculated to quantify the level of convergence. 

 

3.4 Results 

A model simulation over 4 cycles was driven by the REF joint torques and resulted in 

mean power of 207 W and mean cadence of 78 rpm. The results of the comparison 

between the model and the REF relating to pedal forces and crank torque are shown in 

Table 3.2. 
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 Table 3.2.  Model pedal force and crank torque compared to the REF study. 

Error AUC Mean 

 

RMSE NRMSE REF Model ∆ REF. Model ∆ 

Horizontal 
Pedal (N) 

All 15.4 8.8% |20,982| |23,982| +14.3% |52.6| |64.7| +23% 

 Fwd. 17.8 10.1% 11,106 12,952 +16.7% 64.5 81.1 +26% 

 Back 12.1 6.9% -9,874 -11,026 +13.5% -40.7 -48.3 +9% 

Vertical 
Pedal (N) 

Down 25.5 9.5% -43,156 -45,051 +4.4% -119.7 -125 +4% 

Crank 
Torque 
(N.m) 

Net 
Propulsion 

2.6 4.9% 5,426 5,312 -2.1% 15 14.7 -2% 

 Positive 2.8 5.2% 5,731 5,699 -0.6% 19.7 19.6 -0.5% 

 Negative 1.8 3.4% -305 -382 +25.3% -4.4 -5.5 +25% 

Note. ∆ = difference of the model relative to the REF. Absolute values indicate that 
negative values have been summed as positive.                     
 

3.4.1 Pedal Forces 

The total horizontal pedal force NRMSE was 8.8%, which the AUC and Mean positive 

differences showed was due to greater positive force production by the model than the 

REF. The graph in Figure 3.3 shows a divergence in the rearwards pedal force of the model 

shortly after BDC which was not present in the REF. The vertical pedal force NRMSE of 

9.5% was entirely in the downwards direction with the AUC and Mean positive differences 

showing a greater force from the model than the REF. A similar divergence just before 

BDC can be seen in the graph at Figure 3.4. 

 

3.4.2 Crank Torque 

The crank torque NRMSE was 4.9% of net propulsion which the AUC and Mean negative 

differences (-2.1% and -2% respectively) showed was primarily due to the model torque 

being less than the REF. The negative torque (i.e. counter-rotational torque) of both model 

and REF during part of the recovery showed that the ascending leg did not ascend fast 

enough or rested on the crank or resisted crank rotation (Figure 3.5). The peak torque 

during the down-stroke (Figure 3.5) was also somewhat less in the model than the REF 

which is consistent with the model positive AUC being slightly below the reference (Table 

3.2). The model two-leg crank torque (inset to Figure 3.5) showed two peaks similar in 
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magnitude to the single-leg profile and demonstrated that two legs eliminated the 

occurrence of negative torque at the crank. 

 

Horizontal Pedal Force

-100.00

-50.00

0.00

50.00

100.00

150.00

0.00 45.00 90.00 135.00 180.00 225.00 270.00 315.00 360.00

Crank Angle (degrees)

F
o

rc
e 

(N
)

Kautz

Reference

Coyle

Smak

Stone

Model

Neptune

 
Figure 3.3 Horizontal pedal force against crank angle reported by the model and the 
literature. 
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Figure 3.4 Vertical pedal force against crank angle reported by the model and the 
literature. 
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Figure 3.5  Crank torque against crank angle reported by the model and the literature. 
(Inset: model two-leg crank torque) 
 

A crank torque regression analysis between the REF and the model produced a coefficient 

of determination (R2) of  0.974 (Figure 3.6). The slope of 0.972 and the y intercept of 0.1 

indicated close equivalence between the two data sets. 

 

y = 0.972x + 0.1043

R2 = 0.9739

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

-10.00 0.00 10.00 20.00 30.00 40.00 50.00

Reference Torque (N.m)

M
o
d

e
l 

T
o
r
q

u
e 

(N
.m

)

Figure 3.6  Regression analysis of REF and model crank torque. 
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3.5 Discussion 

The purpose of this chapter was to validate version V1 of the forward dynamics thesis 

model by comparing its output data with experimentally derived input data presented in an 

inverse dynamics REF study. Validating the output data of a forward dynamics human 

movement model against input data from an experimental inverse dynamics analysis is 

well established in the literature (Neptune and Hull, 1998; Pandy, 2001; Otten, 2003; Zajac 

et al., 2003; Erdemir et al., 2007; Buchanan et al., 2004). The aim was achieved with the 

error levels between the thesis and REF models being within the ranges widely accepted in 

the literature. The model simulation generated power output of 207 W and cadence of 78 

rpm which were similar to the REF values of 200 W and 80 rpm. The model pedal force 

and crank torque profiles were qualitatively similar to the REF and related studies in 

respect of profile phasing and amplitude. In particular, the horizontal pedal force exhibited 

the characteristic positive values required for the foot to rotate the crank forward through 

TDC and negative values to rotate the crank rearwards through BDC. The vertical pedal 

force showed a negative peak at ~100 degrees of crank rotation which was consistent with 

the peak effective force of the other studies shown in Figure 3.4. However, the model 

predicted a second and larger negative peak at ~155 degrees which may be an artefact of 

the variance in crank angular velocity discussed below. A similar uncharacteristic 

deviation was seen in the horizontal pedal force at ~200 degrees which may be attributable 

to the same cause. Both these artefacts were however attenuated in the resulting crank 

torque profile. Error levels could be partly attributable to the imprecision inherent to the 

inverse dynamic method employed by the REF. Further error factors are discussed below. 

 

The model predicted no positive vertical force during recovery indicating minimal 'pulling-

up'. This finding was in agreement with the REF and the majority of experimental studies, 

although positive crank torques throughout the pedal cycle have been found experimentally 

at high workrates (Coyle et al, 1991), or predicted by single-leg models configured to 

optimise performance (Redfield and Hull, 1986a; Kautz and Hull, 1995). Pedal forces and 

crank torques from the other similar studies listed in Table 3.1 are plotted in Figures 3.3 -

3.5 and show that the REF model was generally representative.  

  

Crank torque was derived from pedal forces and was, therefore, arguably the best 

representation of the effect of varying leg joint torques in pedalling. Crank torque NRMSE 

was lower than that of the pedal forces, which may reflect more effective pedal force 

orientation by the model. The model crank torque profile (Figure 3.5) showed good 
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equivalence to the REF study in respect of the key values of peak torque (~42 N.m) and the 

crank angle at which it occurred (~90 degrees). The model crank torque profile was also 

consistent with the other experimental studies (Table 3.2) which were conducted at similar 

intensities of 200-250 W and 80-90 rpm. Interestingly, all the graphs of torque profiles 

showed between 6 N.m and 17 N.m of negative torque during recovery indicating counter-

rotational crank torque during that period. Detailed analysis of single leg crank torque is 

perhaps unnecessary as two leg pedalling eliminates negative crank torque (Bertucci et al., 

2005; Caldwell et al., 1998; Hansen et al., 2002) such that the positive/negative inertial, 

gravitational and muscular contributions attributable to either leg are difficult to 

distinguish.  To confirm the elimination of negative crank torque, the combined crank 

torque was predicted by the model (insert to Figure 3.5) and the resulting 

amplitude/phasing was found to be similar to the profiles reported by Hull et al.(1992), 

Kautz and Neptune (2002) and Broker (2003) (Figure 3.7). 

Figure 3.7 Crank two-leg pedalling torque profile at 350W and 90 rpm (Broker, 2003).  
 

A central issue for quantitative model validation was identification of the appropriate 

quantities to be measured and the level that indicated acceptable validity. There is rarely an 

absolute answer to these questions and therefore a judgement on validity largely depends 

on comparison between present error levels and error levels considered acceptable in 

previous work. A literature review suggested that to achieve validity, the model should 

meet one or more of the following criteria: (1) model predictions within 1 SD of 

experimental results, (2) a coefficient of determination between model and experiment 

>0.95, (3) an NRMSE <10%. AUC was also introduced as a relevant validity measure. 

Comparing model results against the REF, a regression analysis of crank torque indicated 
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validity with an R2 value of 0.97 while the slope of 0.972 plus the y intercept of 0.1 also 

indicated almost complete equivalence between the two data sets. Considering NRMSE, 

the vertical and horizontal pedal forces can be considered valid at 8-9% while the crank 

torque showed excellent validity with an NRMSE of 4%. The AUC results reinforce the 

NRMSE results in respect of the amplitude and direction of variances between the model 

and REF. No standard deviation comparison was made as the REF study only reported on a 

single subject. This might be seen as a limitation although it has been suggested that a 

single subject is appropriate in validation studies when the objective is to compare outputs 

between two methods using identical inputs rather than to establish a general pattern of 

pedalling forces and torques (Heintz and Gutierrez-Farewik, 2007). 

 
It should be noted that extensive parameter manipulation was not required to achieve the 

convergence presented above. This contrasts with some forward dynamics muscle models 

where up to 59 parameters had been extensively tuned (Heine et al., 2003). The only 

parameters adjusted to minimise tracking error were the crank resistance force and gear 

ratio in order to achieve the target performance of 200 W and 80 rpm from the given joint 

torque inputs. During cycling in the field, this resistance would result from the wind, 

rolling and gradient resistances acting against the bicycle/rider. 

 
When examining the V1 model error level presented above, it is of value to consider the 

'acceptable' error level reported by other pedalling studies that constructed a model and 

compared results with experimental data. The REF study itself developed a joint moment 

optimisation model and compared the resulting pedal forces with their experimental data. 

The difference between the model predicted and actual forces was termed the 'error'. The 

REF did not itself conduct an NRMSE analysis, but NRMSE was calculated by digitising a 

REF graph which resulted in an approximate 19% error for horizontal forces and 

approximate 16% error for vertical forces (compared to values of 10.1% and 9.5% 

respectively in the thesis model) (Figures 3.8 and 3.9). The REF pedal force comparison 

was not specifically intended for validation purposes, but the error levels of 19% and 16% 

were clearly considered to be acceptable with the first characterised as "a good comparison 

of actual and computed pedal force profiles" (Redfield and Hull, 1986a, page 10) and the 

second presented as "the vertical profiles give excellent agreement" (Redfield and Hull, 

1986a, page 10). Causes of inverse dynamics modelling errors are discussed below. 
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Figure 3.8 Horizontal pedal force against crank angle. Comparison of modelled and 
experimental data in the REF study (for graph clarity, the model forces shown in Figure 
3.3 are not reproduced here). 
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Figure 3.9 Vertical pedal force against crank angle. Comparison of modelled and 
experimental data in the REF study (for graph clarity, the model forces shown in Figure 
3.4 are not reproduced here). 
. 
 

A similar pattern was seen in the forward dynamics pedalling model of Neptune and Hull 

(1998) which was close to the design of the V1 model. The study measured six subjects 

and found model force/torque outputs matched the experimental results ±1 SD. To relate 

these findings to the current study, the pedal force graphs were digitised (Figure 3.10) and 

the NRMSE calculated giving an approximate horizontal error of 6% and an approximate 
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vertical error of 7%. The authors presented this error level as "a pedalling simulation in 

close agreement with the experimental data" (Neptune and Hull, 1998, page 6) and 

"success of the model in reproducing the experimental pedalling mechanics" (Neptune and 

Hull, 1998, page 6). This suggests a similar validity for the V1 model as the equivalent 

NRMSE errors were 8.8% and 9.5%. The most likely explanation for differences in the 

results is the measurement error of the instrumented pedals used in the experimental trials 

(Challis and Kerwin, 1996). 

 

Figure 3.10 Comparison of model and experimental data for horizontal and vertical pedal 
force in Neptune and Hull (1998). 
 

A final assessment of the V1 model validity can be made by comparing the seven crank 

torque profiles included in Figure 3.5 even though they are not all exact equivalents for 

workrate/cadence. If it is assumed that the peak torque value is representative of the 

complete torque profile, the mean ±SD value for all seven profiles in Figure 3.5 is 49±8 

N.m. This level of standard deviation in pedalling torque is similar to that seen in other 

studies reporting a similar mean torque (Neptune and Hull, 1998 = 47±12; Neptune and 

Hull, 1999 = 50±6; Bertucci et al., 2005 = 49±8). The spread of torque profiles in Figure 

3.5 are therefore predominantly within the range of variability expected from normal 

experimental sampling error, suggesting that the 'oscillations' in the model torque profile 

are not significant. 
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An implicit assumption in this evaluation of model validity has been that the REF study 

values are 'true' because they were derived experimentally and that the V1 model results 

are therefore being compared to 'true' data. However, the inverse dynamics calculations 

that generate the joint torques underlying this validity investigation are themselves subject 

to experimental error and, therefore, it is possible that the V1 model results are 'true' while 

the REF results are in error. Inverse dynamics error sources were listed by Challis and 

Kerwin (1996) as the motion measurement system, the force measurement system, 

definition and computation of body axes, estimation of joint centroids, body segment 

inertial parameters and computation of derivatives. After conducting sensitivity trials, they 

concluded that calculation of segment acceleration derivatives was the single largest error 

source due to accentuation of noise in the position data (despite filtering). To quantify 

inverse dynamic errors, Riemer and Hsiao-Wecksler (2008) calculated idealised 'error-free' 

leg joint torques for a squatting reference motion and then compared the torques calculated 

by inverse dynamics. They found knee and hip RMSE to be 9.9 N.m and 13.78 N.m 

respectively from which NRMSE of 24.8% and 6.9% were estimated using the presented 

graphs. A similar study by the same authors (Riemer et al., 2008) reported that differences 

between 'true' values of net leg joint torques and inverse dynamics solutions can be 6% to 

232 % of the maximum joint torque. It is apparent, therefore, that inverse dynamics errors 

can be larger than the validation errors presented above. However, the constrained nature 

of pedalling is likely to generate errors at the bottom end of the range compared to the 

inverse dynamics errors associated with more uncontrolled motion such as gait. 

 

A limitation of the comparison conducted in this chapter might be the variable crank 

angular velocity inherent to the model compared to the constant angular velocity employed 

by the REF. However Fregly and Zajac (1996) showed that crank angular velocity varies 

over a cycle suggesting that the adoption of constant angular velocity by REF was a means 

to simplify their analysis and should not be adopted by the thesis model. Additionally, 

anecdotal evidence from cyclists suggests that variation in crank angular velocity is an 

inherent aspect of pedalling which becomes particularly noticeable at high power and low 

cadence.  

 

In conclusion, the V1 model pedal force and crank torque profiles tracked the REF model 

with an error level that met the proposed requirements, suggesting that the thesis model 

was a valid representation of cyclist pedalling. Error levels could be partly attributable to 

the imprecision inherent to the inverse dynamic method employed by the REF. A 

limitation of the V1 model validation could have been its applicability to conditions other 
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than those examined here. The sensitivity of model output to changes in key parameters 

required evaluation before the model could be considered a generalised tool for optimising 

pedalling performance. To continue the thesis model validation, the bicycle dynamics had 

to be validated so that the pedalling rider and bicycle could be combined into a complete 

system. 
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CHAPTER FOUR

BICYCLE STABILITY VALIDATION 

 

4.1 Introduction 

The purpose of this chapter was to validate a model of the bicycle without environmental 

forces or rider control (version V2). Validation compared model 'uncontrolled stability' 

with a benchmark study from the literature (Meijaard et al., 2007) by extracting 

eigenvalues for the characteristic stability modes. To match the benchmark, the rider was 

included only as a non-pedalling, non-steering inert mass. It must be emphasised that the 

software used for the comparison did not allow complete equivalence between the V2 

model and the benchmark. The term 'validity' in this chapter is therefore approximate with 

'functional similarity' being more accurate. Bicycle self-stability was an important factor in 

model development because an unstable bicycle would have required a complex rider 

control scheme to remain upright and accurately follow a time trial course (Jones, 1970). 

 

Bicycle models have been built to investigate self-stability in order to highlight the 

intrinsic dynamics of a bicycle and quantify the effects of design parameters on handling 

(Meijaard et al., 2007; Sharp, 2008; Dohring, 1955). In particular, handling is likely to be 

improved if a bicycle is self-stable before the addition of a human controller. Despite the 

large number of bicycle models, few have been subject to rigorous validation. One 

approach to model validation has been to compare model equations of motion to previous 

studies both to confirm mathematical correctness and to identify errors or omissions. 

Surprisingly, this process was largely ignored until a comprehensive review of bicycle and 

motorcycle models by Hand in 1988. This work was further developed by a number of 

associated researchers leading to the publication of a 'benchmark' bicycle model by 

Meijaard et al. (2007) which claimed to be complete and free of errors. The benchmark 

model was made available on the internet as 'JBike6' 

(http://ruina.tam.cornell.edu/research/topics/bicycle_mechanics/JBike6_web_folder/index.

htm). This provided an online version of the benchmark model which could be used for 

validation of other bicycle models. However, as noted above, the thesis model could not be 

completely replicated in JBike6 and therefore the stability validation was not 

mathematically precise (other validations matched eigenvalues to ten decimal places). 
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Eigenvalues are a model-independent measure of bicycle stability being the roots of the 

characteristic equations and independent of variations in coordinate systems, initial 

conditions or of any particular equation derivation. As discussed in section 1.3.2.3, a 

bicycle system has four eigenmodes commonly characterised as weave, capsize, castering 

and wobble with the oscillatory weave eigenmodes having a real and imaginary part. The 

eigenvalues for these modes indicate bicycle instability if the real part is positive or 

stability if it is negative. Weave mode and capsize mode values are the main determinants 

of stability. The former typically represents the lower velocity boundary of self-stability 

while the latter represents the upper boundary. The bicycle is therefore self-stable at speeds 

when both quantities are negative. Capsize mode is dominated by lean with the bicycle 

usually falling over slowly at higher speeds. Weave mode is oscillatory such that the 

bicycle sways about its headed direction at lower speeds usually leading to the bicycle 

falling to the x-y plane. Eigenvalues representing bicycle stability are therefore a valid 

comparative measure when examining the outcomes from hand-derived equations of 

motion (as in the benchmark) and those automatically calculated by SimMechanics.  

 

The objectives of this chapter were threefold: 

• Validate a linearised version of the V2 model by comparing its stability-mode 

eigenvalues to those reported by the benchmark bicycle model of Meijaard et al. 

(2007). Additionally, eigenvalue sensitivity to bicycle geometry was evaluated. 

• Validate the roll/steer response of the non-linear V2 model by comparing it to the 

previously reported response of uncontrolled bicycles. 

• Test whether the non-linear V2 model conformed to conservation of energy 

principles by measuring its increase in velocity after a perturbation. 

 

4.2 Methods 

4.2.1 General Methodology 

The V2 model used in this chapter was a sub-set of the full bicycle/rider model described 

in Chapter 2. The full model was modified by reducing the rider to a rigid inert mass fixed 

to the rear frame. Rider upper body lean capability was removed as were rider originated 

forces delivered to the pedals and handle-bars. The rider's arms were decoupled from the 

handle bars to prevent inadvertent steer damping. The arms remained in place to maintain 

inertia but the spherical/revolute joints at the shoulders and elbows were replaced with 

weld joints to make the arms rigid. The investigation required upright straight-running at a 

constant speed on a flat road so aerodynamic and gravitational resistive forces were 

removed. A velocity actuator was connected to the rear frame COM that launched and 
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maintained the bicycle at a specified speed. The tyre model was removed and two non-

holonomic constraints on each wheel enforced pure rolling (no-slip) in the longitudinal and 

lateral directions. A holonomic constraint kept each wheel in contact with the ground. 

Freedom to translate vertically and rotate about the lateral axis (i.e. pitch) were removed as 

were all other constraints and actuators pertaining to the bicycle or rider leaving the bicycle 

with only freedom to translate longitudinally/laterally and roll/yaw/steer. 

 

4.2.2 Benchmark Comparison 

The eigenvalue comparison was not exact as the benchmark bicycle emulated a 'conceptual 

bike' constructed from four rigid bodies with associated mass, inertia and geometry. The 

V2 bicycle was constructed from fifteen rigid bodies and geometry that represented a real 

road racing bicycle. To conduct the comparison, JBike6 software was downloaded from 

the internet which provided an interactive bicycle simulation utilising the benchmark 

equations of motion while allowing bicycle parameters to be set that nearly matched the 

V2 model. However, since some divergence between the models remained, the V2 model 

eigenvalues were considered valid if they varied ±10% from the benchmark values. This 

variance was set subjectively at a level that trial model simulations suggested would have 

minimal effect on time over a time trial course. The variance was also similar to the range 

considered acceptable in Dressel (2007) and in some other unpublished bicycle studies. 

The JBike6 software was also used to investigate the hypothesis that steering axis and trail 

were the parameters most likely to affect the velocity of capsize mode zero crossing.  

 

4.2.3 Method for Objective 1 

For stability comparison with the linear benchmark model, a linearised version of the V2 

model was created. This linearised model was simulated in an upright equilibrium state at 

the same speeds as the benchmark and eigenvalues resulting from a lateral perturbation 

obtained. Ten separate simulations were run for durations of 10 s at velocities from 1 to 10 

m/s in 1 m/s increments. A lateral perturbation of 10 N was applied to the chain stay (the 

value applied in the benchmark) directly above the rear contact point for 0.1 s after one 

second of straight-running. The model was linearised for each velocity at an operating 

point 0.5 s into the simulation. Eigenvalues were extracted from the mass matrix of the 

resulting state-space representation and graphs constructed to show the real weave, 

imaginary weave, castoring and capsize modes. This objective also examined zero crossing 

of the capsize mode eigenvalue to evaluate the sensitivity of the capsize mode to geometry 

change. The model was simulated over the same range of velocities as above, but steer 

axes and trail values were changed for each run within the range of 65-80 degrees and 
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0.05–0.065 m respectively. The capsize mode zero crossing point was recorded for each 

run and a graph produced to show the zero crossing sensitivity to changes in the two design 

parameters. 

 
4.2.4 Method for Objective 2 

The non-linear V2 model was simulated at velocities of 5 m/s and 3 m/s. Steer and roll 

angle response to the lateral perturbation applied for Objective 1 were recorded and 

presented as graphs.  

 
4.2.5 Method for Objective 3 

A non-linear version of the benchmark model (Meijaard et al., 2007) enabled bicycle 

energy conservation to be compared with the non-linear V2 model. This benchmark model 

was energetically conservative, which required the sum of the gravitational, kinetic and 

potential energies to remain constant regardless of system motion. In consequence, there 

was no energy dissipating forces such as friction at the steering joint or wheel hub. 

Additionally, the wheel/road contact points were modelled with no-slip (non-holonomic) 

constraints which did not dissipate energy in contrast to the forces generated by a tyre 

model. The non-linear V2 model was required to demonstrate the behaviour of the 

energetically conservative benchmark model by transferring energy to forward velocity as 

steer and roll oscillations from a lateral perturbation subsided. This necessitated the 

removal from the thesis model of all energy dissipating functions such as tyres and 

aerodynamics. The model was simulated at a constant velocity of 5 m/s and perturbed with 

10 N after 1 s. Steady state velocity before and after the perturbation was recorded to 

identify any change in velocity attributable to conservation of energy.  

 

4.3 Results 

In respect of Objective 1 (stability comparison), the model was found to be self-stable from 

a velocity of 3.8 m/s up to the limit of testing at 10 m/s (Figure 4.1). The model achieved 

low speed self-stability when the real weave mode eigenvalue changed from positive to 

negative at 3.8 m/s. However, no upper self-stability limit was apparent from the capsize 

mode eigenvalue which remained negative over the tested speed range.  
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Figure 4.1 Eigenvalues showing stability modes obtained from the linearised V2 model. 
 
The eigenvalues generated by the JBike6 simulation showed similar profiles to the V2 

model (Figure 4.2). 

 

 
Figure 4.2 Eigenvalues reported by the JBike6 emulation of the V2 model. 
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The initial self-stability velocity was 4.3 m/s for the JBike6 model and 3.9 m/s for the V2 

model giving the latter a 9.3% better initial stability. The upper self-stability velocity was 

7.4 m/s for the JBike6 model but the V2 model remained stable up to the limit of testing at 

10 m/s. Running the JBike6 model with systematic changes in steering angle and trail 

(Dressel, 2007) generated an upper self-stability (capsize mode zero crossing) at a velocity 

of 10.4 m/s with trail having the main effect (Figure 4.3). 
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Figure 4.3 Capsize mode zero crossing speed dependency on head angle and trail (based 
on a design by Dressel, 2007). 
 

In respect of Objective 2 (roll and steer response to a perturbation), at 5 m/s the bicycle 

exhibited oscillations that gradually decayed until upright equilibrium was restored (Figure 

4.4). It was noted that the rate of roll and steer oscillation decay increased approximately 

linearly with velocity. In contrast, at 3 m/s (i.e. below the self-stability threshold) the 

system exhibited increasing roll and steer oscillation leading to over-turning within eight 

seconds (Figure 4.5). The roll/steer oscillation period was 2.5 seconds at 3 m/s with slower 

velocities increasing this period and thus advancing the onset of capsize. 
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Figure 4.4 Roll and steer response to perturbation at a velocity of 5 m/s 
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Figure 4.5 Roll and steer response to perturbation at a velocity of 3 m/s. 
 

The positive roll angle and negative steer angle in Figures 4.4 and 4.5 shows that the 

steering turned in the same direction as the roll. The steering response lagged the roll by 
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about 0.25 s at 3 m/s while the steering response was almost coincident with roll at 5 m/s. 

There was a notable reduction in the peak roll/steer angle response to perturbation from 5 

degrees at 3 m/s to 0.05 degrees at 5 m/s. 

 

In respect of Objective 3, a small permanent velocity increase of 8e-6 m/s was observed 

after a 10 N perturbation was applied 1 s into a 5 m/s run (Figure 4.6). 
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Figure 4.6 Change in velocity due to conservation of energy after a perturbation. 
 

4.4 Discussion 

The first objective was to show that the V2 model generated uncontrolled stability 

responses consistent with the benchmark of Meijaard et al. (2007) as represented by 

JBike6. The model eigenvalue profiles for real weave, imaginary weave and castering 

modes (Figure 4.1) generally showed good equivalence to those generated by JBike6 

(Figure 4.2). Real weave mode became negative (indicating the transition from oscillatory 

instability to bicycle self-stability) at 4.3 m/s for the JBike6 model and 3.9 m/s for the 

thesis model. The difference of 9.3% was within the 10% variation considered acceptable 

given the variations in design (Dressel, 2007).  

 

The castering mode eigenvalue (which reflects the front wheel tendency to steer in the 

direction of travel) was similar between the two models.  As expected, the eigenvalues 

showed this tendency increased with velocity in both models. The capsize mode was the 

only eigenvalue clearly different between the two models. The JBike6 model showed 



 

95 

capsize mode becoming positive at 7.4 m/s which indicated the uncontrolled bicycle would 

slowly start to lean to one side at that speed extending into a spiral to the ground over time. 

The thesis model showed no such tendency with the bicycle remaining stable up to the 10 

m/s test limit. Examination of eigenvalue graphs for similar bicycle configurations showed 

that capsize mode was reported to become positive over a particularly wide range of 

values. The experimental study of Kooijman et al. (2008) reported a zero crossing at 7.9 

m/s and also exhibited the curvilinear capsize plot below 3 m/s seen in the thesis model. 

Dressel (2007) with benchmark-equivalent equations of motion reported a zero crossing at 

8 m/s while a separate study produced by a benchmark co-author (Schwab et al., 2007) 

reported zero crossing at ~7.896 m/s. This latter study also suggested that the positive 

capsize eigenvalue would again approach zero from above (i.e. become negative) as the 

speed increased further. In the same study, a hypothetical bicycle was modelled with zero 

trail and zero gyroscopic forces which showed the capsize mode remaining permanently 

negative. 

 

It seemed likely that the capsize mode zero crossing had a dependency on bike geometry. 

Trail appeared to be the critical parameter as demonstrated by the change in capsize speed 

due to systematic variation in steer axis and trail (Figure 4.3). Notably, at a head angle of 

80 degrees, a trail increase from 5.1 cm to 5.9 cm increased the capsize mode zero crossing 

from 9.5 m/s to 10.4 m/s. This suggested that the V2 model zero crossing would have 

occurred in the region of 11 m/s if testing had continued to that level. Future analyses 

involving other parameters such as the wheelbase could be expected to generate further 

changes to self-stability velocity (Roland, 1973). 

 

A limitation of the study was the difference between the benchmark bicycle and the thesis 

bicycle due to the design constraints in JBike6. It is possible that the validity of the 

eigenvalue similarity obtained in the current comparison was compromised by the thesis 

model approximation in JBike6. However it is suggested that the stability differences were 

too small to substantially undermine the results 

 

Considering Objective 2 (roll and steer response), the graphs plotting roll and steer 

conformed to a typical transition from instability to self-stability at a velocity in the region 

of 4 m/s (Schwab et al., 2005; Limebeer and Sharp, 2006). The steer response was in the 

same direction as the perturbation-induced roll to prevent a fall, which is largely a 

consequence of the steering geometry and especially the trail (Jackson and Dragovan, 

2000; Fajans, 2000). The steering phase lag observed at lower velocities has been noted by 
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other studies (Meijaard et al., 2007; Dressel, 2007). As the bicycle rolls, the slow steering 

response tends to generate an excess steer input which consequently generates roll in the 

reverse direction (due to centripetal force) followed by escalating oscillations until the 

bicycle over-turns. However, as velocity increases, the steering lag reduces and the 

steering input therefore increasingly matches that required to only correct the initial roll. 

The steer/roll oscillations are thus rapidly damped. Oscillation period of 1.6 seconds and 

phase lag of 0.1 seconds at 4.6 m/s were reported by Meijaard et al. (2007) which are 

consistent with the values of 2.5 seconds and 0.25 seconds at this study's lower speed of 3 

m/s (oscillation period and lag increase at lower velocities). Steer/roll oscillation period 

and steer phase lag for a given velocity can be precisely calculated from the complex 

weave mode eigenvalues and eigenvectors (Dressel, 2007) but that was beyond the scope 

of this study. 

 

Considering Objective 3 (energy conservation), an increase in steady state velocity after a 

perturbation was observed, although the effect was small as was expected for an applied 

force of only 10 N. Given the observed roll angle of 0.05 degrees at 5 m/s (Figure 4.4) and 

a 10 N force applied at chain-stay height (0.35 m), approximately 0.0031 J was added to 

total system energy of approximately 1100 J (0.000002818 % increase). This is consistent 

with the velocity increase of 0.000012 m/s on 5 m/s (0.0000024 % increase) seen in Figure 

4.6. However, it should be noted that a considerably higher additional velocity of 0.022 

m/s on 4.6 m/s was reported by Meijaard et al. (2007) using a model built with the 

SPACAR non-linear equation generator and solver. The difference in post-perturbation 

speed may have been due to the magnitude of the perturbation which was not reported by 

Meijaard et al. (2007). Never-the-less, the thesis model velocity increase demonstrated that 

the model generally conformed to the conservation of energy principle that required 

perturbation energy to be conserved in additional bicycle/rider momentum. 

 

In conclusion, the evidence presented in this chapter indicated that the stability and 

dynamics of the thesis model were functionally equivalent to a benchmark model with both 

exhibiting self stability above ~4 m/s. The main divergence between the model and the 

benchmark was in upper self-stability velocity which may have been due to geometry 

differences between the two models. It is therefore proposed that the bicycle dynamics 

component of the full thesis model can be considered valid, laying a sound foundation for 

the next stage of experimental validation. 
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CHAPTER FIVE

THE TYRE MODEL 

 

5.1 Introduction 

The handling and path-following of a bicycle are substantially influenced by the behaviour 

of two small contact patches linking the tyres to the road, making an accurate tyre model 

critical to performance prediction. If a bicycle is to turn, the two tyres must provide equal 

and opposite inwards forces opposing the centripetal force acting inwards. The centripetal 

acceleration into a turn is driven by the magnitude of the lateral tyre force provided by tyre 

slip and wheel camber. Tyre forces are a critical component in the accuracy of model 

prediction as they are not only generated by path-following but also by the continuous steer 

and roll resulting from the pedalling action. The objective of this chapter was to show that 

tyre forces were realistic and similar to other studies. To achieve this, tyre forces were 

examined in isolation from the forces that would result once the tyres were incorporated 

into the full model simulated over a time trial. Familiarity with tyre dynamics theory is 

assumed for this chapter and a summary is provided in Appendix 3. 

 

Few studies have experimentally investigated bicycle tyres and only two have been 

identified that conducted on-road investigations. Cole and Khoo (2001) constructed a 

towed rig that calculated cornering stiffness for non-standard bicycle tyres that were 0.25 

m diameter (0.35 m standard), 0.054 m width (0.02 m standard) and inflated to 35 psi (80-

100 psi standard). Never-the-less, a cornering stiffness of 3,553 N/rad (equivalent to 62 N 

per degree of slip) at zero camber and 329 N vertical load was found which was in good 

agreement with the only other identified road experimental tests conducted by Roland and 

Lynch (1972). 

 

Roland and Lynch (1972) constructed a tyre testing machine towed behind a vehicle that 

mounted a bicycle wheel to roll at various normal forces, slip angles and camber angles 

with the resulting forces and moments being measured. Eleven varied tyre types were 

evaluated with radii of 0.31-0.35 m and inflation pressures of 60-110 psi. A non-linear 

expression was derived which related normalised lateral force to a number of input 

parameters and coefficients. The trials obtained a mean cornering stiffness (less one radial 

carcass construction tyre not considered relevant to competitive cycling as they are 

virtually never used) of 3,680 N/rad at zero camber and 338 N vertical load (equivalent to 
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64 N per degree of slip). Surprisingly, no relationship was found between cornering 

stiffness and tyre inflation pressure although theory would suggest this might explain some 

of the difference between studies.  

 

A summary of the Roland and Lynch (1972) findings was contained in Roland (1973) 

reporting cornering coefficient values (cornering stiffness normalised to vertical load) 

ranging from 0.15 to 0.35.  However, the original data graphs showed the mean cornering 

coefficient to be 0.19 when the slip angle/lateral force slope was measured at the origin 

with zero camber and 338 N load (again excluding one experimental radial tyre). Sharp 

(2008) assumed cornering stiffness to be the mid-point of the range reported by Roland 

(1973) and therefore used a coefficient of 0.25 which over-estimated the parameter. Sharp 

(2008) also reported rear tyre cornering stiffness to be ~100% greater than the front 

presumably due to an assumed front/rear load split of 309/613 N (taken from the reported 

camber stiffness). This 34/66% front/rear split suggested an exceptionally upright riding 

position possibly due to the handlebars extending backwards as in a so-called 'shopping 

bike'. For competitive bicycles, a front/rear split of 45/55% is recommended 

(www.calfeedesign.com) [Accessed 4 April 2009] while the geometry used in building the 

V3 model gave a 47/53% split which equated to 338/383 N.  Additionally, the 

experimental work of Roland and Lynch (1972) demonstrated that a 100% increase in rear 

vertical load relative to the front would only generate a ~50% increase in slip lateral force, 

which finding was supported in concept by Cole and Khoo (2001).  

 

Only one study of those shown in Table 5.2 reports a rolling resistance coefficient, which 

is surprising given that rolling resistance (R/R) can generate significant resistance to 

motion particularly at the lower speeds incurred during hill climbing. A study by Kyle 

(2003) contains the most comprehensive experimental tyre testing that can be identified in 

respect of tyre type, surface and inflation pressure (the latter two factors in particular being 

key components of the R/R coefficient). The study reported a coefficient of 0.004 for a 23 

mm clincher tyre at 95 psi rolling on smooth tarmac and this value has been adopted in the 

thesis model.  

 

Other studies have reported bicycle tyre cornering and camber coefficients but without 

specifying the origin of the reported values or the methods employed to obtain them 

(Sharp, 2008; Limebeer and Sharp, 2006). A modelling study by Meijaard and Schwab 

(2006) utilised a 38/62% front/rear load split while the assigned cornering stiffness values 

of 1500/2500 were estimates based on previous experience and were acknowledged to be 
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low (personal communication). Reported values in these 'non-experimental' studies had a 

large range but this could have been a result of variations in tyre type, size, pressure or 

vertical load although in some cases values may have been approximated from motorcycle 

tyre data. Motor cycle tyres have been extensively modelled (Cossalter and Doria, 2005; 

Lot, 2004; Cossalter et al., 2003) and bicycle tyre parameters can be inferred from the 

numerous motorcycle data on the basis that both vehicles are single track (Seffen et al., 

2001; Sharp, 1985; Fajans, 2000). However, it is important to note the differences between 

the performance of bicycle and motorcycle tyres which are greater than might at first be 

supposed (Table 5.1). 

 

     Table 5.1 Differences in motorcycle and bicycle characteristics. 

 Bicycle Motorcycle 

Competitive 
Operating 
Speed (kph) 

32-64 81-322 

Bike/Rider 
Mass (kg) 85 300 

Tyre Width 
(mm) 

23  120 

Tyre Pressure 
(psi) 100-130 30-40 

Wheel Flex 
High (narrow rims, 

long spokes) Low (alloy casting) 

Propulsion 
Method 

Two opposed 
cranks/pedals offset 

laterally and 
longitudinally 

In-line drive (some 
torque steer possible) 

 

Speed difference would affect a number of functions including rolling resistance (R/R) 

which becomes increasingly speed dependant at high velocity (Cossalter et al., 2003). The 

difference in mass between the two vehicles was also likely to have unexpected effects on 

tyre performance which are considered in the discussion below.  

 

For the purpose of validating the thesis tyre model, Roland and Lynch (1972) was defined 

as the benchmark model. The aims of the chapter are twofold: 1) Calculate the forces 

generated by a bicycle tyre model, 2) Validate the tyre model by showing that its outputs 

are comparable with previous work and specifically with the benchmark model.  
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5.2 Methods 

5.2.1 General Outline 

Each wheel was constrained to roll with no-slip by two non-holonomic constraints 

controlling longitudinal and lateral motion respectively. Tyre forces and moments in all 

three axes were then calculated analytically at each time step from wheel longitudinal slip, 

lateral slip, camber angle and vertical force. To enable this calculation, the tyre parameters 

listed in Table 5.2 were obtained from the published data shown.  

 

5.2.2 Tyre Parameters 

The identification of tyre parameters is critical to model fidelity and appropriate values 

should be found from experimental testing. However, no tyre testing facilities were 

available for this study and therefore tyre parameters were estimated from experimental 

measurement of bicycle tyres as reported in the literature. These are summarised in Table 

5.2. 

 

Table 5.2 Bicycle tyre parameters (* = parameter utilised in the thesis model) 

 
Meijaard & 

Schwab 
(2006) 

Limebeer 
& Sharp 
(2006) 

Cole & 
Khoo 
(2001) 

Roland 
& Lynch 
(1972) 

Sharp (2008) 

Cornering Stiffness 
(N/rad) 

Front=1,500 
Rear=2,500 

4842 3,553 3,680* 
Front=4,430 
Rear=8,778 

Camber Stiffness 
(N/rad) 

 338  49 Front=309* 
Rear=613* 

Aligning Moment 
(Nm/rad) 

    
Front=71* 
Rear=176* 

Overturning 
Moment (Nm/rad) 

    -0.31 at 5° 
camber* 

Vertical Stiffness 
(N/m) 

 150,000  125,787- 
178,165 

 

Vertical Load (N)  338 329 338 
Front=309 
Rear=613 

Rolling Resistance 
Coefficient 

   0.0068  

Relaxation Length 
(m) 

 0.1*   
Front=0.021* 
Rear=0.028* 

Contact Patch 
Length (m) 

 0.1   Front=0.12 
Rear=0.13 

Pneumatic Trail 
(m) 

Front=0.012 
Rear=0.018 

  0.003 
Front=0.016* 
Rear=0.02* 

Crown Radius (m) 
Front=0.015 
Rear=0.02 

  0.02 0.01 

 

Cornering stiffness has been shown to be the single most important tyre parameter (Roland 

and Lynch, 1972) but variances were considerable in the values reported above which 
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necessitated further evaluation before a value was selected. It was judged that the most 

realistic value and the one with the most convincing experimental support was the 

cornering stiffness parameter presented by Roland and Lynch (1972). This was therefore 

adopted after adjustment for the front/rear load split giving respective values of 3680 rad/s 

and 3919 rad/s. Model sensitivity to this parameter was later investigated by comparing 

results obtained with these values to those presented by Meijaard and Schwab (2006). 

 

Camber stiffness has been shown to be the second most important parameter with lateral 

force due to bicycle roll being calculated as the product of camber stiffness and camber 

angle. Roland and Lynch (1972) utilised the same group of ten tyres itemised above to 

measure camber stiffness by varying camber angle from 10 to 40 degrees at 338 N load 

while maintaining a zero slip angle. They found a mean lateral force of 8.4 N at a 10 

degree camber angle which equated to a very low camber stiffness of 49 N/rad. Vehicle 

studies typically show camber force to be 7-10% of slip force (Gillespie, 1992; Blundell 

and Harty, 2004) whereas this result gave a ratio of 1.3%. Sharp (2008) noted these low 

stiffness values and their limited range, suggesting that they were in conflict with existing 

theory describing the relationship between slip and camber forces. Sharp (2008) therefore 

set the front/rear camber stiffness to a more realistic 309/613 N/rad by reference to the 

'tangent rule' equating camber stiffness to vertical load. Furthermore, motorcycle studies 

(Sharp, 2007) showed that lateral force in a single track vehicle was predominantly derived 

from camber, even in quite modest cornering manoeuvres. This was not the case for 

Roland and Lynch (1972) where slip force was still predominant even at a 40 degree 

camber angle. This thesis therefore adopted the camber stiffness methodology proposed by 

Sharp (2008) giving front/rear values of 338/383 N/rad based on the model's front/rear 

vertical load split. Such settings are also reasonably close to the 338 N/rad reported by 

Limebeer and Sharp (2006). 

 

5.2.3 Force Calculation 

Tyre slip angle and lateral tyre force were calculated respectively from: 

 
arctan y

x

y

V

V

F C Cα γ

α

α γ

 
=  

 

= ⋅ + ⋅

 (1) 

where α was slip angle, Vy was wheel lateral velocity, Vx was wheel longitudinal velocity, 

Fy was lateral force, Cα was cornering stiffness, Cγ was camber stiffness and γ was camber 

angle. The first term in the lateral force equation calculated slip force, the development of 

which was lagged by a first order lag function with a time constant equal to relaxation 
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length divided by speed. The second term calculated camber force which was not lagged in 

this derivation. Aligning moment and overturning moment were calculated respectively 

from: 

 z m m

x z c

M C C

M F

α γα γ

δ

= ⋅ + ⋅

= ⋅
 (2) 

where Mz was aligning moment, Cmα was aligning moment stiffness, Cmγ was aligning 

moment camber stiffness, Mx was overturning moment, Fz was vertical tyre force and δc 

was vertical force lateral offset due to camber. Only aligning moment was lagged and 

calculated as for slip. Rolling resistance was calculated as µ·m·g where m was bicycle/rider 

mass, g was the gravitational constant and µ was the rolling resistance coefficient obtained 

from an experimental 'coasting-down' test (Kyle, 1988). 

 

5.2.4 Assumptions 

The lateral force/slip angle relationship was assumed to be linear as slip angle was 

expected to remain below 5 degrees in the experimental time trial (Gillespie, 1992). 

Longitudinal slip was neglected as the magnitude of acceleration and braking force was 

assumed to be negligible in a time trial. A 'thin-disk' wheel/tyre was modelled and the 

effects of tyre width were accounted for in the equations of motion rather than through 

physical tyre dimensions. An 'unspun' contact patch was assumed such that the tyre contact 

patch remained fixed relative to the body that carried the wheel. Overturning moment due 

to side slip was also neglected (Blundell and Harty, 2004). Tyres were assumed to be 

axially symmetric with no plysteer or conicity effects requiring bias correction at zero slip 

angle (Roland, 1973). A nominal vertical tyre load was applied based on a static force 

balance apportioning total bicycle/rider weight between the front and rear tyres. 

Holonomic vertical constraints were applied such that the tyres were assumed to remain in 

contact with the ground. 

 

The road surface was assumed to be perfectly smooth with constant friction so the effects 

of surface changes and 'bumps' on performance were ignored. These factors were beyond 

the scope of the present study although they are important and will be modelled 

subsequently. 

 

5.2.5 Simulation 

A transient step-change steering input was selected to exercise the tyre model as it 

highlighted the temporal development of tyre forces/moments compared to more 

progressive steering control. In a competitive sport context, the chosen manoeuvre equated 
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to a cyclist changing direction to exploit a gap during the final sprint of a road race (similar 

to the initial action of the 'lane change' manoeuvre used in vehicle testing). 

 

The V3 bicycle/rider model was simulated from rest and accelerated upright and straight-

ahead to reach a steady-state speed of 11.1 m/s after ~7.5 s. A transient steering input was 

applied after ~7.9 s comprising a step-input of 4 degrees to the right generating a bicycle 

yaw rate of 40 degrees/s with subsequent steer/roll inputs returning the bicycle to upright 

equilibrium on a new track after 9 s when the simulation was terminated. Forces, moments 

and motions for front and rear tyres were recorded at the simulation time-step frequency 

(~0.1 s) enabling results to be presented as graphs and analysed. All results are presented 

as absolute values since force generation consumes energy regardless of tyre orientation 

with respect to any particular axis. 

 

5.3 Results 

Tyre output data measured by the simulation and resulting derived values are shown in 

Table 5.3. Only the period containing pronounced steering motion from ~7.9 s to 9.0 s 

contributed significantly to the results. 
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Table 5.3 Tyre outputs from a 4° steering step-input. 

 Front Tyre Rear Tyre Total Tyres Comment 

SLIP FORCE 

Peak Slip Angle 
(degrees) 

2.2 3.0   

Peak Slip Force (N) 130 187   

Peak Yaw Velocity 
(deg/s) 

112 44   

Peak Slip Power (W) 228 73   

Slip Work-Done (J) 8.4 7.7 16.1 82% of Total 

CAMBER FORCE 

Peak Camber Angle 
(degrees) 

2.9 4   

Peak Camber Force (N) 17 27   

Peak Roll Rate (deg/s) 101 95   

Peak Camber Power (W) 20 18   

Camber Work-Done (J) 1.5 2.0 3.5 18% of Total 

SLIP + CAMBER FORCE 

Peak Power (W) 230 91 276  

Work-Done (J) 9.8 9.8 19.6  

ALIGNING MOMENT 

Peak Moment (N.m) 2.4 8   

OVERTURNING MOMENT 

Peak Moment (N.m) 0.2 0.3   

Note. Peak power, force and velocity values are not directly related due to timing 
differences. 
 

5.3.1 Lateral Force due to Slip Angle 

The 4 degree initial steering input generated a front slip angle of 2.2 degrees and a peak 

lateral force of 130 N when tyre cornering stiffness was 3680 N/rad and vertical load 338 
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N (Figure 5.1). When combined with a front wheel yaw velocity that peaked at 112 deg/s, 

a peak power of 228 W was transferred from forward propulsion to lateral propulsion. 

Integrating the power profile over the simulation showed that the power transfer 

represented 8.4 J of work. 
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Figure 5.1 Front tyre slip angle and resulting lateral force. 
 

A peak lateral force of 187 N was measured at the rear tyre (higher than the front tyre due 

to the greater vertical load of 383 N) together with a rear frame yaw velocity of 44 deg/s 

giving a peak power transfer from forward to lateral propulsion of 73 W. The lower rear 

wheel power (despite greater lateral force generation) was due to both lower frame yaw 

velocity compared to front wheel yaw velocity and to peak yaw velocity occurring later in 

the cycle and thus not coinciding with peak force. Integrating rear wheel lateral power over 

the period gave work-done of 7.7 J which was closer to the front tyre value since 

integration eliminated the effect of the peak timing difference. Total forward-to-lateral 

work-done as a consequence of steering input was 16.1 J, all of which would have been 

applied to bicycle propulsion if straight-running had been maintained. 

 

5.3.2 Lateral Force due to Camber Angle 

A peak front wheel camber angle of 2.9 degrees resulted from the steering input which 

generated 17 N of lateral force (Figure 5.2). This was treated as additive to the slip induced 

lateral force as the angle-force relationships remained linear at the small angles of this 

simulation. Rear wheel camber angle of 4 degrees (Table 5.3) was greater than front wheel 

camber as it was not reduced by steering geometry effects. Additionally, a larger rear 

camber force of 27 N was found due to both the increased camber angle and the higher rear 
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wheel camber stiffness reflecting the weight bias to the rear wheel. As a proportion of total 

forward-to-lateral work-done, camber force contributed 16% compared to the slip force 

contribution of 84%. This relationship was consistent with findings for motorcycle tyres at 

low camber angles, but larger than the typical 5% camber force contribution to car tyre 

forces (Sharp, 2008). 
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Figure 5.2 Front tyre camber angle and resulting lateral force. 
 

5.3.3 Wheel Angular Velocity 

Front wheel angular velocities for the calculation of power were taken from the local wheel 

yaw and roll rates which took account of wheel orientation change due to the inclined 

steering axis (Figure 5.3). Rear wheel values were assumed to be coincident with the rear 

frame yaw and roll as the wheel orientation remains fixed within the rear frame. 
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Figure 5.3 Front wheel yaw and rear wheel roll rates (in local reference frame). 
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5.3.4 Combined Slip and Camber Force 

It should be noted that peak power values are not additive as the peak of two power 

profiles can occur at different time points in the simulation. The joint peak is at the time 

point where the combination of the two profiles gives the highest value. 

 

Peak lateral power generated by the 'lane change' manoeuvre (including both wheels and 

slip/camber force) was 276 W with total work-done over the period amounting to 19.6 J. 

Work-done was divided equally between the two wheels suggesting a neutral cornering 

balance for the bicycle. The power profile in Figure 5.4 showed a distribution similar to 

most of the measured quantities with an initial peak followed by reducing peaks as the 

bicycle lateral oscillations subsided. To investigate the effect of  cornering stiffness values 

presented by Meijaard and Schwab (2006), front cornering stiffness was reduced to 1500 

rad/s (-58%) and rear cornering stiffness to 2500 rad/s (-36%). The resulting total power 

profile is shown in Figure 5.4. Total peak power reduced from 276 W to 124 W and work-

done dropped from 19.6 J to 11.7 J (reduction percentages were distorted by timing 

differences). The percentage peak power and work-done reductions at both wheels were 

almost identical to the cornering stiffness reductions. It is apparent from this result that 

peak force generation and work-done was approximately proportional to cornering 

stiffness. This was consistent with the model assumption of a linear relationship between 

slip angle and lateral force at the low slip angles generated in the current simulation. A 

graph of the data suggests, however, that the rate of force reduction was proportionately 

less at lower force levels (the velocity component of power calculation remained largely 

constant across both simulations). 
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Figure 5.4 Total power from both wheels generated by slip and camber lateral force. 



 

108 

 

5.3.5 Tyre Moments 

The front tyre aligning and overturning moments are shown in Figure 5.5. The aligning 

moment at 2.4 N.m was likely to be of sufficient magnitude for its self-centering effect to 

be sensed by the rider through the steering. The larger rear aligning moment of 8 N.m 

reflected the greater rear lateral slip force and the greater rear pneumatic trail. This 

potentially under-steering characteristic may have only applied to the simulated manoeuvre 

because an initial counter-steer was missing (initial roll and steer were not in opposite 

directions). A peak overturning moment of 0.2 N.m is shown in Figure 5.5 which was 

unlikely to have been of sufficient magnitude to influence rider control. 
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Figure 5.5 Front tyre aligning and overturning moments. 
 

5.4 Discussion 

The first aim of this chapter was to develop a bicycle tyre model that generated forces and 

moments in response to steering input. Lateral tyre force from side-slip and camber thrust 

consequent on a partial lane change manoeuvre were generated that met this requirement. 

Force vectors offset from the contact patch centre also generated aligning, overturning and 

rolling resistance moments. The first aim was therefore achieved successfully. The second 

aim was to compare the model results with values from the single track vehicle literature 

and confirm that the model results were realistic. This comparison was largely qualitative 

as gold standard bicycle tyre studies were not available for a quantitative analysis. The 

study of Roland and Lynch (1972) was the only study where actual values could be 

compared and the match was found to be good. Other studies have incorporated tyre 

models into bicycle handling simulations but have reported eigenvalues relating to bicycle 
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self-stability rather than calculating tyre forces (Limebeer and Sharp, 2006; Sharp, 2008). 

Field studies have been limited to measuring force and motion associated with the bicycle 

frame (e.g. steering angles and torques) as tyre forces can only be calculated indirectly 

from other instrumentation. Testing tyres separately from the bicycle usually requires 

expensive machinery only available to tyre/vehicle manufacturers and some universities. 

Roland and Lynch (1972) reported a mean cornering stiffness of 60 N/degree at 3 degrees 

slip angle, 10 degrees camber angle and 330 N vertical load. Although not necessarily 

reproducing the response of a steered bicycle, the similarity of this result to the rear tyre 

force obtained in the current simulation (62N/deg at 3 degrees slip, 4 degrees camber and 

338 N load) provides support for the validity of the thesis tyre model, but with unresolved 

questions remaining on the contribution of camber to lateral force generation. Surprisingly, 

Roland and Lynch (1972) showed that camber thrust only contributed between zero and 

33% of total lateral force when a 40 degree camber angle was applied. Further research is 

clearly needed to establish whether the approximately equal lateral force generated by 40° 

of camber and 3° of side-slip in motorcycles (Cossalter et al., 2003; Cossalter and Doria, 

2005) is applicable to the bicycle. However, it should be noted that there is some 

ambiguity in this area as Sharp (2007) reports an estimated 80+% of lateral force at 50 

degrees camber angle is attributable to camber thrust in a motorcycle simulation. These 

differences may be due variations in bicycle and motorcycle tyre hysteresis. Motorcycle 

tyre compression at rest is small whereas bicycle tyre depth can reduce by up to one third 

with a seated rider (unpublished observations). Centrifugal force from the different tyre 

rotation velocities would be expected to further emphasise this difference when moving. 

Proportionately greater hysteresis would therefore be expected in the bicycle tyre with 

hysteresis being the main energy absorbing mechanism in tyres (Hewson, 2005). 

 

Indirect support for the results of this simulation comes from a study that simulated a lane 

change manoeuvre and reported the resulting bicycle displacement and steer/roll angles 

(Sharp, 2008). The study simulated an initial 14 degree change of heading completed in 

approximately two seconds at a speed of 6 m/s. This was twice the angle at half the rate of 

this study and therefore proportionately similar. The comparison is somewhat confounded 

by the inclusion of counter-steer in the Sharp (2008) simulation (although surprisingly it 

produced no initial path deviation away from the turn). The roll angle was almost identical 

between the two studies at 7.5 and 8 degrees while the Sharp (2008) peak steer angle of 

~2.5 degrees was similar to the 4 degrees found here leading to the conclusion that overall, 

the studies showed a similar response. 
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Support for the bias of slip angle/force towards the rear tyre found in this study comes 

from Sharp (2007) who reported that peak rear tyre slip angle and lateral force were 

consistently greater than the front during simulated lane change manoeuvres. Nevertheless, 

an overall neutral cornering stance was maintained in this study with equal front/rear work-

done. This was to be expected since 'rear wheel slide' cornering is impractical during road 

cycling. 

 

An interesting but tangential observation from the simulation was that, contrary to 

prevailing bicycle theory, the model executed a sharp turn without a prior counter-steer 

(Fajans, 2000; Astrom et al., 2005). This 'non-counter-steering' turn was achieved despite 

the bicycle initially leaning out of the turn as required by mechanical laws. However, 

provided the rider steered fast enough to catch the adverse roll before capsizing, the 

situation was retrieved and the turn successfully completed. 

 

The effect of the tyre forces was also examined in a race scenario. The result significantly 

affected performance but the findings were speculative and in the absence of any 

experimental confirmation, they have been presented in Appendix 4.  

 

5.4.1 Tyre Model Limitations 

The V3 model results and testing procedures described in this chapter had the following 

limitations: 

• The relatively high rate of steering input (40 degrees/second) emphasised lateral 

force due to slip at the expense of force due to camber. The relationship would 

reverse during more progressive turning at a larger roll angle.  

• A bicycle must accelerate in yaw if a turn is to be initiated. This required front tyre 

slip to develop before the rear. However, front and rear tyre slip developed 

synchronously in the current model which indicated further model development 

was required 

• A statically calculated fixed vertical tyre load was implemented in the current 

model rather than a true dynamic vertical load calculated from tyre radial stiffness, 

damping and vehicle motion. 

• The current tyre model does not include the effects of longitudinal slip associated 

with acceleration and braking or represent 'combined slip' when lateral and 

longitudinal forces interact.  

• Some functions were neglected as they were considered of minor importance for a 

bicycle used in the current operating conditions. They included tyre wall lateral 
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distortion due to side forces, contact patch longitudinal/lateral migration, delayed 

camber force lag, camber steering and turn slip.  

 

5.4.2 Conclusion 

A tyre model was developed which generated force profiles consistent with the literature 

and output values similar to those reported by a benchmark model. The tyre model 

contributed to overall model validity although further development will be required if all 

aspects of tyre performance are to be accurately modelled. 
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CHAPTER SIX

FIELD VALIDATION - CASE STUDY 

 

6.1 Introduction 

It has been proposed that maintaining constant speed is the optimum strategy to employ in 

a cycling time trial  in contrast to the more usual constant power strategy (Swain, 1997; 

Gordon, 2006; Atkinson et al., 2007a). The logic behind this strategy in relation to an 

undulating course is that more time is spent on the ascents than the descents. Lower speed 

on an ascent therefore has a disproportionate affect on total time. Attempting to maintain 

speed on the ascent minimises this loss of time but requires a variable power strategy with 

power increased on ascents and decreased on descents while maintaining the same overall 

work-done. It can be stated that constant speed over any course is always fastest and the 

nearer a rider can approach constant speed, the faster they will go. However, it must be 

noted that the amount by which a rider can vary power to maintain constant speed will be 

limited by a rider's physiological capacity. To model this performance enhancement 

strategy requires the simulation of gradient variation and, therefore, emphasises 

environment modelling. 

  

In this chapter, environment modelling is combined with the previously validated model 

components in respect of rider pedalling, bicycle dynamics and tyres to give a first 

assessment of full model validity. The validation was conducted as a case study by 

comparing the completion time for a single cyclist adopting a variable power strategy over 

the 2008 Women's National time trial course with a comparable model simulation. It was 

hypothesised that a close match would be obtained and thus support the thesis model 

validity while at the same time giving an initial indication as to the efficacy of a variable 

power strategy.  

 

6.2 Methods 

6.2.1 Introduction 

The V3 bicycle/rider model described in Chapter 2 was utilised in this case study. The 

rider characteristics and the course track/gradient were obtained as described below and 

entered into the model.  
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6.2.2 The Subject 

An experienced competitive cyclist agreed to participate in the study. The participant was 

female, aged 35, rode a full time trial bike, was in regular training and had previously 

finished in the top ten in UK national time trials. Other parameters (Table 6.1) were 

obtained as follows: mean power was estimated from previous laboratory tests and time 

trial history, peak power was estimated from time trial history, drag coefficient (CDA) was 

calculated as described in section 2.5.3, rolling resistance was as specified in section 5.2.3 

and preferred cadence was taken from time trial history. Critical speed was defined as the 

speed that would result if the rider maintained constant mean power over a completely 

straight, flat, smooth and windless course (Swain, 1997; Gordon, 2005). Critical speed 

therefore represented the fastest possible 'aerobic' time and was estimated from a model 

simulation. Default body segment mass values were proportionately adjusted to the 

subject's total mass. Segment dimensions and inertias were not modified as they were 

considered to describe the subject adequately and pilot simulations showed little sensitivity 

to those parameters. The bicycle dimensions/geometry/inertia remained at the default 

values as pilot simulations also showed little sensitivity. 

 
         Table 6.1 Rider parameters 

Description Value 

Mass (bicycle+rider) (kg) 73.5 

Mean Power (W) 250 

Mean Peak Power over 30 s (W) 325 

Drag Coefficient 0.30 

Coefficient of Rolling Resistance 0.004 

Critical Speed (m/s) 11.05 

Preferred Cadence (rpm) 95 

 

The participant did not normally employ a variable power race strategy. The model, 

therefore, calculated a personalised optimum power output profile that minimised speed 

variance over the course within the constraints of the subject's mean and peak power. The 

participant committed this profile to memory as far as possible and agreed to attempt to 

apply that variable power strategy in the forthcoming women's national time trial.  

 

6.2.3 The Course 

The field trial was conducted on the Road Time Trial Council course P883 on the A3 main 

road near Petersfield in Hampshire (UK) which was used for the 2008 UK women's 10 

mile time trial championship. The course was a relatively straight dual carriageway out-
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and-back course with a roundabout at half distance which made it typical of many UK time 

trials (Figure 6.1). Direction of travel was from south west to north east and had multi-

roundabout layouts at the start and turn. The gradient profile is shown in Figure 6.2 

comprising an average uphill gradient of 3.3%, a maximum gradient of 10% and a total of 

80 m climbed. 

  

Only the outward leg of 8,000 m was modelled thus avoiding the roundabout sections 

which V3 of the thesis model was unable to represent accurately. The course coordinates 

were plotted every 10 m (northings and eastings) utilising digital mapping software 

(Memory-Map Ltd, Aldermaston, UK). The distance and direction between each 

coordinate was obtained from trigonometric calculation and the resulting data transposed 

to the model's global coordinate system. At each time step, the model compared bicycle 

distance travelled and yaw angle with the map data and made the necessary steering 

correction to maintain the bicycle on the desired track. The root mean squared error 

(RMSE) between the desired and actual track was computed to quantify the tracking error. 

 

 
Figure 6.1 The time trial course (run from south to north). 
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Figure 6.2 Course gradient profile 
 
6.2.4 Enviromental Wind 

The aerodynamic resistance was modified by both the speed and direction of the 

environmental wind. A constant wind from the west-north-west at 2 m/s was specified 

from Meteorological Office data for the trial day (www.metoffice.gov.uk) [Accessed 1 

June 2010]. The course track was predominantly towards the north-east resulting in a wind 

direction that was predominantly at 90° to the track. However, wind angle to the bicycle 

varied continuously with the heading and, consequently, so did the aerodynamic resistance 

as described in section 2.5.3.  

 
6.2.5 Gear Selector 

The V3 model included a gear selection sub-system that automatically maintained cadence 

within a range set at 80-100 rpm. The system selected combinations from a 53/39 

chainring and 12-27 cassette that minimised cadence change in response to speed 

variations resulting from resistive force changes. The system freewheeled when speed was 

too high for the available gears (i.e. down steep hills) and the associated power/torque went 

to zero (but not negative which would have represented braking). Each gear change 

incurred a performance penalty of 25% reduction in power for 0.25 seconds. No research 

could be identified to guide these parameter values and they were therefore set by running 

model simulations over a range of values until the time delay and power loss subjectively 

approximated to the cycling experience of the author when changing gear.  

 
6.2.6 Model Simulation 

The simulation accelerated the bicycle/rider from rest over a 'neutralised' zone to bring it 

up to near critical speed before measurement started. Subsequently at each time point, 

actual speed was compared with critical speed and power output increased/decreased 

within physiological limits to eliminate the error. At the same time, an algorithm having 

forward knowledge of road gradient, adjusted the power output such that mean power 

output over the course equalled the desired mean power.  In model version V3, propulsive 

power was applied at the crank spindle and transmitted to the rear wheel hub as variable 

torque. At each time step, torque delivered to the rear wheel was modified by gear changes 
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to keep the crank cadence within range while meeting the power output demand. The 

rider's legs were 'inversely' driven by the crank motion which was therefore unrealistic in 

this version of the model. The steering maintained the bicycle/rider on the desired track, 

while steer and roll angles were inversely linked to ensure the bicycle remained upright as 

described in Chapter 2. 

 
6.2.8 Field Data Collection 

The subject's bicycle was fitted with an SRM power meter (Schoberer Rad Messtechnik 

GmbH, Julich, DE) which recorded power, speed, time and cadence at 1 s intervals over 

the race duration. The power meter was calibrated in accordance with the manufacturer's 

instructions prior to the start of the race. Owing to roundabouts at the start, the SRM data 

was only processed after approximately 200 m when a near steady-state speed was 

reached. Similarly, data capture ceased before appreciable deceleration occurred prior to 

the turn roundabout. 

 
6.2.9 Data Processing 

Time, distance, power, speed and cadence were recorded from the simulation and the field 

trial and loaded into Excel. Additionally, path tracking root mean squared error (RMSE), 

gradient profile, gear change history and work-done were obtained from the model.  

 
6.3 Results  

Experimental and simulation results are shown in Table 6.2. The model predicted the 

participant would take 736 s to complete the course while the actual time was 8 s slower at 

744 s (-1.1%). The power, speed and work-done values differed by less than 1.2% between 

the two conditions suggesting that environmental and rider parameters were correctly 

chosen.  

Table 6.2 Experimental and model results 

  Actual Model 
Model 

Error 

Error 

Percentage 

Time (s) 744 736 -8  -1.1% 

Mean Power (W) 250 251 +1  +0.4% 

Mean Speed (m/s) 10.81 10.94 +0.13  +1.2% 

Work done (J) 186,000 184,736 -1264  -0.7% 

Peak 30 s Power (W) 327 337 +10  +3.1% 

Mean Cadence (rpm) 98 91 -7  -7.1% 
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The simulation power output profile matched to gradient is shown in Figure 6.3. It was 

notable that power usually peaked before the summit of a hill reflecting the model response 

to a reducing gradient at that time with the reverse pattern on a descent. The periodic drops 

in power reflected the cost of gear changes as implemented by the gear selection module 

although in the interests of clarity, most gear changes are not shown. The simulated mean 

power of 251 W, peak power of 337 W and cadence of 92 rpm showed variances of 0.4%, 

3.1% and 7.1% respectively from the measured values. 
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Figure 6.3 Modelled optimum power against distance for the time trial (height profile is 
also shown). 
 

The simulation speed resulting from the optimum power output exhibited a visually similar 

profile to the actual speed achieved by the subject although not all the minor variations 

were followed (Figure 6.4). Deviations were to be expected given that the subject had 

committed the power profile to memory. Nevertheless, the mean speed from the simulation 

of 10.94 m/s and the actual speed of 10.81 m/s were separated by 1.2%  .  
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Figure 6.4 Modelled optimum speed and actual speed against distance for the time trial. 
 
Simulated work-done varied by 0.7% from the measured value indicating that overall, the 

subject had followed the target power output profile. The mean model tracking error of 2 

cm was excellent, but perhaps misleading, as the bicycle followed the path to <0.5 cm 

when the road was straight (the predominant condition) but deviated to a peak RMSE of 52 

cm on the bends. The model showed little sensitivity to gear changes which incurred a total 

time cost of 3 s. The 2 m/s environmental wind from the north-north-west increased 

completion time by 3.2 s. This was consistent with the effect that would be expected from 

a predominantly side wind. 

 

6.4 Discussion 

The aims of this chapter were to model environmental parameters and incorporate them 

into a unified thesis model for validation against experimental data. This was achieved 

with the simulation predicting a time 1.1% lower than the actual time which was well 

within the 2.8% target set in this thesis for an effective model. Model prediction of work-

done, mean power, peak power and mean speed reported values within 3% of the 

experimental case study indicating an overall pattern of model validity. 

 

The only previous study that predicted field performance from a first principles model was 

Olds (1995) who reported a 3.8% error over a 26 km course. The higher error could have 

been due to the static nature of the model which did not include iterative modelling of 

gradient during the simulation. Variations in gradient are a critical factor in time trial 

performance (Martin et al., 1998). 
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This simulation incorporated actual course track/gradient profiles and realistic wind 

conditions, demonstrating the ability of the thesis model to replicate a real-world time trial 

course where environmental conditions change constantly. This compares with the fixed or 

semi-fixed environmental parameters used to model approximate courses in all the time 

trial simulations examined by this thesis. A limitation of the thesis model was the fixed 

value for both environmental wind strength and direction which did not replicate the 

performance effect of constant changes in both parameters that occur in the real world 

(Atkinson et al., 2003). However, the variation in apparent wind was modelled as the 

course changed direction relative to the environmental wind. Accurate modelling of wind 

data will require a bicycle fitted with a portable anemometer to capture wind strength and 

direction in real time. This approach is investigated in Chapter 9. 

 

It should be noted that the model predictions were not obtained by extensive parameter 

manipulation which can be used to obtain post hoc matches with experimental data 

(Yeadon and King, 2002; Mills et al., 2009). All parameter values were set a priori except 

the environmental wind conditions which were subsequently obtained from the 

Meteorological Office. 

 
It was interesting to note that the variable power profile calculated by the model coincided 

with the subject achieving a place in the top ten, beating her previous best result in several 

attempts at the same competition. The subject was only partially able to follow the power 

output profile, but it was possible that the strategy made at least some contribution to her 

success. This evidence suggested that a more extensive evaluation of variable power 

strategies in a time trial was warranted. 

 

The measured results listed in Figure 6.2 were all obtained from the SRM power meter 

which recorded power, speed, cadence, distance and time. The accuracy of the power 

meter was therefore important in determining the accuracy of the results. The reliability of 

the power value is specified by the manufacturer as ±2% but the reliability of speed and 

cadence measurement is not specified. Paton and Hopkins (2006) evaluated the reliability 

of the SRM using data recorded by eleven racing cyclists who each completed three 5 min 

maximum effort trials on an ergometer. The error attributable to the SRM was found to be 

1.1% which was an improvement on the manufacturer's specification. Gardner et al. (2004) 

used a certified calibration rig to evaluate the accuracy of 15 SRM's over 11 months and 

found an error level of -0.8±1.7%. Cadence error was found to be -0.9±0.7% at 100 rpm. 

Mean percent difference in power output between standard laboratory and cool outdoor 
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conditions was found to be 5.2% demonstrating that device calibration must be conducted 

under trial conditions. In summary, the SRM error level can be expected to be in the range 

1-2%. 

 
The ±2% reliability of the power meter might be expected to cancel out over an 8 km 

course but in a worst case scenario might result in a 1% mean power value error. This 

would equate to a ~0.4% speed error (see section 1.2.4.1) which would change the 

measured time over the course to 744±3 s. The model experimental error would therefore 

be 1.1±0.4% which would not be a substantial change to the result of the trial. 

  
 The model error levels for time, mean power, mean speed and work-done were all within 

the error range of the SRM suggesting that the model adequately represented the 

experimental conditions. However, the model peak power was 3.1% higher than the 

experimental peak power which was likely to have been the main contributor to the faster 

time recorded by the model. A 7.1% lower mean cadence was also recorded by the model 

but this would be expected to generate a physiological rather than performance effect 

(Lucia et al., 2001).  

 
A potential study limitation was the validity of the gear change system included in the 

model version V3 used in this simulation. It was surprising that some 90 gear changes only 

cost 3 s of time over the trial. This may have been due to the assumption of a 25% power 

reduction over 0.25 s for each change. With gradients of up to 9 %, the time cost of gear 

changing should perhaps have been modelled dynamically as they would be expected to 

increase during low cadence climbing when high chainring/chain contact forces would be 

present. However, no data on this issue could be identified to guide dynamic parameter 

adjustment. It may be that cadence and the associated gear system has little effect on 

performance in a purely mechanical context. The specification of 80-100 rpm may also 

have been simplistic as studies have shown that mean cadence varies with power and 

gradient (Marsh and Martin, 1997). Professional cyclists typically drop their preferred 

cadence from 90-100 rpm on the flat to 70-75 rpm in high mountains (Lucia et al., 2001). 

 
A limitation of the investigation in respect of validating a generalised model was the 

relatively straight course. A more circuitous course (>45 degree bends) would be required 

if the bicycle dynamics, balance, steering, tyre forces and path tracking were to be 

comprehensively tested. 

 
In conclusion, the close match between the model's predicted time and the participant's 

actual time gave confidence that the thesis model was valid when simulating the 
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combination of rider, bicycle and environment in a field time trial. However, this case 

study was not validation and therefore a similar field trial had to be conducted, but under 

controlled conditions and with a representative sample of cyclists. The mean difference 

between predicted and actual time should be within the criterion set for model 

effectiveness. 
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CHAPTER SEVEN

FIELD VALIDATION – CONTROLLED TRIALS 

 

7.1 Introduction 

This chapter completes the model validation process by comparing model prediction 

against the results of a controlled field trial using a sample of competitive cyclists. 

Predicted and actual results were evaluated with a statistical analysis. Ecological validity 

was maintained by conducting the validation over an actual field time trial course. 

 

Over one hundred bicycle/cycling models of various types have been considered in this 

thesis, but only the model of Olds et al. (2005) explicitly predicts performance over a real 

road time trial course. The model of Martin et al. (1998) has the functionality to progress 

into a generalised road time trial model, but has primarily been used to make theoretical 

predictions on the performance effects of gradient and wind. Other models predict field 

performance by regression from physiological variables or laboratory tests and could 

potentially be developed into generalised road time trial models, but this has not yet been 

done. The model of Olds et al. (2005) predicted completion time of 46:38 min over a flat 

'out-and-back' 6.5 km time trial course completed four times. Forty-one cyclists of various 

experience levels completed the trial in a mean time of 44:17 min, which represented a 

model prediction error of 3.87%. This error level is the only finding in the literature against 

which the prediction of the current model can be directly compared. 

 

The aim of this chapter was to validate the full thesis model by comparing predicted and 

actual times for cyclists riding over a field time trial course.  

 

7.2 Methods 

7.2.1 Model Development 

Model version V4 was developed for this investigation. The main enhancement was 

propulsion generation from pedal forces transmitted to the rear wheel hub rather than direct 

torque application to the hub. Horizontal and vertical pedal force profiles were obtained 

from previous investigations in this laboratory as described in section 2.4.4. An important 

consequence of this change was that the bicycle rolled and steered over a 360° crank cycle 

due to the pedal force offset to the bicycle centre line. This development also resulted in 

bicycle velocity pulsation over a crank cycle. A penalty was the necessity to remove the 
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analytic gear system as rear wheel propulsion was now driven physically by a transmission 

shaft from the crank spindle as described in section 2.3.5. 

 

7.2.2 Experimental Design 

Fourteen experienced male time trial cyclists were recruited to be representative of good 

club/national level competitors [(mean ± SD), age 36 ± 7 yrs, mass 76 ± 8 kg, competitive 

experience 8 ± 5 yrs]. Their current time for a 10 mile time was between 21 and 25 

minutes. Participants were fully informed of the procedures and risks involved in the study 

before giving written informed consent. The study was approved by the University Ethics 

Committee. 

 

Trials were conducted on the first 4 km of the Cycling Time Trials course G10/42 near 

Dorking (UK) which is a predominantly straight, undulating dual-carriageway course 

(Figures 7.1). The course track (latitude/longitude) from TQ16677 46828 to TQ17817 

43047 was obtained from a mapping CD containing Ordinance Survey digital data 

(Memory Map Europe, Aldermaston, UK) and entered into the model.  

 

 
  Figure 7.1 Time trial course (run from north to south). 
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The course height profile (Figure 7.2) was also obtained from the CD supplemented by 

GPS and Google Earth data and entered into the model as a gradient profile. The mean 

gradient was 3% with a peak of 9%, there were no appreciable flat parts and the start and 

finish were at the same height. 

 

 
Figure 7.2 Gradient profile of trial course. 
  

Participants rode their own bicycle after each was fitted with a PowerTap SL power meter 

(Saris Cycling Group, Madison, WI) or an SRM power meter (Schoberer Rad Messtechnik 

GmbH, Julich, DE). Both systems utilised a handlebar mounted screen that showed 

propulsive power and was calibrated before each trial in accordance with the 

manufacturer's instructions. The PowerTap gives a 1.2% lower power reading compared to 

the 'gold standard' SRM with power coefficients of variation (CV) of 1.8% and 1.5% 

respectively (Bertucci, Duc, Villerius, Pernin & Grappe (2005). Paton & Hopkins (2006) 

reported similar power CV's of 1.5% for the PowerTap and 1.6% for the SRM.  

 

Each participant was tested separately on a single day starting with a warm-

up/familiarisation. Testing was only conducted in good weather conditions (dry, wind ≤3 

m/s).  

 

7.2.3 Data Collection 

One trial over the course was completed by each participant at their self-selected best 10 

mile time trial pace. A rolling start was implemented for all runs. Time, power, speed and 

distance data were recorded on the power meter at ≈1 s intervals and downloaded to Excel. 

Wind strength and direction was measured with an anemometer (WindWorks, 

www.bythebeachsoftware.com) [Accessed 17 Aug 2011] at a representative location on the 

course at the start and end of each day's trial. The wind direction was specified as zero 

when coming from due south becoming negative with clockwise veer. 
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7.2.4 Model Simulation 

A separate simulation was run for each individual after the model was parameterised with 

their mass, CDA and the wind conditions in their trial (Figure 7.3). Default values were 

used for the bicycle and body segments as pilot testing showed little model sensitivity to 

variations in either set of values (sections 2.3 and 2.4). Height and weight data were 

provided by the participant and used to calculate body surface area (BSA) and frontal area 

(Heil et al., 2001). Individual CDA was calculated from frontal area, riding position and 

bicycle type as specified in section 2.5.3. The participant's recorded power profile was used 

as input to drive the simulation and the predicted time over the course was obtained as the 

output.  

 

7.2.5 Statistical Analysis 

Data sets were checked for normality with a Shapiro-Wilks test and for equal/unequal 

residual variance with an F-Test. Data were analysed with a paired t-test to identify any 

significant difference between predicted and actual completion time and with linear 

regression to identify any relationship between predicted and actual completion time. All 

data were analysed with SPSS (SPSS Inc, Chicago, IL) with significance set at p≤0.05. 

 

7.3 Results 

The required assumptions for the statistical analysis were confirmed with data sets 

normally distributed (p>0.248) and an F-Test showing unequal variances between data sets 

(F>1.194, p>0.288). The results are shown in Table 7.1.  

 
Table 7.1 Results of field trial (see section 2.5.3 for explanation of bicycle type). 

 
 
Mean predicted and actual times for the 14 participants were 371 (±35) s and 366 (±32) s 

respectively. The predicted time was 5 (±6) s greater than the actual time which was a 

significant difference (t = -3.104, p = 0.008). The 95% confidence interval difference was 
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1.5 s to 8.4 s. The mean model prediction error was 1.4%. Actual and predicted times were 

closely related (R2 = 0.973) with an SEE of 5.5 s (Figure 7.3). 

 

 
Figure 7.3 Relationship between predicted and actual completion time for the time trial. 
 

7.4 Discussion 

The aim of this chapter was to validate the full thesis model by comparing the predicted 

and actual times for a sample of 14 competitive cyclists in a controlled field time trial. The 

predicted time was 5 s greater than the actual time which represented a 1.4% model error 

level. This compared well with the error level of 3.87% reported for the model of Olds et 

al. (1995). The model prediction error was also less than the 2.8% error specified as the 

upper limit for an effective model in this thesis. A regression analysis of predicted and 

actual times also showed a strong relationship with an R2 value of 0.973 and a low data 

scatter represented by an SEE of 5.5 s. The bias towards a higher predicted than actual time 

may have reflected unmeasured assistance from wind and traffic within a trial. 

 

It was not clear if the statistically significant difference (p=0.008) between the predicted 

and actual time had any real-world implications. The mean actual and percentage size of 

the error (5 s and 1.4% respectively) were similar to the variance that would be considered 

typical by competitive cyclists (see section 1.2.3).  It is suggested therefore that the 

significant difference in times does not undermine the model's value as a predictive tool. 
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Comparison with Martin et al. (1998) must be indirect as their measured dependant 

variable was power rather than completion time. However, it can be calculated from the 

presented data (for the 11 m/s trials which were equivalent to this study) that the average 

model predicted time over the equivalent distance was 3.3 s faster than the actual time of 

365 s giving a 0.9% error. This compares well with a 366 s completion time and 1.4% error 

in the present study. However, it must be noted that this agreement was likely to be 

coincidental as the course of Martin et al. (1998) was flat (0.3% gradient) and completely 

straight. Martin et al. (1998) also found that model predicted time was less than actual time 

which was the reverse of this study. In part, this may reflect the absence of a traffic 

'towing' effect on their closed airfield course. 

 

Olds et al. (1995) compared model predicted and actual times for 41 cyclists over a 26 km 

flat (<0.5% gradient) course. The mean model predicted time was 0.74 min greater than the 

actual time of 42.8 min giving an error level of 1.73%, similar to the 1.4% found in this 

study. However, Olds et al. (1995) reported a large error SD of ±2.07 min and range of 

+5.56 to -3.15 min which they attributed to less accurate modelling of the sixteen non-

competitive cyclists included in their study. 

 

Model version V4 used in this experiment had the limitation that cadence was uncontrolled 

due to the removal of the gear system utilised in V3. This was a consequence of design 

limitations in SimMechanics precipitated by the change to propulsion from pedal forces. 

Physiological factors were not considered in this thesis, but it can be noted that cadence 

remained within physiologically acceptable limits of 73-121 rpm. There was no theoretical 

reason or experimental evidence to indicate that cadence would have any mechanical effect 

on bicycle translation. Model simulations also showed no effect of cadence on bicycle 

speed.  

 

In conclusion, this chapter successfully completed the sequence of investigations to 

establish the validity of the thesis model. Validity was found in previous chapters for 

pedalling, bicycle dynamics, tyres and a case study with this chapter combining those 

components into a single unified model and confirming that model's validity. The weight 

of evidence accumulated in all these investigations suggests that the thesis model was an 

adequate representation of road time trials and could be safely used to identify 

performance enhancements for competitive cyclists. The next phase of the thesis 

development was therefore to use the model to identify performance enhancement 

strategies and to then experimentally confirm the efficacy of such strategies.  
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CHAPTER EIGHT

PERFORMANCE ENHANCEMENT - GRADIENT 

 

8.1 Introduction 

This chapter used the validated model to confirm the results of a previous investigation and 

then modelled a performance enhancement strategy over a real road course and confirmed 

the model predictions with experimental trials. 

 
Changes in human and environmental variables are known to influence cycling speed 

(Atkinson et al., 2003). In races where the environmental conditions are variable, it has 

been calculated that a pacing strategy that attempts to maintain a constant speed, rather 

than a constant effort or power output strategy should prove fastest (Atkinson and 

Brunskill, 2000; Atkinson et al., 2007a; Atkinson et al., 2007b; Swain, 1997). The time 

advantage of a variable power output strategy has been proposed to be proportional to the 

magnitude and rate of changes in environmental resistive forces (Atkinson et al., 2003). 

Gordon (2005) proposed that change in gradient was the single most important factor 

influencing the performance benefit of a variable power output strategy. 

 
Considering the effect of gradient, a constant speed pacing strategy is implemented by 

varying power output in response to changes in the course gradient (Gordon, 2005; Swain, 

1997). On an undulating time-trial course, more time is spent on the ascents and therefore 

the power and speed during this phase has a greater impact on the final time than the power 

and speed on the descents (see section 6.1). Whilst physiological and technical constraints 

may prevent a constant speed being maintained on the ascents, an advantage can still be 

gained if the variance from a constant speed is minimised (Atkinson et al., 2007b). 

 
Swain (1997) was one of the first investigators to draw attention to the mechanical 

performance advantage that could be obtained by varying power output (expressed as VO2) 

in response to variances in wind and gradient. Over a theoretical 10 km course with 10 

symmetrical climbs and descents of 5–15 % gradient, Swain (1997) calculated time 

savings of 4–8 % were possible. Subsequently, Atkinson et al. (2007a) re-calculated the 

results of Swain (1997) using a more complete model of cycling power output demands 

(Martin et al., 1998). These researchers calculated that a variable power output strategy 

could reduce race time by 5-9%. Gordon (2005) modelled a 40 km course with 20 

symmetrical climb/descents of 2.5 % and obtained a time saving of 1.6 % compared to an 

equivalent constant power output strategy. The lesser time saving of Gordon (2005) 
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reflects the reduced gradient profile and emphasises the importance of a large gradient 

variance if the advantage of a variable power output strategy is to be realised. 

 
The modelled predictions of previous studies that a performance advantage would result 

from adopting a variable power output strategy over an undulating course have never been 

experimentally validated in the field. The omission may have been due the inability of 

previous models to replicate the gradient variations of a real time trial course and thus 

precluded calculation of the continuously varying power output required to drive a field 

experiment. An opportunity therefore existed for the thesis model to demonstrate both its 

ability to model the environment and to dynamically solve equations of motion at a 

frequency that reflected a continuously changing environment.  

 
The objectives of this chapter were threefold: 

(1) Simulate the thesis model over the course modelled by Atkinson et al. (2007a) and 

establish equivalence between the two models. 

(2) Use the thesis model to predict the time advantage of a variable power output strategy 

over a real undulating road time trial course. 

(3) Experimentally test the thesis model prediction over the same course.  It was 

hypothesised that a variable power output strategy would reduce speed variation and result 

in a time saving compared to a constant power output strategy. 

 

8.2 Methods 

Model version V4 was used throughout this chapter. It should be noted that over an 

undulating course, constant speed is synonymous with variable power while constant 

power is synonymous with variable speed. The terms 'constant' and 'variable' refer to the 

speed of the bicycle or the power of the rider and not the pedalling style. There was no 

requirement in the trials described below for the rider to maintain or vary the angular 

velocity of the cranks within a pedal cycle. 

 
8.2.1 Method for Objective 1 - Model Equivalence 

The parameters specified by Atkinson et al. (2007a) in their variable-v-constant power 

simulation 'Course 1' were entered into the thesis model. A 10 km straight course was 

composed of alternating 1 km segments of ±5% gradient. A mean power of 289 W was 

varied by 10% giving a power output range of 260–318 W. Bicycle/rider mass was 80 kg 

and CDA was 0.258 with no environmental wind. 
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8.2.2 Method for Objective 2 - Model Performance Prediction 

Thesis model simulations compared the time taken to cover a 4 km undulating time-trial 

course utilising either a constant or a variable power output strategy. The course described 

in Chapter 7 was used for the simulation. CDA was estimated for each participant from 

their height, weight, bicycle type and riding position as specified in section 2.5.3. Default 

parameters for the bicycle and rider were utilised (Appendix 2) except for the following 

which were calculated from mean values for the participants: bike/rider mass=793 N, 

CDA=0.29. The constant power output simulation was run at 255 W. The variable power 

output profile was derived as follows: The model initially calculated a 'critical' speed for 

the default bicycle/rider on a completely flat, straight, smooth, windless course at 255 W. 

The course track and gradients were then introduced resulting in changes in speed. Power 

output was recalculated to minimise the speed changes relative to critical speed but 

constrained to a peak power output of 325 W (+27%) for a maximum of 30 s (this value 

was based on the time trial histories of the participants).  Power output during the descents 

was adjusted to both maintain constant speed and achieve the overall mean of 255 W. 

Power was always ≥0 as negative values would represent braking which was not modelled 

in this version. Changes in aerodynamic resistance with speed were included in the 

calculations. Environmental wind and rolling resistance were modelled as constant. The 

resulting power profile together with the related course height profile is shown in Figure 

8.1. 

 

Figure 8.1 Optimum power profile against distance (height profile is also shown). 
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8.2.3 Method for Objective 3 - Experimental Confirmation 

 

8.2.3.1 Participants 

21 competitive male time trial cyclists gave informed consent to take part in this study 

[(mean ± SD), age 34 ± 8 yrs, mass 72 ± 6 kg, competitive experience 8 ± 4 yrs]. Selected 

participants were representative of club level competitors with a current time of 21–25 min 

for a 10 mile time-trial (2010 UK national championship times ranged from 18:37 to 23:27 

min). Participants were briefed on the aims and organisation of the trials (Appendix 5). The 

study was approved by the University Ethics Committee and performed in accordance with 

the university ethical standards. 

 
8.2.3.2 Time-Trial Course 

Trials were conducted on the same time trial course described in Chapter 7. The gradient of 

the selected course was considered representative of the ‘sporting’ time trial that was 

necessary if a mechanical advantage from power variance was to be identified. Limiting 

the distance to 4 km minimised physiological fatigue which could also have confounded 

identification of a mechanical advantage which was the objective of this experiment. 

 
8.2.3.3 Variable Power Profile 

The variable power output profile described above was applied to control a participant's 

power output. The mean power level of 255 W was based on pilot work which suggested 

that all participants would be able to complete all trials at that intensity. The modelled peak 

power for four elite participants was increased to 400 W in order to obtain data on the 

effect of that parameter on performance. The model calculated variable power output 

profile was downloaded as sound files to a small personal digital assistant combined with a 

global positioning system (PDA/GPS, Mio P560, Mio Technology Ltd, Gatwick, UK). The 

PDA was secured to the participant’s arm and the required power output was conveyed via 

an earpiece at ~80 m intervals as they progressed down the course. During pilot testing, 

intervals of any greater period were found to be impractical for participant implementation.  

 
8.2.3.4 Equipment 

Participants rode their own bicycles, the characteristics of which, along with clothing, 

accessories and tyre pressures, were not specified, but were required to remain constant for 

each participant. The performance of 16 participants was measured utilising a power 

measuring rear hub (PowerTap SL, Saris Cycling Group, Madison, WI). The performance 

of the remaining 5 participants was measured from a power measuring crank system 

(Schoberer Rad Messtechnik GmbH, Julich, DE). Both systems were calibrated before 

each trial in accordance with the manufacturer’s instructions. 
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8.2.3.5 Experimental Trials 

All the experimental field trials were conducted over a 5 h period which started with a 

warm-up and equipment familiarisation. Participants completed 4 separate trials, two using 

a constant power output and two using the variable power output strategy. Rolling starts 

were implemented so that participants crossed the starting line at the target power output. 

Testing was conducted in dry weather with winds ≤3 m/s. The wind strength and direction 

was measured with an anemometer (WindWorks, USA, www.bythebeachsoftware.com). If 

the wind speed changed by more than 1 m/s or by 20 degrees in direction, a trial was 

rejected and repeated after a delay. This occurred on 4 occasions. 

 
Trials 1 and 2 (‘constant power output’) required a constant power of 255 W to be 

maintained over the course. Trial 3 and 4 (‘variable power output’) required participants to 

vary power output as directed through their earpiece with the objective of minimising 

speed variation over the course while maintaining a 255 W average. Participants were 

instructed to maintain the same riding position within and between trials to minimise 

variance due to aerodynamics. The results for one participant were excluded as a constant 

aerodynamic position was not maintained within trials. 

 
8.2.3.6 Data Collection 

Time, power, speed and distance data for each trial were recorded using the power meter at 

≈1 s intervals. The root mean squared error (RMSE) between targeted and actual values for 

both power and speed were calculated for each trial. Where mean power output differed 

from the 255 W target power, completion time was normalised to the estimated speed that 

would have resulted if the target power had been maintained. The data for this 

normalisation was derived by running multiple simulations of the model over the complete 

course using a range of power values and obtaining an exponential power-to-speed 

relationship. The relationship was essentially linear within the range of experimentally 

observed power variances. 

 
8.2.3.7 Statistical Analysis 

Data sets were checked for normality with a Shapiro-Wilkes test and for equal/unequal 

residual variance with an F-Test. Data were analysed with an SPSS linear mixed model 

(Version 15.1, SPSS Inc, Chicago, IL) to identify any significant difference between 

completion time at constant and variable power (Landau and Everitt, 2004). Trial order 

was not randomised since any learning or fatigue effects would be apparent in power 

output profile deviation from the commanded profile. A pilot study had shown that the 

selected sequence generated a learning effect which acted to improve accuracy in 
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following the commanded power profile. Due to changes in wind conditions, 2 participants 

failed to complete one trial each and the trials could not be repeated due to time 

constraints. 

 

8.3 Results 

8.3.1 Objective 1 - Model Equivalence 

Atkinson et al. (2007a) reported a constant power time of 1122 s and a variable power time 

of 1066 s for their 'Course 1'. The 56 s saved represented a 5% time reduction. The thesis 

model simulation over the same course found a lower constant power output time of 1047 s 

with a variable power output saving of 42 s which represented a 4% time reduction. 

 
8.3.2 Objective 2 - Model Performance Prediction 

The thesis model predicted a constant power time of 415 s and a variable power time of 

398 s. This time reduction of 17 s (4%) for a variable power strategy over an undulating 

time trial course was consistent with the idealised course simulated above and the findings 

of Swain (1997) and Atkinson et al. (2007a). 

 

8.3.3 Objective 3 - Experimental Confirmation 

The required assumptions for a mixed model were confirmed with data normally 

distributed (P>0.248) and F-Tests showing unequal variances between all data sets except 

the first and second variable power trial (F>1.194, P>0.288). A Toeplitz covariance matrix 

best reflected the variance and correlation between data sets as indicated by the lowest −2 

Log Likelihood value. Results for both strategies are presented in Table 8.1. 

 
Table 8.1 Results for constant power and variable power strategies over the time trial 

 Constant Power Variable Power 

 Mean ±SD Range Mean ±SD Range 

Actual Time (s) 412 31.9 360-480 397 30.1 352-465 

Normalised Time* (s) 411 31.1 359-475 399** 29.5 354-467 

Mean Power (W) 253 13.0 204-266 260 14.5 204-272 

Power RMSE (W) 39 10.4 22-69 64 10.5 46-93 

Speed RMSE (m/s) 3 0.2 2-3 2 0.3 1-2 

• normalised to 255 W power. **  significantly different from Constant Power 
(p<0.001) 
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The achieved mean power for the constant strategy was 253 W and 260 W for the variable 

strategy. The mean time normalised to 255 W for the constant power output trials was 

411±31.1 s and 399±29.5 s for the variable power output trials. The difference of 12±8 s 

was significant (P <0.001) and represented a 2.9±1.9% advantage for the variable power 

strategy. The 95 % confidence interval (CI) time for the variable power output trial was 

391–413 s versus 401–428 s for the constant power output trial. An example of the 

constant and variable power output strategies is shown in Figure 8.2. The underlying 

concept of the constant -v- variable power strategy is apparent from Figure 8.2. As the 

cyclist negotiates the steepest gradient changes, the speed variance increases more for the 

constant power strategy than for the variable power strategy. 

 

 
Figure 8.2 Speed resulting from the constant and variable power strategies (related to 
gradient profile). 
 

RMSE for the constant power strategy was 39 ± 10 W. This 15% variance exceeded the 

≤5% variance that was considered to adequately represent a constant power strategy. The 

increased variance indicated that participants had difficulty following the constant power 

output strategy. As expected, the variable power output strategy RMSE was higher at 

64±11 W indicating that participants implemented the increase in power phasing required 

by this strategy. Speed RMSE exhibited the reverse pattern with the constant strategy at 

3±0.2 m/s and the variable strategy at 2±0.3 m/s. This confirmed that the variable power 

output strategy more closely approximated to a constant speed as required by mechanical 

pacing theory. No difference in time saved with the variable power output strategy was 

found for the four elite participants with a 400 W peak power constraint. 
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8.4 Discussion 

This chapter investigated the advantage of a variable power output strategy compared to a 

constant power output strategy over an undulating time trial course. Atkinson et al. (2007a) 

had modelled the comparison over an idealised course and running the thesis model over 

the same course produced similar results. However, the thesis model time was 7% lower 

than the time of Atkinson et al. (2007a) and the time saving of 4% was less than the 5% 

time saving found by Atkinson et al. (2007a). There are a number of possible reasons for 

these divergences. The two models were very different in structure but the completely 

straight course might be expected to nullify most of the difference due to steering. The tyre 

forces generated by the pedalling action in the thesis model should have reduced speed 

compared to Atkinson et al. (2007a), but speed was in fact higher. One clear difference in 

the thesis model was its progressive change in bicycle speed as gradient changed whilst 

speed change was instantaneous in the Atkinson et al. (2007a) model. However, the time 

effect of this difference might be expected to balance out over a simulation. It is interesting 

to note that a comparable study by Swain (1997) obtained a 4% time advantage (the same 

as the thesis model) which Atkinson et al. (2007a) attributed to differences in CDA. This 

would have been unlikely to affect completion time in the present comparison as CDA in 

the thesis model was set at the value used by the Atkinson et al. (2007a). Nevertheless, 

aerodynamics were likely to have been the main source of variance because they were the 

predominant resistive forces. 

 

The advantage of a variable power strategy was modelled over a real time trial course and 

the simulation found a 4% time saving which was in general agreement with the results 

from previous simulations over idealised courses. The model simulation was broadly 

confirmed by the experimental results which found that a variable power output strategy 

saved 12 s (2.9%) over a 4 km undulating time-trial course. This saving was worthwhile as 

it would equate to 40-50 s over a full 10 mile time trial. Such a saving would have 

promoted the 10th placed rider to 3rd in the 2008 UK National 10 time trial championship 

(http://www.cyclingtimetrials.org.uk/Competition/NationalChampionships/MensResults/1

0m/tabid/379/Default.aspx) [Accessed 10 March 2010]. The lesser experimental time 

saving of 2.9% compared to the simulated 4% saving can be partly explained by the 

inability of participants to perfectly follow either the constant or variable power strategies 

but particularly the former. This was highlighted in the constant power output strategy 

where the RMSE should have been 0 W but was actually 39 W (Table 8.1). This error 

acted to reduce the time saving. The practical difficulty of following a defined power 

output profile is at least partly a consequence of instantaneous changes in gradient 
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requiring rapid changes in power output. The result was a tendency for the rider to oscillate 

around the target power output. 

 

Additionally, the observed time gain might have been influenced by the accuracy with 

which a participant adhered to the variable power output strategy. However, no 

relationship between speed variance (RMSE) and time over the course was found (Figure 

8.3). This finding suggests that if a systematic learning effect caused the variable power 

trials to be more accurately followed (variable trials were always run after constant trials) 

then this made no contribution to the increased time saving observed for the variable trials. 

It can be noted that a paired samples t-test did find a significant difference (p <0.001, 

t=8.1) between the 2.6 (±0.24) m/s mean speed RMSE at constant power and 2.2 (±0.31) 

m/s mean speed RMSE at variable power. 
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Figure 8.3 Effect of speed RMSE on completion time. Change % is measured between the 
mean value for constant power and the mean value for variable power. 
 

Comparison with the theoretical predictions of previous studies was difficult as there was 

no exactly comparable power output variance which was a key factor in determining the 

effectiveness of a variable power strategy. For example, variable power output levels have 

been fixed at ±5 % of 224 W (Atkinson et al., 2007b) and ±20 % of 435 W (Gordon, 2005) 

while mean power output variance in the present study approximated to ±27 % of 255 W. 

The average climbing/descending gradient is also a key parameter affecting the time saved. 

Fixed gradients have been specified in previous studies with Atkinson et al. (2007a) 

applying ±5 % and Gordon (2005) ±2.5 %. In contrast, the mean gradient change in the 
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present study was ±3 %, but varied continuously and peaked at 9 %. It should be noted that 

in time-trials on the road, constant gradient is extremely unlikely, even over short distances 

(Atkinson et al., 2003). Despite the above limitations, comparisons with previous studies 

show comparable time savings. Atkinson et al. (2007b) calculated a 2.3 % time saving 

while Gordon (2005) calculated a 1.6 % time saving compared to the 2.9% saving in the 

present study. Interestingly, this highlights that the larger the gradient variance, the greater 

the potential time saving. This was consistent with theory as (all other things being equal) 

constant power would cause larger speed loss on steep climbs and thus a larger contrast 

with variable power. This would be similar to the effect of mean power variance when 

gradient was held constant. A low power level would cause constant power speed 

variations to be large and result in a large contrast with variable power. Increasing the 

extent of power variation should always be beneficial on 'balanced' courses whatever the 

gradient or mean power level until the variation reaches the point where constant speed can 

be maintained. In summary, there is a 'trade-off' between mean power level and gradient. 

High power cyclists on small climbs will gain little benefit from a variable power strategy 

in contrast to a constant power strategy while low power cyclists on steep climbs will gain 

the most. Ability to vary power is beneficial at almost all times. Note that all of the above 

refer to relative gains and not absolute performance. 

 

Apparently refuting the above, the higher peak power (400 W versus 325 W) set for four 

riders did not result in an increase in the time saved when using a variable power strategy. 

The model predicted an increase in time reduction of ~4 s but the random variances 

introduced by wind and traffic may have acted to obscure such a small saving measured 

across only four riders (see Chapter 10 for further detail on sensitivity to peak power 

level). 

 

This study sought to test the concept of mechanical pacing by eliminating physiological 

factors. Results were not affected by a participant's physiological state at trial completion 

provided the commanded power profile had been achieved. The only consideration in 

setting the mean and peak power levels was that they could be accurately followed by all 

participants. Physiological pacing is, of course, important in road time-trials and studies 

have found reduced performance when power change is greater than ±5 % at near 

threshold intensity for approximately one hour (Chaffin et al., 2008; Lander et al., 2009; 

Liedl et al., 1999; Palmer et al., 1997). The 27 % power increase employed in the present 

study could therefore confound the mechanical pacing findings if an athlete was unable to 

maintain that level of variation over the whole course while also maintaining the necessary 
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mean power. Investigation of physiological pacing clearly necessitates different 

instrumentation and protocols which if deployed simultaneously with mechanical pacing 

analysis would be likely to confuse cause and effect. The reductionist approach adopted in 

the present study prevented the confounding influence of physiological factors over 

mechanical in the attribution of any time saving. 

 

An implied assumption of this study was that a common mean power between conditions 

represented equal metabolic energy expenditure. However, this was an approximation as 

anaerobic resources expended when applying a variable power strategy would be 

replenished at a slower rate than depletion (Tanaka et al., 1993; Green et al., 1996). 

Anaerobic stress responses also increases exponentially above threshold and reduce at a 

more linear rate (Lucia et al., 1999). No adjustments were made for these factors as 

published anaerobic recovery data could not be modelled with the accuracy and reliability 

of the mechanical data utilised in the present model (Bogdanis et al., 1995; Arsac et al., 

2004; Ferguson et al., 2010). 

 

It could be argued that work-done should be the same in the constant and variable power 

output trials as implemented by others (Atkinson et al., 2007b). In the present study, power 

output and distance were held constant while work-done was allowed to vary in order to 

calculate elapsed time. The alternative protocol of keeping work-done constant would 

result in the variable power output strategy covering a different distance, but time-trials are 

not generally decided in this manner. 

 

Potential limitations of the study were the validity and reliability of the power meters 

employed. The PowerTap has been shown to give a 1.2 % lower power reading compared 

to the ‘gold standard’ SRM. This would not have affected the within-subject comparisons 

that were the objective of this investigation as all participants used the same power meter 

between trials. Considering reliability, power coefficients of variation (CV) of 1.8 % and 

1.5 % have been reported for the Power Tap and SRM respectively (Bertucci et al., 2005). 

Paton & Hopkins (2006) reported similar power CVs of 1.5 % for the PowerTap and 1.6 % 

for the SRM but more importantly for this study, identified the component of the CVs due 

to mechanical error as 0.9 % and 1.1 % respectively (equivalent to a ~ 0.4 % speed error). 

Speed error is the quantity of interest when evaluating the within-subject measurement 

error of the power meter which is applicable to this study. The effect of power meter 

measurement error on the observed time difference of 2.9% would therefore have been 

small. Additionally, any systematic error in the power meter would not have been relevant 
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as the time difference between the variable and constant power trials were measured 

within-subject. 

 

The modelled course length was 4043 m, but distances of up to 4053 m were recorded by 

the power meter attached to the bicycle. This variance included some level of random 

measurement error but was considered to be primarily due to excess steering input by some 

participants. A steering effect occurs when demanded power is at the upper end of an 

individual's capability requiring increased pedal down-force which incurs bicycle roll, 

upper body counter-roll and resultant steering. The tyre diameter entered into the power 

meter was not a factor as the same equipment and settings were used for all within-subject 

repeated trials. As variable distance was most often observed during variable power trials, 

a variable power simulation was run over a distance of 4053 m and the time compared with 

the variable power time predicted for the 4043 m course. The gradient and direction of the 

additional length were extrapolated from the existing course. The variable power output 

time for the 4043 m course was 352 s while the time for the 4053 m course was 353 s. This 

increase of 1 s (0.5%) was close to the expected value given the mean speed of ~11 m/s for 

all participants. The variation in mean power and work-done arising from variation in 

distance travelled would therefore have had a small effect on the findings of this 

investigation.   

 

Environmental wind changes and aerodynamic effects from passing vehicles were not 

measured within a trial. However, it is unlikely that these factors contributed substantially 

to the identified time difference considering that measured wind speed varied by ≤1 m/s at 

the start of successive trials for a participant. Although not measured, traffic volume did 

not change noticeably over the duration of any trials. Nevertheless, an important objective 

for a future study is to quantify the aerodynamic effects of changes in wind and traffic 

during a trial. 

 

In conclusion, the thesis model was used to identify a potential performance enhancement 

and the predicted advantage was experimentally supported by field trials. The validated 

thesis model demonstrated that it could perform the function for which it was designed to 

the specified accuracy level. Competitive cyclists can use the findings of this chapter to 

enhance their performance by adopting a variable power output strategy over an undulating 

time-trial course. However, competitors will need to explore their physiological capacity to 

vary power output if they are to realise the full potential of the strategy. 
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CHAPTER NINE

PERFORMANCE ENHANCEMENT - WIND 

 

9.1 Introduction 

Cycling models have predicted a reduction in time to complete a road time trial when 

power application was varied in response to head and tail winds (Swain, 1997; Atkinson 

and Brunskill, 2000; Gordon 2005; Atkinson et al., 2007a). However, these predictions 

have never been confirmed in the field. The objective of a variable power strategy is to 

maintain constant speed as was discussed in the gradient investigation presented in Chapter 

8. Power must be increased as resistance increases, whether that is due to a hill or a head 

wind. Conversely, power is reduced as resistance reduces due to either a descent or a tail 

wind. A variable power strategy should minimise completion time provided power is 

appropriately increased into the head wind and reduced with the tail wind. 

 

Previous investigations in this thesis have suggested that accuracy of wind measurement 

may have been a factor in the prediction error for field time trials. In particular, static 

measurement of wind speed and direction at one time and place on the course would not 

reflect the constant change in both quantities that was likely to occur over the duration of a 

time trial. A method was therefore required to dynamically measure wind at a participant's 

instantaneous position as they progressed over the course. No previous studies have been 

identified that examined this problem. 

 

A further possible error factor identified in previous chapters was the drafting effect of 

passing traffic. A field experiment by Kyle (1994) found that speed increased in a time trial 

by 0.5-5.0 kph when vehicles passed with 1-2 m side clearance. Speed was increased on 

average by 1 kph for cars, 2 kph for vans and ≥3 kph for trucks. An interesting finding was 

that the drafting effect reduced to zero as the wind changed to a 90° side wind. No other 

studies investigating traffic effects have been identified. 

 

The aims of this study were to: 

• Model an 'out-and-back' time trial course with a head wind on the outward leg and 

a tail wind on the return leg. Use the model to compare completion times for a 

constant power strategy over the course with a variable power strategy which 

would be implemented as a constant speed strategy. 
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• Investigate completion times for competitive cyclists experimentally using the 

same course and strategies. It was hypothesised that the constant speed strategy 

would be fastest and that the experimental time gain would be similar to the 

modelled time gain. 

• Investigate the effect of accurate wind measurement and drafting from passing 

traffic on completion times. 

 

9.2 Methods 

9.2.1 Simulation 

Model version V5 (propulsion from rider leg joint torques) was used in this chapter. An 

'out-and back' time trial course was modelled as described below. CDA was estimated for 

each rider from weight, height, bicycle type (road bike) and riding position (on 'hoods') as 

specified in section 2.5.3. Default rider and bicycle values were utilised (Appendix 2) 

except for the following values which were set at the mean of the participants (Appendix 

6): bike/rider mass=802 N, wind direction=0.7 rad backing from due south, wind 

speed=4.4 m/s, CDA=0.33. The rider was simulated over the course from north to south 

and return with the 'turn' roundabout period ignored. One simulation was run at constant 

power of 200 W and a second simulation at the constant speed measured in the first 

simulation. Completion times for the two simulations were recorded and compared. 

 

9.2.2 Experiment Participants 

Six competitive male time trial cyclists gave informed consent to take part in this study 

[(mean ± SD), age 53 ± 7 yrs, mass 73 ± 5 kg, competitive experience 12 ± 8 yrs]. 

Participants were representative of club level competitors with a current best time of 23–25 

min for a 10 mile time-trial. The study was approved by the university Ethics Committee 

and performed in accordance with the university ethical standards. 

 

9.2.3 Equipment 

Participants rode their own bicycles which were required to be road bikes with 

conventional handlebars and not specialised time trial bikes. They were required to ride on 

the 'hoods' for all trials. To record performance in the trials, the bicycle rear wheel was 

replaced by a wheel containing a power measuring rear hub (PowerTap SL, Saris Cycling 

Group, Madison, WI). The system was calibrated before each trial in accordance with the 

manufacturer’s instructions. Clothing and accessories were not restricted but were required 

to remain constant between trials. 
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9.2.4 Time Trial Course 

This study utilised the second half of the G10/42 course (Figure 9.1) which was presented 

in Chapter 7. The G10/42 is a predominantly straight dual-carriageway course with the 

latter part being relatively flat (mean 1.3% gradient) and unobstructed by trees or 

buildings, making it suitable for tests that investigated the effect of wind rather than 

gradient (Figure 9.2). It is also a busy main road dual carriageway enabling investigation of 

the drafting effect of passing vehicles. The course track (latitude/longitude) from TQ17662 

42718 to TQ17162 39888 and return was obtained from a mapping CD containing 

Ordinance Survey digital data (Memory Map Europe, Aldermaston, UK). 

 

 
Figure 9.1 Course path (from north to south and return) 

 

 
Figure 9.2 Course profile (run from left to right and return) 
 



 

143 

9.2.5 Experimental Trials 

The test protocol required participants to complete two trials in one half-day session. 

Participants completed the out-and-back course from a rolling start at a target power/speed 

(set by the experimenter), turned halfway at a roundabout and returned to the start on the 

other side of the dual carriageway. Fluorescent road side markers were place at the start 

and finish and at the entrance and exit to the roundabout. The bicycle-fitted power meter 

was started and stopped by the participant as they passed each successive marker so that 

the roundabout period was not recorded. Trials were only run when wind strength was ≥4 

m/s and wind direction was within a 45 degree arc either side of the mean road direction. 

The mean road direction from the map was judged to be 'south south-west' or the reverse 

('north north-east') so the allowable wind arc was centred on either of those directions. In 

the experimental trials, wind direction was from the north for two participants and from the 

south for four participants. Trial 1 required a constant power of 200 W to be maintained 

over the course. This intensity was specified as it could be achieved by all the participants. 

On completion of Trial 1, power meter data was downloaded to a laptop computer and the 

mean speed calculated. A recovery period between trials was at the discretion of the 

participant, subject to a minimum of 15 minutes. Trial 2 was a repeat of Trial 1, but the 

participant was required to maintain the mean speed from Trial 1. Trial 2 was therefore a 

variable power trial, but at a mean power that would be close to that of Trial 1.  

 

9.2.6 Wind Variation 

In the previous field study (Chapter 8), wind speed and direction were measured once 

during a trial at a representative point on the course. However, accurate wind values would 

be expected to vary continuously as the cyclist proceeded down the course. To evaluate the 

extent of the error, an anemometer (Figure 9.3) (WindWorks, USA, 

www.bythebeachsoftware.com) was mounted on the bicycle, which recorded and 

smoothed apparent wind speed and direction at an unknown period and saved the result 

every 3 s. The anemometer was fixed above the level of the rider's head on a custom-built 

mounting that did not interfere with bicycle operation over the straight course. The 

anemometer was zeroed and time synchronised at the start of each trial. The average wind 

strength and direction over one minute were also recorded statically at a representative 

location before each trial. 
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       Figure 9.3 Anemometer and wind direction vane 
 

9.2.7 Traffic Effect 

A drafting effect from passing traffic was suggested as a possible source of prediction error 

in previous trials (Chapter 8). To evaluate this proposition, a small video camera (Figure 

9.4) (SportCam KL-92, Thatcham, UK) was mounted on the helmet of each participant to 

record the size and lateral separation of passing vehicles. The video recording included an 

on-screen clock which was synchronised with the power meter before each trial. 

 

 
       Figure 9.4 Helmet camera 
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9.2.8 Data Collection and Analysis 

Time, power, speed and distance data for each trial were recorded using the power meter at 

≈1 s intervals. If mean power output in Trial 2 differed from Trial 1, completion time in 

Trial 2 was normalised to the power output level of Trial 1. The relationship between speed 

and power was obtained by running multiple simulations over the complete course using a 

representative subject. 

 

 Environmental wind strength and direction were calculated at 3 s intervals from the 

dynamically collected apparent wind data using vector algebra. At each time point, bicycle 

distance travelled and speed were taken from power meter data and bicycle direction from 

the course map. Calculated values were averaged over the trial duration and compared to 

the statically measured values. Dynamic and static values were averaged over all 

participants to give a single measure of wind speed and wind direction error. 

 

Analysis of the video recording sought to identify any correlation between passing traffic 

and bicycle speed recorded by the power meter. 

 

9.2.9 Statistical Analysis 

Data sets were checked for normality with a Shapiro-Wilkes test and analysed with a pair-

matched t-test (Version 15.1, SPSS Inc, Chicago, IL) to identify any significant difference 

between completion time at constant and variable power. Trial order was not randomised 

since the mean speed from the constant power trial was required as an input to the variable 

power trial. Static and dynamic wind values were compared with t-tests for repeated 

measures to identify significant differences. 

 

9.3 Results 

The model predicted completion time for the mean of all riders at constant power of 200 W 

was 834 s which reduced to 823 s at constant speed. The model therefore predicted that a 

constant speed strategy was 1.3% faster than a constant power strategy. 

 

Experimental results are listed in Table 9.1 with a more detailed breakdown in Appendix 6. 

Data were normally distributed (p=0.876). The individual times for the variable and 

constant power strategies are shown in Figure 9.5. The constant power trial was completed 

in 813±64.5 s at a mean power of 204 W while the constant speed trial was completed in 

793±50.9 s at a mean power of 209 W. The constant speed completion time increased to 

797±52.4 s when power was normalised to 204 W. The actual difference in time between 
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the trials of 20±16.6 s (2.5%) was significant (p<0.001), but after normalisation, the time 

difference was 16±15.5 s (2.0%) which was non-significant (p=0.056). The 95% 

confidence interval difference was -1 s to 32 s. Statistical power was 0.7 for the normalised 

result. Mean peak power in Trial 2 was 367 W and mean within-subject power standard 

deviation was 75.5 W. 

 

Table 9.1 Results of constant power and constant speed strategies. 

Constant Power Trial 
(target of 200 W) 

Constant Speed Trial 
(speed from Constant Power) 

 

Power 
(W) 

Speed 
(m/s) 

Time (s) 
Power 
(W) 

Speed 
(m/s) 

Time (s) 

Actual 204±1.8 8.73±0.7 813±64.5 209±2.7 8.95±0.6 793±50.9 

Normalised - - - 204±2.1 8.90±0.6 797±52.4 

Modelled 200 8.51 834 200 8.62 823 
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Figure 9.5 Individual completion times for constant and variable power strategies. 
 

Wind data is shown in Table 9.2. The statically measured wind speed was 4.7±1.4 m/s and 

the dynamically measured wind speed was 4.8±2.1 m/s. The difference of 3% was not 

significant (p=0.809). The static wind direction was 0.7±1.6 radians and the dynamic wind 

direction was 0.6±1.9 radians (zero radians = due south and <0 indicated veer). The 

difference (18% veer) was not significant (p=0.672). 
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Table 9.2 Differences between wind data measured at a static position on the T/T course 
and measured dynamically by an anemometer on the bicycle. 

Static Wind 
Measurement 

Dynamic Wind 
Measurement 

Subject 
Speed 
(m/s) 

Direction 
(rad) 

Speed 
(m/s) 

Direction 
(rad) 

Dynamic 
Speed 

Difference 
(%) 

Dynamic 
Direction 
Difference 

(%) 

1 3.1 2.5 2.9 2.0 -6% -20% 

2 5.6 3.0 6.5 3.6 16% 20% 

3 3.2 0.1 2.0 -0.7 -38% -800% 

4 4.1 -0.5 6.2 0.2 51% -140% 

5 6.7 -0.8 7.1 -1.4 6% 75% 

6 5.4 -0.3 4.2 -0.4 -22% 33% 

Mean 4.7 0.7 4.8 0.6 3% -18% 

SD 1.4 1.6 2.1 1.9     

 

No correlation could be identified between passing traffic recorded on video and bicycle 

speed. 

 

9.4 Discussion 

The main aim of this chapter was to evaluate the performance effect of adopting a constant 

or variable power strategy in a time trial with head and tail winds. The model predicted a 

1.3% time advantage of a variable power strategy, but this was not confirmed by the 

experimental trials which found no significant difference between the two strategies. The 

investigation into the influence of wind variation and traffic drafting on completion time 

did not reach any firm conclusions. However, it can be noted that all except one participant 

recorded a faster time using the variable power strategy and the 2% time advantage 

measured experimentally for that strategy was close to achieving significance. The model 

predicted time advantage of 1.2% for the variable power strategy was considerably lower 

than the 4% advantage predicted for a variable power strategy in response to ±3.3% 

gradient variation in Chapter 8. This finding was similar to the predictions of other cycling 

models. Gordon (2005) predicted a time saving of 0.3% over a course with ± 4.5 m/s wind, 

which contrasted with a 3.2% saving over a course with gradient of ±6.25%. This was 

explained by the non-linear relationship between speed and aerodynamic resistance, 

resulting in a lesser performance effect than the generally linear relationship between speed 

and gradient. Atkinson et al. (2007a) predicted similar results with a variable power 

strategy giving a 7% advantage over a ±5% gradient course and a 1.1% advantage for a 

course with ±2.2 m/s wind variation. Swain (1997) found a small 0.8% saving for a ±8 m/s 
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wind, but the power variation allowed in the variable power strategy in that study was 

restricted to 10%. 

 

The negative findings of this study could be related to a number of limitations. The number 

of participants was low and it was possible that an increased number would have resulted 

in a statistically significant finding. However, the requirement for wind conditions that 

combined the required direction and speed together with dry weather limited the number of 

completed trials. The time difference may also have been reduced due to the difficulty 

some participants experienced in maintaining a constant speed. Constant speed required 

high and varying power levels for extended periods in some wind conditions. Wind gusts 

caused almost instantaneous speed changes making it more difficult for a rider to maintain 

constant speed than was the case for the gradient variation studied in Chapter 8. It is 

important to remember that any variation from constant speed increases completion time 

and reduces the advantage relative to constant power. 

 

 The comparison of static and dynamic wind values showed no statistical difference which 

suggested that the accuracy of wind data was not a factor in model prediction error. 

However, this finding was subject to a number of limitations. The wind gauge was not 

designed for scientific accuracy under field conditions and, therefore, the measurement 

noise in the trials might have obscured real changes. A pedalled bicycle experiences 

continual direction changes independently of path-following. The accuracy of the 

directional data obtained from the map and the anemometer may therefore have been low, 

possibly further reduced by the smoothing applied by the wind meter. Unfortunately, no 

'gold standard' could be identified which might have supported the quality of the collected 

data. A GPS approach to measuring position and direction may be more effective in future 

research. It can also be argued that mean values for wind speed and direction over multiple 

cyclists and trials have limited relevance to model predictive accuracy. Further research 

will be required to address this issue.  

 

The failure to identify a traffic drafting effect was almost certainly due to the sensitivity of 

the power meter. The power meter averaged speed over several wheel revolutions which 

when combined with the speed fluctuations inherent in pedalling, obscured small 

variations. Additionally, most trials in this study were conducted at the weekend when 

commercial traffic with the greatest drafting effect was scarce. The traffic drafting effect 

for a single vehicle was expected to be small and, therefore, difficult to measure but 

anecdotal evidence suggested that the cumulative effect could be substantial. Any 
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reduction in drafting effect due to side winds was likely to have been small as trial 

conditions required predominant head and tail winds. A more sensitive measurement 

method will be required for further research. 

 

The trials attempted to eliminate the effect of any physiological factors in the results by 

setting a relatively low power output target and limiting the course length. It seems likely 

that this was successful given that actual mean power levels were generally above target 

and had to be normalised downwards. The peak power level required to maintain constant 

speed in Trial 2 was within the capacity of the participants. However, it can be noted that 

the variations in wind required constant and substantial power adjustments as shown by the 

high within-subject power standard deviation. This supports the finding from Chapter 8 

that implementing an effective variable power strategy requires considerable physiological 

capacity. 

 

In conclusion, this section investigated the proposition that performance would be 

enhanced if power was varied to most nearly maintain constant speed over an out-and-back 

time trial course with alternating head and tail winds. The thesis model predicted a 1.3% 

time advantage when power was varied to maintain constant speed. This was not 

confirmed by experimental trials, but the 2% time advantage obtained with the variable 

power strategy did approach significance. A study with more subjects might be expected to 

achieve significance. The present research was constrained by participant availability 

coinciding with suitable wind conditions. Wind is a considerably less controllable variable 

than gradient which made it difficult to experimentally confirm the model prediction. No 

significant differences were found between static and dynamic wind measurements, 

although the research method had limitations. Traffic drafting as a factor in model 

prediction error will require a new research design if the effect is to be quantified. 
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CHAPTER TEN

SENSITIVITY ANALYSIS 

 

10.1 Introduction 

A variety of methods have been applied to evaluating the sensitivity of a model's output to 

variations in its input parameters (Cheng and Holland, 1998; Benke et al., 2008; Jang and 

Han, 1997). Some studies, such as Law and Kelton (1991), have taken a statistical 

approach to parameter variation using a Monte Carlo simulation, but such methods were 

considered to be excessive for a parameter set predominantly known from experimental 

work. Other studies have applied numerical optimisation of an objective function (Perl, 

2004) which, although related to parameter variation, required development of complex 

techniques that would be excessive for the purpose of this thesis. A method appropriate to 

the present study would be a relatively simple analysis of a computational model response 

to variation in input parameters' (Scovil and Ronsky, 2006; Xiao and Higginson, 2010). 

 

The aim of this study was to evaluate the effect on model results of variation in parameter 

values. Parameters were only investigated if there was evidence from published studies or 

anecdotally from competitive cyclists that variation would have an important effect. The 

findings will indicate whether the level of uncertainty resulting from the pooled uncertainty 

of the evaluated parameters gives confidence in overall model validity. 

 

10.2 Methods 

The method adopted in this chapter was to analyse the response of a computational model 

to variation in input parameters' (Scovil and Ronsky, 2006; Xiao and Higginson, 2010). 

 

10.2.1 Key Parameters 

The thesis model contained 817 initial condition parameters requiring selection of a subset 

that were likely to substantially influence simulation results. Of necessity, parameters were 

selected by judgment based on relevant literature, model experience and practical cycling 

experience. Two 'first principles' models were identified which both simulated field 

cycling and conducted a sensitivity analysis (Olds et al., 2005; Martin et al., 1998). The 

studies reported model sensitivity to environmental wind speed, ensemble mass, CDA and 

rolling resistance, which experience supported as key parameters. These parameters were 

examined in the present analysis together with tyre effects and power variation which were 
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also thought likely to be important. The range of parameter variation was based on the 

variation that was likely to occur for a given parameter and was also influenced by the 

extent of variation necessary to generate an output effect. The measured output for each 

analysis was completion time. 

 

10.2.2 Mass and Inertia Tensor 

The effect of variation in leg segment mass and inertia tensor values was examined as they 

were thought to influence performance in pedalling (Hull and Gonzalez, 1988; Gonzalez 

and Hull, 1989). Model version V1 (ergometer equivalent model) was used to conduct the 

sensitivity analysis in order to maintain comparison with the reference studies and 

eliminate any effects of bicycle motion. Baseline outputs for mean power, torque and 

cadence were measured at the crank spindle using the default segment mass values. Three 

V1 simulations of 4 s duration with baseline initial condition power (255 W) were then 

completed with all leg segment masses reduced successively by 50%, 75% and ~100% 

(zero mass is not permitted in SimMechanics).  Mean power, torque and cadence were 

measured for each simulation and presented as graphs. A further simulation was completed 

with default mass values but inertia tensor values reduced to zero. 

 

10.2.3 Peak Power Variation 

The evaluation of a variable versus constant power strategy in Chapter 8 imposed a peak 

power output of 325 W on participants. This raised the possibility that the time saving 

found for the variable power strategy might have been greater if a higher peak power had 

been adopted. The issue had already been partly investigated in Chapter 8 when the peak 

power limit for four participants was increased to 400 W. This should have helped to 

maintain speed on climbs and thus maintain a more constant speed, which would have 

enhanced performance compared to the constant power output strategy. However, although 

the gradient was sufficient for a reduced speed variance, no performance advantage was 

found. This unexpected result indicated that further research was needed if any time 

advantage from a high peak power was to be identified. Consequently, multiple 

simulations were run to plot the variable power output strategy completion time when peak 

power was systematically increased from 250 W to 1000 W. 

 

10.2.4 Tyre Model 

Tyre models have not previously been included in field cycling models and it was therefore 

important to investigate model sensitivity to a tyre model. Trial simulations indicated that 

the tyre model might generate a greater performance effect than expected, given its 
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omission from previous research. An initial investigation re-ran the simulation for 

participant number three in Chapter 7 (a representative participant), but with the tyre model 

removed. The difference in completion time with and without tyre forces was compared. It 

was hypothesised that any time difference would be related to tyre hysteresis generated by 

the continuous roll and steer resulting from pedalling at high power output. Some 

hysteresis should appear as lateral force generation so two new simulations were conducted 

to isolate the lateral force contribution due to pedalling. A straight, flat course of 4043 m at 

a constant power of 255 W was simulated. In the first simulation, the bicycle was propelled 

with pedal forces resulting in roll and steer as in model version V4. The same course was 

then simulated with rider pedalling disabled and the bicycle propelled by rear wheel torque 

as in model version V3. Total front and rear lateral tyre forces and moments were recorded 

together with completion time. 

  

10.3 Results 

10.3.1 Main Parameters 

The effects of parameter variation for CDA, wind speed, wind direction and ensemble 

mass are shown in Table 10.1. The table also shows the range of values that are considered 

reasonable for each parameter, derived by relating model "trial and error" simulations to 

practical experience. Selected ranges are also consistent with similar field studies (Martin 

et al., 1998; Olds et al., 1995). The data is presented as a graph in Figure 10.1 in a form 

that indicates the relative importance of each parameter. Starting from 12 o'clock, the plots 

become more important as they advance towards 3 o'clock. The most important parameter 

was CDA which generated a ~6% change in completion time when the parameter was 

varied by 20% (well within the range achievable by a cyclist (Bassett et al., 1999)). 

Conversely, rolling resistance was the least important parameter with a 2% change in 

completion time resulting from a 50% change in parameter value. The effect of parameter 

variation was often symmetrical about the system default value resulting in nearly linear 

variable plots. 
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Table 10.1 Effect of variation in key parameter on completion time. 

Parameter 
Parameter 

Value 

Parameter 

Variation 

Parameter 

% Change 
Time (s) 

Time 

Variance 

(s) 

Time % 

Change 

0.24 -0.06 -20% 332.7 -21.6 -6.1% 

0.27 -0.03 -10% 343.9 -10.4 -2.9% 

0.30 0.00 0% 354.3 0.0 0.0% 

0.33 0.03 10% 364.2 9.9 2.8% 

CDA 

0.36 0.06 20% 373.5 19.2 5.4% 

0 -4 -100% 336.5 -72.8 -17.8% 

2 -2 -50% 369.8 -39.5 -9.7% 

4 0 0% 409.3 0.0 0.0% 

6 2 50% 456.0 46.7 11.4% 

Wind 
Speed 
(m/s) 

8 4 100% 511.1 101.8 24.9% 

-75.0 -45 -150% 370.3 -52.8 -12.5% 

-52.5 -23 -75% 399.1 -24.0 -5.7% 

-30.0 0 0% 423.1 0.0 0.0% 

-7.5 23 75% 436.5 13.4 3.2% 

Wind 
Angle       
(° from 
south) 

15.0 45 150% 436.0 12.9 3.0% 

777 -86 -10% 351.5 -2.5 -0.7% 

820 -43 -5% 352.7 -1.3 -0.4% 

863 0 0% 354.0 0.0 0.0% 

906 43 5% 355.4 1.4 0.4% 

Mass (N) 

949 86 10% 356.8 2.8 0.8% 
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Figure 10.1 Effect of key parameter variation on completion time. 
 
10.3.2 Mass and Inertia Tensor 

The effect of leg mass reduction is shown in Figure 10.2. All mean output values reduced 

substantially after 50% mass reduction. The effect of inertia tensor reduction was 

negligible with mean power, torque and cadence reducing respectively by 0.04%, 0.07% 

and 0.1%. 
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Figure 10.2 Mean power, torque and cadence reductions in response to leg mass changes. 
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10.3.3 Peak Power Variation 

The effect of variation in peak power on completion time is shown in Figure 10.3. The 

result showed a small benefit of ~4 s per 80 W up to 500 W after which no further time 

saving was obtainable. 
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Figure 10.3 Effect of peak power level on completion time. 
 

10.3.4 Tyre Model 

Completion time for the Chapter 7 simulation with a tyre model was 354 s and 340 s 

without a tyre model, a reduction of 14 s (4%). The comparative simulation (with and 

without pedalling) resulted in times of 236 s and 227 s respectively, a time difference of 9 s 

(3.8%). Lateral force impulse was 651 N·s for the front tyre and 624 N·s for the rear tyre 

(Table 10.2). Pedalling also generated yaw and roll moment. 

 

Table 10.2 Forces and moments generated by pedalling. 

Condition Tyre Time (s) 

Lateral 

Force 

Impulse 
(N·s) 

Yaw 

Moment 

Impulse 

(N.m/s) 

Roll 

Moment 

Impulse 

(N.m/s) 

No Pedalling Front 227 0.93 0.2 0.1 

 Rear - 6.75 0.1 0.1 

Pedalling Front 236 651.3 26.4 3.5 

 Rear - 623.9 36.0 2.6 
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10.4 Discussion 

The thesis model was evaluated in respect of its sensitivity to initial parameter variation. 

The aerodynamic parameters of CDA and wind speed had the greatest effect on completion 

time (Table 10.1). A CDA error of 10 % generated a time difference of 2.8% which would 

have invalidated the findings in Chapters 7 and 8. As individual CDA was estimated from 

relationships presented in the literature, some degree of error was likely to be present. 

However, there was no evidence of a systematic bias in the parameter so the ± errors might 

be expected to balance out. The relationship between percentage wind speed change and 

percentage time change exhibited a curvilinear track which might be expected given the 

exponential nature of aerodynamic resistance, but the wind angle parameter was notably 

non-linear. This was likely to result from complex changes in aerodynamic force as the 

wind struck the bicycle and rider from an increasingly oblique angle. Wind tunnel trials 

would be required to further quantify this effect. Variation in mass values affected 

completion time by <1% suggesting that the accuracy of total bicycle and rider mass was 

not critical. 

 

The sensitivity of key parameter values was similar to those reported by Olds et al., (1995) 

(Figure 10.4) and Martin et al., (1998) (Figure 10.5). The exception was the wind speed 

profile in the former study which may be in error as it was not reported directly in the 

study and had to be calculated by regression. 
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Figure 10.4 Effect of parameter variation on completion time in Olds et al., (1995). 
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Figure 10.5 Effect of parameter variation on completion time in Martin et al., (1998). 
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Considering the variable power strategy sensitivity to peak power, the model prediction of 

a 4 s saving for each 80 W increase in peak power up to 500 W did not reflect the 

experimental finding from the field trial in Chapter 8. In that trial, peak power for four 

participants was increased from 325 W to 400 W but their time saving remained within 

two SD of the mean for all participants. It was possible that any additional time saved was 

lost in the random time fluctuations due to environmental wind and traffic.  The model of 

Atkinson et al., (2007a) predicted a similar time saving of ~7 s per 80 W increase in mean 

power when peak power was +10% of mean. That study noted that as power increased, 

there would be less loss of speed during climbs thus reducing the difference in time spent 

between climbing and descending. The almost zero increase in time saving above 500 W 

predicted by the present model suggests that this was the power output level at which the 

modelled course effectively became 'flat' in a speed variation context. 

 

The sensitivity of pedalling to variation in leg segment mass was surprising and not known 

to have been previously reported in the literature. A model error is possible but it is not 

apparent why such an error should only occur at ≤50% reduction in leg mass. A possible 

source of error might have been the method chosen to assess the sensitivity to mass 

changes. The joint torque profiles which drove the model remained the same as those 

required to produce a crank power of 255W with the ‘normal’ leg mass , as leg mass was 

reduced. With lighter joint segments it may be that the joint torque profiles were 

inappropriate for the greater segment accelerations experienced with reduced segment 

masses.  This could have lead to a less coordinated and efficient pedalling action, although 

this was not obviously apparent from viewing the animation of the model. With hindsight, 

it may have been more helpful to reverse engineer the model and assess the effect of 

segment mass change by examining the changes in joint torques required to achieve a 

power output of 255W at the crank. 

  

As a precursor to a future investigation, it was noted that keeping limb mass constant but 

varying gravity by ±100% resulted in an inverse ±1% variance in power at the crank. 

Furthermore, when leg mass and gravity were simultaneously varied, the result was 

considerably greater than the sum of the individual effects. 

 

The effect of a tyre model on cycling performance was found to be considerably more 

important than previously identified in the literature. This may have been a consequence of 

transferring motorcycle tyre concepts to cycling models (Meijaard and Schwab, 2006; 

Limebeer and Sharp, 2006; Cossalter, 2003). Motorcycle models have assumed that lateral 
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tyre forces are primarily a consequence of path following, while it is likely that pedalling is 

the predominant influence on tyre force in a bicycle. Although the forces are small for each 

cycle, the accumulated forces are significant over a complete time trial. It should be noted 

that lateral tyre forces are likely to vary with power level as greater down-stroke pedal 

force will usually generate more bicycle roll and steer. In the broader modelling context, it 

is interesting to consider the similarity between lateral tyre force measurement and 

measurement of human joint torques in that, for all practical purposes, both data can only 

be obtained from modelling.  

 

Intuitively, lateral forces generated by steering and roll tyre hysteresis should impede 

forward motion, but it is not immediately apparent how these forces are applied 

mechanically. It is possible that conservation of energy principles dictate that lateral tyre 

force diminishes longitudinal propulsive force (Schwab et al., 2007). It is also possible for 

yaw, roll and steer accelerations to affect the maintenance of system momentum (Limebeer 

and Sharma, 2010). Further research into both of these possibilities is beyond the scope of 

this thesis. 

 

In conclusion, this chapter has investigated the effect of parameter variation on model 

outputs. Variations in aerodynamic parameters were found to have the greatest effect on 

completion time and were sufficient to negate the experimental model validation 

conducted in Chapter 7. They could also throw doubt on the finding in Chapter 8 that a 

variable power output strategy is faster than equivalent constant power over an undulating 

course. However, it seems unlikely that random or modelling errors combined in a 

particular direction throughout twenty participants and across eighty trials. It was 

considered reasonable, therefore, to assume that the relationship between the modelled and 

experimental result reflected reality. A further finding from the sensitivity analysis was the 

importance of including a tyre model if a rider/bicycle model is adequately to represent 

road cycling. Overall, model sensitivity to parameter variation seemed unlikely to negate 

the validity found in the experiments conducted for this thesis. 
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CHAPTER ELEVEN

SUMMARY, LIMITATIONS, FUTURE RESEARCH 

AND CONCLUSION 

 

11.1 Summary 

This thesis was undertaken with the objective of identifying ways to enhance the 

performance of cyclists competing in road time trials. It was apparent that a purely 

experimental approach would be inefficient given the large number of variables that could 

be involved and the difficulty of accurately measuring outcomes in the field. Modelling 

provided an alternative whereby, once a model was developed, simulations could rapidly 

identify a short-list of promising enhancements that could then be evaluated in field 

experiments. The ability to quantify mechanical parameters accurately suggested that 

modelling mechanically based enhancements would yield more useable insights than could 

be obtained from physiological modelling. 

 

The research question was posed as 'Can a generalised and effective model of road cycling 

be constructed?' Effectiveness was defined as model prediction of completion time over a 

time trial course to an acceptable level of accuracy. Acceptable accuracy was set by 

estimating the error level that was likely to make model derived performance 

enhancements credible to competitive cyclists. A generalised model was one that could 

respond to parameterised and continuously changing rider and environmental variables 

during a simulation. Existing cycling models were analysed in Chapter 1 to establish their 

accuracy and generalisation in predicting time trial performance. It became apparent from 

examining some eighty cycling models developed over the last hundred years that they 

divided into: 1) those developed in an engineering environment (section 1.3.2) and 2) those 

developed in a sport science context (section 1.3.1). Sport science modelling studies had 

extensively investigated the rider contribution to performance, but largely ignored the 

contribution from bicycle dynamics. Mechanical engineering based studies had taken the 

opposite approach. Both disciplines had largely ignored the environmental impact on 

performance or had approximated environmental factors by setting predominantly static 

values which did not reflect 'real-world' cycling. Existing models could also be 

characterised as 'conceptual models' versus 'predictive models', the former describing 

performance trends and the latter predicting specific outcomes for given conditions. Only 

two models were identified that made specific time predictions over a time trial course, but 
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they were constrained by limited or unrepresentative course characteristics (Martin et al., 

1998; Olds et al., 1995). Neither could be described as generalised tools. 

 

A model was developed in Chapter 2 with the intention of drawing on the strengths of 

existing models, addressing their weaknesses and adding new features not previously 

implemented in a single system. These included gears, tyres, transmission, pedalling and 

steering. A key initial requirement was to identify an appropriate multi-body modelling 

software package. After evaluation of possible packages including ADAMS, Dymola, 

AutoSim and 20-Sim, SimMechanics was selected as the most suitable product. The 

resulting model was developed in stages with model components completed and validated 

within each stage prior to full validation of the completed model.  

 

Validation commenced in Chapter 3 when model forces generated by pedalling were 

compared with a published benchmark study. Model crank torque was similar to the 

benchmark (R2=0.97, NRMSE=4%) as were pedal forces (NRMSE=8-9%). Chapter 4 

validated bicycle self-stability by comparing model eigenvalues to a published benchmark. 

Model eigenvalues were found to exhibit <10% variance from the benchmark values. Tyre 

characteristics were evaluated in Chapter 5 with forces and moments generated by the tyres 

being similar to the only relevant study that could be identified. Field validation 

commenced in Chapter 6 with a case study that found model predicted time varied by 1% 

from actual time over a time trial course. Chapter 7 conducted a similar field experiment 

with a sample of competitive cyclists and found a 1.4% error between predicted and actual 

time. The error levels from both studies were well within the target error level of 2.8% 

specified for the model. The validated model was then used to predict performance 

enhancement strategies in road time trials. Firstly, Chapter 8 investigated the advantage of 

adopting a variable power strategy over an undulating course. The model predicted a 4 % 

time saving which was close to the experimental time saving of 2.9%. Chapter 9 applied 

the same strategy to a course with a head and tail wind and although a 2% advantage was 

obtained, this was not statistically significant. Finally the model sensitivity to input 

parameters was evaluated. CDA was found to be the most important parameter with a 

variance of 20% generating a ~6% change in completion time. Wind was also an important 

parameter with a 50% change in wind speed generating a ~10% change in completion time.  

 

In summary, a model was designed, developed and validated successfully and then utilised 

to predict a performance enhancement strategy that was confirmed experimentally. 
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11.2 Limitations 

Although a comprehensive model was developed, there were areas where the model was 

incomplete. Most notably, modelling of the rider's upper body did not include forces 

applied to the handlebars which can be considerable particularly during climbing 

(Bolourchi and Hull, 1985; Soden and Adeyefa, 1979). Model development requires 

modelling of the three dimensional forces applied by each hand and their synchronisation 

with pedalling and body roll. Steering should also be implemented by applying forces to 

the handlebars rather than by application of torque direct to the steering joint. The absence 

of a gear system and therefore the ability to control rider cadence is also a significant 

limitation of the current model. Resolving this issue is largely dependant on finding a way 

to arrange the SimMechanics blocks in a manner that avoids a system error. A number of 

minor model enhancements might improve prediction accuracy but are not priority 

developments as their treatment in other models suggests they would have minimal impact. 

 

 There has to be a question over whether the 'benchmark' studies used for model validation 

were adequately definitive and/or adequately tested model functions. They were not 

established 'gold standards' and would require more extensive critique in the literature 

before they could be considered as such. However, in the absence of established gold 

standards, the studies selected to validate the main model components of rider pedalling 

and bicycle stability had been extensively cited in the literature while the study of bicycle 

tyres was the most comprehensive available from a very limited number of sources. The 

approach was therefore adopted of building on previous work by conducting experimental 

validation of bicycle/rider components through comparison to the most complete of 

existing studies.  Experimental validation was conducted for the field time trials as no 

appropriate benchmark studies could be identified from the literature. Nevertheless, further 

validation may be necessary, particularly if model predictions for new conditions are found 

to be significantly less accurate than present values. 

 

Accurate simulation results were not dependant on parameter tuning due to the 'first 

principles' model design. However, sensitivity analysis identified three parameters that 

substantially affected outcomes. Firstly, CDA generally ranged from 0.25 to 0.35 for a 

competitive road cyclist, but the chosen value influenced completion time by up to 6%. 

Individual CDA values had to be estimated from body size and regression equations (Heil, 

2001; Heil, 2002) as wind tunnel facilities were not available to obtain values with greater 

accuracy. Sensitivity analysis also showed that wind strength and wind direction parameter 

values could also substantially affect completion time suggesting they should be measured 
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dynamically at the position of the moving cyclist. However, dynamic wind measurement 

on the bicycle found no statistical difference from statically measured values. 

Nevertheless, until further data is available, predicting field trial results should be treated 

with caution if strong wind conditions are present. 

 

A limitation of the model was the type of courses over which the model was validated. 

Courses were predominantly straight with medium gradient variation. The validity may not 

be maintained for courses with large and frequent changes of direction and/or severe 

gradients such as the Alpe d'Huez course used in the Tour de France. Another limitation 

was the use of completion time as the only measure of model validity. Studies with 

measuring devices fitted to the bicycle would be needed if model validity were to be based 

on agreement between specific modelled and actual quantities (such as steer torque or roll 

angle) rather than at the overall completion time level. A further thesis limitation which 

could affect the application of performance enhancements in real-world cycling was the 

exclusion of physiological factors. For example, the mechanical benefits of a variable 

power strategy could be negated by an increase in physiological cost. Future investigation 

using the model will need to consider methods for including some quantification of 

physiological factors. 

 

11.3 Future Research 

The emphasis in this thesis was on building a cycling model rather than using it for its 

intended purpose of identifying performance enhancement mechanisms and strategies. 

Nevertheless, the efficacy of pacing strategies in response to variations in gradient and 

wind were investigated with the validated model. However, the main benefit of the model 

to the research community should be realised over the coming months and years as 

investigations into mechanical performance enhancement in cycling can be undertaken at 

considerably less time and cost and possibly greater accuracy. Planned investigations will 

seek to quantify the effect of parameter variation in the following areas: 1) Bicycle related 

factors such as weight, saddle position, Q factor, crank length, tyre characteristics, 

eccentric chainrings and cornering optimisation. 2) Rider related factors such as inertial 

and gravitational additions to muscular work at higher cadences, mechanical advantages of 

'ankling' styles and riding style to minimise loss of power due to tyre lateral forces. 3) 

Environmental factors such as road surface effects, cumulative effect of path variance 

about the most direct line, maintenance of momentum in climbing and further analysis of 

drafting effects of traffic. 
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Perhaps more importantly, the model and the model concepts will be introduced to the 

research community through publication and collaborative projects. Activity to this end has 

already commenced with articles in three journals (two in progress), five conference 

presentations and model development and application work with the Australian Institute of 

Sport (AIS) and UK Sport (Paralympic Cycling). Further agreements to develop and apply 

the model will be actively sought with a joint venture to develop a track version being a 

particular priority. A key objective of such a partnership would be to obtain access to laser 

mapping of a velodrome. The mechanical factors that affect speed on the banking are an 

area where research is required and for which the thesis model is well suited.  Another 

investigation would seek to model the trajectory and power that minimises work-done 

when transitioning from the front to the back in the team pursuit. Selection of gear ratio for 

sprint events could also be modelled effectively. It is intended that future model 

development will include links to computational fluid dynamics (CFD) research which is 

being developed to provide a more complete aerodynamic environment in track cycling. 

 

11.4 Conclusion 

The aim of this thesis was to develop an effective and generalised model for the purpose of 

enhancing the performance of competitive cyclists in road time trials. It was questioned 

whether such a model already existed and if not; it was hypothesised that such a model 

could be developed. An existing model meeting the requirements could not be identified 

creating an opportunity to build a new model that would satisfy the aim. A model was 

constructed using rigid body modelling software and key components of the model were 

validated against selected benchmarks. Modelled crank torque profile was similar to a 

benchmark (R2=0.974). Bicycle self-stability matched a benchmark with <10% error. 

Modelled tyre cornering stiffness deviated from a benchmark by <4%. The validated 

model was then utilised to model performance enhancement strategies over actual road 

courses. This experimental validation comprised a field case study and a controlled field 

time trial. In the former study, modelled completion time was 1% less than actual time. In 

the latter study, model prediction over a 4 km time trial course was found to be within 

1.4±1.5 % of the actual time (p=0.008). 

 

 

The combined modelling of rider, bicycle and environment in a system simulated at high 

frequency has extended the capability of existing road cycling models. In particular, the 

new model predicted the effect of changes in mechanical parameters and strategies on field 

performance with accuracy acceptable to competitive cyclists. Additionally, the new model 
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emulated the changes in environmental factors necessary for realistic modelling of an 

actual time trial course. An effective and generalised modelling system is, therefore, now 

available to researchers investigating performance in competitive cycling. This should 

enable advances in improving sport performance that were not possible with the tools 

previously available. 

 

The thesis conducted research across a wide rage of literature. Its findings exploited the 

synergy obtainable when concepts were combined from disciplines that had previously 

developed separately. It also distilled the essential technical information on rider, bicycle 

and environment from the diverse literature pool to enable the design of an effective 

model. This led to a comprehensive cycling model being specified followed by 

identification of multi-body modelling software which enabled the model to be built. 

Building and validating the model drew on diverse disciplines including computer 

programming, engineering design, mathematics, modelling, cycling expertise, hardware 

assembly and field experiment design. 

 

 The resulting model of road cycling is an important addition to the tools available to sports 

scientists for researching and enhancing the performance of competitive cyclists. The lack 

of modelling studies in the literature suggests that sports scientists are not fully aware of 

the increased research opportunities provided by the recent development of user-friendly 

modelling packages. Traditionally, modelling has been the preserve of mathematicians and 

engineers, but this has changed with the availability of software packages that automate the 

writing of model equations. This thesis has shown what can now be achieved by 

'generalists', surpassing what previously would only have been attempted by 'experts'. It 

can be hoped that this work will increase awareness amongst sports scientists of the 

opportunities to extend their research capability with modelling. This could be based on 

developing the current model or by using the current model as a guide to developing new 

models in other software. The universality of the concepts that define three dimensional 

rigid body machines means that relatively small adaptations are required to move models 

between sports. The flexibility of the thesis model software has already enabled the cycling 

model to be 'migrated' to model rowing, archery and the pole vault. The most suitable 

sports are those where the athlete operates a 'machine' of some sort, preferably with a 

significant environmental component. Ski jumping and canoeing are currently being 

investigated. In summary therefore, this thesis not only provides a unique cycling model to 

researchers, but lays a foundation for the much wider use of modelling throughout the 

sports science community. 
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APPENDIX 1 

 

Technical Documentation Files on Accompanying CD 

 

Animation of Running Simulation 

Bicycle Structure 

Rider Structure 

Pedalling 

Transmission Structure 

Propulsion 

Steering, Balance, Path-Following 

Tyre Model 

Aerodynamics 

Gradient 

Upper Body Motion 

Wheel Motion 

Gear System 

Performance Monitor 
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APPENDIX 2 

 

Simulation Settings 

 

Item Value Comment 

Gravity (ms-2) 9.81 Represented by 'g' 

Analysis Mode Forward 
Dynamics 

Force input generates motion output 

Solver ode45 
Continuous variable-step solver. Uses a Runge-

Kutta (4,5) formula. (Dormand-Prince pair) 

Simulation 
Frequency 

Variable 
step 

Reduces simulation step size when states change 
rapidly 

Maximum Step Size 
(s) 

0.2 Reduced if solver fails to find a solution 

Relative Error 
Tolerance 

1e-2 Acceptable solver error ≤ 1% 

Absolute Error 
Tolerance 

1 Accommodates state changes from 0 to 1000 

Linear Assembly 
Tolerance (m) 

1e-1 Max. linear misalignment between bodies 

Angular Assembly 
Tolerance (rad) 

1e-1 Max. angular misalignment between bodies 

Constraint Solver 
Type 

Tolerancing 
Required as model contained non-holonomic 

wheel constraints and implicit constraints arising 
from closed-loops. 

Relative Constraint 
Tolerance 

1e-9  

Absolute Constraint 
Tolerance 

1e-9  
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Main Default Parameters 

Item (Version) Location Description Default Value 

Weight System Total weight of rider/bicycle 804 N 
Constant 

Power 
" Define a constant power run 255 W 

Mean Power " Rider mean power for a variable 
power run.  

255 W 

Wind Direction Environment 
Wind angle relative to south 

(clockwise is negative) 
-45° 

Wind Velocity " Wind velocity 2 m/s 

IC System Initial bicycle longitudinal velocity 
at start of simulation 

10 m/s 

Big Ring (V3) Gear Selector 
Multiplier converting small ring (39 

teeth) to big ring (53 teeth) 
1.3584 

Cassette Gears 
(V3) 

" 
Switch Block containing 10 Gain 

blocks defining 10 gear ratios 
1/4.08 to 

1/1.96 

Bias (V3) " 
In 'u + 0.25', second term defines 

number of seconds power is reduced 
at each gear change 

0.25 s 

Power 
Decrement 

(V3) 
" 

Multiplier reducing power at each 
gear change 

0.75 

Stop Distance Environment 
Course distance after which 

simulation terminates 4043 m 

Critical 
Velocity 

Performance 
Rider velocity at mean power against 

aero resistance only 
11.05 m/s 

Frame Flex Rear Frame 
Lateral flex modelled by a spring 
damper on x axis of steering joint 

Spring=1,000, 
Damp=51 

Wheel Flex " 
Lateral flex modelled by a spring 

damper on x axis of hub joint (spring 
stiffness in N/m, damping in N·s/m) 

Front: Spring=136       
Damp=3 
Rear: Spring=116 
Damp=2.6 

2*Joint Spring 
Damper 

Transmission Left and right pedal spindle damping 1 rad/s 

Crank Length " Length of crank arms 0.170 m 

wbase Bicycle 
Distance from front to rear wheel 

contact points (adjusted to set trail) 1.01 m 

Trail " 
Distance front wheel contact to steer 

axis/ground plane intersection 
0.065 m 

CDA Rider Coefficient of drag x frontal area 0.3 

MaxAV (V3) Gear Selector Maximum crank angular velocity 
(cadence) 

-10.5 rad/s 

MinAV (V3) " Minimum crank angular velocity 
(cadence) 

-8.5 rad/s 

p Aerodynamics 
Air density (pressure/(humidity 

constant*temp) 
1.2234 kg/m3 

Transmission 
Ratio 

Transmission Rotational ratio of crank spindle to 
rear wheel hub 

2.86:1 

Wheels Wheels Front and rear wheel radius 0.35 m 

Steer Axis Front Frame 
Steer axis angle relative to left 
horizontal 72° 

COM  Bicycle/Rider x and z coordinates of COM 
x=0.5027 m 
 z=1.0091 m 
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APPENDIX 3 

 

Tyre Dynamics Theory 

A summary of tyre theory relating to the bicycle is presented here in order to clarify 

concepts discussed in Chapter 5. It is abstracted from a number of established text books 

which emphasise single track vehicles (Gillespie, 1992; Blundell and Harty, 2004; 

Cossalter, 2006). A tyre develops lateral force to enable steering control of bicycle 

heading, oppose centripetal acceleration in cornering and resist external side forces such as 

wind and road camber. Lateral force is developed in proportion to tyre 'slip' angle and 

wheel camber angle. The term 'slip' is a misnomer as it refers to the angle between a wheel 

heading and its direction of travel which are misaligned in a turn or under the influence of 

side wind/road camber. In reality, the tread rubber does not slip relative to the road surface 

but is deflected sideways with respect to the tyre circumference. Lateral tension builds in 

the tread as it moves rearwards in the contact patch, the distortion generating an increasing 

side force until the tread looses adhesion in the rear part of the contact patch and 'slides' in 

that area. A 'slide' is defined as complete loss of adhesion resulting in zero force 

generation. The total lateral force is obtained by integrating the force generated across the 

contact patch which initially increases with slip angle before reducing as the rear sliding 

area extends forward. The centroid of the lateral force is offset behind the geometrical 

centre of the contact patch resulting in a moment arm about the wheel's vertical z axis 

known as the 'pneumatic trail'. Lateral force therefore has the secondary effect of 

generating a torque defined as the 'aligning moment' which opposes steering and thus 

creates an automatic self-centering mechanism. Lateral force does not develop 

instantaneously in a turn leading to a 'relaxation length' which defines the force lag in 

terms of distance travelled (actual lag timing therefore being speed dependant). It is 

important to note that the front and/or back tyre will always have a slip angle in any 

small/medium radius turn due to geometry as the wheels track around the turn pivot point. 

This is true even for a steady-state turn with no steering angle as a so-called 'steady-state' 

requires continuous centripetal acceleration towards the turn centre. The force for such 

acceleration is supplied by the lateral force from the two tyres (with some gravitational 

contribution if the road is banked). 

 

Wheel camber is the second source of lateral force generation although at small camber 

angles (<5°), camber force is typically 10% of side slip force. However, at large camber 

angles (>20°), camber force is reported to become predominant in single track vehicles 

which includes bicycles and motorcycles (Gillespie, 1992). Camber lateral force (or 
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'camber thrust') is a geometric consequence of tyre tread deformation when a loaded wheel 

leans relative to the road creating an outwards lateral force component of the vertical load. 

The resultant force from the road acts to create a lateral force in the direction of the lean 

which assists in driving the centripetal acceleration required for a turn. Slip and camber 

effects interact and are not always additive but at low angles they can be accounted for 

separately and summed. The increase in both forces remains largely linear over the range 

of corners commonly found in competitive cycling. 

 

A further force generated by both slip and camber is the 'overturning moment' which 

attempts to roll the bicycle out of a turn although the effect is generally not apparent to the 

rider. In the case of a cambered tyre, the road contact point migrates laterally around the 

tread radius creating a lateral moment arm between the vertical load and the intersection of 

the wheel plane/road plane. Side slip generates a similar moment arm when the contact 

patch migrates sideways relative to the wheel plane during cornering. These effects are 

geometrically accounted for if tyre width is explicitly modelled and the contact patch is 

allowed to migrate but otherwise must be implemented analytically by the addition of 

terms to the model equations.  

 

The principal manufactured characteristics of a tyre are the lateral force per angle of slip 

(N/rad) defined as 'cornering stiffness', lateral force per angle of camber (N/rad) defined as 

'camber stiffness' and extent of radial deflection under load defined as 'vertical stiffness'. 

These parameters will vary with vertical load on the tyre and are therefore often expressed 

as 'coefficients' where the stiffness value is normalised (i.e. divided by the vertical load). 

All stiffness values increase with increased tyre inflation pressure leading to potentially 

greater lateral force generation and thus greater cornering capability. The model requires 

tyre stiffness values to be entered as parameters and these must therefore have been 

previously determined from experimental work on a tyre testing machine or obtained from 

the literature. 

 

Rolling resistance (R/R) calculated by the tyre model can be compared to values 

commonly used in cycling studies that consider resistive forces (Candau et al., 1999; de 

Groot et al., 1995; Grappe et al., 1999). Such studies usually calculate R/R as the product 

of rider/bicycle weight and an R/R 'coefficient', arriving at typical values of 2.5 – 4.5 N 

which is equivalent to the aerodynamic resistance at 7-8 mph. However, the R/R 

coefficient is not of itself a resistance value but simply normalises a previously measured 

(and often unspecified) R/R force to the current bicycle vertical load. The implied R/R 
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force value will usually have originated from a bicycle towing or 'coasting-down' field 

experiment but will in consequence be dependant on the other variables pertaining to that 

test. Principally these are tyre vertical/radial stiffness, tread rubber properties, inflation 

pressure and road surface. To evaluate the potential effect of these variables, it is important 

to understand the mechanical process of R/R generation. The principal force-generating 

mechanism is 'hysteresis' whereby the energy required to compress tyre tread rubber and 

side walls is greater than the energy released during their rebound. Tyre tread approaches 

the contact patch in an uncompressed state, becomes compressed/uncompressed to varying 

extent as it moves through the contact patch before returning to its uncompressed state on 

exit. Integrating force generation over the contact patch gives a net positive force in the 

tyre tread which acts vertically upwards against the wheel. However, the centroid of this 

force is offset longitudinally in front of the geometric centre of the contact patch, creating a 

moment arm which exerts an anti-clockwise torque about the wheel centre (a vertical 

analogue of the lateral aligning moment). To maintain an equilibrium wheel state, a couple 

about the wheel centre transfers the torque to a longitudinal resistive force. The magnitude 

of the hysteresis force and its centroid location will vary with tyre dimensions, rubber 

modulus of elasticity, tyre stiffness (primarily inflation) and the roughness of the road 

surface (ignoring any 'bump' force from vertical wheel centre displacement). Weight 

increases hysteresis by increasing the size of the contact patch and thus the volume of tread 

rubber being 'worked'. However, the limited importance of weight on R/R is apparent from 

the results of a coasting-down test by Candau et al. (1999). They reported a R/R increase of 

29% when 15 kg was added to a 76 kg bicycle/rider but an increase of 53% when, instead, 

tyre pressure (23 mm Vittoria clinchers) was reduced from 145 to 85 psi and surface was 

changed from tiles to linoleum. The effect of surface is emphasised by Kyle (2003) who 

found the R/R coefficient increased from 0.003 on linoleum to 0.0054 on rough tarmac 

(+80%). In contrast, Roland and Rice (1973) reported a mean R/R coefficient of 0.0068 in 

their evaluation of nine different tyres. Clearly therefore, the R/R force reported by most 

studies is a general approximation which could be expected to vary from moment-to-

moment and day-to-day quite independently of the commonly modelled weight variable. 
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APPENDIX 4 

 

A Simulation of Tyre Performance in a Race 

The 'lane-change' scenario modelled in Chapter 5 was used to investigate the possible 

effect of tyre forces on performance in a cycle race. Flat stages in events such as the Tour 

de France often end with a mass sprint over the last few hundred meters with the winner 

determined by very small margins. A sprinter will typically remain in the slipstream of the 

leader until the last possible moment before pulling out to power past. The steering input 

for this manoeuvre is functionally equivalent to a 'lane change'. An important performance 

issue is therefore the loss of longitudinal propulsive power to lateral 'steering' power during 

this lane change.  Such a power transfer could translate into loss of longitudinal position 

relative to 'non-steering' competitors and might loose the race for the instigator. The 

simulation found 19.6 J of tyre propulsive work transferred to lateral work which was 

incurred between 7.92 s and 9 s when steady-state velocity was 11.1 m/s.  During this 

period, total bicycle/rider work-done was 257 J and a distance of 11.9 m was covered 

suggesting that the propulsive loss of 7.63% (19.6/257*100) would equate to 0.9 m loss of 

longitudinal position. A typical bicycle wheelbase of 1 m makes this a loss of almost a bike 

length which would often equate to several places in a professional road race. The main 

conclusion from this analysis is not the exactitude of the position loss but rather that all the 

disparate force measurements by an 'un-tuned' bicycle model sum to a result that is 

believable in the context of real-world cycling.  
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APPENDIX 5 

 

Briefing for Participants in Chapter 8 Field Trials 

The research objective is to investigate the effect of power phasing on time trial 

performance. A mathematical model is utilised to calculate the required power increase on 

hills and decrease on descents that will improve overall time compared to a constant effort 

strategy. Total physiological work-done is kept constant between the two conditions to 

enable the comparison. A participant will complete five runs over the first 2.5 miles of the 

RTTC course G10/42 on the A24 dual carriageway south of Dorking. For those familiar 

with the course, a run will terminate prior to the first roundabout and participants and their 

bicycles will be ferried back to the start by car. Each run will be followed by a rest period 

and the complete session is expected to last a maximum of four hours. Run 1 and 2 will be 

completed at a constant power of 255 W.  Run 3 and 4 will be conducted at the optimum 

variable power predicted by the model with the power requirement at ~80 m intervals 

being conveyed by a sound file to the participant through an ear piece connected to a small 

GPS and PDA computer carried on the arm. Higher calibre riders will be presented with a 

more demanding variable power profile which should increase their time saving. Run 5 

will be completed at a 'best effort' 10 mile intensity with no imposed controls to establish 

the participant's baseline capability. 

 

A participant's bicycle will be fitted with a PowerTap rear wheel and handlebar monitor 

enabling them to view their power level and adjust effort to meet the power value 

requested from the earpiece (already fitted power meters can be used). The PowerTap 

monitor shows 'smoothed' 10 s moving average power to minimise fluctuations and power 

requests via the earpiece will be delivered approximately 10 m prior to the requested power 

being required. It takes practice to maintain the requested power and two runs at each 

protocol are included in order to improve accuracy in meeting the power profile. Cadence 

and gear changes are unrestricted. All course completion times will be recorded both by 

the participant operating the PowerTap controls and by the investigator with a stop watch. 

It is important that all runs are competed successively in order to eliminate any effect of 

environmental wind (i.e. by making it common to all runs). It is the change in run time for 

different strategies that is being measured and not the absolute times (which would be 

related to wind conditions, aerodynamics etc). Participants however must maintain the 

same posture on the bike both within and between runs which should be seated and on the 

drops or tribars. 
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The investigation requires cycling at time trial intensity on the public road with an earpiece 

and therefore participants must be fully aware of the collision risk from other traffic. They 

should exercise their normal road cycling judgement at all times and should abort a run if 

there is any danger of a collision from continuing to cycle at a competitive speed. 

Participants will get up to speed on the starting slip road before joining the main 

carriageway and the investigator will be positioned at this junction to indicate if it is safe to 

join the main road. The investigator will then drive to the finish to record the finishing time 

and to ferry the participant back to the start. No testing will be conduct in conditions of 

rain, strong winds, poor visibility and morning/evening rush-hours. 

 

Within a week prior to the above field session, a 1-2 hour meeting will be held in Ashtead 

with the following objectives: 

• Explain and discuss the field trial protocol and complete informed consent form. 

• Participant provides data on recent 10 mile time trial performances for relatively 

flat, windless courses where a good result was obtained (from power meter files if 

available). This enables the predictive model to be parameterised with the 

participant's physiological capacity and aerodynamic characteristics. 

• The participant's bicycle will be temporarily be fitted with the PowerTap rear wheel 

and run on a turbo-trainer to ensure correct operation. It is not necessary to use a 

time trial bike. A road bike is suitable because it is the change in time between runs 

that is being measured and not the absolute speed for any run. 

• Issues such as chain compatibility, Shimano/Campag hub, 9/10 speed etc will be 

resolved at this stage so that the bicycle can subsequently be quickly re-configured 

at the field venue. 

• The participant will be familiarised with the course profile and the approximate 

power levels that will be requested through the earpiece during each ascent/descent. 

 

Within two weeks of completing their field trial, a participant will be provided with details 

of their personal results. On completion of the study, each participant will be provided with 

a copy of the full study results and findings in which personal data will not be identified. 

All personal data is kept secure and confidential and not disclosed to any third parties. 
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Results from pilot testing have shown a 4% time improvement for the variable power 

strategy (i.e. potential 60 second improvement for a 25 minute 10). Two factors increase 

the time saved: 

1. More and steeper course undulations. The strategy has zero effect on a completely 

flat course. 

2. The extent to which a rider can exceed their mean power on the ascents and recover 

on the descents sufficient for the next climb and to complete the course. i.e. very 

personal to each rider but those who practice short maximum effort interval training 

will do well. 
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APPENDIX 6 

Results for Wind Experiment (Chapter 9) 

 

 




