26 research outputs found

    Enabling Privacy-preserving Auctions in Big Data

    Full text link
    We study how to enable auctions in the big data context to solve many upcoming data-based decision problems in the near future. We consider the characteristics of the big data including, but not limited to, velocity, volume, variety, and veracity, and we believe any auction mechanism design in the future should take the following factors into consideration: 1) generality (variety); 2) efficiency and scalability (velocity and volume); 3) truthfulness and verifiability (veracity). In this paper, we propose a privacy-preserving construction for auction mechanism design in the big data, which prevents adversaries from learning unnecessary information except those implied in the valid output of the auction. More specifically, we considered one of the most general form of the auction (to deal with the variety), and greatly improved the the efficiency and scalability by approximating the NP-hard problems and avoiding the design based on garbled circuits (to deal with velocity and volume), and finally prevented stakeholders from lying to each other for their own benefit (to deal with the veracity). We achieve these by introducing a novel privacy-preserving winner determination algorithm and a novel payment mechanism. Additionally, we further employ a blind signature scheme as a building block to let bidders verify the authenticity of their payment reported by the auctioneer. The comparison with peer work shows that we improve the asymptotic performance of peer works' overhead from the exponential growth to a linear growth and from linear growth to a logarithmic growth, which greatly improves the scalability

    Empirical Analysis of Privacy Preservation Models for Cyber Physical Deployments from a Pragmatic Perspective

    Get PDF
    The difficulty of privacy protection in cyber-physical installations encompasses several sectors and calls for methods like encryption, hashing, secure routing, obfuscation, and data exchange, among others. To create a privacy preservation model for cyber physical deployments, it is advised that data privacy, location privacy, temporal privacy, node privacy, route privacy, and other types of privacy be taken into account. Consideration must also be given to other types of privacy, such as temporal privacy. The computationally challenging process of incorporating these models into any wireless network also affects quality of service (QoS) variables including end-to-end latency, throughput, energy use, and packet delivery ratio. The best privacy models must be used by network designers and should have the least negative influence on these quality-of-service characteristics. The designers used common privacy models for the goal of protecting cyber-physical infrastructure in order to achieve this. The limitations of these installations' interconnection and interface-ability are not taken into account in this. As a result, even while network security has increased, the network's overall quality of service has dropped. The many state-of-the-art methods for preserving privacy in cyber-physical deployments without compromising their performance in terms of quality of service are examined and analyzed in this research. Lowering the likelihood that such circumstances might arise is the aim of this investigation and review. These models are rated according to how much privacy they provide, how long it takes from start to finish to transfer data, how much energy they use, and how fast their networks are. In order to maximize privacy while maintaining a high degree of service performance, the comparison will assist network designers and researchers in selecting the optimal models for their particular deployments. Additionally, the author of this book offers a variety of tactics that, when used together, might improve each reader's performance. This study also provides a range of tried-and-true machine learning approaches that networks may take into account and examine in order to enhance their privacy performance

    Privacy-preserving information hiding and its applications

    Get PDF
    The phenomenal advances in cloud computing technology have raised concerns about data privacy. Aided by the modern cryptographic techniques such as homomorphic encryption, it has become possible to carry out computations in the encrypted domain and process data without compromising information privacy. In this thesis, we study various classes of privacy-preserving information hiding schemes and their real-world applications for cyber security, cloud computing, Internet of things, etc. Data breach is recognised as one of the most dreadful cyber security threats in which private data is copied, transmitted, viewed, stolen or used by unauthorised parties. Although encryption can obfuscate private information against unauthorised viewing, it may not stop data from illegitimate exportation. Privacy-preserving Information hiding can serve as a potential solution to this issue in such a manner that a permission code is embedded into the encrypted data and can be detected when transmissions occur. Digital watermarking is a technique that has been used for a wide range of intriguing applications such as data authentication and ownership identification. However, some of the algorithms are proprietary intellectual properties and thus the availability to the general public is rather limited. A possible solution is to outsource the task of watermarking to an authorised cloud service provider, that has legitimate right to execute the algorithms as well as high computational capacity. Privacypreserving Information hiding is well suited to this scenario since it is operated in the encrypted domain and hence prevents private data from being collected by the cloud. Internet of things is a promising technology to healthcare industry. A common framework consists of wearable equipments for monitoring the health status of an individual, a local gateway device for aggregating the data, and a cloud server for storing and analysing the data. However, there are risks that an adversary may attempt to eavesdrop the wireless communication, attack the gateway device or even access to the cloud server. Hence, it is desirable to produce and encrypt the data simultaneously and incorporate secret sharing schemes to realise access control. Privacy-preserving secret sharing is a novel research for fulfilling this function. In summary, this thesis presents novel schemes and algorithms, including: • two privacy-preserving reversible information hiding schemes based upon symmetric cryptography using arithmetic of quadratic residues and lexicographic permutations, respectively. • two privacy-preserving reversible information hiding schemes based upon asymmetric cryptography using multiplicative and additive privacy homomorphisms, respectively. • four predictive models for assisting the removal of distortions inflicted by information hiding based respectively upon projection theorem, image gradient, total variation denoising, and Bayesian inference. • three privacy-preserving secret sharing algorithms with different levels of generality

    Cicada: A framework for private non-interactive on-chain auctions and voting

    Get PDF
    Auction and voting schemes play a crucial role in the Web3 ecosystem. Yet currently deployed implementations either do not offer bid/vote privacy or require at least two rounds, hindering usability and security. We introduce Cicada, a general framework for using linearly homomorphic time-lock puzzles (HTLPs) to enable provably secure, non-interactive private auction and voting protocols. We instantiate our framework with an efficient new HTLP construction and novel packing techniques that enable succinct ballot correctness proofs independent of the number of candidates. We demonstrate the practicality of our approach by implementing our protocols for the Ethereum Virtual Machine (EVM)

    Integration of Blockchain and Auction Models: A Survey, Some Applications, and Challenges

    Get PDF
    In recent years, blockchain has gained widespread attention as an emerging technology for decentralization, transparency, and immutability in advancing online activities over public networks. As an essential market process, auctions have been well studied and applied in many business fields due to their efficiency and contributions to fair trade. Complementary features between blockchain and auction models trigger a great potential for research and innovation. On the one hand, the decentralized nature of blockchain can provide a trustworthy, secure, and cost-effective mechanism to manage the auction process; on the other hand, auction models can be utilized to design incentive and consensus protocols in blockchain architectures. These opportunities have attracted enormous research and innovation activities in both academia and industry; however, there is a lack of an in-depth review of existing solutions and achievements. In this paper, we conduct a comprehensive state-of-the-art survey of these two research topics. We review the existing solutions for integrating blockchain and auction models, with some application-oriented taxonomies generated. Additionally, we highlight some open research challenges and future directions towards integrated blockchain-auction models

    Data security and trading framework for smart grids in neighborhood area networks

    Get PDF
    Due to the drastic increase of electricity prosumers, i.e., energy consumers that are also producers, smart grids have become a key solution for electricity infrastructure. In smart grids, one of the most crucial requirements is the privacy of the final users. The vast majority of the literature addresses the privacy issue by providing ways of hiding user’s electricity consumption. However, open issues in the literature related to the privacy of the electricity producers still remain. In this paper, we propose a framework that preserves the secrecy of prosumers’ identities and provides protection against the traffic analysis attack in a competitive market for energy trade in a Neighborhood Area Network (NAN). In addition, the amount of bidders and of successful bids are hidden from malicious attackers by our framework. Due to the need for small data throughput for the bidders, the communication links of our framework are based on a proprietary communication system. Still, in terms of data security, we adopt the Advanced Encryption Standard (AES) 128bit with Exclusive-OR (XOR) keys due to their reduced computational complexity, allowing fast processing. Our framework outperforms the state-of-the-art solutions in terms of privacy protection and trading flexibility in a prosumer-to-prosumer design
    corecore