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Abstract

Auction and voting schemes play a crucial role in the Web3 ecosystem. Yet currently deployed implementa-
tions either do not offer bid/vote privacy or require at least two rounds, hindering usability and security. We
introduce Cicada, a general framework for using linearly homomorphic time-lock puzzles (HTLPs) to enable
provably secure, non-interactive private auction and voting protocols. We instantiate our framework with an
efficient new HTLP construction and novel packing techniques that enable succinct ballot correctness proofs
independent of the number of candidates. We demonstrate the practicality of our approach by implementing
our protocols for the Ethereum Virtual Machine (EVM).

1 Introduction

Auctions and voting are essential applications of Web3. For example, decentralized marketplaces run auctions
to sell digital goods like non-fungible tokens (NFTs) [Ope23b] or domain names [XWY+21], while decentralized
autonomous organizations (DAOs) deploy voting schemes to enact decentralized governance [Opt23]. Current
deployments suffer from limitations hindering widespread adoption:

Lack of bid/ballot privacy: Most deployed auction or voting schemes on blockchains (e.g., NFT auctions on
OpenSea [Ope23a] or Uniswap governance [FMW22]) lack bid/ballot privacy. This can negatively influence
user behavior, for example by vote herding or discouraging participation [EL03, GY18, SY03]. The lack of
privacy can cause surges in congestion and transaction fees as users try to outbid each other to participate, a
negative externality for the entire network.

Interactivity: The only deployed private auction we are aware of [XWY+21] deploys a two-round commit-reveal
protocol. Interactivity is a usability hurdle that often causes frictions in the protocols’ execution. Mandatory
bid/ballot reveals are also a target for censorship. A malicious party can bribe the block proposers to exclude
certain bids or ballots till the auction/voting ends [PRF23].

We summarize several potential approaches for avoiding interactivity while maintaining privacy in Table 1, in-
cluding secure multi-party computation (MPC) [BHH18, BK18] and fully homomorphic encryption (FHE) [Gen09].
Unfortunately, these solutions are either computationally costly or rely on trusted third parties.
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Non-interactive Everlasting privacy Efficient No TTPs

Commit-reveal [GY18] ✗ ✗ ✓ ✓
Fully homomorphic TLPs [MT19] ✓ ✓ ✗ ✓
Fully homomorphic encryption [Gen09] ✓ ✓ ✗ ✓
Multi-party computation [BDJ+06] ✗ ✓ ✓ ✗
TLPs + homomorphic encryption [CJSS21] ✓ ✗ ✓ ✗

HTLPs (our approach) ✓ (✓) ✓ ✓

Table 1: Qualitative comparison of major cryptographic approaches for designing private auction/voting schemes.
(H)TLP stands for (homomorphic) time-lock puzzle. No TTPs refers to the absence of trusted third parties.

1.1 Our approach

In this work, we introduce Cicada, a general framework for practical, privacy-preserving, and trust-minimized
protocols for both auctions and voting. Cicada uses time-lock puzzles (TLPs) [RSW96] to achieve privacy and non-
interactivity in a trustless and efficient manner. Intuitively, the TLPs play the role of commitments to bids/ballots
that any party can open after a predefined time, avoiding the reliance on a second reveal round. Since solving
a TLP is computationally intensive, ideally we would solve only a sublinear number of TLPs (in the number
of voters/bidders) for efficiency. This is achieved using homomorphic TLPs (HTLPs): bids/ballots encoded as
HTLPs can be “squashed” into a sublinear number of TLPs. Although fully homomorphic TLPs are not practically
efficient, Malavolta and Thyagarajan [MT19] introduced efficient additively and multiplicatively homomorphic TLP
constructions. This is enough for simple constructions like first-past-the-post (FPTP) voting, but it remained an
open problem how to apply HTLPs to realize more complicated auction and voting protocols.

Our contributions. We show how to use HTLPs to build non-interactive protocols for complex auction and
voting schemes. Our protocols are both practically efficient, private, and provably secure, overcoming the following
challenges:

Efficient proofs for bid/ballot correctness Users need to prove that their bids/ballots are well-formed ac-
cording to the auction/voting protocol rules. Designing protocols that admit concretely efficient proofs for
bid/ballot correctness is challenging. In particular, we wish to minimize the proof size and the verification
cost, since proofs are stored and verified on-chain.

EVM-friendliness We provide open-source, freely available implementations tailored to the popular Ethereum
Virtual Machine (EVM) with word size 256 bits. Our most efficient protocols work in Z∗

N for N ≈ 21024,
groups which are not natively supported by EVM. We implement several gas-efficient libraries to support
modular arithmetic in such groups-of-unknown-order. We demonstrate in Section 6 that these protocols can
be run today on Ethereum Layer 1. Our non-interactive protocols are particularly well-suited to the EVM
since, unlike prior works, we do not need to keep bids, ballots, and proofs in persistent storage as they are
not required for any subsequent round.

2 System Model

Our system design is illustrated in Figure 1. We envision three types of participants in our Cicada-based auc-
tion/voting schemes:

Users. We simply refer to voters or bidders as users. Users submit bids or ballots, which we generically call
submissions. We assume some external process to establish the set of authorized users (which may be open
to all). Once users place their submissions, no further action is required of them.

On-chain coordinator. We refer to the tallier/auctioneer as the coordinator, typically implemented as a smart
contract that collects submissions. The coordinator transparently calculates the winner(s). In the case of an
auction, they might also transfer (digital) assets to the winner(s). In an election, they might grant special
privileges to the winner’s public key.
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Figure 1: Our model of an HTLP-based auction/voting scheme. (1) Submission phase: users generate their
bids/ballots as HTLPs and post them to a public bulletin board, e.g., a blockchain. (2) Aggregation: an on-chain
contract homomorphically combines submissions into a single aggregate puzzle. (3) Opening: after the submissions
have been aggregated, an off-chain entity solves the aggregate HTLP using T sequential steps and submits the
solution to the contract. (4) Finalize: The smart contract may do some final computation over the solution to
compute the result and announces the winner. Submission privacy is ensured only until the beginning of the Open
phase. In Section 7.1, we show how voters can optionally achieve everlasting ballot privacy.

Off-chain solver. Since our protocols apply HTLPs, we assume an untrusted solver who unlocks the final HTLP(s)
off-chain and submits the solution(s) to the coordinator with proofs attached. This could in principle be
any party, although, in practice, it will likely be one of the parties participating in (or administering) the
vote/auction, or a paid marketplace [AM23, TGB+21].

An adversary may attempt to read ballots/bids before the submission phase is completed. This is prevented by
the security properties of (H)TLPs (see Section 3.3) assuming the delay parameters T is longer than the submission
phase.

3 Preliminaries

3.1 Notation

We use [n] to denote a range of positive integers {1, . . . , n}. For other ranges (mostly zero-indexed), we explicitly
write the (inclusive) endpoints, e.g., [0, n]. Concatenation of vectors x,y is written as x||y. We will use n as the
number of users, m as the number of candidates, and w as the maximum weight to be allocated to any one candidate
in a ballot/bid (n,m,w ∈ N). For simplicity and without loss of generality, we assume the user identities are unique
integers i ∈ [n]. We generally use i ∈ [n] to index users and j ∈ [m] for candidates. We use a calligraphic font,
e.g., S or X , to denote sets or domains. When we apply an operation to two sets of equal size ℓ we mean pairwise
application, e.g., Z = X +Y means zi = xi + yi ∀i ∈ [ℓ]. The output y of a randomized algorithm Alg is written as

y
R← Alg(x) and randomly sampling an element x from a set X is written as x

R← X . Many of our algorithms take
some public parameters pp as input, and we also drop this input when pp is clear from context.

3.2 Auction and voting protocols

We recall the specifics of FPTP, approval, range, and cumulative voting in Appendix A.1. The cryptographically
relevant details of these schemes (i.e., the valid ballots’ structure: their domain, Hamming weight, and norm) are
summarized in Table 2. In Section 5, we create protocols for these schemes of interest.

3.3 (Homomorphic) Time-lock puzzles ((H)TLPs)

Time-lock puzzles allow a party to “encrypt” messages to the future. Specifically, to recover the solution, one needs
to perform a computation that is believed to be inherently sequential, with a parameterizable number of steps.
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Submission domain Hamming wt Norm

Voting schemes
First-past-the-post [0, 1]m 1 1
Approval [0, 1]m ≤ m ≤ m
Range [0, w]m ≤ m ≤ wm
Cumulative [0, w]m ≤ m ≤ w
Ranked-choice (Borda) π([0,m− 1]) m− 1 m(m− 1)/2
Quadratic (Appendix D.1) [0,

√
w]m ≤ m ∥b∥22 = ⟨b,b⟩ = w

Single-item sealed-bid auction [0, w] 1 ≤ w

Bayesian truth serum (D.2) [0, 1]m × Nm 1, 1 1,≤ m

Table 2: Restrictions on a valid submission (bid/ballot) b for various voting/auction schemes. π(S) denotes the set
of permutations of S, the norm is an ℓ1 norm unless otherwise specified, m is the number of candidates, and w is
the max. vote weight.

Definition 1 (Time-lock puzzle [RSW96]). A time-lock puzzle scheme TLP consists of the following three efficient
algorithms:

TLP.Setup(1λ, T )
R→ pp. The (potentially trusted) setup algorithm takes as input a security parameter 1λ and a

difficulty (time) parameter T , and outputs public parameters pp.

TLP.Gen(pp, s)
R→ Z. Given a solution s ∈ Z, the puzzle generation algorithm efficiently computes a time-lock puzzle

Z ∈ G.

TLP.Solve(pp, Z)→ s. Given a TLP Z, the puzzle solving algorithm requires at least T sequential steps to output
the solution s.

Informally, we say that a TLP scheme is correct if TLP.Gen is efficiently computable and TLP.Solve always
recovers the original solution s to a validly constructed puzzle. A TLP scheme is secure if Z hides the solution
s and no adversary can compute TLP.Solve in fewer than T steps with non-negligible probability. For the formal
definitions, we refer the reader to [MT19].

Homomorphic TLPs. Malavolta and Thyagarajan [MT19] introduce homomorphic TLPs (HTLPs). An HTLP
is defined with respect to a circuit class C and has an additional algorithm, Eval, defined as:

HTLP.Eval(pp, C, Z1, . . . , Zm)→ Z∗. Given the public parameters, a circuit C ∈ C where C : Gm → G, and input
puzzles Z1, . . . , Zm, the homomorphic evaluation algorithm outputs a puzzle Z∗.

Correctness requires that HTLP.Solve(Z∗) should contain the expected solution, namely C(s1, . . . , sm), where
si ← HTLP.Solve(Zi). Again, we refer the reader to [MT19] for the formal definition. Moving forward, we will use
⊞ for homomorphic addition and · for scalar multiplication of HTLPs.

Malavolta and Thyagarajan [MT19] construct two HTLPs with, respectively, linear and multiplicative homo-
morphisms in groups of unknown order. For our purposes we are only interested in the former, which is based on

the Paillier cryptosystem [Pai99]. It uses N = pq a strong semiprime, g
R← Z∗

N and h = g2
T

, and has solution space
ZN :

Z := (gr, hr·N (1 +N)s) ∈ JN × Z∗
N2 (1)

To recover s, a solver must recompute hr = (gr)2
T

, which is believed to be inherently sequential in a group of
unknown order.

As an alternative, we introduce a novel linear HTLP based on the exponential ElGamal cryptosystem [CGS97]
which is more efficient when the solution space S ⊂ ZN is small:

Z := (gr, hrys) ∈ (Z∗
N )2 (2)

where g, y
R← Z∗

N and again h = g2
T

. This scheme is only practical for small S since, in addition to recomputing
hr, recovering s requires brute-forcing the discrete modulus of ys. We discuss the efficiency trade-off between these
two constructions in Section 6.1 and relegate the construction details to Appendix A.2.
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Non-malleability. Introducing a homomorphism raises the issue of puzzle malleability, i.e., the possibility of
“mauling” one puzzle (whose solution may be unknown) into a puzzle with a related solution. This could lead to
issues when HTLPs are deployed in larger systems, prompting research into non-malleable TLPs [FKPS21]. In our
case, we define non-malleability at the system level (Section 4).

3.4 Non-interactive zero-knowledge proofs

A proof system Π = (Setup,Prove,Verify) is defined with respect to relation RL with NP language L with statement-
witness pairs (x;ω) ∈ RL. We will use non-interactive zero-knowledge proofs (NIZKs) to enforce well-formedness
of user submissions while maintaining their secrecy. This prevents users from “poisoning” the aggregate HTLP
maintained by the on-chain coordinator. For efficiency, we make use of custom NIZKs (see Appendix C). We refer
to [Tha23] for the formal security definitions of NIZKs (soundness and zero-knowledge).

Applied NIZKs in Groups of Unknown Order. Since submissions will be instantiated as HTLPs in our
application and all known HTLP constructions use groups of unknown order, our proofs of well-formedness must
also operate over these groups. Previous ballot correctness proofs [Gro05] and Σ-protocols generally operate in
groups of prime order and cannot directly be applied in groups of unknown order [BCM05]. To circumvent these
impossibility results, we follow the blueprint of [BBF19] and instantiate our protocols in the generic groups of
unknown order [DK02] with a common reference string. We detail our constructions in Appendix C.

4 Syntax of Time-Locked Voting and Auction Protocols

We now introduce a generic syntax for a time-locked voting/auction protocol. Any such protocol is defined with re-
spect to a base scoring function Σ (e.g., second-price auction, range voting). Given a tally submissions (bids/ballots)
s1, . . . , sn ∈ X , let Σ(s1, . . . , sn) : Xn → Y be the result of the election/auction.

Definition 2 (Time-locked voting/auction protocol). A time-locked voting/auction protocol ΠΣ = (Setup,Seal,
Aggr,Open,Finalize) is defined with respect to a base voting/auction protocol Σ : Xn → Y.

Setup(1λ, T )
R→ (pp,Z). Given a security parameter λ and a time parameter T , output public parameters pp and

an initial list of HTLP(s) Z that corresponds to the running tally or bid computation.

Seal(pp, i, s)
R→ (Zi, πi). User i ∈ [n] wraps its submission s ∈ X in a (list of) HTLP(s) Zi. It also outputs a proof

of well-formedness πi.

Aggr(pp,Z, i,Zi, πi)→ Z ′. Given a list of (tally) HTLPs Z, time-locked submission Zi of user i, and proof πi, the
transparent contract potentially aggregates the sealed submission homomorphically into Z to get an updated
(tally) Z ′.

Open(pp,Z)→ (S, πopen). Open Z to solution(s) S, requiring T sequential steps, and compute a proof πopen to prove
correctness of S.

Finalize(pp,Z,S, πopen)→ {y,⊥}. Given proposed solution(s) S to Z with proof πopen, the coordinator may run some
computation on S to compute the final result y ∈ Y, or reject S.

We note that the Setup(·) algorithm in our protocols may use private randomness. In particular, our construc-
tions use cryptographic groups (RSA and Paillier groups) that cannot be efficiently instantiated without a trusted
setup (an untrusted setup would require gigantic moduli [San99]). This trust can be minimized by generating the
group via a distributed trusted setup, e.g., [BF01, CHI+21, DM10]. Alternatively, the HTLPs in our protocols
could be instantiated in class groups [TCLM21], which do not require a trusted setup; however, HTLPs in class
groups are less efficient and verifying them on-chain would be prohibitively costly.

A time-locked voting/auction protocol ΠΣ must satisfy the following informal security properties. We define
these formally in Appendix B.

Correctness. ΠΣ is correct if, assuming setup, submission of n puzzles, aggregation of all n submissions, and
opening are all performed honestly, the finalization procedure outputs a winner consistent with the base
protocol Σ.
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Submission privacy. The scheme satisfies submission privacy if the adversary cannot distinguish between two
submissions, i.e., bids or ballots. Note that this property is only ensured up to time T .

Non-malleability. Notice that submission privacy alone does not suffice for security: even without knowing the
contents of other puzzles, an adversary could submit a value that depends on other participants’ (sealed)
submissions. For example, in an auction, one could be guaranteed to win by homomorphically computing an
HTLP containing the sum of all the other participants’ bids plus a small value ϵ. Therefore, we also require
non-malleability, which requires that no participant can take another’s submission and replay it or “maul” it
into a valid submission under its own name.

A note on anonymity. We consider user anonymity an orthogonal problem. In the applications we have in mind,
users can increase their anonymity by using zero-knowledge mixers [PSS19] or other privacy-enhancing overlays,
e.g., zero-knowledge sets [Eth19]. Additionally, users can decouple their identities from their ballots by applying
a verifiable shuffle [Nef01], although the on-chain verification of a shuffle proof might be prohibitively costly for
larger elections. In Section 7.1 we describe how our protocols can be extended to achieve bid privacy even after the
election ends, thus disclosing nothing besides a user’s (non-)participation.

5 The Cicada framework

5.1 Efficient vector encoding for HTLPs

In many voting schemes, a ballot consists of a vector indicating the voter’s relative preferences or point allocations
for all m candidates. To avoid solving many HTLPs, it is desirable to encode this vector into a single HTLP, which
requires representing the vector as a single integer.

Definition 3 (Packing scheme). A setup algorithm PSetup and pair of efficiently computable bijective functions
(Pack,Unpack) is called a packing scheme and has the following syntax:

• PSetup(ℓ, w)→ pp. Given a vector dimension ℓ and maximum entry w, output public parameters pp.

• Pack(pp,a)→ s. Encode a ∈ (Z+)ℓ as a positive integer s ∈ Z+.

• Unpack(pp, s)→ a. Given s ∈ Z+, recover a vector a ∈ (Z+)ℓ.

For correctness we require Unpack(Pack(a)) = a for all a ∈ (Z+)ℓ.

The classic approach to packing [Gro05, HS00] uses a positional numeral system (PNS) to encode a vector
of entries bounded by w as a single integer in base M := w (see Construction 1 below). Instead, we will set
M := nw + 1 to accommodate the homomorphic addition of all n users’ vectors: each voter submits a length-m
vector with entries ≤ w. Summing over n voters, the result is a length-m vector with a maximum entry value nw;
to prevent overflow, we set M = nw + 1.

Construction 1 (Packing from Positional Numeral System).

• PSetup(ℓ, w)→M : Return M := w + 1.

• Pack(M,a)→ s : Output s :=
∑|a|

j=1 ajM
j−1.

• Unpack(M, s)→ a : Let ℓ := ⌈logM s⌉. For j ∈ [ℓ], compute the jth entry of a as aj := s mod M j−1.

We also introduce an alternative approach in Construction 2 which is based on the residue numeral system
(RNS). The idea of the RNS packing is to interpret the entries of a as prime residues of a single unique integer
s, which can be found efficiently using the Chinese Remainder Theorem (CRT). In other words, for all j ∈ [ℓ], s
captures aj as s mod pj .

Construction 2 (Packing from Residue Numeral System).

• PSetup(ℓ, w) → p : Let M := w + 1 and sample ℓ distinct primes p1, . . . , pℓ s.t. pj ≥ M ∀j ∈ [ℓ]. Return
p := (p1, . . . , pℓ).

• Pack(p,a)→ s: Given a ∈ (Z+)ℓ, use the CRT to find the unique s ∈ Z+ s.t. s ≡ aj (mod pj) ∀j ∈ [ℓ].

• Unpack(p, s)→ a: return (a1, . . . , aℓ) where aj ≡ s mod pj ∀j ∈ [ℓ].

6



The Cicada Framework
Let Σ : Xn → Y be an linear voting/auction scheme where X = [0, w]m, HTLP a linear HTLP, T ∈ N be a
time parameter representing the election/auction length, and a packing scheme (PSetup,Pack,Unpack). Let
NIZK be a NIZKPoK for submission correctness (the language depends on Σ and HTLP) and PoE a proof of
exponentiation (see Appendix C).

Setup(1λ, T, ℓ)
R→ (pp,Z). Set up the public parameters ppNIZK

R← NIZK.Setup(1λ), pptlp
R← HTLP.Setup(1λ, T ),

and pppack ← PSetup(ℓ, w). Let Z = {Zj}j∈[m/ℓ] where Zj
R← HTLP.Gen(0). Output pp :=

(pptlp, pppack, ppNIZK) and Z.

Seal(pp, i,vi)
R→ (Zi, πi). Parse vi := vi,1||. . . ||vi,m/ℓ. Compute Zi,j ← HTLP.Gen(Pack(vi,j)) ∀j ∈ [m/ℓ] and

πi ← NIZK.Prove((i,Zi),vi). Output (Zi := {Zi,j}j∈[m/ℓ], πi)

Aggr(pp,Z, i,Zi, πi)→ Z ′. If NIZK.Verify((i,Zi), πi) = 1, update Z to Z ⊞ Zi.

Open(pp,Z)→ (S, πopen). Parse Z := {Zj}j∈[m/ℓ] and solve for the encoded tally S = {sj}j∈[m/ℓ] where
sj ← HTLP.Solve(Zj). Prove the correctness of the solution(s) as πopen ← PoE.Prove(S,Z, 2T ) and
output (S, πopen).

Finalize(pp,Z,S, πopen)→ {y,⊥}. If PoE.Verify(S,Z, 2T , πopen) ̸= 1, return ⊥. Otherwise, parse S :=
{sj}j∈[m/ℓ] and let v := v1||. . . ||vm/ℓ, where vj ← Unpack(sj) ∀j ∈ [m/ℓ]. Output y such that y = Σ(v).

Figure 2: The Cicada framework for non-interactive private auctions and elections.

A major advantage of this approach is that, in contrast to the PNS approach, which is only homomorphic
for SIMD (single instruction, multiple data) addition, the RNS encoding is fully SIMD homomorphic: the sum
of vector encodings

∑
i∈[n] si encodes the vector a+ =

∑
i∈[n] ai, and the product

∏
i∈[n] si encodes the vector

a× =
∏

i∈[n] ai. Note that as in the PNS approach, we set M = nw + 1 to accommodate homomorphic addition
of submissions; homomorphic multiplication, however, would require M = wn + 1, and the primes in p would
therefore be larger as well. Although the RNS has found application in error correction [KPT+22, TC14], side-
channel resistance [PFPB19], and parallelization of arithmetic computations [AHK17, BDM06, GTN11, VNL+20],
to our knowledge it has not been applied to voting schemes. We show in Appendix D.1 that RNS is in fact a natural
fit for some voting schemes, leading to more efficient proofs of ballot correctness.

5.2 Our framework

We present Cicada, our framework for non-interactive private auctions/elections, in Figure 2. Cicada can be applied
to voting and auction schemes with a linear scoring function Σ : Xn → Y. The framework is instantiated with a
linear HTLP (Section 3.3), vector packing scheme (Section 5.1), and matching NIZK for membership in X to ensure
the correctness of submissions.

Theorem 1. Given a linear scoring function Σ, a secure NIZKPoK NIZK, a secure HTLP, and a packing scheme
(PSetup,Pack,Unpack), the Cicada protocol ΠΣ (Figure 2) is a secure time-locked voting/auction protocol.

Intuitively, submission privacy follows from the security of the HTLP and zero-knowledge of the NIZK used: the
submission can’t be opened before time T and none of the proofs leak any information about it. Non-malleability
is enforced by requiring the NIZK to be a proof of knowledge and including the user’s identity i in the instance to
prove, e.g., including it in the hash payload of the Fiat-Shamir transform. This prevents a malicious actor from
replaying a different user’s ballot correctness proof. We delegate the full proof to Appendix H.

As we will see below, this encompasses many commonly used schemes such as cumulative voting and sealed-bid
auctions. We note that Cicada introduces a crucial design choice via the packing parameter ℓ ∈ [m], which defines
a storage-computation trade-off that we detail in Section 6.1.

Additive voting. Many common voting schemes are “additive”, meaning each ballot (a length-m vector) is
simply added to the tally, and a function Σ is applied to the tally after the voting phase has ended to determine
the winner. Additive voting schemes include first-past-the-post (FPTP), approval, range, and cumulative voting.
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Simple ranked-choice voting schemes, e.g., Borda count [Eme13], are also additive, differing only in what qualifies
as a “proper” ballot (restrictions on vector entry domain, vector norm, etc.; see Table 2). Thus we can use Cicada
to instantiate private voting protocols for all these schemes.

Sealed-bid auctions. The Cicada framework can also be used to implement a sealed-bid auction with a number
of HTLPs which is independent of the number of participants n. Assuming bids are bounded by M , we use an
HTLP with solution space S such that |S| > Mn. Each user i submits Zi ← HTLP.Gen(bidi) and πi, where
πi proves 0 ≤ bidi ≤ M . A packing of the bids is computed at aggregation time, with Aggr updating Z to
Z ⊞ (M i−1 ·Zi). After the bidding phase, the final “tally” is opened to s∗ and the bids are recovered as Bids := {s∗
mod M i−1}i∈[n]. Any payment and allocation function can now be computed over the bids; in the simplest case,
the winner is argmaxi(Bids) and their payment is maxi(Bids). Notice that the full set of bids is revealed after
the auction concludes. This cannot be avoided when using Cicada with linear HTLPs, since maxi is a nonlinear
function, i.e., it cannot be computed it homomorphically.

Locking up collateral is necessary for every (private) auction scheme. We treat the problem of collateral lock-up
as an important but orthogonal problem and refer to [TAF+23] for an extensive discussion.

6 Performance evaluation

This section evaluates three instantiations of our Cicada framework (Section 5): binary voting, cumulative voting,
and a sealed-bid auction. We chose these schemes as they are the most often deployed in today’s blockchain
ecosystems [Ope23b, Opt, XWY+21]. We use the PNS packing system because, for these schemes, it results in
more efficient NIZKs than RNS.

6.1 Implementation

The choice of Paillier or exponential ElGamal (Equations (1) and (2)) as the HTLP depends on the number of users,
candidates, packing scheme, and the computational power of the off-chain solver(s). Exponential ElGamal supports
a limited range of n,m,w, as one must brute-force the logarithm of ys to recover the puzzle solution s, which is
upper bounded by (nw + 1)m assuming PNS packing. Assuming the largest discrete logarithm an off-chain solver
can be expected to brute force has τ bits if (nw + 1)m ≤ 22τ then exponential ElGamal can be used; otherwise,
Paillier must be used. It is also necessary that (nw + 1)m < |G| to preserve the correctness of our schemes. We
detail these limitations and explore the practical parameter range of each HTLP construction in Appendix E.

When both HTLP constructions are possible, exponential ElGamal is more efficient since it operates over Z∗
N

instead of Z∗
N2 , so we chose it for our implementation. Our transparent on-chain coordinator is implemented as an

Ethereum smart contract in Solidity.1 We targeted λ = 80 bits of statistical security, choosing a 1024-bit modulus
N . To enable 1024-bit modular arithmetic in Z∗

N , we developed a Solidity library, which may be of independent
interest.

The main factors influencing gas cost (see Section 6.2) are submission size, correctness proof size, and verification
complexity. These factors mainly depend on the packing parameter ℓ ∈ [m], which determines a storage-computation
trade-off with the following extremes:

One aggregate HTLP for all. If ℓ = m, the contract maintains a single aggregate HTLP Z. This greatly reduces
the on-chain space requirements of the resulting voting or auction scheme at the expense of typically more
complex and larger submission correctness proofs.

One aggregate HTLP per candidate. If ℓ = 1, the contract must maintain m aggregate HTLPs {Zj}j∈[m].
This increases the on-chain storage, but the submissions of correctness proofs become smaller and cheaper to
verify.

In Section 6.2, we empirically explore this trade-off space by measuring the gas costs of various deployments of our
framework with a range of parameter settings n,m,w, ℓ. First, we briefly describe the proof systems used for each
voting and auction scheme we implement; detailed descriptions are given in Appendix C.

1Open-sourced at https://github.com/a16z/cicada.
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Cumulative vote (ℓ = 1)

m 2 3 4 5 6

Aggr 3, 391, 514 5, 081, 542 6, 781, 389 8, 489, 786 10, 208, 185
Finalize 269, 505 397, 789 521, 895 644, 814 770, 934

Sealed-bid auction (ℓ = 1)

b 8 10 12 14 16

Aggr 3, 586, 022 4, 488, 050 5, 394, 047 6, 304, 164 7, 218, 905
Finalize 1, 005, 208 1, 253, 119 1, 497, 760 1, 749, 489 2, 003, 282

Table 3: Gas costs without packing for Cicada cumulative voting and sealed-bid auctions with various numbers
of candidates m and bid bit-lengths b (max. bid M = 2b−1). We discuss the cost of a maximally packed auction
(ℓ = b) in the text, since in that case it is independent of b.

Binary voting. In a binary vote (i.e., approval voting with m = 1), such as a simple yes/no referendum, users
prove that the submitted ballot Z = (u, v) is an exponential ElGamal HTLP with solution 0 or 1: (u = gr ∧ v =
hr) ∨ (u = gr ∧ vy−1 = hr). This is achieved via OR-composition [CDS94] of two Sigma protocols for discrete
logarithm equality [CP92].

Cumulative voting. In cumulative voting, each user distributes w votes among m candidates. To accommodate
a larger number of candidates, our implementation keeps m tally HTLPs Zj , one for each candidate (in other
words, ℓ = 1). Each voter i submits m ballots Zij = (grij , hrijysij ) for all j ∈ [m]. Besides proving (using the
protocol zk-PoKS) that each HTLP is well-formed (the same rij is used in both terms), the voter must prove that
0 ≤ sij ∀ j ∈ [m] and

∑m
j=1 sij = w. The first condition is shown with a proof of positive solution (zk-PoPS) via

Legendre’s three-square decomposition theorem [Gro05]. As a building block, we use a proof of square solution
(zk-PoKSqS) to show that a puzzle solution is a square. The second condition is proven by providing the randomness
Ri =

∏
j rij which opens

∏
j Zij to w.

Sealed-bid auction. To illustrate two extremes of the packing spectrum, we implement two flavors of sealed-bid
auctions. The first uses a single aggregate HTLP as described in Section 5 (this can be viewed as ℓ = b, where
b = ⌈log2(M)⌉ is the bit-length of a bid): Bidder i submits a single HTLP Zi = (gri , hriysi), proving well-formedness
with zk-PoKS and two zk-PoPS to show 0 ≤ s ≤ M . The coordinator aggregates the ith bidder’s bid by adding
M i−1 · Zi to its tally.

The second approach applies b aggregate HTLPs (i.e., ℓ = 1): Each bidder i submits b HTLPs {Zij}j∈[b] and
uses the same proof system as in binary voting to prove their well-formedness, i.e., the user inserted for each bit of
the bid 0 or 1. The coordinator adds 2i · Zij to each corresponding aggregate HTLP Zj .

6.2 Empirical Performance Evaluation

The on-chain cost of submitting a bid/ballot is the cost of running the Aggr function by the contract, i.e., the
verification of the well-formedness proofs plus adding the users’ submissions to the tally HTLPs (if and only if
they verify). We report our measurements without packing (i.e., ℓ = 1) in Table 3. Submitting a binary vote
ballot costs 418, 358 gas (≈ 11.02 USD).2 For cumulative voting, the submission cost scales linearly in m: with
m = 2 candidates, submitting a ballot costs 3, 586, 022 gas (≈ 94.49 USD), and each additional candidate adds
≈ 1, 699, 847 gas (≈ 44.79 USD).

An auction with a single HTLP for each bit of the bid (the ℓ = 1 case) requires a submission cost of 3, 586, 022
gas (≈ 94.49USD) for an 8-bit bid. Every additional bit in the submitted bid burns ≈ 451, 014 gas (≈ 11.89 USD).

On the other hand, if one applies packing, i.e., ℓ = b, then the cost of submitting a sealed bid is constant at
3, 055, 107 gas (≈ 80.50 USD). As seen in Table 3, with bid-space M = 27 it is already more economical to have a
single aggregate HTLP and use a packing scheme, despite more complex bid-correctness proofs.

2We can estimate gas costs for approval voting using the cost of binary voting, as the former uses a disjunction of m copies of the
same NIZK and thus scales linearly.

9



Our voting and auction schemes end with solving the tally HTLP(s) off-chain, i.e., computing (gr)2
T

(= hr).
With exponential ElGamal, solving the puzzle requires a brute-force discrete logarithm computation by the off-
chain solver party. The correctness of this computation is proven to the contract with Wesolowski’s proof of
exponentiation [Wes19] (recalled in Appendix C). The Finalize cost comes from verifying the Wesolowski proof(s)
on-chain, which burns 101, 090 gas (≈ 2.66 USD) per proof. Without packing, the untrusted solver must provide a
Wesolowski proof per tally HTLP, so the Finalize gas cost is linear in the number of tally HTLPs, as evidenced by
Table 3. A portion of the Wesolowki verification cost comes from checking that the challenge is a prime number. In
our implementation, the prover provides a primality certificate based on the Baillie-PSW primality test [PSW80],
whose verification costs 44, 972 gas (≈ 1.18 USD).

7 Extensions

7.1 Everlasting ballot privacy for HTLP-based protocols

The basic Cicada framework does not guarantee long-term ballot privacy, submissions are public after the Open
stage. This is because users publish their HTLPs on-chain: once public, the votes contained in the HTLPs are only
guaranteed to be hidden for the time it takes to compute T sequential steps, after which point it is plausible that
someone has computed the solution. In many applications, it is desirable that individual ballots remain hidden even
after voting has ended since the lack of everlasting privacy may facilitate coercion and vote-buying. As mentioned
in Section 4, this can be achieved modularly by first decoupling the ballots from their voters via a privacy-enhancing
overlay. Alternatively, we describe how the Seal procedure can be modified to prevent the opening of individual
ballots, achieving everlasting privacy.

Observe that all known efficient HTLP constructions are of the form (u, v) = (gr, h′rX)3, where the solution is

encoded in X and recovering it requires recomputing hr = (gr)2
T

via repeated squaring of the first component. Our
insight is that the puzzle information-theoretically hides the solution X without the first component. Publishing
gr is not necessary in any of our HTLP-based voting protocols except as a means to verifiably compute the first
component of the final HTLP, i.e., gR = g

∑
i∈[n] ri . Realizing that gR can be computed without revealing the

individual values gri enables us to construct the first practical, one-round, private voting protocols that guarantee
everlasting ballot privacy.

For simplicity, consider a protocol in which both the ballot of user i and the tally consists of a single HTLP,
respectively Zi = (gri , hriXi) and Z∗ = (gR, hRX∗). Observe that for everlasting ballot privacy, updates to Z∗

must inherently be batched: a singleton update Aggr(pp, Z∗, Zi, π)→ (gR+ri , hR+riY ∗) (for some Y ∗) would reveal
gri = gR+ri/gR, which is the opening information to Zi, as the quotient of the first component of Z∗ after and
before the update. Hence, the ballot of user i would be recoverable in T sequential steps.

Batching ballot submissions off-chain in groups of k allows parties to achieve everlasting privacy as long as at least
one party is honest. Intuitively, the parties compute their aggregate randomness gR =

∏
i g

ri and a proof πbatch of its
well-formedness in an MPC. Each party submits only the second component of its ballot to the contract, except party
1, who also submits gR. The updated tally HTLP Z∗ is computed as Aggr(pp, Z∗, {(gR, hr1X1), (g

0, hr2X2), . . . ,
(g0, hrkXk)}, πbatch), where πbatch additionally proves to the contract that dlogg(g

R) = dlogh(
∏

i h
riXi).

This idea opens up a new design space for the MPC protocol used for batching, such as doing the randomness
generation in a preprocessing phase instead, allowing dynamic additions to the anonymity set, optimizing the batch
proof generation, and dealing with parties who fail to submit.

7.2 Succinct ballot-correctness proofs

Real-world elections often have hundreds of candidates, e.g., Optimism’s retroactive public good funding [Opt].
However, the state-of-the-art ballot correctness proofs [BBCG+23, Gro05] for all voting schemes (e.g., majority,
approval voting, etc.) are linear in the number of candidates, rendering these schemes impractical in the blockchain
setting. To counter these issues, we design constant-size ballot correctness proofs with constant verification time
at the expense of an added preprocessing phase. The high-level idea is as follows. All correct ballots (e.g., ∀s ∈
{0, 1}m : Pack(s) in the case of approval voting) are inserted into an accumulator or polynomial commitment

(PC) [KZG10] during a transparent preprocessing phase. When users submit their votes Z
R← HTLP.Gen(s), they

prove in zero-knowledge that Z encodes a correct ballot, i.e., the users show that the solution s of Z had been

3In the exponential ElGamal case, h′ = h, while in the Paillier construction, h′ = hN (see Appendix A.2). We will drop the tickmark
on h′ in the remainder of this section to avoid notational clutter.
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previously inserted into the accumulator or PC with a succinct (blinded) membership proof [ZBK+22]. We detail
our succinct ballot-correctness proof using the KZG commitment in Appendix F.

8 Related work

The cryptographic literature on both voting schemes and sealed-bid auctions is enormous, dating to the 1990s.
However, the vast majority of these schemes are not suitable for a fully decentralized setting, either due to their
inefficiency or their reliance on trusted parties. Below, we review auction and voting protocols that use a blockchain
as the public bulletin board.

Voting. The study of voting schemes for blockchain applications dates to at least 2017, when McCorry et
al. [MSH17] proposed a “boardroom” voting protocol for DAO governance. The main disadvantage of their protocol
is that the entire protocol can be aborted due to a single party. Groth [Gro05] and Boneh et al. [BBCG+23] develop
techniques to create ballot correctness proofs for various voting schemes. These protocols all have proofs with size
linear in the number of candidates. We break this barrier with the application of polynomial commitments and
assuming a transparent, lightweight pre-processing phase. The application of HTLPs to voting was suggested when
they were proposed by Malavolta and Thyagarajan [MT19]. However, they left the details of making such a protocol
practical, secure, and efficient to future work. We aim to fill this gap with our techniques for various election types
and our EVM implementation.

Auctions. Auctions are a natural fit for blockchains and were suggested as early as 2018 [GY18], albeit with
a trusted auctioneer. Tyagi et al. proposed Riggs [TAF+23], a fair non-interactive auction scheme using timed
commitments [FKPS21, §6]. This is perhaps the closest work to ours in implementing auctions (though not voting)
in a fully decentralized setting using time-based cryptography, though their design does not utilize homomorphism
to combine puzzles. As a result, gas costs are high and to achieve practicality Riggs relies on an optimistic second
round in which users voluntarily open their puzzles. Chvojka et al. suggest a TLP-based protocol for both e-voting
and auctions [CJSS21]. Their protocol has a per-auction trusted setup. In Appendix G, we propose a distributed
setup protocol to reduce the trust assumption, which may be of independent interest.

Time-based cryptography. Time-based cryptography, which uses inherently sequential functions to delay the
revelation of information, also has a lengthy history dating to Rivest, Shamir and Wagner’s proposal of time-lock
encryption in 1996 [RSW96]. Numerous variants have emerged since then, including timed commitments [BN00],
proofs-of-sequential-work [MMV13], VDFs [BBBF18], and homomorphic time-lock puzzles [MT19], which we employ
here. For a recent survey we refer the reader to Medley et al. [MLQ23]. The only practical work we know of taking
advantage of HTLPs is Bicorn [CATB23], which builds a distributed randomness beacon with a single aggregate
HTLP for an arbitrary number of entropy contributors.

9 Conclusion and Future Directions

In this work, we introduced Cicada, a framework for creating non-interactive private auction and voting schemes
from HTLPs. Our evaluation shows that these schemes can be deployed today on Ethereum, although with gas costs
equivalent to tens to hundreds of dollars. In the short-term, deploying on Layer 2 (L2) already brings these costs
down by 1–2 orders of magnitude. For example, casting a binary vote using our scheme costs less than US$0.30 today
when our implementation is deployed on the Optimism L2 rollup. These numbers can be improved using additional
optimizations (e.g., Karatsuba multiplication [KO62] and batched Wesolowski proof verification [Rot21]). In the
future, we expect that Cicada verification will be implemented using efficient zkSNARKs (e.g., Groth16 [Gro16],
Plonk [GWC19], etc.) to minimize on-chain verification and storage costs.
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sions. This work was supported by a16z crypto research. Joseph Bonneau was additionally supported by DARPA
Agreement and NSF grant CNS-2239975. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the United States Government,
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[COPZ22] Melissa Chase, Michele Orrù, Trevor Perrin, and Greg Zaverucha. Proofs of discrete logarithm equality
across groups. Cryptology ePrint Archive, 2022. [page 24.]

12



[CP92] David Chaum and Torben Pryds Pedersen. Wallet databases with observers. In CRYPTO, 1992.
[pages 9 and 19.]

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against adap-
tive chosen ciphertext attack. In CRYPTO, 1998. [page 24.]

[DK02] Ivan Damg̊ard and Maciej Koprowski. Generic lower bounds for root extraction and signature schemes
in general groups. In Eurocrypt, 2002. [page 5.]

[DM10] Ivan Damg̊ard and Gert Læssøe Mikkelsen. Efficient, robust and constant-round distributed rsa key
generation. In TCC, 2010. [page 5.]

[EL03] Edith Elkind and Helger Lipmaa. Interleaving cryptography and mechanism design: The case of online
auctions. Cryptology ePrint Archive, Paper 2003/021, 2003. [page 1.]

[Eme13] Peter Emerson. The original Borda count and partial voting. Social Choice and Welfare, 40:353–358,
2013. [pages 8 and 15.]

[Eth19] Ethereum Foundation. Semaphore: a zero-knowledge set implementation for ethereum., May 2019.
[page 6.]

[Exp] Privacy Scaling Explorations. Perpetual powers of tau. [page 24.]

[FG14] Jon Fraenkel and Bernard Grofman. The Borda Count and its real-world alternatives: Comparing
scoring rules in Nauru and Slovenia. Australian Journal of Political Science, 49(2), 2014. [page 15.]

[FKPS21] Cody Freitag, Ilan Komargodski, Rafael Pass, and Naomi Sirkin. Non-malleable time-lock puzzles and
applications. In TCC, 2021. [pages 5 and 11.]

[FMW22] Robin Fritsch, Marino Müller, and Roger Wattenhofer. Analyzing voting power in decentralized gov-
ernance: Who controls DAOs? arXiv preprint arXiv:2204.01176, 2022. [page 1.]

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature
problems. In CRYPTO, 1987. [page 25.]

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009. [pages 1 and 2.]

[Gro05] Jens Groth. Non-interactive zero-knowledge arguments for voting. In ACNS, pages 467–482, 2005.
[pages 5, 6, 9, 10, 11, 19, 20, and 26.]

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Eurocrypt, 2016. [page 11.]

[GTN11] Mahadevan Gomathisankaran, Akhilesh Tyagi, and Kamesh Namuduri. Horns: A homomorphic en-
cryption scheme for cloud computing using residue number system. In 2011 45th Annual Conference
on Information Sciences and Systems, pages 1–5, 2011. [page 7.]

[GWC19] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk: Permutations over lagrange-bases
for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, 2019. [page 11.]

[GY18] Hisham S. Galal and Amr M. Youssef. Verifiable sealed-bid auction on the ethereum blockchain.
Cryptology ePrint Archive, Paper 2018/704, 2018. [pages 1, 2, and 11.]

[HS00] Martin Hirt and Kazue Sako. Efficient receipt-free voting based on homomorphic encryption. In
Eurocrypt, 2000. [page 6.]

[KL51] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathematical
statistics, 22(1):79–86, 1951. [page 21.]

[KO62] Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-digital numbers by automatic
computers. Doklady Akademii Nauk, 145(2):293–294, 1962. [page 11.]

[KPT+22] Igor Anatolyevich Kalmykov, Vladimir Petrovich Pashintsev, Kamil Talyatovich Tyncherov, Alek-
sandr Anatolyevich Olenev, and Nikita Konstantinovich Chistousov. Error-correction coding using
polynomial residue number system. Applied Sciences, 12(7):3365, 2022. [page 7.]

13



[KZG10] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials
and their applications. In Asiacrypt, 2010. [pages 10 and 23.]

[LW18] Steven P Lalley and E Glen Weyl. Quadratic voting: How mechanism design can radicalize democracy.
In AEA Papers and Proceedings, volume 108, 2018. [page 20.]

[MLQ23] Liam Medley, Angelique Faye Loe, and Elizabeth A. Quaglia. SoK: Delay-based Cryptography. In
Computer Security Foundations, 2023. [page 11.]

[MMV13] Mohammad Mahmoody, Tal Moran, and Salil Vadhan. Publicly verifiable proofs of sequential work.
In ITCS, 2013. [page 11.]

[MSH17] Patrick McCorry, Siamak F Shahandashti, and Feng Hao. A smart contract for boardroom voting with
maximum voter privacy. In Financial Crypto, 2017. [page 11.]

[MT19] Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. Homomorphic time-lock puzzles and ap-
plications. In CRYPTO, 2019. [pages 2, 4, 11, 16, and 24.]

[Nef01] C Andrew Neff. A verifiable secret shuffle and its application to e-voting. In ACM CCS, 2001. [page 6.]

[NRBB22] Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh. Powers-of-tau to the people:
Decentralizing setup ceremonies. Cryptology ePrint Archive, 2022. [page 24.]

[Ope23a] OpeanSea. How to buy an NFT, June 2023. [page 1.]

[Ope23b] OpeanSea. How to sell an NFT, June 2023. [pages 1 and 8.]

[Opt] Optimism. Optimism RetroPGF 2: Badgeholder manual. Accessed 2023-09-18. [pages 8 and 10.]

[Opt23] Optimism. What is the Optimism Collective?, February 2023. [page 1.]

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Eurocrypt,
1999. [pages 4 and 16.]

[Ped92] Torben Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
CRYPTO, 1992. [page 18.]

[PFPB19] Louiza Papachristodoulou, Apostolos P Fournaris, Kostas Papagiannopoulos, and Lejla Batina. Prac-
tical evaluation of protected residue number system scalar multiplication. CHES, 2019. [page 7.]

[Pie18] Krzysztof Pietrzak. Simple verifiable delay functions. In 10th innovations in theoretical computer
science conference (itcs 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. [page 18.]

[Pol78] John M Pollard. Monte carlo methods for index computation (mod p). Mathematics of computation,
32(143):918–924, 1978. [page 22.]

[Pre04] Drazen Prelec. A bayesian truth serum for subjective data. science, 306(5695):462–466, 2004. [page 21.]

[PRF23] Mallesh Pai, Max Resnick, and Elijah Fox. Censorship resistance in on-chain auctions. arXiv preprint
arXiv:2301.13321, 2023. [page 1.]

[PSS19] Alexey Pertsev, Roman Semenov, and Roman Storm. Tornado cash privacy solution version 1.4.
Tornado cash privacy solution version, 1, 2019. [page 6.]

[PSW80] Carl Pomerance, John L Selfridge, and Samuel S Wagstaff. The pseudoprimes to 25 10ˆ9. Mathematics
of Computation, 35(151):1003–1026, 1980. [pages 10 and 18.]

[Rot21] Lior Rotem. Simple and efficient batch verification techniques for verifiable delay functions. In TCC,
2021. [page 11.]

[RSW96] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release crypto.
Technical Report 486, Massachusetts Institute of Technology. Laboratory for Computer Science, 1996.
[pages 2, 4, and 11.]

14



[San99] Tomas Sander. Efficient accumulators without trapdoor extended abstract. In Information and Com-
munication Security, 1999. [page 5.]

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In CRYPTO, 1990. [pages 19

and 24.]

[SY03] Koutarou Suzuki and Makoto Yokoo. Secure Generalized Vickrey Auction Using Homomorphic En-
cryption. In Financial Cryptography, 2003. [page 1.]

[TAF+23] Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Mazières. Riggs:
Decentralized sealed-bid auctions. ACM CCS, 2023. [pages 8 and 11.]

[TC14] Thian Fatt Tay and Chip-Hong Chang. A new algorithm for single residue digit error correction in
redundant residue number system. In 2014 IEEE International Symposium on Circuits and Systems
(ISCAS), pages 1748–1751, 2014. [page 7.]

[TCLM21] Sri Aravinda Krishnan Thyagarajan, Guilhem Castagnos, Fabian Laguillaumie, and Giulio Malavolta.
Efficient cca timed commitments in class groups. In ACM CCS, 2021. [pages 5 and 23.]

[TGB+21] Sri Aravinda Krishnan Thyagarajan, Tiantian Gong, Adithya Bhat, Aniket Kate, and Dominique
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A Extended Preliminaries

In this section, we detail the preliminaries that we could not include in the main body of the paper due to space
constraints.

A.1 Voting schemes

Majority, approval, range, and cumulative voting. In the majority (or sometimes) binary voting scheme,
users can cast 0 (oppose) or 1 (support) for a given candidate (or cause). Approval voting is a slight generalization
of binary voting, where users can submit several binary votes for multiple candidates, i.e., the cast ballot s can be
seen as s ∈ {0, 1}m, where m is the number of causes. In a range voting scheme (or score voting), users can give
each candidate some weight between 0 and w. A similar scheme is cumulative voting, where users can distribute w
votes (points) among the candidates. The schemes are summarized in Table 2.

Ranked-choice voting. In a ranked-choice voting scheme (often just ranked voting), voters can signal more
fine-grained preferences among m candidates. In the Borda count version [Eme13] of the ranked voting system,
each voter can cast m− 1 points to their first-choice candidate, m− 2 points to their second-choice candidate, etc.
In general, they can cast m− k points to their kth choice. Several other counting functions exist for ranked voting,
but in this work, we only focus on Borda counts. Our protocols can easily be adapted to other counting functions,
such as the Dowdall system [FG14] via minor modifications.
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Construction 3 (Linear HTLP [MT19].).

HTLP.Setup(1λ, T )
R→ pp. Sample a strong semiprime N and a generator g

R← Z∗
N , then compute h = g2

T

mod N ∈ Z∗
N . (This can be computed efficiently using the factorization of N). Output pp := (N, g, h).

HTLP.Gen(pp, s; r)→ Z. Given a value s ∈ ZN , use randomness r ∈ ZN2 to compute and output

Z := (gr mod N, hr·N · (1 +N)s mod N2) ∈ JN × Z∗
N2

HTLP.Open(pp, Z, r)→ s. Parse Z := (u, v) and compute w := u2T mod N = hr via repeated squaring.

Output s := (v/wN mod N2)−1
N .

HTLP.Eval(pp, f, Z1, Z2)→ Z. To evaluate a linear function f(x1, x2) = b+ a1x1 + a2x2 homomorphically on
puzzles Z1 := (u1, v1) and Z2 := (u2, v2), return

Z = (ua1
1 · u

a2
2 mod N, va1

1 · v
a2
2 · (1 +N)b mod N2).

Construction 4 (Multiplicative HTLP [MT19].).

HTLP.Setup(1λ, T )
R→ pp. Same as construction 3.

HTLP.Gen(pp, s; r)→ Z. Given a value s ∈ JN , use randomness r ∈ ZN2 to compute and output

Z := (gr mod N, hr · s mod N) ∈ Z∗
N × Z∗

N

HTLP.Open(pp, Z, r)→ s. Parse Z := (u, v) and compute w := u2T mod N = hr via repeated squaring.
Output s := v/w.

HTLP.Eval(pp, f, Z1, Z2)→ Z. To evaluate a multiplicative function f(x1, x2) = ax1x2 homomorphically on
puzzles Z1 := (u1, v1) and Z2 := (u2, v2), return

Z = (u1 · u2 mod N, a · v1 · v2 mod N)

Figure 3: The HTLP constructions of [MT19].

A.2 HTLP Constructions

Malavolta and Thyagarajan [MT19] give two HTLP constructions with linear and multiplicative homomorphisms,
respectively. They require N to be a strong semiprime, i.e., N = p · q such that p = 2p′ + 1 and q = 2q′ + 1
where p′, q′ are also prime. The linearly-homomorphic HTLP is based on Paillier encryption [Pai99], while the
multiplicative homomorphism is achieved by working over the subgroup JN ⊆ Z∗

N of elements with Jacobi symbol
+1. We recall their constructions in Figure 3.

Correctness of the linear HTLP holds because for all s ∈ ZN and Z = (u, v)← HTLP.Gen(pp, s),

HTLP.Open(pp, Z) =
(v/(hR)N mod N2)− 1

N
=

((1 +N)s)− 1

N
= s (3)

since (1+N)x = 1+Nx mod N2. Correctness of the homomorphism follows since for all linear functions f(x1, x2) =
b+ a1x1 + a2x2 and all Zi = (ui, vi) ∈ Im(HTLP.Gen(pp, si; ri)) for i ∈ {1, 2},4

HTLP.Eval(pp, f, Z1, Z2) = (ua1
1 · u

a2
2 , (1 +N)b · va1

1 · v
a2
2 )

= (gr1a1 · gr2a2 , (1 +N)b · hr1Na1 · (1 +N)s1a1 · hr2Na2 · (1 +N)s2a2)

= (gr1a1+r2a2 , h(r1a1+r2a2)·N · (1 +N)b+s1a1+s2a2)

= HTLP.Gen(pp, f(s1, s2); r1a1 + r2a2)

4For space and clarity we drop the moduli and assume that we are working in the appropriate ring in each coordinate (namely ZN

and ZN2 , respectively).
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Construction 5 (Efficient linear HTLP.).

HTLP.Setup(1λ, T )
R→ pp. Same as constructions 3 and 4.

HTLP.Gen(pp, s; r)→ Z. Given a value s ∈ S ⊂ ZN , use randomness r ∈ ZN to compute and output

Z := (gr mod N, hr · ys mod N) ∈ Z∗
N × Z∗

N

HTLP.Open(pp, Z, r)→ s. Parse Z := (u, v) and compute w := u2T mod N = hr via repeated squaring.
Compute S := v/w and brute force the discrete logarithm of S w.r.t. y to obtain s.

HTLP.Eval(pp, f, Z1, Z2)→ Z. To evaluate a linear function f(x1, x2) = b+ a1x1 + a2x2 homomorphically on
puzzles Z1 := (u1, v1) and Z2 := (u2, v2), return

Z = (ua1
1 · u

a2
2 mod N, va1

1 · v
a2
2 · yb mod N).

Figure 4: Efficient linear HTLP for small solution space.

which opens to f(s1, s2) by eq. (3).
The multiplicative HTLP operates over the solution space JN (instead of ZN ). It is easy to see that HTLP.Open(pp,

HTLP.Gen(pp, s)) = s for all s ∈ Z∗
N . Furthermore, for all f(x1, x2) = ax1x2 and all Zi = (ui, vi) ∈ Im(HTLP.Gen(pp,

si; ri)) for i ∈ {1, 2},

HTLP.Eval(pp, f, Z1, Z2) = (u1 · u2 mod N, a · v1 · v2 mod N)

= (gr1gr2 mod N, hr1hr2 · as1s2 mod N)

= (gr1+r2 mod N, hr1+r2 · as1s2 mod N)

= HTLP.Gen(pp, f(s1, s2); r1 + r2).

Thus correctness holds.
Lifting the multiplicative HTLP to put s in the exponent yields a more efficient linear HTLP for a small solution

space S ⊂ ZN (Figure 4, changes shown in blue). This can be viewed as a construction based on exponential ElGamal
encryption.

B Properties of Time-Locked Voting/Auction Protocols

Here we formally define the properties of time-locked voting/auction protocols (Definition 2).

Definition 4 (Correctness). We say a voting/auction protocol ΠΣ with Σ : Xn → Y is correct if for all T, λ ∈ N
and submissions s1, . . . , sn ∈ X ,

Pr

Finalize(pp,Zfinal,S, πopen)

= Σ(s1, . . . , sn)

∣∣∣∣∣∣∣∣∣
(pp,Z) R← Setup(1λ, T ) ∧

(Zi, πi)
R← Seal(pp, i, si) ∀i ∈ [n] ∧

Zfinal ← Aggr(pp,Z, {i,Zi, πi}i∈[n]) ∧
(S, πopen)← Open(pp,Zfinal)

 = 1

where the aggregation step is performed over all n submissions in any order.

Definition 5 (Submission privacy). We say that a voting/auction protocol ΠΣ with Σ : Xn → Y is submission
private if for all T, λ ∈ N, i ∈ [n] and all PPT adversaries A running in at most T sequential steps, there exists a
negligible function negl(·) such that

Pr

b = b′

∣∣∣∣∣∣∣∣∣
(pp,Z) R← Setup(1λ, T ) ∧

b
R← {0, 1} ∧

(Zi, πi)
R← Seal(pp, i, b) ∧

b′ ← A(pp,Z, i,Zi, πi)

 ≤ 1

2
+ negl(λ).
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Definition 6 (Non-malleability). We say that a voting/auction protocol ΠΣ with Σ : Xn → Y is non-malleable if
for all T, λ ∈ N and all PPT adversaries A running in at most T sequential steps, there exists a negligible function
negl(·) such that

Pr

[
Aggr(pp,Z, i,Zi, πi) ̸= Z ∧

(i, ·,Zi, πi) /∈ Q

∣∣∣∣∣ (pp,Z) R← Setup(1λ, T ) ∧
(i,Zi, πi)← AOSeal(pp,·,·)(pp,Z)

]
≤ negl(λ)

where OSeal(pp, ·, ·) is an oracle which takes as input any j ∈ [n] and sj ∈ X and outputs (Zj , πj)
R← Seal(pp, j, sj),

and Q is the set of queries and responses (j, sj ,Zj , πj) to the oracle.

C HTLP ballot correctness proofs

C.1 Proof of Solution

During the finalization phase of a our protocol, any party can solve the final HTLP off-chain and submit a solution
to the contract. To enforce the correctness of this solution we require the solver to include a proof of the following
relation:

RPoS = {((h, y, u, v, w ∈ G, s ∈ Z);⊥) : w = u2T ∧ v = wys ∈ G} (4)

This can be realized as the conjunction of two proofs of exponentiation, namely for w = u2T and for ys = v/w.
In more detail, a Proof of Exponentiation (PoE) [Pie18, Wes19] is a proof for the following relation:

RPoE = {((u,w ∈ G, x ∈ Z);⊥) : w = ux ∈ G}

Note that there is no witness in the RPoE relation, i.e., the verifier knows the exponent x. The primary goal of
the PoE proof system for the verifier is to outsource a possibly large exponentiation in a group G of unknown order.

Wesolowski’s proof of exponentiation protocol (PoE)

Public parameters: G R← GGen(λ).
Public inputs: u,w ∈ G, x ∈ Z.
Claim: ux = w.

1. V sends l
R← Primes(λ) to P.

2. P computes q = ⌊xl ⌋ ∈ Z ∧ r ∈ [l], where x = ql + r. P sends Q = uq ∈ G to V.

3. V computes r = x mod l.

V accepts iff w = Qlur.

Observe that the verifier sends a prime number as a challenge. When we make this protocol non-interactive via
the Fiat-Shamir transform, we use a standard HashToPrime(·) function to generate the correct challenge for the
prover. In our implementation, we use the Baillie-PSW primality test [PSW80] to show that a randomly hashed
challenge is indeed prime.

C.2 Proofs of well-formedness

To prove that HTLP ballots are well-formed during the submission phase, we will use several different proofs of
knowledge about TLP solutions. We assume HTLPs of the form (u, v) = (gr, hrys) ∈ G1 × G2, where G1,G2

are groups of unknown order. This captures all known constructions of HTLPs: in the case of the Paillier HTLP

(Construction 3), G1 = JN , G2 = Z∗
N2 , h = (g2

T

)N , and y = 1 + N . For the exponential ElGamal HTLP

(Construction 5), G1 = G2 = Z∗
N , h = g2

T

, and y ∈ G1. Most of our protocols make use of the fact that for such
HTLPs, v has the same structure as a Pedersen commitment [Ped92].

Since we are operating in groups of unknown order, to circumvent the impossibility result of [BCK10] and
achieve negligible soundness error for Schnorr-style Sigma protocols, we assume access to some public element(s) of
G1,G2 whose representations are unknown. We prove security assuming G1,G2 are generic groups output by some
randomized algorithm GGen(λ). For more on instantiating Schnorr-style protocols in groups of unknown order
while maintaining negligible soundness error, see [BBF19].
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Well-formedness and knowledge of solution. To prove knowledge of a puzzle solution in zero-knowledge, our
starting point is the folklore Schnorr-style protocol for knowledge of a Pedersen-committed value. Our protocol
zk-PoKS is shown below.

zkPoK of TLP solution (zk-PoKS)

Public parameters: G1,G2
R← GGen(λ), b > 22λ|Gi| ∀i ∈ {1, 2}, and g ∈ G1, h, y ∈ G2.

Public input: HTLP Z = (u, v).
Private input: s, r ∈ Z such that Z = (gr, hrys).

1. P samples α, β
R← [−b, b] and sends A := hαyβ , B := gα to V.

2. V sends a challenge e
R← [2λ].

3. P computes w = re+ α and x = se+ β, which it sends to V.

V accepts iff the following hold:

veA = hwyx

ueB = gw

Equality of solutions. Again, our starting point is the folklore protocol of equality of Pedersen-committed
values: given two HTLPs with second terms v1, v2, if the solutions are equal the quotient is v1/v2 = hr1−r2 . To
prove the equality of the solutions, it therefore suffices to show knowledge of the discrete logarithm of v1/v2 with
respect to h using Schnorr’s classic Sigma protocol [Sch90] with the previously described adjustments. Because of
its simplicity we do not explicitly write out the protocol, which we will refer to as zk-PoSEq.

Binary solution. In an FPTP (or majority) vote for m = 2 candidates, users only need to prove that their ballot
(gr, hrys) encodes 0 or 1. More formally, users prove the statement (u = gr ∧ v = hr)∨ (u = gr ∧ vy−1 = hr). This
can be proved using the OR-composition [CDS94] of two discrete logarithm equality proofs [CP92] with respect to
bases g and h and discrete logarithm r. A similar proof strategy could be applied if the user has multiple binary
choices, e.g., approval and range voting. The OR-composition of multiple discrete logarithm equality proofs yields
a secure ballot correctness proof for those voting schemes.

Positive solution. We use Groth’s trick [Gro05], based on the classical Legendre three-square theorem from
number theory, to show that a puzzle solution s is positive by showing that 4s + 1 can be written as the sum of
three squares. Our protocol deals only with the second component of the TLP, making use of the proof of solution
equality (zk-PoSEq) described above and a proof that a TLP solution is the square of another (zk-PoKSqS, described
next).

Proof of positive solution (zk-PoPS)

Public parameters: G2
R← GGen(λ), a secure HTLP, and h, y ∈ G2.

Public input: v ∈ G2 such that (·, v) ∈ Im(HTLP.Gen).
Private input: s, r ∈ Z such that v = hrys and s > 0.

1. Find three integers s1, s2, s3 ∈ Z such that 4s + 1 = s21 + s22 + s23 and, for each j = 1, 2, 3, compute two
HTLPs:

Zj ← HTLP.Gen(sj)

Z ′
j ← HTLP.Gen(s2j )

2. Use zk-PoKSqS to compute a proof σj of square solution for each pair (Zj , Z
′
j) for j = 1, 2, 3.

3. Use zk-PoSEq to compute a proof σeq of solution equality for 4 · Z ⊞ 1 and Z ′
1 ⊞ Z ′

2 ⊞ Z ′
3.

The full proof consists of (σ1, σ2, σ3, σeq), all computed with the same challenge e ∈ [2λ].

19



Square solution. To prove that a puzzle solution is the square of another, we use a conjunction of two zk-PoKS
variants which proves knowledge of the same solution with respect to different bases. In particular, we consider
only the second terms v1 = hr1ys and v2 = hr2ys

2

. We use the fact that v2 can be rewritten as hr2−r1svs1 and prove
that its opening w.r.t. base v1 equals the opening of v1.

Proof of square solution (zk-PoKSqS)

Public parameters: G2
R← GGen(λ), b > 22λ|G2|, and h, y ∈ G2.

Public input: v1, v2 ∈ G2.
Private input: s, r1, r2 ∈ Z such that v1 = hr1ys and v2 = hr2ys

2

= hr2−r1svs1.

1. P samples α1, α2, β
R← [−b, b] and sends A1 := hα1yβ , A2 := hα2vβ1 to V.

2. V sends a challenge e
R← [2λ].

3. P computes w1 = r1e+ α1, w2 = (r2 − r1s)e+ α2, and x = se+ β, which it sends to V.

V accepts iff the following hold:

ve1A1 = hw1yx

ve2A2 = hw2vx1

C.3 Verification gas costs on Ethereum

We implemented the above Sigma protocols in Solidity and report their verification gas costs in Table 4. Recall
that with Groth’s trick [Gro05] in the proof of positivity (zk-PoPS), we must to decompose the integer solution into
the sum of only three squares. Therefore the gas cost of verifying zk-PoPS is equal to the cost of verifying three
proofs of knowledge of square solutions (zk-PoKSqS) and one proof of knowledge of equal solution (zk-PoSEq).

Sigma protocol Verification gas cost

Proof of Exponentiation (Wesolowski PoE [Wes19]) 101, 066
PoK of solution (zk-PoKS) 266, 096
Proof of solution equality (zk-PoSEq) 336, 155
Proof of square solution(zk-PoKSqS) 336, 168
Proof of positive solution (zk-PoPS) 1, 351, 958

Table 4: EVM gas cost of verification for the proofs in Appendix C.

D Additional voting and scoring protocols

D.1 Quadratic voting

In quadratic voting [LW18], each user’s ballot is a vector b = (b1, . . . , bm) such that ⟨b,b⟩ = ∥b∥22 ≤ w. Once again,
the winner is determined by summing all the ballots and determining the candidate with the most points. Thus,
this is also an additive voting scheme. However, proving ballot well-formedness efficiently in this particular case
benefits greatly from the novel application of the residue numeral system (RNS) to private voting (see Section 5.1).

Each voter i submits two linear HTLPs: Ztally
i containing si and Znorm

i containing s2i , where si is an encoding of

the ballot bi. Z
tally
i will be accumulated into the running tally as usual, and Znorm

i will be used to enforce the norm

bound. A well-formed sealed ballot is therefore of the form Zi = (Ztally
i , Znorm

i ) such that:

Check #1. The vector entries enclosed in Znorm
i are the squares of those enclosed in Ztally

i .

Check #2. Znorm
i has ℓ1 norm strictly equal to w.5

5We make this stricter requirement to simplify the norm check. Note that voters should be incentivized to submit such votes, since
it maximizes their voting power.
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The first check is much simpler and more efficient when using RNS packing. Recall that with this packing,
a solution s encodes the ballot (b1, . . . , bm) as s mod pj ≡ bj ∀j ∈ [m], and that this encoding is fully SIMD
homomorphic. It follows that s2 mod pj ≡ b2j for all j ∈ [m].6 With the RNS packing, it, therefore, suffices to

prove a square relationship once for the puzzles encoding s and s2 (e.g., using zk-PoKSqS) rather than m times for
all the vector entries. This is in contrast to the PNS packing used by all previous private voting schemes in the
literature, where the absence of a multiplicative homomorphism would require proving the square relationship for
every vector entry individually.

Regardless of the vector encoding, the second check is more involved: the user needs to open a sum of vector
entries (the residues) without revealing the entries (residues) themselves. One approach would be for the user to
commit to each vector entry in Znorm

i , i.e., aij = s2i mod pj , with a Pedersen commitment, and use a variant proof
of knowledge of exponent modulo pj (PoKEMon [BBF19]) to show the commitments contain the appropriate values
aij . Then it can open the sum of the commitments. PoKEMonproofs are batchable, so the contract can verify them
efficiently and check that the sum of the commitments opens to w.

D.2 Bayesian truth serum

Bayesian truth serum [Pre04] is a method for eliciting truthful subjective answers where objective truth does not
exist or is not knowable. The core of the idea is to reward answers that are “surprisingly common” by leveraging
respondents’ own predictions of what will be common. Thus, for a question with many (mutually exclusive) potential
answers, the score of user i responding xi := (xi1, . . . , xim) and yi := (yi1, . . . , yim) is calculated as

scorei :=
∑
j∈[m]

xij log
xj

yj
+ α

∑
j∈[m]

xj log
yij
xj

(5)

where α > 0 is a constant. The variable xij ∈ {0, 1} denotes user i’s decision (choose or don’t choose) for option
j ∈ [m], xj is the empirical frequency of choice j over all the users’ answers, yij is user i’s estimate of xj (i.e., their
estimate of the probability of answer j among all users), and yj is the empirical (geometric) average of yij over all
the users’ answers. Since each user can only choose a single answer, xij will be 0 for all but one value of j, which
we denote j∗. Thus, we can think of the equation above as equivalent to

xij∗ log
xj∗

yj∗
+ α

∑
j∈[m]

xj log
yij
xj

.

The first term is referred to as the information score and the second as the prediction score. The information
score is highest when the user’s choice k∗ is “surprisingly common”, i.e., when the empirical frequency of answer
j∗ (xj∗) is higher than the crowd’s estimate of the empirical frequency of j∗ (yj∗). Therefore participants are
incentivized to submit their truthful responses, even (and especially) if they believe them to be uncommon.

The prediction score is the Kullback-Leibler divergence [KL51] between the user’s estimate of the average answer
and the true average answer, weighted by α. This is maximized when the two values are equal (i.e., the divergence
is 0), and so incentivizes truthful reporting of yij , the user’s estimate of xj .

We show how Bayesian truth serum can be implemented in the Cicada framework. First, rewrite Equation (5)
as

scorei :=
∑
j∈[m]

xij(log xj − y′j) + α
∑
j∈[m]

xj(y
′
ij − log xj) (6)

where y′ij = log yij and y′j = log yj . The smart contract will use two (lists of) HTLPs Ztally
x ,Ztally

y′ to keep track
of two running “tallies”:

x = (x1, . . . , xm) =
∑
i

xi

y′ = (y′1, . . . , y
′
m) =

∑
i

1

n
y′
i

Each user’s ballot consists of the vectors xi,y
′
i, where xi ∈ [0, 1]m has ℓ1 norm 1 and y′

i = logy ∈ Nm with∑
j∈[m] yij = n. Assuming no packing for simplicity, the ballot is encoded as three lists of HTLPs: a list of linear

6Assuming s2j < pj for all j, which in our case will hold regardless, we set each pj < nw to avoid overflow when adding ballots and

s2j ≤ w < nw.
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HTLPs Zans
i := {Zans

ij }j∈[m] for the entries of xi, and two lists of (respectively) linear and multiplicative HTLPs

Z+
i := {Z+

ij}j∈[m] and Z×
i := {Z×

ij}j∈[m], both encoding the entries of y′
i. The smart contract coordinator must

ensure that the following hold:

Check #1a. All Zans
ij encode xij ∈ [0, 1].

Check #1b.
∑

j∈[m] xij = 1.

Check #2a. All Z+
ij encode y′ij > 0.

Check #2b.
∑

j∈[m] 2
y′
ij = n (assuming log base 2).

Check #3. Z×
ij contains the same value as Z+

ij for all j ∈ [m].

Most of these checks can be achieved using the protocols in Appendix C: Check #1a with the binary solution
protocol, #1b and #2b by providing randomness which opens the homomorphic sum to the correct value, and #2a
with zk-PoPS. Check #2b additionally requires a zero-knowledge proof of exponentiation, e.g., [BBF19]. Because
the puzzles to check in #3 use different constructions, we can’t apply zk-PoSEq directly; instead, one can combine
two zk-PoKS proofs with a standard PoK for discrete logarithm.

The aggregation algorithm Aggr((Ztally
x ,Ztally

y′ ), i,Zi, πi) updates the tally to (Ztally
x ⊞Zans

i ,Ztally
y′ ⊞ 1

n ·Z
+
i ). During

the opening phase, anyone can solve for the final tallies xfinal,y
′
final and the individual user submissions {(xi,y

′
i)}i∈[n].

If correct, they are used in Finalize to compute the final set of scores as follows:

1. Let x′ := logx. Compute I′ := x′ − y′ and P′ := x · x′.

2. For each user i ∈ [n]:

(a) Compute i’s information score Ii :=
∑

j∈[m] Iij , where Ii = (Ii1, . . . , Iim) := xi · I′.

(b) Compute i’s prediction score Pi :=
∑

j∈[m] Pij , where Pi = (Pi1, . . . , Pim) := x · y′
i −P′.

(c) User i’s score is Ii − Pi.

E Practicality of HTLP-based Auction and Voting Schemes in Various
Cryptographic Groups

In this section, we evaluate the practicality of auction and voting schemes using HTLPs in various parameter
settings. As discussed in Section 5.1, the size of the applied integer representations of ballots/bids increases linearly
in certain parameters of the voting/auction schemes, e.g., the number of candidates. This limits the applicability
of certain HTLP constructions instantiated in specific cryptographic groups as we show next.
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Figure 5: Practicality of auction and voting schemes in various parameter settings, i.e., number of users, candidates,
and largest bid. For this comparison, we considered the security parameter λ = 80, which corresponds to a 1024-bit
modulus N for exponential ElGamal and Paillier HTLPs and 3400-bit discriminants for class group HTLPs. For
the exponential ElGamal HTLP, we considered a maximum allowed ballot size 280, which translates into ≈ 240

brute forcing work using, for instance, Pollard’s rho algorithm [Pol78].
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Preprocessing ballots for succinct ballot-correctness proofs

Public parameters: The common reference string crs := {gτj

1 }dj=1 ∈ Gd
1. A semiprime N and h, y ∈ Z∗

N . A
voting scheme Σ : Xn → Y, e.g., approval voting.

1. Let X be the set of correct ballots and |X |= d

2. Let f(x) ∈ F≤d
p [x] be a univariate polynomial s.t. ∀si ∈ X : f(i) := Pack(si). The polynomial f(x) could

be computed using Lagrangian interpolation.

3. Let com be the KZG commitment to the polynomial f .

Output: com.

Figure 6: Preprocessing ballots to enable succinct ballot-correctness proofs.

Let us assume that the classic positional number system is used as a packing function; see Section 5.1. In the
case of voting schemes, we have that for the cryptographic group G, in which the HTLP is instantiated, it needs to
hold that (nw + 1)m ≤ |G| to preserve correctness, i.e., to avoid overflows. For ease of simplicity, in Figure 5, we
set w = 1. In the case of auction schemes, for similar reasons, we have that it needs to hold that Mn ≤ |G|, where
M is the maximum allowed bid in the auction scheme in an appropriate denomination of a currency.

Exponential ElGamal HTLP. This is the most efficient HTLP construction, see Construction 5, i.e., for a
given security parameter, the Exponential ElGamal HTLP has the smallest required cryptographic groups and
most efficient group operations which makes it a great fit for blockchain applications. However, the Exponential
ElGamal HTLP also has two significant drawbacks. First, the puzzle solution is encoded in the exponent; hence,
it must be brute-forced. This one-time discrete logarithm computation needs to be computed by the puzzle solver.
Nonetheless, this weakness severely limits the possible parameter settings for auction and voting schemes with the
Exponential ElGamal HTLP.

Paillier HTLP. This is a slightly less efficient construction, see Construction 3, as the size of the HTLPs for a
given security parameter is doubled since the Paillier HTLP works mod N2 instead of mod N . This both increases
the space costs of this solution and the complexity of the group operation. On the other hand, a great advantage
of the Paillier HTLP is that it supports a much broader parameter setting for a given security parameter.

Class group HTLP. The sole HTLP candidate without a trusted setup [TCLM21]. Class group HTLPs re-
quire the largest groups for a given security parameter. They are not widely adopted and supported by major
cryptographic libraries. Additionally, their costly group operation makes them not a great target for blockchain
applications. We are unaware of any class group implementation for Ethereum smart contracts.

Impractical parameter settings. To circumvent these parameters, one needs to increase the security parameter
to obtain larger cryptographic groups. This might result in intolerably inefficient cryptographic groups for certain
applications.

F Succinct ballot-correctness proofs from polynomial commitments

In this section, we assume that a common reference string for the KZG polynomial commitment (PC) scheme [KZG10]

is already available to users, namely crs := {gτj

1 }dj=1, where g1 ∈ G1 is a generator in a bilinear pairing-friendly

cyclic group G1 over Fp for some prime p, τ
R← Fp hidden to everyone. The crs is typically established during a

sequential, secure multi-party computation (MPC), e.g., [BGG18].
Let us assume that users have established during a preprocessing phase (Figure 6) a short commitment com

that encodes all the possible ballots in a particular voting scheme, e.g., X = [0, 1]m for approval voting. The
size of classical proofs of well-formedness, e.g., OR-composition of Sigma-protocols, scale linearly in the number of
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candidates m. The following proof strategy yields a constant-size proof of correctness for moderately-sized X , i.e.,
|X | ≤ d7.

First, given a ballot Z = (gr, hrys) ∈ G̃1 × G̃2, the user creates an elliptic curve point Z1 = hr
1y

s
1 ∈ G1 for

random generators h1, y1
R← G1 in a pairing-friendly group. Using the discrete logarithm across different groups

techniques developed in [COPZ22], the user can show that Z and Z1 have the same discrete logarithms r and s with
for their bases h, y ∈ G, h1, y1 ∈ G1, respectively. Now that Z1 and the polynomial commitment are in the same
pairing-friendly group G1, the user can create a blinded KZG opening proof [ZBK+22] to prove ballot correctness.
Specifically, the proof π shows that the value s in Z1 matches an evaluation of the polynomial f committed by com
at some (hidden) point j, i.e., f(j) = s. Note that the verifier only sees constant-size commitments of f, j, and s.
Since the blinded KZG proof π is also constant-size, this strategy yields the first succinct ballot-correctness proofs
for many common voting schemes, e.g., approval and range voting.

G A trusted setup protocol for the CJSS scheme

Chvojka, Jager, Slamanig, and Striecks [CJSS21] describe how to combine a public-key encryption scheme with a
TLP to obtain a private voting or auction protocols which, unlike the HTLP-based approach suggested by [MT19],
is “solve one, get many for free”. The high-level idea of the protocol is to encrypt each user’s bid with a common
public key whose corresponding secret key is inserted into a TLP (see Figure 7). Therefore, none of the bids can
be decrypted until the corresponding encryption secret key is obtained by solving the TLP. One drawback of this
scheme, however, is that it requires an additional trusted setup procedure to create a TLP containing the secret
key corresponding to the encryption public key used. Furthermore, unlike the HTLP approach, the setup cannot
be reused and must be re-run for every protocol invocation.

The CJSS Framework
Let ΠE be a CCA-secure public-key encryption scheme, TLP a time-lock puzzle scheme, and Σ : Xn → Y a
base voting/auction protocol.

Setup(1λ, T )
R→ (pp,Z). Sample a key-pair (pk, sk) ← ΠE.Gen(1

λ) and TLP parameters pptlp ←
TLP.Setup(1λ, T ). Compute Zsk

R← TLP.Gen(pptlp, sk) and return pp := (pptlp, pk) and Z := (Zsk,⊥).

Seal(pp, i, s)
R→ (cti, πi). Parse pk from pp and compute an encrypted bid/ballot as cti ← ΠE.Enc(pk, si) along

with a proof πi that cti is a valid encryption under pk.

Aggr(pp,Z, cti, πi)→ Z ′. Verify πi. If the check passes, parse Z := (Zsk, C) and update to Z ′ := (Zsk, C∪{cti}).

Open(pp,Z,⊥)→ sk. Let Z := (Zsk, C) and publish sk← HTLP.Solve(pptlp, Zsk).

Finalize(pp, sk)→ y. Use the secret key sk to decrypt each ciphertext cti ∈ C to si ← ΠE.Dec(sk, cti). Compute
the final result in the clear as Σ(s1, . . . , sn).

Figure 7: The “solve one, get many for free” paradigm (CJSS) [CJSS21].

We observe that, for encryption schemes with discrete-log key-pairs such as Cramer-Shoup [CS98], there is a
natural decentralized setup protocol secure against all-but-one corruptions. Using the blockchain as a broadcast
channel (similar to [NRBB22]), a simple sequential MPC protocol to set up the parameters works as follows.
Suppose there is some smart contract that stores the public key pk = gsk mod N and a TLP Zsk containing sk
(initially, one can set sk = 0). Each contributor i can update pk by adding si homomorphically in the exponent and
contributing an HTLP Zi = (gri mod N,hri·N · (1 +N)si). The contribution must be accompanied by a proof of
well-formedness. For the previous state pk, Zsk, contributor i proves that its contribution pki, Zi passes the following
checks:

Check #1. It knows the discrete logarithm of pki with respect to the base g. This can be achieved with a proof
of knowledge of the exponent [Sch90].

7The largest KZG CRS we know of [Exp] is for d = 228, so in the case of X = [0, 1]m this strategy requires m ≤ 28.
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Check #2. It knows the representation of the HTLP contribution Zi with respect to the bases g, hN , (1+N) (i.e.,
the discrete logarithms ri, ri, si). This can be proven by a “knowledge of representation” proof system in
groups of unknown order (e.g., the PoKE family of proofs [BBF19]; see Section 3.4).

Check #3. Finally, the discrete logarithms a, b, c from check #2 are such that a = b and c = dlogg(pki).

The state is updated with the ith contribution iff all the checks pass. After the update, Zsk := Zsk · Zi and
pk := pk · pki = gs+si . A single honest contributor suffices to guarantee a uniformly distributed keypair.

H Security Proofs

We use D1 ≈λ D2 to denote that two distributions D1,D2 have statistical distance bounded by negl(λ).

H.1 The Cicada framework

Proof of Theorem 1. For simplicity, we give a proof for the simple case of X = [0, 1], i.e., submissions consist of a
single bit, but our argument generalizes to larger domains X . Let n ∈ N be the number of users.

The correctness of the Cicada framework (cf. Definition 4) follows by construction and from the correctness of
the underlying building blocks (i.e., soundness in the case of NIZKs).

Next, we prove submission privacy. Let ExpSPrivAΠΣ
(λ, T, i) be the original submission privacy game for the

Cicada scheme ΠΣ with T -bounded adversary A, cf. Definition 5. We define a series of hybrids to show that
Pr[ExpSPrivAΠΣ

(λ, T, i) = 1] ≤ negl(λ) for all λ, T ∈ N and i ∈ [n].

H0: This is the original game ExpSPrivAΠΣ
(λ, T, i), where Zi ← HTLP.Gen(b) and πi ← NIZK.Prove(i, Zi, b).

H1: Replace π with π̃ ← NIZK.Sim(i, Zi). H1 is indistinguishable from H0 by the zero-knowledge property of
NIZK.
H2: Replace Zi with Yi ← HTLP.Gen(1− b) and π̃ with σ̃ ← NIZK.Sim(i, Yi). H1 and H2 are indistinguishable

because the distributions {Zi,Sim(i, Zi)} and {Yi,Sim(i, Yi)} are indistinguishable since {Zi}, {Yi} are indistin-
guishable by the security of HTLP.
H3: Replace σ̃ with σ ← NIZK.Prove(i, Yi, 1−b). H3 is indistinguishable fromH2 by the zero-knowledge property

of NIZK.
This series of hybrids implies Pr[b′ = b] ≈λ Pr[b′ = 1− b], where b′ is the output of A in H0 or H3, respectively.

Therefore Pr[ExpSPrivAΠΣ
(λ, T, i) = 1] ≤ 1

2 + negl(λ).
Finally, we show that if NIZK is a PoK and HTLP is secure, then Cicada is non-malleable, cf. Definition 6.

Suppose towards a contradiction that Cicada is malleable. We will use this and the fact that NIZK is a PoK to
construct an adversary B which has non-negligible advantage in the HTLP security game. Again, we work in the
simple case X = [0, 1], i.e., m, ℓ, w = 1, but the argument generalizes to other parameter settings.

Since by our assumption Cicada is malleable, there existsA which outputs (i, ·,Zi, πi) /∈ Q such that NIZK.Verify((i,
Zi), π) = 1 with non-negligible probability. Given a puzzle Zb containing some unknown bit b, B works as follows.

First, it computes (pp, Z)
R← Setup(1λ, T, 1) and sends them to the non-malleability adversary A. B responds to A’s

oracle queries (j, bj) with honestly computed (Zj , πj), keeping track of queries and responses in the set Q. When
A outputs (i, Zi, πi), B looks for (i, bi, Zi, πi) ∈ Q and outputs bi. Since A has non-negligible advantage, it follows
that NIZK.Verify((i, Zi), πi) = 1. This implies that either Pr[bi = b] = 1

2 + negl(λ) or NIZK is not knowledge sound.
Both possibilities contradict our assumptions, namely that the HTLP is secure and the NIZK is knowledge sound.
Thus, Cicada must be non-malleable.

H.2 Sigma Protocols

We prove special-soundness and honest-verifier zero-knowledge (HVZK) of our Sigma protocols (Appendix C). Any
such protocol can be made into a non-interactive zero-knowledge proof of knowledge (NIZKPoK) via the Fiat-Shamir
transform [FS87].

Theorem 2 (zk-PoKS). The protocol zk-PoKS in Appendix C.2 is a special sound and HVZK proof system in the
generic group model.

Proof. For special soundness, we show that given two distinct accepting transcripts with the same first message, i.e.,
(A,B, e, w, x) and (A,B, e′, w′, x′) where e ̸= e′, we can extract the witnesses r, s. The proof follows the blueprint
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of the proof of Theorem 10 in [BBF19]. Since the transcripts are accepting, we have

hwyx = veA hw′
yx

′
= ve

′
A

= hre+αyse+β = hre′+αyse
′+β

Combining the two equations we get

hr∆eys∆e = h∆wy∆x

⇐⇒ v∆e = h∆wy∆x (7)

where ∆e = e−e′ and ∆y,∆x are defined similarly. Then with overwhelming probability, r∆e = ∆w and s∆e = ∆x
(cf. Lemma 4 of [BBF19]), so ∆e ∈ Z divides ∆w ∈ Z and ∆x ∈ Z and we can extract r, s ∈ Z as r = ∆w/∆e and
s = ∆x/∆e.

We will now show that these values are correct, i.e., v = h∆w/∆ey∆x/∆e. Assume towards a contradiction that
this does not hold and µ = h∆w/∆ey∆w/∆e ̸= v. Since µ∆e = v∆e by Equation (7), this must mean that (µ/v)∆e = 1
and therefore µ/v ∈ G2 is an element of order ∆e > 1. Since ∆e is easy to compute and µ/v is a non-identity
element of G2, this contradicts the assumption that G2 is a generic group (specifically, it contradicts non-trivial
order hardness [BBF19, Corollary 2]). We thus conclude that our extractor successfully recovers the witnesses r
and s.

We still need to verify that the r∗ we can extract from u will be consistent with the one extracted from v, i.e.,
r∗ = r. Again we know

gw = ueB gw
′
= ue′B

= gr
∗e+α∗

= gr
∗e′+α∗

so by a similar argument r∗ = ∆w/∆e, which equals r. Thus the protocol satisfies special soundness.
To prove HVZK, we give a simulator which produces an accepting transcript (Ã, B̃, ẽ, w̃, x̃) that is perfectly

indistinguishable from an honest transcript (A,B, e, w, x). The simulator is quite simple: it samples ẽ
R← [2λ]

identically to an honest verifier, then samples w̃, x̃
R← Z and sets Ã := hw̃yx̃v−ẽ and B̃ := gw̃u−ẽ. It follows by

inspection that the transcript is an accepting one. Furthermore, notice that Ã and B̃ are uniformly distributed in
G2 and G1, respectively, just like A,B in the honest transcript. Also, both x̃ and x are uniform in Z. Thus the
simulated transcript is perfectly indistinguishable from an honest one.

Theorem 3 (zk-PoKSqS). The protocol zk-PoKSqS in Appendix C.2 is a special sound and HVZK proof system in
the generic group model.

Proof. For special soundness, we show that given two distinct accepting transcripts with the same first message,
i.e., (A1, A2, e, w1, w2, x) and (A1, A2, e

′, w′
1, w

′
2, x

′) where e ̸= e′, we can extract the witnesses r1, r2, s. Notice that

v2 is not guaranteed to encode the square of s1, so v2 = hr2−r1s2/s1v
s2/s1
1 . Let σ2 = s2/s1 and ρ2 := r2− r1s2/s1 =

r2 − r2σ2.
Using the same extractor as in the proof of Theorem 2, we can extract correct integers r1 = ∆w1/∆e, s1 =

∆x/∆e, ρ2 = ∆w2/∆e, and σ2 = ∆x/∆e. Notice s1 = σ2, which implies σ2 = s21. Finally we use r1, s1, ρ2 ∈ Z to
recover r2 := ρ2 + r1s1 ∈ Z. Thus the protocol is special sound.

To prove HVZK, we give a simulator which produces an accepting transcript (Ã1, Ã2, ẽ, w̃1, w̃2, x̃) that is perfectly

indistinguishable from an honest transcript (A1, A2, e, w1, w2, x). The simulator is quite simple: it samples ẽ
R← [2λ]

identically to an honest verifier, then samples w̃1, w̃2, x̃
R← Z and sets Ã1 := hw̃1yx̃v−ẽ

1 and Ã2 := hw̃2vx̃1v
−ẽ
2 .

It follows by inspection that the transcript is an accepting one. Furthermore, notice that Ã1, Ã2 are uniformly
distributed in G2, respectively, just like A1, A2 in the honest transcript. Also, both w̃1, w̃2, x̃ are uniform in Z just
like w1, w2, x. Thus the simulated transcript is perfectly indistinguishable from an honest one.

Theorem 4 (zk-PoPS). The protocol zk-PoPS in Appendix C.2 is sound and HVZK.

Proof. Soundness follows directly from the (knowledge) soundness of zk-PoKSqS and zk-PoSEq as well as Legendre’s
three-square theorem [Gro05].

For HVZK, note that an honest zk-PoPS transcript has the form ({A1,j , A2,j}j∈[3], R, e, {w1,j , w2,j , xj}j∈[3]),
where (R, e, x) is an honest zk-PoSEq transcript and (A1,j , A2,j , e, w1,j , w2,j , xj) for j = 1, 2, 3 are honest zk-PoKSqS

transcripts. Given the instance v, our zk-PoPS simulator first computes some random HTLPs (ũj , ṽj), (ũ
′
j , ṽ

′
j)

R←
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HTLP.Gen(0) for j = 1, 2, 3. These simulated underlying instances are indistinguishable from the honest instances
an honest prover would use. This follows from the security of HTLP.

Next, our simulator samples ẽ
R← [2λ] identically to an honest verifier and uses the simulators of the proof

systems, always with the same challenge ẽ, to produce a simulated transcript:

(Ã1,j , Ã2,j , ẽ, w̃1,j , w̃2,j , x̃j)← Simzk−PoKSqS(ṽj , ṽ
′
j ; ẽ) ∀j = 1, 2, 3

(R̃, ẽ, x̃)← Simzk−PoSEq

(
4 · v ⊞ 1

ṽ′1 ⊞ ṽ′2 ⊞ ṽ′3
; ẽ

)
By HVZK of zk-PoKSqS and zk-PoSEq, these transcripts are accepting and indistinguishable from an honestly
generated transcript.
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