286 research outputs found

    Quaternionic Attitude Estimation with Inertial Measuring Unit for Robotic and Human Body Motion Tracking using Sequential Monte Carlo Methods with Hyper-Dimensional Spherical Distributions

    Get PDF
    This dissertation examined the inertial tracking technology for robotics and human tracking applications. This is a multi-discipline research that builds on the embedded system engineering, Bayesian estimation theory, software engineering, directional statistics, and biomedical engineering. A discussion of the orientation tracking representations and fundamentals of attitude estimation are presented briefly to outline the some of the issues in each approach. In addition, a discussion regarding to inertial tracking sensors gives an insight to the basic science and limitations in each of the sensing components. An initial experiment was conducted with existing inertial tracker to study the feasibility of using this technology in human motion tracking. Several areas of improvement were made based on the results and analyses from the experiment. As the performance of the system relies on multiple factors from different disciplines, the only viable solution is to optimize the performance in each area. Hence, a top-down approach was used in developing this system. The implementations of the new generation of hardware system design and firmware structure are presented in this dissertation. The calibration of the system, which is one of the most important factors to minimize the estimation error to the system, is also discussed in details. A practical approach using sequential Monte Carlo method with hyper-dimensional statistical geometry is taken to develop the algorithm for recursive estimation with quaternions. An analysis conducted from a simulation study provides insights to the capability of the new algorithms. An extensive testing and experiments was conducted with robotic manipulator and free hand human motion to demonstrate the improvements with the new generation of inertial tracker and the accuracy and stability of the algorithm. In addition, the tracking unit is used to demonstrate the potential in multiple biomedical applications including kinematics tracking and diagnosis instrumentation. The inertial tracking technologies presented in this dissertation is aimed to use specifically for human motion tracking. The goal is to integrate this technology into the next generation of medical diagnostic system

    Dynamic \u3ci\u3eIn Vivo\u3c/i\u3e Skeletal Feature Tracking Via Fluoroscopy Using a Human Gait Model

    Get PDF
    The Tracking Fluoroscope System II, a mobile robotic fluoroscopy platform, developed and built at the University of Tennessee, Knoxville, presently employs a pattern matching algorithm in order to identify and track a marker placed upon a subject’s knee joint of interest. The purpose of this research is to generate a new tracking algorithm based around the human gait cycle for prediction and improving the overall accuracy of joint tracking. This research centers around processing the acquired x-ray images of the desired knee joint obtained during standard clinical operation in order to identify and track directly through the acquired image. Due to the inability for tracking through x-ray imaging during knee crossovers (when both knees enter and align within the x-ray image), a form of prediction is developed around the kinematics of human gait motion. This gait model is designed to consider the natural swinging motion of the knee during walking in order to predict path for the x-ray system to follow when active tracking is not possible. During the later stages of research, modifications were made in the setup and testing in order to accommodate changes put in place upon the research environment. Individually, the processing of the x-ray images and the prediction ability of the gait model have shown decent success. The overall controlling algorithm which manages the tracking system has demonstrated some downfalls, however, which have been attributed to the modified setup of the testing. Therefore, while the final results of this research demonstrated some shortcomings, it has confirmed its usability in a real-time environment with the capability of tracking the complete joint implant, and the human gait model developed provides a means of accounting for the natural swing motion of the knee joints during leg motion. The end results provide evidence for a feasible system should it be possible to test and employ it in the scenario to which it was first intended, i.e. in conjunction with x-ray images

    Spatial Sensors for Quantitative Assessment of Retrieved Arthroplasty Bearings

    Get PDF
    Evaluation of retrieved joint arthroplasty bearings provides unique evidence related to the physiological environment in which bearing materials are expected to perform. This dissertation describes the development of novel spatial sensors and measurement strategies for standardized, quantitative assessments of arthroplasty bearings, including total knee replacements, unicompartmental knee replacements, and total hip replacements. The approach is to assess bearings that endured a finite duration of function in patients, with particular emphasis on expanding our understanding of the biomechanical conditions specific to bearing function and wear in the physiological environment. Several quantifiable parameters are identified that prove comparable to pre-clinical in vitro tibological evaluations, including knee wear simulation and analytical modeling. These comparisons provide clinical relevance to the existing methodologies, helping to verify that the biomechanical simulations accurately represent the in vivo conditions they are meant to simulate. The broad objective of this dissertation is to improve the longevity and function of arthroplasty bearing materials and designs. Assessments from the retrieved prostheses are discussed within the context of developing comprehensive approaches for the prospective evaluation of new materials and designs in joint replacements

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoãoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf

    Augmented reality for computer assisted orthopaedic surgery

    Get PDF
    In recent years, computer-assistance and robotics have established their presence in operating theatres and found success in orthopaedic procedures. Benefits of computer assisted orthopaedic surgery (CAOS) have been thoroughly explored in research, finding improvements in clinical outcomes, through increased control and precision over surgical actions. However, human-computer interaction in CAOS remains an evolving field, through emerging display technologies including augmented reality (AR) – a fused view of the real environment with virtual, computer-generated holograms. Interactions between clinicians and patient-specific data generated during CAOS are limited to basic 2D interactions on touchscreen monitors, potentially creating clutter and cognitive challenges in surgery. Work described in this thesis sought to explore the benefits of AR in CAOS through: an integration between commercially available AR and CAOS systems, creating a novel AR-centric surgical workflow to support various tasks of computer-assisted knee arthroplasty, and three pre–clinical studies exploring the impact of the new AR workflow on both existing and newly proposed quantitative and qualitative performance metrics. Early research focused on cloning the (2D) user-interface of an existing CAOS system onto a virtual AR screen and investigating any resulting impacts on usability and performance. An infrared-based registration system is also presented, describing a protocol for calibrating commercial AR headsets with optical trackers, calculating a spatial transformation between surgical and holographic coordinate frames. The main contribution of this thesis is a novel AR workflow designed to support computer-assisted patellofemoral arthroplasty. The reported workflow provided 3D in-situ holographic guidance for CAOS tasks including patient registration, pre-operative planning, and assisted-cutting. Pre-clinical experimental validation on a commercial system (NAVIO®, Smith & Nephew) for these contributions demonstrates encouraging early-stage results showing successful deployment of AR to CAOS systems, and promising indications that AR can enhance the clinician’s interactions in the future. The thesis concludes with a summary of achievements, corresponding limitations and future research opportunities.Open Acces

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Low-dimensional representations of neural time-series data with applications to peripheral nerve decoding

    Get PDF
    Bioelectronic medicines, implanted devices that influence physiological states by peripheral neuromodulation, have promise as a new way of treating diverse conditions from rheumatism to diabetes. We here explore ways of creating nerve-based feedback for the implanted systems to act in a dynamically adapting closed loop. In a first empirical component, we carried out decoding studies on in vivo recordings of cat and rat bladder afferents. In a low-resolution data-set, we selected informative frequency bands of the neural activity using information theory to then relate to bladder pressure. In a second high-resolution dataset, we analysed the population code for bladder pressure, again using information theory, and proposed an informed decoding approach that promises enhanced robustness and automatic re-calibration by creating a low-dimensional population vector. Coming from a different direction of more general time-series analysis, we embedded a set of peripheral nerve recordings in a space of main firing characteristics by dimensionality reduction in a high-dimensional feature-space and automatically proposed single efficiently implementable estimators for each identified characteristic. For bioelectronic medicines, this feature-based pre-processing method enables an online signal characterisation of low-resolution data where spike sorting is impossible but simple power-measures discard informative structure. Analyses were based on surrogate data from a self-developed and flexibly adaptable computer model that we made publicly available. The wider utility of two feature-based analysis methods developed in this work was demonstrated on a variety of datasets from across science and industry. (1) Our feature-based generation of interpretable low-dimensional embeddings for unknown time-series datasets answers a need for simplifying and harvesting the growing body of sequential data that characterises modern science. (2) We propose an additional, supervised pipeline to tailor feature subsets to collections of classification problems. On a literature standard library of time-series classification tasks, we distilled 22 generically useful estimators and made them easily accessible.Open Acces
    corecore