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Abstract

Bioelectronic medicines, implanted devices that influence physiological states by peripheral neuro-

modulation, have promise as a new way of treating diverse conditions from rheumatism to diabetes.

We here explore ways of creating nerve-based feedback for the implanted systems to act in a dynam-

ically adapting closed loop.

In a first empirical component, we carried out decoding studies on in vivo recordings of cat and rat

bladder a↵erents. In a low-resolution data-set, we selected informative frequency bands of the neu-

ral activity using information theory to then relate to bladder pressure. In a second high-resolution

dataset, we analysed the population code for bladder pressure, again using information theory, and

proposed an informed decoding approach that promises enhanced robustness and automatic re-calibration

by creating a low-dimensional population vector.

Coming from a di↵erent direction of more general time-series analysis, we embedded a set of pe-

ripheral nerve recordings in a space of main firing characteristics by dimensionality reduction in a

high-dimensional feature-space and automatically proposed single e�ciently implementable estima-

tors for each identified characteristic. For bioelectronic medicines, this feature-based pre-processing

method enables an online signal characterisation of low-resolution data where spike sorting is im-

possible but simple power-measures discard informative structure. Analyses were based on surrogate

data from a self-developed and flexibly adaptable computer model that we made publicly available.

The wider utility of two feature-based analysis methods developed in this work was demonstrated on a

variety of datasets from across science and industry. (1) Our feature-based generation of interpretable

low-dimensional embeddings for unknown time-series datasets answers a need for simplifying and

harvesting the growing body of sequential data that characterises modern science. (2) We propose

an additional, supervised pipeline to tailor feature subsets to collections of classification problems.

On a literature standard library of time-series classification tasks, we distilled 22 generically useful

estimators and made them easily accessible.
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Chapter 1

Introduction

Much of today’s medicine can be classified as ‘molecular’: chemicals are administered to the patient

that target certain receptors, influence organ function, kill intruding bacteria, etc. This dominant mode

of treatment is powerful and proven, but is also known to generate side e↵ects due to poor e↵ect

localisation, does not adapt dynamically to changing physiological conditions and is often unsuitable

for chronic diseases (Stöllberger et al., 2009; Barber et al., 2004; Martel et al., 2015). Continued

medication increases tolerances and aggravates side e↵ects and patients often do not adhere to the

prescribed intake (Barber et al., 2004; McCracken et al., 2006; Al Qasem et al., 2011).

In recent years, an alternative route to treating especially chronic diseases has attracted interest and

capital: so called bioelectronic medicines (Birmingham et al., 2014; Waltz, 2016) attempt to harness

the existing control loops of the peripheral nervous system (PNS) and treat diseases by means of pe-

ripheral electrical neuromodulation. Such implanted devices that interact with nerves are very closely

related to well-known active implants such as pacemakers for the heart or deep brain stimulation in the

central nervous system against the symptoms of Parkinson’s disease (Benabid et al., 2009), but tackle

the much larger class of non-neurological conditions (Luan et al., 2014). Like these known devices,

they constitute a potentially permanent, localised treatment and might form a complement or even a

replacement for classical molecular medicines in numerous conditions ranging from hypertension to

rheumatism.

Already today, commercial bioelectronic medicines devices exist that predominantly target the vagus

nerve (e.g., by SetPoint, LivaNova). Vagus nerve stimulation has proven useful in the treatment of

1



2 Chapter 1. Introduction

diverse conditions such as rheumatoid arthritis (Andersson and Tracey, 2012; Koopman et al., 2016)

and sepsis (Cohen et al., 2015), refractory epilepsy (Milby et al., 2010), Alzheimer’s disease (Sjogren

et al., 1997), anxiety (George et al., 2008), obesity (Krzysztof et al., 2011; Gautron et al., 2015;

Apovian et al., 2017), chronic heart failure (Rousselet et al., 2014), hypertension (Sevcencu et al.,

2018; Sevcencu and Struijk, 2018; Carnevale et al., 2016; Plachta et al., 2014) and to evoke anti-

inflammatory e↵ects (Meregnani et al., 2011; Borovikova et al., 2000). Other locations of intervention

such as the hypoglossal nerve against sleep apnea (Malhotra, 2014; Strollo et al., 2014; Woodson et al.,

2018), the pelvic, pudendal, and spinal nerves for incontinence (Kent and Grill, 2013; Mendez and

Sawan, 2014; Chew et al., 2013), sympathetic pathways against hypertension (Gassler and Bisognano,

2014; Lohmeier and Hall, 2019) (commercialised by CVRx), or carotid sinus nerve for diabetes type

2 (Sacramento et al., 2018; Cracchiolo et al., 2019; Yin et al., 2019) are being actively explored.

1.1 Motivation

Even though the field is blossoming, most current bioelectronic medicines devices still operate in

a simple open-loop fashion that is independent of changes in the physiological processes they try

to influence and simply overwrite any existing activity on the nerve by stimulation or block rather

than finely modulating it. In the future, peripheral neuromodulation devices are expected to become

more advanced and include real-time feedback about current organ and nerve states (Bouton, 2015,

2017). By only blocking or stimulating when necessary, closed-loop devices can be much more

e�cient and e↵ective (as shown in the central nervous system (Rosin et al., 2011)), and even capable

of dynamically managing conditions, e.g., detecting parasympathetic bronchoconstriction in asthma

and suppressing it (Lewis et al., 2006).

To close the loop and implement feedback control, physiological quantities of interest may be mea-

sured by chemical, mechanical, or other sensors that are implanted in addition to the nerve interface

(Majerus et al., 2017; Karam et al., 2016; Cao et al., 2013; Schwartz et al., 2001; LaFleur and Yager,

2013; Mehrotra, 2016; Peh et al., 2018). While this approach seems straightforward from an en-

gineering point of view, surgery becomes more di�cult and the probability of complications (e.g.,

device movement, tissue damage, loss of signal (Majerus et al., 2017; Mendez and Sawan, 2014))

post surgery rises. An alternative approach is to harness, where possible, the body’s own sensors for
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monitoring and control of organs. Thousands of a↵erent fibres continuously transmit signals about

organ physiological state. These existing biological sensors are sensitive and may o↵er a stable source

of organ state information as an elegant alternative to implanted artificial sensors. It was thus one of

the main motivating ideas behind the work presented in this thesis to exploit the body’s own monitor-

ing system for the creation of nerve-based feedback about organ states to bioelectronic medicines.

1.2 Objectives

To enable neural feedback for closed-loop neuromodulation, we explored di↵erent aspects of the

highly interdisciplinary research area at the interface of electrical device engineering, signal pro-

cessing, software engineering, biology, translational medicine and certainly other disciplines that is

neurotechnology.

� In order to support our work and in general research in the field, we want to propose easy-to-

use simulation tools from which we can quickly generate accurate surrogate data. We want to

validate these models and use them for our algorithm development.

� We envisage to propose decoding algorithms for experimentally obtained data that can estimate

organ function based solely on recorded nerve activity. Ideally, these algorithms should be

adapted to di↵erent recording resolutions available today – and perhaps tomorrow – and find

new ways of exploiting the recorded signals. We aim at developing decoders that are real-time

suitable, robust against noise and changing recording conditions and energy-e�cient. Where

possible, we would like to propose informed decoders that build on an understanding of the

encoding principles used by the body. Through this work, we hope to inspire next generation

decoders for bioelectronic medicines.

� Having a particularly rich library of global time series features at our disposition, we aim at

exploring ways of analysing peripheral nerve activity from a new perspective: namely by char-

acterising the continuous waveform of the recorded nerve activity without trying to identify sin-

gle units or recurring events by the waveform shape (spike sorting). We hope that feature-based

representations of peripheral nerve recordings will be useful in characterising low-resolution

recordings.
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1.3 Contributions

The main individual contributions of the presented thesis to the field of bioelectronic medicines can

be divided into the three areas (1) decoding on in vivo data, (2) simulation, and (3) feature-based firing

characterisation.

In the first, empirical component, in vivo peripheral nerve recordings of bladder a↵erents were anal-

ysed in terms of decoding possibilities and physiological encoding strategies. We based this research

on two datasets in which a↵erent peripheral nerve activity was recorded from bladder neurons along-

side bladder pressure. In a first low-resolution dataset acquired from the rat pelvic nerve using a

hook electrode, we selected informative frequency bands and constructed a decoder based on a lin-

earisation of the nonlinear relationship between the pre-filtered nerve activity and pressure. We could

faithfully decode bladder pressure in a way suitable for real-time implementation in a bioelectron-

ics medicine device equipped with a common low-resolution interface. Linearisation is key to avoid

more complex decoders, a principle readily transferable to decoding from other sensory populations.

In a second dataset, recordings were obtained at a much higher degree of detail using microelectrode

arrays in the dorsal root ganglion of cats. This enhanced resolution did not only allow a decoding

of bladder pressure, but let us investigate the encoding of this quantity by the population of sensory

neurons. We identified stereotypical fibre response types, quantified their interaction using informa-

tion theory, and drew parallels to other sensory populations in the periphery. Based on the encoding

analysis, we proposed an informed decoding method that summarises the population activity in a low-

dimensional population vector and is accurate, robust against cell-loss, and o↵ers means of automatic

re-calibration. We therefore make a first step towards peripheral nerve decoding methods tailored to

the physiological encoding principles and demonstrate the advantages of this approach.

As a tool to test signal processing algorithms without in vivo data, we developed a Python-based

simulation module, PyPNS, in which a peripheral nerve with arbitrary number of myelinated and

unmyelinated fibres can be stimulated and recorded in silico. The simulator is innovative in its incor-

poration of voltage distributions from finite element models (FEM) that enable a both e�cient and

accurate computation of extracellular potentials from current sources in inhomogeneous media. It

further contains the functionality to automatically generate tortuous axons with geometrical proper-

ties fit to imaged data to represent single fibres more realistically. In the present work, PyPNS was
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used to generate surrogate data for signal processing algorithms but it is of wider use for the bioelec-

tronic medicines community in investigating stimulation e�ciency of di↵erent electrode geometries

and currents and to aid the design of recording electrodes.

In a third contribution to the field, we developed feature-based signal processing methods to sum-

marise peripheral nerve activity (and other time series) in a low-dimensional vector of key dynamical

properties. For two separate methods, we leveraged decades of multidiciplinary time-series analysis

condensed in the Highly Comparative Time-Series Analysis (hctsa) toolbox, a comprehensive col-

lection of over 7 500 global time-series features. As a first contribution, we constructed a feature

selection pipeline for the generation of informative, low-dimensional property-spaces tailored to col-

lections of classification problems and demonstrated its utility on diverse real-world datasets. As a

second method, we applied dimensionality reduction in the high-dimensional feature space to (1) au-

tomatically infer the low-dimensional dynamical variation across time series of a given dataset and to

(2) select single e�ciently implementable estimators for these main varying dynamics. For peripheral

nerves, these captured dynamics are firing characteristics that change during long recordings as ac-

quired by e.g., a chronic implant. Quantifiying these relevant signatures in a low-dimensional feature

vector can form a key step to pre-process peripheral nerve activity on-line in an implanted bioelec-

tronic medicines device – as a basis for decoding, to detect unusual activity, etc. Looking beyond the

scope of bioelectronic medicines, inference of low-dimensional structure in time-series datasets by

the time series’ dynamics has a much wider application and is a highly relevant task given the ever

growing body of sequential data acquired across science and industry. We tackle this task here for

the first time thanks to the availability of a su�ciently large feature set and demonstrate the utility of

our approach on diverse synthetic systems, a real-world dataset, and on simulated peripheral nerve

recordings obtained from PyPNS.

1.4 Publications

Journal papers

Lubba, CH, Le Guen, Y, Jarvis, S, Jones, N S, Cork, S C, Eftekhar, A, Schultz, SR (2018). PyPNS:

Multiscale simulation of a peripheral nerve in Python. Neuroinformatics, 17(1), pp. 63-81.
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Contributions: software development (starting from previous work by YLG but rewriting and extend-

ing substantially), model validation, simulation studies, manuscript writing

Lubba, CH, Sethi, SS, Knaute, P, Schultz, SR, Fulcher, BD, Jones, NS (2019). catch22: CAnonical

Time-series CHaracteristics. Data Mining and Knowledge Discovery, 33(6), pp. 1821-1852.

Contributions: part of the selection pipeline development (based on previous works by SSS and PK),

performance evaluation, feature implementation in C and wrapping, manuscript writing together with

BDF

Fulcher, BD, Lubba, CH, Sethi, SS, Jones, NS. CompEngine: a self-organizing, living library of time-

series data. (submitted)

Contributions: catch22 feature-space, clustering analysis, manuscript editing

Lubba, CH, Ouyang, Z, Jones, NS, Bruns, TM, Schultz, SR. Bladder pressure encoding by near-

independent fibre subpopulations - implications for decoding. (submitted)

Contributions: data analysis of spike-sorted data, literature research, surrogate data generation, de-

coding study, manuscript writing

Fulcher, BD⇤, Lubba, CH⇤, Gilestro, G, Schultz, SR, Jones, NS. Inferring low-dimensional parametric

variation underlying time-series datasets. (to be submitted)

Contributions: data generation, analysis including exploration of various methodological optimisa-

tions, in-depth analysis of the method’s performance, figure generation, part of manuscript writing

Conference papers

Lubba, CH⇤, Mitrani, E⇤, Hokanson, J, Grill, WM, Schultz, SR. (2017) Real-time decoding of bladder

pressure from pelvic nerve activity, 2017 8th International IEEE/EMBS Conference on Neural Engi-

neering (NER), pp. 617–620.

Contributions: part of the decoding analysis (correcting the groundwork of EM), manuscript writing
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together with SRS

Lubba, CH, Fulcher, BD, Schultz, SR, Jones, NS. (2019) E�cient peripheral nerve firing characteri-

sation through massive feature extraction. 2019 9th International IEEE/EMBS Conference on Neural

Engineering (NER), pp. 179–182.

Contributions: data generation, data analysis, manuscript writing

1.5 Organisation of this thesis

In the Background chapter (Ch. 2) following this introduction, we give an overview of the anatomy

of the peripheral nervous system, review encoding hypotheses, recording techniques, and decoding

methods, and provide a historical and technical context for peripheral nerve simulations. We then

move on to our simulation software PyPNS in the Simulation chapter (Ch. 3) that forms an engi-

neering contribution to the field and helped us generate surrogate data to test algorithms. Chapter 4

on decoding presents the two studies of in vivo data acquired from the rat and cat bladder a↵erents.

We present two di↵erent decoding methods tailored to the recording resolutions of the respective

datasets and a study of the encoding of bladder pressure by a population of a↵erent fibres. Finally, in

chapter 5, we describe our feature-based time-series analyses: an unsupervised method to infer low-

dimensional variation of time-series dynamics and a supervised selection pipeline to generate feature

subsets. Chapter 6 summarises the thesis achievements and provides an outlook.



Chapter 2

Background

I here provide the context of my work in terms of the anatomy of the peripheral nervous system

(Sec. 2.1), its design constraints (Sec. 2.2), encoding hypotheses (Sec. 2.3), recording interfaces

(Sec. 2.4), and decoding methods (Sec. 2.5), and simulation techniques (Sec. 2.7). We spot gaps

in the current state-of-the-art knowledge and technology and position our presented contributions

within their respective area.

2.1 The peripheral nervous system

The following gives a brief primer on the biological background of this work – the anatomy of the

peripheral nervous system (PNS). Much of this section is established ‘textbook knowledge’ and can

be re-read in standard literature such as ‘Essentials of Medical Physiology’ by Sembulingam (2012)

or ‘The Integrative Action of the Autonomic Nervous System - Neurobiology of Homeostasis’ by

Jänig (2006) for a more in-depth collection of observations.

2.1.1 Organisation

The PNS can be understood as the interface between the central nervous system (CNS; brain and

spinal cord) and the organs. Its main parts are displayed in an organogram in Fig. 2.1. We can distin-

guish the somatic and the autonomic nervous system (ANS). The somatic nervous system transports

8
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motor commands in its e↵erent (CNS ! organs) part and sensory feedback in its a↵erent (organs

! CNS) part that can be consciously controlled and perceived. It passes via the spinal and cranial

nerves. The ANS, on the other hand, is composed of the e↵erent and a↵erent pathways that enable

the unconscious and involuntary regulation of body functions like blood pressure and digestion, often

through reflex centers in the spine. Literature usually distinguishes two e↵erent divisions of the ANS:

the sympathetic and the parasympathetic system that are thought to have opposing e↵ects on the body

and promote either an active or a resting state (Langley, 1921). Parasympathetic innervation mainly

passes via the cranial nerves (III, VII, IX, and X). Most prominently the vagus nerve (X) contains

approximately 75% (McCorry, 1964) to 80% (Berthoud and Neuhuber, 2000) of all parasympathetic

fibres. Other than that, some parasympathetic fibres projecting to the colon, bladder and genitals exit

the sacral spinal cord (Feher, 2012). All parasympathetic neurons synapse once in localized ganglia

close to the target organ. Sympathetic neurons exit the spinal cord from T1 to L2 to synapse in either

the paravertebral ganglia to both sides of the spinal cord, one of the three prevertebral ganglia in the

abdomen (celiac, superior mesenteric or inferior mesenteric ganglion) or the adrenal medulla. They

group into so called splanchnic nerves on their way to the organs. The synapsing of both e↵erent

autonomic divisions, before reaching their target, has several advantages. It enables divergence (few

! many fibres) to di↵erent degrees (1:1 – 1:200) (Wang et al., 1995) with a varying ‘neural unit size’

(Johnson and Purves, 1981; Purves et al., 1986) that amplifies the influence of a single preganglionic

fibre1. Also, short reflex arcs might close in the ganglia for certain subsystems and be gated by cen-

tral inputs (Clerc and Niel, 1993) and pattern generators might exist in the ganglia (Gola et al., 1992).

As cells outside the central nervous system are exposed to endocrine messengers (no blood-brain-

barrier), the synapsing cell pools outside the CNS might be able to integrate these inputs (Browning

and Travagli, 2014). A↵erent autonomic nerves are called ‘visceral sensory’. Their pathways are

displayed in Fig. 2.2 and are usually paired with the mainly sympathetic (e↵erent) splanchnic nerves

with cell bodies in the dorsal root ganglion next to the spine. Some pass through cranial nerves (e.g.,

vagus nerve). One additional division of the PNS exists that is sometimes referred to as part of the

ANS: the enteric nervous system. It controls the gastrointestinal tract and is the only part of the pe-

ripheral nervous system that contains a considerable amount of neural circuits (Furness, 2007; Wood,

2008).

1The opposite mechanism of a convergence and integration of inputs is unlikely as usually very few preganglionic
fibres dominate (Jänig, 2006; Lichtman, 1977).
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Peripheral nervous system (PNS)

Motor (efferent) division

Autonomic nervous system (ANS)

Parasympathetic divisionSympathetic division

Central nervous system (CNS)

Sensory (afferent) division

Visceral sensorySomatic sensory AuSomatic nervous system

Figure 2.1: The main divisions of the peripheral nervous system. Autonomic parts are highlighted.

Among these di↵erent divisions, some parts of the PNS present especially promising intervention

sites for bioelectronic medicines. For the neuromodulation step (stimulation or block), the e↵erent

autonomic division (and the enteric nervous system) is an appropriate target. As the ANS is involved

in the control of diverse physiological states by a complex network of pathways (e.g., heart rate, in-

flammatory responses, blood pressure, gland secretion, etc), a corresponding wealth of e↵ects can be

achieved by intervening at the right site. As some of the important resting and healing functionalities

(Tracey et al., 2009; Sundman and Olofsson, 2015) are mediated by a large cranial nerve, the vagus

nerve, this particular stimulation site has received major attention in the past years. As about 90%

of the axons contained in the vagus nerve are a↵erent (Cramer and Darby, 2013), a↵erent pathways

might form an important target as well and single very e↵ective a↵erent neurons to trigger reflex arcs

have been identified for e.g., the lung (Chang et al., 2015). Due to a higher variability of the path-

ways of smaller nerves and a higher di�culty to build interfaces, current bioelectronic medicines are

limited to larger nerves. Future systems are expected to build on next generation electrode techniques

and a more detailed knowledge of the peripheral pathways (through mapping studies like the ones

conducted by Hammer et al. (2018) and Saylam et al. (2009)), including the identification of regions

of low inter-subject variability. Only then, interfaces with smaller nerves that carry signals to a single

organ can be reliably formed to enable a more finely controlled and more localised neuromodulation.

This important area of research will not be touched by the work presented in this thesis.

For the purpose of implementing nerve-based feedback and creating closed-loop bioelectronic medicines
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without additional sensors, organ states need to be estimated on-line from nervous activity.2 Here, the

sensory populations that innervate organs provide an obvious target. Both the visceral sensory and

somatic sensory fibres transport rich information about the current physiological state and can, once

recorded and interpreted appropriately, from a very precise, sensitive feedback. See Fig. 2.2 for an

overview of the a↵erent pathways.

~15 000

~7 500

Figure 2.2: Pathways of the afferent visceral nerves. Adapted from (Jänig, 2006, p.40). NTS: nucleus
tractus solitarii, PNS: pelvic splanchnic nerve, CNS: carotid sinus nerve, CN: cardiac nerves, HGN: hy-
pogastric nerve, LSN: lumbar splanchnic nerve, MaSN: major splanchnic nerve, MiSN: minor splanchnic
nerve, sup./rec. lar. n., superior/recurrent laryngeal nerve; ggl., ganglion; c, cervical; t, thoracic; l, lumbar;
s, sacral

2.1.2 Peripheral nerves

Peripheral nerves bundle and protect the long peripheral axons and form routes between the CNS

and the organs. See Fig. 2.3 for an overview of their components. Larger nerves that supply multiple

targets are subdivided into so called fascicles, separate subpopulations of axons. Three distinct sheaths

support the nerve. The endoneurium fills the space between axons in one fascicles, the perineurium

surrounds the fascicle, and the epineurium embraces the whole nerve.

2The alternative methods to estimate organ states using additional sensors mentioned in the introduction (Ch. 1) will
not be a topic in this thesis.
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To form interfaces with peripheral nerves, their organisation poses some challenges for bioelectronic

medicines. The thick protective layers both attenuate stimulation pulses into the nerve and silence

extracellular potential changes caused by axonal firing. Moreover, the combination of many fascicles

and many more axons (>10 000) to a single nerve complicates selective recording and stimulation

without an invasive interface (Navarro et al., 2005; Spearman et al., 2018).

Important peripheral nerves that have received a lot of attention in neuromodulation research are the

somatic sciatic nerve innervating the leg for limb movements (Citi et al., 2008; Raspopovic et al.,

2011) (27 000 fibres in rat (Schmalbruch, 1986)), the vagus nerve as one of the main pathways of

the parasympathetic system for a variety of e↵ects (Gayet and Guillaumie, 1933; Tracey et al., 2009;

Guiraud et al., 2016) (⇠80 000 fibres in humans (Shimizu et al., 2011), ⇠20 000 in rat (Prechtl and

Powley, 1990)), and the pelvic and pudendal nerves for bladder control (Chancellor and Chartier-

Kastler, 2000).

Figure 2.3: A peripheral nerve and its fascicles. Adapted from (what-when-how.com).

2.1.3 Axons

Reaching down to the single cell level, neurons (e.g., a↵erent sensors) transport information by single

action potentials (APs), localized increases of the membrane voltage (depolarisations), that propagate

along the terminal extension of the neurons: axons. Since the axon’s cytoplasm (called axoplasm)
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has a resistance which, combined with the membrane capacitance, is too high for a purely passive

conduction over long distances (as would be possible e.g. in a metal cable), the APs are amplified and

renewed along the way by voltage gated ion channels: when the membrane voltage is increased above

a threshold, specialised sodium-channels open in order to let positive charge enter the cell and further

increase the potential di↵erence between inside and outside, afterwards opening potassium channels

lead to a re- and hyperpolarisation. Two main axon types and respective ion channel distributions

exist. ‘Unmyelinated’ axons express the relevant channels in an approximately uniform manner over

their entire cell membrane. Thereby, passive conduction is reduced to a minimum. This mode of con-

duction is simple but comparably slow and consumes much energy (Neishabouri and Faisal, 2011).

As an alternative, ‘myelinated’ axons enable a piecewise passive conduction by the use of an insu-

lating layer on the membrane that reduces membrane capacitance. Schwann cells produce a myelin

sheath around the axon (equivalent to oligodendrocytes in the central nervous system). Channels

can then be omitted in the myelinated sections of the axon and concentrated at the nodes of Ranvier

where the cell membrane is exposed to the intercellular space. See Fig. 2.3. Depolarisation ‘jumps’

(‘saltatory conduction’) from node to node and as an e↵ect, both conduction velocity and transmis-

sion e�ciency rise dramatically. In addition to the higher conduction velocity at a given diameter, the

scaling of conduction velocity with axon diameter is more favourabe in myelinated axons (linearly)

compared to unmeylinated axons (proportional to the square root of the diameter) (Waxman, 1980).

Thicker axons (>1 µm) are therefore exclusively myelinated (Snaidero and Simons, 2014). Thick (10

µm) myelinated fibres reach conduction velocities of about 100 m/s (Waxman, 1980), unmyelinated

thin fibres stay below 1 m/s (e.g., 0.4 µm! 0.28 m/s (Sundt et al., 2015)).

In Tab. 2.1, typical diameters found for di↵erent pathways are shown. The thickest, and therefore

fastest axons are used for the transmission of motor commands to skeletal muscle and sensory feed-

back from muscle spindles. Postganglionic e↵erent autonomic nerve fibers are not myelinated and

transmission is slow. Many peripheral fibres fire at very low rates, as expected from their small di-

ameter (Perge et al., 2012). Typical single e↵erent sympathetic fibres stay below 3 s�1. To give a few

examples: sudomotor (to sweat glands) 0.2 s�1 (Jänig and Kümmel, 1977); pilomotor (to hair) 0.6 s�1

(Macefield et al., 1994, 1999)); preganglionic skeletal muscle vasoconstrictor (MVC) fibres stay at

higher resting rates of 1.8 ± 1.3 s�1, postganglionic 0.5 - 3 s�1 (Jänig, 1988); renal nerves (rabbit) 2 -
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2.5 s�1 depending on anaesthetics (Dorward et al., 1987); renal and splenic nerves (cat) 1.2 ± 0.2 s�1

(Meckler and Weaver, 1988).

Fiber Types Name Subtype
Diameter

(µm)
Conduction

Velocity (m s�1)

Myelinated
Somatic Afferent

Cutaneous A � 8–12 40–75
� 4–8 15–40
� 1–4 5–15

Muscle A ↵ 12–21 75–120
� 8–12 40–75

Somatic Efferent
Muscle A ↵ 12–21 75–120

� 4–8 15–40

Autonomic Efferent
Preganglionic efferent B 1–3 3–14

Unmyelinated
Somatic Afferent

to dorsal root ganglion (pain) C 0.1–1 0.2–2
Autonomic Efferent

Postganglionic efferent C 0.1–1 0.2–2

Sensory Receptor
Hair follicle A�
Skin follicle A�
Muscle spindle A↵
Joint receptor A�
Pain, Temperature A�, C

Table 2.1: Axon types and where they are found in the PNS (Smith, 2006; Mann, 2019)

Forming interfaces with the very thin unmyelinated fibres that are responsible for the autonomic

peripheral signalling is one of the challenges in bioelectronic medicines. These fibres only provoke

rare (see above) and small extracellular potentials (in the order of µV (Spearman et al., 2018)) and are

therefore di�cult to separate from background noise and artefacts caused by other electrical sources,

complicating any recording. C-fibre activation thresholds are furthermore high (Sdrulla et al., 2015),

making stimulation more energy-intensive compared to myelinated fibres. This core challenge of

the interface development for bioelectronic medicines will not be touched by the contributions of

this thesis. It will, however, surface again as a limiting factor for signal processing algorithms (see

Sec. 2.4 and 2.5.2) that generally have no access to detailed information about the population activity.
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2.2 Engineering principles of peripheral nerves

Before going on to the observed encoding on peripheral nerves (Sec. 2.3) and artificial interfaces with

the peripheral nervous system in Sec. 2.4, we want to take a more abstract perspective of the PNS

as an engineered communication system here to understand its design better. In any nervous system,

there is an undeniable interplay between the information processing functionality (including an en-

coding strategy) and the physical implementation of this function – axon diameters used, locations

of major neuron pools, etc. In the CNS, the evolution of this design could purely be guided by the

energy e�ciency of information processing (Sterling and Laughlin, 2015). Taking this perspective, a

fundamental trade-o↵ has been identified between energy-consumption and information transmission

capacity for di↵erent axon dimensions (diameters, length) (Sterling and Laughlin, 2015; Perge et al.,

2009, 2012). The higher the diameter, the higher the maximum firing rate and therefore information

rate (French et al., 2001). As energy consumption rises quadratically with diameter and information

rate only rises sublinearly (Sterling, 2014, p.53), a law of diminishing returns constrains axon dimen-

sions and thin, short axons will be used wherever a↵ordable. This concept can explain many design

choices in the CNS such as the thick axons of the quick and precise vestibular system that fire at high

rates and the thin olfactory axons where low firing and information rates are acceptable (Sterling,

2014, p.75) as well as minimizing ‘wire’ by grouping related areas close to each other.

In the PNS, axon length cannot be freely re-configured because pre-defined distances to organs have

to be covered. Delay, in addition to information rate, becomes a crucial indicator for transmission

performance of a nerve that improves with rising diameter. Nakahira et al. (2015) investigated the

relation between delay, information rate and energy consumption for somatosensory control in the

quantised and delayed channel that is a nerve and showed that at a given nerve diameter, di↵erent

axon diameters suit di↵erent organ control requirements (speed vs accuracy trade-o↵). It is tempting

to speculate that the modest control requirements of slow organs (high accepted lag, low required

information rate) combined with energy constraints can explain the observed high number of slow, low

diameter fibres that dominate the autonomic periphery which are low in their energy consumption and

cause high delays. A stark contrast becomes visible when comparing to the thick and fast-conducting

fibres used for the quick somatic control of muscles.
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2.3 Physiological information transmission on peripheral nerves

We have briefly covered the organisation of the peripheral nervous system and the anatomy of periph-

eral nerves and axons and speculated what constraints may have guided its development. But what

is the current knowledge about the communication principles on the nerves that we record from?

How does the peripheral nervous system encode the information that it relays across the whole body?

Answering this scientifically interesting question will be vital for bioelectronic medicines – to build

informed decoders and to tailor neuromodulation interventions to the physiological communication

on nerves.

We will almost exclusively cover sensory (a↵erent) encoding here. It is much easier to study than

e↵erent pathways because the input can be measured and manipulated. Understanding the encoding

of sensory information by a↵erent fibre populations can further enable informed decoders for bioelec-

tronic medicines. A dominant encoding hypothesis in a↵erent encoding are so called ‘labeled lines’

(Donaldson, 1885). In this simple concept, each fibre conveys the scalar intensity of one quantity of

interest (e.g., temperature at a specific skin area), independent of the activity of other fibres. Evidence

for this encoding principle was demonstrated for the sensations of pain (Basbaum, 1991), taste (Bar-

retto et al., 2015; Frank, 1973; Scott, 2004), touch (Jones and Smith, 2014), temperature (Donaldson,

1885; Gallio et al., 2011)) and others. It is therefore an established concept in peripheral sensory en-

coding. Still, the labeled line code is, to an extent, an oversimplification and more complex patterns

across fibres were demonstrated that challenge the clean idea of ‘one-fibre-one-message’. Evidence

suggests there exists ‘crosstalk’ between labelled lines (Ma, 2010): messages about a stimulus are

not transported by each fibre independently, but as a group activity pattern resulting from the inter-

actions between fibres. Similarly, relative codes were proposed early (Pfa↵mann, 1959): single fibre

activities might only transmit their respective meaning in relation to other fibre activities. Sensory

receptors’ individual characterisics might combine in synergistic ways even without direct interaction

as ‘diversity sweet spots’ to achieve high accuracy by a set of noisy sensors (Nakahira et al., 2019;

Nakahira, 2019). Di↵erently behaving cells as slow and fast reacting sensors have been reported for

various sensory populations such as the colon (Blumberg et al., 1983; Jänig and Koltzenburg, 2017;

Sengupta and Gebhart, 1994a), gall bladder (Foreman et al., 1986), the lung (slowly- and rapidly-

adapting sensors) (Yu et al., 2017; Schelegle and Green, 2001; Coleridge and Coleridge, 2010; Kubin
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et al., 2006), muscle spindles (Brown et al., 1965; Koeze, 1973) which may hint towards a separate

encoding of stimulus time and intensity of the same quantity by distinct fibres within a population.

Another debated aspect of the coding across fibres (be it labeled lines or a more complex population

code), is how single fibres encode intensity. Most often, a simple rate-code is assumed where fir-

ing rate equals encoded intensity (Adrian and Zotterman, 1926). Temporal coding by spike timing

has, however, been demonstrated in taste (synchrony of fibres, onset- and tonic-fibres) (Hallock and

Di Lorenzo, 2006), touch (gaps between bursts instead of rate code for frequency) (Saal et al., 2016;

Birznieks and Vickery, 2017), and proprioception (50 ms precision of spikes) (DiCaprio et al., 2007).

In touch, an ensemble of first activated sensors transmits complex information much faster than a rate

code could (Johansson and Birznieks, 2004). In e↵erent branches, spike timing dependent coding

for motor control was demonstrated as well (Srivastava et al., 2017). In the synmpathetic nervous

system, rhythms of di↵erent frequencies have been an established observation of much debate for a

long time3 (Janssen et al., 1997; McAllen and Malpas, 1997) and might form part of an encoding

strategy. These rhythms have been related to timing-dependent encoding hypotheses (Gilbey, 2001,

2007; Macefield et al., 1999) (timing relative to rhythm phase), but also control theory (Julien, 2006;

Ringwood and Malpas, 2001). The higher e�ciency of synchronised, grouped activation in bursts in

releasing neurotransmitters (Birks, 1978; Hardebo, 1992) and reduce delay (Wallin et al., 1994) might

explain their existence as well, or synchronisation might provide a means of binding di↵erent neuron

pools across the body (Conway et al., 1995).

The exact intensity coding by single fibres in the periphery and the role of spike timing remains, just

as the significance of rhythms and the employed population code, uncertain (Jänig, 2006) for both

a↵erent and e↵erent pathways. Given the simplicity and the explanatory power for many sensory

systems, we judge that an encoding by rate coded labelled lines is a reasonable first assumption and

a hypothesis to challenge by observations. We also base our encoding study in section 4.2 on this

encoding assumption.

Overall, there exists a mosaic of descriptive information on many peripheral subsystems that has

been collected in biological studies which often put an emphasis on single cell responses and non-

3Di↵erent frequencies were observed: 0.1 – 0.4 Hz (Mayer-waves) (Janssen et al., 1997; Brown et al., 1994; Julien,
2006), the T-rhythm around 1 Hz (Chang et al., 1999), another ‘cardiac’ one in the range 2 - 6 Hz (Malpas, 1998; Janssen
et al., 1997; Adrian et al., 1932), then a respiratory modulation of activity and a 10 Hz rhythm (Deuchars, 2015; Ootsuka
et al., 1995; Chang et al., 1999) (or rather 6 - 20 Hz (Ninomiya et al., 1990)).
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functional anatomy. Meanwhile, neuroscience of the CNS has for over 60 years focused on the

function (information processing) of populations of neurons and has developed into a discipline em-

powered by numerous analysis tools. One of the most commonly used techniques is information

theory, a useful model-free framework to uncover nonlinear interactions (Shannon, 1948; Cover and

Thomas, 2005) and to capture the information content of spike trains, reducing dimensions (Kraskov

et al., 2005), etc. Information theory is an especially promising tool for the investigation of sen-

sory systems because of the known non-linearities including hysteretic behaviour (Ross et al., 2016)

between the sensed quantity and the output of neurons. Methodologically grounded investigations

of peripheral fibre populations using these tools might benefit our understanding of the peripheral

nervous system if combined with carefully repeated, analysis-friendly experimental procedures. We

might then not only challenge the simplifying dominant models of a labeled line code by rate-coded

fibres with single contradictory observations, but propose alternative mechanistic encoding models

that can then be exploited by informed decoding algorithms and stimulation protocols.

As a step towards principled investigations of the encoding strategies on peripheral nerves, we studied

a model population of sensory fibres that monitor bladder pressure, see Sec. 4.2. We identified di↵er-

ent fibre types and explained their individual and combined significance for information transmission

using information theory. As a relevant result for bioelectronic medicines, we proposed an informed

decoding scheme as mentioned again in Sec. 2.5.2 and covered in detail in Sec. 4.2.2.3.

Investigating the encoding is interesting as a scientific exercise and requires a high recording reso-

lution that allows to di↵erentiate single cells. But is this level of detail necessary for a decoder to

work well? What resolution can be attained by today’s interfaces and are there drawbacks in pursuing

maximum recording detail? The next section will cover current recording techniques followed by

decoding approaches at di↵erent resolutions.

2.4 Recording techniques

We are interested in artificial systems that interact with the peripheral nervous system, by both record-

ing from it and modulating its activity. In the following section we give an overview of the existing

interface technologies for recording, as relevant for decoders, in terms of their advantages and disad-
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vantages including the aspects recording resolution and long-term stability.

Nervous activity can be monitored in various ways, e.g., by functional imaging of the neurovascular

response (Engel et al., 1994), optogenetic methods (Nagel et al., 2002) (shown for the PNS (Fontaine

et al., 2017; Anderson et al., 2018), and electrical recording. For today’s implementations of bio-

electronic medicines, electrodes in close proximity to nerves are commonly used. These electrical

probes record changes in extracellular potentials caused by action potentials of the nerve’s axons. See

Fig. 2.5 for two example recordings. The main di�culty in interfacing with the PNS lies in the fact

that the axons are densely packed and protected by sheaths. At the same time, interfaces cannot a↵ord

to damage the nerve and are expected to keep a good signal quality over long time scales (years). With

higher invasiveness, inflammatory response, foreign body reactions, and fibrous encapsulation of the

implanted devices are a danger (Ward, 2008; Sheikh et al., 2015). Consequently, compromises on

spatial resolution and signal-to-noise ratio are accepted in favor of mildly invasive interfaces. In the

quest for a long-term stable interface with a good selectivity and signal-to-noise ratio, a large variety

of electrode designs have been developed. Good reviews can be found in Navarro et al. (2005) and

Spearman et al. (2018) and we provide an overview in the following.

Figure 2.4: Different electrode types for PNS recording. Adapted from Rijnbeek et al. (2018).

The first, very important and widely used electrode design is the cu↵ electrode (Stein et al., 1975).

It embraces a nerve in a circular manner by a non-conducting material, creating an insulation that

amplifies the recorded voltage. Further advantages are the low invasiveness and therefore increased

long-term stability (Romero et al., 2001; Struijk et al., 1999; Stein et al., 1977). Cu↵ electrodes

possess qualities for stimulation as well, such as current steering (Tarler and Mortimer, 2004), field

confinement (Navarro et al., 2005), and long-term stability (Christie et al., 2017). As the recorded

activity must pass through all surrounding sheaths, especially the epineurium, and a multitude of

enclosed axons contribute to the recording, signal-to-noise ratio remains low and di↵erentiating fibres
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is close to impossible (Navarro et al., 2005). Still, some structure such as short phases of high activity

(‘bursts’, see encoding in Sec. 2.3) and low-activity phases can be distinguished in the processed

signal, see Fig. 2.5.
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Figure 2.5: PNS recordings are often noisy but still contain distinguishable activity phases. A
Microelneedle recording from renal sympathetic nerves (renal sympathetic nerve activity, RSNA) in cats
(McAllen and Malpas, 1997). B Hook in oil recording from the pelvic nerve in rats (Danziger and Grill,
2015).

As an alternative electrode design with a higher degree of invasiveness, intrafascicular electrodes can

be inserted into the nerve fascicle (see Fig. 2.3 in Sec. 2.1.2 for fascicles). They enable a higher

signal-to-noise ratio and selectiveness (Navarro et al., 2005) that makes it possible to di↵erentiate

single fibres. There exist transversal (TIME) (Boretius et al., 2010) and longitudinal intrafascicular

electrodes (LIFEs) (Bowman and Erickson, 1985; Lawrence et al., 2004). In the scenario of a dis-

rupted nerve, the very selective ‘regenerative electrodes’ are applicable. The growing nerves pass

through holes in the electrode which can lead to a resolution at the single axon-level. An overview

of these four classical electrode types is shown in Fig. 2.4. More exotic solutions like microchannel

electrodes into which the teased nerve is fitted allow a similar resolution as regenerative electrodes

from intact nerves (Chew et al., 2013). As an alternative to recording from axons, the cell bodies

of sensory fibres in the dorsal root ganglion (DRG) can be targeted by microelectrode arrays. This

approach allows for a high spatial resolution at increased signal strength from the cell bodies’ activ-

ity (Bruns et al., 2011b) similar to the recordings in CNS at the cost of a lower, but still acceptable

long-term stability (Khurram et al., 2017) despite tissue responses like inflammations and scar tissue

provoked by penetrating interfaces (Christensen et al., 2016; Wurth et al., 2017).

A wealth of new interface technologies is being developed that explore di↵erent materials like carbon

nanotubes (Gillis et al., 2018; McCallum et al., 2017; Yan et al., 2019a; Kostick, 2018; Patel et al.,

2016) and graphene in general (Kostarelos et al., 2017), flexible and polymer (Stieglitz et al., 1997;
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Rodrı́guez et al., 2000; Lee et al., 2017b,a; Sperry et al., 2018; Xue et al., 2015; Caravaca et al.,

2017), and organic materials (Lö✏er et al., 2017; Lanzani, 2014). Adapted geometries like small

diameter cu↵s (Ordonez et al., 2014; Lissandrello et al., 2017), small needle interfaces (Yan et al.,

2019b), and surface electrodes (Sperry et al., 2018) were proposed. Similarly, innovative recording

techniques such as conduction velocity selective recording (VSR) (Metcalfe et al., 2014; Taylor et al.,

2015), battery-free ‘neural dust’ powered by ultrasound (Seo et al., 2016), bioimpedance tomography

to selectively monitor fascicles (Aristovich et al., 2018) or even sensing of pH rather than electrical

potentials (Cork et al., 2018) were proposed.

As can be seen, a diversity of peripheral nerve interfaces exists and novel ones are invented ‘by

the minute’. Each of them will produce a di↵erent signal in terms of signal-to-noise ratio, spatial

resolution, and dimensionality of the resulting signal. It is di�cult to guess what electrode technology

is the most promising and might dominate the area in the future. Surely, di↵erent interfaces will

be applied to di↵erent nerves. Small nerves innervating a single target do not require a selective

recording. For them we might still use rather simple cu↵ electrodes in the far future. For thicker

nerves in which a recording has to di↵erentiate the activity of fascicles or single axons, no optimal

interface exists today. As a personal opinion, organic and soft materials that can penetrate the nerve

without causing strong tissue reactions are probably the holy grail that neurotechnology is waiting

for and that will significantly katalyse progress of the field. The next section will take a look at what

decoding and pre-processing algorithms have been applied to each of the di↵erent recorded signals.

2.5 Decoding

By ‘decoding’, we mean the process of estimating a variable of interest from an observed process

in which information is somehow encoded. For bioelectronic medicines, the observed process is a

recorded population of axons that encode information in their firing patterns, and the quantity of

interest is an organ parameter such as bladder fullness or level of bronchoconstriction.

In a scenario with a perfect measurement (no noise, infinite temporal and spatial resolution) and

knowledge of the encoding principle of e.g., response to temperature changes of a population of sen-

sory fibres innervating the skin (forward model), a decoding can easily be accomplished by building
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the inverse relation. For peripheral nerve decoding, however, the reality is quite far away from this

ideal case. The exact code of the spiking patterns by which the fibres transport their information is

largely unknown (Sec. 2.3) and as detailed in section 2.4, di↵erentiated recordings of every axon are

furthermore impossible with current electrode technology. A decoder for our object of study will

therefore need to interpret the imprecise signal obtained from the recording technique used in which

many subtleties of the population activity are obscured.

2.5.1 Decoding from the central nervous system

Let us first take a look at the more established field of decoding limb movements from the motorcortex

in the central nervous system (CNS) as a case study to draw parallels from, before covering the

related work in the peripheral nervous system (PNS). In 1986, Georgopoulos et al. described the

direction-encoding in the primary motor cortex M1 by a population of neurons that each represent a

certain movement direction. Some 15 years later, in 2000, a brain machine interface (BMI) to move

a virtual cursor ‘by thoughts’ has been demonstrated for the CNS (Kennedy et al., 2000) based on

this groundwork using invasive electrodes. Decoding from the CNS typically involves the following

steps. (1) Spike sorting (Rey et al., 2015): due to the high density of neurons in the cortex, electrodes

record signals from multiple cells. Spike sorting associates each recorded spike to a certain neuron.

See (Lewicki, 1998) for a review of early techniques. (2) Binning: for each neuron, its spikes are

counted over a certain time interval. (3) Training: building the relationship between pre-processed

recording (binned firing rates of the spike-sorted units) and observed movement by the decoder.

Based on the binned firing rates per spike-sorted unit, di↵erent choices can be made for the decoder

that is often a multipurpose, o↵-the-shelf algorithm. The first decoding (as a demonstration for the

encoding model), done by Georgopoulos et al. (1986), used the so called population vector (PV)

approach where each neuron was assumed to encode one direction and was weighted by its firing

rate for decoding. The weighted sum over all recorded neurons gives the ‘population vector’ as a

decoded direction. Following work then proposed the optimal linear filter (OLE) method (Salinas and

Abbott, 1994). While the PV-method assumes a uniform distribution of preferred directions, OLE

can incorporate the correlation of neurons (Brockwell et al., 2004). OLE showed similar decoding

performance to more complex decoders such as artificial neural networks (ANNs) (Wessberg et al.,
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2000). In general, linear estimators were very successful in cortical decoding (Serruya et al., 2002,

2003; Hochberg et al., 2006; Collinger et al., 2013).

All described decoders so far base their state estimate on the current measurement only. This re-

lationship between measurement and decoded state is normally called an ‘observation model’. The

resulting estimates usually contain a few implausible outliers that can be removed afterwards by a

smoothing in time (e.g., by a moving average filter). What these estimators lack, is a measure of plau-

sibility of the next state given the current state. Every possible next estimate is assumed to have equal

probability. More advanced, probabilistic estimators can integrate prior knowledge of the state evo-

lution in their estimation process through the use of a ‘state model’. They are often called ‘Bayesian’

(Bayes, 1763; Barker et al., 1995; Brockwell et al., 2004; Thrun, 2002; Chen, 2013) due to their ba-

sic working principlem, and substantial increases in decoding performance can be achieved in this

way. In cortical decoding, Bayesian filters were realized as Kalman Filters (KF) (Wu et al., 2005; Li

et al., 2009; O’Doherty et al., 2011; Yu and Yu, 2017) in di↵erent variants (Extended KF, Unscented

KF (Thrun, 2002)) and Particle Filters (Brockwell et al., 2004) and achieved considerable increases

in decoding performance. The sequential, recursive nature of these filtering techniques enables fit-

ting to the highly nonlinear behaviour of neural systems in time (Brockwell et al., 2004). In fact it

was found that tuning of the observation model only has a minor impact on decoding performance

(Koyama et al., 2010); a good state model substantially improves it (Koyama et al., 2010; Wu et al.,

2005; Yu and Yu, 2017). Moreover, the probabilistic nature of these estimators provides confidence

intervals for estimated states. Still, there exist caveats to the Bayesian approach. The most com-

monly used Kalman filter requires system properties not necessarily fulfilled (Gaussian probability

densities, linear models) and comes with a substantial computational complexity that remains a prob-

lem for closed-loop application (Li et al., 2009). This computational load mainly comes from the

necessity to calculate multiple matrix multiplications per time step for state and observation model

and correction. Particle filters overcome (Brockwell et al., 2004) the system requirements of Kalman

filters, but only at the price of an even higher computational cost. New, even more advanced and

consequentially more computational burdensome decoders, such as long short term memory (LSTM)

neural networks, have shown promising results for movement decoding in CNS as well (Yousefi et al.,

2019; Hosman et al., 2019).

Comparing the di↵erent decoding algorithms employed in the CNS, those decoders that incorporate
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a state model (Kalman, particle) have clear benefits for the decoding accuracy but come at the cost

of an increased computational burden. Even more complex decoders such as deep neural networks

only achieve minor improvements and are much more expensive to run. If computing resources are

a limiting factor (as in the case of implanted devices), the simple optimal linear estimator remains a

good baseline approach that has proven successful for decades.

Most decoders for the CNS are trained on the firing rates of spike-sorted units recorded by micro-

electrode arrays (MEA). As MEAs in the brain do not possess a high long-term stability (Biran et al.,

2005), electrocorticography (ECoG) – electrodes placed on the surface of the brain – was proposed

as a less invasive recording method with lower spatial resolution that only captures the continuous

local field potential (LFP), no spikes. Decoders from this low-resolution signal were demonstrated

(Zhuang et al., 2010; Flint et al., 2012; Stavisky et al., 2015). Using e.g., Kalman-filters or recurrent

neural networks, such as LSTMs, decoding performance from EcoG recordings can be almost as ac-

curate as decoders trained on sorted spikes (Ahmadi et al., 2019). As noted above, these complex

decoders are computationally expensive, however. Observing activity at a reduced level of detail can

have advantages for the long-term stability of the recorded signal, in addition to the reduced tissue re-

sponse of less invasive electrodes. It has been demonstrated that coarser wavelet features, rather than

spike-sorted units, have promise to monitor cortical activity over long time scales (3 years) (Zhang

et al., 2018). Similarly, threshold crossing per electrode, rather than spike-sorted units were shown to

yield higher decoder stability (Chestek et al., 2011; Christie et al., 2015).

We thus conclude that for decoding from the CNS, a simple linear decoding algorithm usually works

well and marginal performance gains can be attained by using more complex ones (Kalman, Particle,

LSTM). The preprocessing of the recorded signals, if electrode activity, spike sorting, or other features

is a second important decision that can have big e↵ects on both decoding accuracy and long term

stability.

2.5.2 Decoding from the peripheral nervous system

Neural activity in the cortex happens largely in parallel and in spatially distinct sites that can be

recorded simultaneously by microelectrode arrays or by electrocorticography. Recordings from the

peripheral nervous system (PNS) are di↵erent. To prevent tissue-damage and ensure long-term stabil-
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ity, minimally invasive interfaces that do not penetrate the nerve are commonly used. Artifacts from

movements and from other sources of electricity such as muscles pollute the signal. The resulting

noisy recording, acquired by a few electrodes outside the protective sheaths, generally does not allow

for single fibres to be di↵erentiated. A decoder therefore often needs to extract information from the

shape of a single continuous time series per electrode.

This is especially true for the most commonly used interface, the cu↵ electrode. It captures neu-

ral activity at one site with few electrodes that all receive signals from many densely packed axons

that superpose to a compound action potential (CAP). A di↵erentiation of axons or groups of ax-

ons would increase the number of observations input to the decoder considerably. But, even though

adapted spike sorting techniques were developed early (Wheeler and Heetderks, 1982; McNaughton

and Horch, 1994), the limited recording resolution generally prevents such signal processing and the

undi↵erentiated superposition of the spikes of all fibers has to be analysed directly. Common process-

ing steps comprise a bandpass-filter (e.g., 700 Hz and 2 kHz (Diedrich et al., 2003)) to remove noise

and slow local field potentials (LFP), an artifact removal by e.g., a linear minimum mean square error

(LMMSE) filter (Gharibans et al., 2018), and a rectification followed by an average filtering (Micera

et al., 2001; Diedrich et al., 2003; Cavallaro et al., 2003). The decoder receives a simple amplitude

measure of the recording at di↵erent nerve locations as an input without trying to identify distinct

events or units. Micera et al. (2001) successfully applied this technique to recordings from cu↵ elec-

trodes using a neuro-fuzzy estimator (e.g., Jang and Sun (1995) for further reference). The decoding

of the angular leg position from the activity of the tibial and the peroneal nerve was possible (Micera

et al., 2001). Further refinement of the decoder could be achieved with a genetically optimized fuzzy

logic (Cavallaro et al., 2003). In these examples, the low recording resolution and dimensionality of

the signal was compensated by complex estimators.

Within the area of low-resolution recordings, we provide a first decoding contribution in this work that

maps and linearises the response characteristic of a sensory population recorded by a hook electrode

in oil to maximise decoding performance. See Ch. 4.1 for more details.

As dominant as the cu↵ electrode is in today’s implementations of bioelectronic medicines, the on-

going research on new materials and alternative designs will lead to a higher signal resolution in the

future and will allow adapted, more sophisticated pre-processing techniques to generate a more in-
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formative input to the decoder. One good example of this paired progress (recording and processing)

is the combination of intrafascicular electrodes and wavelet denoising. Intrafascicular electrodes pro-

vide a higher spatial resolution and signal-to-noise ratio than cu↵ electrodes (Boretius et al., 2010;

Lawrence et al., 2004; Citi et al., 2008). Wavelet denoising (Donoho, 1995) applies a threshold in the

wavelet-domain and therefore only keeps signal components that well fit the wavelet basis function.

This basis function shape can be matched to the spike shapes and wavelet denoising is applicable as

soon as spikes can be clearly distinguished from noise. Diedrich et al. (2003) first applied wavelet

thresholding techniques for denoising PNS recordings acquired through microneurography, a method

where a needle-electrode is inserted into a nerve. They were then able to classify spikes in the de-

noised recording by pattern matching and therefore largely enhanced the signal dimensionality from a

univariate continuous waveform to firing rates of multiple single units (or groups of units). On the ba-

sis of this research, Micera et al. (Citi et al., 2008; Micera et al., 2010) successfully applied Diedrich’s

techniques in a discrete decoding of mechanoreceptor signals using intrafascicular electrodes (which

in fact have similarities with microneurography needles). Hardware for the implementation of these

techniques has been developed as well (Carta, 2013).

Intrafascicular electrodes allow the observation of single units but require intense pre-processing in-

cluding an expensive online wavelet denoising and pattern matching that is a substantial burden for

the limited battery capacity of any implanted device. An alternative route to a higher-dimensional

decoder input is to further increase the raw recording quality by an even more invasive interface. In

this way, a high resolution, potentially at the single action potential (AP) level, can be attained with

less computationally expensive signal pre-processing – at the cost of a reduced long-term stability.

Single AP recording resolution of peripheral nerve activity has been obtained from stripped nerves in

microchannels (Chew et al., 2013) and by inserting microelectrode arrays near cell bodies, e.g., soma

of sensory fibres in the dorsal root ganglion (Bruns et al., 2011a). Using the latter method of a micro

electrode array (MEA), the acquired signal resembles the recordings in CNS. These more invasive

interfaces provide a higher dimensional raw signal (number of electrodes) and open up ways towards

reliably spike sorting single units. Successful decoders were demonstrated, even on unsorted data

(Ross et al., 2018; Ouyang et al., 2019) with better results for more sophisticated decoders (neural net

> Kalman � optimal linear estimator (Ross et al., 2018)).

The more detail the interface provides, the higher-dimensional and potentially informative the input
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to a decoder will be. The decoder can then, in a data-driven way, select informative aspects of the

recording automatically by e.g., least absolute shrinkage and selection operator (LASSO) (Tibshirani,

1996) and build the relationship to the quantity of interest. A high recording resolution can, however,

also be used to implement an informed decoder that exploits an understanding of the physiological

encoding as opposed to a purely data-driven machine-learning approach. Following this idea, we

analysed the encoding principle of bladder pressure by a population of sensory a↵erent fibres moni-

toring the bladder wall using information theory in a first step and then designed an adapted decoder.

Based on a quantitative understanding of the population code, this decoder makes use of groups of

stereotypical bladder units to create a low-dimensional population vector and is accurate, robust, and

o↵ers means of automatic re-calibration. See Ch. 4.2 for details.

As we have seen for the three interfaces cu↵ electrode, intrafascicular electrode, and microelectrode

array, there exists an intimately intertwined and evolving interplay between the interface that trades

recording resolution against long-term stability, and the adapted pre-processing that extract as much

information as possible from the available raw recording. While the choice of the decoding algorithm

receiving the pre-processed data, be it a optimal linear filter/ estimator (Salinas and Abbott, 1994), a

Kalman filter (Kalman and Bucy, 1961) involving a state model or a neural network (Yousefi et al.,

2019; Hosman et al., 2019; Ross et al., 2018), has an impact on decoding performance (Ross et al.,

2018), the generation of the input to the decoder by both recording technique and the adapted pre-

processing is the most important task in technological development for bioelectronic medicines.

Such pre-processing is already quite evolved for high-resolution electrodes, as we have seen in the

shape of wavelet denoising and pattern-matching for intrafascicular electrodes, spike sorting for mi-

croelectrode arrays. If we take a look at the lower end of signal-to-noise ratio and spatial resolution

generated by e.g., a cu↵ electrode, however, the raw recording was usually simply summarised by

its amplitude or power in the past, sometimes preceded by a denoising step (Donoho, 1995; Diedrich

et al., 2003; Citi et al., 2008). Computing an amplitude measure is, however, a very coarse measure of

activity that only quantifies intensity but discards any subtle waveform shapes that potentially contain

additional information about the quality of activity such as active fibre diameters, active fascicles,

and di↵erent rhythms. It should be asked whether such imprecise measures are really the best we

can do as soon as spike sorting or pattern matching becomes impossible. It seems, there exists a gap

between the two signal pre-processing paradigms ‘unit identification’ and ‘population power’ – ex-
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actly for a regime of low signal-to-noise ratio and spatial resolution that is very common in peripheral

nerve recordings. See a simplifying cartoon of this concept of a missing signal processing option in

Fig. 2.6. Especially for cu↵ electrodes but also for intrafascicular electrodes with low signal to noise

ratio, information might be lost by coarse summary measures of the activity.
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Figure 2.6: There exists a regime of signal-to-noise ratio where more than a signal intensity could
be extracted but is not currently. A simplified view on pre-processing steps depending on the recorded
signal quality (signal-to-noise ratio (SNR) and spatial resolution). At very low SNR, no decoding is possible
(red). As soon as some spiking activity is visible (orange), intensity can be detected, but not quality of the
activity. At intermediate SNRs, more than an intensity could be quantified but this information is usually
discarded. Only in the high-SNR regime, single fibre waveforms can be distinguished and sorted. The
combinations of spatial resolution and signal to noise ratio are shown for three common electrode designs:
the cuff electrode, the intrafascicular electrode and the microelectrode array (MEA).

We attempt to address this unmet need for a pre-processing and characterisation of low-SNR raw

neural recordings in a third contribution towards peripheral nerve decoding, in addition to our low-

resolution decoder (Sec. 4.1) and the informed one for high-resolution interfaces (Sec. 4.2). Based

on general purpose time-series features, we developed a pre-processing method that detects and sum-

marises firing characteristics in a low-dimensional feature vector in a regime of signal-to-noise ratio

where no spike sorting or waveform pattern matching is possible.

It has to be noted that the classic pattern-matching techniques including spike sorting (at least for dif-

ferentiating fibre subgroup signatures), will most likely become possible even for commercial mildly

invasive electrodes with advances in interface technologies. Some progress for e.g., the vagus nerve

has been demonstrated in combination with wavelet denoising (Zanos et al., 2018). The reduced signal

reliability and stability in peripheral interfaces (e.g., changing electrode positions due to movement

causing recorded waveforms to change) compared to the CNS might, however, favour less sophis-
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ticated measures of the continuous waveform that are more robust and long-term stable (like in the

CNS (Zhang et al., 2018)). Characterising the waveform may in addition be more energy-e�cient

than the computationally expensive spike sorting.

2.6 Feature-based time-series characterisation and analysis

The reader might ask why time-series features are relevant for the analysis of peripheral nerve record-

ings? As detailed before, common interfaces often generate low-resolution recordings that do not

allow the identification of single fibres or subpopulations. The resulting compound action poten-

tials (CAP) have to be treated as a continuous waveform. Currently, these recordings have been

summarised in coarse statistics like power (e.g., root mean square (RMS) power) or amplitude that

discard any subtle dynamics captured in the waveform. If we can identify any additional informative

properties of the unprocessed peripheral nerve recordings that go beyond power, this would enable

us to describe the continuous low-resolution recording – shaped by the particular nerve, the interface,

and the fibre population activity – e�ciently in a few key figures without any energetically expensive

high-maintenance processing steps such as wavelet denoising or on-line spike sorting. Such a set of

relevant features, for instance implemented as hardware for e�ciency, might form a core component

of a closed-loop neuromodulation device one day. The interpretable feature-vector can inform a clin-

ician about the nerve’s health, form the input to a decoder, or can be used to classify unusual states

based on a density estimation in feature-space.

To better understand the feature-based analysis of time-series – in our particular case peripheral nerve

recordings – let us first define global time-series features for univariate sequences. By ‘feature’,

we mean any quantity that can be calculated from the time series’ set of values. Each such feature

quantifies one particular dynamical property of the sequential data x = {xt} t = 1, ...,T of a potentially

high length T in a single number f . Global time-series features can be simple e.g., the mean or

standard deviation, or complex, for instance measures of entropy, local predictability, measures from

nonlinear time series analysis, etc. Given a set of F such features { fi} i = 1, ..., F, a time series x

can be transformed to a feature vector f = { fi} that describes the sequence’s dynamical properties:

x! f 2 RF on the time window T .
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Representing a time series as a feature vector that captures its key dynamics has obvious benefits.

If we find the right feature set, a recording can be summarised by a compact array of interpretable

measures that provide a clear insight into its dynamical nature. A few features (say, frequency, phase,

amplitude, and duration for a sinusoid) can fully describe the time series and lead to a potentially dras-

tic dimensionality reduction from countless samples to a few numbers. The advantages of a feature-

based representation become even more obvious when conducting analyses of multiple recordings.

Standard automated grouping analyses, supervised (classification) or unsupervised (clustering), are

di�cult (Berndt and Cli↵ord, 1994; Vlachos et al., 2002; Moon et al., 2001; Faloutsos et al., 1994; Ye

and Keogh, 2009) and expensive (Bagnall et al., 2017a) if time-series are to be compared one-by-one

on the basis of their raw ordered measurements. Once transformed to a point in feature-space, the

similarity of two objects is readily established by their proximity and can even be assessed straight-

forwardly for sequences of di↵erent lengths and sampling rates. As all dimensions in feature space

correspond to interpretable dynamical properties, the locations of di↵erent recordings might inform

the investigator about key di↵erences and guide further research towards a deeper understanding,

In this work, we use a particularly rich collection of over 7 500 time-series features united in the

Highly Comparative Time-Series Analysis toolbox hctsa (Fulcher et al., 2013; Fulcher and Jones,

2017) to connect the extensive body of general purpose time-series features to our domain of periph-

eral nerve recordings. Features included in hctsa are derived from a wide conceptual range of al-

gorithms, including measurements of the basic statistics of time-series values (e.g., location, spread,

Gaussianity, outlier properties), linear correlations (e.g., autocorrelation, power spectral features),

stationarity (e.g., StatAv, sliding window measures, prediction errors), entropy (e.g., auto-mutual

information, Approximate Entropy, Lempel-Ziv complexity), methods from the physical nonlinear

time-series analysis literature (e.g., correlation dimension, Lyapunov exponent estimates, surrogate

data analysis), linear and nonlinear model parameters, fits, and predictive power (e.g., from autore-

gressive moving average (ARMA), Gaussian Process, and generalized autoregressive conditional het-

eroskedasticity (GARCH) models), and others (e.g., wavelet methods, properties of networks derived

from time series, etc.) (Fulcher et al., 2013; Fulcher and Jones, 2017).

Based on this comprehensive feature library, we present two analysis methods that both lead to a

selection of informative features which can be used to generate low-dimensional summaries of time

series for subsequent analyses such as classification, clustering, forecasting, etc (Fulcher, 2018). A
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supervised (Ch. 5.2) selection pipeline generates condensed feature subsets with high classification

performance while an unsupervised (Ch. 5.1) method uncovers the low-dimensional parametric varia-

tion in a time-series dataset by unsupervised dimensionality reduction in the high-dimensional feature

space and identifies single estimators for each dynamical property. In a proof-of-concept, we applied

the second, unsupervised method to simulated peripheral nerve recordings generated in our simulator

(see next section 2.7). We could retrieve the firing characteristics firing rate, myelination ratio, and

burstiness in an unsupervised way and proposed single e�ciently implementable estimators for each.

See chapter 5.1 for more details.

Both these data-driven analysis methods for low-dimensional feature set selection have an application

far beyond the domain of peripheral nerve recordings. We demonstrate the utility of our unsupervised

method (Ch. 5.1) on a variety of simulated dynamical systems and a real-world example in addition

to peripheral nerve recordings. The supervised feature-selection method was applied to a literature

standard of time-series classification tasks (Ch. 5.2) to distill a generally useful set of time-series

features that we implemented e�ciently in C for the use in all major computing environments. Instead

of attempting to curate feature sets manually to our limited problem domain, we therefore propose

time-series feature selection and analysis methodologies with much wider potential application than

our original scope of study.

2.7 Simulation of peripheral nerves

Much of the described decoding in section 2.5 has been developed in a data-driven way based on

simultaneous recordings of neural activity on the one hand and a physiological quantity of interest on

the other. The generation of such data is, however, tied to laborious and expensive experiments that

importantly each time cost the life of a laboratory animal. To reduce, supplement, and make the best

use of this indispensable experimental data-generation, modelling approaches are an important aid

in biomedical research. Computer simulations of biological systems can incorporate knowledge won

through numerous experiments on di↵erent aspects at di↵erent sites and di↵erent temporal and spatial

scales and make these insights reusable and available to many investigators. Often, simulations o↵er

a higher level of detail across a variety of phenomena than any single experiment can o↵er – from

heat exchanges between large body regions over fluid motions in large and small cavities (e.g., each
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of thousands of glomeruli) down to ion exchanges though microscopic channels on cell walls. They

further allow the quick adaption of various parameters and pave the way to a much wider coverage of

expected variability in the patient population including pathologies, ages, sexes, etc., than any number

of experiments could (Gosselin et al., 2014).

Just as in other biomedical engineering disciplines, the progress of bioelectronic medicines will thus

in part hinge on the availability of accurate, flexible, and e�cient computational models (Evans and

Nikolic, 2016). Using these tools will speed up the development of interfaces (optimising electrode

positions, stimulation pulses, etc.) (e.g., Raspopovic et al. (2011); Perra et al. (2018); Rapeaux et al.

(2015)), enable the prediction of organ reactions to planned interventions, and generate realistic arti-

ficial recordings for the development of signal processing methods.

Simulations of electrical phenomena such as nervous activity in biological tissues are, however, com-

plicated for di↵erent reasons. Even the electrically passive tissues in the body (fat, organs, etc) have

inhomogeneous and anisotropic conductances (Aström et al., 2012) that are furthermore dependent

on the frequency of the propagated signal (Gabriel et al., 1996). This complicates the computation of

extracellular potentials and currents. Axons pose additional di�culties as their behaviour is guided

by the quick nonlinear action of various ion channels. These two scales (axons and extracellular

medium) are usually implemented as separate simulations with di↵erent computational approaches

that together form a hybrid model: a compartmental one-dimensional model for neurons (Hines and

Carnevale, 1997; Hines et al., 2009) and an finite element model (FEM) for extracellular conduction.

The latter usually applies a resistive, electro-quasistatic approximation (no capacitances, immediate

potential-propagation). Full FEM models including axons for a higher degree of detail were devel-

oped as well (Agudelo-Toro and Neef, 2013; Tveito et al., 2017; Tarotin et al., 2019) but are slow.

Many other approaches for simplified axon models (McNeal, 1976; Veltink et al., 1989; Plachta et al.,

2012; Goodall et al., 1995), simplified (Holt and Koch, 1999; Lindén et al., 2014) and more detailed

(Halnes et al., 2016; Pods et al., 2013; Pods, 2017) extracellular spaces were proposed, but the hybrid

model remains today’s standard.

Even though the research community converged towards the hybrid model as a default method for

peripheral nerve simulation in the study of both stimulation and recording, simulations are usually set

up from scratch (e.g., Grinberg et al. (2008); Raspopovic et al. (2011)), developed for one particular
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purpose without any reusability in mind. This laborous process gives the highest freedom to the

investigator in fitting the model to the studied object. On the other hand, the set-up process comes with

a lot of time-consuming work, especially for a researcher inexperienced at simulations. The result is

not necessarily easily adjustable to new settings and the coordination of two separate simulations

(axons and extracellular fields) is error-prone. In recent times, a large simulation platform, Sim4Life

(Gosselin et al., 2014), incorporated peripheral nerves into their portfolio and now o↵ers a unified

modelling framework. This model is, however, a closed proprietary system (no open source), very

expensive, and not easily accessible to researchers.

Against this background, the need for a flexible, freely accessible, and easily usable peripheral nerve

simulator becomes apparent that ideally finds a compromise between accuracy, flexibility, and ex-

ecution speed. In chapter 3, we describe a model we developed to address this need. Some of its

features are innovative such as automatically generated tortuous axons fit to in vivo images and an

e�cient computation of extracellular potentials from pre-computed voltage distributions. The pack-

age is built as a Python module for enhanced usability and easy post-processing. We use it to test our

feature-based signal processing algorithms.

2.7.1 Conclusion on background

This chapter reviewed the most important topics relevant to the work presented. I first summarised the

organisation of the anatomy of the peripheral nervous system and discussed what fundamental con-

straints on energy and control may have guided its evolution. In a literature review of the encoding

on peripheral nerves, I identified a need for quantitative analyses of the encoding of peripheral pop-

ulations. Sec. 4.2 will describe contributions to this topic. It followed a discussion of the recording

techniques and decoding methods, both for the CNS and the PNS. Here, I explained the dominance

of the cu↵ electrode in today’s bioelectronic medicines by its benefits of long-term stability. Because

of its wide spread we tried to make the most of this data type in our first decoding study in Sec. 4.1.

As an alternative, I hinted on the potential merits of a more selective interface including informed

decoding approaches. Sec. 4.2 explores these ideas on a model system. In the context of decoding,

the importance of pre-processing methods for peripheral nerve recordings was highlighted. By tai-

loring the pre-processing to the recording technique used, informative summaries can be generated
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for subsequent decoding algorithms without discarding much information. We introduced feature-

based time-series analysis for this purpose and finally gave a short introduction on an important tool

for biomedical research: computer simulations. Our contributions to this domain are covered in the

following chapter 3.



Chapter 3

Simulation – PyPNS

3.1 Introduction

This thesis investigates methods to analyse the activity on peripheral nerves. As a first step in such

an analysis it is often helpful to precisely model the object of interest – in our case the peripheral

nerve. The process of setting up a simulation can be a very insightful learning process and the final

model allows for a much quicker and more detailed investigation of the nerve’s electrical properties

than an experiment would. This includes action potential propagation on single axons, extracellular

potential generation by the population of neurons and stimulation e↵ects. For the purpose of this

work, the ability to generate surrogate peripheral nerve recordings at diverse parameters (e.g., fibre

composition, firing rate and synchrony of fibres, extracellular medium) is of particular interest to

test decoding methods as we do in Ch. 5.1. This synthetic data complements the studies on in vivo

recordings we conduct in Ch. 4.

Of course the model developed in this thesis was not the first attempt to set up a computer simulation

of a peripheral nerve. Already in 1997, Struijk (1997) proposed a 2D model for the extracellular

potentials from a myelinated fibre. Other presented models for stimulation of peripheral fibres at the

same time (Veltink et al., 1989; Goodall et al., 1995). In these early approaches, the main di�culty

in simulating peripheral axons compared to central neurons in the CNS was the dominant focus in

model development: the inhomogeneity of the surrounding medium and the resulting di�culties in

computing extracellular potentials from current, be it current from membrane channels or current

35
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from stimulation electrodes. Even the recording method, e.g., a cu↵ or an oil bath, can cause dramatic

changes in the extracellular conductivity profiles and therefore in the electrical current propagation

and potential formation. It was therefore reasonable to concentrate limited computational resources on

extracellular space modelling and axon models were often simplified to e.g., the Fitz-Hugh-Nagumo

formulation (Plachta et al., 2012) or the McNeal model (McNeal, 1976; Veltink et al., 1989). Only

in the last 10 years, increasing computational power has enabled the combination of more precise,

biologically accurate axon models and equally detailed extracellular space models (Grinberg et al.,

2008; Raspopovic et al., 2011).

Important choices have to be made when it comes to the level of abstraction in the models of both the

axon and the extracellular medium. The axon can, as described above, be approximated by models

that do not explicitly incorporate ion channels. Alternatively, a simulated fibre can be made up by

zero-dimensional compartments for which scalar membrane currents, voltages and the associated

channel mechanisms are defined. Channel dynamics can be modeled deterministically such as by the

common simulator NEURON (Hines and Carnevale, 1997) or explicitly capture their stochastic nature

(Neishabouri, 2014; Faisal et al., 2002). The feed-back of variations in the extracellular potential

caused by the neuron itself or its neighbours into the neuron’s membrane dynamics, so called ephaptic

coupling, signifies a further step in simulation detail that can be non-negligible (Tveito et al., 2017;

Bokil et al., 2001). At the highest degree of detail/ lowest degree of abstraction, the axon and it’s

surrounding medium can both be modeled as a three-dimensional structure, potentially defined in

a finite element model (FEM) to capture detailed electrodynamical and -di↵usive e↵ects (Agudelo-

Toro and Neef, 2013; Tveito et al., 2017; Tarotin et al., 2019) both inside and outside the axon. In

search for a trade-o↵ between computational e↵ort and level of detail, we here settled for the standard

compartmentalised, deterministic NEURON model for axons that is independent of its environment.

This approach is detailed enough to investigate di↵erent ion-currents, but computationally feasible

for a few hundred fibres.

Equally numerous choices exist for the extracellular medium model. In its most simple formula-

tion, the medium can be assumed to be homoegeneous, resistive and isotropic (Holt and Koch, 1999;

Lindén et al., 2014). As a result, potentials from both line and point current sources can be ex-

pressed analytically as a function of medium resistivity, current strength and geometrical relation

between source and recording position. While signifying an appropriate approximation for the extra-
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cellular medium in the CNS, the medium surrounding a peripheral nerve is both inhomogeneous and

anisotropic and can therefore not be modeled this way. Finite element models (FEM) with simplifying

assumptions such as resistivity and the electro-quasistatic approximation of the Maxwell-equations

can accommodate for both inhomogeneous and anisotropic media. Model detail can of course be in-

creased by e.g., incorporating dielectric dispersion (polarisation at di↵erent microscopic levels) that is

observed in almost all biological tissues (Gabriel et al., 1996) and shown to have e↵ects on recordings

(Bédard and Destexhe, 2009; Martinsen et al., 2002). The e↵ects of charge-ion di↵usion can be incor-

porated in Poisson-Nernst-Planck solvers, e.g., Pods et al. (2013); Halnes et al. (2016) and simplified

formulations (Pods, 2017). We again, as for the axon-model, search for a compromise that maintains

computational feasibility at su�cient degree of detail and decided for a resistive, electro-quasistatic

extracellular space model that is implemented in an FEM solver from which we import pre-computed

potential distributions into our self-contained simulation module.

The resulting simulator constitutes a Python module called PyPNS and o↵ers several advantages over

existing approaches. By exploiting symmetries in the medium-geometry and the resistive electro-

quasistatic approximation of the Maxwell equations to separate space and time, it can reuse pre-

computed potential fields at di↵erent source positions inside the nerve for arbitrary axon geometries

without the need to re-run the expensive FEM simulations. In this way, the accuracy of hybrid FEM-

based solutions was approached at the computational cost of the simple volume conductor method.

The choice for creating this lookup-table and using it in combination with compartmentalised deter-

ministic axon models was mainly guided by the e↵orts towards a low computational complexity and

execution time. In addition, FEM-simulation and the NEURON-simulation of the axons thus need

to be coordinated once in terms of units and geometry, from then on no further import/ export and

alignment is necessary. As a Python module, PyPNS integrates nicely into a common data analysis

framework. It further enables the simulation of tortuous axons as observed in the PNS with trajec-

tory properties fit to imaged data and axons of very low diameter typical for the PNS. Its modular

nature facilitates extensions by additional axon types, stimulation mechanism or extracellular me-

dia. Similar functionality can be achieved by commercially available simulators such as Sim4Life

(Zurich MedTech AG), but our simulator is open source and commercial solutions are typically very

expensive.

The latest version of our toolbox PyPNS for Python 3 can be accessed over GitHub: github.com/
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chlubba/PyPNS.

Scripts for the figures are as well maintained on GitHub: github.com/chlubba/PyPNS-PaperFigures.

3.2 Methodology

3.2.1 Experiments

3.2.1.1 Validation of simulated recordings

To validate the simulation, Simon Cork obtained recordings from the rat vagus nerve. All experiments

were carried out in accordance with the Animals (Scientific Procedures) Act 1986 (United Kingdom)

and Home O�ce (United Kingdom) approved project and personal licenses, and experiments were

approved by the Imperial College Animal Welfare Ethical Review Board under project license PPL

70/7365. A male Wistar rat (body weight 350-400 g) was initially anaesthetised with isoflurane and

ventilated. Urethane was then slowly administered through a tail vein (20 mg kg�1). The left cervical

vagus nerve was exposed and contacted with a stainless steel pseudo-tripolar hook electrode of pole

distance 1 - 2 mm for stimulation. The nerve was stimulated 10 times by a biphasic rectangular

current pulse of amplitude 20 mA for 1 ms at a frequency of 1 kHz (one period). To record from

the nerve, a bipolar platinum hook electrode (pole distance 2 - 3 mm) was then wrapped around the

anterior branch of the subdiaphragmatic vagus nerve with an Ag/AgCl ground electrode placed in the

abdominal cavity. Distance between recording and stimulating electrodes was 8 - 10 cm. See Fig. 3.1.

Mineral oil heated to 37�C was applied to each site to insulate the electrodes from environmental

and proximal noise sources. Stimulation of the cervical vagus nerve was performed using a Keithley

6221 current source, controlled by Standard Commands for Programmable Instruments (SCPI) via

a custom built Matlab interface. Bipolar cu↵ recordings were achieved with an Intan Technology

RHD2000 system, using a 16-channel bipolar ended amplifier (RHD221). The obtained recordings

were averaged over 10 repeated stimulations in the same animal.
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Figure 3.1: The validation data were obtained through stimulation of a rat vagus nerve. A pseu-
dotripolar electrode excited axons at the cervical vagus nerve, signals were picked up at the subdiaphrag-
matic vagus nerve with a bipolar electrode.

3.2.1.2 Imaging of peripheral nerve tortuosity

All procedures were carried out in accordance with the Animals (Scientific Procedures) Act 1986

(United Kingdom) and Home O�ce (United Kingdom) approved project and personal licenses, and

experiments were approved by the Imperial College Animal Welfare Ethical Review Board under

project license PPL 70/7355. To match the morphology of our simulated axons to real ones, we

used images of the vagus and sciatic nerves in mice acquired by Peter Quicke, Subhojit Chakraborty,

and June Kyu Hwang using two photon fluorescence imaging. In the experiment, ChAT-Cre FLEX-

VSFP 2.3 mice were euthanised by intraperitoneal overdose of pentobarbital (150 mg kg�1). The pre-

thoracic left and right vagus nerves were surgically exposed and 0.5 cm sections were removed and

placed in phosphate bu↵ered saline (155.1 mmol NaCl, 2.96 mmol Na2HPO4, 1.05 mmol KH2PO4)

adjusted to 8.0 pH with 1 mol NaOH. Sections of the left and right sciatic nerves of between 1 and

2 cm from above the knee were also removed. To prepare for microscopy, the nerves were placed

on microscope slides, stretched until straight, and the nerve ends were fixed with super glue. The

preparation was covered with PBS. Distortions potentially caused by the stretching of the nerves

were assumed to lie within the physiological range of movement-induced deformations the nerve

undergoes in the living organism. A commercial 2P microscope was used for imaging (Scientifca,

emission blue channel: 475/50 nm, yellow channel 545/55 nm, 511 nm dichroic, Semrock) while

exciting at 950 nm using a Ti-Sapphire laser (Mai Tai HP, Spectra-Physics).
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3.2.2 PyPNS overview

A PyPNS simulation consists of one nerve bundle that contains myelinated and/ or unmyelinated

axons that can be stimulated by di↵erent electrical means and that can be recorded both intra- and

extracellularly.

The module is organised in an object oriented manner in which di↵erent classes map to the physi-

ological entities encountered in a peripheral nerve. The main class is Bundle. At the time of cre-

ation of a PyPNS-Bundle, its dimensions and axons need to be specified. Stimulation and recording

mechanisms are added later using specific methods of Bundle. Axons contained in Bundle derive

from the Axon-class and define properties needed by the NEURON simulations. Unmyelinated and

Myelinated Axon-children exist and each is characterised by its diameter and trajectory. To activate

axons, ExcitationMechanisms are added to the Bundle. Those can be either synaptic input (Up

streamSpiking), intracellular stimulation (StimIntra) or extracellular stimulation (StimField).

Similarly for recording, electrodes can be added to the whole nerve as a RecordingMechanism. For

all interactions with the extracellular space, i.e. extracellular stimulation or recording, a model of

the extracellular medium defined in a Extracellular-class has to be set. This can be either ho-

mogeneous (homogeneous), an FEM result (precomputedFEM) or an analytically defined potential

distribution (analytic).

When the Bundle.simulate-routine is called, each axon is sequentially simulated in NEURON

via the Python-NEURON-interface (Hines et al., 2009) taking care of the associated Excitation

Mechanisms. From the membrane currents of each Axon-segment computed in in NEURON, PyPNS

calculates the extracellular single fibre action potential (SFAP) for each of the associated Recording

Mechanisms (multiple, even di↵erent media, possible). The contributions of all Axons contained in

the Bundle are added up to the overall compound action potential (CAP).

3.2.3 Assumptions and simplifications

Several assumptions ensured the computational feasibility and e�ciency of PyPNS. Axons were as-

sumed to be independent from each other in their activity (no ephaptic coupling). Properties such

as diameter, myelination, and channel densities stayed exactly constant along the axon length. The
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Figure 3.2: Flowchart of PyPNS’s internal information flow. The Axon-class is the central ob-
ject of PyPNS’s internal information flow and all Axon-instances are managed by Bundle. Together
with its ExcitationMechanisms, all associated to each Axon, it defines the NEURON simulation.
Extracellular-objects allow the calculation of extracellular potentials given current i(t), source posi-
tion s and receiver position r. They are used by both StimField for extracellular stimulation (transmitted
to NEURON) and by RecordingMechanism for recording (PyPNS post-processing of NEURON-generated
currents). The Bundle-class manages all axons and is the main object of the PyPNS-API. It is supported
by helper modules spikeTrainGeneration, signalGeneration and createGeometry.

extracellular space was modeled using the electro-quasistatic approximation of Maxwell’s equations,

neglecting magnetic induction:

r ⇥ E = �
@B
@t
' 0. (3.1)

Further and importantly, all media were assumed to be purely resistive. Thereby all changes in current

a↵ected the potentials of the entire space immediately, allowing us to separate time and space and fur-

ther increasing simulation e�ciency. In Maxwell’s equations this results in neglecting displacement

currents:

r ⇥ H = J +
@D
@t
' J (3.2)

For the brain and in the considered frequency range, the electro-quasistatic approximation is assumed

to be valid (Hämäläinen et al., 1993; Bossetti et al., 2008); previous peripheral nerve simulation

studies have built on both quasistatic and purely resistive approximations (Raspopovic et al., 2012;

Struijk, 1997; Veltink et al., 1989; Goodall et al., 1995). We further only modeled one fascicle sur-

rounded by circularly symmetric layers of tissue. Extracellular recordings and stimulation neglected

the electrode-electrolyte interface. While this interface certainly has an impact on stimulation e�-
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Figure 3.3: Linear and quadratic fits were used to extrapolate the parameters of myelinated axons
to smaller diameters. A Diameters of all segments – nodes, MYSA (myelin attachment segments),
and paranodal elements FLUT (paranode main segment) and STIN (internode segment, see McIntyre
et al. (2002) for more information on the model) – were fit quadratically to prevent negative values. Node
distance B and number of myelin sheaths C were extrapolated linearly.

ciency and consequently stimulation dosage in bioelectronic medicines (Cantrell et al., 2008), PyPNS

is currently mainly designed for creating surrogate recordings. As there is no standard model for

electrode-electrolyte interfaces today, we chose to keep our model as simple as possible without inte-

grating more degrees of freedoms and assumptions than necessary.

3.2.4 Axon models

Unmyelinated axons were modeled based on the original Hodgkin-Huxley parameters (Hodgkin and

Huxley, 1952), with temperature set to 37�C. For myelinated ones we used the model of McIntyre

et al. (McIntyre et al., 2002) that has originally been developed for peripheral motor fibres with

thicker diameters (5.7 - 16.0 µm). To match the thinner axons found in the PNS (0.2 - 3 µm), all

diameter dependent parameters were extrapolated to smaller diameters as shown in Fig. 3.3: (1) the

diameters of the di↵erent segments – nodes, MYSA (myelin attachment segment), FLUT (paranode

main segment), STIN (internode segment), (2) node distance and (3) the number of myelin sheaths.

Neither axon-model is claimed to exactly match the properties of single neurons found in the PNS.

We aimed to implement a generalised framework in which parameters can be fine-tuned to match

specific datasets.
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3.2.5 Generation of axonal geometry

Axons in peripheral nerves do not assume a perfectly straight trajectory, but instead show a certain

degree of tortuosity while following the nerve. This morphology is like to influence both stimulation

e�ciency and extracellular recordings. To model axon tortuosity in our simulation without manually

describing the exact shape of each fibre we iteratively placed straight axon segments (length 15 µm)

along a previously defined bundle guide, itself composed of longer straight segments (100 µm). In

each step, the axon segment direction ai was calculated as

ai =
ai�1 + (1.1 � ↵) · bk + ↵ · wi

||ai�1 + (1.1 � ↵) · bk + ↵ · wi||
, (3.3)

based on the corresponding bundle guide segment direction bk (k  i. as bundle guide segments

were longer than axon segments), the previous axon segment direction ai�1 and a random component

perpendicular to the bundle guide segment direction wi. All vectors have unit length. The parameter

↵ 2 [0, 1] regulates the tortuosity of the axon and can, together with the distribution of ||w||, be fit to

geometries measured by microscopy. The factor (1.1�↵), rather than (1�↵), was chosen to maintain

forward axon growth. See appendix 3.5.B for the exact implementation of wi which insures that axons

stay within the nerve.

To fit the trajectory of our automatically generated axon trajectories to realistic fibre shapes, we man-

ually traced axons in microscopy images and segmented into straight sections of the same length as

our straight simulated segments (15 µm). For all traced axons of one nerve, the normalised di↵erence

in direction between consecutive segments c = ||ai � ai+1|| was calculated. We then fit the distribu-

tion over the c-values of our artificial axons to the one of imaged fibres by adapting the tortuosity

coe�cients ↵ and ||w||-distribution. For details see appendix 3.5.C.

3.2.6 Extracellular potentials

One of the main purposes of PyPNS is the generation of surrogate recordings from peripheral nerves to

then use for testing decoding algorithms. Such recordings from peripheral nerves capture changes in

the potential of the extracellular medium at the electrode caused by membrane currents. To calculate
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these changes in PyPNS, axon segments were interpreted as point current sources, each causing a

potential change in the entire medium.1 See Fig. 3.4. Potentials generated by all current sources (all

segments of all axons) were superposed. From the electro-quasistatic approximation of the Maxwell

equations, combined with pure resistivity, time and space can be separated in the compound action

potential (CAP) calculation:

�CAP(r, t) =
X

si

�static(si, r, Iref)
Iref

· i(si, t). (3.4)

The extracellular potential over time at receiver position r, �CAP(r, t), was calculated as the sum over

single axon segment contributions. The contribution of one segment at position si to the potential

recorded at position r was obtained from a known static potential �static(si, r, Iref) at reference current

Iref that was then scaled by the temporally varying membrane current of the segment i(si, t).

Extracellular stimulation was realised following exactly the same principle. Here, stimulation elec-

trodes were modeled as assemblies of point current sources and axon segments are extracellular po-

tential receivers.

φ(r, t)

i(s, t)

Figure 3.4: Axon segments can be interpreted as current point sources. The extracellular potential
�(r, t) at position r caused by a current i(s, t) at position s is determined by current time course scaled
with a static potential depending on the extracellular space and the spatial relation between source and
receiver position.

The profile of the static potential along the nerve, �CAP in Eq. (3.4), shapes the recorded extracellular

potential. A few interesting e↵ects on extracellular recordings can be illustrated on the basis of a

simplified example. Consider a single straight axon on the z-axis, so that �static(s, r, Iref) becomes

�static(z, Iref) with z = (s � r) · ez. In this case, the translation of membrane current to recorded single

fibre action potential (SFAP) in the extracellular medium is solely determined by the profile of the

static potential over longitudinal distance:
1Even though the line-approximation is commonly used for homogeneous extracellular media, its use is impossible

for our e�cient method of precomputing voltage fields once to then reuse.
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�SFAP(t) =
X

zi

�static(zi, Iref)
Iref

· i (zi, t) . (3.5)

Fig. 3.5 further illustrates how a lagged version of the membrane current of each axon segment con-

tributes to the extracellular potential according to its distance zi from the electrode and the conduction

velocity CV (Fig. 3.5A):

i(zi, t) = i
✓
t �

zi

CV
| z = 0

◆
:= i

✓
t �

zi

CV

◆
. (3.6)

For one t = t0, the instantaneous currents i(zi | t = t0) = i(t0 �zi/CV) of all segments shown in Fig. 3.5B

are multiplied by the static potential corresponding to their spatial displacement (Fig. 3.5C) and added

up.

Let us consider two extreme cases of a static potential profile. In the first, �SFAP(z) is a the Kronecker

delta (�(z) = �(z)). Here, the SFAP would have exactly the same time course as the membrane current.

On the other hand a constant profile �(z) = c will make the resulting SFAP vanish because of charge

conservation (
R

i(t)dt = 0)
R

i(z/CV)dz/CV = 0). Positive and negative components of the current

cancel each other out. The real profile will always lie between those extreme cases and the recorded

action potential is expected to be maximal if positive and negative peaks of membrane current add up

constructively. To quantify when this happens, an active length la of an axon can be defined as

la = ta ·CV, (3.7)

with ta denoting the time during which an axon segment emits current of constant sign and CV the

conduction velocity. Membrane current is of the same sign over length la. The match between this

length and the range of the profile (�z = z2 � z1 with �(z) > 0 for z in [z1, z2]) will determine the

amplitude of the SFAP – in addition to a scaling factor depending on the absolute values of �(z) in

(3.4).
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3.2.7 Homogeneous media

The easiest case of an extracellular space is a homogeneous medium of constant conductivity �. In

this simple case, the potential �(r, t) at r caused by a point source of current i(s, t) at s can be computed

analytically (see Malmivuo and Plonsey (1995) or Lindén et al. (2014) for reference) as

�(r, t) = 1
4⇡�

i(s, t)
|s � r|

. (3.8)
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Compared to the formulation in (3.4), the static potential term that translates current to voltage here

became
�static(s, r, Iref)

Iref
=

1
4⇡�|s � r|

. (3.9)

Even though no peripheral nerve will be surrounded by a homogeneous medium, PyPNS imple-

ments the homogeneous case for completeness and to compare it to other media as PyPNS.Extra

cellular.homogeneous.

3.2.8 Radially inhomogeneous media

The medium surrounding the axons in peripheral nerves is known to be anisotropic and inhomoge-

neous (Capogrosso et al., 2013; Struijk, 1997). PyPNS thus needs to implement an extracellular space

model that goes beyond the homogeneous assumption. As no exact analytical solution for the po-

tential caused by a point current source exists under these conditions (inhomogeneous, anisotropic),

numerical methods become necessary.2 In previous peripheral nerve models, simulation of either ex-

tracellular recording or stimulation in such media was realised in two di↵erent simulators between

which data (either currents from axons to an FEM solver or extracellular potentials from an FEM

solver to compartmental axons-simulators) had to be transferred for every simulation. One of the

achievements of PyPNS is to o↵er a more e�cient and less laborious way to coordinate compartmen-

tal axon models and FEM solvers. We precomputed potential fields once for a limited number of

current point source positions in a finite element model (FEM) and then imported and reused them in

PyPNS while making use of geometrical symmetries of the nerves and separation of time and space.

This means that the computationally expensive field calculation only had to be carried out once per

extracellular medium geometry. To ensure the feasibility of this approach, the extracellular space

was modeled using the simplified geometry shown in Fig. 3.6A, with conductivities set to the values

given in Tab. 3.1. With the conductivity as a function of radius only (i.e. conductivity boundaries

were circularly symmetric), a very limited number of unique point source positions exists, each for

a di↵erent radius (dots in Fig. 3.6A). We sample the space of unique point source positions and run

an FEM simulation for each. This extracellular medium geometry will be referred to as a ‘radially

inhomogeneous medium’ in the following.
2A homogeneous but anisotropic medium can in fact be modeled analytically using a conductivity tensor (Nicholson

and Freeman, 1975; Goto et al., 2010). A combination of inhomogeneities and anisotropy is not feasible, however.
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We used the FEM solver COMSOL 4.3, in which the nerve had a length of 10 cm and was placed

in a cubic volume of equal edge length. The inner nerve radius was set to 190 µm, the endoneurium

thickness to 50 µm. All inner boundaries had von Neumann boundary conditions, the potential of the

outer border of the cubic volume was set to zero (Dirichlet boundary condition). The current entered

the mesh at a single point.

As outlined above, potential fields �(x, y, z, r) for di↵erent radial point source displacements r were

computed. Due to our assumptions concerning the medium, steady state simulations were su�cient

(separation of time and space). The static voltage fields were then exported on a grid of x 2 [-1.5,

1.5] mm with a step of 0.015 mm, y 2 [0, 1.5mm] with a step of 0.015 mm, z 2 [0, 30] mm with

a step size of 0.03 mm where z is the longitudinal nerve axis and source positions are placed along

x. The potential fields were imported in PyPNS where a 4D spline interpolator was used to cover

source and receiver positions between the exactly set values in COMSOL. PyPNS afterwards scales

the static potentials with current time courses as given in (3.4) with Iref set to 1 nA in COMSOL. The

corresponding mechanism in PyPNS is PyPNS.Extracellular.precomputedFEM. When running

the simulation using an imported potential field, it is vital to assure that the the source radii used in the

FEM precomputation step cover the requested radii in the PyPNS-simulation. The radius (for either

axons segments or stimulation electrodes) selected in PyPNS needs to lie within the precomputed

range. E.g., for stimulation, radii are typically larger than the nerve radius whereas for recording the

precomputed source radii have to lie within the nerve. Of course, di↵erent precomputed fields can be

used for recording and stimulation respectively.

Tissue Conductivity S m�1

Axons (light blue) 0.5 longitudinal, 0.8 transversal
Epineurium (darker blue) 0.1 isotropic
Saline (white) 2.0 isotropic

Table 3.1: Conductivity of different tissues contained in the simulated peripheral nerve; colors correspond
to Fig. 3.6 (Capogrosso et al., 2013; Struijk, 1997)

3.2.9 Longitudinally inhomogeneous media

So far we covered extracellular media that have a homogeneous and isotropic conductivity and media

that vary in conductivity perpendicularly to the nerve-direction. The latter covers a nerve in a saline
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Figure 3.6: A circularly symmetric geometry makes it possible to import precomputed potential
fields. The nerve is modeled as axons (white matter) surrounded by the epineurium. The positions of
exemplary current point sources, each generating one potential field, are shown. A For radially inhomo-
geneous media, a line of sources does characterise all unique fields. B For longitudinal inhomogeneities,
potential fields for a two-dimensional array of point current sources need to be precomputed.

bath which is a good approximation for a nerve in its natural surrounding. In electrophysiological

experiments, however, the nerve does not usually stay in its surrounding tissue. Instead, to increase

stimulation e�ciency and recording amplitudes, a cu↵ or a mineral oil bath isolates the nerve and

therefore increases the extracellular resistivity. The medium is in this case no longer longitudinally

homogeneous, and any longitudinal shift in current source position will result in a di↵erent potential

field. For stimulation, where the current source (stimulation electrode) position can be fixed in the

FEM simulation and the precomputation of very few potential fields, each for one electrode radius,

characterises the e↵ect of the electrode completely. For stimulation, potential fields can thus, even for

a longitudinally inhomogeneous nerve, be imported in the same way as for radially inhomogeneous

media described above when fixing the longitudinal position. For recordings, however, the longitudi-

nal source position necessarily varies, as the axon segments extend through the nerve. Therefore, to

cover all unique axon segment potential fields, a 2D-array of source positions distributed along both

radial and longitudinal direction must be precomputed, as shown in Fig. 3.6B.

Without circular symmetry, a volume of source positions would need to be sampled and simulated,

rendering the precomputation infeasible 3. In this case, one needed to abandon our e�cient precom-

3For a nerve of radius 200 µm, a longitudinal length coverage of 20.000 µm and a source position grid step of 20 µm
this would mean approximately 300,000 simulations, each taking at least 30 minutes on a single core of a state of the art
workstation, totaling to a computation time of over 17 years. The result would occupy 12 TB of RAM.
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putation and would be forced to fix the axon geometries for one particular case. An FEM simulation

would need to be performed for each axon segment position to then either export the potential fields

for the whole space or fix the electrode positions as well and export the potentials only at the elec-

trodes. This described method, however, is less universal as axon geometry changes would require

a full re-run of the FEM-simulations, is much more computationally expensive, and involves a lot

more coordination between FEM simulation and compartmental axon model. Still, if the (axon and

extracellular space) geometry stays the same, recordings and stimulation could still be simulated with

di↵erent firing characteristics and stimulation pulses using the same FEM-result.

We came to the conclusion that for recording, a reasonable number of current source positions (~20,

each using about 40MB of memory) still lead to interpolation errors between fields from longitudi-

nally adjacent source positions causing artifacts in the extracellular action potentials. For the record-

ing from longitudinally inhomogeneous media, we thus fit a smoothed transfer function to FEM

model results that translates point current source position to the potential in the cu↵. Details are given

in appendix 3.5.D. This transfer function served in PyPNS as a variant of PyPNS.Extracellular.

analytic.

3.3 Results

3.3.1 Axon models

As described in Methods Sec. 3.2.4, we extended the myelinated axon model of McIntyre et al. (2002)

to smaller diameters by parameter-extrapolation. For very low diameters (< 1 µm), this extrapolation

yielded bursting behavior as soon as the fibres became activated through either synaptic input or stim-

ulation. Bursting is not surprising as the node size does not scale with diameter in McIntyre’s model.

Therefore the relationship between ion influx axon segment capacity rises with shrinking axons. In

PyPNS, we prevented bursting by increasing the nodal potassium channel density by 50%. Alterna-

tively, node size reduction with diameter achieved the same e↵ect but is not observed in physiology

(Tuisku and Hildebrand, 1992; Berthold and Rydmark, 1983). Potassium channels in the paranodal

regions (not included in the original model) have been observed physiologically (Poliak and Peles,

2003; Röper and Schwarz, 1989) but their integration in the model did not abolish bursting in tests.
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The myelinated conduction velocity (CV) of our extrapolated axons fit experimental data well (CV

[m s�1] ⇠ 5 · d with diameter d in µm).

Unmyelinated axons based on Hodgkin-Huxley channels had very low conduction velocities, CV

⇠ 0.4 ·
p

d, in comparison with expected values of around 2 ·
p

d (Waxman, 1980). This is an inherent

property of the Hodgkin-Huxley axon model. Realistic unmyelinated axon models for mammalian

nerves are still to be developed.

Membrane current directly shapes extracellular potential recordings as outlined in Sec. 3.2.6. There it

is informative to take a look at the raw current output of both axon types shown in Fig. 3.7. Fig. 3.7A

displays membrane current in time for one unmyelinated axon segment, Fig. 3.7B plots the curent of

one node of Ranvier. Fig. 3.7C provides an overview of the relation between diameter and integrated

absolute current output. It is important to note that unmyelinated axons emitted more current per

distance. Myelinated axons are more e�cient in their use of ion channels thanks to their saltatory

conduction principle. As a second observation, the signal shapes di↵ered considerably. While the

unmyelinated current time course was smooth in time, the myelinated current showed a more complex

time course with a sharp peak and a long lasting recovery. The di↵erent segments (node, myelin

attachment segment (MYSA), paranodal main segments (FLUT)) in a myelinated axon all contribute

to the overall current output causing the visibly higher complexity in membrane current shape. See

the model of McIntyre et al. (2002) for more details on section types.

3.3.2 Profiles of extracellular media

In section 3.2.6 we highlighted the impact of the longitudinal profile �static(z) on the single fibre action

potentials (SFAPs). Building on these considerations, the normalised �(z)-profiles of our media can

be compared and their impact on extracellular recordings predicted. Fig. 3.8 shows the normalised

static potentials over distance for all three media (homogeneous, nerve in saline, nerve in cu↵). The

strong impact of the cu↵ insulation on the extracellular potential profile immediately catches the eye.

It became smooth, stretched out in space and strikingly triangular. The thin nerve surrounded by

an insulation acted as two parallel resistors, causing a linear characteristic. For radial displacements

of the current source towards the electrode, a sharp peak emerged (see also Fig. 3.S2). For such a

wide profile we would expect fast conducting axons with long active length la to be best suited and
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result in high recording amplitudes. The other two media resulted in a very di↵erent, much narrower

potential characteristic. Radial inhomogeneities lead to a slightly smoother profile compared to the

homogeneous case but di↵erences remained very small. The steep decay in potential for both these

media were expected to better suit slower conducting axons with a shorter la.
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3.3.3 Extracellular single fibre action potentials

So far we have seen the membrane currents and extracellular potential profiles that both together shape

the extracellular recordings from axons. In Fig. 3.9, the resulting SFAPs can be compared for all three

media and the two axon types. Axons were activated intracellularly by current injection and recorded

by a monopolar circular electrode at radius 235 µm4. In the cu↵medium, where the electrode position

has to be fixed, it was placed centrally as shown for one point electrode in Fig. 3.6B. Fig. 3.9A displays

a recording from a single unmyelinated fibre. When comparing the recordings from the three di↵erent

media, mainly the amplitude varied but shape stayed relatively stable. When insulating the nerve using

a cu↵, the potential rose by a factor of about ten and caused a narrower signal shape. In addition, an

entrance and an exit peak caused by the resistivity drop at the sides of the cu↵ emerged which were

not present for the two longitudinally homogeneous media. The radially inhomogeneous medium

(nerve in saline) slightly stretched the action potential in time compared to the homogeneous case

which can be explained by the preference of current to flow along the nerve rather than transversally

(compare to profile in Fig. 3.8).

The SFAP of myelinated axons in Fig. 3.9B showed a much higher susceptibility towards extracellular

medium properties than unmyelinated fibres. While the di↵erence between homogeneous and radially

inhomogeneous medium remained small in shape (still amplitude more than doubled), the amplitude

and shape changed radically in the cu↵. Amplitude rose by a factor of about 20 and the recorded

signal lasted longer with (as for unmyelinated axons) a negative main and two positive entrance and

exit peaks.

Fig. 3.9C provides an overview of SFAP amplitudes for unmyelinated and myelinated axons against

diameters for di↵erent media. In homogeneous and radially inhomogeneous media SFAP ampli-

tudes of unmyelinated axons were similar and even higher than myelinated SFAPs for diameter above

1 µm. In the cu↵ however, myelinated fibres achieved much stronger amplitudes following – even

though their membrane current output is substantially smaller compared to unmyelinated fibres (see

Fig. 3.7). This di↵erence in the e↵ect to the cu↵ isolation between fibre types can be traced back

to the two di↵erent mechanisms through which cu↵ insulation changed SFAP amplitude. The first

one is the increase in extracellular resistance the cu↵ causes. Current cannot dissipate freely into the
4Electrode radius was chosen to be slightly smaller than nerve radius to maintain a small distance to the non-conducting

insulation layer surrounding the nerve.
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surrounding tissue but is confined to the thin nerve. As membrane current was modeled to be inde-

pendent of the medium, an increase in extracellular resistance equaled an increase in extracellular

potentials. This mechanism takes the same e↵ect on SFAP amplitudes of both fibre types. The second

mechanism can explain the di↵erence in amplitude gain between fibre types. It is the match between

active length (as defined in (3.7)) and cu↵ dimension (equal to range of the profile; 20 mm in this

case) as detailed in section 3.2.6. For a myelinated axon of diameter 3 µm the active length evaluated

to approximately 0.5 ms · 15 m s�1 = 7.5 mm, an unmyelinated axon of this diameter only had an

active length of about 0.5 ms · 1 m s�1 = 0.5 mm. SFAPs from myelinated fibres are thus amplified by

constructive superposition of contributions from many axon segments. Fig. 3.9C demonstrates this

matching e↵ect between myelinated axons and the cu↵ over all diameters.
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myelinated than for unmyelinated axons over the whole diameter range. For the other two media, un-
myelinated SFAPs produced stronger SFAP amplitudes at diameters above 0.5 and 1µm respectively.
Simulated data.
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3.3.4 E↵ects of varying the cu↵ length

As a tool for bioelectronic medicines, PyPNS should, next to generating surrogate data, help the

design of peripheral nerve interfaces. To demonstrate its utility for this cause, we take a look at the

impact of cu↵ length on the recorded signal amplitude for both myelinated and unmyelinated axons

of di↵erent diameters. Fig. 3.10 shows how unmyelinated and myelinated fibres require di↵erent

cu↵ lengths for a maximal SFAP amplitude which is expected from their di↵erent active lengths

(see above). Unmyelinated fibers with their lower conduction velocity and therefore shorter active

length produce the strongest signals for (theoretic) cu↵ lengths of about 1 mm. While such short cu↵s

are most likely not implementable as they would need to be very thin as well, medium lengths of

about 1 cm seem reasonable according to our simulation. The amplitude of myelinated axons keeps

increasing until very high cu↵ lengths of 10 cm but are observed to saturate at intermediate lengths of

about 1 cm. PyPNS therefore predicts an ideal cu↵ length for peripheral nerve interfaces in this order.

Results will vary for a more accurate unmyelinated axon model, as higher conduction velocities will

increase their active length and therefore ideal cu↵ length.
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3.3.5 Compound action potentials

To validate the extracellular recording generated by PyPNS, we attempted to reproduce experimental

recordings from the stimulated rat vagus nerve. Physiological parameters such as diameter distribu-

tions and fibre counts were obtained from literature (microscopy analysis) (Prechtl and Powley, 1990)

as summarised in Tab. 3.2. The nerve geometry and the recording electrode configuration was further

set to match the experimental set-up. Outer and inner nerve radius were set to 240 µm and 190 µm

respectively; a circular bipolar electrode of radius 235 µm and pole distance 3 mm (20 recording posi-

tions per pole) surrounded the nerve. Axons were placed centrally and were activated intracellularly;

due to the di↵erence in stimulation threshold between fibres types, the entire population of myelinated

and only a small fraction of unmyelinated axons (~20% of 10,000) was triggered. As unmyelinated

fibres based on Hodgkin-Huxley channels conduct action potentials very slowly, we corrected their

SFAP timings. In the experiment we seek to match, the nerve was bathed in mineral oil. Therefore

only the cu↵ medium could be expected to reproduce the extracellular recording in the simulation.

Results from homogeneous and radially inhomogeneous media are presented as well in the following

for comparison.

Type # diameter (µm)

Unmyelinated 2000 2 (0.2, 1.52) distribution from Prechtl and Powley (1990)
Myelinated 200 ⇠ N(1.7, 0.4) (Prechtl and Powley, 1990)

Table 3.2: Axon number and properties set in the simulation for comparing model results with experimental
recordings

The simulation result with all parameters matched to the experiment, we obtain the compound action

potential (CAP) shown in Fig. 3.11 along with the experimental data. As can be seen, a reasonable

agreement between simulation and experiment was reached in the time domain. This match naturally

only held for the cu↵ insulated medium – homogeneous and radially inhomogeneous media produced

only very weak extracellular potential amplitudes as expected from their lower tissue resistances.

The signal segment between A- and C-fibres from 25 to 40 ms corresponds to B-fibres which are not

implemented in PyPNS.

Especially the signal portion caused by myelinated fibres (Fig. 3.11B) shows as satisfying match to

the experiment – in peak amplitudes, area, zero crossings and overall duration. See Tab. 3.3 for a
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Myelinated axons

Feature Experiment Simulation

Area (µV ms) 115 83.2
Peak-to-peak voltage (µV) 57.5 50.3
Zero crossings 50 45

Unmyelinated axons

Feature Experiment Simulation

Area (µV ms) 147 93.9
Peak-to-peak voltage (µV) 25.2 14.0
Zero crossings 271 133

Table 3.3: Quantitative comparison between compound action potentials from experiment and simulation
(cuff medium).

quantitative comparison on these parameters. Unmyelinated axons (Fig. 3.11C) also produced a CAP

comparable to the experiment in both amplitude and timing although comparison becomes more di�-

cult as the signal to noise ratio in the experimental data is lower due to their overall lower amplitudes.

Table 3.3 summarises how area and amplitude of the experimental recording are larger than in the

simulation as well as the considerably higher number of zero crossings in the experiment. The noise

in the experiment will be accountable for a share of the crossings. Di↵erences in the extracellular

recordings of unmyelinated axons were expected of course, as the Hodgkin-Huxley model used for

unmyelinated axons did not to exactly match the properties of rat vagus nerve C-fibres.

In the time domain, a reasonable match between experiment and simulation has been shown above.

Fig. 3.12 shows how this match holds reasonably well in the frequency domain for both fibre types.

The spectrum of the unmyelinated signal proportion in our experimental data (black lines in Fig. 3.12A)

had an overall flat profile with a main peak (lower plot) at around 500 Hz. PyPNS approaches this

characteristic to a certain extent. While spectra from all three media have slighly earlier peaks below

500 Hz, homogeneous and cu↵ medium followed the characteristic of the experiment well between

0 to 2 kHz before decaying further below �20 dB from there. We surmise that the high frequency

content of the experimental data may be caused by high frequency noise from the recording process.

Meaningful, spike-event related signal components from experimental recordings usually stay below

2 kHz (Diedrich et al., 2003).

The experimental spectrum of myelinated fibres (Fig. 3.12B) was dominated by low frequency power

below 2 kHz with a peak at about 500 Hz. It has to be noted that the frequency resolution at ⇠0.5 KHz
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Figure 3.11: Comparison between experimental and simulated CAP: time domain. A The simulated
compound action potential in the cuff medium approaches the experimental recording well in the relevant
signal segments. As expected, homogeneous and radially inhomogeneous media lead to much weaker
signal amplitudes. For the experimental recording, the gray underlying area indicates the standard devi-
ation over the 10 stimulation repetitions. See Tab. 3.2 for axon properties. Distance between stimulation
site and bipolar electrode (3 mm pole distance, 235µm radius) was 8 cm. All axons were activated by intra-
cellular stimulation. The timing of unmyelinated SFAPs was adapted to regular conduction velocity values
assumed in mammalian peripheral nerves (CV = 1.4 ·

p
d, CV in m s�1, d in µm). B The signal from myeli-

nated fibres, which arrive first, appears similar to the experiment. C The unmyelinated signal segment
(C-fibres) matches the amplitude and duration of the experimental recording as well. The signal-to-noise
ratio of the recordings is much worse for unmyelinated fibres, however, as the amplitude of their SFAPs is
low.

was rather coarse. was We reproduce this characteristic well in our simulation for the cu↵ medium

over the whole frequency range, at a slightly later peak around 1 kHz. The other two media led to a

flat characteristic with a larger amount of high frequency power and less low frequency power. This

was expected from the SFAP shapes in Fig. 3.9 with myelinated SFAPs much wider in the cu↵ than

in the other media.

In conclusion, we could match the the experimentally obtained frequency characteristic of both axon

types reasonably well by our simulation for the cu↵ medium.
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fibre types. A For unmyelinated axons, the simulation did not perfectly approach the experimental spec-
trum in any medium with best results for the cuff. B The simulated frequency characteristic of myelinated
axons in the cuff insulated medium was close to reality. Simulated data.

3.3.6 Fitting axon tortuosity to experimental data

In order to obtain axon shapes close to reality, we fit the distributions of axon segment direction

changes c in simulation to imaged nerves as detailed in methods section 3.2.1.2. Fluorescence mi-

croscopy images were available for the mouse sciatic and vagus nerve as shown in Fig. 3.13.

In Fig. 3.14 we compare the direction change distributions from microscopy (Fig. 3.14A) to the ones

of simulated axons (Fig. 3.14B) alongside a few example axons in space (Fig. 3.14C). The vagus

nerve’s axons are more tortuous than those of the sciatic nerve as Fig. 3.14A demonstrates in the wider

distribution of segment direction changes (c-values). Fig. 3.14B shows simulated direction change

distribution obtained at di↵erent parameters (||w||-distribution and ↵) in PyPNS. When comparing

these to Fig. 3.14A, a Gaussian ||w||-distribution clearly better reproduced imaged c-distributions. The

sciatic nerve then corresponded to an ↵-value of about 0.6, the vagus nerve had a wider c-distribution

as its axons were curvier, corresponding to a higher ↵. When inspecting the resulting trajectories in

Fig. 3.14C from uniform (upper plot) and Gaussian (lower plot) c-distributions, the e↵ect of a normal

distribution of random vector length ||w|| is visible. It leads to both a slightly smoother trajectory and

rare strong direction changes, especially for high ↵-values.
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Figure 3.13: Fluorescence microscopy images of the mouse sciatic and vagus nerve. Both show
slight tortuosity in their axon trajectories. A The thick myelinated fibres in the sciatic nerve appear very
parallel. B The thinner axons in the vagus take a more curvy trajectory. Several manually traced fibres
used to fit the model are highlighted in orange.
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Figure 3.14: The axon placing algorithm result (B, C) was fit to tortuosity of microscopy imaged
fibres (A). A Direction change distributions (c-distributions) for vagus and sciatic nerve. B c-distributions
in the simulation for both normally and uniformly distributed amplitude of the random component ||w|| in
(3.3) for ↵s of 0.2, 0.6, and 1.0. C Example axon trajectories in space for uniform (upper) and Gaussian
(lower) ||w||-distributions at ↵-values of 0.2, 0.6, and 1.0. Simulated data.

3.3.7 Recording from tortuous axons

Now that we can generate realistic axons shapes with di↵erent degrees of curviness we are equipped to

investigate the impact of tortuosity on the recorded extracellular potentials. As Fig. 3.15 demonstrates,

a more complex axon trajectory caused more complex SFAPs – but not to the same degree in both

axon types.

Unmyelinated SFAPs (Fig. 3.15A) were especially sensitive to tortuosity. They developed complex,

long lasting signals, especially in homogeneous and radially inhomogeneous media. When insulating

the nerve by a cu↵, the amplitude of the main SFAP peak became very weak at high tortuosity while

many small side peaks arose, giving the signal a noisy appearance. Myelinated fibres (Fig. 3.15B)

showed a higher robustness towards tortuosity – their SFAP shape remained invariant at low and
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medium ↵-values. Only high degrees of tortuosity could change signal timing and shape; as for

unmyelinated axons, the cu↵ isolated medium let the signal become noisy.

Why do SFAPs get more complex with rising tortuosity? This e↵ect can be understood from looking

at Eq. (3.10) (same as Eq. (3.5)) and changing it as in Eq. (3.11) where s is the distance along

the axon. In a tortuous axon, the longitudinal distance z(s) along the nerve becomes a function of

s. For the sake of simplicity, di↵erences in the potential � depending on the radial displacement of

the axon were neglected here. For a tortuous axons, the potential profiles of the extracellular media

(see Fig. 3.8) are then both stretched (z(s)  s) and distorted in a degree dependent on tortuosity.

Di↵erent axons show di↵erent susceptibilities to these distortions depending on their active length. If

the active length is large compared to the spatial frequency of the tortuosity-induced profile distortion,

variabilities in �(z(s)) are smoothed away. Axons with shorter active length can follow those variabil-

ities in detail and produce a response to them in their SFAPs, giving it a ’noisy’ appearance in which

each bump corresponds to a longitudinal distortion the the potential profile caused by tortuosity. This

explains the di↵erence in susceptibility between axon types.

�SFAP =
X

zi

�(zi) · i
✓
t �

zi

CV

◆
(3.10)

) �SFAP =
X

si

�(z(si)) · i
✓
t �

si

CV

◆
(3.11)

To quantify the influence of ↵ on the heterogeneity of SFAP shape, we calculated the pairwise cross-

correlation

( f ? g)(⌧) =
Z
1

�1

f (t) · g(t + ⌧) dt (3.12)

between normalised SFAP waveforms s↵,i from repeated simulation runs while keeping ↵, fibre type,

and medium unchanged. We then used the mean maximum cross-correlation over all waveform pairs

to describe shape homogeneity:
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c↵ =
2

n · (n � 1)

n�1X

k=0

n�1X

l=k+1

max(s↵,k ? s↵,l). (3.13)

The resulting Fig. 3.15 confirms that a higher tortuosity degrees ↵ caused higher di↵erences in shape

(lower c↵). While myelinated SFAPs remained similar even for large ↵s, unmyelinated ones lost their

similarity comparably quickly. Note that this measure does not take into account di↵erences in timing

or amplitude.
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Figure 3.15: Unmyelinated axons were more sensitive to tortuousity in their SFAP shapes than
myelinated ones. Tortuosity parameter ↵ was set to 0.2, 0.6, and 1.0 for the signals shown in the first
two rows. Gray lines correspond to SFAPs of different trials (axon geometries) at the same parameters.
A Unmyelinated axons produced SFAPs differing both in timing and shape for the non-insulated nerve
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their signals became noisy at low ↵-values and the main SFAP peak almost disappeared for ↵ = 1.0.
B Myelinated axons mostly differed in timing in the radially inhomogeneous extracellular space, and not
as much in shape. In the cuff, noisiness only arose at high tortuosity values. In the lower plots, the
mean maximum pairwise cross-correlation gives a quantitative confirmation of the higher susceptibility of
unmyelinated axons to change their SFAP shape in the presence of tortuosity. Note the different ordinate
scales. Simulated data.
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3.3.8 Stimulation of tortuous axons

Not only the recording from but also the stimulation of axons is expected to be influenced by their

trajectory. We therefore investigated the e↵ect of tortuosity on extracellular stimulation e�ciency for

both fibre types. Fig. 3.16 shows the result as the activation ratio of unmyelinated and myelinated

fibres for di↵erent degrees of tortuosity and di↵erent stimulation amplitudes. Again, as for recording,

strong di↵erences between both axon types exist.

One observation to make first, regardless of tortuosity, is the higher stimulation threshold of un-

myelinated axons. Then, when taking a look at the influence of axon curviness, unmyelinated fibres

showed an optimal stimulation current of about 3 mA with a smooth decrease in stimulation e�ciency

for higher and lower current amplitudes. In the low amplitude range (< 3 mA), perfectly straight ax-

ons are activated best. In higher current regimes, tortuous unmyelinated axons had better chances

of becoming stimulated. Myelinated axons on the other hand were successfully stimulated from low

amplitudes of about 150 nA and at almost any higher current at all degrees of tortuosity. A necessary

closer look at a fine-grained increase in stimulation current in Fig. 3.16C reveals a minor increase in

stimulation threshold with tortuosity. Therefore, tortuosity a↵ected the activation ratio of unmyeli-

nated axons substantially stronger than it did for myelinated ones. We only carried out this study at

a fixed diameter of 3 µm as the focus here was to investigate the e↵ect of tortuosity on stimulation

thresholds. It would be interesting to compare the results for di↵erent diameters. Overall, stimulation

thresholds are expected to fall with rising diameter but maybe the susceptibility of the fibres towards

stimulation will change as well.

3.4 Discussion on our simulator PyPNS

The open-source simulation framework that we have proposed here for the first time integrates com-

partmental axon models and numerically solved extracellular space models into a single environment.

To make the import of precomputed voltage fields feasible and e�cient, the modeled media needed

to fulfill certain constraints. One was the geometry that had to be circularly symmetric. While pre-

senting a strong simplification of the extracellular medium, this implementation can be seen as a

generic peripheral nerve in which axons can still cluster to fascicles. Another constraint concerned
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Figure 3.16: Unmyelinated axons have higher stimulation thresholds and are activated less reliably
than myelinated ones. Both bundles consisted of 15 axons with diameter 3µm and were stimulated with
a bipolar electrode of radius 235µm and pole distance 1 mm using a biphasic pulse of frequency 1 kHz,
duration 1 ms and duty cycle 0.5. The extracellular medium was a nerve of diameter 240µm bathed in
oil. A Unmyelinated axons started to be activated at 1 mA and showed a peak in activation ratio at about
3 mA. B Myelinated fibres had a sharp activation threshold at a much lower current of about 0.15 mA and
stayed activated for higher currents. Only when incrementing the stimulation current in very small steps of
about 10 nA C a slight tortuosity-induced increase in stimulation threshold became visible for them as well.
Simulated data.

material properties. Displacement currents and therefore frequency dependence of the tissues was

not accounted for. Such frequency dependence certainly exists to a certain extent. It can arise from

macroscopic structures at constant material properties (dielectric constant ✏ and conductivity �) –

the epineurium can for instance act as a capacitor. In addition, polarisation at di↵erent microscopic

levels (Bédard and Destexhe, 2009; Martinsen et al., 2002) can render the material properties ✏ and

� themselves frequency dependent. Such dielectric dispersion is observed in most biological tissues

(Gabriel et al., 1996). Ephaptic coupling and neurodi↵usive e↵ects were neglected as well.

In terms of axon geometry, we implemented a simple iterative placement mechanism that was fit to

microscopy data. To our knowledge this is the first implementation of such automated shape genera-

tion for peripheral nerve models. It enabled us to investigate the influence of tortuosity on recordings

and stimulation e�ciency and indicated that perfectly straight axons are an oversimplification. Our

simulation predicted that SFAPs become more complex with increasing tortuosity – an e↵ect that is

exploited by spike sorting algorithms which di↵erentiate single units from their SFAP shape. For

now, axons were positioned independently from another. As a next step, fibre trajectories could be

correlated as observed in microscopy images.
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The modular nature of our model allows for an easy comparison of di↵erent extracellular media.

Building on this functionality, we identified an ideal cu↵ length for peripheral nerve interfaces. We

also showed how the long temporal extent of SFAPs in cu↵-insulated media – especially for myeli-

nated axons – makes di↵erentiation of single fibre contributions di�cult as overlaps are probable.

Overall a cu↵ therefore increased amplitude but reduced recording precision.

One limitation of the current NEURON simulation is the unmyelinated axon model. Its conduction

velocity was too low compared to that reported for mammalian axons. For the overall CAP, the

velocity needed to be corrected. Still, the Hodgkin-Huxley parameters are the accepted standard

model for unmyelinated axons and more detailed C-fibre models (e.g., Sundt et al. (2015)) do not

achieve significantly higher conduction velocities either. Parameters of the current model such as

membrane capacitance or intracellular resistivity could be adapted to reach the expected conduction

velocity but we chose to leave them at their physiological values. If more accurate axon models

become available, they can be integrated into PyPNS.

Several steps to improve the model beyond the mentioned limitations are imaginable. First, axons are

currently simulated sequentially. For the simulation of closed loop systems interacting with peripheral

nerves, the simultaneous simulation of all nerves would be preferable. Second, axon membrane sec-

tions only need to be simulated if they are either stimulated or recorded from extracellularly, otherwise

the calculation of their highly uniform membrane processes is unnecessary and time consuming. In

order to eliminate computational overhead, one could introduce an abstract layer into the simulation

in which the position change of spikes along axons is computed based on a known conduction ve-

locity profile. Only for axon segments relevant to stimulation or recording, would the full membrane

process be simulated.

In conclusion, a unified computer model of a generic peripheral nerve was developed. It combined

an e�cient calculation of extracellular potentials in inhomogeneous media from precomputed poten-

tial fields with compartmental axon models in a convenient Python module. The model was vali-

dated against experimental data and used to investigate the e↵ects of conductivity inhomogeneities

on amplitude and frequency content as well as the influence of axon tortuosity on both recording and

stimulation. We hope that the simulation framework presented here, PyPNS, becomes a useful tool

for researchers working on peripheral nerves, nerve stimulation, and its medical applications, and
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envision that the toolbox could be augmented by multiple branches, organ models, and a variety of

specific axon models matched to fibre types found in di↵erent parts of the peripheral nervous system,

to facilitate this. We use PyPNS in Chapter 5.1 as a source for surrogate data.

3.5 Appendices

3.5.A Axon model equations

The following two sections give the equations used for the simulation of each axon compartment in

NEURON.

Each ionic current of both the myelinated and the unmyelinated model is governed by the following

equation where gion is the maximum conductance, ! is a gating variable, Vm is the membrane voltage

and Eion is the potential of the respective ion es given by the concentration di↵erence between inside

and outside of the cell.

Iion = gion!(Vm � Eion) (3.14)

The conductance gion is modulated by gating variables ! that vary between 0 and 1. Multiple gating

variables can be combined by multiplication. Each can be described by the following equation with

varying ↵! and �!.

⌧! = 1/(↵! + �!) (3.15)

d!/dt = ↵(1 � !) � �!! (3.16)
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3.5.A.1 Unmyelinated fibres: Hodgkin-Huxley-model

There are three currents in the Hodgkin-Huxley model (Hodgkin and Huxley, 1952), sodium INa,

potassium IK , and leakage IL current. Gating variables m and h for the sodium current and n for the

potassium current control their dynamics.

Sodium current

INa = gNa · m3
· h · (Vm � ENa) (3.17)

↵m = (0.1 · (Vm + 25))/e(Vm+25)/10�1 (3.18)

�m = 4 · eVm/18 (3.19)

↵h = 0.07 · eVm/20) (3.20)

�h = 1/e(Vm+30)/10+1 (3.21)

Potassium current

IK = gK · n4
· (Vm � EK) (3.22)

↵n = 0.01 · (Vm + 10)/e(Vm+10)/10�1) (3.23)

�n = 0.125eVm/80 (3.24)

Leakage current

IL = gL(Vm � EL) (3.25)

3.5.A.2 Myelinated fibres: McIntyre (MRG) model

All parameters were taken from McIntyre et al. (2002), except for the potassium channel conductance

gKs that we changed from 0.08 S/cm2 to 0.16 S/cm2. The equations in McIntyre et al. (2002) are the

following.

The gating variables di↵er for all channels and their parameters are given in the following:
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Fast sodium current

INa f = gNa f · m3
· h · (Vm � ENa) (3.26)

↵m = (6.57 · (Vm + 20.4))/(1 � e�(Vm+20.4)/10.3) (3.27)

�m = (0.304 · (�(Vm + 25.7)))/(1 � e�(Vm+25.7)/9.16) (3.28)

↵h = (0.34 · (�(Vm + 114)))/(1 � e�(Vm+114)/11)�h = 12.6/(1 + e�(Vm+31.8)/13.4) (3.29)

(3.30)

Persistent sodium current

INap = gNap · p3
· (Vm � ENa) (3.31)

↵p = (0.0353 · (Vm + 27))/(1 � e�(Vm+27)/10.2) (3.32)

�p = (0.000883 · (�(Vm + 34)))/(1 � e(Vm+34)/10) (3.33)

Slow potassium current

IKs = gKs · s · (Vm � EK) (3.34)

↵s = 0.3/(1 + e(Vm+53)/�5) (3.35)

�s = 0.03/(1 � e(Vm+90)/�1) (3.36)

Juxtaparanodal fast potassium current

IK f = gK f · n4
· (Vm � EK) (3.37)

↵n = (0.0462 · (Vm + 83.2))/(1 � e�(Vm+83.2)/1.1) (3.38)

�n = (0.0824 · (�(Vm + 66)))/(1 � e(Vm+66)/10.5) (3.39)

Leakage current

ILk = gLk(Vm � ELk) (3.40)
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3.5.B Calculation of the random component of the axon placing algorithm

The random vector wi in (3.3) is split into an inward pointing radial wrad and a tangential component

wtan (3.41), both weighted independently with a weight drawn from a distribution P (3.42, 3.43). P

can be either a uniform distributionU(�1, 1) between �1 and 1 or a normal distributionN(µ,�) with

µ = 0 and � = 0.33 (sigma chosen to have 99.7% of all values in the range [�1, 1]). When the radial

distance between axon segment and bundle guide d approaches the bundle radius rbundle, the radial

component wrad becomes more inward directed (3.43) and thereby ensures that the axon stays inside

the nerve. One linear implementation of the correction factor e is shown in (3.44). The parameter rcorr

defined the relative radius from which on the correction should begin, set to 0.7 in our simulation;

emax, set to 2 by default in PyPNS, limits the correction.

wi =
�rad · wrad + �tan · wtan

||�rad · wrad + �tan · wtan||
(3.41)

�tan ⇠ P (3.42)

�rad ⇠ P � e (3.43)

e = min(1,max(0,
d/rbundle � rcorr

1 � rcorr
)) · emax (3.44)

3.5.C Generation of simulated c -distributions

To directly translate ||w||-distributions (P) to distributions of the normed di↵erence in direction of

consecutive axon segments c = ||ai � ai+1|| projected onto a 2D-plane, we made the simplifying

assumption that bk and ai are aligned. By doing so || ai + (1.1 � ↵) · bk||) (see Eq. (3.3)) becomes

(2.1 � ↵) · ||ai||. Following Fig. 3.S1, it is easily shown that then ||w|| relates to c as

c = 2 · ||a|| · sin
 
1
2
· arctan

 
||w||
||a||

↵

2.1 � ↵

!!
. (3.45)
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a
i

(1.1 - α) · b
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Figure 3.S1: If bundle bk and current axon segment ai have a fixed relation, e.g., parallel, the expected
distribution of segment direction differences c = ||ai � ai+1|| can be easily obtained from the distribution of
||w|| (P) by their geometrical relation.

3.5.D Fitted cu↵ transmission function

For extracellular recording in a cu↵, a transfer function between current point source position and the

potential at an electrode longitudinally centrally placed in the cu↵ was fit. Input variables describe

the spatial relation between source and receiver position. As apparent from Fig. 3.S2, the relation is

strongly linear with an additional peak for low distances between current source and potential receiver

– facilitating the fit of a transfer function.
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Figure 3.S2: An analytic transmission function implements the relation between current source
position and potential for recording in a cuff electrode. In the shown case, a nerve of diameter 480µm
in a cuff of 2 cm length was simulated in the FEM model. Functions are displayed for three different angles
between the perpendiculars of source and electrode position onto the bundle guide respectively.

The static potential was therefore described as a linear component flin(z) plus a nonlinear peak fpeak(z).

Equations (3.48) - (3.50) implement this characteristic for � in mV with variables rax radial axon

displacement in m, ↵ angle between axon displacement direction and electrode perpendicular on the
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nerve center in rad and z longitudinal distance between electrode and axon in m. The transfer function

is parametrised with r1 for the inner radius of the nerve in m, a and b for maximum peak amplitude

and steepness, c for maximum of triangular component and d half the cu↵ length in m. The left and

right borders of the flin(z)-function were smoothed with a moving average of width c/20.

flin(z) = max(0, c · (1 � |z/d|)) (3.46)

fpeak(z) =
a
|z| + b

(3.47)

fpeak,r(rax) = min(1, (rax/r1)5) (3.48)

fpeak,↵(↵) = max(0, (1�

| mod (↵ + ⇡, 2⇡) � ⇡|)/⇡ · 5) (3.49)

�(z,↵, rax) = tr(z) + p(z) · p fr(rax) · p f↵(↵) (3.50)

parameter value

r1 1.9 ·10�4

a 2.5 ·10�9

b 5 ·10�5

c 8.83 ·10�4

d 0.01

Table 3.S1: Parameters of the fitted transmission function for cuff recordings. Spatial input variables in m,
angle in rad, output in mV.



Chapter 4

Encoding and decoding of bladder pressure

While other parts of the thesis consist in more indirect contributions towards peripheral nerve de-

coding algorithms, such as simulation tools for algorithm development (Ch. 3) and feature-based

time-series analyses to generate low-dimensional summaries of peripheral nerve activity (Ch. 5), this

chapter covers decoding studies on in vivo data from the rat and cat bladder. We thus present decoders

tailored to specific datasets that are shaped by today’s recording technologies and the system in ques-

tion rather than providing more general tools to support bioelectronic medicines research as done in

the other chapters.

The bladder provides an ideal testbed for the development of closed-loop bioelectronic medicines.

It has a single main parameter of interest – its fullness, characterised by both volume and resulting

pressure – which can easily be manipulated and recorded. The bladder wall is further covered by

numerous stretch sensors that monitor this central quantity. It is thus a good candidate for investigating

the encoding and decoding of an organ parameter monitored by a multitude of cells. Developing

closed-loop bioelectronic medicines for the bladder is furthermore clinically important, as bladder

dysfunction is a common condition both in the elderly population (Diokno et al., 1986), and after

spinal cord injury (Wyndaele, 2016; Cameron et al., 2010) and is a topic of much current interest

(Wheeler et al., 2018). The resulting incontinence has devastating e↵ects on a patient’s quality of

life (Milsom et al., 2014; Nitti, 2001). In addition, other malfunctions such as detrusor-sphincter

dyssynergia and hyper-reflexia can occur in specific patient groups and cause renal damage, repeated

urinary tract inflammations and kidney infections (Watanabe et al., 1996; Shingleton and Bodner,

72
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1993). Sacral neuromodulation has been received well by patients (Damon et al., 2013; Van Wunnik

et al., 2011).

The lower urinary tract (LUT), consisting of the bladder, urethra and sphincter, is innervated by the

pelvic, the pudendal, and the hypogastric nerves (de Groat et al., 2015). The pelvic nerve projects

to the internal pelvic organs including bladder, urethra, bowel, and vagina (de Groat, 2006; Vodušek,

2004). The pudendal nerve goes to the pelvic floor including urethra, sphincter, anal sphincter, per-

ineal region, genitalia (Bahns et al., 1987; Todd, 1964; Cueva-Rolón et al., 1994). The hypogas-

tric nerve forms a plexus with the pelvic nerve, innervating similar regions, including the bladder

neck/proximal urethra. We are therefore mainly interested in pelvic nerve fibres that originate in the

sacral-level dorsal root ganglion (DRG) (Nascimento et al., 2018) to innervate the bladder wall.

Most cell bodies giving rise to the a↵erent fibres projecting through the pelvic nerve to the bladder

can be found in sacral-level S1 and S2 DRG (Downie et al., 1984; Applebaum et al., 1980). In cat,

of the approximately 40 000 cell bodies in the sacral DRG S1 and S2 (Chung and Coggeshall, 1984),

about 1000 innervate the bladder (Jänig and Morrison, 1986; Applebaum et al., 1980; Uemura et al.,

1975; de Groat, 1986). This population is composed of both small myelinated A� and unmyelinated

C-fibres, of which the former are generally accepted to transport the mechanoreceptor impulses and

trigger the normal micturition reflex (de Groat et al., 2015, 1981; Häbler et al., 1993; Evans, 1936).

C-fibres are associated with nociception but have been reported to sense bladder pressure in addition

to A� fibres (Sengupta and Gebhart, 1994b). The bladder neuron responses were characterised as

tonic (A�) and phasic (C-fibres) (de Groat and Yoshimura, 2010), sometimes described as pressure

(A�) and volume (C) receptors (Morrison, 1997) and are usually found to have a diversity of activation

thresholds within each diameter range (Bruns et al., 2011a; Iggo, 1955; Bahns et al., 1986; Sengupta

and Gebhart, 1994b). Some exhibit hysteresis (Ross et al., 2016). While the large body of physio-

logical studies draws a detailed descriptive picture of bladder a↵erents, elucidating the physiological

significance of the di↵erent cell types for pressure encoding has not been attempted. The question of

why the diverse bladder neuron responses exist is one we seek to answer in the encoding part of this

work (Ch. 4.2).

For our studies, we could analyse two datasets of electrically recorded bladder a↵erents with di↵erent

degrees of recording detail. First, a recording from the rat pelvic nerve by a hook electrode in oil with
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simultaneous bladder pressure manipulation and recording. Second, microelectrode array (MEA)

recordings from the dorsal root ganglion (DRG) in cats, again with simultaneously manipulated and

recorded bladder pressure. The di↵erent data required us to implement di↵erent summary statistics

of the recorded signal for decoding, adapted to the respective signal-to-noise ratio and spatial reso-

lution. In the high-resolution recordings, we first quantitatively analysed the response characteristics

of bladder units using information theory and established an encoding-model. Exploiting this under-

standing of the encoding, we implemented an informed bladder pressure decoding method from a

low-dimensional population activity vector. In the dataset of lower recording resolution, we captured

the characteristic of the population response in a nonlinear transfer function between nerve power and

pressure.

4.1 Decoding of bladder pressure from hook electrode recordings

of the rat pelvic nerve

In this first low-resolution dataset, we focussed on the development of a decoder capable of reading

out bladder pressure in real-time from electroneurograms, or compound action potentials (CAPs),

recorded from the pelvic nerve of the rat. The pelvic nerve is a parasympathetic nerve that monitors

and controls bladder function (Danziger and Grill, 2015; de Groat et al., 2015), and is thus a suitable

recording site to evaluate PNS decoding algorithms. We show that by extracting a spectral signa-

ture optimised for mutual information conveyed about the pressure signal, linearising to remove the

e↵ect of a static nonlinearity, and applying an optimal linear filter, it is possible to decode robustly

and e↵ectively bladder pressure from the pelvic nerve in both the Wistar and the Spontaneously Hy-

pertensive Rat (SHR) model. We examined the e↵ect on our decoder of delivery of PGE2, which

generates acute symptoms of overactive bladder, and found that PGE2 resulted in systematic under-

estimation of bladder pressure by the decoder, which can be corrected by incorporating PGE2 data

into the training set.
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4.1.1 Methods

4.1.1.1 Experiments

The animal experiments were done by the group of Warren Grill at Duke University for previous

studies. All animal care and procedures were reviewed and approved by the Institutional Animal Care

and Use Committee at Duke University. Experimental data collection was similar to that described

in detail in (Danziger and Grill, 2015). Briefly, adult Wistar (n=3) or Spontaneously Hypertensive

Rats (n=3) were initially anaesthetised with isoflurane gas, followed by two subcutaneous injections

of urethane totalling 1.2 g kg�1. One hour after injections the animal’s reflexes were tested via foot

pinch, and supplemental 0.1 g kg�1 doses of urethane were given as needed until the foot withdrawal

reflex abated. A cystometrogram comprising two to six bladder contractions was obtained by inserting

a catheter into the bladder, and using a syringe pump connected to the catheter in series with a pressure

transducer to pass room temperature 0.9% NaCl into the bladder at controlled flow rates. Recordings

were made from the pelvic and hypogastric nerves, using nerve hook electrodes in mineral oil with

0.1% collagenase, and recorded with an ADInstruments Powerlab 8/35 system. Nerve signals were

sampled at 10 kHz, and bladder pressure at 1 kHz. See Fig. 2.5B for an example.

4.1.1.2 Frequency band selection

We extracted continuous signals in 50 Hz frequency bins from 1 Hz to 1 kHz without overlap, by

using a Short Time Fourier Transform, with a window length of 0.5 s. The resulting signals were

smoothed with a moving average window length of 10 s (for this analysis only), which was optimised

to maximise mutual information while preserving temporal fidelity. To establish quantitatively the

most informative frequency bands, we used the Kraskov estimator for the Shannon Mutual Informa-

tion (MI) (Kraskov et al., 2004; Schultz et al., 2015) between the power spectral density for each

band, and the bladder pressure time course. We selected the frequency range with MI above the mean

for subsequent analysis, using the same range for all recordings.

It has to be noted here that the two signals pressure and nerve activity vary at entirely di↵erent time

scales. We quantified the nerve signal power in windows (0.5 s) during which pressure did not change

much, but many single action potentials could occur. We were thereby able to show that quick com-
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ponents of the nerve activity (caused by a higher firing rate) are informative of the bladder pressure

even if a direct spectral coherence measure (Halliday and Rosenberg, 2000) was not applicable for

the two signals.
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Figure 4.1: Cystometrogram and information spectra. A An example pressure recording from a Wistar
rat, showing three bladder contraction cycles. B Power spectral density (PSD) fluctuations throughout the
contraction cycle. C Information spectrogram for the example shown in Fig. 4.1. D Information spectrogram
for the dataset of 3 Wistar and 3 SHR rats, as well as post delivery of PGE2 for two of the Wistar rats. Solid
line: mean mutual information for the relevant frequency band; dashed lines indicate standard deviation.

4.1.1.3 Piecewise Linear Fit

The simplest decoder we examined involved performing a piece-wise linear (PWL) fit of the instanta-

neous relationship between the measured pressure (see Fig. 4.1A for an example) and the nerve power

(PNA) (see Fig. 4.1B) integrated across the spectral band from 200 Hz to 1 kHz (selected from the MI

analysis). For this purpose, the bladder pressure was divided into a fixed number of intervals in which

a segment of the piece-wise linear curve would take a linear shape of constant slope. Neighboring

segments could di↵er in slope but had to connect. The slopes of all segments were chosen to minimize

the squared error between the piece-wise linear curve and the actual nerve power. As a compromise

between overfitting and accuracy of the PWL, we selected 5 intervals. See Fig. 4.2A for an example

fit. This PWL function was then used to look up the estimated pressure, instant by instant, for a given

nerve power.
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4.1.1.4 Optimal Linear Filter

An optimal linear filter (OLF) can build the time-dependent linear relationship between a series of

measurements xi and a quantity of interest yi by convolving the last n measurement samples with a

filter � and adding a constant o↵set. See Eq. (4.1). The coe�cients �̂ are optimized to minimize the

error between estimated quantity of interest ŷ and the true values y for all time steps i. In our case, we

used an OLF to derive an estimated bladder pressure (ŷ) from the last n samples of nerve recording

power in the selected frequency band (x).

ŷi = f�,i(x) = �̂0 + �̂1xi + ... + �̂nxi�n+1 (4.1)

with �̂ = argmin�
X

i

(yi � f�,i(x))2 (4.2)

4.1.1.5 Piecewise Linear Fit followed by Optimal Linear Filter

The OLF described in the last section can incorporate the history of measured nerve activities (PNA),

but assumes a linear relationship between bladder pressure and PNA. On the other hand, the decoder

based on the piece-wise linear fit mapped the stationary non-linearities between PNA and pressure but

only used one single PNA measurement at a time to estimate pressure without considering the history

of PNA values. To combine the two strengths of the respective decoders, we here first linearised the

relation between PNA and pressure by subtracting the PWL curve from the PNA datapoints to obtain

a PNALFit. We then combined this linearised nerve power with an optimal linear filter. Instead of

training the OLF with the original PNA values, we used the linearised PNALfit values (see Fig. 4.2B).

4.1.1.6 Cross-validation

Five-fold cross-validation (Witten et al., 2002) was used throughout the analyses described here. The

data of each dataset was divided into 5 measurement subsets and the fitting of our estimators was

done 5 times with 4/5 of the data for training and 1/5 for testing. Training data only was used for

(i) the PWL fit, and (ii) recovery of optimal linear filter parameters. The MI analysis was instead

used here to set generically the frequency band, identically, across all recordings. Performance was
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Figure 4.2: The relationship between bladder pressure and pelvic nerve activity can be fitted well
as with a piecewise linear function. (A) Piecewise linear fit. (B) In our decoding approach, we use this
fit to linearise the pressure-nerve activity characteristic. (C) The result of the optimal linear filter on the
linearised data over time follows the pressure reasonably well.

then measured on test data. For the training of the PWL model only, data was divided by an entirely

randomised sample selection from the whole recording. For the OLF and combined models, the

dataset was divided equally into sequential periods.

4.1.2 Results

4.1.2.1 Information about bladder pressure is contained in a broad spectrum of pelvic nerve

activity

We examined the frequency content of the pelvic nerve signal throughout the bladder contraction

cycle, (Fig. 4.1), finding little power at low (< 200 Hz) frequencies, a band at moderate (200-400 Hz)

frequencies that was present at low bladder pressures, but increased in power with bladder pressure,

and rapid fluctuations in high frequency (400 Hz-1 kHz) power near the peak of the contraction cycle.

To establish the best signal for decoding, we examined the MI conveyed about bladder pressure, by

a narrowband signal scanned in frequency (Fig. 4.1). For the example shown in Fig. 4.1, MI about

bladder pressure peaked at approximately 500 Hz (Fig. 4.1C). Across a population of 6 nerves, the

spectral characteristics of the MI were broadly consistent, although typically peaking at a slightly

lower frequency (< 400 Hz). The information spectrum did not di↵er between Wistar or SHR rats,

nor did the delivery of PGE2 a↵ect information content (Fig. 4.1D).
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4.1.2.2 Broad spectrum pelvic nerve activity provides a reliable but nonlinear representation

of bladder pressure

A simple way to appreciate the relationship between bladder pressure and nerve activity is to plot the

instantaneous time series values against each other (i.e. ignoring dynamics). This is shown in Fig. 4.3.

Several things are immediately apparent: firstly, there is relatively little spread around the mean re-

sponse to each bladder pressure value, indicating that the assumption of a lack of time-dependence

is, at first order, reasonable. The residual noise may be accounted for by either noise or time depen-

dence; some time-dependent e↵ects may be addressed by the use of the linear filter approach below.

A second observation is that the relationship follows a relatively stereotyped nonlinear form, di↵er-

ing however in detail for each nerve recorded (with respect to threshold, slope, etc). We take this

to indicate that an instantaneous decoding approach should be relatively e↵ective, with some small

advantage potentially to be gained by the addition of a linear filter kernel.
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Figure 4.3: Nonlinear relation between nerve activity and bladder pressure. While nerve activity
varies between individuals (different colours) and type of rat (A: Wistar, B: SHR), all relationships between
bladder pressure and pelvic nerve activity show a similar nonlinear characteristic.

4.1.2.3 Bladder pressure can be accurately decoded from pelvic nerve activity

We found that while reasonably good performance could be obtained by simply estimating the nonlin-

ear relationship between nerve spectral power and bladder pressure, or by instead assuming linearity

but incorporating time-dependence through an optimal linear filter, the best decoding performance

was achieved by linearising to remove the nonlinearity, then applying an optimal linear filter (see

Table 4.1). This approach assumes that there is a static nonlinearity, which is separable from the filter

time-course. The PWL+OLF decoder was significantly better, in root mean squared error (RMSE)
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terms, than a PWL decoder alone (p=9.60e-4, one-sided Student’s t-test, n=6), and appeared to be

slightly (but not significantly) improved over the OLF alone.

Rat PWL OLF PWL + OLF

Wistar 1 2.26 ± 0.10 1.66 ± 0.13 1.62 ± 0.19
Wistar 2 2.76 ± 0.11 2.31 ± 0.40 1.70 ± 0.26
Wistar 3 2.49 ± 0.23 1.90 ± 0.31 1.96 ± 0.29

Wistar (all) 2.52 ± 0.33 1.96 ± 0.28 1.76 ± 0.25

SHR 1 2.27 ± 0.15 2.06 ± 0.45 2.01 ± 0.32
SHR 2 2.11 ± 0.24 1.65 ± 0.18 1.61 ± 0.16
SHR 3 1.96 ± 0.14 1.27 ± 0.48 1.35 ± 0.54

SHR (all) 2.12 ± 0.21 1.66 ± 0.37 1.66 ± 0.34

Wistar and SHR (all) 2.32 ± 0.20 1.81 ± 0.32 1.71 ± 0.29

Table 4.1: Decoder Performance in RMSE ± cross validation standard deviation (cm H2O)
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Figure 4.4: Filter coefficients recovered for the Optimal Linear Filter. Mean values over n=6 Wistar
and SHR rats, error bars indicate standard deviation.

In the current version of the decoder, we used a simple PWL function to approximate the nonlinearity

(Fig. 4.2A). The residuals from this model fit (Fig. 4.2B) suggest that the model can be improved,

particularly at low bladder pressures. This leads to the decoder faithfully tracking the bladder pressure

near the peak of the contraction cycle, but some systematic errors in the earlier phase of the contraction

cycle (Fig. 4.2C), which should be addressable by incorporation of an improved, smooth, low order

model function. The optimal linear filter function recovered (Fig. 4.4) includes structure extending

5-10 s back in time, which can be taken as an indication of the temporal fidelity of this system.
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4.1.2.4 PGE2 administration leads to underestimation of bladder pressure by the pelvic nerve

Following recording of bladder pressure and nerve activity throughout the contraction cycle, in two

experiments on Wistar rats, prostaglandin E2 (PGE2) was delivered into the bladder (100 µmol). This

o↵ered the opportunity to evaluate how the decoder would behave (i.e. what can be read out from

the nerve) under a condition in which the system is pharmacologically perturbed from the conditions

under which the decoder was trained. In both examples, the bladder pressure signal decoded from

the nerve after PGE2 injection under-estimated the true bladder pressure (Fig. 4.5A). Training in the

presence of PGE2 eliminates this bias (Fig. 4.5B).
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Figure 4.5: The administration of PGE2 causes the decoder to underestimate bladder pressure.
A Mis-estimation due to training on pre- and testing on post-PGE2 administration data. B Performance
achieved when training with PGE2 data (5-fold cross validation, same test data as A). Negative values are
due to the measurement process.

4.1.3 Discussion low-resolution decoder

We have shown that a relatively simple approach to bladder decoding consisting of a piecewise lin-

ear fit of the steady-state transfer function and an optimal linear filter can lead to a bladder pressure

estimation of satisfactory precision at an RMSE of less than 3 cmH2O. When normalising by the pres-

sure amplitude, this equals a relative error of less than 10%. The frequency-band selection method

allowed us to demonstrate how a surprisingly broad spectrum of the pelvic nerve activity is informa-

tive of bladder pressure. The linearisation of the transfer function between nerve power and bladder

pressure circumvented more complex, nonlinear decoding approaches. This simple decoder is well

suited for recordings of low signal to noise ratio that are commonly generated by cu↵ electrodes in

current bioelectronic medicines devices.
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4.2 Bladder pressure encoding by groups of stereotypical fibres

In the low-resolution data of our first dataset, we had to relate an imprecise recording of the super-

posed activity of many fibres to the quantity of interest – bladder pressure. There was no way of

monitoring and exploiting the single-unit behaviour and the best we could do was to select an infor-

mative frequency band and map the non-linear transfer function between population activity power

and bladder pressure. In similar engineering approaches, various ways to decode bladder pressure,

volume and contractions from peripheral nerve activity have been explored in the past – usually in

a data-driven way without trying to make use of the biological observations. Decoders using pelvic

(Mendez et al., 2013; Mendez and Sawan, 2014) (as we did in Sec. 4.1 (Lubba et al., 2017)), puden-

dal (Wenzel et al., 2006, 2004) or spinal nerves (Chew et al., 2013; Jezernik et al., 2001) have been

proposed.

As an alternative, one can interface with sacral-level dorsal root ganglion (DRG) where cell bodies of

both pelvic and pudendal nerve fibres reside, see Fig. 4.6A. Recording cell bodies with penetrating

microelectrode arrays (MEA) leads to a good signal-to-noise ratio at high spatial resolution. More-

over, the activation of e↵erent pathways can be accomplished at the same site through reflex circuits

(Bruns et al., 2015; Khurram et al., 2017). Decoding from microelectrode arrays implanted in the

DRG has been demonstrated (Bruns et al., 2011a; Ross et al., 2018; Ouyang et al., 2019), with a sta-

ble interface over weeks (Khurram et al., 2017). While many of the above decoding approaches, be

it from a peripheral nerve or from the DRG, estimate bladder pressure quite accurately, none of them

directly draw on insights from physiological studies of the encoding. If recording resolution allows,

most proposed solutions rely on exact single cell responses (if spatial resolution and SNR allow) that

are assumed to be stable over time. If a change in the recording setup occurs, however, e.g., due

to electrode migration, cell death, etc, the decoder has no means of detecting this change, and can

quickly lose its prediction quality without retraining.

We here want to take advantage of the higher degree of spatial resolution and signal-to-noise ratio that

a microelectrode array recording in the dorsal root ganglion o↵ers, to understand the communication

principles employed by the sensory population of stretch sensors in the bladder wall as a first step be-

fore doing any decoding. A better understanding of the encoding on peripheral nerves will be crucial

for next generation bioelectronic medicines for both the precise and robust read-out of physiological
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quantities and for adapted ways to stimulate that mimic the existing firing characteristics. While phys-

iologists have led a rich variety of studies on the a↵erent innervation of the bladder and counted fibres,

characterised single fibres, etc. (see introduction of this chapter), principled, quantitative studies of

the population codes are missing.

We conducted this research based on microelectrode array recordings from the sacral dorsal root

ganglion levels S1 and S2 in cats (see Fig. 4.6A for the experimental apparatus) during a slow filling

at a physiological rate. We identified three distinct stereotypical response types that recur across all

experiments: slow tonic, phasic, and derivative. For each type, we used information theory to quantify

the information it individually carries about bladder pressure, and further estimated the benefits of

combining di↵erent bladder neuron types – on both real and simulated data. Taking advantage of the

insights gained from this information theoretic encoding analysis, we propose an informed decoding

strategy from stereotypical groups of fibres that proves to be robust and accurate.

4.2.1 Methods

4.2.1.1 Experiments

We analyse here data previously collected for a study of single-unit hysteresis (Ross et al., 2016)

(experiments 1-5) and a comparison of bladder pressure decoding algorithms for the DRG (Ross

et al., 2018) (experiments 6-8). The animal experiments were done by Aileen Ouyang, Shani Ross

and their colleagues under the supervision of Tim Bruns at Michigan University. Full details of

experimental procedures can be found in those respective publications. In short, 8 adult male cats of

approximately 1 year of age were used. All procedures were approved by the University of Michigan

Institutional Animal Care and Use Committee, in accordance with the National Institute of Health

guidelines for the care and use of laboratory animals. For experiments 1 and 5 a 5⇥10 microelectrode

array (Blackrock Microsystems, Salt Lake City, Utah, USA) was inserted in the left S1 DRG and

a 4⇥10 microelectrode array into the left S2 DRG. For experiments 2, 3 and 4, 5⇥10 arrays were

inserted bilaterally in S1 and 4⇥10 arrays were inserted bilaterally in S2. Experiments 6 to 8 had 4⇥8

electrode arrays in left and right S1. Microelectrode shank lengths were either 0.5 or 1.0 mm with 0.4

mm inter-shank spacing. Neural signals were recorded at 30 kHz with a Neural Interface Processor
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(Ripple LLC, Salt Lake City, Utah). Bladder pressure was recorded simultaneously with a catheter

either inserted through the urethra or inserted into the bladder dome, at a sampling rate of 1 kHz and

low-pass filtered for further analysis at 4 Hz.

The experimental apparatus is shown in Fig. 4.6A. The bladder was emptied using the bladder catheter

before filling it with saline at a near-physiological rate of 2 ml/min (Klevmark, 2002). Inflow was

stopped when dripping from the external meatus or, if present, around the urethral catheter was ob-

served. The saline had room-temperature (22°C) in experiments 1-4 and 6–8 and body-temperature

(41°C) in experiment 5. Two infusion trials per experiment with only non-voiding bladder contrac-

tions form the basis of the following analysis (without the final voiding phase). Trials took 17 min on

average (minimum 5 min, maximum 30 min).

After data collection, voltage signals on each microelectrode channel had an amplitude threshold

between 20 and 35 µV applied (3–5.5 times the root-mean-square of the signal) to identify spike

snippets of neuron action potential firings. Spike snippets were sorted in O✏ine Sorter v3.3.5 (Plexon,

Dallas, TX), using principal component analysis, followed by manual review to identify unique spike

clusters. In MATLAB (Mathworks, Natick, MA), instantaneous firing rates for each cell were then

calculated by smoothing with a non-causal triangular kernel (Weber et al., 2007) of width 3 s.

4.2.1.2 Fibre selection and characterization

We first inspected fibre responses manually. In this process we observed three distinct response types:

(1) ‘slow tonic’: a monotonic rise in firing rate with mean pressure across long time scales without

coverage of the quick non-voiding contractions, (2) adapting ‘phasic’ fibres which respond to quick

changes in bladder pressure during contractions but, because they adapt over time, do not report the

mean pressure with the same fidelity as ‘slow tonic’ ones, and (3) ‘derivative’ fibres which only

respond to phases of rising pressure and are, similar to phasic fibres, weakly indicative of the mean

pressure.

To select relevant fibres and systematically associate them with the types we found through manual

inspection, we computed the Pearson correlation coe�cients between firing rates and (1) low-pass

filtered pressure below 0.01 Hz, (2) high-pass filtered pressure above 0.005 Hz, and (3) derivative
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Figure 4.6: Bladder pressure is encoded by distinct groups of stereotypical cells. A Microelectrode
array (MEA) recording of cells from the first and second sacral dorsal root ganglion (DRG S1/S2) along
with the intravesical pressure. The bladder was filled through a catheter in the bladder dome (solid line)
or urethra (dotted line). Graphic adapted from Ross et al. (2016). B When plotting all fibres of all trials
in the 2D-plane of the correlations of firing rates with high-pass filtered pressure (x-axis) and derivative
of pressure (y-axis), we can associate regions of this correlation-feature plane with the different bladder
neuron types shown in (B). Crosses indicate the cluster centers obtained through k-means clustering and
large circles show the manually selected initial centers. C Example firing rates of bladder neurons along
with the corresponding intravesical pressure are shown for different trials. By the indices the plots can be
related to the scatter in panel B. The cells stem from the following experiments and trials (E: Experiment,
T: trial, C: cell index). 1: E1 T57 C1, 2: E3 T100 C15, 3: E4 T28 C22, 4: E4 T29 C23, 5: E5 T57 C5, 6:
E6 T24 C1, 7: E7 T19 C2, 8: E8 T68 C7, 9: E2 T9 C1, 10: E2 T11 C7, 11: E3 T74 C10, 12: E4 T28 C12,
13: E4 T29 C3, 14: E7 T18 C1, 15: E2 T11 C2, 16: E5 T57 C1, 17: E5 T58 C7, 18: E8 T67 C1.
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of pressure1 for every fibre of every trial. A first assumption is underlying this selecting is thus an

encoding by rate-coded labelled lines, cf. Sec. 2.3. The high- and low-pass filter cuto↵ frequencies

were chosen to separate the pressure signal into a slow mean component without contractions and the

contractions only. We only considered neurons as bladder units that had a raw correlation ⇢ above

0.4 to at least one of these filtered bladder pressure variants. As our experiments contained many

candidate cells (⇠1000) to choose from, we could a↵ord an increased selectivity and be sure to only

consider unambiguously relevant neurons.

In the two-dimensional plane of the correlation measures between firing rate and high-pass filtered

pressure (x-axis) and derivative of pressure (y-axis), shown in Fig. 4.6B, di↵erent fibre types occupy

di↵erent regions.2 We could therefore cluster bladder neurons globally across all trials by their re-

sponsiveness to di↵erent frequency components of the pressure signal using k-means clustering in

this ‘correlation-feature’ plane (converged and initial centers shown in Fig. 4.6B). This approach will

be referred to as ‘feature clustering’ and forms the basis of associating each cell to one of the three

bladder neuron types slow tonic, phasic, and derivative. We note that no finer frequency analysis was

possible, as the pressure signals did not contain spectral power above approximately 0.05 Hz.

Clustering by correlation-features relies on the availability of the pressure signal and its di↵erently

filtered variants. As an unsupervised alternative that could, for instance, be carried out on-line in an

implanted device, we also clustered fibres hierarchically in each trial based on the pairwise Pearson

correlation coe�cients between their firing rates (number of clusters fixed to the number of fibre

types in each trial). This step allowed us to identify clusters of similarly evolving firing rates – and

therefore fibres of similar bladder neuron characteristics – without relying on the bladder pressure.

We will denote this approach ‘activity clustering’. Clustering by activity was only possible within

each trial, not across trials, as pressure dynamics di↵ered in each trial.

1The pressure was first low-pass filtered at a high frequency of 0.25 Hz to remove noisy transients. The derivative was
computed as the step-wise di↵erence between samples of this filtered pressure.

2As we first assured that all cells had at least 0.4 correlation to any filtered signal variant, cells with low correlations
to both derivative and high-pass filtered pressure signals were implicitly identified as only highly correlated to the slow
component.
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4.2.1.3 Surrogate data

The dataset had three inconvenient properties which a↵ected the analyses: (1) the low-frequency

power of the pressure signal was correlated with the high-frequency power as non-voiding contrac-

tions mostly occur at high pressures, (2) not all cell types were present in all experiments, and (3) the

recording length complicated the estimation of information theoretic quantities (detailed in the next

subsection). To overcome these limitations, we created surrogate cells (single cells or populations

of similar cells) that reproduced the behavior of the main bladder neuron types, and drove them by

idealised stimuli (‘pressure signals’). A surrogate cell consisted of an ‘intended firing’ rate with was

derived from the pressure signal (e.g., a low-pass filtered version of the pressure signal) that defined,

together with an intended mean firing rate, the rate parameter of an inhomogeneous Poisson process

to generate a spike train. See Table 4.2 for a list of the implemented fibre response types. We de-

fine a theoretical ‘tonic’ fibre whose intended firing rate perfectly matches the bladder pressure and a

theoretical ‘linear’ fibre that rises linearly with time (coe�cients a and b fit to data). The remaining

three types of simulated cells match the response characteristics we found experimentally. The ‘slow’

fibres follow the low-pass filtered pressure at 0.0005 Hz, ‘derivative’ cells were driven by the pressure

derivative, and ‘phasic’ responses were defined using a decay parameter ⌧ in seconds that regulates

how quickly the fibre adapts. From the spike times output by the inhomogeneous Poisson process, we

computed the continuous firing rate just as we did in the real data by a non-causal triangular kernel of

width 3 s.

Fibre type response formula

Tonic r(t0) = s(t0)
Linear r(t0) = a + b · t0

Slow r(t0) = s(t0) ⇤ hLP

Derivative r(t0) = max(0, ds(t0)
dt )

Phasic dr(t0)
dt =

max( ds(t0)
dt , 0) � 1

⌧ r(t0)

Table 4.2: Surrogate fibre responses in relation to a stimulus s(t0). The operation ⇤hHP/LP indicates convo-
lution with a high-pass or low-pass filter.
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4.2.1.4 Information theoretic analysis

Information theory (Shannon, 1948; Cover and Thomas, 2005), originally developed for the study of

communication channels in engineered systems, has proven to be a useful tool in neuroscience for

quantifying the information carried by a single cell or a population of neurons about a variable of

interest (Schultz et al., 2009; Panzeri et al., 1999; Panzeri and Schultz, 2001; Schultz et al., 2015;

Schneidman et al., 2003). We here consider a common information theoretic quantity, the Shannon

mutual information (MI), estimating (1) how much information each fibre carries about the pressure

stimulus, and (2), how much benefit there is in combining the information from two di↵erent fibres

or fibre types. In the continuous case, mutual information I(X,Y) is computed between two variables

X and Y of probability distributions pX(x) and pY(y) and joint distribution p(X,Y)(x, y). In our case,

X could for instance be the firing rate of a selected cell and Y could be the bladder pressure signal.

I(X,Y) then quantifies the amount of entropy of variable X that is lost when knowing what values Y

assumes in all joint measurements of X and Y:

I(X,Y) =
Z

Y

Z

X

p(X,Y)(x, y) log
 

p(X,Y)(x, y)
pX(x) pY(y)

!
dx dy, (4.3)

In addition to the two-variable case, we can also quantify the joint mutual information that two vari-

ables X and Y carry together about a third variable of interest Z:

I(X,Y; Z) = I(X; Z) + I(Y; Z|X), (4.4)

where for I(Y; Z|X) we have to adapt Eq. 4.3 by replacing all distributions of X and Y by conditionals

to Z and integrate over the distribution of Z. We can further combine the individual mutual infor-

mation measures of both X and Y and their joint mutual information about Z to a quantity called

‘fractional redundancy’, R, which can assume values between -1 and 1 and indicates how much less

information the ensemble of X and Y contains about Z than the sum of the parts,

R(X,Y; Z) =
I(X; Z) + I(Y; Z) � I(X,Y; Z)

I(X,Y; Z)
. (4.5)

Note that negative values of redundancy imply synergistic interaction between variables. We compute

the described information theoretic quantities from firing rate and pressure at a sampling rate of



4.2. Bladder pressure encoding by groups of stereotypical fibres 89

1/s using the Kraskov mutual information estimator for continuous signals (Kraskov et al., 2004),

implemented in the JIDT toolbox (Lizier, 2014) which we run from MATLAB (Mathworks, Natick,

MA). The conditional mutual information needed for the joint MI (Eq. 4.4) was computed in the

full joint space (Frenzel and Pompe, 2007; Vejmelka and Paluš, 2008) as implemented by the JIDT

toolbox.
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Figure 4.7: Finite sampling bias results in mild overestimation of mutual information and joint mu-
tual information, but a slight underestimation of redundancy. Mutual information, joint mutual infor-
mation and redundancy were computed from the firing rate of a simulated tonic fibre (pair) and an idealised
pressure signal. Firing rate was set to 20/s for single fibres, and 10/s for each fibre in a pair; 5 repetitions
for each signal length. See Sec. 4.2.1.3 and Fig. 4.10 for details of the simulated data.

As our trials were of limited length (1036 ± 399 samples), mutual information estimates were up-

wardly biased due to finite sampling e↵ects, which are incompletely removed by the Kraskov es-

timator (Kraskov et al., 2004). This is illustrated in Fig. 4.7 for a single and a pair of simulated

tonic fibre(s). At 1000 samples, mutual information of a single fibre is overestimated by approxi-

mately 7% and joint mutual information by approximately 14%, and redundancy is underestimated

by 12%. From 10 000 samples, joint and single mutual information as well as the redundancy stabi-

lize. Asymptotic behaviour was judged by visual inspection.

4.2.1.5 Decoding

So far we described the quantification of information that individual fibres and fibre combinations

carry about pressure – on both real and surrogate data. Using the following approach, we made use

of our refined understanding of the physiological encoding and designed an adapted decoder. When
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estimating bladder pressure from nervous activity, we face two main areas of choice to be made.

(1) The pre-processing of the neural signal: whether we sort cells or take some measure of activity

per electrode, what cells we choose if sorted, how we compute the spike rate, and (2) the type of

decoding algorithm we use: Optimal Linear Estimator (OLE), Kalman, etc. We focus here on the pre-

processing based on the sorted cell responses and fix the decoding algorithm to an OLE for simplicity.

For the optimal linear filter, the decoded pressure p̂OLE
t was obtained from the firing rates vector ft

and the regression coe�cients � at a given time t:

p̂OLE
t = �T

· ft, (4.6)

where � minimizes the mean-squared error E (N number of time-points):

E(p, p̂) =
NX

t=1

(pt � p̂t))2. (4.7)

From our encoding results, we compare three signal variants to decode from in both estimation error

and robustness against lost cells – a common problem due to electrode migration or cell death:

� all single sorted cells

� cells of each fibre type pooled (as in Fig. 4.6B)

� cells of each activity cluster pooled

For pooled signal variants, we normalised the firing rate of each cell by its mean to make sure their

contributions added with equal weight. We tested the robustness of these di↵erent pre-processing

variants to cell loss by training on all fibres, and removing a randomly chosen 20% of cells before

testing. As a measure of decoding quality, we computed the normalised root mean squared error

(NRMSE) between decoded pressure p̂ and true pressure p as in Eq. 4.8 with pmin/max minimum and

maximum pressure and N number of samples. All errors were averaged across 5 cross-validation

folds within trials.

NRMSE =
1

pmin � pmax

sPN
i=1(pi � p̂i)2

N
(4.8)

To compare decoding performances statistically, we conducted paired t-test across trials.
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4.2.2 Results

We found 185 bladder-units within 1044 overall fibres across 22 trials in 8 animals by thresholding

the Pearson correlation coe�cient between firing rates and the pressure signals (see Sec. 4.2.1.2 for

details). These 185 fibres serve as the basis of our subsequent analyses.
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Figure 4.8: Activity clusters per trial correspond to bladder neuron types; example trial E4T29.
A The time course of all normalised bladder unit firing rates along with the bladder pressure. B The
correlation distance matrix shows the two main clusters. Overall, both clusters are quite homogeneous in
their cell type content (see colors in (A)).

4.2.2.1 Groups of stereotypical bladder neuron types exist

As shown in Fig. 4.6B and described in Sec. 4.2.1.2, we first clustered cells globally by the corre-

lation of their firing rates to the high-pass filtered pressure and the pressure derivative (‘correlation-

features’). In this way, we distinguished 89 cells as ‘slow tonic’, 81 as ‘phasic’ and 15 as ‘deriva-

tive’. While ‘derivative’ cells were clearly separated from the other types in correlation-feature plane

(Fig. 4.6B), ‘tonic’ and ‘phasic’ showed a more gradual transition. Some slow tonic fibres also re-

sponded to quick contractions to some extent and some phasic fibres did not completely decay to

inactivity for stimulus plateau phases. In addition to these overlapping receptor properties, the stimu-

lus signal did not separate phases of high low-frequency power and high high-frequency power well,

as non-voiding contractions mostly occurred in the high-pressure regime. In many trials, this caused

the firing rates of quick ‘phasic’ fibres to be correlated with the slow component of the pressure as

well. We sought to overcome this limitation of the in vivo data with our surrogate data study. An
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slow tonic 3 1 7 3 1 7 6 14 1 1 2 3 5 2 4 5 5 5 1 6 7
phasic 4 2 5 3 10 11 16 9 1 1 1 3 5 2 2 2 3 1
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Table 4.3: Summary of the identified bladder units across trials. Numbers are fibre counts, TXX
indicates experiment-specific trial numbers, among trials for other objectives in each experiment.

overview of the cell types in each trial is given in Table 4.3. Each trial was usually dominated by one

or two fibre type(s).

Fibre types contained in cluster

slow tonic phasic derivative
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cl
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te
r slow tonic 74 15 0

phasic 14 65 1

derivative 1 1 14

Table 4.4: Clustering by activity within trial often recovers the cell types obtained from clustering in
correlation feature plane. Rows show the dominant fibre type in each activity cluster, columns give the
fibre type identities from correlation feature plane clustering.

The clustering described above required knowledge of the pressure signal in order to compute the

correlation-features. As an alternative, we attempted to retrieve the cell types in an unsupervised

way by grouping similarly firing cells within each trial to activity clusters. Because similar response

characteristics should produce similar outputs given the same stimulus, the activity clusters should

correspond to feature clusters (cell types) we observed across all trials. As Table 4.4 shows, activity

clusters often reproduce cell types well. We here assigned a cell type label to each cluster from the

dominant type. Fig. 4.8 shows an example of an activity clustered trial with a clean separation of fibre

types. Table 4.S1 gives a more detailed overview of the relation between activity clusters and cell

types in all trials.

The presence of imperfectly tuned fibres that respond to both static pressure and to quick pressure

changes complicated a clean clustering into bladder neuron types, particularly a clean distinction of

the types phasic and tonic. Also, slow tonic fibres could have low pairwise similarity due to noise

from firing-rate estimation, complicating the activity clustering. We still often retrieved the same fibre

groups by both global clustering across all trials based on correlation-features and by simply grouping



4.2. Bladder pressure encoding by groups of stereotypical fibres 93

similarly firing fibres per trial. It was thus feasible to cluster cells online into di↵erent bladder neuron

groups by their activity.

4.2.2.2 Encoding by groups of stereotypical bladder neurons is e�cient and robust

We have shown that di↵erent bladder neuron types exist in the studied animals. In the following

subsection, we aim to identify reasons for both the observed response diversity (di↵erent types) and

the presence of multiple very similar bladder neurons (see Table 4.3).
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Figure 4.9: Combining complementary fibre groups leads to high joint mutual information at a
moderate redundancy. Real data. A Fractional redundancy between average firing rates within fibre
types. For on-diagonal entries, fibres were split into two equally large subpopulations of randomly chosen
fibres of the same type five times between which the joint mutual information was computed and then
averaged over repetitions; trials had to contain at least 4 fibres of the same type. B Mutual information
between average firing rates within fibre type and pressure on the diagonal, averaged across trials. Joint
mutual information between average firing rates of two different types and pressure in off-diagonal entries.
C Mutual information of the average firing rate of all fibres and pressure, mean across trials. D Mean
mutual information of single fibres across trials on the diagonal and joint mutual information of two fibres in
the off-diagonal entries. E Mutual information between the average firing rate across an increasing number
of fibres and pressure. F Joint mutual information between the mean firing rates of two growing pools of
fibres; phasic and slow tonic. Pools either contain one fibre type (solid line) or are mixed (dashed line).
Average firing rates computed from normalised firing rates.

Fibres of the same type were highly redundant, as indicated by the diagonal elements of Fig. 4.9A3.
3As single fibre responses were often too noisy to obtain meaningful redundancy estimates, we here computed it
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A straightforward way of making use of this redundancy and quantifying the benefit of duplicating

sensors is to pool these fibres into a single compound activity signal. Such pooling of similar sensors

enhances the mutual information: the MI of the averaged firing rates of one fibre type on the diagonal

of Fig. 4.9B is substantially higher (at least by a factor of 4, often more) than the average single fibre

mutual information shown on the diagonal of Fig. 4.9C (see Table 4.S3 and Table 4.S4 for all MI

values). As single units map bladder pressure (or an aspect of it such as the slow rise) imperfectly

due to both their tuning (e.g., activation threshold) and the spiking nature of their output, pooling

many similar cells increases the information content. The signal-to-noise ratio is enhanced through

averaging many imperfect sensor outputs (Sterling and Laughlin, 2015). Fig. 4.9E further illustrates

the benefit of averaging over multiple redundant cells: information rises with fibre count in almost

every case.

Pooling redundant fibres increases information rate. Still, the average firing rate across all fibres of

all types does not lead to the highest attainable mutual information between population activity and

pressure. Even though the pooled rate of all fibres carries a higher mutual information (Fig. 4.9C,

1.082 ± 0.362 bits) than the average firing rate of each individual fibre type (on-diagonal in Fig. 4.9B,

at most 0.886 ± 0.305), it is inferior to the joint mutual information of two di↵erent fibre types com-

bined shown on the o↵-diagonal entries of Fig. 4.9B (at least 1.255 ± 0.410 bits; see Table 4.S3 for all

MI values). This e↵ect can be understood from the low fractional redundancy4 between types shown

in the o↵-diagonal entries of Fig. 4.9A: the firing rates of di↵erent types are almost independent of

each other (fractional redundancy approximately 25%, see Table 4.S2). It is therefore important for

the transmitted information to keep the signals from di↵erent fibre types separate. To further illustrate

that mutual information depends on preserving cell type-identity, Fig. 4.9F displays the evolution of

joint mutual information between two fibre pools of increasing size while (1) only averaging within-

type (solid line) and (2) mixing types to generate two inhomogeneous pools from which the average

firing rate is computed.5 In the case of the cleanly distinguished fibre groups of Experiment 4 (see

Fig. 4.8), the joint mutual information of the mixed populations is clearly inferior to the homoge-

neous populations. In Experiment 3, the di↵erence between mixed and not-mixed is less pronounced

between within-type average firing rates.
4Derivative fibres are by themselves not very informative of the raw pressure signal and their within-type fractional

redundancy becomes less meaningful. If we compute redundancy relative to the derivative of the pressure signal as shown
in Fig. 4.S1, fractional redundancy also reaches high values for this fibre type.

5The shown example trials were chosen because they had at least 4 slow tonic and 4 phasic fibres.
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Figure 4.10: Surrogate cells confirm the benefit of complementary fibres pools on information rate.
A Simplified pressure time course used in the simulation study along with the idealised responses of ‘slow’
and ‘linear’ fibres. B Idealised responses of the fast fibre types. C Joint mutual information between single
fibres of each type in (A) and (B) with firing rate 20/s. Each square is obtained as the mean over 10
repetitions of calculating the spike times from the inhomogeneous Poisson process, kernel-smoothing for
firing rate estimation and computing the single repetition joint mutual information. For on-diagonal entries,
the joint mutual information between two fibres of the same type and pressure was evaluated. D Fractional
redundancy obtained through the same process as the joint mutual information shown in (C). E Mutual
information between an average firing rate of a population of increasing size and the raw pressure, the
high-pass filtered pressure, and the pressure derivative. Firing rate of each fibre 2/s. F Joint mutual
information of two average firing rates across 10 fibres (firing rate 2/s each) and pressure; pools either
homogeneous (one fibre type) or mixed 5 times.

because of the imperfect tuning of some fibres in that experiment (partly slow tonic and partly phasic

at the same time). As we saw in the beginning of this subsection, averaging across similar (redun-

dant) fibres reduces noise without signal loss. As we see now, averaging across multiple dissimilar

(independent) fibres, on the other hand, washes out the messages of each homogeneous fibre group

and destroys information. We therefore observe a coding in separate, near-independent groups.
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In Fig. 4.10, we confirmed the benefit of di↵erent homogeneously tuned fibre pools in surrogate

data (see Sec. 4.2.1.3). This additional simulation study enabled us to overcome the three main

shortcomings of the in vivo data: (1) not all cell types were recorded in each trial, (2) the low- and

high-frequency power of the pressure signal were correlated, and (3) the relatively short recording

duration was likely to cause finite sampling biases in our estimates of information theoretic quantities.

In simulation, we selected a simple idealised pressure time course consisting of a linear slope and a

sinusoid of constant amplitude (period 100 s, see Fig. 4.10A). The di↵erent idealised responses are

shown in Fig. 4.10A (slow) and B (fast). Making use of the increased degrees of freedom of a

simulation, we implemented multiple phasic fibres with di↵erent decaying constants ⌧ (see Table 4.2

for its meaning). After driving an inhomogeneous Poisson spiking process at mean firing rate 20/s

with the idealised rates (shown in Fig. 4.10A and B) and kernel-smoothing the spikes to an estimated

spike rate (see Sec. 4.2.1.3 for details), the heatmap of joint mutual information in Fig. 4.10C could

be generated. Its values were similar to the mutual information from real data in Fig. 4.9B but it

provides a more detailed picture. Both within the fast bladder neuron types on the lower right and

the slow types on the upper left, the joint mutual information stayed low at about 0.5 bits. Within the

fast group, the combination of derivative and phasic fibres with intermediate decay constants (⌧=30

s) reached slightly higher values as already seen in real data. Only the combination of slow and quick

fibres achieved high information rates: slow tonic (and linear) and phasic fibres combined reached

the highest mutual information (⇠ 1.1 bits). We further observed a match between the rate of decay

in phasic fibres (⌧=30 s) and the dominant frequency (period T=100 s) in the pressure signal. When

increasing the sinusoid frequency, smaller values of ⌧ reached higher mutual information and vice

versa (not shown). Fractional redundancy was high within the group of slow fibres and between phasic

fibres of high and medium decay constants. As fibres became less relevant to the raw pressure signal

(derivative and quickly-decaying phasic fibres), fractional redundancy decreased to about zero and

the expected higher values became visible when computing redundancy towards the high-frequency

component of the pressure signal (see Fig. 4.S2). Between the cleanly separated bladder neuron types

of the simulated data, the o↵-diagonal fractional redundancies were all close to zero – fibres were

truly independent. The positive e↵ect of averaging on mutual information that we observed in real

data (Fig. 4.9E) was confirmed in Fig. 4.10E where MI rises with increasing number of fibres to

average over. When comparing the MI between the fibre types and di↵erent pressure variants in the
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subplots of Fig. 4.10E, linear and phasic fibres are both informative of the raw pressure, derivative and

phasic provide information about the quick components, and the fit between the intended firing rate

and the pressure derivative causes an exceptionally high MI for derivative fibres and a much smaller

relative benefit for added derivative fibres. In Fig. 4.10F we repeated the analysis of Fig. 4.9F with a

fixed number of 10 selected fibres from each population at a firing rate of 2/s each. If we kept track of

the fibre identities and only average within-type, the joint mutual information of the two fibre group

mean firing rates was higher than when mixing the fibres randomly into two inhomogeneous groups

– averaging between fibre types destroys information.

In summary, we observed a partly redundant (within-type) and partly independent (between-type)

coding scheme that o↵ers reliability and high SNR per channel by redundancy and a high information

rate through complementary groups of bladder neurons.

4.2.2.3 A robust decoder based on stereotypical bladder neuron clusters

After identifying di↵erent recurring cell types by both global clustering in correlation-feature plane

and by local activity clustering within trials, we demonstrated the functional significance of these

groups for pressure encoding using information theory. In this last subsection we want to apply the

encoding insights to the design of adapted decoding strategies to be used in next generation closed-

loop bioelectronic medicines for bladder dysfunction.

Our information theoretic analysis showed that averaging within fibre type and keeping distinct types

separate leads to a high information rate. A simple linear decoder was therefore trained on both

single fibres and on the mean firing rates within fibre types or activity clusters (see Table 4.S1 for

their relationship). Fig. 4.11 and Table 4.5 give an overview of the decoding error across trials. The

bars display the 5-fold cross validated error within-trial when both training and testing on intact fibre

populations. It can be seen that decoding from average firing rates (both fibre type mean and activity

cluster mean) performs mildly (on average 9% and 12% higher error for fibre type and activity cluster

means respectively) but significantly worse (p-values 0.00017 for fibre type and 0.0004 for activity

cluster means in a paired t-test), than decoding from all single cell responses and that decoding from

fibre type mean firing rates tends to be marginally more successful than from activity cluster means.

We test the robustness of our proposed decoding scheme by removing 20% of the cells after training
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and testing on a corrupt fibre set from which mean-responses were re-calculated. As can be seen

in Fig. 4.11, the decoding error from single cells often became much larger after cell loss than when

decoding from average responses, especially in cases like experiment 4 where many cells of each type

allow for reliable cluster mean responses despite cell loss. The values in Table 4.5 confirm that the

decoding error after cell loss from single cells was 18% higher than from subpopulation averages (p-

values 0.00016 for fibre type and 0.00011 for activity cluster means): redundancy leads to reliability.

signal type no cell loss 20% cell loss

single fibres 12.1 ± 3.4 17.6 ± 4.9
fibre type mean 13.2 ± 3.0 14.9 ± 3.6
activity cluster mean 13.6 ± 3.5 14.9 ± 3.7

Table 4.5: Decoding from pooled fibre subpopulations is more robust. Values are mean and standard
deviation of NRMSE in percent across trials.

Clustering can have advantages for decoding beyond an increased robustness against cell loss. Group-

ing fibres periodically by their recorded activities may allow for a continuous identification of relevant

cells without knowledge of the pressure signal. Similarly firing fibre groups are most likely driven

by the same stimulus and if a subset of these similar fibres is already known to be bladder units,

clustering o↵ers an unsupervised way of identifying new relevant fibres on-line in the face of varying

recording conditions caused by e.g., electrode migration.

fibre type mean
activity cluster mean

30

20

10

0

N
R

M
S

E
 (

%
) 

E1 
T33

E1 
T57

E2 
T11

E2 
T9

E3 
T74

E3 
T10

0

E4 
T28

E4 
T29

E5 
T57

E5 
T58

E6 
T20

E6 
T24

E7 
T14

E7 
T16

E7 
T18

E7 
T19

E8 
T49

E8 
T50

E8 
T52

E8 
T67

E8 
T68

E8 
T72

40
single fibres20% fibre loss

no fibre loss
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4.2.3 Discussion encoding and informed high-resolution decoder

To our knowledge, this is the first quantitative analysis of a population of peripheral sensory fibres.

By applying tools from central neuroscience, information theory, to the periphery, we identified a

beneficial interplay between di↵erent stereotypical response types. We have shown that stereotypical

groups of bladder neuron types – slow tonic, phasic and derivative – implement a partly redundant,

partly complementary encoding scheme for bladder pressure that achieves a reliable and e↵ective in-

formation transmission. We clustered fibres globally across all trials from their correlations to di↵er-

ently filtered variants of the pressure signal and reproduced these types through unsupervised activity

clustering within trials. In both real data and surrogate cell populations, we quantified the benefit

of within-type redundancy (reliability, enhanced signal-to-noise ratio) and between-type tuning dif-

ferences (maximisation of transmitted information by complementary channels) using information

theory. Building on these encoding insights, we proposed an informed decoding scheme that builds

on cluster (feature-based or activity-based) mean firing rates and thereby o↵ers increased robustness

at a moderate (⇠10%) accuracy reduction. Exploiting an understanding of the encoding for an in-

formed decoder for physiological quantities from peripheral nerves is thus a novel approach with

benefits for the estimation robustness. We hope our work will spark research towards next generation

decoders for bioelectronic medicines.

One limitation of our study was the sparse sampling of fibres. Using microelectrode arrays, we could

record from 6 to 125 cells in each trial – of which at most 23 were identified as bladder-units. Given

the high number of cell bodies in the S1 and S2 DRG of cats (⇠12 000 (Chung and Coggeshall,

1984)) and bladder-units (⇠1000 (Jänig and Morrison, 1986; Applebaum et al., 1980; Uemura et al.,

1975; de Groat, 1986)), we thus recorded from at most 2% of the overall bladder-unit population.

This sparseness may well be the cause of the observed variability in the distribution of cell types

across trials shown in Table 4.S1 and leaves uncertain whether cell types exist in consistent ratios

across animals. The study is further limited by the pressure signal that drove the bladder neurons we

were analysing. Firstly, the pressure did not contain much high frequency power, keeping us from

conducting a sophisticated frequency-analysis or bladder neuron responsiveness mapping such as

spike triggered averaging or coherence measures (Halliday and Rosenberg, 2000). Secondly, the non-

stationary nature of the pressure signal and the limited reproducibility of the pressure signal across
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trials prevented a principled error-analysis of our information theoretic measures (e.g., by bootstrap-

ping). Lastly, the high-frequency events (contractions) usually took place at high stationary pressure.

Therefore, the firing rates of fibres responding to high-frequency events (phasic and derivative) were

usually high in correlation to the slow signal components simply by correlation of slow and fast stim-

ulus components. This made it di�cult to distinguish ‘purely phasic’ and mixed phasic and tonic

bladder neurons. It has to be noted at this point that our clustering into three types of fibres is, to a

certain extent, an oversimplification. As can be seen in Fig. 4.6B, tonic and phasic fibres do overlap

in the correlation-feature space and this is at least partly due to a mixed bladder neuron tuning. It re-

mains to be seen whether this overlap is an imprecision of the bladder neuron expression that induces

noise or is in fact a feature of the transmission strategy that our analysis does not acknowledge. As

we did not possess any information of fibre diameters, we could not link the di↵erent response types

to di↵erent axon anatomies. It would be interesting to investigate whether, e.g., fibres that encode

quick components were thicker (see Sec. 2.2). A limitation of the decoding scheme we proposed is

its dependency on online spike sorting which in itself complicates the interface considerably. We did

not observe any clustering of the cell types within the electrode arrays across experiments. Therefore,

an unsorted ‘electrode-activity’ will not provide a clean separation of fibre types.

In addition to reliability and the benefits of averaging over imperfect sensors, other reasons for imple-

menting multiple similar fibres are conceivable. If we look at the bladder and its feedback loop into

the spinal cord as a control system, we observe that no quick control is required. The fastest events,

single contractions, take place over the course of seconds to tens of seconds. The peripheral nervous

system can thus a↵ord a considerable lag between bladder pressure and the response by its higher

control centers in the spinal cord an higher neural levels and can implement feedback by energetically

cheap thin, slowly conducting fibres as it is observed (de Groat et al., 2015, 1981; Häbler et al., 1993;

Evans, 1936). These thin fibres, however, do not fire at high frequencies, imposing a limit on the

information rate per fibre (Sterling and Laughlin, 2015). The observed high number of thin similar

fibres can therefore be viewed as the result of an energetic optimisation of the information channel

that ensures a su�cient information rate at an a↵ordable lag (Nakahira et al., 2015).

The di↵erent groups of bladder neurons we observed can be understood as reporting the two main

components of the physiological pressure signal: the bladder (1) fills steadily at a very low rate of

pressure change and (2) contracts ‘quickly’. It is not surprising that sensors for those two main signal
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components exist in slow fibres on the one hand and fast phasic and derivative fibres on the other

hand. This mapping of bladder neuron responsiveness to signal components has been reported in

many studies on nervous sensory processing, for instance as receptive fields in the visual and auditory

cortex (Freeman and Sherrington, 1907; Hubel and Wiesel, 1962).

Finally, many organ systems use an a↵erent encoding scheme based on stereotypical bladder neuron

subpopulations, similar to our findings in the bladder. Phasic and tonic fibres have been reported in the

colon (Blumberg et al., 1983; Jänig and Koltzenburg, 2017; Sengupta and Gebhart, 1994a), gall blad-

der (Foreman et al., 1986), the lung (slowly- and rapidly-adapting sensors) (Yu et al., 2017; Schelegle

and Green, 2001; Coleridge and Coleridge, 2010; Kubin et al., 2006), similarly separate subpopula-

tions were observed in muscle spindles (Brown et al., 1965; Koeze, 1973) and in the auditory system

(Narins and Hillery, 1938). We hypothesise that the same benefits may have led the evolution of all

these sensory populations towards an identical encoding scheme: complementary channels, each re-

liable due to within-type redundancy, independently encode di↵erent (quick and slow) aspects of the

quantity of interest and together achieve a high information rate.
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4.2.4 Appendices

4.2.4.A Detailed analysis of the relation between activity clusters and cell types

In addition to the summary of the given in Table 4.4, Table 4.S1 gives a more detailed overview of

the relationship between activity clusters and cell types (feature clusters) in all trials.
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In some trials with multiple cell types, activity clusters were inhomogeneous: E2T9, E3T100, E8T72.

Other diverse trials were more successful, with each cluster capturing one specific cell type: E1T57,

E2T11, E4T28, E4T29, E8T67.

4.2.4.B Tables of mutual information and redundancy

The following tables give the numerical values for mutual information and fractional redundancy

shown in Fig. 4.9A, B, and D.

slow tonic phasic derivative

s 0.346 ± 0.152 0.268 ± 0.184 0.242 ± 0.149
p 0.268 ± 0.184 0.426 ± 0.118 0.243 ± 0.133
d 0.242 ± 0.149 0.243 ± 0.133 0.040 ± 0.057

Table 4.S2: Figure 4.9A. Fractional redundancy between within-type mean firing rates; mean across trials.
All values in bits.

slow tonic phasic derivative

s 0.886 ± 0.305 1.374 ± 0.375 1.281 ± 0.362
p 1.374 ± 0.375 0.865 ± 0.410 1.255 ± 0.410
d 1.281 ± 0.362 1.255 ± 0.410 0.709 ± 0.267

Table 4.S3: Figure 4.9B. Joint mutual information between within-type mean firing rates; mean across
trials. All values in bits.

slow tonic phasic derivative

s 0.182 ± 0.210 0.137 ± 0.177 0.209 ± 0.179
p 0.137 ± 0.177 0.214 ± 0.145 0.199 ± 0.147
d 0.209 ± 0.179 0.199 ± 0.147 0.036 ± 0.039

Table 4.S4: Figure 4.9D. Joint mutual information between single fibre firing rates, mean over all fibres of
all trials for each type after MI calculation. All values in bits.

4.2.4.C Redundancy towards fast pressure components

Fractional redundancy of two firing rates only evaluates to meaningful values when computed in

relation to a relevant signal with which at least one firing rate has a high mutual information. We

therefore obtain very small fractional redundancies in relation to the raw pressure signal for very

quick phasic and derivative fibres. Here, we repeat the redundancy computation in relation to only

the quick components of the pressure.
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pressure. Surrogate data. Fractional redundancy of simulated firing rates and the high-pass filtered
pressure above 0.001 Hz.

4.3 Conclusion on decoding work

We have proposed two di↵erent decoders for di↵erent recording resolutions. For low-resolution hook

electrode recordings, we mapped the individual nonlinear response characteristics of the monitored

fibre populations in a piecewise linear function and could thereby train an optimal linear filter on the

linearised activity. No nonlinear decoders (such as artificial neural networks and others as in previous

works (Ross et al., 2018; Micera et al., 2001; Cavallaro et al., 2003)) were necessary. This simple

real-time compatible decoder may find applications in bioelectronic medicines for the common cu↵

interface.

The more detailed recordings acquired by microelectrode arrays in the cat dorsal root ganglion let

us conduct a principled investigation of the encoding of a physiological quantity by a population of

peripheral fibres. We could, based on this analysis, propose a first informed decoder that presented

obvious benefits such as an increased robustness against cell loss and an automatic re-calibration by
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grouping fibres in an unsupervised hierarchical clustering. In an approximate comparison of the de-

coding errors, both the low-resolution hook electrode and the microelectrode array achieved about

10% NRMSE with slight advantages for the more precise interface. For this particular system, impre-

cise interfaces therefore seem su�cient. The informed decoding approach further required cells to be

distinguished by spike sorting, an expensive and error-prone processing step that is not yet suited for

real-time decoding in implanted devices.

We have focused on the pre-processing of the recorded activity and only considered simple linear

filters (OLF for low-resolution and OLE for high-resolution recordings). Other decoders that include

a state model have been demonstrated to perform better in the CNS (Koyama et al., 2010; Wu et al.,

2005; Yu and Yu, 2017) and DRG (Ross et al., 2018) and performance gains can still be expected from

the use of such more sophisticated methods that may be combined with our pre-processing methods.



Chapter 5

Feature-based time-series analyses

The quality of peripheral nerve recordings critically depends on the interface and one of the main tasks

in algorithm development for bioelectronic medicines is to find appropriate pre-processing steps for

each interface that extract informative summaries. An invasive electrode with a high, single-fibre

resolution allows for a more sophisticated pre-processing (spike sorting), and an accordingly more

precise, even biologically grounded decoding (see Ch. 4.2). Commercialised devices are, however,

often equipped with mildly invasive recording techniques, predominantly cu↵ electrodes, that o↵er

a su�cient long-term stability at the cost of a lower signal quality. Decoders in today’s bioelec-

tronic medicines are therefore stuck with noisy compound action potentials as an input, compare our

approach on low-resolution recordings in 4.1.

As already pointed out in the background section 2.5.2, the most common signal characterisation

(pre-processing) for these a low-resolution recordings is a power or amplitude measure (possibly in

a selected frequency band as in our decoder for low-resolution data, Ch. 4.1). It is obvious that by

computing these coarse summaries, we discard much information about the waveform shape that

might still be useful. We possibly miss di↵erences in activated fibre distributions, fascicles, bursts,

etc. that could still be recovered from shape of the continuous time series of noisy compound action

potentials.

Against this background, we propose to characterise the continuous waveform of low-quality pe-

ripheral nerve recordings by general-purpose time-series features. Thanks to the particularly rich

highly comparative time-series analysis (hctsa) feature library at our disposition (Fulcher et al., 2013;

106
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Fulcher, 2017), we were able to analyse time series – and in particular low-resolution peripheral nerve

recording – in a property space of unprecedented dimensions. We explored two di↵erent techniques.

Both have a much more general applicability than our main scope of peripheral nerve recordings and

extend to time series of various sources.

In the first section of this chapter Sec. 5.1, we present the first method. By transferring time series to a

very high dimensional feature space and applying dimensionality reduction methods in this space, we

detected the main varying firing characteristics in simulated peripheral nerve recordings generated in

PyPNS (Ch. 3) in an unsupervised way. For each main characteristic, we proposed single features. The

generated small feature subsets can be implemented e�ciently and form an invaluable component in

implanted bioelectronic medicines as they provide a new way to summarise noisy recordings acquired

by the popular cu↵ electrode on-line in a few key firing characteristics (we demonstrate firing rate,

myelination ratio, and burstiness). This method’s utility in uncovering low-dimensional structure is

demonstrated on diverse additional synthetic datasets and a real-world example.

In the second part of this chapter, Sec. 5.2, we present a supervised selection pipeline to tailor low-

dimensional feature-spaces to a given collection of classification problems. Applying this supervised

method to the literature standard of time-series data mining problems, we present a canonical feature

ensemble, catch22.

5.1 Inferring low-dimensional variation in time-series datasets

Modern science is characterised by the unprecedented scale of datasets, and the development and

deployment of new statistical tools to analyse them. Time-series data – measurements of a system

taken repeatedly through time – are exemplary of this trend, with massive, publicly available datasets

driving progress in understanding dynamics of a range of real-world systems, from biomedical (e.g.,

neuroimaging data), financial (e.g., high-frequency trading data), social (e.g., communication across

social networks), and astrophysical (e.g., NASA’s TESS mission (Ricker et al., 2016)). Bioelec-

tronic medicines are not exempt from this trend of large-scale data collection and peripheral nerve

recordings are being recorded in unprecedented volumes. For scientists that aim to distil interpretable

understanding from these large, complex datasets, their hope is that this complexity will be some-
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how reducible to some smaller number of core dimensions that capture important variation across the

dataset. Such approaches to ‘dimensionality reduction’ have been routinely applied to sets of obser-

vations that are not time ordered (Hastie et al., 2009), but have eluded time-series datasets, where the

temporal ordering of measurements is key.

In this work we present a new method for estimating the intrinsic dimensions underlying an em-

pirical time-series dataset, as the core dynamical properties that capture variation across time se-

ries in the dataset. Our solution to this problem relies on a transformation of each time series

from its measurement space, x to an extracted high-dimensional feature space, f, using the recently-

developed highly comparative time-series analysis software, hctsa, that contains implementations

of over 7000 time-series features derived from the interdisciplinary scientific time-series analysis

literature (Fulcher et al., 2013). For example, elements of f contain summaries of the properties

of x, its: autocorrelation function and Fourier power spectrum, distribution of values, temporal en-

tropy/predictability, long-range scaling properties, and many others (Fulcher, 2017). Applying stan-

dard dimensionality-reduction algorithms in the extracted feature space meaningfully structures com-

plex time-series datasets along interpretable reduced dimensions. We test the hypothesis that low-

dimensional structure in these extracted feature matrices correspond to low-dimensional variation in

the degrees of freedom of the generative time-series model which produced the dataset. We assess this

hypothesis using a large and diverse range of 13 generative systems, from linear stochastic systems

through to nonlinear deterministic chaotic systems, in each case generating a time-series dataset re-

sulting from di↵erent degrees of parametric freedom (i.e., allowing a di↵erent number of parameters

to vary freely). We show that feature-based dimensionality reduction can often recover the degrees

of freedom in the generative model, and provide interpretable estimates of the underlying free pa-

rameters. As one demonstration, we apply our approach to a Drosophila movement phenotyping

dataset and extract dimensions corresponding to sex di↵erences and time-of-day variation across the

movement time-series. For our main subject of peripheral nerve recordings, we analyse simulated

data generated in our simulator PyPNS (varying firing rate, myelination ratio, and burstiness). For

bioelectronic medicines, the selected estimators for the main firing characteristics can be e�ciently

implemented for on-line summarisation of peripheral nerve recordings and thus as a basis for a more

accurate decoding and anomaly detection from cu↵-electrodes in closed-loop bioelectronic medicines.

The method extends to time-series datasets from diverse sources and our results pave the way for
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much-needed data-driven frameworks to bridge the gap between deep theoretical understanding of

dynamics and the large-scale datasets that characterise the modern scientific landscape.

5.1.1 Methods

A simplifying overview of our approach is shown in Fig. 5.1.1. We basically apply dimensionality

reduction to a high-dimensional feature space to uncover the underlying low-dimensional parametric

variation within the data. The main technological advance lies in the feature library of which the

utility is proven for diverse systems in this section. We give a much more detailed description of our

methodology in the following.
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Figure 5.1.1: Unsupervised selection of efficient estimators for the main varying signal character-
istics. Each of the N time series in a given dataset is transferred to a high-dimensional feature-vector
using the hctsa-toolbox (here visualised as three-dimensional albeit having thousands of dimensions). In
property space, we find the main directions of spread in the data caused by the dynamical properties that
vary across single recordings. For each component, a single feature can be chosen that estimates one
main characteristic.

5.1.1.1 Theory

We aim to detect meaningful low-dimensional structure in time-series datasets, X = {x1...xn}. A

dataset contains many univariate time series, xi, each of which is a uniformly-sampled, time-ordered

sequence of Ti measurements. We suppose that each dataset, X, was produced from some time-series

model, M(⇥), controlled by a set of free parameters, ⇥ = {✓1...✓m}. The dynamical rules encoded

inM, and probability distributions over the random variables, ⇥, determine a distribution over time

series from which the time series in X are sampled. Each xi corresponds to a parameter setting ⇥i

of the generative model M. Thus, understanding the range of dynamical properties in X provides

understanding of the properties of some underlying generative model, M, and the parameters that

control it.



110 Chapter 5. Feature-based time-series analyses

In this work, we wish to infer basic properties of the parametric degrees of freedom, ⇥, from patterns

contained in the data sample, X. We do this through a mapping from a time series, x, to a set of p

extracted real-valued features, f = { f1... fp}. Applying this mapping to all time series in a dataset,

X, represented as a time series ⇥ time (n ⇥ T ) matrix, X, yields a time series ⇥ feature (n ⇥ p)

matrix, F. The true model generates the ensemble X from the n ⇥ m matrix of parameters. A key

intuition is that the independent variation of each free parameter a↵ects the properties of time series in

a characteristic way. This common variation of time-series properties with the underlying parameter

inducing dependencies between features that are sensitive to that property. Estimating feature–feature

dependencies, through applying dimensionality-reduction techniques to F, thus provides a window

into understanding the key parametric variation underlying a time-series dataset, X. We emphasise

that our method is not concerned with the dimensionality of the phase space of the dynamical system

underlying; instead we are concerned with the variation in underlying parameters across a dataset,

and how many numbers we need to measure to capture this dominant variation.

The problem, and our approach to solving it, is depicted schematically in Fig. 5.1.2. In Fig. 5.1.2A, we

consider independent sampling from d = 2 parameters, ⇥ = {✓1, ✓2}, which yields an observed time-

series dataset, X. The variation in extracted features across the dataset, visible in the feature matrix,

F, contains an imprint of the parametric degrees of freedom in the generative model (Fig. 5.1.2B).

Specifically, features in F either vary with ✓1, ✓2, both ✓1 and ✓2, or neither ✓1 nor ✓2; the inter-

dependencies between features induced by ✓1 and ✓2 result in (possibly nonlinear) low-dimensional

structure in F. Applying nonlinear dimensionality reduction to F, shown in Fig. 5.1.2D, reveals a

saturation in variance explained at d = 2; the dimensions become estimators for the two parameters

✓1 and ✓2.

This process is contrasted by a generative model with many more free parameters, shown in Fig. 5.1.2E,

which can produce a much more diverse set of time series. In this case, features from the dataset vary

with many underlying parameters, ✓i, yielding a high-dimensional F (Fig. 5.1.2F) that can be quanti-

fied using dimensionality reduction (Fig. 5.1.2H).
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Figure 5.1.2: Schematic of our approach. We aim to infer the parametric dimensionality of the gen-
erative model underlying our time-series dataset. We imagine data being generated by a model with d
free parameters ⇥ = {✓1, ..., ✓d}. Because properties of the empirical dynamics vary together with underly-
ing parameters, we hypothesise that low-dimensional parametric variation in the data generating process
should manifest in a low-dimensional matrix of extracted features (if these features are sufficiently compre-
hensive). Applying nonlinear dimensionality-reduction to time-series feature matrices allows estimation of
the dimensionality d̂ and estimators for each parameter ✓̂1, ..., ✓̂d. This information can be used to structure
the dataset in a natural space of inferred parametric variation. A In a dataset of low-dimensional paramet-
ric variation, clusters form in the feature-matrix (B) and a few dimensions in embedded space (C) capture
most of the variance, so that residual variance falls to a low level (D). E In a high-dimensional system, no
clear feature-clusters emerge (F), more embedded dimensions (more than the 3 we can visualise in G)
are necessary to capture the variance (H).

5.1.1.2 Constructing a feature space

The key to tackling the problem shown in Fig. 5.1.2 is to have a su�ciently comprehensive set of

features, f, that are su�ciently sensitive to the types of changes to empirical dynamics observed in

X induced by the parameters ⇥ in any given modelM. While there is no perfect solution, progress

can be made through a recent library made available for time-series feature extraction, hctsa (Fulcher,

2017), following research aimed at exploiting a wide scientific literature on time-series analysis to

better understand complex systems (Fulcher et al., 2013; Fulcher and Jones, 2014; Fulcher, 2018).

The hctsa feature library can be thought of as an agglomerate library of interdisciplinary scientific

methods development, in the form of over 7700 time-series analysis features. This allows each em-

pirical time series, x, to be mapped to a real-valued feature-vector, f. hctsa quantifies a wide range

of time-series properties, including properties of the distribution of values, linear and nonlinear au-
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tocorrelation structure, stationarity, summaries of basis-function decompositions (including Fourier

and wavelet transforms), fits to various time-series models (e.g., autoregressive, state space, Gaussian

Process, and hidden Markov models), measures from nonlinear time-series analysis (e.g., correlation-

dimension estimates, nonlinear prediction errors, fractal scaling properties, etc.), and information

theoretic complexity and entropy measures (e.g., Sample Entropy (Richman and Moorman, 2000)).

Here we used hctsa v0.97 (available at https://github.com/benfulcher/hctsa/tree/0.97).

5.1.1.3 Normalisation and dimensionality reduction

After computing a feature matrix, F, we then normalised each column using a robust sigmoid trans-

form (Fulcher et al., 2013). Features that were constant across the dataset or were inappropriate for

the data were removed (these features are signified by special-valued outputs in hctsa, and include

features that attempt to fit a positive-only distribution to non-positive data). These processes yield a

reduced, normalised time-series feature matrix, F̃. To quantify redundancy in F̃ that may be indicative

of underlying parametric constraints, we find low-dimensional structure using PCA (to estimate linear

structure) and Isomap (to estimate nonlinear structure) (Tenenbaum et al., 2000). Isomap estimates

pairwise distances between data objects along a low-dimensional nonlinear manifold by creating a

neighborhood graph (Tenenbaum et al., 2000). We set the number of neighbors to 7 (default).

We selected these two methods because PCA is a representative of the dimensionality reduction ap-

proach ‘matrix factorisation’: it projects the data linearly onto certain directions of the full, high-

dimensional space to create a low-dimensional projection of high variance. PCA will encounter prob-

lems if the relation between dimensions in full space is non-linear. Imagine a line in 2D space that

describes a spiral as shown in Fig. 5.1.3. The variance in of this point cloud along variable x is the

same as in variable y and PCA would identify two equally relevant dimensions without achieving a

meaningful simplification. Isomap, on the other hand, is a neighborhood-preserving dimensionality

method. It is not concerned with global variance along certain dimensions but will create a neigh-

bourhood graph by identifying the nearest neighbours of each point and computing their distances.

Given this graph, it will iteratively calculate an embedding that preserves the distances within each

neighbourhood with less dimensions. In our spiral example, it will identify a single curved dimension

extending along the spiral.
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Figure 5.1.3: Non-linear dimensionality reduction can disentangle complex point clouds. If data
points are ordered in a way that links axes in a non-linear manner, Isomap can uncover this relationship,
PCA cannot.

Both methods yield a representation of the dataset in an estimated embedding space of a given di-

mension. PCA provides a direct measure of variance explained by each principal component, and

a similar measure can be derived for Isomap as the residual variance. Residual variance, �2
resid is

computed as the unexplained variance 1 � ⇢2, ⇢ Pearson correlation coe�cient, between pairwise

time-series distances in feature space d f and distances in embedded space de:

�2
resid = 1 � ⇢(d f ,de)2. (5.1)

To estimate the number of dimensions required to capture the dominant sources of variance in the

data, we inspected the residual variance as a function of the number of reduced dimensions, d.

5.1.1.4 Dimensionality estimation

We constructed a simple heuristic to estimate the saturation of residual variance, �2
resid, and thus

an estimate of the number of parametric freedoms in the generative model underlying the observed

data. We first computed dsat as the minimal d for which �2
resid(d + 1) � �2

resid(d) < 0.0025. We

then estimated the dimensionality, d̂, as the minimal d for which �2
resid(d) < �2

resid(dsat) � 0.05. Both

heuristic thresholds (0.25% and 5%) were set manually from the decay characteristics of �2
resid that
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we observed across the studied simulated systems.

5.1.1.5 Evaluating the embedding

To measure how well the feature-based embedding space captures the parametric variation in the

underlying model, we attempted to reconstruct each of the original parameters as a linear combination

of the reduced dimensions. For each model parameter, we quantified this as the unexplained variance,

� = 1 � R2, between that parameter’s variation across the dataset, and the best linear estimate of it

computed from performing a multivariate linear regression using the first d estimated dimensions. For

example, if a linear combination of first two estimated dimensions can well reproduce the underlying

parametric variation of the model parameter, ↵, of a two-dimensional system, we would measure a

low unexplained variance, �↵. Since we might expect a nonlinear relationship between the parameter

space and the embedding space ⌅ we can under estimate the information that the embedding space

gives about the parameter values.

5.1.1.6 Selecting e�ciently implementable features

So far we have uncovered the construction of an informative embedding by dimensionality reduction

in a high-dimensional feature space. Each dimension corresponds to a linear combination of thou-

sands of features (PCA) or is an even more abstract virtual component for Isomap, both of which

will depend on the computation of thousands of single features. To e�ciently project new data onto

the dimensions in embedded space, we approximate each of them by a single representative feature

selected by maximum Pearson correlation to the component. In this way we devise our set of e�cient

estimators for the varying signal characteristics caused by changes in the underlying parameters.

5.1.1.7 Datasets

For our main subject of study, we generated surrogate peripheral nerve recordings in our simulator

PyPNS (Ch. 3). Four simulated datasets were obtained from a nerve with a fixed length of 5 cm

containing 500 active axons. For each of the four datasets, we generated snippets of length 400 ms,

sampled at 20 kHz, across which two to three of the firing characteristics myelination ratio (0 - 2%),



5.1. Inferring low-dimensional variation in time-series datasets 115

firing rate (0.1 - 10 spikes/ axon/ second), and burstiness (0 - 100% of firing probability imbalance

between two alternating intervals) varied.
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Figure 5.1.4: Example simulated recording with varying characteristics firing rate and burstiness.
Data was generated in the peripheral nerve simulator PyPNS (Lubba et al., 2018). (a) Low rate, low bursti-
ness, (b) high rate, low burstiness, (c) low rate, high burstiness, (d) high rate, high burstiness. At low rates,
burstiness is not visible even for a human observer in (a) and (c).

To demonstrate the general utility of our methodology, we generated additional datasets from thir-

teen di↵erent dynamical models, M, covering di↵erent classes of dynamics: linear and nonlinear

stochastic systems (autoregressive process (Chatfield, 2013), noisy sinusoid with linear trend and

mean shift, a noisy bimodal switch, a predator prey system (May, 1972), population growth (Ver-

hulst, 1845)), a deterministic oscillator (van der Pol oscillator (van der Pol, 1926)), deterministic

low-dimensional chaotic maps (stochastic sine map (Freitas et al., 2009), logistic map (May, 1976))

and flows (Lorenz (Lorenz, 1963) and Rössler attractors (Rössler, 1976)), a high-dimensional chaotic

flow (the nonlinear time-delay Mackey-Glass equation (Mackey and Glass, 1977)), and a model of

self-a�ne time series (Malamud and Turcotte, 1999). Details about all models and how they were

simulated are in Sec. 5.1.11.B. This extensive library of simulated time-series datasets is made avail-

able along with the results of hctsa feature extraction at DOI 10.6084/m9.figshare.9912563.

The time-series datasets were generated using the code in https://github.com/benfulcher/

TimeSeriesGeneration/. Analysis code to generate the results is available at https://github.

com/chlubba/HCTSA_dimRed_figures.

We generated a time-series dataset, X, from a given model,M, by independently sampling that sys-

tem’s free parameters. We first generated a set of one-dimensional datasets, X(1), generated from

sampling a single model parameter (from a uniform distribution) while fixing all other parameters.

Similarly, we generated two-dimensional datasets from independently sampling two model parame-

ters X(2) (with all other parameters fixed), and three-dimensional datasets from independently sam-
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pling three model parameters,X(3). For all systems, uniform distributions from which parameters were

sampled, and the value of each model parameter when it was kept fixed, are provided in Sec. 5.1.11.B.

In total, we generated 4 peripheral nerve datasets containing 2200 time series (three X(2) of 400 time

series each; one X(3) of 1000 time series) and 93 additional synthetic time-series datasets containing

over 99 000 time series: 46 datasets of X(1) (100 time series per dataset), 37 datasets of X(2) (400 time

series per dataset), and 10 datasets of X(3) (8000 time series per dataset).

Example time series from a synthetic X(1), X(2), and X(3) dataset is in Figs 5.1.5A, B, and C, respec-

tively. One of the visually clearest examples of a X(1) is in Figs 5.1.5A, where the time series are

ordered by the randomly sampled parameter, T : the period of a sinusoid in the underlying time-series

model. Generating a time-series dataset from independently sampling parameters r (growth rate)

and K (carrying capacity) in the predator-prey model, M(r,K), yields the X(2) dataset depicted in

Fig. 5.1.5B. Despite the independent variation of K when time series are ordered by r (upper plot), a

characteristic variation in waveform can be discerned. Ordering the time series by K reveals an in-

dependent variation in signal amplitude. We have selected this example for its visual clarity, but it is

not typically the case for X(2) datasets, for which the clear variation in the parameter of interest is ob-

scured by the independent variation of the other parameter. As shown in Fig. 5.1.5C for the stochastic

sine map model, M(µ, q, b), independent variation in the other two parameters obscure predictable

and interpretable variation in any single parameter. This is typical of the challenge in inferring the

parametric variation underlying X(3) datasets.

5.1.2 Results

We present results of applying and evaluating feature-based dimensionality reduction to infer the

parametric variation underlying a given time-series dataset. We show that the hctsa feature library

is su�ciently comprehensive to detect parametric variation in the wide range of systems studied

here, detail how it works in a case study, demonstrate its utility for peripheral nerve recordings, and

evaluate performance across all model systems. We then show the method’s strong performance on

an additional empirical dataset of fly movement time series, and finally investigate the robustness of

the results to the characteristics of time-series datasets.
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noisy sine with linear trend

T

A predator prey, xB

r K

µ q b

stochastic sine mapC

Figure 5.1.5: Example time series generated from independently sampling from one, two, and three
model parameters. For three datasets, we plot segments (the first 150 samples) of 10 randomly selected
time series, ordered by one of the model parameters used to generate the dataset. A Variation in period,
T , of a sinusoid (from the ‘noisy trendy sinusoid’ model, fixing the noise level, ⌘ = 0, and trend, m = 0)
yields a one-dimensional dataset, X(1), of time series which we have ordered by T . The dataset exhibits
a clear visual signature of the underlying one-dimensional parametric variation in T . B A two-dimensional
dataset of time series, X(2), generated from independently varying both r and K in the predator-prey model
are ordered by the growth rate, r, and carrying capacity, K. C A three-dimensional time-series dataset,
X

(3), generated by independently varying parameters µ, q, and b in the stochastic sine map. Because of
independent variation in the other two parameters, ordering the time series by any one of the parameters
reveals the challenge in estimating these three underlying dimensions of parametric variation.

5.1.2.1 Feature library assessment

The success of our approach requires a library of time-series summary statistics that is su�ciently

comprehensive to contain multiple statistical estimators that are sensitive to each type of parametric

variation in the wide range of time-series generative models analysed here. To assess the hctsa feature

library (used here), we computed a measure of hctsa feature specificity to each parameter in each

synthetic dataset. For any parameter there are ⇠7000 features it can covary with. We identify both

the maximum correlation of each parameter to any feature and the level covariation of the top 5% of

features with each parameter, ⇠95. High values of ⇠95 indicate that there are su�ciently many hctsa

features in the library that are sensitive to the parameter of interest (in the presence of confounding

variation of at least one other parameter in the case of {X(2)
} and {X(3)

} datasets, cf. Fig. 5.1.5).

Distributions of ⇠95 are plotted separately for one-, two-, and three-dimensional datasets in Fig. 5.1.6.
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Figure 5.1.6: hctsa is a comprehensive feature library, containing sufficiently many diverse features
to capture the individual parameteric variations across a wide range of time-series models. We
plot the distribution of max(⇢), the maximum correlation between the variation of a given parameter across
a dataset, and that of each feature, and ⇠95, the 95th percentile of the distribution of correlations (high ⇠95
indicate that hctsa contains many features that are sensitive to the parameter of interest). As more inde-
pendent parametric variation is introduced (for two- and three-dimensional datasets), the fewer features
have a high correlation with each parameter. Distributions are shown for: 46 one-parameter datasets, X(1)

(green), 74 parameters across 37 two-parameter datasets, X(2) (orange), and 30 parameters across 10
three-parameter datasets, X(3) (purple).

As expected, the di�culty in tracking a given parameter increases when there is more independent

(confounding) variation: the median ⇠95 across all 46 one-dimensional datasets is 0.94, dropping to

0.74 for 74 parameters across 37 two-dimensional datasets, and 0.53 for the 30 parameters across 10

three-dimensional datasets. High values of ⇠95 measured in one-dimensional datasets demonstrates

the presence of multiple features that are sensitive to the vast majority of time-series dynamics in-

duced by parametric variation in the models analysed here. Note that each parameter of every system

was well captured by some, if not by many, features at a correlation of at least 0.95 (X(1)), 0.79 (X(2)),

and 0.66 (X(3)). This is impressive given the wide range of dynamics and parametric freedoms rep-

resented across our diverse set of time-series models. The scientific and creative breadth of the hctsa

feature library underpins this result, with di↵erent parameters requiring di↵erent parts of the scientific

literature to accurately track, from linear autoregressive modeling, stationarity, entropy, information

theory, wavelet decompositions, derived graph theory statistics, and a range of novel features based on

the physics of simulated particles driven by the time series (Fulcher et al., 2013). Two notable excep-

tions (⇠95 < 0.7) are for the mean-shift parameter s in the ‘noisy shifty sine’ model (⇠95 = 0.38) and
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the linear trend parameter m in the ‘noisy trendy sine’ model (⇠95 = 0.68). In both cases hctsa contains

many estimates of each parameter: s (e.g., the mean estimator has r = 1.00) and m (e.g., a measure

of linear gradient across the time series has r = 0.98), but the relatively low values of ⇠95 indicate that

there are relatively few such features, which may prove a challenge for accumulating su�cient shared

variance to be detected by the dimensionality reduction methods. We observed increased di�culty in

estimating the same parameter in the two-dimensional case relative to the one-dimensional case when

the new parameter dominates the e↵ect on the empirical dynamics, obscuring the ability of individual

features to disentangle the di↵erent parameters. An example is the noise-switch parameter q in the

‘stochastic sine map’ (which injects random noise at a given time step with probability q), and is

well estimated by individual features when only q is varying (⇠95 = 0.99), but much less well when

the intrinsic parameter of the sine map µ (which dominates the dynamics) is independently varying

(⇠95 = 0.50). Overall, we found strong support for hctsa being a comprehensive interdisciplinary

feature library for detecting diverse parametric variation across the broad range of dynamical models

analysed in this work.

5.1.3 Case study 1: The Van der Pol Oscillator

Before examining the behavior of our method across all systems and on peripheral nerve recordings

in specific, we first demonstrate it on the simple example of a two-parameter Van der Pol oscillator,

M(c, k), defined by:

ẍ � c(1 � x2)ẋ + kx = 0, (5.2)

yielding a X(2) dataset of 400 time series by sampling c ⇠ U(0.1, 5) and k ⇠ U(0.1, 5). Sampled

points are plotted in the (c, k) parameter space in Fig. 5.1.7A, with some example time series or-

dered by increasing c and k plotted along each axis. Without any knowledge of the generative model,

M(c, k), or its parameters, we followed our method to reconstruct the underlying space of parametric

variation in the dataset by applying dimensionality reduction to the extracted feature space (depicted

in Fig. 5.1.2), yielding the two-dimensional Isomap reconstruction shown in Fig. 5.1.7B. In a purely

data-driven way, the first two Isomap components structure the dataset in a way that clearly reca-

pitulates the (a priori unknown) parametric variation of the underlying Van der Pol model used to

generate the dataset. Both model parameters are well reconstructed as linear combinations of the two
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Isomap dimensions, Isomap-1 and Isomap-2: �c = 0.09, �k = 0.07. Analysing the residual variance

as a function of the number of Isomap dimensions, shown in Fig. 5.1.7C, we observe saturation at

d̂ = 2, supporting the two-dimensional parametric variation of the underlying model. The unexplained

variance in k, �k, drops with the first Isomap component (which therefore provides a data-driven esti-

mate for k), and �c drops with the second Isomap component (which provides a data-driven estimate

for c); both saturate at d̂ = 2, consistent with the two-parameter model used to generate the dataset

(Fig. 5.1.7C). Consistent with k controlling oscillation frequency and c controlling the shape of the os-

cillation, Isomap-1 is highly correlated to time-series features derived from the power spectrum (that

provide good empirical estimates of the oscillation frequency, ⇠ k) and Isomap-2 is highly correlated

to features measuring smoothness/sharpness characteristics of the waveform (using momentum and

wavelet-based features that provide good empirical estimates of c).
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Figure 5.1.7: Our method can infer a low-dimensional embedding of time-series properties that
reconstructs the sampled parameter space of the time-series generative model for the Van der Pol
oscillator. Here we apply our method to the van der Pol oscillator: ẍ � c(1 � x2)ẋ + kx = 0, using x as the
state variable of interest and independently sampling the two model parameters, c and k. A Sampled points
in parameter space, generated by independently sampling c ⇠ U(0.1, 5) and k ⇠ U(0.1, 5). SimulatingM
at each point in parameter space specifies a time series. Points in the space are colored by their position in
the space (from black! blue along k and from black! magenta along c). Some example time series are
plotted along the horizontal and vertical axes, ordered by increasing c and k, respectively. Lines connect
points in embedded space along which one parameter (in this case either c or k) was approximately
constant. B Our unsupervised reconstruction of the parametric variation underlying variation across the
dataset, by applying Isomap dimensionality reduction (Tenenbaum et al., 2000) to an extracted feature
matrix (cf. Fig. 5.1.2). Points are colored according to their ground-truth parameter values, (c, k), as
in A, revealing a good reconstruction. C Unexplained variance as a function of the number of Isomap
dimensions, reveals a saturation in explained variance at an estimated parametric dimensionality, d̂ = 2,
corresponding to the true number of degrees of freedom in the generative model,M(c, k).

This case study demonstrates how our feature-based dimensionality-reduction method, working only

with an unlabeled time-series dataset, is able to: (i) structure the dataset in a low-dimensional embed-

ding space that approximately reconstructs the parameter space sampled by the underlying generative
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model, (ii) correctly estimates the two-dimensional parametric variation underlying the dynamical

properties observed in the empirical dataset, and (iii) provides interpretable time-series estimators of

those two dimensions, in terms of spectral features sensitive to oscillation frequency (which char-

acterise Isomap-1, and the model parameter k), and features of waveform shape (which characterise

Isomap-2, and the model parameter c).

These results, characterised by low residual variance in estimates of c (�c = 0.09) and k (�k =

0.07), are unique to applying dimensionality reduction in the space of extracted features (the time-

series measurement space yields high unexplained variances �c = 0.97, �k = 0.79), and the good

performance also owes to the comprehensiveness of the hctsa feature library (repeating the analysis

using a reduced 22-feature library, catch22, failed to capture the subtle variation in waveform shape,

�c > 0.9). The feature space, not the dimensionality reduction method, was most crucial to these

results (similar results were obtained with PCA).

5.1.4 Low-dimensional projections

Having characterised the performance of our method on an exemplar system, the van der Pol oscil-

lator, and one example of our simulated peripheral nerve recordings (Sec. 5.1.5), we next examine

selected low-dimensional projections of a range of di↵erent types of systems, shown in Fig. 5.1.8.

Feature-based dimensionality reduction of time-series datasets generated through varying a single

parameter, X(1), yielded meaningful and approximately one-dimensional structures in the extracted

Isomap embedding space (Figs 5.1.8A1–A4). Examples are shown for datasets generated by: varying

the powerlaw scaling exponent, ↵ ⇠ U(�1, 3), in a dataset of self-a�ne time series (Fig. 5.1.8A1);

varying the switch-rate, ↵ ⇠ U(0, 1), in a bimodal switching model (Fig. 5.1.8A2); varying the pa-

rameter a ⇠ U(0.15, 1.5) in the Mackey-Glass system (Mackey and Glass, 1977) (Fig. 5.1.8A3); and

varying the shape parameter, c ⇠ U(0.1, 5) of the Van der Pol oscillator (Sprott, 2003) (Fig. 5.1.8A4).

In each case, the time series are automatically structured along an approximately one-dimensional

manifold in the extracted Isomap embedding space, with the position along the curve approximately

following the variation of the underlying parameter in the generative model. In each case, indepen-

dent of the complexity of the generative model and the time series it produces, our data-driven method

picks up the approximately one-dimensional variation in the underlying parametric variation.
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Figure 5.1.8: Our library is sufficiently large and rich to allow automatic reconstruction of the under-
lying model parameter space from unlabeled empirical time-series datasets. Examples of parameter
reconstruction for selected systems with one free parameter, X(1) (A1–A4), two free parameters, X(2) (B1–
B4), and three free parameters,X(3) (C1 and C2). A1: Self-affine (Malamud and Turcotte, 1999); A2:
Bimodal (Fulcher, 2012), x, (↵); A3: Mackey-Glass (Glass et al., 1988), (a); A4: Van der Pol (van der Pol,
1926), x, (c); B1: Bimodal (Fulcher, 2012), (�,↵); B2: Lorenz (Lorenz, 1963), y, (s, r); B3: Mackey-Glass
(Glass et al., 1988), (a, ⌧), B4: Stochastic sine map Freitas et al. (2009), (q, b); C1: Stochastic sine map
Freitas et al. (2009), (µ, q, b), C2: Population growth (Levins, 1969), (r,K, �). Each dot represents a time
series in embedded space and is colored according to the true parameter values. For the two-dimensional
parameter variations in panels B1–B4, grid lines indicate trajectories in the embedded space along which
one parameter was approximately constant. Panels C1 and C2 display the 3D-space of the first three
Isomap components. The color of time series points again indicates true parameter values, encoded by a
three-dimensional color map.

When two parameters vary independently in generating X(2) datasets, we typically find corresponding

two-dimensional structure in the estimated low-dimensional feature-space embedding. Examples are
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plotted for datasets generated by: varying the well separation � ⇠ U(0, 6) and switch probability

↵ ⇠ U(0, 1) in the bimodal switching model (Fig. 5.1.8B1); varying s ⇠ U(8, 30) and r ⇠ U(35, 60)

of the Lorenz attractor (Fig. 5.1.8B2); varying a ⇠ (0.15, 1.5) and ⌧ ⇠ {10, 11, ..., 40} in the Mackey-

Glass system (Fig. 5.1.8B3); and varying the noise occurrence probability q ⇠ U(0, 1) and amplitude

b ⇠ U(0, 3) in the stochastic sine map (Fig. 5.1.8B4). For each of these systems, the geometry

of the underlying parameter space is approximately reconstructed in the extracted embedding. For

the Lorenz attractor and stochastic sine map (Fig. 5.1.8B2 and B4), the reconstructed rectangular

grid reflects the uniform sampling undertaken in parameter space. The bimodal switching system

(Fig. 5.1.8B1) contracts towards low values of � towards a point. This behavior reveals an important

characteristic of the bimodal switching system, which draws data from one of two states, defined

by two Gaussian distributions separated by a distance � (see Eq. (5.7) in Appendix 5.1.11.B). As �

decreases the two states become less distinct, and in the limiting case, � = 0, both states are identical

and variations in the switching probability, ↵, have no a↵ect on the dynamics. This meaningful

interplay between � and ↵ is clear in the geometry of the reconstructed embedding space, Fig. 5.1.8B1,

which collapses to a point at low �. Similar transition-like behavior in Mackey-Glass system with a

(from a low-a chaotic regime to a high-a oscillatory regime), yields a meaningful distortion to the

two-dimensional geometry of the sampled parameters, shown in Fig. 5.1.8B3.

When three parameters are independently sampled in generating X(3) datasets, we found correspond-

ing three-dimensional structure in the estimated low-dimensional feature-space embedding. Two se-

lected examples are shown for simultaneously varying: the map parameter, µ ⇠ U(0.5, 4), noise

probability, q ⇠ U(0, 1), and noise amplitude, b ⇠ U(0, 3), in the stochastic sine map (Fig. 5.1.8C1);

and varying the growth rate, r ⇠ U(0.1, 3), carrying capacity K ⇠ U(0.5, 5), and noise amplitude

� ⇠ U(0.1, 10) in the population growth model (Fig. 5.1.8C2). In both cases, we reconstruct a mean-

ingful three-dimensional embedding of the data that mirrors the three-dimensional space from which

the underlying model parameters were sampled.

These results demonstrate the ability of our method to infer dynamical constraints as low-dimensional

structure across a su�ciently rich feature set for selected one-, two-, and three-dimensional parameter

spaces.
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5.1.5 Case study 2: Simulated peripheral nerve recordings

Current non-invasive interfaces (cu↵ electrodes) used in bioelectronic medicines do not allow for the

di↵erentiation of single fibers. The resulting superposed activity of many axons in a nerve-bundle,

compound action potentials (CAP), is often summarised by simple measures like amplitude of the

rectified and integrated signal (Micera et al., 2001; Cavallaro et al., 2003) or the power (as square of

amplitudes from a Fourier spectrum) in a certain frequency band (Ch. 4.1, (Lubba et al., 2017)). Many

subtleties are known to exist in peripheral firing such as active fibre diameters, active fascicles and

di↵erent rhythms (Malpas, 1998), many of which will be informative for decoding but are lost in these

coarse summary measures. If we could identify some of those firing characteristics in a peripheral

nerve recording and estimate them in each new observation, we might have a better starting point for

decoding and to detect unusual activity.

We here apply our presented feature-based method to low-resolution peripheral nerve recordings gen-

erated in our simulator PyPNS to characterise the recordings by a few key measures. We want to

uncover the three activity characterstics firing rate, myelination, and burstiness that varied in simula-

tion just as we did for the parameters of our synthetic systems covered so far. Ideally, each of the two

to three characteristics that varied in a given dataset would be recovered in one reduced component

(we use PCA here) in feature-space each.

Similar to the Van der Pol oscillator, we demonstrate this correspondence between PCs and charac-

teristics in a first example. Fig. 5.1.9 plots the time-series points for the varying characteristics firing

rate and burstiness projected onto the first and second PC. As can be seen, firing rate is cleanly cap-

tured by the first component, burstiness by the second. At lower firing rates (to the left of the plots

in Fig. 5.1.9), PC2 is less informative of burstiness, consistent with visual intuition from Fig. 5.1.4A

and C (burstiness is harder to distinguish for low firing-rate).

As an overview over all our four PNS datasets, Fig. 5.1.10A shows the correlation between firing

characteristics and each of the first components for datasets with noise-level �6dB (see Fig. 5.1.4 for

an example recording). On the three X(2) datasets with two varying characteristics, especially in the

pairs (bustiness, myelination) and (firing rate, burstiness), each characteristic was recovered well by a

single PC each. Per PC, one parameter had a correlation of at least 0.8, the second parameter less than

0.15. For the pair (myelination, firing rate), firing rate was not cleanly separated from myelination as
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Figure 5.1.9: Example for a successful unsupervised detection of the characteristics burstiness and
firing rate in the first two principal components (PC). When projecting the time series into the space
of the first two principal components as obtained from PCA in our ⇠7 000-dimensional feature-space (here
as axes in embedded space), each of the two main signal characteristics is captured in one dimension
(coloring). Each dot is a time series. At low firing rates (low PC1, to the left of the embedding panel),
burstiness cannot be detected anymore as was to be expected from Fig. 5.1.4.

noise partly shadowed action potentials from unmyelinated fibres. At three varying characteristics,

burstiness and myelination were reasonably captured by the first and second PC (correlation > 0.6) but

firing rate could not be cleanly separated anymore as no PC was the most correlated to this parameter.

Across all datasets, PC1 captured between 60 and 90% of the variance, the PC2 5 to 25%, and PC3 1

to 5%.

The hctsa feature library is therefore suitable for peripheral nerve recordings. To further probe the

method on our main study object, we conducted two more analyses on the robustness of the results.

We first investigated how sensitive the results are towards reducing the number of features. To this

end, we randomly selected subsets of the hctsa feature pool. A characteristics-dependent parame-

ter reconstruction performance decline with modest losses from ⇠1 000 features can be observed in

Fig. 5.1.10C. We would therefore achieve the same results by pruning our feature set by a factor of

about 7 and can therefore reduce computation time.

As it is a relevant problem in peripheral nerve recordings, we also tested the robustness of our method

against noise by adding white Gaussian noise of di↵erent power to the signals. Such noise is to be

expected due to the recording of very small potential changes and associated high gains by noisy

amplifiers. Until a noise root-mean-square (RMS) power of half the signal RMS (�6dB), the charac-

teristics set in our simulation were recovered well, see Fig. 5.1.10B. Myelination ratio was the most

robust against noise as expected from the high action potential amplitudes from myelinated fibres,
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Figure 5.1.10: Two varying characteristics are well recovered by PCA in feature space up to a noise-
power of half the signal power (�6dB). The second and third principal component provide addi-
tional information compared to standard power-measures. (a) Noise RMS was set to half the signal
RMS, see Fig. 5.1.4 for example time series. Bars indicate the Spearman rank correlation between a
single characteristic of a dataset and the classic measure RMS as well as the first principal components
(PCs) obtained by dimensionality reduction. The feature RMS (grey bars with dashed outline) has similar
correlations to parameters compared to the first PC. (b) Abscissa is the unexplained variance between
the actual signal characteristics and the ones linearly regressed against the first dimensions. (c) When
only considering a subset of all ⇠7 500 hctsa-features, characteristics recovery declines. Each number of
features randomly sampled 10 times, SNR=0.1.

burstiness and firing rate could not be well detected at high noise levels.

So far we have shown that unsupervised dimensionality reduction in feature-space is a promising

way of extracting meaningful low-dimensional variation in our simulated neural datasets. Even in the

presence of noise and when reducing the number of features to reduce computation time. But can

we interpret each dimension in terms of the signal properties that are being measured, and are they

sensible given what we know is varying in the underlying system? To answer these questions, we rank

single features by their Pearson correlation to the principal components – and therefore the varying

characteristics in the data.

In general, the highest Pearson correlations between single features and principal components reached

at least 0.8 and often 0.98 or better, meaning that we can find appropriate single features to represent

each principle component. For the characteristic myelination ratio, features selected by our method

typically evaluate extreme events, outliers, statistics on residuals in local fits. This makes sense

as myelinated axons produce very strong peaks. Features corresponding to firing rate components

often compute value distribution properties and autocorrelation measures that detect uncorrelated

noise vs natural signals. Burstiness-features measure stationarity and predictability. We therefore

automatically identify sensible features.
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Finally we may ask what our low-dimensional representations add to the standard power-based fea-

tures computed currently on peripheral nerve activity? For a brief comparison of our method to RMS

as a feature, we added its Spearman rank correlations to the characteristics set in our simulation in

Fig. 5.1.10A. Naturally, with a univariate power measure, no distinction between di↵erent firing char-

acteristics is possible. Interestingly however, our first principal component behaves largely identical

with RMS in terms of correlation to the data characteristics, meaning that this feature has very similar

correlations to the parameters as did PC1. In the following PCs, more subtle dynamical properties

such as burstiness and myelination were recovered. The estimators selected by our method thus cover

all signal properties captured by state-of-the-art measures but importantly provide additional infor-

mation about more subtle firing characteristics.

5.1.6 Performance across diverse synthetic time-series models

The above results demonstrate the success of our method across selected synthetic systems and for

our simulated peripheral nerve recordings. It is thus a relevant technique for bioelectronic medicines

as a data analysis and signal pre-processing step. We next aimed to understand the strengths and

weaknesses of our method across the diverse library of dynamical systems and synthetic datasets we

compared.

5.1.6.1 Dimensionality estimation

The first test involves empirical estimation of the parametric dimensionality of each system, d̂. As

described in Methods, we used a simple data-driven heuristic to estimate d̂, based on the saturation of

residual variance as a function of the number of dimensions. As shown in Fig. 5.1.11, the distribution

of d̂ across all systems is mostly concentrated on the true parametric dimensionality of the system.

However, it can also overestimate the dimensionality of one-dimensional systems, and underestimate

the dimensionality of two- and three-dimensional systems.

Overestimation, d̂ > d, occurs when there are insu�ciently many features in hctsa that are sensitive to

the parametric variation represented in the system. An example is the one-dimensional variation of the

mean, s, of a noisy sinusoid: as relatively few features in hctsa are mean-sensitive (17 features have
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Figure 5.1.11: The estimated dimensionality, d̂, of the extracted feature matrix, F, mostly corre-
sponds to the parametric dimensionality of the underlying generative time-series model. Distri-
butions of d̂ are shown for 93 datasets generated from varying a single parameter, X(1) (green), two
independent parameters, X(2) (pink), and three independent parameters, X(3) (purple).

a strong correlation r > 0.9) such that noisy variation in the thousands of other features dominated

the feature-space variance, leading to an overestimate, d̂ = 4, for this system. As a typical problem,

only a small number of features in our library provide adequate estimators for a parameter of interest.

We call these under-represented parameters ‘weak’. In some cases, both parameters of a 2D system

were weak, e.g., Lorenz oscillator x and y (r, b). As neither r nor b drove many parameters (⇠95  0.7

for x and y), both were estimated as 4-d instead of 2-d. Underestimation, d̂ < d, occurred when

the sampled variation in one parameter dominated the variation in time-series dynamics relative to

the other sampled parameter(s). This gives the appearance of low-dimensionality, as variation in the

additional parameters resulted in relatively small changes to the empirical dynamics. This occurred

for the ‘noisy shifty sine’ model with two-dimensional variation in the mean-shift, s, and noise level,

⌘. As outlined above, our feature library contains relatively few estimators of s compared to ⌘,

resulting in a dominating e↵ect of ⌘ which shadows the relatively subtle variations in s.

5.1.6.2 Parameter reconstruction

We next investigated how successfully the model parameters could be reconstructed as linear com-

binations of the low-dimensional data-driven embedding dimensions. As explained in Methods, this

was assessed on the basis of the unexplained variance, �↵, of a given parameter, ↵, of the optimal lin-

ear combination of d dimensions (for a d-dimensional system). Distributions of � are shown for every

parameter in every system in Fig. 5.1.12. As expected, the ability to linearly reconstruct the variation

of a given parameter, �, is highly correlated to the representation of that parameter in the feature

space, quantified as the 95th percentile of the distribution of univariate correlations, ⇠95 (Fig. 5.1.S1,
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Pearson correlation X(1) 0.72, X(2) 0.82, X(3) 0.80). Thus, when there are more feature-based esti-

mators of a parameter, that parameter will drive more variance in the hctsa feature library, and thus

make a greater contribution to the estimated low-dimensional embedding. Results for parameter re-

construction thus follow the results for ⇠95 above. Even in cases for which such an exercise may

seem impossible (e.g., inferring the map parameter µ, noise amplitude b, and noise probability q from

a stochastic sine map dataset, depicted in Fig. 5.1.5), our data-driven three-dimensional embedding

linearly captures variation in µ (�µ = 0.18) and b (�b = 0.22), and contains some information about q

(�q = 0.63).
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Figure 5.1.12: Our library is of sufficient size and diversity to allow us to successfully recover
the parameter values for 1-d and 2-d systems. Three-dimensional parametric variation had mixed
outcomes. We plot the distribution of �, the unexplained variance 1 � R2, between linearly estimated
parameters p̂ from the first d embedded components and true parameters p. Distributions are shown for:
46 one-parameter datasets, X(1) (green), 74 parameters across 37 two-parameter datasets, X(2) (orange),
and 30 parameters across 10 three-parameter datasets, X(3) (purple).

Taken together with the low-dimensional projection results presented above, we find that leveraging

a diverse scientific literature on time-series analysis using hctsa allows time-series datasets to be em-

bedded into a space that best captures the parametric variation of the underlying model across it. The

construction of the feature space (including what features are included) is crucial to the quantification

of ‘dynamical variation’, and in e↵ectively weighting the relative importance of di↵erent types of dy-

namical variation. For example, dynamical variation for which there are more estimators in hctsa is

more highly weighted than types of dynamical variation for which there are relatively few estimators.

Parameters for which there are relatively few estimators in hctsa (like trivial variation of mean-shifts)

can thus be neglected, and the range over which a parameter is varied in the underlying model also

a↵ects the amount of dynamical variance that it contributes to shaping across the empirical dataset.
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5.1.7 What characteristics of data are suitable

Our method performs best in 1-d and 2-d cases where parameters cause a smooth change in dynamics

that is captured by enough features.

There exist several conditions for which we encounter di�culties in both dimensionality estimation

and parameter reconstruction. As a typical problem, only a small number of features in our library

provide adequate estimators for a parameter of interest (‘weak’ parameters).The classic example de-

signed to demonstrate this e↵ect is the ‘noisy shifty sine’, in which only a few features evaluate a

constant o↵set, s (�s = 1.00). A similar case is the carrying capacity K of ‘population growth’

(�K = 0.23). Weak parameters can appear in pairs: in the system Lorenz x (r, b), not many fea-

tures correlate with either r or b (⇠r
95 = 0.56, ⇠b

95 = 0.70), causing a low reconstruction performance

(�r = 0.74, �b = 0.32) and an overestimated dimensionality (d̂ = 4). At multiple varying parameters,

an imbalance in number of responsive feature between parameters causes problems. If one parameter

drives a much larger share of features, this variation can shadow less influential ones. This e↵ect can

be observed in ‘noisy trendy sine’ (T , ⌘) where the noise controlled by ⌘ is captured by many features

(d̂ = 2, ⇠⌘95 = 0.92, ⇠T
95 = 0.36, �T = 0.45, �⌘ = 0.10), similarly the parameter combination (⌘, m) of

the same system (d̂ = 2, ⇠⌘95 = 0.90, ⇠m
95 = 0.08, �m = 1.00, �⌘ = 0.08).

In embedded space ⌅, time series with similar dynamics – as judged by the hctsa feature ensemble –

are positioned nearby one another. If a parameter causes abrupt changes in dynamics or no changes,

the resulting jumps or plateau-phases in dynamics along the uniformly sampled parameter space will

become apparent in embedded space as gaps or accumulations of similar time series. A 1-d example

is stochastic sine map (A) that passes through several bifurcations with increasing A-values to produce

very di↵erent dynamics (periodic or chaotic) depending on the exact A-value (d̂ = 2, �A = 0.90, ⇠95 =

0.85). Still, the second embedding component recovers A well (�A = 0.11). Similarly, the dynamics

of Mackey-Glass (a, r) in Fig. 5.1.8B3 do not change smoothly with r, leaving an accumulation and a

gap (d̂ = 2, ⇠a
95 = 0.78, ⇠⌧95 = 0.85, �a = 0.26, �⌧ = 0.11).
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Figure 5.1.13: Our data-driven method constructs a meaningful low-dimensional embedding space
for a movement speed dataset of 1143 flies, organising the files by activity level and circadian
rhythmicity. A The Isomap embedding of the time-series dataset, where 12 h time-series segments have
been annotated to selected time series. B Raster plot of all time series ordered by Isomap component
1, revealing a clear variation in activity profiles of flies with Iso-1. White means high velocity, dark low
velocity. Time series were cut to the first 18 h to be of equal length. C Raster plot of all time series ordered
by Isomap component 2, revealing a variation of circadian rhythmicity of activity with Iso-2.

5.1.8 Case Study 3: Empirical fly data

The synthetic datasets analysed above allowed us to demonstrate the success of our method in re-

producing the known parametric variation underlying an empirical dataset. To further assess the

performance of feature-based dimensionality reduction to automatically uncover the main sources of

dynamical variation underlying real-world datasets, we analysed a Drosophila melanogaster move-

ment dataset. It has to be noted here that this type of data does not relate to our original scope

of study, peripheral nerve recordings. We still keep it here as a case study to demonstrate the ap-

plicability of our more general time series analysis method to experimental data and to show that

it can indeed act as a data-driven discovery engine to uncover dominant temporal dynamics. The

dataset contains time-series measurements of the movement speed of 1143 flies (408 male, 735

female) confined to an approximately one-dimensional tube and measured over the course of at

least 12 h (all >18 h except 4 cases) (during which 3 h dark and 3 h light phases alternated succes-

sively). Taking average speeds over non-overlapping 10 s windows yielded a dataset of 1143 time

series, each containing a variable number of samples, ranging from 4359–8640 (mean = 8595).
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The first two Isomap components had an unexplained variance of 15%, yielding a two-dimensional

projection of the dataset shown in Fig. 5.1.13A, where each fly’s time series have been colored

by sex. We first notice that the first inferred dimension, Iso-1, clearly separates the male and fe-

male flies. Ordering all flies along this dimension and plotting their activity time series with color,

shown in Fig. 5.1.13B (and visible from the annotations in Fig. 5.1.13A), reveals a sensible order-

ing of flies along the Iso-1 dimension according to the distribution of activity across time, with

low-activity (mostly male) flies exhibiting large bursts of activity with an approximately 3 h pe-

riod, and high-activity (mostly female) flies exhibiting more consistent activity levels across the

full recording. Consistent with this visual intuition, time-series features in hctsa that correlate most

strongly with Iso-1 were mostly related to the entropy of the movement-speed distribution (includ-

ing EN_DistributionEntropy_hist_fd_0, rIso1 = 0.97).The second Isomap dimension, Iso-2,

revealed a more subtle dynamical variation, visible most clearly from the raster plot where flies have

been ordered by Iso-2, shown in Fig. 5.1.13C. This plot shows that Iso-2 organises flies on the strength

of their circadian (day-night) rhythmicity of activity with the imposed 3 h light-dark cycle. Consis-

tent with this, time-series features in hctsa that are most strongly correlated with Iso-2 were related

to measures of stationarity (e.g., StatAvl250, rIso1 = 0.81) and automutual information on longer

timescales (e.g., IN_AutoMutualInfoStats_40_kraskov1_4_ami40, rIso1 = 0.81).

To summarise, we found that our data-driven method was able to embed a large and complex dataset

of biological time series into a two-dimensional space. Each axis of this space corresponds to a

meaningful and biologically interpretable property of the movement-speed dynamics that captures

inter-fly variation across the dataset. The performance was specific to the large hctsa feature space;

alternative smaller feature-sets did not give the same qualitative performance. Using the catch22

feature set, only the variation in activity (Iso-1) could be retrieved, no rhythmicity; male and female

flies were not separated cleanly.

5.1.9 Robustness and Sensitivity

Having demonstrated an ability to embed complex time-series datasets into meaningful low-dimensional

spaces that capture the key sources of dynamical variability across the dataset, we now perform

tests to further assess the method’s strengths and limitations, including its applicability to time-series
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datasets of di↵erent characteristics (e.g., length, size, signal-to-noise, etc.) on the synthetic datasets

as we already did to a certain extent for our case study on simulated peripheral nerve recordings (see

Sec. 5.1.5).

We first compare four key parameters of the methodology in their unexplained variance, �, of each

parameter for each synthetic dataset. In each case, shown in Fig. 5.1.14, the two alternatives are

compared as the di↵erence in � between the method we present and an alternative choice; higher

values indicate better performance of the method we present.

As a first sanity check it is impossible to obtain a meaningful embedding without computing features

from the raw ordered time-series measurements. When computing Isomap in the 5000-dimensional

(number of samples per time series) measurement space, the reconstruction fails for all 1D, 2D,

and 3D systems, with a mean unexplained variance of at least 0.8 (Fig. 5.1.14A). Only cases where

parameters caused clear changes in the overall time series shape could be recovered in measurement

space. Examples are the slope, m, in ‘noisy trendy sine’ or the mean shift, s, in ‘noisy shifty sine’.

The ability of our method to detect diverse types of dynamical variation across time-series datasets

therefore requires a comprehensive feature library, as in hctsa. When we compare to a reduced set of

22 features, catch22 (that provide similar classification performance across time-series classification

tasks; Ch. 5.2, (Lubba et al., 2019)) the average unexplained variance increases by 110% (1D), 73%

(2D), and 27% (3D), as shown in Fig. 5.1.14B.

While the hctsa feature ensemble is critical for a good performance, the dimensionality reduction

method is not. We find a stronger performance in reconstructing the underlying parameters using

Isomap relative to PCA (Fig. 5.1.14C). However, PCA performs only slightly worse (50% higher

unexplained variance for one-dimensional systems, but only 8% for two-dimensional, 7.5% for three-

dimensional systems).

5.1.9.1 Number of features required

We have seen that the success of our method hinges on the comprehensive feature library provided

by the hctsa toolbox. A subset of 22 proven general purpose features could not achieve a comparable

parameter reconstruction (Fig. 5.1.14B). Computing 7 000 features on every new dataset is, however, a
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Figure 5.1.14: Our method is not highly dependent on the dimensionality reduction method, but on
the feature library. A Difference in unexplained variance of parameter reconstruction � when applying
Isomap to either the raw 5000 samples of each time series or the feature-based representation using
hctsa. The positive values indicate that the feature-based representation is clearly superior. B Difference
in performance � between Isomap on either 22 selected features (catch22) or the full hctsa feature set. C
Again, difference in �, now between the linear PCA and the nonlinear Isomap. Positive values indicate that
Isomap was more successful. D Difference in � between PCA score from either the PCs of the dataset at
hand or from a generic, diverse time-series set. Positive values indicate that performance is better using
the dataset’s own PCs.

substantial computational burden. We therefore investigated at what number of features the parameter

reconstruction saturates. By randomly sampling an increasing number of features from the hctsa

library, we found a performance plateau at only about 300, similar to the 1000 found for peripheral

nerve recordings in Fig. 5.1.15A. The full wealth of hctsa’s features is often not needed for this library

of models.

5.1.9.2 Number of time series required

Not only computation time is a constraint in applying our method to new real-world data but, more

importantly, data availability. Not every investigator will be in possession of 1000 real-world time

series as we were in our case study (Fig. 5.1.13) – but do we really need that many to successfully
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Figure 5.1.15: The dimensionality reduction requires about 300 features and 1000 time series. A
Unexplained variance of parameter reconstruction using a randomly sampled subset of features (10 rep-
etitions), error surface indicates standard deviation across mean errors across repetitions. A saturation
at about 300 features can be observed for all system dimensionalities. B As the unexplained variance of
parameter reconstruction is difficult to estimate with few time series (always low), we demonstrate the sat-
uration of dimensionality reduction outcomes with number of time series for PCA and compare the scores
of all time series with the PCs of a reduced time-series set. Saturation is only clearly visible at about 1000
time series for 3-d systems.

identify the relevant dynamics? Using the well-known parameter reconstruction error of Isomap, �,

Sec 5.1.1.5, was not possible in this analysis because a decreasing number of time series prevents

us to compute a meaningful correlation between time-series Isomap-scores. Instead, we compute the

pairwise unexplained variance between between principal components of PCA of (1) the full time-

series set and (2) randomly sampled reduced sets in Fig. 5.1.15B. These correlations only visibly

saturate for the 3-d systems at about 1000 time series. The 1-d and 2-d cases were limited at 100 and

400 time series, respectively, and do not shown a clear plateau phase. In 1-d, the PCs’ unexplained

variance start at remarkably low values, however; 2-d PCs had unexplained variances below 0.1 at

100 time series as well. The number of time series therefore becomes increasingly important for

higher-dimensional parameter variations but still saturates at about a thousand. Lower dimensional

systems do not depend on the availability of large datasets.
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It might surprise that the number of time series is often not crucial for performance. Let us consider

PCA for a simpler, more intuitive understanding. Each PC bundles the features that were jointly driven

by a certain parameter as one projection direction. So how can PCA pick out the relevant projection

directions in a 7000 dimensional space by only considering 50 time series? The explanation lies in

the biased nature of our feature library. Within the hctsa ensemble, there exist large feature families

which are algorithmically similar (e.g., autocorrelation at di↵erent lags). Members of such families

will, even if given a non-constrained dataset (as shown in schematic Fig. 5.1.2E), form similarly

behaving feature-clusters, and therefore projection directions within PCA. These default PCs, even

though dataset-independent, often capture generically useful classes of variation. The predominance

of a certain feature type in hctsa toolbox often reflects its importance in the time-series analysis

literature, and therefore its utility. In fact, Fig. 5.1.14D demonstrates that ‘generic’ PCs, computed

on a dataset of diverse empirical time series (Fulcher, 2017), often perform almost as well as the the

principle components obtained from the dataset itself.

5.1.9.3 Influence of number of samples, sampling rate, and signal-to-noise ratio

Our entire analysis was based on 5000-sample time series at a sampling rate suited to the system

at hand. What time series properties does our method require? In a single case study system, van

der Pol, x, we varied (1) number of samples, (2) sampling rate, and (3) signal-to-noise ratio (SNR)

through added Gaussian white noise. As can be seen in from the di↵erence between Fig. 5.1.16A and

B for parameters c (dampening) and k (frequency), the results were very specific to the time-series

dynamics at hand. The more subtle parameter c (Fig. 5.1.16A) required long time series of high signal-

to-noise ratio (Fig. 5.1.16A1-A3). Parameter k on the other hand, causing a more obvious variation in

oscillation frequency, could be well reconstructed, even for only 100 time steps, as long as the signal-

to-noise ratio was high (Fig. 5.1.16B1-B3). Low SNR could sometimes be compensated by long time

series (cyan in Fig. 5.1.16B2), high SNR was the most crucial factor for success (Fig. 5.1.16B3). The

dependence of our method success on these additional parameters will vary from dataset to dataset.

Presumably more subtle dynamics will require longer time series and a higher signal-to-noise ratio as

the parameter c in this case study.
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10 repetition with 300 time series randomly sampled from 400.

5.1.10 Discussion

We have in this work shown that dimensionality reduction in a high-dimensional feature space cov-

ering decades of interdisciplinary time-series analysis can be used to discover and estimate sources

of free variation in constrained time-series datasets. We tested our method on a range of various syn-

thetic datasets generated by di↵erent types of generative models. On this data, we showed that the

parameters governing the low-dimensional variation can be reliably estimated for a broad range of

one- and two-parameter systems. We further successfully applied the method to simulated peripheral

nerve recordings and to a real-world dataset of Drosophila melanogaster fly movement patterns.

Note that such results could not be obtained by analysing the time series in the measurement space.

In measurement space, (i) longer recordings increase the dimensionality of each time series, (ii) dif-

ferences in phase a↵ect ability to estimate low-dimensional manifolds, and (iii) nonlinear or chaotic

dynamics often lead to very di↵erent waveform shapes for the same parameter settings. Using our

feature-based approach, however, here we are able to identify the underlying variation for time series

independent of length and phase by the dynamical properties of the recordings. We are able to extract

meaningful embeddings for time-series datasets in terms of their properties rather than simply their

values. If the real source of variation underlying a time-series dataset is unknown, this method can
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be use to (1) detect dominant variation in time-series dynamics and (2) extract a set of features that

correspond to each type of dynamics. Feature interpretation could help a time-series analyst under-

stand what time-series properties are important in explaining most of the variation in a dataset. Our

framework therefore allows one to understand both how many free parameters are required, and what

sorts of dynamical properties they control. It may form the basis to linking a theoretical understanding

of time-series models with the empirical practice of collecting and analysing time series.

In our field of peripheral nerve decoding algorithms, low-resolution cu↵ recordings have been char-

acterised by simple amplitude- or power-based measures in the past. We here demonstrate the fea-

sibility of our feature-based analysis approach to (1) automatically detect important firing charac-

teristics in the continuous recorded waveform and (2) provide simple feature-based estimators for

each. Our method is successful on simulated peripheral nerve recordings in which two independent

peripheral firing characteristics could be recovered cleanly in most cases. The method provides a

low-dimensional representation of the neural time-series data in meaningful dynamical properties

that is more informative than the state-of-the-art characterisation by simple power measures (RMS).

Applied to di↵erent data, the method will automatically select features that reflect the interface tech-

nology used, the nerve targeted, and the firing patterns recorded – it will therefore adapt to any new

recording setup. The selected single estimators for important dynamical properties of peripheral firing

can be implemented e�ciently for the use in next generation bioelectronic medicines devices and the

method may find application in related BMI tasks as well.
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5.1.11 Appendix

5.1.11.A Feature library
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Figure 5.1.S1: The more features a parameter drives, the better it is recovered by our method.
Scatter of feasibility ⇠ (as in Fig. 5.1.6) vs reconstruction performance � (as in Fig. 5.1.12. Correlations
0.72 (1-d), 0.82 (2-d), 0.80 (3-d).).

5.1.11.B Time-series Datasets

Noisy Trendy Sine This simple time-series system generates a sinusoid with period T , with a linear

trend of gradient m and additive noise of standard deviation ⌘. Time series, xt, are generated according

to the following model:

xt = sin(2⇡t/T ) + mt/N + ⌘nt, (5.3)

for a period T , gradient m, and noise standard deviation ⌘, and nt ⇠ N(0, 1). In generating datasets,

we varied T , m, and ⌘ as in the table below:

Parameter Values
T U(10, 100), or 30.
m U(�5, 5), or 0.
⌘ U(0, 3), or 0.

Noisy Shifty Sine This model generates a noisy sinusoid with a constant mean o↵set:

xt = sin(2⇡t/T ) + � + ⌘nt, (5.4)
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for period T , mean o↵set �, and noise standard deviation ⌘, and nt ⇠ N(0, 1).

Parameter Values
T U(10, 100) or 30.
� U(�5, 5) or 0.
⌘ U(0, 3) or 0.

Autoregressive (AR) process We generated data from an autoregressive process (Chatfield, 2013)

with amplitude ↵, memory ⌧, and a constant Gaussian noise term ⌘.

xt = ↵
1
⌧

⌧X

i=1

xt�i + ⌘t, (5.5)

where ⌘t ⇠ N(0, 1).

Parameter Values
↵ U(0.8, 0.999) or 0.9.
⌧ {2, 3, 4, 5, 6, 7, 8, 9, 10} or 2.

Bimodal switching model This two-state model samples from one of two Gaussian distributions,

each with a di↵erent mean (Fulcher, 2012). At each time point, there is a probability of switching

between the two states:

xt = nt + vt� (5.6)

vt = Yt(↵)vt�1 + (1 � Yt(↵))(1 � vt�1). (5.7)

for a time series xt, underlying state variable vt, nt ⇠ N(0, 1). State switching is controlled by the

Bernoulli random variable, Yt, which takes a value of 1 with probability ↵, and a value of 0 with

probability 1 � ↵.

Parameter Values
� U(0, 6) or 3.
↵ U(0, 1) or 0.5.

Population growth A growing population with a limited carrying capacity and a variable growth

rate (Levins, 1969), stochastic through an additive noise term.
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ẋ = rx(K � x) + x⌘� (5.8)

Parameters are the maximum population size K, a growth rate r, and the amplitude of a uniform noise

term ⌘� between 0 and �.

Parameter Values
r (0.1, 3) or 3
K (0.5, 5) or 5
� (0.1, 10) or 0.1

Stochastic sine map The stochastic sine map model was introduced by Freitas et al. (2009) and is

defined as:

xt+1 = µ sin(xt) + Yt(q)⌘t(b), (5.9)

for a sinusoidal amplitude µ, a Bernoulli random variable Y (Y = 0 with probability q, and Y = 1 with

probability 1 � q), and an identically and independently distributed random variable ⌘t which has a

uniform distribution between �b and b.

Parameter Values
µ U(0.5, 4) or 2.4.
q U(0, 1) or 0.5.
b U(0, 3) or 1.

All following flows (Van der Pol, Lorenz, Mackey-Glass) were simulated in Matlab using the ordi-

nary di↵erential equation solver ode45. Each system was then evaluated on an even time grid of an

appropriate frequency for each system (listed below). In all cases, the first 500 samples were removed

to minimise the dependence on initial conditions.

van der Pol Oscillator A deterministic, nonlinear flow with negative dampening for low amplitudes

of x and positive dampening for high values that approaches a limit cycle (van der Pol, 1926; Sprott,

2003). The parameter c controls the degree of dampening (positive or negative) and k regulates

frequency. The sampling rate was set to to 1/6 Hz.
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ẍ � c(1 � x2)ẋ + kx = 0 (5.10)

Parameter Values
c U(0.1, 5) or 1.
k U(0.1, 5) or 1.

Rössler Oscillator A three-dimensional chaotic flow proposed by Rössler (1976) (Sprott, 2003). It

is one of the simplest chaotic flows with a single quadratic nonlinearity (zx). The sampling rate was

set to to 1/5 Hz.

ẋ = �y � z (5.11)

ẏ = x + ay (5.12)

ż = b + z(x � c) (5.13)

Parameter Values
a (0.1, 0.3) or 0.2
b (0.01, 2) or 0.2
c (4.5, 20) or 5.7

Lorenz Attractor A three-dimensional chaotic flow discovered by Lorenz (1963) (Sprott, 2003)

while studying atmospheric convection. Sampling rate set to 1/5 Hz.

ẋ = s(y � x) (5.14)

ẏ = x(r � z) � y (5.15)

ż = xy � bz. (5.16)

Mackey-Glass system A delay di↵erential equation that implements a high-dimensional chaotic

flow (Mackey and Glass, 1977; Glass et al., 1988). As initial conditions (x values) for the whole
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Parameter Values
s U(8, 30) or 10.
r U(35, 60) or 35.
b U(1, 2.8) or 2.6667.

duration ⌧ are required to define a state, the phase space dimension of this system approaches infinity

for a diminishing time step size.

dx(t)
dt
=

ax(t � ⌧)
1 + x(t � ⌧)10 � 0.1x(t) (5.17)

Parameter Values
a U(0.15, 1.5) or 1.
⌧ {10, 11, ..., 39, 40} or 17.

Logistic Map This very simple, one-dimensional chaotic map has become a famous example after

May used it in his demonstration of complex behavior produced by very simple systems (May, 1976;

Sprott, 2003). For values of the single parameter A below 3.449..., x describes a logistic growth

but becomes an oscillator of increasing period for higher As until 3.570..., where a chaotic behavior

onsets. For the value range we select, both periodic and aperiodic (chaotic) oscillations occur.

xt = Axt(1 � xt), (5.18)

for the parameter A. In generating the Logistic Map dataset, we sampled A ⇠ U(3.5, 4).

Predator-prey system A stochastic map that models the populations of a predator and a prey

species that interact (May, 1972; Hoppensteadt, 2006).

xt = xt�1 exp[r(1 � xt�1/K)] � ↵yt�1 (5.19)

yt = xt�1[1 � exp(�↵yt�1)] (5.20)
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Parameter Values
r (0.3, 1) or 0.5
K (0.7, 1.2) or 1
↵ 5

Self-a�ne Time series with an powerlaw characteristic in the power spectrum with scaling exponent

↵. The time series are generated by an inverse Fourier transform (IFFT) from the desired powerlaw

spectrum with random phase (Fox, 1987) using Matlab.

Parameter Values
↵ (-1, 3)

5.2 Condensed feature-spaces – catch22

In the last section we described a method to uncover low-dimensional parametric variation in time-

series datasets and selected single features for each in an unsupervised way. We here propose an

alternative, supervised method, that works with labelled classification tasks to select small feature

subsets with high classification performance.

The number of time-series analysis methods that have been devised to convert a complex time-series

data stream into an interpretable set of real numbers is vast, with contributions from a diverse range

of disciplinary applications. Some examples include standard deviation, the position of peaks in

the Fourier power spectrum, temporal entropy, and many thousands of others (Fulcher, 2018; Fulcher

et al., 2013). From among this wide range of possible features, selecting a set of features that success-

fully captures the dynamics relevant to the problem at hand has typically been done manually without

quantitative comparison across a variety of potential candidates (Timmer et al., 1993; Nanopoulos

et al., 2001; Mörchen, 2003; Wang et al., 2006; Bagnall et al., 2012). However, subjective feature

selection leaves uncertain whether a di↵erent feature set may have optimal performance on a task at

hand. Addressing this shortcoming, recent methods have been introduced that take a systematic, data-

driven approach involving large-scale comparisons across thousands of time-series features (Fulcher

et al., 2013; Fulcher and Jones, 2017).

This ‘highly-comparative’ approach involves comparison across a comprehensive collection of thou-

sands of diverse time-series features and has recently been operationalised as the hctsa (highly com-
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parative time-series analysis) toolbox (Fulcher et al., 2013; Fulcher and Jones, 2017, 2014). hctsa

has been used for data-driven selection of features that capture the informative properties in a given

dataset in applications ranging from classifying Parkinsonian speech signals (Fulcher et al., 2013)

to identifying correlates of mouse-brain dynamics in the structural connectome (Sethi et al., 2017).

These applications have demonstrated how automatically constructed feature-based representations

of time series can, despite vast dimensionality reduction, yield competitive classifiers that can be

applied to new data e�ciently (Fulcher and Jones, 2014). Perhaps most importantly, the selected

features provide interpretable understanding of the di↵erences between classes, and therefore a path

towards a deeper understanding of the underlying dynamical mechanisms at play.

Selecting a subset of features from thousands of candidate features is computationally expensive,

making the highly-comparative approach unfeasible for some real-world applications, especially those

involving large training datasets (Bandara et al., 2017; Shekar et al., 2018; Biason et al., 2017). Fur-

thermore, the hctsa feature library requires a Matlab license to run, limiting its widespread adoption.

Many more real-world applications of time-series analysis could be tackled using a feature-based

approach if a reduced, e�cient subset of features, that capture the diversity of analysis approaches

contained in hctsa, was developed.

In this study we develop a data-driven pipeline to distill reduced subsets of the most useful and com-

plementary features for classification from thousands of initial candidates, such as those in the hctsa

toolbox. Our approach involves scoring the performance of each feature independently according to

its classification accuracy across a calibration set of 93 time-series classification problems (Bagnall

et al., 2017b). We show that the performance of an initial (filtered) pool of 4791 features from hctsa

(mean class-balanced accuracy across all tasks: 77.2%) can be well summarised by a smaller set of

just 22 features (mean accuracy: 71.7%). We denote this high-performing subset of time-series fea-

tures as catch22 (22 CAnonical Time-series CHaracteristics). The catch22 feature set: (1) computes

quickly (⇠0.5 second/ 10 000 samples, roughly a thousand times faster than the full hctsa feature set

in Matlab) and empirically scales almost linearly, O(N1.16); (2) provides a low-dimensional summary

of time series into a concise set of interpretable characteristics that are useful for classification of

diverse real-world time-series; and (3) is implemented in C with wrappers for python, R, and Matlab,

facilitating fast time-series clustering and classification. We envisage catch22 expanding the set of

problems – including scientific, industrial, financial, and medical applications – that can be tackled
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using a common feature-based language of canonical time-series properties.

Given a suitable collection of peripheral nerve datasets, e.g., annotated recordings from di↵erent

nerves, di↵erent active fibre types, firing patterns, etc., the same pipeline could be used to generate

reduced feature-spaces for this kind of data. We did not have a suitable collection of datasets at our

disposal and one future task could be to collect such data to feed into our supervised feature-selection

pipeline.

5.2.1 Methods

We here describe the datasets we evaluate features on and the selection pipeline to generate a reduced

feature subset.

5.2.1.1 Data

To select a reduced set of useful features, we need to define a measure of usefulness. Here we use

a diverse calibration set of time-series classification tasks from the UEA/UCR (University of East

Anglia and University of California, Riverside) Time-Series Classification Repository (Bagnall et al.,

2017a). The number of time series per dataset ranges from 28 (‘ECGMeditation’) to 33 274 (‘Elec-

tricalDevices’) adding up to a total of 147 198 time series. Individual time series range in length

from 24 samples (‘ItalyPowerDemand’) to 3750 samples (‘HeartbeatBIDMC’), and datasets contain

between 2 classes (e.g., ‘BeetleFly’) and 60 classes (‘ShapesAll’). For 85 of the 93 datasets, unbal-

anced classification accuracies were provided for di↵erent shape-based classifiers such as dynamic

time warping (DTW) (Berndt and Cli↵ord, 1994) nearest neighbor, as well as for hybrid approaches

such as COTE (Bagnall et al., 2016). All unbalanced accuracies, aub, were computed using the fixed

training-test split provided by the UCR repository, as the proportion of class predictions that matched

the actual class labels:

aub(y, ŷ) =
1

nTS

nTSX

l=1

(ŷl = yl), (5.21)

where yl is the actual class, ŷl is the predicted class, nTS is the total number of time series in the

dataset, and is the indicator function.
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5.2.1.2 Time-series features

Our aim is to obtain a data-driven subset of the most useful time-series features by comparing across

as diverse a set of time-series analysis algorithms as possible. An ideal starting point for such an

exercise is the comprehensive library of over 7500 features provided in the hctsa toolbox (Fulcher

et al., 2013; Fulcher and Jones, 2017). Features were calculated in Matlab 2017a (a product of The

MathWorks, Natick, MA) using hctsa v0.97. For each dataset, each feature was linearly rescaled to

the unit interval.

We performed an initial filtering of all 7658 hctsa features based on their characteristics and gen-

eral applicability. Because the vast majority of time series in the UCR/UEA repository are z-score

normalised1, we first removed the 766 features that are sensitive to the mean and variance of the

distribution of values in a time series based on keywords assigned through previous work (Fulcher

et al., 2013), resulting in a set of 6892 features. We note that on specific tasks with non-normalised

data, features of the raw value distribution (such as mean, standard deviation, and higher moments)

can lead to significant performance gains and that for some applications, this initial preselection is

undesirable (Dau et al., 2018). Given a suitable collection of datasets in which the raw value distri-

butions contain information about class di↵erences, our pipeline can easily skip this preselection. We

next excluded the features that frequently outputted special values, which indicate that an algorithm

is not suitable for the input data, or that it did not evaluate successfully. Algorithms that produced

special-valued outputs on at least one time series in more than 80% of our datasets were excluded: a

total of 2101 features (across datasets, minimum: 655, maximum: 3427, mean: 1327), leaving a re-

maining set of 4791 features. This relatively high number of features lost during preselection reflects

our strict exclusion criterion for requiring real-valued outputs across a diverse range of input data,

and the restricted applicability of many algorithms (e.g., that require a minimum length of input data,

require positive-valued data, or cannot deal with data repeated identical values). For example, the

datasets with the most special-valued features are ‘ElectricDevices’ (3427 special-valued features),

which contains 96-sample time series with many repeated values (e.g., some time series contain just

10 unique values), and ‘ItalyPowerDemand’ (2678 special-valued features), which consists of very

short (24-sample) time series. The 4791 features that survived the preselection gave real-valued out-

1With the notable exception of four unnormalised datasets: ‘AALTDChallenge’, ‘ElectricDeviceOn’, ‘ECGMedita-
tion’, ‘HeartbeatBIDMC’.
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puts on at least 90% of the time series of all datasets, and 90% of them succeeded on at least 99% of

time series.

5.2.1.3 Performance-based selection

In contrast to typical feature-selection algorithms, which search for combinations of features that

perform well together (and might therefore include features that have low individual performance),

our procedure involves a pre-filtration to identify features that individually possess discriminatory

power across a diverse range of real-world data, before subsequently identifying those that exhibit

complementary behavior. To this end we used the pipeline depicted in Fig. 5.2.1, which evaluates

the univariate classification performance of each feature on each task, combines feature-scores across

tasks, and then selects a reduced set of the most useful features across a two-step filtering process

which involves: (1) performance filtering: select features that perform best across all tasks, and (2)

redundancy minimisation: reduce redundancy between features. The method is general and is easily

extendable to di↵erent sets of classification tasks, or to di↵erent initial pools of features. All analysis

was performed in Python 2.7 using scikit-learn and code to reproduce all of our analyses is

accessible on GitHub (https://github.com/chlubba/op_importance).

5.2.1.4 Quantifying feature performance

Our pipeline (Fig. 5.2.1) requires a method to score the performance of individual features across

classification tasks. We scored each feature by its ability to distinguish the labeled classes in each of

our M = 93 classification tasks and then computed a combined performance score for that feature

across all tasks. Classification was performed using a decision tree with stratified cross validation

with NCV folds. The number of folds, NCV, was chosen separately for each task according to:

NCV = min

8>><
>>:10,max

2
6666642,

Nc

min
k=1

0
BBBBB@

NTSX

l=1

(yl = k)
1
CCCCCA

3
777775

9>>=
>>; , (5.22)

where NTS is the number of time series, Nc is the number of classes, and yl is the class-label of the lth

time series.

For feature i (i = 1, ..., 4791) on classification task j ( j = 1, ...,M), we computed the mean class-
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Figure 5.2.1: Given a set of classification tasks, our pipeline selects a reduced set of high-
performing features while minimising inter-feature redundancy. A Statistical prefiltering: We identified
features with performance consistent with that of random number generators. To this end, we derived null
accuracy distributions for each feature on each task by classifying repeatedly on shuffled class labels. P-
values from those null distributions were combined across datasets to identify features with performance
consistent with random-number generators. B Performance filtering: We selected an intermediate set of
top features by ranking and thresholding the combined accuracy over all datasets. C Redundancy min-

imisation: Top performing features were clustered into groups with similar performance across tasks to
minimise redundancy between the final set of canonical features. We selected a single representative
feature per cluster to yield a canonical feature set.
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balanced classification accuracy across folds ai, j as a performance score.

ai, j(y, ŷ,w) =
1

PNTS
l=1 wl

NTSX

l=1

(ŷl = yl)wl, (5.23)

where the weights for each time series wl compensate for imbalances in the number of samples per

class, wl = 1/
PNTS

m=1 (ym = yl). To combine scores across tasks, we computed a normalised accuracy

of the jth task by dividing raw feature accuracies, ai, j, by the mean accuracy across all features on

that task, ā j, as follows:

an
i, j =

ai, j

ā j
. (5.24)

This allowed us to quantify the performance of each feature on a given task relative to the perfor-

mances of other features in our library.

Finally, the combined feature-accuracy-score across all tasks, an,c
i , was calculated as the mean over

normalised accuracies, an
i, j, on our M = 93 tasks:

an,c
i =

1
M

MX

j=1

an
i, j. (5.25)

5.2.1.5 Statistical prefiltering

Given the size and diversity of features in hctsa, we first wanted to determine whether some features

exhibited performance consistent with chance on this set of classification tasks. To estimate a p-value

for each feature on each classification task, we generated null accuracy distributions, as
i, j (superscript

s incidating ‘shu↵eled’), using a permutation-based procedure that involved repeated classification

on randomly shu✏ed class labels, shown in Fig. 5.2.1A. The computational expense of estimating

⇠440,000 p-values using permutation testing, one for each of the 4 791 features on each of the 93

problems, scales linearly with the number of repetitions. To limit computation time to within reason-

able bounds, we fitted a Gaussian approximation, estimated from 1000 null samples for each each

feature-task combination, as
i, j, and used it to estimate p-values to a resolution beyond the limits of

traditional permutation testing with this many null samples (i.e., 0.001). From visual inspection, the

distributions were mostly unimodal and approximately normally distributed and, as expected, had

higher variance on datasets with fewer time series.
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The p-values for a given feature across all classification tasks were combined using Fisher’s method

(Fisher, 1925) and corrected for multiple hypothesis testing across features using the Holm-Bonferroni

method (Holm, 1979) at a significance level of 0.05.

5.2.1.6 Selecting a canonical set of features

From the features that performed significantly better than chance, we selected a subset of � high-

performing features by ranking them by their combined normalised accuracy an,c (Fig. 5.2.1B), com-

paring values in the range 100  �  1000. As shown in Fig. 5.2.1C, we then aimed to reduce the

redundancy in these top-performing features, defining redundancy in terms of patterns of performance

across classification tasks. To achieve this, we used hierarchical clustering on the Pearson correlation

distance, di j = 1 � ri j between the M-dimensional performance vectors of normalised accuracies an

of features i and j. Clustering was performed using complete linkage at a threshold � = 0.2 to form

clusters of similarly performing features, that are all inter-correlated by ri j > 1 � � (for all i, j in the

cluster). We then selected a single feature to represent each cluster, comparing two di↵erent methods:

(i) the feature with the highest normalised accuracy combined across tasks, and (ii) manual selec-

tion of representative features to favour interpretability (while also taking into account computational

e�ciency and classification performance).

5.2.1.7 Overall classification performance

To evaluate the classification performance of di↵erent feature sets, and compare our feature-based

classification to alternative time-series classification methods, we used two di↵erent accuracy mea-

sures. Comparisons between di↵erent sets of hctsa-features were based on the mean class-balanced

accuracy across M tasks and NCV cross-validation folds:

atot =
1
M

MX

j=1

1
NCV, j

NCV, jX

k=1

aj,k. (5.26)

When comparing our feature sets to existing methods we used the mean unbalanced classification

accuracy across tasks as in Eq. (5.21) on the given train-test split to match the metric used for the
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accuracies supplied with the UEA/UCR repository:

aub
tot =

1
Ntasks

NtasksX

j=1

aub
j . (5.27)

5.2.1.8 Execution times and scaling

One of the merits of a small canonical feature set for time-series characterisation is that it is quick

to compute. To compare the execution time of di↵erent feature sets, we used a benchmark set of 40

time series from di↵erent sources, including simulated dynamical systems, financial data, medical

recordings, meteorology, astrophysics, and bird sounds (see Sec. 5.2.4.A for a complete list). To

estimate how features scale with time-series length, we generated multiple versions for each of our 40

reference time series of di↵erent lengths from 50 to 10 000 samples. Lengths were adapted by either

removing points after a certain sample count or by up-sampling of the whole time series to the desired

length. Execution times were obtained on a 2.2 GHz Intel Core i7, using single-threaded execution

(although we note that feature calculation can be parallelised straightforwardly).

5.2.1.9 Selecting the two most informative features from a small subset

For the purpose of quickly analysing a dataset visually in feature space, it can be helpful to identify

the two features that, taken together, are the most informative to distinguish between time-series

classes of the selected dataset. To this end, we used sequential forward selection (Whitney, 1971;

Fulcher and Jones, 2014) that first selects a single feature which achieves the best mean class-balanced

accuracy across cross-validation folds and then iterates over the remaining features to select the one

that, combined with the first feature, reaches the best accuracy.

5.2.2 Results

We present results of using our pipeline to obtain a canonical set of 22 time-series features from an

initial pool of 4791 candidates. We name our set catch22 (22 CAnonical Time-series CHaracteristics),

which approximates the classification performance of the initial feature pool to 90% and computes in

less than 0.5 s on 10 000 samples.
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Figure 5.2.2: Normalisation of feature accuracies allows comparison of performance scores across
a diverse set of 93 classification tasks. A A 93 ⇥ 93 matrix of Pearson correlation coefficients between
the 4791-dimensional accuracy vectors of pairs of tasks, reordered according to hierarchical linkage clus-
tering. B Each line shows the smoothed distribution over feature-accuracies on one classification task.
Differences in task difficulty are reflected by a wide range of accuracies. C The accuracies plotted in B
were normalised by the mean accuracy of each task, as in Eq. (5.24). The red line shows the distribution
of normalised and combined accuracies across all tasks, Eq. (5.25).

5.2.2.1 Performance diversity across classification tasks

We first analyse the 93 classification tasks, which are highly diverse in their properties (see Sec. 5.2.1.1)

and di�culty, as shown in Fig. 5.2.2. We characterised the similarity of two tasks in terms of the types

of features that perform well on them, as the Pearson correlation coe�cient between accuracies of all

features, shown in Fig 5.2.2A. The figure reveals a diversity of performance signatures across tasks:

for some groups of tasks, similar types of features contribute to successful classification, whereas

very di↵erent types of features are required for other tasks. The 93 tasks also vary markedly in

their di�culty, as judged by the distribution of accuracies, ai, j, across tasks, shown in Fig. 5.2.2B.

We normalised feature accuracies across tasks by dividing them by the mean accuracy of the task at

hand, Eq. (5.24), yielding normalised accuracies, an
i, j, that were comparable across tasks, shown in

Fig. 5.2.2C. Note that this normalised accuracy scores features relative to all other features on a given

task. The red line in Fig. 5.2.2C shows the distribution of the mean normalised accuracies across tasks

an,c
i , Eq. (5.25).

5.2.2.2 Features with performance consistent with chance

To detect whether some features in hctsa exhibit a combined performance across classification tasks

that is consistent with the performance of a random-number generator, we used a permutation-testing

based procedure (described in Sec. 5.2.1.5). At a significance level p < 0.05, 145 of the 4791 features
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features starts to saturate at around 20 features. The performance of our final set of features is not
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tures (� = 100, 200, ..., 1000), which were clustered to obtain single features (see Methods Sec. 5.2.1.6).
B We select the number of top features from a relative threshold on the combined normalised accuracy
across tasks shown as a dashed blue vertical line, yielding a set of 710 high-performing features. C High-
performing features were clustered on performance-correlation distances using hierarchical complete link-
age clustering, using a distance threshold � of of 0.2, yielding 22 clusters.

(or 3%) exhibited chance-level performance. These 145 features were mostly related to quantifying

complex dynamics in longer time series, such as nonlinear time-series analysis methods, long-range

automutual information; properties that are not meaningful for the short, shape-based time-series

patterns that dominate the UEA/UCR database.

5.2.2.3 Top-performing features

As a second step in our pipeline, we ranked features by their combined accuracy across tasks and then

selected a subset of � best performers. How important is the choice of �?

Fig. 5.2.3A shows how the relative di↵erence in classification accuracy between full and reduced

set (atot, f ull � atot,subset)/atot, f ull (blue line) and computation time (red line) evolve when increasing

the number of clusters (1 to 50) into which the top performing features are grouped. The relative

classification accuracy di↵erence saturated at under 10% for between 20 and 30 selected features

showing that this modest number of estimators covers most of diversity of the full set. Error bars

signify the standard deviation over accuracies and computation times when starting from di↵erent

numbers of top performers � = 100, 200, 300, ..., 1000. Their tightness demonstrates that the accuracy

of the final feature subset was not highly sensitive to the value of �. Computation time is more
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variable. To obtain a reduced set of high-performing features, we used a threshold on the combined

normalised accuracy an,c of one standard deviation above the mean, ath = an,c + �an,c , shown in

Fig. 5.2.3B, yielding a set of 710 features.

5.2.2.4 A canonical feature set, catch22

We reduced inter-feature redundancy in hctsa (Fulcher et al., 2013), by applying hierarchical com-

plete linkage clustering based on the correlation distances between performance vectors of the set of

710 high-performing features, as shown in Fig. 5.2.3C. Clustering at a distance threshold � = 0.2

(see Sec. 5.2.1.6) yielded 22 clusters of similarly-performing features, where the correlation of per-

formance vectors between all pairs of features within each cluster was greater than 0.8. Di↵erent

values of � correspond to di↵erent penalties for redundancy; e.g., higher values (� > 0.4) group all

features into a single cluster, whereas low values would form many more clusters and increase the

size and complexity of computing the resulting canonical feature set. We found � = 0.2 to represent a

good compromise that yields a resulting set of 22 clusters that matches the saturation of performance

observed between 20–30 features (Fig. 5.2.3A).

We next aimed to capture the behavior of each of the 22 clusters as a single feature with the most
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representative behavior of its cluster. We first achieved this automatically: selecting the feature with

the highest combined normalised accuracy an,c from each cluster. When classifying our tasks with

this set of 22 best estimators, it reached an overall class-balanced accuracy over folds and tasks atot,

Eq. (5.27), of ⇠70%, compared to ⇠77% using the full set. However, it is desirable for our 22 fea-

tures to be as fast and easily interpretable as possible. For 6 of the 22 clusters, the top-performing

feature was relatively complicated to compute and only o↵ered a relatively small improvement in

performance relative to simpler features with similar performance in the same cluster. In these cases,

we manually selected a simpler and more interpretable feature, yielding a final canonical set of 22

features which we call catch22 (CAnonical Time-series CHaracteristics). The 22 features that make

up catch22 are described in Tab. 5.2.1. The catch22 features reflect the diverse and interdisciplinary

literature of time-series analysis methods that have been developed to date (Fulcher et al., 2013),

simultaneously probing di↵erent types of structure in the data, including properties of the distribu-

tion of values in the time series, its linear and nonlinear autocorrelation, predictability, scaling of

fluctuations, and others.
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Using the diverse canonical catch22 feature set, the mean class-balanced accuracy across all datasets,

atot, of catch22 was ⇠72%, a small reduction relative to the ⇠77% achieved when computing all

4791 features and very similar to the ⇠70% of the 22 highest-ranked features in each cluster. See

Fig. 5.2.4A for a dataset-by-dataset scatter. The change in mean accuracy across folds and tasks, atot,

from using the 22 features of catch22 instead of all 4791 features depends on the properties of a given

dataset, but there was an average reduction in class-balanced accuracy (mean across folds) of 7.5%

relative to the full set accuracy (77.2% full vs 71.7% canonical, 7.5 percentage points). For some

di�cult problems, the increased computational expense of the full set of 4791 features yields a large

boost in classification accuracy (accuracy of catch22 lower by a relative di↵erence of 37% for the

dataset ‘EthanolLevel’; 50.2% full vs 31.8% catch22). The reduced set gave better mean performance

in only a small number of cases: e.g., for ‘ECGMeditation’ with 60% full vs 81.2% catch22; given

that this dataset contained just 28 time series and had a high standard deviation in accuracies of the

full set between folds (35.3%), the performance might not be significantly increased.

How does the performance of the data-driven features, catch22, compare to other small feature sets

proposed in the literature? One popular collection of features is the manually-curated tsfeatures

package (Hyndman et al., 2019) of which certain features were used for forecasting (Bandara et al.,

2017), anomaly detection (Hyndman et al., 2016), and clustering (Williams, 2014). While not being

explicitly optimised for classification and clustering, its widespread adoption demonstrates its ver-

satility in characterising time series and makes it an interesting candidate to compare with catch22.

We classified all datasets based on the 16 features of tsfeatures (version 1.0.0) listed in Tab. 5.2.2.

Reassuringly, the class-balanced accuracies of both feature sets were very similar across the generic

UCR/UAE datasets, with a Pearson correlation coe�cient r = 0.93 (Fig. 5.2.5). The mean accuracy

across tasks and folds, atot, was slightly higher for catch22 (71.7%) than tsfeatures (69.4%). Our

pipeline is general, and can select informative subsets of features for any collection of problems; e.g.,

for a more complex set of time-series classification tasks, our pipeline may yield estimators of more

distinctive and complex dynamics.

frequency nperiods seasonal_period trend

spike linearity curvature e_acf1

e_acf10 entropy x_acf1 x_acf10

diff1_acf1 diff1_acf10 diff2_acf1 diff2_acf10

Table 5.2.2: The 16 features of tsfeatures used for classification.
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Figure 5.2.5: Our automatically selected catch22 feature set performs as well as the standard fea-
ture set for simple time series contained in the tsfeatures package. Class-balanced accuracy is
shown for tsfeatures and catch22, error bars indicate standard deviation across folds. A gray dashed
equality line is annotated, and particular datasets with the greatest differences in accuracy are highlighted
as red circles and labeled.

How diverse are the features in catch22? Fig. 5.2.6 displays the class-balanced accuracies of each

of the catch22 features (rows) on each task (columns), z-normalised by task. Some groups of tasks

recruit the same types of features for classification (reflected by groups of columns with similar pat-

terns). Patterns across rows capture the characteristic performance signature of each feature, and are

visually very di↵erent, reflecting the diversity of features that make up catch22. This diversity is

key to being able to probe the di↵erent types of temporal structure required to capture specific di↵er-

ences between labeled classes in di↵erent time-series classification tasks in the UCR/UAE repository.

Feature-performances often fit the known dynamics in the data, e.g., for the two datasets ‘FordA’

and ‘FordB’ in which manual inspection reveals class di↵erences in the low frequency content, the

most successful feature is ‘CO_FirstMin_ac’ which finds the first minimum in the autocorrelation

function. In some datasets, high performance can be attained using just a single feature, e.g., in

‘ChlorineConcentration’ (‘SB_motifThree_quantile.hh’, 52.3% vs 67.5% class-balanced mean

accuracy over folds a for catch22 vs all features) and ‘TwoPatterns’ (‘CO_trev_1.num’, 73.4% vs

88.1%).
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Figure 5.2.6: The canonical features in catch22 are sufficiently diverse to enable high performance
across diverse classification tasks. The matrix shows class-balanced accuracies, z-scored per task (col-
umn), truncated at ±3, and was reordered by hierarchical linkage clustering based on correlation distance
in both columns (93 classification tasks) and rows (22 features). Similar columns are visible for datasets
of the same type. The catch22 features each show strengths and weaknesses, and their diversity allows
them to complement each other across a range of tasks.

5.2.2.5 Computation time and complexity

The classification performance using all 4791 features is well approximated by the 22 features in

catch22, but how much computational e↵ort does it save? To maximise the acceleration in execu-

tion time and make our condensed subset accessible from all major ecosystems used by the data-

mining community, we implemented all catch22 features in C and wrapped them for R, Python and

Matlab. All code is accesible on GitHub https://github.com/chlubba/catch22. Using this

C-implementation, the catch22 feature set can be computed sequentially on all 93 datasets of the

UEA/UCR repository in less than 15 minutes on an Intel Core i7. On average, the features for each

dataset were calculated within 9.4 s, the slowest being ‘StarLightCurves’ with 97 s due to its many

(9236) relatively long (1024 samples) time series. The 27 quickest datasets stayed below 1 s in com-

putation time; the three quickest, ‘BirdChicken’, ‘Co↵ee’, and ‘BeetleFly’ took less than 0.25 s.

While time series contained in the UEA/UCR repository are usually short, with an average length

of 500 samples, real-world recordings can be substantially longer. Therefore, to understand how

the computation times of our feature set scale with time-series lengths above those available in the

UEA/UCR repository, we used a set of 40 reference time series from diverse sources (described in
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Sec. 5.2.1.8) to evaluate execution times of all hctsa- and the catch22-features for longer time series.

Fig. 5.2.4B shows execution times of di↵erent feature sets as a mean over our 40 reference time series

at length 10 000. The Matlab implementation of catch22 accelerates computation time by a factor

of ⇠30 compared to the full set of 4791 from ⇠300s to ⇠10s. The C-implementation of catch22

again reduces execution time by a factor of approximately 30 compared to the Matlab implementa-

tion to ⇠0.3 s at 10 000 samples, signifying an approximately 1000-fold acceleration compared to the

full hctsa feature set in Matlab. The C-version of catch22 exhibits near-linear computational com-

plexity, O(N1.16), as shown in Fig. 5.2.4C. Features varied markedly in their execution time, ranging

from (C-implemented) DN_HistogramMode_10 (< 0.1 ms for our 10 000-sample reference series) to

PD_PeriodicityWang_th0_01 (79 ms), with the latter representing approximately one third of the

total computation time for catch22. A further acceleration by a factor of 3 could be achieved through

parallelisation, limited by the slowest feature PD_PeriodicityWang_th0_01 which takes up one

third of the overall computation time.

5.2.2.6 Performance comparison

Compared to conventional shape-based time-series classifiers, that use distinguishing patterns in the

time domain as the basis for classification (Fulcher and Jones, 2014; Fulcher, 2018), feature-based

representations can reduce high-dimensional time series down to a compact and interpretable set of

important numbers, constituting a dramatic reduction in dimensionality. While this computationally

e�cient representation of potentially long and complex streams of data is appealing, important infor-

mation may be lost in the process, resulting in poorer performance than alternative methods that learn

classification rules on the full time-series object. To investigate this, we compared the classification

performance of catch22 (using a decision tree classifier as for every classification, see Sec. 5.2.1.4) to

that of 36 other classifiers (accuracies obtained from the UEA/UCR repository (Bagnall et al., 2017a))

including shape-based approaches like Euclidean or DTW nearest neighbor, ensembles of di↵erent

elastic distance metrics (Lines and Bagnall, 2015), interval methods, shapelets (Ye and Keogh, 2009),

dictionary based classifiers, or complex transformation ensemble classifiers that combine multiple

time-series representations (COTE) (Bagnall et al., 2016). All comparisons are based on (class un-

balanced) classification accuracies aub
tot on a fixed train-test split obtained from UCR/UEA classifi-

cation repository. As shown in Fig. 5.2.7A, most datasets exhibit similar performance between the



162 Chapter 5. Feature-based time-series analyses

Plane
ECG5000

CinCECGtorso

1.0

0.8

0.6

0.4

0.2

0.0

a
cc

u
ra

cy
 e

xi
st

in
g

 m
e

th
o

d
s

1.00.80.60.40.20.0

ShapeletSim

1.0

0.8

0.6

0.4

0.2

0.0
1.00.80.60.40.20.0

accuracy catch22 features

SmallKitchenAppliances

OSULeaf

ShapeletSim

UWaveGestureLibraryAll

Euclidean 1NN

DTW 1NN
existing methods
better

canonical features better

A B

accuracy catch22 features

UWaveGestureLibraryAll ECG5000 Plane

CinCECGtorso

OSULeaf

a
cc

u
ra

cy
 e

xi
st

in
g

 m
e

th
o

d
s

Figure 5.2.7: Despite massive dimensionality reduction to 22 features, the catch22 representation
often achieves similar or better performance on time-series classification tasks. A Classification
accuracy is plotted from using the feature-based catch22 representation versus the performance of a
range of existing methods across the 93 tasks in the UEA/UCR repository. Each dot represents the mean
accuracy of alternative classifiers on a given dataset; error bars show the standard deviation over the
36 considered other methods containing simple full sequence shape-based approaches, over ensembles,
shapelets, intervals, to complex transformation ensembles. An equality gray-dashed line is plotted, and
regions in which catch22 or other methods perform better are labeled. B The two purely shape-based
classifiers, Euclidean (blue circles) and DTW (green circles) 1 nearest-neighbor, are compared against
catch22 features and a classification tree. All accuracies are unbalanced, as Eq. (5.21), and evaluated on
the fixed train-test split provided in the UEA/UCR repository.

alternative methods and catch22, with a majority of datasets exhibiting better performance using ex-

isting algorithms than catch22. However, despite drastic dimensionality reduction, our feature-based

approach outperforms the existing methods on a range of datasets, some of which are labeled in

Fig. 5.2.7A. To better understand the strengths and weaknesses of our low-dimensional feature-based

representation of time series, we compared it directly to two of the most well-studied and purely

shape-based time-series classification methods: Euclidean-1NN and DTW-1NN (‘DTW-R1-1NN’ in

the UEA/UCR repository), as shown in Fig. 5.2.7B. There is an overall high correlation in perfor-

mance across datasets, with a range of average performance (unbalanced classification rate on the

given train-test partition aub
tot): catch22 (69%), Euclidean 1-NN (71%), and DTW 1-NN (74%). The

most interesting datasets are those for which one of the two approaches (shape-based or feature-

based) markedly outperforms the other, as in these cases there is a clear advantage to tailoring your

classification method to the structure of the data (Fulcher, 2018); selected examples are annotated

in Fig. 5.2.7B). We next investigate the characteristics of time-series datasets that make them better

suited to di↵erent classification approaches.
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5.2.2.7 Case studies: feature- vs shape-based representations

There is no single representation that is best for all time-series datasets, but rather, the optimal repre-

sentation depends on the structure of the dataset and the questions being asked of it (Fulcher, 2018).

In this section we characterise the properties of selected datasets that show a strong preference for

either feature-based or shape-based classification, as highlighted in Fig. 5.2.7.

One striking example, is that of ‘ShapeletSim’, where the two labeled classes are much more ac-

curately distinguished using the catch22 feature-based representation (unbalanced accuracy aub of

100%) than by all but two existing methods (BOSS (Schäfer, 2015) and Fast Shapelets (Rakthan-

manon and Keogh, 2013)) with a mean and standard deviation over all other classifiers of 69.0 ±

18.7% (DTW-1NN 65%, Euc-1NN 53.9%). To understand the discrepancy, we visualised the data

in the time-domain, as shown in Fig. 5.2.8A (upper), where one example time series and the mean

in each class are plotted, revealing no consistent time-domain shape across the 100 instances of each

class. However, the two classes of time series are clearly distinguished by their frequency content,

as shown in the corresponding Welch power spectra in Fig. 5.2.8A (lower). The features in catch22

capture the temporal autocorrelation properties of each time series in various ways, facilitating an

e�cient representation to successfully capture class di↵erences in ‘ShapeletSim’; these di↵erences

cannot be captured straightforwardly from the time series’ shape. In general, datasets without reliable

shape di↵erences between classes pose problems for time-domain distance metrics; consequently, the

catch22 feature-based representation often yields superior classification performance. Examples are

‘USOLeaf’ (86.7 catch22 vs 69.5±13.3% others; DTW-1NN 59.1%, Euc-1NN 52.1%), and ‘Small-

KitchenAppliances’ (73.3% vs 63.3 ± 12.1%; DTW-1NN 64.3%, Euc-1NN 34.4%).

An example of a dataset that is well-suited to shape-based classification is the seven-class ‘Plane’

dataset, shown in Fig. 5.2.8B. Apart from a minority of anomalous instances in e.g., the ‘Harrier’

class, each class has a subtle but robust shape, and these shapes are phase-aligned, allowing shape-

based classifiers to accurately capture class di↵erences. Despite being visually well-suited to shape-

based classification, catch22 captures the class di↵erences with only a small reduction in accuracy

aub (89.5%) compared to the shape-based classifiers (99.2 ± 1.4% over all given classifiers; DTW-

1NN 100%, Euc-1NN 96.1%), demonstrating that feature-based representations can be versatile in

capturing di↵erences in time-series shape, despite a substantial reduction in dimensionality.
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Figure 5.2.8: Differences in the frequency domain are better picked up by features; subtle differ-
ences in shape are better detected by shape-based methods. Each subplot represents a class, blue
lines show individual time series, red lines show an average over all time series in one class. A In the time
domain (upper two plots), we show one example time series of the ‘ShapeletSim’ dataset (blue) and the
average across all time series (red) for each class. The lower two plots display the Welch spectra of all
time series individually in blue and the average over single time-series spectra in red. The mean spectra of
the two classes differ visibly while there is no reliable difference in the time domain. B The individual (blue)
and averaged (red) time series of the dataset ‘Plane’ should favor shape-based comparisons because of
the highly reliable and aligned shapes in each class. C For the dataset ‘CincECGtorso’, all four classes
can be well distinguished by their temporal offsets.
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As a final example we consider the four classes of the ‘CinCECGtorso’ dataset, which are similarly

accurately classified by our catch22 feature-based method (78.9%) and the average existing classi-

fier (81.3 ± 13.3%). Interestingly, when comparing selected shape-based classifiers in Fig. 5.2.7,

Euclidean-1NN (89.7%) outperforms the more complex DTW-1NN (65.1%). This di↵erence in per-

formance is due to the subtle di↵erences in shape (particularly temporal o↵set of the deviation from

zero) between the four classes, as shown in Fig. 5.2.8B. Simple time-domain distance metrics like

Euclidean-1NN will capture these important di↵erences well, whereas elastic distance measures like

DTW shadow the informative temporal o↵sets. Converting to our feature-based representation dis-

cards most of the phase-information but still leads to a high classification accuracy.

5.2.2.8 Informative features provide understanding

Concise, low-dimensional summaries of time series, that exploit decades of interdisciplinary methods

development for time-series analysis, are perhaps most important for scientists because they pro-

vide a means to understand class di↵erences. Often a researcher will favor a method that provides

interpretable understanding that can be used to motivate new solutions to a problem, even if it in-

volves a small drop in classification accuracy relative to an opaque, black-box method. To demon-

strate the ability of catch22 to provide understanding into class di↵erence, we projected all datasets

into a two-dimensional feature space determined using sequential forward selection (Whitney, 1971)

as described in Sec. 5.2.1.9. Two examples are shown in Fig. 5.2.9. In the dataset ‘ShapeletSim’

(Fig. 5.2.9A), the simple feature, SB BinaryStats diff longstretch0, clearly distinguishes the

two classes. This simple measure quantifies the length of the longest continued descending incre-

ments in the data which enables a perfect separation of the two classes because time series of the

‘triangle’ class vary on a slower timescale than ‘noise’ time series.

In the most accurate two-dimensional feature space for the 7-class ‘Plane’ dataset, shown in Fig. 5.2.9B,

each class occupies a distinctive part of the space. The first feature, FC LocalSimple mean3 stderr

captures variability in residuals for local 3-sample mean predictions of the next datapoint applied to

through time, while the second feature, SP Summaries welch rect area 5 1, captures the propor-

tion of low-frequency power in the time series. We discover, e.g., that time series of ‘F-14 wings

open’ are less predictable from a 3-sample running mean than other planes, and that time series of
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‘Harrier’ planes exhibit a greater proportion of low-frequency power than other types of planes. Thus,

in cases when both shape-based and feature-based methods exhibit comparable performance (unbal-

anced accuracies aub on given split: 89.5% by catch22 vs 99.1% mean over other classifiers), the

ability to understand class di↵erences can be a major advantage of the feature-based approach.
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Figure 5.2.9: Class differences can be interpreted using feature-based representations of time
series. We plot a projection of time series into an informative two-dimensional feature space (esti-
mated from catch22 using sequential forward selection, see Sec. 5.2.1.9), where each time series is
a point in the space and colored by its class label. Plots are shown for two datasets: A ‘Shapelet-
Sim’, and B ‘Plane’; in both cases, all labeled classes are clearly distinguished in the space. In
‘ShapeletSim’, SB_BinaryStats_diff_longstretch0, which calculates the length of the longest run
of consecutive decreases in the time series. The two features selected for the ‘Plane’ dataset are the
local predictability measure, FC_LocalSimple_mean3_stderr, and the low-frequency power estimate,
SP_Summaries_welch_rect_area_5_1.

5.2.3 Discussion

Feature-based representations of time-series can distill complex time-varying dynamical patterns into

a small set of interpretable characteristics that can be used to represent the data for applications like

classification and clustering. Most importantly, features connect the data analyst to deeper theory,

allowing interpretation of the properties of the data that facilitate successful performance. While

large feature libraries have helped to overcome the limitations of manual, subjective curation of time-

series features, they are ine�cient and computationally expensive. Overcoming this limitation, here

we introduce a methodology to generate small, canonical subsets of features that each display high

classification performance across a given ensemble of tasks, and exhibit complementary performance

characteristics with each other. We apply the method to a set of 93 classification tasks from the

UCR/UAE repository, showing how a large library of 4791 features can be reduced to a canonical

subset of just 22 features, catch22, which displays similar classification accuracy as the full set (rel-
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ative reduction of 7.5% on average, 77.2% vs 71.7%), computes quickly (<0.5s/10 000 samples),

scales approximately linearly with time-series length (O(N1.16)), and allows the investigator to learn

and understand what types of dynamical properties distinguish the labeled classes of their dataset.

Compared to shape-based methods like dynamic time warping (DTW), catch22 gives comparable,

and often superior classification performance, despite substantial dimensionality reduction. Using

case studies, we explain why some datasets are better suited to shape-based classification (e.g., there

are characteristic aligned shapes within each class), while others are better suited to feature-based

classification (e.g., where classes do not have a characteristic, temporally aligned shape, but have

characteristic dynamical properties that are encapsulated in one or more time-series features).

While some applications may be able to justify the computational expense of searching across a large

feature library such as hctsa (Fulcher and Jones, 2014, 2017), the availability of an e�cient, reduced

set of features, as catch22, will make the advantages of feature-based time-series classification and

clustering more widely accessible. As an example application catch22 is being used in the self-

organising time-series database for data-driven interdisciplinary collaboration CompEngine to assess

the similarity of recordings (Fulcher et al., 2019). Unlike the Matlab-based hctsa, catch22 does not

require a commercial license to run, computes e�ciently, and scales approximately linearly with time-

series length in the cases we tested. This makes it straightforwardly applicable to much longer time

series than are typically considered in the time-series classification literature, e.g., for a 10 000-sample

time series, catch22 computes in 0.5 s. As well as being suitable for long recordings, feature-based

representations do not require all time series to be the same length (unlike conventional shape-based

classifiers), opening up the feature-based approach to new types of datasets – and indeed new types of

analyses. Even though catch22 is selected here based on classification performance, the availability

and ease of computing catch22 opens up applications to areas including feature-based time-series

modeling, forecasting, anomaly detection, motif discovery, and others. To facilitate its adoption, we

provide an e�cient C-implementation of catch22, with wrappers for Matlab, Python, and R.

We have shown that the most useful representation of a time series varies widely across datasets, with

some problems better suited to feature-based classification, and others better suited to shape-based

classification. The 22 features selected here are tailored to the properties of the UCR/UEA datasets

(which are typically short and phase-aligned), but the method we present here is general and could be

used to generate reduced feature sets tailored to any application domain of interest that allows indi-
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vidual features to be assigned performance scores. For example, given a di↵erent set of classification

datasets where key class di↵erences are the result of subtle variations in dynamical properties in long

streams of time-series data, we would obtain a canonical set that might include features of long-range

automutual information or measures the nonlinear time-series analysis literature: very di↵erent fea-

tures to the relatively simple measures contained in catch22. As new time-series datasets are added to

the UCR/UEA repository, that better capture the diversity of time-series data studied across industry

and science, our feature reduction method could be rerun to extract new canonical feature sets that

reflect the types of time-series properties that are important to measure in the new data. Note that

hybrid methods such as COTE (Bagnall et al., 2016), which are not limited to a single time-series

representation but can adapt to the problem at hand, consistently outperform both the shape-based

existing classifiers and our features at the price of a much higher computational e↵ort. Given its

computational e�ciency, catch22 could be incorporated straightforwardly in these ensemble-based

frameworks of multiple representations. Here we excluded features that are sensitive to the location

and spread of the data distribution, to ensure a fair comparison to shape-based methods which use nor-

malised data; but for many real-world applications these could be highly relevant and should therefore

be retained to allow improvements in classification accuracy. Our selection pipeline is agnostic to the

classification task collection used and can in principle be generalised beyond classification tasks to

di↵erent time-series analyses as well. Here we score the performance of each feature on a given

task as the classification accuracy, but this metric could be adapted to allow application to regression

problems (correlation of a feature with the exogenous target variable), forecasting problems (pre-

diction error), and clustering problems (separation of known clusters). The proposed method has

the advantage of identifying individually informative estimators and transparently grouping features

into similarly performing clusters for enhanced interpretability. Still, other approaches for selecting

feature subsets exist, such as sequential forward selection or LASSO, and it would be interesting to

compare the results of alternative pipelines building on these existing selection techniques with our

results in future work.

In conclusion, here we present catch22, a concise, accessible feature-based summary of an interdis-

ciplinary time-series analysis literature for use in time-series classification tasks. We hope that the

ability to readily leverage feature-based representations of time series – and to generate new reduced

feature sets tailored to specific domain problems – will aid diverse applications involving time series
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including feature-based characterisation of peripheral nerve recordings.
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5.2.4 Appendix

5.2.4.A Time series for computation time evaluation

A selection of 40 time series was obtained from the dataset ‘1000 Empirical Time series’ (Fulcher,

2017).

ID name keywords

1 NS beta L10000 a1 b3 2.dat synthetic,noise,beta
25 ST M5a N10000 a-0.01 b-0.6 c0 d0 x0 1 2.dat synthetic,stochastic,SDE,M5
53 SY rwalk L10000 20.dat synthetic,randomwalk
75 FL ddp L300 N5000 IC 0.1 0.1 y.dat synthetic,dynsys,ddp
106 FL lorenz L250 N10000 IC 0 -0.01 9.1 y.dat synthetic,dynsys,chaos,lorenz
125 FL shawvdp L300 N5000 IC 1.3 0.1 x.dat synthetic,dynsys,shawvdp
158 MP burgers L300 IC -0.2 0.1 x.dat synthetic,map,burgers
175 MP chirikov L300 IC 0.2 6 y.dat synthetic,map,chirikov
211 MP henon L1000 a1.4 b0.3 IC 0 0.9.dat synthetic,map,henon
225 MP holmescubic L300 IC 1.7 0 y.dat synthetic,map,holmescubic
263 MP lorenz3d L300 IC 0.51 0.5 -1 x.dat synthetic,map,chaos,lorenz3d
275 MP pinchers L5000 s2.1c 0.55.dat synthetic,map,pinchers
316 MP spence L5000 x0 0.27.dat synthetic,map,spence
325 MP tent L5000 A1.88.dat synthetic,map,tent,chaos
369 SY MA L500 p8 7.dat synthetic,MA,MA8
375 SY MIX p0.3 L5000 5.dat synthetic,MIXP,MIX0.3
421 FI yahoo HL KLSE.dat finance,yahoo,opening
425 FI yahoo HL z28 SPMIB.dat finance,yahoo,opening
474 FL dblscroll L1000 N5000 IC 0.01 0.01 0 z.dat synthetic,dynsys,chaos,dblscroll
475 FL dblscroll L200 N10000 IC 0.01 0.01 0 z.dat synthetic,dynsys,chaos,dblscroll
525 FL moorespiegel L250 N1000 IC 0.1 0 0 x.dat synthetic,dynsys,

chaos,moorespiegel
526 FL moorespiegel L250 N5000 IC 0.1 0 0 x.dat synthetic,dynsys,

chaos,moorespiegel
575 FL simpqcf L1000 N10000 IC -0.9 0 0.5 z.dat synthetic,dynsys,chaos,simpqcf
579 FL simpqcf L2000 N1000 IC -0.9 0 0.5 z.dat synthetic,dynsys,chaos,simpqcf
625 MP Lozi iii.dat synthetic,map,chaos,lozi
631 MP freitas nlma L500 a-3.92 b-3.1526 1.dat synthetic,map,nonlinear,freita
675 TR arge030 rf.dat treerings
684 AS s2.2 f4 b8 l8800 58925.dat sound,animalsounds
725 FI yahoo Op IFL.L LOGR.dat finance,logr
737 Ich recflow.dat meteorology,riverflow,

reconstructed,UK
775 SF E 5.dat SantaFe,astronomy
789 SPIDR hpidmsp F15 meas.dat space,hpidmsp
825 SPIDR meanDelay ACE hrly.dat space,magneticfield
842 SPIDR vostok L6600 Sep2002 vostok.dat space,vostok
875 t osaka rf.dat meteorology,temperature
894 MD chfdb chf07 seg039 SNIP 9574-17073.dat medical,physionet,ecg,chfdb,snip
925 MD tremordb g12ren.dat medical,tremor,physionet,lowamp,

dbson,medon,gpi
947 MUS Tetra-Sync 1364s F0.02 b8.dat sound,music,downed
976 MD nsrdb nsr19088 seg007 SNIP 5659-15658.dat medical,physionet,ecg,nsrdb,snip
1000 MD mghdb mgh79 PAP SNIP 9047-15146.dat medical,physionet,mghdb,

snip,pulmonaryarterialpressure

Table 5.2.S1: 40 empirical time series selected for evaluating the computation times of features.
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5.2.4.B Manually replaced features

Table 5.2.S2 lists the best five features of each cluster in which a feature has been manually exchanged.

The full list of 710 features grouped by cluster can be accessed as a supplementary file.

hctsa feature name z-scored combined accuracy

Cluster 3

EX_MovingThreshold_01_01_meankickf 1.44
PH_Walker_prop_01_res_ac1 1.39
SP Summaries welch rect area 5 1 1.18
PH_Walker_prop_11_w_std 1.17
IN_AutoMutualInfoStats_40_gaussian_pextrema 1.13

Cluster 6

MF_arfit_1_8_sbc_meanA 2.57
FC LocalSimple mean3 stderr 2.26
FC_LocalSimple_mean4_stderr 2.25
NL_embed_PCA_1_10_std 2.19
NL_embed_PCA_1_10_perc_1 2.17

Cluster 10

SB_TransitionMatrix_2ac_sumdiagcov 2.51
SB_TransitionMatrix_2ac_T3 2.25
SB_TransitionMatrix_2ac_ondiag 2.18
SB_TransitionMatrix_2ac_T1 2.07
SB BinaryStats mean longstretch1 2.05

Cluster 17

SB_TransitionMatrix_3ac_maxeigcov 2.65
SB_TransitionMatrix_3ac_stdeigcov 2.56
SB_TransitionMatrix_3ac_stdeig 2.53
SB_TransitionMatrix_5ac_stdeigcov 2.53
SB TransitionMatrix 3ac sumdiagcov 2.46

Cluster 18

SB_TransitionMatrix_41_ondiag 1.83
SB_TransitionMatrix_51_ondiag 1.80
EN_SampEn_5_03_sampen1 1.54
CO_HistogramAMI_quantiles_10_1 1.51
MD hrv classic pnn40 1.50

Cluster 19

PH_Walker_prop_01_sw_propcross 1.99
IN AutoMutualInfoStats 40 gaussian fmmi 1.92
SB_TransitionMatrix_31_ondiag 1.52
PH_Walker_prop_01_sw_taudiff 1.47
CO_Embed2_Basic_1_updiag01 1.40

Table 5.2.S2: The five best features of each cluster with manual replacement. The feature in bold was
used instead of the top feature.

5.3 Conclusion on feature-based time-series analyses

Thanks to the availability of a feature set of unprecedented diversity, we had the chance to develop two

feature-selection methods. We first proposed a novel framework that identifies the low-dimensional

main varying dynamics in a dataset. We achieve this functionality by transferring time series to a high-



172 Chapter 5. Feature-based time-series analyses

dimensional feature space and applying dimensionality reduction methods to the time-series points in

feature space. For each main varyin dynamic, we proposed single estimators.

For our core area of bioelectronic medicines, this unsupervised method proved useful on simulated

data in automatically detecting di↵erent firing characteristics. The identified features can perform an

on-line characterisation of low-resolution cu↵ recordings in implanted devices that goes beyond the

usual power-measures and does not require expensive signal conditioning. We thus propose a novel

pre-processing approach that automatically extracts informative features and adapts to the recording

technique, the nerve, and the relevant firing characteristics for a signal-to-noise ratio not yet well

harvested by existing methods. For the future, we might augment the feature-set by features that will

be developed specifically for peripheral nerve signal processing.

In a second contribution to feature-based time-series analysis, we developed a supervised selection

pipeline to automatically tailor feature sets of high discriminative power to collections of datasets.

Applying this method to a literature standard collection of classification problems, we devised a

canonical feature set, catch22, that executes quickly and is informative of diverse time series dy-

namics.



Chapter 6

Conclusion

6.1 Summary of thesis achievements

In terms of the core topic of this PhD – peripheral nerve decoding – we provided three immediately

relevant contributions. First, a simple real-time compatible decoder for low-resolution recordings as

obtained by the common cu↵ electrode. By mapping and linearising the non-linear relation between

bladder pressure and power of the recorded population activity within a selected frequency band, we

enabled the use of a linear decoder (optimal linear filter) and avoided more complex models such as

artificial neural networks. This simple step reduces computational complexity of the decoding and

allows for an e�cient bladder pressure estimation for the commonly used cu↵ interface. Second, we

investigated the encoding principles by which the ‘spine listens to the bladder’ by applying informa-

tion theory, a powerful analysis tool from the analysis of the central nervous system, to a population of

bladder a↵erents. We exploited the observed population code to construct a first informed decoder that

is accurate, robust against cell loss, and even o↵ers rudimentary means of automatic re-calibration,

demonstrating the advantages of an informed approach. Third, we leveraged decades of time-series

analysis literature to automatically detect the main varying firing characteristics of a peripheral nerve

in a high-dimensional feature space and identified single relevant features that can be implemented

e�ciently and be used to summarise low-resolution activity as recorded by a cu↵ in an implanted

device by a few key dynamical properties.

In addition to these core achievements that directly translate into progress towards next generation

173
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bioelectronic medicines, we presented a few supporting methodological advances. First, we imple-

mented an easy-to-use Python-based peripheral nerve simulator, PyPNS, that we used to generate

artificial recordings to test our feature-based analysis method. The model is the first ready-to-use

hybrid peripheral nerve simulator that unites compartmentalised axon models and extracellular field

models. It enables a quick generation of surrogate data but also integrates means of intra- and ex-

tracellular stimulation and spontaneous activity generation. Innovative features are the automatically

placed tortuous axons and the e�cient integration of pre-computed potential distributions from finite

element methods software. Second, our feature-based analysis method that uncovers low-dimensional

parametric variation in an unsupervised way from many recordings and that we applied to peripheral

nerve recordings is not limited to this type of data. Because of the generically useful nature of the

features, it can be applied to a wide variety of time-series generating systems. We demonstrated its

universal utility on many di↵erent synthetic systems and an additional real-world example. It is thus a

general-purpose ‘discovery engine’ for low-dimensional variation and for the identification of single

estimators for each variation dimension. As a third and last additional achievement, we developed

a flexible pipeline to distill small feature-sets of high performance for a collection of classification

tasks. We selected a canonical set of features by applying this pipeline to a literature-standard set

of time-series classification problems, catch22, which is generically useful and fast, and signifies the

first feature-set selected by highly-comparative time-series analysis as a surrogate of the much larger

feature library hctsa.

Comparing with our original objectives (cf. Ch. 1), we thus firstly achieved the development of a

publicly available, easy-to-use peripheral nerve simulator that we indeed used in our algorithm devel-

opment (Sec. 3). We secondly proposed specific decoding algorithms – one simple and suited to low-

resolution interfaces (Sec. 4.1) and one biologically informed for high-resolution interfaces (Sec. 4.2).

In our exploration of di↵erent applications of feature-based time-series analysis, we showed that the

features included in the hctsa-toolbox are suited to peripheral nerve recordings and can in fact close

a gap in pre-processing methods for low-resolution peripheral nerve recordings where the currently

used coarse power or amplitude measures discard informative structure (Sec. 5.1).
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6.2 Future Work

The feature-based characterisation of peripheral nerve recordings is promising, but needs to be tested

on real data and prove its reliability and usefulness for peripheral nerve recordings.

Provided a suitable long chronic recording, it can be cut into short snippets and fed into our di-

mensionality reduction in feature space (Sec. 5.1). We might then see firing characteristics of the

recordings recovered as second or third component that are informative for bioelectronic medicines.

The feature selection pipeline we presented in Sec. 5.2 could be better connected to our core topic

by applying it to annotated peripheral nerve recordings. We might then select similar features to the

ones obtained in the unsupervised manner above. We might also find generically useful ones that

can be informative on diverse peripheral nerve recordings. Given a subset of ⇠20 of such features,

we might see what dynamical properties are the best for characterising peripheral nerve recordings.

Researchers may then be guided to a deeper understanding of important signal characteristics in PNS

recordings and engineers may be guided towards conceiving specialised features specifically for PNS

firing characterisation.

In order to use the features for decoding, it can then be attempted to feed the feature outputs into a

continuous decoder or even a categorical classifier that classifies the recorded nerve’s state. It may

prove that characterising the nerve’s activity, without explicitly decoding the organs’ physiological

state, is su�cient to select on stimulation/ block or even for finely modulating the nerve.

When we have devised the most relevant features for peripheral nerve recordings, these need to be

implemented e�ciently for bioelectronic medicines. Energy e�ciency is crucial in order not to de-

plete the battery of the device. Hardware implementations like specialised digital signal processing

(DSP) processors or field programmable gate arrays (FPGAs) should therefore be investigated for the

e�cient implementation of core features.

Given all these steps, future bioelectronic medicines devices might then be able to characterise a

nerve’s state – and perhaps an associated organ state – just from a low-resolution recording by com-

puting a few e�ciently implemented features.

Naturally, the selection selection pipeline we devised for our catch22 feature set can be applied to
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all sorts of other labelled time-series datasets and can generate other generic feature sets that probe

for dynamical properties relevant to e.g., long and more complex time series than included in the

UEA/UCR classification problems. The catch22 feature set reflects the class di↵erences of the used

UEA/UCR classification task library that mainly contains short, aligned, normalised time series suit-

able for a shape-based comparison. The feature set is not sensitive to mean shifts and spread in the

data because the datasets it was selected on were normalised. It cannot be expected to yield good

classification performance on longer and more complex time series where other features from the

hctsa collection would be more suitable. We look forward to researchers re-running the pipeline and

automatically curating feature sets to their specific domain.

In our feature-based time-series analyses, the unsupervised discovery of low-dimensional variation

(Sec. 5.1) signifies a proof-of-concept that can still be developed much further. As one major draw-

back, we did not correct for existing feature-feature dependencies in our library and our results are still

highly shaped by the imbalanced representations of certain feature classes. By incorporating knowl-

edge of the interactions to be expected between features without constraints of the data, the method

can be expected to perform better in cases where the dynamical variation caused by parametric drive

is not well represented in the feature set. These feature-feature dependencies can be identified on

truly unconstrained data from diverse sources where any correlation between two features across time

series has to be caused by algorithmic similarity, not by similarity of the time series. Given such di-

verse data, we can then compute the correlation, mutual information or another measure of similarity

between all feature pairs and either remove redundant features or compensate for their redundancy by

an adapted dimensionality reduction method.

In terms of decoding, our first simple decoder (Sec. 4.1) has the beauty of removing non-linearities in

a first step and therefore being able to apply a linear temporal filter to the linearised relation between

an independent, observed variable and a dependent, estimated variable. We look forward to the ap-

plication of this concept to other peripheral nerve decoding tasks on a↵erent and/ or e↵erent nerves.

The mapping of the non-linear relation can be improved by replacing the piece-wise linear fit with

another function adapted to the non-linearity in question. This may in our case improve the decoding

of low bladder pressure ranges. We applied our decoder to a univariate recording of the nerve’s activ-

ity by a hook electrode. The decoding approach (linearisation + linear filtering) is easily applicable to

higher dimensional recordings, e.g., by microelectrode arrays. The non-linear steady-state response
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characteristic of each electrode or sorted unit can be mapped in the same way and a linear filter can

be trained on the linearised responses.

Based on the second dataset at our disposition, our work on encoding in the periphery is a first step

towards a functional characterisation of peripheral sensory populations. The work we carried out

was limited by the properties of the data as no controlled repetitions with the same pressure time

courses per trial were available, the spikes were not sorted across trials and the pressure time course

was not designed to separate di↵erent aspects of the pressure signal such as high constant pressures

and high varying pressure amplitudes. It would be very helpful to repeat experiments while actively

controlling the bladder pressure and/ or record at isobaric and/ or isovolumetric conditions. Only

then, the complete characterisation of the bladder neuron response characteristics can be achieved.

No principled analysis has yet been conducted on the encoding of e.g., temperature sensors, barore-

ceptors, muscle spindles, etc., and it would be very interesting to compare these in terms of their

encoding strategies. Often, similar single cell responses have been reported. Perhaps we will find

a recurring encoding scheme across these di↵erent monitoring systems of the body. Based on this

understanding we might be able to design better interventions (stimulation or block) and adapted

decoders to accelerate the progress of bioelectronic medicines which can then more quickly conquer

new organ systems. A detailed investigation of these populations (using destructive invasive interfaces

available today) would thus prepare the field of bioelectronics medicines for the future interfaces of

high resolution at acceptable long-term stability that will become available with advances in materials

research.

A refined understanding of the encoding can in particular be used by informed decoders. We demon-

strated this in our example bladder system. In the informed decoding approach we proposed, a simple

averaging across stereotypical, redundant bladder neurons was able to significantly increase the ro-

bustness against cell loss of our decoder. This idea of an informed decoder can easily be extended to

more advanced ideas. We hope our simple approach will spark research towards specialised decod-

ing algorithms that e.g., automatically detect redundancy in the sensory population and optimise the

trade-o↵ between accuracy loss and robustness gains. The grouping of cells can also be straightfor-

wardly combined with our ideas on linearising the non-linear steady-state relationship. The response

of a stereotypical subpopulation of fibres and could thus first be linearised and then used by a sub-
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sequent decoder, together with the linearised responses of other subpopulations. The demonstration

of the advantages of the informed decoder we constructed was hampered by the lack of controlled

repetitions and cell sorting across trials. We hope that new experiments will be conducted that allow

the more accurate, quantitative analysis of the merits of informed decoders.

Our simulation, PyPNS, is a simple, accessible way of generating generic surrogate peripheral nerve

recordings. To further accelerate the simulation, parallelisation of axon simulations should be in-

tegrated. It is also imaginable that action potentials (AP) which are out of reach of the recording

and/ or stimulation electrodes, could be simulated in an abstracted way without simulating all chan-

nels. Instead, the AP position could be moved along the axon at the respective conduction velocity.

Only when entering the relevant regions of the nerve in proximity to the electrodes, the whole axon

simulation including the action of ion channels, could be launched.

The axon trajectories we devised in our simulation went beyond the classical perfectly straight di-

rections. In PyPNS, axons can have a curvy, tortuous trajectory that is automatically generated and

can be fit to imaged data. One simplification in the axon placing algorithm was the lack of fascicles.

It would be interesting to define groups of axons that move through the nerve while keeping close

together, perhaps guided by a common randomly placed guide trajectory.

One limitation of PyPNS is the lack of accurate C-fibre models for mammalian axons. Literature

has usually resorted to the classical Hodgkin-Huxley-model (HH) with slight parameter adjustments

(most notably temperature) as we did, too. One obvious inaccuracy resulting from this inappropriate

model is the low conduction velocity. We hope that future research will finally characterise the ion-

channels of the C-fibres in mammals and then lead to a new standard that can replace the currently

used HH-model.

Our simulation further simplified the geometry of the extracellular tissue to enable the e�cient import

of pre-computed FEM results. For more complex trajectories, it would be necessary to compute a

transfer function between every axon segment current and every electrode potential. To simplify

this for the investigator, PyPNS could integrate an FEM module itself and pre-compute these transfer

functions once in order to be able to compute signals from arbitrary firing patterns for a given nerve

geometry.

For our topic of bioelectronic medicines it would further be interesting to include a closed-loop simu-
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lation of a peripheral nerve that includes both a recording and a stimulation site on the same simulated

nerve to model closed-loop control in silico.
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