3,808 research outputs found

    Semi-Global Exponential Stability of Augmented Primal-Dual Gradient Dynamics for Constrained Convex Optimization

    Full text link
    Primal-dual gradient dynamics that find saddle points of a Lagrangian have been widely employed for handling constrained optimization problems. Building on existing methods, we extend the augmented primal-dual gradient dynamics (Aug-PDGD) to incorporate general convex and nonlinear inequality constraints, and we establish its semi-global exponential stability when the objective function is strongly convex. We also provide an example of a strongly convex quadratic program of which the Aug-PDGD fails to achieve global exponential stability. Numerical simulation also suggests that the exponential convergence rate could depend on the initial distance to the KKT point

    An SDP Approach For Solving Quadratic Fractional Programming Problems

    Full text link
    This paper considers a fractional programming problem (P) which minimizes a ratio of quadratic functions subject to a two-sided quadratic constraint. As is well-known, the fractional objective function can be replaced by a parametric family of quadratic functions, which makes (P) highly related to, but more difficult than a single quadratic programming problem subject to a similar constraint set. The task is to find the optimal parameter λ∗\lambda^* and then look for the optimal solution if λ∗\lambda^* is attained. Contrasted with the classical Dinkelbach method that iterates over the parameter, we propose a suitable constraint qualification under which a new version of the S-lemma with an equality can be proved so as to compute λ∗\lambda^* directly via an exact SDP relaxation. When the constraint set of (P) is degenerated to become an one-sided inequality, the same SDP approach can be applied to solve (P) {\it without any condition}. We observe that the difference between a two-sided problem and an one-sided problem lies in the fact that the S-lemma with an equality does not have a natural Slater point to hold, which makes the former essentially more difficult than the latter. This work does not, either, assume the existence of a positive-definite linear combination of the quadratic terms (also known as the dual Slater condition, or a positive-definite matrix pencil), our result thus provides a novel extension to the so-called "hard case" of the generalized trust region subproblem subject to the upper and the lower level set of a quadratic function.Comment: 26 page

    Interior Point Methods for Massive Support Vector Machines

    Get PDF
    We investigate the use of interior point methods for solving quadratic programming problems with a small number of linear constraints where the quadratic term consists of a low-rank update to a positive semi-de nite matrix. Several formulations of the support vector machine t into this category. An interesting feature of these particular problems is the vol- ume of data, which can lead to quadratic programs with between 10 and 100 million variables and a dense Q matrix. We use OOQP, an object- oriented interior point code, to solve these problem because it allows us to easily tailor the required linear algebra to the application. Our linear algebra implementation uses a proximal point modi cation to the under- lying algorithm, and exploits the Sherman-Morrison-Woodbury formula and the Schur complement to facilitate e cient linear system solution. Since we target massive problems, the data is stored out-of-core and we overlap computation and I/O to reduce overhead. Results are reported for several linear support vector machine formulations demonstrating the reliability and scalability of the method

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization

    Get PDF
    Interior point methods provide an attractive class of approaches for solving linear, quadratic and nonlinear programming problems, due to their excellent efficiency and wide applicability. In this paper, we consider PDE-constrained optimization problems with bound constraints on the state and control variables, and their representation on the discrete level as quadratic programming problems. To tackle complex problems and achieve high accuracy in the solution, one is required to solve matrix systems of huge scale resulting from Newton iteration, and hence fast and robust methods for these systems are required. We present preconditioned iterative techniques for solving a number of these problems using Krylov subspace methods, considering in what circumstances one may predict rapid convergence of the solvers in theory, as well as the solutions observed from practical computations
    • …
    corecore