86 research outputs found

    Dynamic Channel Access Scheme for Interference Mitigation in Relay-assisted Intra-WBANs

    Full text link
    This work addresses problems related to interference mitigation in a single wireless body area network (WBAN). In this paper, We propose a distributed \textit{C}ombined carrier sense multiple access with collision avoidance (CSMA/CA) with \textit{F}lexible time division multiple access (\textit{T}DMA) scheme for \textit{I}nterference \textit{M}itigation in relay-assisted intra-WBAN, namely, CFTIM. In CFTIM scheme, non interfering sources (transmitters) use CSMA/CA to communicate with relays. Whilst, high interfering sources and best relays use flexible TDMA to communicate with coordinator (C) through using stable channels. Simulation results of the proposed scheme are compared to other schemes and consequently CFTIM scheme outperforms in all cases. These results prove that the proposed scheme mitigates interference, extends WBAN energy lifetime and improves the throughput. To further reduce the interference level, we analytically show that the outage probability can be effectively reduced to the minimal.Comment: 2015 IEEE International Conference on Protocol Engineering (ICPE) and International Conference on New Technologies of Distributed Systems (NTDS), Paris, France. arXiv admin note: text overlap with arXiv:1602.0865

    Particle Swarm Optimization for Interference Mitigation of Wireless Body Area Network: A Systematic Review

    Get PDF
    Wireless body area networks (WBAN) has now become an important technology in supporting services in the health sector and several other fields. Various surveys and research have been carried out massively on the use of swarm intelligent (SI) algorithms in various fields in the last ten years, but the use of SI in wireless body area networks (WBAN) in the last five years has not seen any significant progress. The aim of this research is to clarify and convince as well as to propose a answer to this problem, we have identified opportunities and topic trends using the particle swarm optimization (PSO) procedure as one of the swarm intelligence for optimizing wireless body area network interference mitigation performance. In this research, we analyzes primary studies collected using predefined exploration strings on online databases with the help of Publish or Perish and by the preferred reporting items for systematic reviews and meta-analysis (PRISMA) way. Articles were carefully selected for further analysis. It was found that very few researchers included optimization methods for swarm intelligence, especially PSO, in mitigating wireless body area network interference, whether for intra, inter, or cross-WBAN interference. This paper contributes to identifying the gap in using PSO for WBAN interference and also offers opportunities for using PSO both standalone and hybrid with other methods to further research on mitigating WBAN interference

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted

    A Study of Mobility Support in Wearable Health Monitoring Systems: Design Framework

    Get PDF
    International audienceThe aim of this work is to investigate main techniques and technologies enabling user's mobility in wearable health monitoring systems. For this, design requirements for key enabling mechanisms are pointed out, and a number of conceptual and technological recommendations are presented. The whole is schematized and presented into the form of a design framework covering design layers and taking in consideration patient context constraints. This work aspires to bring a further contribution for the conception and possibly the evaluation of health monitoring systems with full support of mobility offering freedom to users while enhancing their life qualit

    A CSMA/CA Based MAC Layer Solution for Inter-WBAN Interference and Starvation

    Get PDF
    With the advancement in wireless communication technologies, E-healthcare system has been proposed to deal with the issues such as inefficiency, high cost, and degradations in service quality in traditional health-care systems. Wireless Body Area Network (WBAN) is widely used in E-healthcare system as it provides continuous monitoring on physiological parameters. However, when two or more WBANs overlap with each other, there exists inter-WBAN interference. The inter-WBAN interference may cause transmission failures, which result in packet losses, throughput degradations, and energy wastes for energy limited sensors. This motivates us to develop a distributed CSMA/CA-based MAC protocol for inter-WBAN interference management. There are three challenges, namely, power optimization, protocol response time, and starvation in designing such a protocol. In this thesis, the power optimization challenge is overcome by an innovative WBAN system. To deal with the challenges in protocol response time and starvation, the proposed MAC protocol extends the CSMA/CA protocol with an adaptive transmission probability that uses frozen time as the adjustment criterion and a back-off counter adjustment mechanism that prioritizes the starving nodes. The proposed protocol achieves throughput improvement, starvation mitigation, and energy efficiency for sensors. Simulation results demonstrate the effectiveness of the proposed MAC protocol for health-care applications in scenarios such as having dinner at a round table or sitting in a hospital waiting room

    Interference Mitigation in Multi-Hop Wireless Networks with Advanced Physical-Layer Techniques

    Get PDF
    In my dissertation, we focus on the wireless network coexistence problem with advanced physical-layer techniques. For the first part, we study the problem of Wireless Body Area Networks (WBAN)s coexisting with cross-technology interference (CTI). WBANs face the RF cross-technology interference (CTI) from non-protocol-compliant wireless devices. Werst experimentally characterize the adverse effect on BAN caused by the CTI sources. Then we formulate a joint routing and power control (JRPC) problem, which aims at minimizing energy consumption while satisfying node reachability and delay constraints. We reformulate our problem into a mixed integer linear programing problem (MILP) and then derive the optimal results. A practical JRPC protocol is then proposed. For the second part, we study the coexistence of heterogeneous multi-hop networks with wireless MIMO. We propose a new paradigm, called cooperative interference mitigation (CIM), which makes it possible for disparate networks to cooperatively mitigate the interference to/from each other to enhance everyone\u27s performance. We establish two tractable models to characterize the CIM behaviors of both networks by using full IC (FIC) and receiver-side IC (RIC) only. We propose two bi-criteria optimization problems aiming at maximizing both networks\u27 throughput, while cooperatively canceling the interference between them based on our two models. In the third and fourth parts, we study the coexistence problem with MIMO from a different point of view: the incentive of cooperation. We propose a novel two-round game framework, based on which we derive two networks\u27 equilibrium strategies and the corresponding closed-form utilities. We then extend our game-theoretical analysis to a general multi-hop case, specifically the coexistence problem between primary network and multi-hop secondary network in the cognitive radio networks domain. In the final part, we study the benefits brought by reconfigurable antennas (RA). We systematically exploit the pattern diversity and fast reconfigurability of RAs to enhance the throughput of MWNs. Werst propose a novel link-layer model that captures the dynamic relations between antenna pattern, link coverage and interference. Based on our model, a throughput optimization framework is proposed by jointly considering pattern selection and link scheduling, which is formulated as a mixed integer non-linear programming problem

    Wireless Body Area Network (WBAN): A Survey on Reliability, Fault Tolerance, and Technologies Coexistence

    Get PDF
    Wireless Body Area Network (WBAN) has been a key element in e-health to monitor bodies. This technology enables new applications under the umbrella of different domains, including the medical field, the entertainment and ambient intelligence areas. This survey paper places substantial emphasis on the concept and key features of the WBAN technology. First, the WBAN concept is introduced and a review of key applications facilitated by this networking technology is provided. The study then explores a wide variety of communication standards and methods deployed in this technology. Due to the sensitivity and criticality of the data carried and handled by WBAN, fault tolerance is a critical issue and widely discussed in this paper. Hence, this survey investigates thoroughly the reliability and fault tolerance paradigms suggested for WBANs. Open research and challenging issues pertaining to fault tolerance, coexistence and interference management and power consumption are also discussed along with some suggested trends in these aspect
    • …
    corecore