
A Prediction Algorithm for Coexistence Problem in Multiple-WBAN 
Environment

Jin, Z., Han, Y., Cho, J., & Lee, B. (2015). A Prediction Algorithm for Coexistence 
Problem in Multiple-WBAN Environment. International Journal of Distributed 
Sensor Networks, 2015, 386842. doi:10.1155/2015/386842

10.1155/2015/386842

Hindawi Publishing Corporation

Version of Record

http://cdss.library.oregonstate.edu/sa-termsofuse

http://survey.az1.qualtrics.com/SE/?SID=SV_8Io4d9aAYR1VgGx
http://cdss.library.oregonstate.edu/sa-termsofuse


Research Article
A Prediction Algorithm for Coexistence Problem in
Multiple-WBAN Environment

Zilong Jin,1 Yoonjeong Han,1 Jinsung Cho,1 and Ben Lee2

1Department of Computer Engineering, Kyung Hee University, Yongin 446-701, Republic of Korea
2School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA

Correspondence should be addressed to Jinsung Cho; chojs@khu.ac.kr

Received 4 December 2014; Accepted 1 March 2015

Academic Editor: Antonino Staiano

Copyright © 2015 Zilong Jin et al.This is an open access article distributed under theCreativeCommonsAttributionLicense, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The coexistence problem occurs when a single wireless body area network (WBAN) is located within a multiple-WBAN
environment.This causesWBANs to suffer from severe channel interference that degrades the communication performance of each
WBAN. Since a WBAN handles vital signs that affect human life, the detection or prediction of coexistence condition is needed to
guarantee reliable communication for each sensor node of a WBAN. Therefore, this paper presents a learning-based algorithm to
efficiently predict the coexistence condition in a multiple-WBAN environment. The proposed algorithm jointly applies PRR and
SINR, which are commonly used in wireless communication as a way to measure the quality of wireless connections. Our extensive
simulation study using Castalia 3.2 simulator based on the OMNet++ platform shows that the proposed algorithm provides more
reliable and accurate prediction than existing methods for detecting the coexistence problem in a multiple-WBAN environment.

1. Introduction

A wireless body area network (WBAN) is a human-centered
network providing communication among devices that exist
in/on/around a human body. IEEE 802.15 Working Group
organized IEEE 802.15 Tasking Group 6 in 2007 to establish
the standardization for WBANs with the aim of simulta-
neously providing services for medical and entertainment
applications [1].

Due to the limited bandwidth, the performance of
WBANs sufferswhenmultiple users occupy the same channel
at the same time, referred to as the coexistence problem. This
also causes received signal strength to decrease reducing
channel capacity. As a result, packet error rate (PER) increases
and packet reception ratio (PRR) decreases. PER is defined
as the ratio of the number of incorrectly transferred data
packets, where a packet is assumed to be incorrect if at least
one bit is incorrect, and the total number of transmitted
packets. On the other hand, PRR is the ratio of the number
of received packets and the number of transmitted packets.
Therefore, the coexistence problem increases retransmissions
and delay, which decrease the channel utilization rate. Thus,

it is important to avoid the coexistence problem by predicting
it beforehand.

There are a number of algorithms that detect the coexis-
tence problem based on estimating signal to interference plus
noise ratio (SINR) [2–5]. However, estimating SINR using RF
transceivers is inaccurate because of errors introduced by the
analog circuitry. Therefore, these methods cannot accurately
detect the coexistence condition. Furthermore, they neglect
the fact that WBANs are human-centric networks. This
means that the wireless environment changes frequently with
users’ mobility and postural movement, and thus prediction
algorithms based on instantaneous estimation of SINR are
not reliable.

This paper proposes a learning-based method for pre-
dicting the coexistence condition in a multiple-WBAN envi-
ronment. The learning-based algorithm is used to become
aware of changes in the wireless environment and to improve
the accuracy of the prediction algorithm.The proposed algo-
rithm jointly applies PRR and SINR, which are commonly
used in wireless communication to measure the quality of
wireless connections.The learning process can be performed
based on supervised and unsupervised learning methods
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which perform learning tasks with labeled and unlabeled
data, respectively. Due to the huge complexity and low
estimation accuracy, unsupervised learning methods cannot
accomplish the estimation task efficiently in tiny sensor based
networks such as wireless sensor networks and wireless body
area networks. On the other hand, supervised learning algo-
rithms are easily applied to WBAN because it performs the
learning task based on the labeled training data and provides
relatively high accuracy with low algorithm complexity [6, 7].
There are several supervised learning methods, for example,
neural network, decision tree, and naive-Bayesian classifier.
This paper employs the naive-Bayesian classifier because it
has relatively low computational complexity and classifies the
coexistence condition into four states: Static, Semidynamic,
Dynamic, and None. (The specific learning process will be
discussed in Section 3.)

The performance of the proposed method is compared
with existing techniques using simulations. Our study shows
that the proposed algorithm providesmore reliable and accu-
rate prediction performance than existing methods to detect
the coexistence condition in a multiple-WBAN environment.

The rest of this paper is organized as follows. Section 2
provides the state of the art and the background related to
the proposed method. The proposed prediction algorithm is
presented in Section 3. Section 4 discusses the performance
evaluation of the proposed algorithm. Finally, Section 5 con-
cludes the paper and discusses future work.

2. Related Work and Background

2.1. RelatedWork. The coexistence problem has been actively
researched for WBANs, which require high transmission
reliability. There are a number of studies on the performance
degradation of a WBAN in a multiple-WBAN environment
[8, 9]. However, these studies only measure performance and
do not provide an efficient detection or prediction schemes
for the coexistence situation.

There are also studies on detection or prediction of
the coexistence problem based on wireless transmission
technologies, such as wireless local area networks (WLANs)
andwireless personal area networks (WPANs).These existing
studies target different communication layers. At the physical
(PHY) layer, interference is detected prior to transmission,
which is the most accurate way to check whether or not
a channel is occupied by other users. However, a WBAN
requires low power consumption and thus detecting signal
power is not viable [10]. A number ofmethods [2, 3] use SINR
or bit error rate (BER) to detect interference. However, an
accurate judgment cannot be made with only a single SINR
value because it may contain errors. Detecting whether or not
received signal strength indicator (RSSI) exceeds a threshold
is another way to check if interference exists. RSSI is useful for
detecting interference between devices using different types
of communication technologies that have a wide variation
in signal power, for example, Bluetooth and WLAN [11]. At
the medium access control (MAC) layer, PER is the criterion
for detecting interference [12]. Finally, packet delivery rate
(PDR) is used at the network layer. However, prediction of

coexistence based on a single measured value at the MAC
or the network layer is not reliable. Therefore, a reliable
coexistence prediction model that considers interference
characteristics at each layer is required for WBANs.

Due to the aforementioned limitations of the existing
methods, this paper aims to provide an algorithm that jointly
considers PRR and SINR to improve the accuracy of predict-
ing the coexistence problem. In order to make the prediction
algorithm robust to changes in the wireless environment, a
learning-based scheme is applied to detect the coexistence
condition based on measured PRR and SINR values.

2.2. Naive-Bayesian Classifier. Machine learning techniques
are regarded as efficient solutions to improve the performance
of adaptive algorithms by learning the patterns of specific
factors. Supervised and unsupervised learning methods are
particular cases that perform learning tasks with labeled and
unlabeled data, respectively. Due to the huge algorithm com-
plexity and low estimation accuracy, unsupervised learning
methods cannot efficiently perform the estimation task in
wireless networks. On the other hand, supervised learning
algorithms arewidely applied towireless networks to estimate
the variance of wireless resources and network environment
[6, 7].

The naive-Bayesian classifier, which is based on the
Bayes rule, is a widely used supervised learning method
that exploits posterior probability calculation with a priori
information. It performs the classification by counting the
number of examples; therefore, it can provide relatively low
computational complexity compared with the other super-
vised learning methods (e.g., neural network and decision
tree) and can be easily deployed in sensor devices.

The naive-Bayesian classifier, 𝑐MAP, can be used to esti-
mate the most possible hypothesis based on existing feature
variables and is defined as follows:

𝑐MAP = arg max
𝑐𝑗∈𝐶
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The prior probabilities 𝑃(𝑤
𝑖
| 𝑐
𝑗
) in (2) can be obtained by

looking at how often each class appears in the training data
set. After calculating the posterior probabilities of the classes,
the maximum a posteriori (MAP) hypothesis selects the class
𝑐
𝑗
for which the computation is the maximum.
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Figure 1: Multiple-WBAN environment.

Table 1: IEEE Std. 802.15.6 defined coexistence environment.

Static
A single WBAN in a residential
environment or a hospital with a single
patient node and a fixed bedside hub

Semidynamic Slowly moving ambulatory patients in an
elderly care facility

Dynamic Fast moving ambulatory patients in a
hospital with a large number of WBANs

3. Proposed Algorithm

This section discusses the proposed learning algorithm based
prediction scheme that can provide high prediction accuracy
for the coexistence states.

3.1. System Model and Problem Description. Figure 1 shows
the different multiple-WBAN environments, where each
WBAN has a different moving speed and in turn influences
the duration of the coexistence problem to other WBANs.
IEEE Std. 802.15.6 classifies the coexistence condition based
on themobility level shown in Table 1. However, the standard
does not clearly define the parameters, such as moving
speed, that distinguish among these three states. Therefore,
based on IEEE Std. 802.15.6, this paper quantitatively defines
the coexistence states of Static, Semidynamic, and Dynamic
scenarios using the time duration of interference,𝑇SINR, which
indicates the duration of time when SINR value is lower than
or equal to a threshold value SINRth. (It will be given by a set
of experiences in the following subsection.)

More specifically, the coexistence states are defined as fol-
lows.

(i) Static (S) state indicates that there is a constant
interference from other WBANs for a period with

input: PRR, SINR, 𝑇SINR, Pre-state PRRth, SINRth 𝛼, 𝛽
output: State
(1) if PRR ≥ PRRth then
(2) PRR = True
(3) else
(4) PRR = False
(5) if SINR ≥ SINRth then
(6) 𝑇SINR = 0
(7) else if 𝑇SINR > 0 && 𝑇SINR < 𝛼 then
(8) 𝑇SINR = 1
(9) else if 𝑇SINR ≥ 𝛼 && 𝑇SINR < 𝛽 then
(10) 𝑇SINR = 2
(11) else if 𝑇SINR ≥ 𝛽 then
(12) 𝑇SINR = 3
(13) end
(14) State = NBClassifier (PRR, 𝑇SINR, Pre-state)
(15) return State

Pseudocode 1: Pseudocode for overall flowof the proposed scheme.

no mobility (the definition for time threshold will be
given in the following section).

(ii) Semidynamic (SD) state indicates that there is a
constant interference from otherWBANs for a period
with slow mobility.

(iii) Dynamic (D) state indicates that there is a temporary
interference from other WBANs with fast mobility.

(iv) None (N) state indicates that there is no interference.

PRR and SINR are utilized as the classification feature
variables for interference detection, and the coordinator node
calculates average PRR and SINR values of received packets
from the sensor nodes. 𝑇SINR is measured and used to classify
the coexistence condition instead of the instantaneous SINR
value. Furthermore, we assume that the Previous-state has an
influence on the current state in addition to PRR and 𝑇SINR.
Consequently, our aim is to detect the coexistence problem
in a multiple-WBAN environment by applying the three
measured values, which are PRR, 𝑇SINR, and Previous-state,
to the naive-Bayesian classifier and classifying the coexistence
condition into the four states defined in Table 1.

Pseudocode 1 shows the pseudocode for the proposed
scheme. First, the average PRR value is compared with the
PRR threshold (PRRth). (It will be given by a set of experiences
in the following subsection.) There are two possible results
which may be greater or less than (PRRth). Therefore, PRR
value is converted into a Boolean variable for simply applying
in naive-Bayesian classifier. Then, the average SINR value is
compared with the SINR threshold (SINRth). If it is greater
than the threshold, according to the definition of 𝑇SINR, there
is no time duration that satisfies SINR ≤ SINRth; thus𝑇SINR is
set to 0.Otherwise,𝑇SINR is comparedwith the time boundary
of 𝛼 and 𝛽 (𝛼 < 𝛽), which are the bounds for evaluating
the characteristics of coexistence states and obtained through
experiments. After comparison, the value of 𝑇SINR is con-
verted to integer values {1, 2, 3} representing the interval in
which it is included. Finally, PRR, 𝑇SINR, and Previous-state,
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Table 2: Training data.

PRR SINR Previous-state Current state

PRR ≥ PRRth

𝑇SINR = 0

N

NS
SD
D

0 < 𝑇SINR < 𝛼

N
DSD

D
N

D
𝛼 ≤ 𝑇SINR < 𝛽

SD
D

𝛽 ≤ 𝑇SINR

N

NS
SD
D

PRR < PRRth

𝑇SINR = 0

N

NS
SD
D

0 < 𝑇SINR < 𝛼
N

DSD
D

𝛼 ≤ 𝑇SINR < 𝛽

N
SDSD

D

𝛽 ≤ 𝑇SINR

N

SS
SD
D

which may be one of None, Static, Semidynamic, or Dynamic
states, are fed to the naive-Bayesian classifier, which returns
the state with the highest posterior probability.

3.2. Training Data and Prior Probability. In the naive-
Bayesian classifier, the classification algorithm needs to be
trainedwith a set of training data. In general, the training data
can be obtained from intuitive knowledge or accumulation of
experiential information. In this paper, a set of experiments is
performed for a variety ofWBAN environments to obtain the
labeled training data.These experiments are performed using
ZigbeX II modules running an embedded OS and equipped
with the CC2420 transceiver. For the implementation of a
multiple-WBAN environment, a WBAN consisting of one
coordinator node and four sensor nodes is interfered by
sensor nodes belonging to the other WBANs.

The labeled training data is obtained using experiments
and is shown in Table 2. For example, the labeled training
data for the second row is obtained when PRR ≥ PRRth and
0 < 𝑇SINR < 𝛼, and this condition has three possible previous
states: None (N), Semidynamic (SD), and Dynamic (D). For
these particular feature values, the current coexistence state
is Dynamic. Thus, the labeled training data can be used to

compute the prior probabilities of each of the coexistence
state, and then the most likely state can be chosen.

The coordinator node calculates average PRR based on
the number of dropped and received packets from the
four sensor nodes. The number of dropped packets can
be obtained by checking the sequence number of received
packets. In addition, the coordinator node calculates average
SINR based on measurements taken from the four sensor
nodes using the equation shown below:

SINR = 10 log
10

10
RSS/10
− 10
𝑛/10

10
RIS/10 ,

(3)

where RSS is the average received signal strength from the
sensor nodes and RIS is the received interference signal
strength fromotherWBANs and 𝑛 is the noise levelmeasured
at the coordinator node.𝑇SINR can then be recorded when the
calculated SINR value is lower than or equal to SINRth.

In order to generate the training data, we performed
experiments for four types of interference cases. In the first
case, there is no interference in order to evaluate the None
state. In the second case, there is a fixed interfering node
that affects the WBAN’s communication in order to evaluate
the Static state. In the third and fourth cases, the interfering
nodemoves at 0.5m/s (slow) and 1.5m/s (fast) to evaluate the
Semidynamic and Dynamic states, respectively. Each case is
performed 5 times and then average PRR and 𝑇SINR values
are recorded.

The experimental results for different coexistence condi-
tions are shown in Figure 2. None 1 and None 2 represent the
results for the first case, where the transmission rate of None
2 is two times higher than None 1. Dynamic 1 and Dynamic
2 represent the fourth case, where the interfering node of
Dynamic 2 is closer to the subject WBAN than Dynamic 1.
These experimental results show that the current state can be
derived based on the previous measured data and exhibit the
following characteristics.

(i) Static state: Figure 2(b) shows that average SINR
values are relatively stable and less than 0 dBm.
Therefore, 𝑇SINR is relatively large in this state. At the
same time, average PRR values are low (∼70%) as
shown in Figure 2(a). Therefore, the current state can
be Static only when PRR < PRRth and 𝑇SINR is greater
than time bound of 𝛽. (According to our experiment,
𝛽 is set to an appropriate value of 19 s.)

(ii) Semidynamic state: Figure 2(a) shows that average
PRR value is lower than 90%.Moreover, average value
of SINR is less than SINRth from 3 s to 7.5 s.Therefore,
the Semidynamic state is possible only when PRR <
PRRth and𝑇SINR is greater than a time duration bound
𝛼 (where 𝛼 = 3 s).

(iii) Dynamic state: Figure 2(a) shows that PRRvaluesmay
be higher or lower than PRRth = 90%. Moreover,
when PRR < PRRth, the time duration, 𝑇SINR, when
SINR value is less than SINRth is less than 𝛼. On the
other hand, when PRR > PRRth, 𝑇SINR values can be
less or greater than 𝛼 as shown in Figure 2(b). There-
fore, the Dynamic state is possible when PRR and
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Figure 2: Average PRR and SINR values according to the coexistence condition.

𝑇SINR satisfy PRR < PRRth and 𝑇SINR < 𝛼 or PRR >
PRRth and 𝑇SINR < 𝛽.

(iv) None state: Figure 2(a) shows that PRR values may
be higher or lower than PRRth = 90%. Furthermore,
since there is no interference in None state, SINR ≥
SINRth as shown in Figure 2(b). When SINR >
SINRth, 𝑇SINR = 0 because there is no time duration
that satisfies SINR ≤ SINRth. When SINR = SINRth,
𝑇SINR may tend to be large (when a patient stays in a
ward where there is few interfering wireless devices
for long time). Therefore, the None state is possible
when PRR > PRRth and 𝑇SINR < 𝛼 or 𝑇SINR > 𝛽,
and PRR < PRRth and 𝑇SINR < 𝛼.

Therefore, the training data used to classify the current state
in Table 2 can be obtained from analyzing PRR and 𝑇SINR
values in Figure 2.

3.3. Naive-Bayesian Classifier Application. The naive-Baye-
sian classifier defined in (2) accepts the measured values
PRR, 𝑇SINR, and Previous-state as the feature variables and
computes the probability of each state based on the training
data. For example, when the measured values indicate PRR ≥
PRRth, 0 < 𝑇SINR < 𝛼, and Previous-state = N, the probability
that the current state is Static is given by the following
calculation:

𝑃 (S) ⋅ 𝑃 (PRR ≥ PRRth | S) ⋅ 𝑃 (0 < 𝑇SINR < 𝛼 | S)

⋅ 𝑃 (N | S) = 4
28

× 0 × 0 ×

1

4

= 0.

(4)

More specifically, the probability that the current state is
Static 𝑃(S) = 4/28 is obtained by counting the number of
examples of the state Static that are in the training data and

dividing by the total number of the training data. Under the
given condition of Static, the a priori probability of 𝑃(PRR ≥
PRRth | S) and 𝑃(0 < 𝑇SINR < 𝛼 | S) is 0 and 𝑃(N | S) is 1/4.
Therefore, 𝑃(S | PRR ≥ PRRth, 0 < 𝑇SINR < 𝛼, N) = 0, and,
thus, the probability that the current state is Static is 0.

Similarly, the probabilities that the current states are
Semidynamic, Dynamic, and None are calculated as follows:

𝑃 (SD) ⋅ 𝑃 (PRR ≥ PRRth | SD) ⋅ 𝑃 (0 < 𝑇SINR < 𝛼 | SD)

⋅ 𝑃 (N | SD) = 3
28

× 0 × 0 ×

1

3

= 0,

𝑃 (D) ⋅ 𝑃 (PRR ≥ PRRth | D) ⋅ 𝑃 (0 < 𝑇SINR < 𝛼 | D)

⋅ 𝑃 (N | D) = 9
28

×

6

9

×

6

9

×

3

9

=

1

21

,

𝑃 (N) ⋅ 𝑃 (PRR ≥ PRRth | N) ⋅ 𝑃 (0 < 𝑇SINR < 𝛼 | N)

⋅ 𝑃 (N | N) = 12
28

×

8

12

× 0 ×

3

12

= 0.

(5)

Based on these results, Dynamic is chosen as the most likely
state for the current state.

4. Performance Evaluation

4.1. Simulation Model. This section presents our simulation
study using the OMNeT++ platform, which is a modular
simulation library for studying wired and wireless communi-
cation networks, to evaluate the performance of the proposed
algorithm. In our simulation environment, a single WBAN
consists of one coordinator node and four sensor nodes
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Table 3: Predicted coexistence state per speed.

Case 1 Case 2 Case 3 Case 4
Speed (m/s) Coexistence state Speed (m/s) Coexistence state Speed (m/s) Coexistence state Speed (m/s) Coexistence state

R1 0.2 SD 0.4 D 0.2 SD 0.2 SD
R2 0.2 SD 0.4 D 0 S 0.4 D
R3 0 S 0.2 D 0.4 D 0 D
R4 0.4 N 0.2 N 0.4 D 0.2 D
R5 0.4 D — — 0.2 N 0.4 D

Node 1

Node 2
Node 3

Node 4
Coordinator

3∼5 m

Figure 3: A single WBAN.

(i.e., Node 1, Node 2, Node 3, and Node 4), which are located
1m from the coordinator node as shown in Figure 3.

In a WBAN, PRR is calculated by the coordinator node
based on the average number of received packets from the
four sensor nodes. SINR is obtained from RSSmeasurements
taken directly from the four sensor nodes using (3) as
described in Section 3.2, and then 𝑇SINR value is obtained
by recording the time duration of SINR which is less than
SINRth.

In the simulation, all nodes use CC2420 transceiver that
operates in the 2.4GHz frequency band and the transmit
power is fixed at −3 dBm. The packet transmit rate is set
to 10 pkts/s and 5 pkts/s, and PRRth and SINRth are 90%
and 0 dBm, respectively, to guarantee good communication
quality. Finally, we set 𝛼 = 3 and 𝛽 = 19 based on the
experimental results and Table 2 in Section 3.2.

Figure 4 shows our simulation environment, which
reflects the situations where multiple WBANs exist in the
same area.There are 19WBANs in the simulation area of 24m
× 16m. Due to the fact that mobility is relative, the subject
WBAN (M-BAN1) is mobile while the other 17 WBANs
(BAN3–BAN17) are static and act as interfering WBANs.
Moreover, in order to provide a more general simulation
environment, another mobile interfering WBAN, M-BAN2,
is introduced to simulate interference from mobile as well
as static WBANs. The simulation area is subdivided into six
8m × 8m regions, which are indicated as R1–R6 in Figure 4,

and different densities of WBANs are deployed to different
regions. In regions R1 and R4, there is no static interference.
On the other hand, the subject M-BAN1 suffers from high
interference in region R3 and low interference in regions R2
and R5. The region R6 is used to record the initial Previous-
state.

In order to evaluate the performance of the proposed
algorithm for various types of interference, four simulation
cases are tested based on the moving speeds of M-BAN1 and
the interference node density. Case 1 and Case 2 have 17 fixed
interfering WBANs, and Case 3 and Case 4 have 17 fixed
interfering WBANs and one mobile interfering M-BAN2.
The subject M-BAN1 moves along the path shown in red at
speeds of 0m/s, 0.2m/s, and 0.4m/s. On the other hand,
static interfering WBANs are positioned at fixed locations
indicated by dots, and themobile interferingM-BAN2moves
along the path shown as a dotted red line at 0.4m/s. While
the subject M-BAN1 moves, the coordinator node gathers
information and calculates the current values of PRR and
𝑇SINR and records Previous-state.

Table 3 shows the different moving speeds of M-BAN1
for the four cases, and the correct coexistence state is labeled
based onmoving speeds ofM-BAN1 and interference density.
For example, the data in the first row, first column (i.e.,
0.2m/s), indicates the moving speed of M-BAN1 in region
R1. During this time, M-BAN1 experiences low interference
and its moving speed is slow; thus the correct state is
Semidynamic.

4.2. Simulation Result. Thecoordinator ofM-BAN1measures
average PRR and 𝑇SINR values, as well as Previous-state, when
it communicates with its sensor nodes in regions R1–R5,
which are shown in Table 4. For example, the first row for
Case 1 indicates that PRR = 0.981, 𝑇SINR = 3 s, and Previous-
state is Dynamic, and Table 3 shows that the moving speed of
M-BAN1 in R1 is 0.2m/s and the actual coexistence state is
Semidynamic.

Based on analyzing the simulation data shown in Table 4,
we find that even though the value of PRR is sensitive to
M-BAN1’s moving speed, it does not reflect the interference
characteristic. For example, the data in the second row of
Table 4 shows that PRR increases significantly as moving
speed increases from 0.2m/s to 0.4m/s for Case 1 and Case
2. This is also similar for Case 3 and Case 4. However, it is
difficult to distinguish the coexistence states by comparing
just the PRR value for Case 1 and Case 3, where the correct
states are Semidynamic and Static, respectively.
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Figure 4: Simulation area.

Table 4: Simulation results of PRR and 𝑇SINR.

Case 1 Case 2 Case 3 Case 4
Previous-
state

PRR
(pts/s) 𝑇SINR (s)

Previous-
state

PRR
(pts/s) 𝑇SINR (s)

Previous-
state

PRR
(pts/s) 𝑇SINR (s)

Previous-
state

PRR
(pts/s) 𝑇SINR (s)

R1 D 0.981 3 D 0.982 5.5 D 0.869 3 D 0.869 3
R2 S 0.868 18 D 0.982 2 SD 0.857 20 SD 0.982 6
R3 S 0.807 20 SD 0.95 4 S 0.96 6 S 0.935 6
R4 S 1 0 N 1 0 SD 0.972 3.5 S 0.972 1.5
R5 N 0.982 2 — — — D 1 0 SD 0.982 2

Table 5 compares the predicted states using PRR, 𝑇SINR,
and the proposed algorithm against the actual coexistence
states for all four cases. The prediction results based on PRR
shows that it can be used to check whether or not interference
exists, but it does not accurately predict the actual coexistence
state. On the other hand, using 𝑇SINR leads to a more precise
prediction performance than PRR. In Case 1, the coexistence
condition can be precisely analyzed based on 𝑇SINR. For Case
2, 𝑇SINR is maintained for a long time in region R2 despite
the fact that the subject WBAN is moving at a relatively high
speed of 0.4m/s. In Case 3 and Case 4, M-BAN2 is added.
According to the PRR and 𝑇SINR values in region R3 for Case
3 and regionR2 forCase 4, the predicted coexistence states are
None and Semidynamic, respectively. However, Table 5 shows
that the actual state is Dynamic, and the proposed algorithm
correctly predicts the actual states. Similarly, the PRR and
𝑇SINR values in R3 for Case 4 are influenced by the interfering
mobileWBAN (i.e., M-BAN2), and the predicted coexistence

states are None and Semidynamic, respectively, but Table 5
shows that the actual state is Dynamic.

In summary, Table 5 shows that the accuracy is 69%
when prediction is performed using a single value of 𝑇SINR.
However, when PRR, 𝑇SINR, and Previous-state are jointly
considered and applied to the proposed prediction algorithm,
the accuracy is 100%.

5. Conclusion

This paper proposed a prediction algorithm for detecting the
coexistence problem by applying PRR, 𝑇SINR, and Previous-
state to a naive-Bayesian classifier to predict the performance
of a multiple-WBAN environment. In addition to detect-
ing types of interference, this study plays a major role in
attempting to classify coexistence conditions into Dynamic,
Semidynamic, Static, and None states. Our simulation study
shows that the proposed algorithm provides significantly
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Table 5: Performance result.

(a) Case 1

Actual state PRR 𝑇SINR Proposed algorithm
R1 SD N SD SD
R2 SD D SD SD
R3 S D S S
R4 N N N N
R5 D N D D

(b) Case 2

Actual state PRR 𝑇SINR Proposed algorithm
R1 D N SD D
R2 D N SD D
R3 D N D D
R4 N N N N

(c) Case 3

Actual state PRR 𝑇SINR Proposed algorithm
R1 SD D SD SD
R2 S D S S
R3 D N SD D
R4 D N D D
R5 N N N N

(d) Case 4

Actual state PRR 𝑇SINR Proposed algorithm
R1 SD D SD SD
R2 D N SD D
R3 D N SD D
R4 D N SD D
R5 D N D D

higher reliability in detecting the coexistence conditions
compared to existing studies that consider either PRR or
SINR. As a future work, we plan to develop suitable han-
dling mechanisms for the coexistence states and evaluate
their effectiveness by experiments in a real multiple-WBAN
environment.
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