152 research outputs found

    A fuzzy optimization approach for procurement transport operational planning in an automobile supply chain

    Full text link
    We consider a real-world automobile supply chain in which a first-tier supplier serves an assembler and determines its procurement transport planning for a second-tier supplier by using the automobile assembler's demand information, the available capacity of trucks and inventory levels. The proposed fuzzy multi-objective integer linear programming model (FMOILP) improves the transport planning process for material procurement at the first-tier supplier level, which is subject to product groups composed of items that must be ordered together, order lot sizes, fuzzy aspiration levels for inventory and used trucks and uncertain truck maximum available capacities and minimum percentages of demand in stock. Regarding the defuzzification process, we apply two existing methods based on the weighted average method to convert the FMOILP into a crisp MOILP to then apply two different aggregation functions, which we compare, to transform this crisp MOILP into a single objective MILP model. A sensitivity analysis is included to show the impact of the objectives weight vector on the final solutions. The model, based on the full truck load material pick method, provides the quantity of products and number of containers to be loaded per truck and period. An industrial automobile supply chain case study demonstrates the feasibility of applying the proposed model and the solution methodology to a realistic procurement transport planning problem. The results provide lower stock levels and higher occupation of the trucks used to fulfill both demand and minimum inventory requirements than those obtained by the manual spreadsheet-based method. (C) 2014 Elsevier Inc. All rights reserved.This work has been funded partly by the Spanish Ministry of Science and Technology project: Production technology based on the feedback from production, transport and unload planning and the redesign of warehouses decisions in the supply chain (Ref. DPI2010-19977) and by the Universitat Politecnica de Valencia project 'Material Requirement Planning Fourth Generation (MRPIV) (Ref. PAID-05-12)'.Díaz-Madroñero Boluda, FM.; Peidro Payá, D.; Mula, J. (2014). A fuzzy optimization approach for procurement transport operational planning in an automobile supply chain. Applied Mathematical Modelling. 38(23):5705-5725. https://doi.org/10.1016/j.apm.2014.04.053S57055725382

    Applying nonlinear MODM model to supply chain management with quantity discount policy under complex fuzzy environment

    Get PDF
    Purpose: The aim of this paper is to deal with the supply chain management (SCM) with quantity discount policy under the complex fuzzy environment, which is characterized as the bi-fuzzy variables. By taking into account the strategy and the process of decision making, a bi-fuzzy nonlinear multiple objective decision making (MODM) model is presented to solve the proposed problem. Design/methodology/approach: The bi-fuzzy variables in the MODM model are transformed into the trapezoidal fuzzy variables by the DMs's degree of optimism ?1 and ?2, which are de-fuzzified by the expected value index subsequently. For solving the complex nonlinear model, a multi-objective adaptive particle swarm optimization algorithm (MO-APSO) is designed as the solution method. Findings: The proposed model and algorithm are applied to a typical example of SCM problem to illustrate the effectiveness. Based on the sensitivity analysis of the results, the bi-fuzzy nonlinear MODM SCM model is proved to be sensitive to the possibility level ?1. Practical implications: The study focuses on the SCM under complex fuzzy environment in SCM, which has a great practical significance. Therefore, the bi-fuzzy MODM model and MO-APSO can be further applied in SCM problem with quantity discount policy. Originality/value: The bi-fuzzy variable is employed in the nonlinear MODM model of SCM to characterize the hybrid uncertain environment, and this work is original. In addition, the hybrid crisp approach is proposed to transferred to model to an equivalent crisp one by the DMs's degree of optimism and the expected value index. Since the MODM model consider the bi-fuzzy environment and quantity discount policy, so this paper has a great practical significance.Peer Reviewe

    Application of DEO Method to Solving Fuzzy Multiobjective Optimal Control Problem

    Get PDF
    In the present paper a problem of optimal control for a single-product dynamical macroeconomic model is considered. In this model gross domestic product is divided into productive consumption, gross investment, and nonproductive consumption. The model is described by a fuzzy differential equation (FDE) to take into account imprecision inherent in the dynamics that may be naturally conditioned by influence of various external factors, unforeseen contingencies of future, and so forth. The considered problems are characterized by four criteria and by several important aspects. On one hand, the problem is complicated by the presence of fuzzy uncertainty as a result of a natural imprecision inherent in information about dynamics of real-world systems. On the other hand, the number of the criteria is not small and most of them are integral criteria. Due to the above mentioned aspects, solving the considered problem by using convolution of criteria into one criterion would lead to loss of information and also would be counterintuitive and complex. We applied DEO (differential evolution optimization) method to solve the considered problem

    A Fuzzy Credibility-Based Chance-Constrained Optimization Model for Multiple-Objective Aggregate Production Planning in a Supply Chain under an Uncertain Environment

    Get PDF
    In this study, a Multiple-Objective Aggregate Production Planning (MOAPP) problem in a supply chain under an uncertain environment is developed. The proposed model considers simultaneously four different conflicting objective functions. To solve the proposed Fuzzy Multiple-Objective Mixed Integer Linear Programming (FMOMILP) model, a hybrid approach has been developed by combining Fuzzy Credibility-based Chance-constrained Programming (FCCP) and Fuzzy Multiple-Objective Programming (FMOP). The FCCP can provide a credibility measure that indicates how much confidence the decision-makers may have in the obtained optimal solutions. In addition, the FMOP, which integrates an aggregation function and a weight-consistent constraint, is capable of handling many issues in making decisions under multiple objectives. The consistency of the ranking of objective’s important weight and satisfaction level is ensured by the weight-consistent constraint. Various compromised solutions, including balanced and unbalanced ones, can be found by using the aggregation function. This methodology offers the decision makers different alternatives to evaluate against conflicting objectives. A case experiment is then given to demonstrate the validity and effectiveness of the proposed formulation model and solution approach. The obtained outcomes can assist to satisfy the decision-makers’ aspiration, as well as provide more alternative strategy selections based on their preferences

    Aggregate production planning: A literature review and future research directions

    Get PDF
    Aggregate production planning (APP) is concerned with determining the optimum production and workforce levels for each period over the medium term planning horizon. It aims to set overall production levels for each product family to meet fluctuating demand in the near future. APP is one of the most critical areas of production planning systems. After the state-of-the-art summaries in 1992 by Nam and Logendran [ Nam, S. J., & Logendran, R. (1992). Aggregate production planning—a survey of models and methodologies. European Journal of Operational Research, 61(3), 255-272. ], which specifically summarized the various existing techniques from 1950 to 1990 into a framework depending on their abilities to either produce an exact optimal or near-optimal solution, there has not been any systematic survey in the literature. This paper reviews the literature on APP models to meet two main purposes. First, a systematic structure for classifying APP models is proposed. Second, the existing gaps in the literature are demonstrated in order to extract future directions of this research area. This paper covers a variety of APP models’ characteristics including modeling structures, important issues, and solving approaches, in contrast to other literature reviews in this field which focused on methodologies in APP models. Finally some directions for future research in this research area are suggested

    Production decision support system for multi-product with multiple different size processors

    Get PDF
    Aggregate planning is an operational activity with the objective of providing upfront information on quantity of material to be procured and resources to be secured. At a point of time, it might also influence both demand and supply. This is where the sales division will work closely with operation on aggregate planning to deliver maximum profit. Aggregate planning does not only serve as a master plan for the production planner, it is also closely linked to organisational decision-making. Realising its importance, researchers have worked on this subject consistently since 1950s but due to complexity and practicality issue, industry did not manage somehow to adopt the research work. In 2016, the concept of Production Decision Support System (PDSS) was introduced following the Pinch Analysis extended into supply chain area. In this work, the PDSS is applied to a batch industry case which involve multi-products with multiple different size processors. From the assessment, the PDSS has not only demonstrated its practicality but also helped the plant to realise their potential capacity. This has assisted the plant management to realign the strategy and avoided the original intention of expensive expansion

    Smart Master Production Schedule for the Supply Chain: A Conceptual Framework

    Full text link
    [EN] Risks arising from the effect of disruptions and unsustainable practices constantly push the supply chain to uncompetitive positions. A smart production planning and control process must successfully address both risks by reducing them, thereby strengthening supply chain (SC) resilience and its ability to survive in the long term. On the one hand, the antidisruptive potential and the inherent sustainability implications of the zero-defect manufacturing (ZDM) management model should be highlighted. On the other hand, the digitization and virtualization of processes by Industry 4.0 (I4.0) digital technologies, namely digital twin (DT) technology, enable new simulation and optimization methods, especially in combination with machine learning (ML) procedures. This paper reviews the state of the art and proposes a ZDM strategy-based conceptual framework that models, optimizes and simulates the master production schedule (MPS) problem to maximize service levels in SCs. This conceptual framework will serve as a starting point for developing new MPS optimization models and algorithms in supply chain 4.0 (SC4.0) environments.The research leading to these results received funding from the European Union H2020 Program with grant agreements No. 825631 "Zero-Defect Manufacturing Platform (ZDMP)" and No. 958205 "Industrial Data Services for Quality Control in Smart Manufacturing (i4Q)", and from Grant RTI2018-101344-B-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe".Serrano-Ruiz, JC.; Mula, J.; Poler, R. (2021). Smart Master Production Schedule for the Supply Chain: A Conceptual Framework. Computers. 10(12):1-24. https://doi.org/10.3390/computers10120156124101

    Dynamic simulation driven design and management of production facilities in agricultural/food industry

    Get PDF
    An industrial plant in the agro-food sector can be considered a complex system as it is composed of numerous types of machines and it is characterized by a strong variation (seasonality) in the agricultural production. Whenever the dynamic behavior of the plants during operation is considered, system and design complexities increase. Reliable operation of food processing farms is primarily dependent on perfect balance between variable supply and product storage at each given time. To date, the classical modus operandi of food processing management systems is carried out under stationary and average conditions. Moreover, most of the systems installed for agricultural and food industries are sized using average production data. This often results in a mismatch between the actual operation and the expected operation. Consequently, the system is not optimized for the needs of a specific company. Also, the system is not flexible to the evolution that the production process could possibly have in the future. Promising techniques useful to solve the above-described problems could possibly be borrowed from demand side management (DSM) in smart grid systems. Such techniques allow customers to make dynamically informed decisions regarding their energy demand and help the energy providers in reducing the peak load demand and reshape the load profile. DSM is successfully used to improve the energy management system and we conjecture that DSM could be suitably adapted to food processing management. In this paper we describe how DSM could be exploited in the intelligent management of production facilities serving agricultural and food industry. The main objective is, indeed, to present how methods for modelling and implementing the dynamic simulation used for the optimization of the energy management in smart grid systems can be applied to a fruit and vegetables processing plant through a suitable adaptation
    corecore