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ABSTRACT 

 

Purpose – This paper presents a study in developing a cost-effective meat supply chain 

network design aiming to minimizing the total cost of transportation, the number of 

transportation vehicles and the delivery time of meat products. The developed model was 

also used for determining the optimum numbers and allocations of farms and abattoirs that 

need to be established and the optimal quantity flow of livestock from farms to abattoirs 

and meat products from abattoirs to retailers.  

Design/methodology/approach – A multi-objective possibilistic programming model was 

formulated with a focus on minimizing the total cost of transportation, the number of 

transportation vehicles and the delivery time of meat products. Three sets of Pareto 

solutions were obtained using the three different solution methods. These methods are the 

LP-metrics method, the ɛ-constraint method and the weighted Tchebycheff method, 

respectively. The TOPSIS method was used for seeking a best Pareto solution as a trade-

off decision when optimizing the three conflicting objectives.  

Findings – A case study was also applied for examining the effectiveness and applicability 

of the developed multi-objective model and the proposed solution methods. The research 

concludes that the ɛ-constraint method has the superiority over the other two proposed 

methods as it offers a better solution outcome. 

Research implications – This work addresses as interesting avenues for further research 

on exploring the delivery planner under different types of uncertainties and transportation 

means. Also, environmentalism has been becoming increasingly a significant global 

problem in the present century. Thus, the presented model could be extended to include the 

environmental aspects as an objective function. 

Practical implications – The developed design methodology can be utilized for food 

supply chain designers. Also, it could be applied to realistic problems in the field of supply 

chain management. 

Originality/value – The paper presents a methodology that can be used for tackle a multi-

objective optimization problem of a meat supply chain network design. 

The proposed optimization method has the potential in solving the similar issue providing 

a compromising solution due to conflicting objectives in which each needs to be achieved 

towards an optimum outcome to survive in the competitive sector of food supply chains 

network. 

 

Keywords: Meat; Supply chain design; Multi-objective optimization; Possibilistic; 

Management. 
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A network of food supply chains covers a number of sectors involved in production, 

distribution and consumption of food products. For delivering a high quality of food 

products with minimum costs and maximum profits, different tactics can be employed 

(Simchi et al., 2001 & Shankar et al., 2013); of which supply chains network design plays 

a key role on product quality, service levels, material flow, customer satisfaction and 

profitable return (Meier et al., 2012). Nevertheless, supply chain designers often encounter 

difficulties in making a trade-off solution due to optimization of conflicting objectives in 

such as minimization of costs, and maximization of profits and service levels. A good plan 

can also help deliver products timely from manufacturers to retailers through a supply chain 

network. This process involves a determination of allocations and locations of facilities, 

material handling capacity, transportation capability, delivery time and other performance 

measures. 

 

Findings through a literature review indicate that there are a small number of publications 

in studying food supply chains using the multi-objective optimization approaches. Revelle 

& Laporte (1996) addressed several issues in supply chains design by seeking 

compromised solutions known as Pareto solutions (Deb, 2001 & Konak et al., 2006). A 

number of researchers applied the multi-objective optimization methods to tackle these 

issues. Rong et al. (2011) developed a mixed integer linear programming model for solving 

a production and distribution planning problem of a food supply chain. Sahar et al. (2014) 

proposed a multi-objective optimization model aimed at minimizing CO2 emissions of 

transportation of goods and the total cost in product distribution through a two-layer dairy 

supply chain. The similar studies were also published by Robinson and Wilcox (2008) and 

Pagell and Wu (2009). Sabri and Beamon (2000) developed a multi-objective 

programming model used for obtaining the optimum performance of a supply chain 

network considering two conflicting objectives in minimization of the total cost and 

maximization of volume flexibility of plants. Nozick & Turnquist (2001) developed a 

mathematical model in location optimization of distribution centers considering costs of 

facility, inventory, transportation, and service coverage. Chan et al. (2004) presented a 

hybrid-genetic algorithm for solving the distribution problem of a supply chain network 

incorporating three objectives (i.e., costs, lead time and capacity). Chen & Lee (2004) 

developed a multi-objective model of a multi-echelon supply chain network seeking a 

compromised solution in satisfying all the conflicting objectives including fair profit 

distributions, safe inventory levels, customer service levels, and uncertain demands of 

products. Altiparmak et al. (2006) proposed a genetic algorithm focusing on minimization 

of inbound and outbound distribution costs and maximization of customer services in terms 

of delivery time and capacity of a distribution center. Sourirajan et al. (2009) investigated 

a two-echelon supply chain for locating distribution centers at a minimal cost using the 

genetic algorithm by comparing the result using the Lagrangian heuristic approach. Paksoy 

et al. (2010) proposed a mixed integer linear programming model used for minimizing 

costs in holding and ordering goods and transportation of a supply chain. Venkatesan & 

Kumanan (2012) developed a multi-objective discrete particle swarm algorithm aiming to 

minimize supply chain costs, lead time and maximize volume flexibility. Shankar et al. 

(2013) investigated a four-echelon supply chain architecture using the multi-objective 

evolutionary approach in order to minimize costs of facility location and shipment subject 

to a requirement that customer demands must be met. Niknamfar (2015) introduced a 
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multi-objective non-linear model for developing a production-distribution plan in a three-

level supply chain. 

 

Researchers attempted to tackle the randomness of a system under uncertainties using 

stochastic programming methods (Alonso-Ayuso et al., 2007; Listes, 2007 & El-Sayed et 

al., 2010). A review of supply chain networks under uncertainties was investigated by 

Snyder (2006). However, the stochastic programming method has several drawbacks 

particularly in making strategic level decisions. Some studies indicated that the fuzzy 

programming method may offer a better flexibility in dealing with these issues than using 

the stochastic programming method (Wang & Hsu, 2010; Qin & Ji, 2010 & Gholamiana et 

al., 2015). Petrovic et al. (1998) employed a fuzzy programming approach applied into a 

simulation model to acquire a compromised solution between the maximization of profit 

and the maximization of service level of a supply chain. Wang and Shu (2007) developed 

a fuzzy decision model that helps tackle the issue of uncertainties of a supply chain. Aliev 

et al. (2007) developed a fuzzy integrated model for solving a production–distribution 

problem for a supply chain network using the genetic optimization method. Zarandi et al. 

(2011) used the interactive fuzzy goal programming method that solves a problem in design 

of a closed-loop supply chain. Kannan et al. (2013) proposed an approach by ranking and 

selecting the best green suppliers of a supply chain according to the economic and 

environmental criteria. The proposed approach combines the fuzzy multi-attribute utility 

theory with the multi-objective programming method. Saha et al. (2015) developed a multi-

item multi-objective supply chain model in a fuzzy-stochastic environment with a potential 

risk in estimated budgets for long-term contracts. Talaei et al. (2015) developed a bi-

objective model for investigating a facility location-allocation design of a closed loop 

supply chain network.  

This paper presents a study in developing a multi-objective possibilistic model of a meat 

supply chain with an aim to minimizing the total transportation cost, the number of 

transportation vehicles and the delivery time of meat products from farms to abattoirs and 

from abattoirs to retailers. The research outcome shows it can be used as an aided tool to 

achieve a compromised solution for supply chain designers when developing a meat supply 

chain network in its optimal objectives. 

 

2. Model description and formulation 

 

Figure 1 illustrates a three-echelon meat supply chain network consisting of farms, 

abattoirs and retailers. An RFID (radio frequency identification)-based transportation 

system was proposed for monitoring safety and quality of meat products during the 

transportation process from farms to abattoirs and from abattoirs to retailers (Mohammed 

& Wang, 2015). RFID-based logistics and supply chains are a trend for future generation 

automated warehouses where customers place their orders on line and ordered goods are 

delivered directly to door steps of these customers (Wang et al., 2010). In order to minimize 



 

 

(1) the total transportation cost (2) the number of required vehicles for transportation (3) 

the delivery time. A three-objective mathematical model was developed and used for 

making a design decision; this also includes a determination of numbers of farms and 

abattoirs in response to flow of quantity of meat products between farms and abattoirs and 

between abattoirs and retailers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The three-echelon meat supply chain network. 

 

 

Notations and decision variables are described as follows: 

 

sets 

E  set of farms (1... ... )e E  

F  set abattoirs (1... f ... F)  

G  set retailers (1... g... G)  

 

Parameters 
t

efC   RFID tag cost (GBP) per item transported from farm e to abattoir f 

t

fgC   RFID tag cost (GBP) per item transported from abattoir f to retailer g 

/m l

efC  RFID reader cost (GBP) required per lorry l travelling from farm i to abattoir j 

/m l

fgC  RFID reader cost (GBP) required per lorry l travelling from abattoir f to retailer g 

efTC unit transportation cost (GBP) per mile from farm e to abattoir f   

 

Frams 

 

Abattoir

  

   
 

 

g1 g2 g3 g4 g5 G 

 

f1 f2 f3 f4 f5 F 

e1 e2 e3 E e4 

 

 

 

 

 



 

 

fgTC unit transportation cost (GBP) per mile from abattoir f to retailer g  

def     transportation distance (miles) of livestock from farm e t abattoir f 

dfg     transportation distance (miles) of processed meats from abattoir f to retailer g 

lC    transportation capacity (units) per lorry l 

l

eftt   travel time (h) of lorry l from farm e to abattoir f 

l

fgtt   travel time (h) of lorry l from abattoir f to retailer g 

Sl
       speed (m/h) of lorry l 

eC    maximum supply capacity (units) of farm e  

fC   maximum supply capacity (units) of abattoir f  

Df
  minimum demand (in units) of abattoir f  

Dg
   minimum demand (in units) of retailer g  

 

Decision variables 

efm  quantity of livestock transported from farm e to abattoir f 

fgm   quantity of processed meats transported from abattoir f to retailer g 

efQ   number of expected required vehicles to transport livestock from farm e to abattoir 

f   

fgQ   number of expected required vehicles to transport processed meats from abattoir f

to retailer g   

 

Binary decision variables 

 

eu       1: if farm e is open 

                      0: otherwise   

fv      1: if abattoir f is open 

               0: otherwise  

 

The aim of the developed three-objective model of the meat supply chain network is to 

minimize the total transportation cost O1, which includes (a) unit transportation cost per 

mile (b) RFID tag cost per unit and (c) RFID reader per vehicle, is given in Eq. 1.  

1

/ /

t t

ef ef fg fg ef ef fg fg

e E f F f F g G e G f F f F g G

m l m l

ef ef fg fg

e E f F f F g G

Min O TC m TC m C m C m

C Q C Q

       

   

   

 

       

   
   

(1)  

 

By minimizing the number of required transportation vehicles O2, it is given 

in Eq. 2. 

 

 



 

 

2 ef ef fg fg

e E f F f F g G

Min O TC Q TC Q
   

      (2) 

 

By minimizing the delivery time O3, it is given in Eq. 3. 

3

l l

ef ef fg fg

e E f F f F g G

Min O tt m tt m
   

      
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m

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/ Cef ef l

e E

Q m f F


  
 

(11) 

/ Cfg fg l

f F

Q m k K


  
 

(12) 

,ef fgQ Q integer
 

(13) 

, 0 ,ef fgm m e f    (14) 

 
, {1,0}, ,e fu v e f    (15) 

 

Equations 4-5 are the constraints of capacity at farms and abattoirs. Equations 6-7 

determine the total transportation time of meat products shipped from farms to abattoirs 

and from abattoirs to retailers, respectively. The total transportation time is defined as the 

total traveling distance of all required vehicles divided by the traveling speed of these 

vehicles. Equations 8-10 ensure that all the demands of abattoirs and retailers must be 

satisfied. Equations 11-12 give the estimated number of vehicles for objective function 

two. Equations 13-15 prohibit decision variables used from the non-binary and non-

negativity. 

 

The possibilistic programming is a powerful mathematical optimization approach that can 

be used for tackling optimization problems under uncertainty when parameters are not 

clearly defined (i.e., fuzzy parameters), or an exact value is not critical to the problem. 



 

 

Thus, the multi-objective model as described above was transformed further into an 

equivalent crisp model using the possibilistic programming proposed by Jiménez et al. 

2007 as follows: 

To minimize the total transportation cost O1, it is given: 

1

t t

ef ef fg fg ef e fg f

e E f F f F g G e E f F f F g G

m m

ef ef fg fg

e E f F f F g G

Min O TC m TC m C u C v

C Q C Q

       

   

   

 

       

   
 

(16) 

To minimize the number of transportation vehicles O2, it is given: 

1 2 3 4 1 2 3 4

2 .TC .
4 4

ef ef ef ef fg fg fg fg

ef fg

e E f F f F g G

Q Q Q Q Q Q Q Q
Min O TC

   

        
       

   
     

(17) 

 

To minimize the delivery time O3¸it is given: 
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l l

ef ef fg fg

e E f F f F g G

Min O tt m tt m
   

    

 

(18) 

 

Subject to: 
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
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1 2 3 4
. 1 ,

2 2 2

D D D

2

D

e E

f f f f

efm
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

  
  
 

 
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1 2 3 4. 1 / C ,
2 2 2 2

ef ef ef ef
ef l

e E

Q Q Q Q
m f F

 



   
      
  


 

(26) 



 

 

1 2 3 4
. 1 / C,

2 2 2 2

fg fg fg fg

fg

f F

Q Q Q Q
m k K

 



   
      
  


 

(27) 

,ef fgQ Q integer
 

(28) 

, 0 ,ef fgm m e f    (29) 

 ,, {1,0}, ,e fu v e f     (30) 

Knowing that constraints with uncertain parameters must be formed at least with a 

satisfaction level of α. 

 

3. Optimization methodology 

 

In order to obtain the Pareto-optimal solutions, the following steps were carried out: 

 

(1) Find the upper and lower bound (U, L) solution for each objective function. This can 

be obtained by: 

The upper bound solution is: 

1 1 ( ) t

ef ef fg fg ef e

e E f F f F g G e E f F

t m m

fg f ef ef fg fg

f F g G e E f F f F g G

Max O U TC m TC m C u

C v C Q C Q

     

     

  

  

     

     
 

(30) 

2 2( ) ef ef fg fg

e E f F f F g G

Max O TC Q TC QU
   

     (31) 

 3 3( ) l l

ef ef fg fg

e E f F f F g G

tt m tMax O U t m
   

    (32) 

The lower bound solution is: 

1 1 ( ) t

ef ef fg fg ef e

e E f F f F g G e E f F

t m m

fg f ef ef fg fg

f F g G e E f F f F g G

Min O L TC m TC m C u

C v C Q C Q

     

     

  

  

     

     
 

(33) 

2 2( ) ef ef fg fg

e E f F f F g G

Min O TC Q TC QL
   

     (34) 
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l l

ef ef fg fg

e E f F f F g G

Min O tt m tt m
   

    
(35) 



 

 

  

(2) Find the respective satisfaction degree µ(xi) for each objective function, this can be 

obtained by: 

    

1 1

1 1
1 1 1 1 1

1 1

1 1
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
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3 3

3 3
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3 3

3 3
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(38) 

(3) Transform the crisp model obtained from section 2.2 to a single objective function 

using the three proposed solution methods in Eq. 39, 41 and 46. 

(4) Select the best Pareto-optimal solution from the three Pareto sets using the TOPSIS 

method. 

3.1 Solution method 

 

In this work, three sets of Pareto-optimal solutions were obtained using the three solution 

methods, which are the LP-metrics method, the ɛ-constraint method and the weighted 

Tchebycheff method. 

 

3.1.1 The LP-metrics method 

 

The LP-metrics method is described as follows: 

 

1. Based on the developed multi-objective model, each of the three objectives is optimized 

individually to obtain the optimal objective values * * *

1 2 3, and O O O , respectively. 

2. Convert the three-objective model into a modular-objective function using the 

following function. 

 



 

 

** *

3 31 1 2 2

1 2 3* * *

1 2 3

 
O OO O O O

Min O w w w
O O O

  
   
 

 
(39) 

 

Subject to Eq. 19-30. 

 

3. Determine the importance of objectives based on decision makers’ preferences and the 

weight formula for the three objective functions is given as follows: 
3

1

,    w 0  ( 1,  2,  3)x x

x

w x


   
(40) 

 

3.1.2 The ɛ-constraint method 

 

With the ε-constraint method, the multi-objective model can be transformed into a single-

objective model under constraints. In this case, the higher priority of the objective is given 

to the total transportation cost, and other objectives, which are the number of transportation 

vehicle and the delivery time, are treated as the ε-based constraints (Ehrgott, 2005; 

Chankong & Haimes, 1983). The equivalent solution formula O can be minimized as 

follow: 

 
t t

ef ef fg fg ef e fg f

e E f F f F g G e E f F f F g G
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e E f F f F g G
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 

       
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(41) 

Subject to: 
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(43) 
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e E f F f F g G

tt m tt m 
   
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And Eq. 19-30. 

 



 

 

In this research, objective one is optimized in Eq.41 and objective two and three are 

constraints in Eq.42 and 44 respectively. An increase to the ε value in Eq.43 and 45 yields 

a Pareto set of solutions. 

3.1.3 The weighted Tchebycheff method 

 

With this approach the multi-objective model can be transformed into a single-objective 

model O. The purpose of the single-objective model is to minimize the distance between 

the ideal objective vector O* and the feasible objective surface (Miettinen, 1998). The 

solution approach function O can be formulated as follows:  
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(46) 

 

Subject to Eq. 19-30. It is noticed, the values of objective functions vary depending on the 

value of p. Usually, p is set as 1 or 2. But, other values of p can also be used. In this case 

study, p was set as 1. 

 

3.1.4 The TOPSIS method 

 

After revealing the Pareto solutions, a final trade-off solution needs to be determined. At 

present, a number of approaches can be utilized to determine the best solution based on the 

obtained Pareto solutions. This can be achieved based on preferences of decision makers, 

using a decision maker or an optimization algorithm. In this work, the TOPSIS method was 

employed. This approach can be used for selecting a solution nearest to the ideal solution, 

but also the farthest from the negative ideal solution (Ramesh et al., 2012). Assuming that 

 opPR- PR o=1,2,...,x (number of pareto solutions); p=1,2,...,y (number of objectives) refers the *x y

decision matrix, where PR is a performance rating of one of alternative Pareto solutions 

with respect to values of objective function. Thus, the normalized selection procedure can 

be formulated as follows: 

1

op

o

ap

p

PR
NPR

PR





 

(47) 

The amount of decision information can be measured by the entropy value as: 
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(48) 

The degree of divergence Dp of the average intrinsic information contained for p = 1, 2, 3, 

4 can be calculated as: 
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The weight value for each objective function is given by: 
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(50) 

Thus, the normalized value of the weighted objective is given by: 

op o opv w PR
 

(51) 

A distance between alternative solutions can be measured by the n-dimensional Euclidean 

distance. Thus, the distance of each alternative from the positive and negative ideal 

solutions is given as:  
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(54) 

The relative closeness of (values of) alternative solutions to (the value of) the ideal solution 

is expressed as follows: 
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(55) 

Where 0pD   and 0pD  , then, clearly,  1,0prc   

The trade-off solution can be selected with the maximum rcp or listed in descending order 

based on rcp. 

4. Case study 

In this section, a case study was used for examining the applicability of the developed 

mathematical model with the effectiveness of the proposed solution methods.  Data was 

collected from the Meat Committee (HMC, 2010). A range of application data is presented 

in Table 1. The transportation distances between meat supply chain facilities were 

estimated based on Google-map. The computational results were conducted using 

LINGO11 on a Corei5 2.5-gigahertz personal laptop with an RAM of 4gigbytes. 

 



 

 

 

 

 

Table 1. Collected data of the three-echelon meat supply chain. 

E   = 4 15 20fgTC    fD = 600-1.5K t
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t

fgC  = 0.15 
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fC = 1K-1.8K Pe
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efC  = 800 

15 20efTC    20 30lC  
 Pf
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fgC  = 800 

def = 23- 410 dfg = 110 -174 Sl = 80  

 

Figure 2 illustrates the locations of candidate facility in the considered region 

(Yorkshire/UK) which includes four farms, four abattoirs and eleven retailers.  

 

 

Fig. 2. Locations of candidate facilities in Yorkshire of the UK. 

4.1 Results and discussions 

The computational results were obtained based on the developed three-objective 

programming model using the three solution methods as described in section 3. Eq. 30-35 

were used individually to obtain the lower value and the upper value of each objective 

function. The results are ({ ,
i iO OL U }) = ({55,430, 283,260}, {26, 52}, {56, 260}). Table 2 

shows an example of the ideal values (bold values) obtained individually of each objective 

function. It shows the lower value and the upper value obtained based on each objective 

function in Eq. 30-35 individually. Table 3 shows the results of satisfaction degree µ(xi) 

based on each objective function, shown in Eq. 36-38.  

      : Farms  

      :  Abattoirs 

      :  Retailers  



 

 

 

 

Table 2. Optimum values obtained individually by optimizing Oi based on each objective 

function.  
Objective functions  1minO   2minO   3minO   

1OF   55430 269360 187673 

2OF   34 26 52 

3OF   165 256 56 

 

Table 3. Result of satisfaction degree of each objective function. 

µ(x1) 0.988 0.805 0.681 0.786 0.536 0.476 0.315 0.281 0.211 0.116 

µ(x2) 0.988 0.805 0.690 0.797 0.541 0.479 0.321 0.298 0.224 0.147 

µ(x3) 0.988 0.792 0.621 0.761 0.519 0.422 0.295 0.244 0.270 0.180 

 

The Pareto solutions are determined based on (i) the LP-metrics method; (ii) the ɛ-

constraint method. Ten epsilon values were assigned from 26 to 52 of the objective function 

two using Eq.43, and from 56 to 260 of the objective function three using Eq.45, 

respectively; and (iii) the weighted Tchebycheff method (shown in Eq.46). Table 4 shows 

an assignment of objective-weight values used for obtaining the Pareto-optimal solutions 

using the LP-metrics method and the weighted Tchebycheff method. The bold values of 

the three objective functions, which are shown in Table 2, were given as ideal values (
* * *

1 2 3, ,O O O ) for the solution function O using Eq. 39 and 46. 

Table 4. Assignment of weight values for obtaining Pareto solutions using the LP-metrics 

method and the weighted Tchebycheff method, respectively. 

# Objective weights 

 
1w , l1 2w , l2 3w , l3 

1 1 0 0 

2 0.9 0.05 0.05 

3 0.8 0.1 0.1 

4 0.7 0.15 0.15 

5 0.6 0.2 0.2 

6 0.5 0.25 0.25 

7 0.4 0.3 0.3 

8 0.3 0.35 0.35 

9 0.5 0.3 0.2 

10 0.3 0.2 0.5 

 

Table 5 shows a list of the ranking Pareto-optimal solutions based on their scores using the 

TOPSIS method.  



 

 

 

 

Table 5. Pareto-optimal solutions ranked based on scores using the TOPSIS method. 

Solution  Score  

 LP-metrics ɛ-constraint Weighted Tchebycheff 

1 0.245 0.245 0.245 

2 0.234 0.234 0.234 

3 0.266 0.266 0.264 

4 0.278 0.279 0.273 

5 0.253 0.256 0.256 

6 0.245 0.245 0.245 

7 0.236 0.234 0.235 

8 0.233 0.235 0.233 

9 0.231 0.232 0.233 

10 0.230 0.229 0.231 

 

Table 6 shows three sets of ten Pareto solutions obtained using the three methods, 

respectively as described above by assigning ten values of the satisfaction level α between 

0.1 and 1. It also shows the optimum number of farms and abattoirs that should be 

established for the meat supply chain network. For instance, solution 2 is obtained based 

on the LP-metrics method by assigning w1 = 0.9, w2 = 0.05 and w3 = 0.05. Accordingly, it 

gives the minimum total transportation cost of 55,430 GBP, the minimum number of 

required transportation vehicles of 27 and the minimum travel time of 56.4 h. With this 

solution, the meat supply chain network consists of farms one and four (1 0 0 1) and 

abattoirs two and four (0 1 0 1). 

 

Table 6. The computational results obtained by assigning the varying α values. 
Solution method # α-

level 

Min (O1) 

(GBP) 

Min (O2) 

(unit) 

Min 

(O3) (h) 

Open 

farms 

Open 

abattoirs 

Run 

time (s) 

LP-metrics 1 0.1 55430 27 56.4 1 0 0 1 0 1 0 1 3 

 2 0.2 55430 27 56.4 1 0 0 1 0 1 0 1 3 

 3 0.3 59343 29 78.5 1 0 1 1 0 1 0 1 2 

 4 0.4 64569 32 101 0 0 1 1 0 1 0 1 2 

 5 0.5 91234 34 123.5 1 0 1 1 1 0 1 1 4 

 6 0.6 224653 45 174.7 1 1 1 1 1 1 0 1 3 

 7 0.7 233450 47 196.1 1 1 1 1 1 0 1 1 4 

 8 0.8 254000 48 219.6 1 1 1 1 0 1 1 0 4 

 9 0.9 269360 50 239.1 1 1 1 1 1 0 1 1 4 

 10 1 281060 51 258.5 1 1 1 1 1 0 1 1  5 

         

ɛ-constraint 1 0.1 55430 27 56.4 1 0 0 1 0 1 0 1 2 

 2 0.2 55430 27 56.4 1 1 0 0 0 1 1 0 2 

 3 0.3 59155 29 78.2 1 1 0 1 0 1 0 1 2 

 4 0.4 63943 31 97.5 1 0 1 1 0 1 0 1 1 

 5 0.5 91858 34 123.5 1 0 0 1 1 0 1 1 3 

 6 0.6 221340 44 168.1 1 1 1 1 1 1 0 1 4 

 7 0.7 233130 47 196.1 1 1 1 1 1 1 0 1 4 

 8 0.8 253800 48 219.6  1 1 1 1 0 1 1 0 4 



 

 

 9 0.9 269312 50 239.1 1 1 1 1 1 0 1 1 4 

 10 1 280950 50 255.6 1 1 1 1 1 0 1 1  3 

         

Weighted 

Tchebycheff 

1 0.1 55430 27 56.4 1 0 0 1 0 1 0 1 3 

 2 0.2 55454 27 56.6 1 0 0 1 0 1 0 1 3 

 3 0.3 59388 29 79.1 1 0 1 1 1 0 0 1 3 

 4 0.4 64834 33 102.6 1 0 1 1 1 0 1 1 2 

 5 0.5 91263 34 123.5 1 1 0 1 0 1 1 1 4 

 6 0.6 224653 45 175.1 1 1 1 1 1 1 0 1 4 

 7 0.7 233891 47 196.6 1 1 1 1 1 1 1 1 5 

 8 0.8 254020 48 219.6 1 1 0 1 0 1 0 1 5 

 9 0.9 269360 50 239.2 1 1 1 1 1 0 1 1 4 

 10 1 283260 52 259.6 1 1 1 1 1 0 1 1  4 

          

 

Shown in Table 6, by increasing the satisfaction level α, it leads to an increase of the 

undesired value of the three objectives. Decision makers can alter the importance of the 

weight value ( iw  or li) of the three objective functions and the satisfaction level α based on 

their preferences to obtain a compromising solution as it is impossible to obtain an optimal 

value of all the conflicting objectives at a time. In other words, it is hard to obtain the 

Pareto-optimal solutions by optimizing one objective without worsening its performance 

in other objectives. Decision makers can also use the TOPSIS method to gain a best 

solution among the Pareto-optimal solutions. As shown in Table 5, with the ɛ-constraint 

method, solution 4 is the best solution based on its score 0.279 which is the highest. This 

solution was determined by assigning
1 232 and 116.5    that yields a minimum total 

transportation cost of 63,943 GBP and a minimum travel time of 97.5 h with 31 

transportation vehicles. The solution was also obtained based on an establishment of three 

farms which supplies livestock to two abattoirs. Table 7 shows the computational result of 

the Pareto solutions in terms of an optimum quantity of product flow between farms (1, 3, 

and 4) and abattoirs (2 and 4); and between abattoirs (2 and 4) and eleven retailers, 

respectively. It shows, for instance, farm three ought to supply 800 livestock to abattoir 

one and 1200 livestock to abattoir four. Abattoir two ought to supply 850 packages of 

processed meats to retailer one and 210 packages of processed meats to retailer three. 

Table 7. The result of Pareto solutions in terms of optimum quantity of product flow 

throughout the three-echelon meat supply chain. 
Facilities Quantity Facilities Quantity Facilities Quantity 

u1 ,4 1200 v2 ,1 850 v2 ,11 700 

u3 ,1 800 v2 ,3 210 v4 ,6 850 

u3 ,4 1200 v2 ,6 690 v4 ,7 450 

u4 ,1 1000 v2 ,5 290 v4 ,9 110 

u4 ,2 290 v2 ,10 100 v4 ,2 350 

u4 ,4 100 v2 ,8 160 v4 ,4 220 

      

5. Conclusions 



 

 

This paper presents a study in developing a multi-objective possibilistic programming 

model based on a three-echelon meat supply chain. The developed model comprises three 

objective functions aimed at (1) minimizing the total transportation cost (2) minimizing the 

required number of transportation vehicles and (3) minimizing the delivery time. Three 

methods are proposed in order to obtain the Pareto solutions and based on these to 

determine the optimal solution. Further, the developed model can be useful for decision 

makers to determine numbers of farms and abattoirs that need be established, and the 

quantity of livestock from farms to abattoirs and the quantity of meat products from 

abattoirs to retailers. In order to examine the applicability and effectiveness of the 

developed mathematical model that can be a useful tool for food supply chain designers, a 

case study was investigated based the collected data and the computational results were 

obtained using LINGO. 

Future research may be considering multi-product multi-period production planning under 

different types of uncertainties and transportation means. Moreover, the environmental 

aspects can also be investigated as an objective function into the multi-objective model. 

This might be an important issue for large-size meat supply chains. In this way, the 

emissions due to the transport of all products throughout the meat supply chain should be 

determined. 
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