15 research outputs found

    Variational multiscale stabilization of finite and spectral elements for dry and moist atmospheric problems

    Get PDF
    In this thesis the finite and spectral element methods (FEM and SEM, respectively) applied to problems in atmospheric simulations are explored through the common thread of Variational Multiscale Stabilization (VMS). This effort is justified by three main reasons. (i) the recognized need for new solvers that can efficiently execute on massively parallel architectures ¿a spreading framework in most fields of computational physics in which numerical weather prediction (NWP) occupies a prominent position. Element-based methods (e.g. FEM, SEM, discontinuous Galerkin) have important advantages in parallel code development; (ii) the inherent flexibility of these methods with respect to the geometry of the grid makes them a great candidate for dynamically adaptive atmospheric codes; and (iii) the localized diffusion provided by VMS represents an improvement in the accurate solution of multi-physics problems where artificial diffusion may fail. Its application to atmospheric simulations is a novel approach within a field of research that is still open. First, FEM and VMS are described and derived for the solution of stratified low Mach number flows in the context of dry atmospheric dynamics. The validity of the method to simulate stratified flows is assessed using standard two- and three-dimensional benchmarks accepted by NWP practitioners. The problems include thermal and gravity driven simulations. It will be shown that stability is retained in the regimes of interest and a numerical comparison against results from the the literature will be discussed. Second, the ability of VMS to stabilize the FEM solution of advection-dominated problems (i.e. Euler and transport equations) is taken further by the implementation of VMS as a stabilizing tool for high-order spectral elements with advection-diffusion problems. To the author¿s knowledge, this is an original contribution to the literature of high order spectral elements involved with transport in the atmosphere. The problem of monotonicity-preserving high order methods is addressed by combining VMS-stabilized SEM with a discontinuity capturing technique. This is an alternative to classical filters to treat the Gibbs oscillations that characterize high-order schemes. To conclude, a microphysics scheme is implemented within the finite element Euler solver, as a first step toward realistic atmospheric simulations. Kessler microphysics is used to simulate the formation of warm, precipitating clouds. This last part combines the solution of the Euler equations for stratified flows with the solution of a system of transport equations for three classes of water: water vapor, cloud water, and rain. The method is verified using idealized two- and three-dimensional storm simulations.En esta tesis los métodos de elementos finitos y espectrales (FEM - finite element method y SEM- spectral element method, respectivamente), aplicados a los problemas de simulaciones atmosféricas, se exploran a través del método de estabilización conocidocomo Variational Multiscale Stabilization (VMS). Tres razones fundamentales justifican este esfuerzo: (i) la necesidad de tener nuevos métodos de solución de las ecuaciones diferenciales a las derivadas parciales usando máquinas paralelas de gran escala –un entorno en expansión en muchos campos de la mecánica computacional, dentro de la cual la predicción numérica de la dinámica atmosférica (NWP-numerical weather prediction)representa una aplicación importante. Métodos del tipo basado en elementos(por ejemplo, FEM, SEM, Galerkin discontinuo) presentan grandes ventajas en el desarrollo de códigos paralelos; (ii) la flexibilidad intrínseca de tales métodos respecto a lageometría de la malla computacional hace que esos métodos sean los candidatos ideales para códigos atmosféricos con mallas adaptativas; y (iii) la difusión localizada que VMSintroduce representa una mejora en las soluciones de problemas con física compleja en los cuales la difusión artificial clásica no funcionaría. La aplicación de FEM o SEM con VMS a problemas de simulaciones atmosféricas es una estrategia innovadora en un campo de investigación abierto. En primera instancia, FEM y VMS vienen descritos y derivados para la solución de flujos estratificados a bajo número de Mach en el contexto de la dinámica atmosférica. La validez del método para simular flujos estratificados es verificada por medio de test estándar aceptado por la comunidad dentro del campo deNWP. Los test incluyen simulaciones de flujos térmicos con efectos de gravedad. Se demostrará que la estabilidad del método numérico se preserva dentro de los regímenesde interés y se discutirá una comparación numérica de los resultados frente a aquellos hallados en la literatura. En segunda instancia, la capacidad de VMS para estabilizarmétodos FEM en problemas de advección dominante (i.e. ecuaciones de Euler y ecuaciones de transporte) se implementa además en la solución a elementos espectrales de alto orden en problemas de advección-difusión. Hasta donde el autor sabe, esta es una contribución original a la literatura de métodos basados en elementos espectrales en problemas de transporte atmosférico. El problema de monotonicidad con métodos de alto orden es tratado mediante la combinación de SEM+VMS con una técnica de shockcapturing para un mejor tratamiento de las discontinuidades. Esta es una alternativa a los filtros que normalmente se aplican a SEM para eilminar las oscilaciones de Gibbsque caracterizan las soluciones de alto orden. Como último punto, se implementa un esquema de humedad acoplado con el núcleo en elementos finitos; este es un primer paso hacia simulaciones atmosféricas más realistas. La microfísica de Kessler se emplea para simular la formación de nubes y tormentas cálidas (warm clouds: no permite la formación de hielo). Esta última parte combina la solución de las ecuaciones de Eulerpara atmósferas estratificadas con la solución de un sistema de ecuaciones de transporte de tres estados de agua: vapor, nubes y lluvia. La calidad del método es verificadautilizando simulaciones de tormenta en dos y tres dimensiones

    Mathematical and numerical modelling of dispersive water waves

    Get PDF
    Fecha de lectura de Tesis: 4 diciembre 2018.En esta tesis doctoral se expone en primer lugar una visión general del modelado de ondas dispersivas para la simulación de procesos tsunami-génicos. Se deduce un nuevo sistema bicapa con propiedades de dispersión mejoradas y un nuevo sistema hiperbólico. Además se estudian sus respectivas propiedades dispersivas, estructura espectral y ciertas soluciones analíticas. Así mismo, se ha diseñado un nuevo modelo de viscosidad sencillo para la simulación de los fenómenos físicos relacionados con la ruptura de olas en costa. Se establecen los resultados teóricos requeridos para el diseño de esquemas numéricos de tipo volúmenes finitos y Galerkin discontinuo de alto orden bien equilibrados para sistemas hiperbólicos no conservativos en una y dos dimensiones. Más adelante, los esquemas numéricos propuestos para los sistemas de presión no hidrostática introducidos se describen. Se pueden destacar diferentes enfoques y estrategias. Por un lado, se diseñan esquemas de volúmenes finitos implícitos de tipo proyección-corrección en mallas decaladas y no decaladas. Por otro lado, se propone un esquema numérico de tipo Galerkin discontinuo explícito para el nuevo sistema de EDPs hiperbólico propuesto. Para permitir simulaciones en tiempo real, una implementación eficiente en GPU de los métodos es llevado a cabo y algunas directrices sobre su implementación son dados. Los esquemas numéricos antes mencionados se han aplicado a test de referencia académicos y a situaciones físicas más desafiantes como la simulación de tsunamis reales, y la comparación con datos de campo. Finalmente, un último capítulo es dedicado a medir la influencia al considerar efectos dispersivos en la simulación de transporte y arrastre de sedimentos. Para ello, se deduce un nuevo sistema de dos capas de aguas someras, se diseña un esquema numérico y se muestran algunos test académicos y de validación, que ofrecen resultados prometedores

    Discontinuous Galerkin Spectral Element Methods for Astrophysical Flows in Multi-physics Applications

    Get PDF
    In engineering applications, discontinuous Galerkin methods (DG) have been proven to be a powerful and flexible class of high order methods for problems in computational fluid dynamics. However, the potential benefits of DG for applications in astrophysical contexts is still relatively unexplored in its entirety. To this day, a decent number of studies surveying DG for astrophysical flows have been conducted. But the adoption of DG by the astrophysics community is just beginning to gain traction and integration of DG into established, multi-physics simulation frameworks for comprehensive astrophysical modeling is still lacking. It is our firm believe, that the full potential of novel approaches for numerically solving the fluid equations only shows under the pressure of real-world simulations with all aspects of multi-physics, challenging flow configurations, resolution and runtime constraints, and efficiency metrics on high-performance systems involved. Thus, we see the pressing need to propel DG from the well-trodden path of cataloguing test results under "optimal" laboratory conditions towards the harsh and unforgiving environment of large-scale astrophysics simulations. Consequently, the core of this work is the development and deployment of a robust DG scheme solving the ideal magneto-hydrodynamics equations with multiple species on three-dimensional Cartesian grids with adaptive mesh refinement. We chose to implement DG within the venerable simulation framework FLASH, with a specific focus on multi-physics problems in astrophysics. This entails modifications of the vanilla DG scheme to make it fit seamlessly within FLASH in such a way that all other physics modules can be naturally coupled without additional implementation overhead. A key ingredient is that our DG scheme uses mean value data organized into blocks - the central data structure in FLASH. Having the opportunity to work on mean values, allows us to rely on a rock-solid, monotone Finite Volume (FV) scheme as "backup" whenever the high order DG method fails in cases when the flow gets too harsh. Finding ways to combine the two schemes in a fail-safe manner without loosing primary conservation while still maintaining high order accuracy for smooth, well-resolved flows involves a series of careful considerations, which we document in this thesis. The result of our work is a novel shock capturing scheme - a hybrid between FV and DG - with smooth transitions between low and high order fluxes according to solution smoothness estimators. We present extensive validations and test cases, specifically its interaction with multi-physics modules in FLASH such as (self-)gravity and radiative transfer. We also investigate the benefits and pitfalls of integrating end-to-end entropy stability into our numerical scheme, with special focus on highly compressible turbulent flows and shocks. Our implementation of DG in FLASH allows us to conduct preliminary yet comprehensive astrophysics simulations proving that our new solver is ready for assessments and investigations by the astrophysics community

    Coupling methods for 2D/1D shallow water flow models for flood simulations.

    Get PDF
    Efficient methods for the numerical simulation of the shallow water equations are important for understanding flooding events and related phenomena. One such approach is to couple 2D shallow water floodplain flow model to 1D Saint Venant's open channel flow model. Currently, these methods are mostly designed in horizontal fashion, meaning that the separate models are coupled at the horizontal interface between the 2D and 1D regions. These methods cannot be adapted for different flooding scenarios and are not able to compute a 2D flow structure within the channel without solving the full 2D models at all times. In this thesis, we propose coupling methods that aim to overcome these limitations. First, we propose the horizontal coupling method (HCM) in the lines of existing methods. The HCM follows the derivation of coupling terms proposed in [Marin and Monnier, 2009] but we arrive at a slightly different coupling term. Then, a discrete coupling term in closed form and the computation of two lateral discharges over channel cross sections, are proposed. Next, we propose a completely new approach to model coupling; we call it the vertical coupling method (VCM). The VCM is based on vertically partitioning the channel flow into two layers. Flows in the lower and upper layers are assumed to be 1D and 2D respectively, and the appropriate flow models derived. By preserving conservation and 1D consistency, the numerical algorithm for coupling the two layer models, is formulated. We show that (i) both the HCM and the VCM are well-balanced and preserve the no-numerical flooding property, (ii) that the VCM adapts to the flow situation: solving the upper layer 2D model only if flooding. Numerical experiments show that both methods provide promising results and that the VCM is able to compute the 2D flow structure within the channel, whenever flooding. We also discuss (without numerical details) how the VCM is a family of methods and some areas of possible further research work are suggested

    High-performance tsunami modelling with modern GPU technology

    Get PDF
    PhD ThesisEarthquake-induced tsunamis commonly propagate in the deep ocean as long waves and develop into sharp-fronted surges moving rapidly coastward, which may be effectively simulated by hydrodynamic models solving the nonlinear shallow water equations (SWEs). Tsunamis can cause substantial economic and human losses, which could be mitigated through early warning systems given efficient and accurate modelling. Most existing tsunami models require long simulation times for real-world applications. This thesis presents a graphics processing unit (GPU) accelerated finite volume hydrodynamic model using the compute unified device architecture (CUDA) for computationally efficient tsunami simulations. Compared with a standard PC, the model is able to reduce run-time by a factor of > 40. The validated model is used to reproduce the 2011 Japan tsunami. Two source models were tested, one based on tsunami waveform inversion and another using deep-ocean tsunameters. Vertical sea surface displacement is computed by the Okada model, assuming instantaneous sea-floor deformation. Both source models can reproduce the wave propagation at offshore and nearshore gauges, but the tsunameter-based model better simulates the first wave amplitude. Effects of grid resolutions between 450-3600 m, slope limiters, and numerical accuracy are also investigated for the simulation of the 2011 Japan tsunami. Grid resolutions of 1-2 km perform well with a proper limiter; the Sweby limiter is optimal for coarser resolutions, recovers wave peaks better than minmod, and is more numerically stable than Superbee. One hour of tsunami propagation can be predicted in 50 times on a regular low-cost PC-hosted GPU, compared to a single CPU. For 450 m resolution on a larger-memory server-hosted GPU, performance increased by ~70 times. Finally, two adaptive mesh refinement (AMR) techniques including simplified dynamic adaptive grids on CPU and a static adaptive grid on GPU are introduced to provide multi-scale simulations. Both can reduce run-time by ~3 times while maintaining acceptable accuracy. The proposed computationally-efficient tsunami model is expected to provide a new practical tool for tsunami modelling for different purposes, including real-time warning, evacuation planning, risk management and city planning
    corecore