4,160 research outputs found

    Glottal-synchronous speech processing

    No full text
    Glottal-synchronous speech processing is a field of speech science where the pseudoperiodicity of voiced speech is exploited. Traditionally, speech processing involves segmenting and processing short speech frames of predefined length; this may fail to exploit the inherent periodic structure of voiced speech which glottal-synchronous speech frames have the potential to harness. Glottal-synchronous frames are often derived from the glottal closure instants (GCIs) and glottal opening instants (GOIs). The SIGMA algorithm was developed for the detection of GCIs and GOIs from the Electroglottograph signal with a measured accuracy of up to 99.59%. For GCI and GOI detection from speech signals, the YAGA algorithm provides a measured accuracy of up to 99.84%. Multichannel speech-based approaches are shown to be more robust to reverberation than single-channel algorithms. The GCIs are applied to real-world applications including speech dereverberation, where SNR is improved by up to 5 dB, and to prosodic manipulation where the importance of voicing detection in glottal-synchronous algorithms is demonstrated by subjective testing. The GCIs are further exploited in a new area of data-driven speech modelling, providing new insights into speech production and a set of tools to aid deployment into real-world applications. The technique is shown to be applicable in areas of speech coding, identification and artificial bandwidth extension of telephone speec

    Autonomous flight and remote site landing guidance research for helicopters

    Get PDF
    Automated low-altitude flight and landing in remote areas within a civilian environment are investigated, where initial cost, ongoing maintenance costs, and system productivity are important considerations. An approach has been taken which has: (1) utilized those technologies developed for military applications which are directly transferable to a civilian mission; (2) exploited and developed technology areas where new methods or concepts are required; and (3) undertaken research with the potential to lead to innovative methods or concepts required to achieve a manual and fully automatic remote area low-altitude and landing capability. The project has resulted in a definition of system operational concept that includes a sensor subsystem, a sensor fusion/feature extraction capability, and a guidance and control law concept. These subsystem concepts have been developed to sufficient depth to enable further exploration within the NASA simulation environment, and to support programs leading to the flight test

    A review of state-of-the-art speech modelling methods for the parameterisation of expressive synthetic speech

    Get PDF
    This document will review a sample of available voice modelling and transformation techniques, in view of an application in expressive unit-selection based speech synthesis in the framework of the PAVOQUE project. The underlying idea is to introduce some parametric modification capabilities at the level of the synthesis system, in order to compensate for the sparsity and rigidity, in terms of available emotional speaking styles, of the databases used to define speech synthesis voices. For this work, emotion-related parametric modifications will be restricted to the domains of voice quality and prosody, as suggested by several reviews addressing the vocal correlates of emotions (Schröder, 2001; Schröder, 2004; Roehling et al., 2006). The present report will start with a review of some techniques related to voice quality modelling and modification. First, it will explore the techniques related to glottal flow modelling. Then, it will review the domain of cross-speaker voice transformations, in view of a transposition to the domain of cross-emotion voice transformations. This topic will be exposed from the perspective of the parametric spectral modelling of speech and then from the perspective of available spectral transformation techniques. Then, the domain of prosodic parameterisation and modification will be reviewed

    Machine Annotation of Traditional Irish Dance Music

    Get PDF
    The work presented in this thesis is validated in experiments using 130 realworld field recordings of traditional music from sessions, classes, concerts and commercial recordings. Test audio includes solo and ensemble playing on a variety of instruments recorded in real-world settings such as noisy public sessions. Results are reported using standard measures from the field of information retrieval (IR) including accuracy, error, precision and recall and the system is compared to alternative approaches for CBMIR common in the literature

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Robust Reinforcement Learning Algorithm for Vision-based Ship Landing of UAVs

    Full text link
    This paper addresses the problem of developing an algorithm for autonomous ship landing of vertical take-off and landing (VTOL) capable unmanned aerial vehicles (UAVs), using only a monocular camera in the UAV for tracking and localization. Ship landing is a challenging task due to the small landing space, six degrees of freedom ship deck motion, limited visual references for localization, and adversarial environmental conditions such as wind gusts. We first develop a computer vision algorithm which estimates the relative position of the UAV with respect to a horizon reference bar on the landing platform using the image stream from a monocular vision camera on the UAV. Our approach is motivated by the actual ship landing procedure followed by the Navy helicopter pilots in tracking the horizon reference bar as a visual cue. We then develop a robust reinforcement learning (RL) algorithm for controlling the UAV towards the landing platform even in the presence of adversarial environmental conditions such as wind gusts. We demonstrate the superior performance of our algorithm compared to a benchmark nonlinear PID control approach, both in the simulation experiments using the Gazebo environment and in the real-world setting using a Parrot ANAFI quad-rotor and sub-scale ship platform undergoing 6 degrees of freedom (DOF) deck motion

    A Data Requisition Treatment Instrument For Clinical Quantifiable Soft Tissue Manipulation

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Soft tissue manipulation is a widely used practice by manual therapists from a variety of healthcare disciplines to evaluate and treat neuromusculoskeletal impairments using mechanical stimulation either by hand massage or specially-designed tools. The practice of a specific approach of targeted pressure application using distinguished rigid mechanical tools to breakdown adhesions, scar tissues and improve range of motion for affected joints is called Instrument-Assisted Soft Tissue Manipulation (IASTM). The efficacy of IASTM has been demonstrated as a means to improve mobility of joints, reduce pain, enhance flexibility and restore function. However, unlike the techniques of ultrasound, traction, electrical stimulation, etc. the practice of IASTM doesn't involve any standard to objectively characterize massage with physical parameters. Thus, most IASTM treatments are subjective to practitioner or patient subjective feedback, which essentially addresses a need to quantify therapeutic massage or IASTM treatment with adequate treatment parameters to document, better analyze, compare and validate STM treatment as an established, state-of-the-art practice. This thesis focuses on the development and implementation of Quantifiable Soft Tissue Manipulation (QSTM™) Technology by designing an ergonomic, portable and miniaturized wired localized pressure applicator medical device (Q1), for characterizing soft tissue manipulation. Dose-load response in terms of forces in Newtons; pitch angle of the device ; stroke frequency of massage measured within stipulated time of treatment; all in real-time has been captured to characterize a QSTM session. A QSTM PC software (Q-WARE©) featuring a Treatment Record System subjective to individual patients to save and retrieve treatment diagnostics and a real-time graphical visual monitoring system has been developed from scratch on WINDOWS platform to successfully implement the technology. This quantitative analysis of STM treatment without visual monitoring has demonstrated inter-reliability and intra-reliability inconsistencies by clinicians in STM force application. While improved consistency of treatment application has been found when using visual monitoring from the QSTM feedback system. This system has also discriminated variabilities in application of high, medium and low dose-loads and stroke frequency analysis during targeted treatment sessions.2023-04-2
    • …
    corecore