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Abstract 

 

Estimates put the canon of traditional Irish dance tunes at at least seven thousand 

compositions. The literature attributes this to the geographic isolation of rural 

communities which developed their own repertoire of tunes. Musicians playing 

traditional music have a personal repertoire of up to one thousand tunes. Given this 

diversity, a common problem faced by musicians and ethnomusicologists is 

identifying tunes from recordings. This is evident even in the number of commercial 

recordings whose title is gan ainm (without name). 

 The work presented in this PhD thesis attempts to solve this problem by 

developing a Content Based Music Information Retrieval (CBMIR) system adapted to 

the characteristics of traditional Irish music.  The thesis includes a comprehensive 

review of the domain of traditional Irish music and presents three chapters of related 

work in the fields of feature extraction, melodic similarity and music information 

retrieval. A system is presented called MATT2 (Machine Annotation of Traditional 

Tunes) whose primary goal is to annotate recordings of traditional Irish dance music 

with useful metadata including tune names. MATT2 incorporates a number of novel 

algorithms for transcription of traditional music and for adapting melodic similarity 

measures to expressiveness in the playing of traditional music. It makes use of an 

onset detection function developed for the playing of traditional music on woodwind 

instruments such as the concert flute and tin-whistle. It uses a novel transcription 

algorithm based on Brendan Breathneach’s observations about the transcription of 

traditional Irish music which provides transposition invariance for the keys and modes 

used to play traditional music. It incorporates a new algorithm for dealing with 

ornamentation notes and accommodating "the long note" in traditional music called 

Ornamentation Filtering. It makes use of publicly available collections of traditional 

music available in ABC notation. It uses a matching algorithm tolerant to errors which 

aligns short queries with longer strings from a corpus of known tunes, meaning that 

the algorithm can match entire tunes, incipits and phrases from any part of tune with 

equal success. The matching algorithm has also been adapted to take account of 

phrasing and reversing effects. A new algorithm is presented called TANSEY (Turn 

ANnotation from SEts using SimilaritY profiles)  which annotates sets of tunes played 

segue as is the custom  in traditional Irish dance music.  
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 The work presented in this thesis is validated in experiments using 130 real-

world field recordings of traditional music from sessions, classes, concerts and 

commercial recordings. Test audio includes solo and ensemble playing on a variety of 

instruments recorded in real-world settings such as noisy public sessions. Results are 

reported using standard measures from the field of information retrieval (IR) 

including accuracy, error, precision and recall and the system is compared to 

alternative approaches for CBMIR common in the literature.  
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1 Introduction 

In common with the folk music of many countries, repertoire in Irish traditional music 

is primarily acquired aurally. Musicians playing Irish music learn by hearing tunes 

played by fellow musicians in sessions, classes, workshops and from commercial 

recordings (Wallis & Wilson 2001). At workshops such as those held as part of the 

Willie Clancy Summer School (Kearns & Taylor 2003; Lynch 2008) students use 

electronic devices to record their classes. Increasingly students use digital audio field 

recorders such as the M-Audio Micro Track II, which record high quality audio 

directly to WAV or MP3 format (Figure 1).  

 

 

Figure 1: The M-Audio Micro Track II digital audio field recorder (M-AUDIO 

2008) 

In this way, over the years musicians can acquire many hours of high quality 

field recordings in standard audio formats. Similarly, organisations such as Na 

Píobairí Uilleann, Comhaltas Ceoltóirí Éireann and the Irish Traditional Music 

Archive have been acquiring field recordings of traditional music made over the last 

hundred years and these organisations now possess many thousands of hours of 

recordings in a variety of formats and on a variety of different media (Figure 2).  
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Figure 2: Wax cylinder recordings of piper Patsy Touhey (courtesy of the Irish 

Traditional Music Archive) 

 In order for these archives to be useful, they must be annotated with 

appropriate metadata, such as tune names, time signatures, key and instruments. 

Additionally for musicological and ethnographic study, archives could be annotated 

with stylistic metadata. The main goal of this PhD thesis is to develop algorithms for 

automatically annotating field recordings of monophonic Irish traditional dance 

music. Several recent papers address the necessity of developing MIR (Music 

Information Retrieval) systems that are adapted to the specific requirements of ethnic 

music and also to the needs of musicologists studying ethnic music (Doraisamy et al. 

2006; Jensen et al. 2005; Nesbit et al. 2004; Wright et al. 2008; Chordia et al. 2008). 

This work presents a unique attempt to develop a Content Based Music Information 

Retrieval (CBMIR) system adapted to the specific characteristics of Irish traditional 

dance music. The algorithms and systems proposed in this work take account of 

characteristics as slow onset times in woodwind instruments such as the concert flute 

and the tin-whistle, the playing of ornamentation, phrasing, reversing and the playing 

of tunes segue in sets. The work also takes advantage of ABC notation, which has 

been developed especially for the transcription of Western traditional music. There 

exist over seven thousand traditional Irish, Scots and Breton tunes freely available in 

ABC notation from public databases (thesession.org 2007; Norbeck 2007; Chambers 

2007). ABC notation has the advantage of being based on ASCII text and so tunes in 

ABC can be easily processed and analysed using algorithms for textual information 
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retrieval. Although this work focuses on traditional Irish music, it is hoped that the 

techniques proposed can be generalised to other genres and instruments. 

1.1 Research aims 

The overall aim of this research is to develop new algorithms and systems for the 

annotation of recordings of traditional Irish dance music. A review of the domain of 

traditional music is presented with details of the instruments and tune types used in 

traditional Irish dance music. A discussion of the keys, modes and tempos most 

commonly used to play Irish traditional music is included. Creativity, style and 

expressiveness are especially considered. This work draws extensively on authoritive 

sources in the domain including Breathneach’s "Ceol Rince na hÉireann" series, 

Vallely’s "Companion to Irish Traditional Music", Keegan’s MPhil thesis "The Words 

of Traditional Flute Style" and Tansey's "The Bardic Apostles of Inisfree". 

 The work presented in this thesis is a Content Based Music Information 

Retrieval System (CBMIR) for traditional Irish dance music. These systems extract 

features from queries, which are digital recordings and retrieve corresponding 

matching musical artefacts and metadata from a corpus. A literature review of related 

work on the problem of feature extraction from digital audio is therefore included 

which includes a discussion on note onset and pitch detection in particular. A 

comprehensive review of melodic similarity measures employed in Music Information 

Retrieval (MIR) systems is included which focuses on measures that support query 

alignment and are tolerant to errors. A literature review in the domain of Music 

Information Retrieval is included which describes symbolic MIR, audio based MIR 

(so called audio fingerprinting) and hybrid (so called query-by-humming) systems. 

 The system proposed in this thesis is called MATT2 (Machine Annotation of 

Traditional Tunes). It addresses the problem of annotating recordings of traditional 

music. MATT2 incorporates a number of novel algorithms for transcription of 

traditional music and for adapting melodic similarity measures to expressiveness in 

the playing of traditional music. It makes use of an onset detection function developed 

for the playing of traditional music on woodwind instruments such as the concert flute 

and tin-whistle. It uses a novel transcription algorithm based on Brendan 

Breathneach’s (1985) observations about the transcription of traditional Irish music 

which provides transposition invariance for the keys and modes used to play 
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traditional music. It incorporates a new algorithm for dealing with ornamentation and 

"the long note" in traditional music called Ornamentation Filtering. The 

Ornamentation Filtering algorithm proposed in this thesis has no a priori knowledge 

of note durations and so is completely adaptive to tempo deviation in audio queries. It 

makes use of publicly available collections of traditional music available in ABC 

notation. It uses a matching algorithm tolerant to errors which aligns short queries 

with longer strings from a corpus of known tunes. The matching algorithm has also 

been adapted to take account of phrasing and reversing. A new algorithm is presented 

called TANSEY (Turn ANnotation in SEts using SimilaritY profiles) which annotates 

sets of tunes played segue as is the custom  in traditional Irish dance music.  

 The work presented in this thesis is validated in experiments using real-world 

field recordings of traditional musicians from sessions, classes, concerts and 

commercial recordings. Test audio includes solo and ensemble playing on traditional 

instruments recorded in a variety of real-world settings such as noisy public sessions. 

Results are reported using standard measures from the field of Information Retrieval 

(IR) including accuracy, error, precision and recall and the system is compared 

against alternative approaches for CBMIR common in the literature.  

 Work discussed in this thesis has been presented at international conferences 

on Artificial Intelligence, Content Based Multimedia Indexing (CBMI), Music 

Information Retrieval (MIR) and Computer Music. 

1.2 Use cases 

This section presents several possible usage scenarios for the outputs of this research. 

 Maria is taking classes on the concert flute at the Willie Clancy summer 

school in Milltown Malbay one year. The classes take place over six days from 10am 

until 1pm each day. Her teacher is flute maker Eamon. Each day, Eamon spends the 

first half of the class teaching new tunes to the students and the second half of the 

class discussing technique. As the class is quite advanced, they are able to learn about 

two tunes per day. Maria uses a digital audio field recorder to record the classes each 

day. Eamon encourages the students to learn the tunes by ear and therefore doesn’t 

give the students the notes for the tunes. Eamon has forgotten several of the titles for 

the tunes. In addition to the tunes he teaches the class, Eamon records additional tunes 

for the students to study in their own time. At the end of the week Maria feels that she 
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has learned so many tunes that she ends up mixing them up. She has about two hours 

of recordings made from the classes. Mixed in with the recordings of the class, Maria 

has also recorded random tunes played in pub sessions she has listened to that week. 

At the end of the week, when she returns home, Maria transfers the MP3’s of the 

recordings to her computer. She uses MATT2 to analyse the recordings and identify 

the tunes. These titles get saved in the ID3 tags of the files, so she can import the files 

into Windows Media Player.  

 Catherine is a professional flute player who is working on a new CD, with her 

brother John and piano player Felix. Having played music all her life, she feels she 

has a repertoire of at least a thousand tunes, but like many traditional musicians she 

has difficulty recalling the correct titles for much of her repertoire. She wishes to 

include tunes on the recording that she learned from local musicians when she was 

growing up. When arranging the sets of tunes for the recordings, she realises that 

several of the tunes she knows just by the name of the person who played the tunes. 

Several others have no name at all, even though she senses the tunes are commonly 

played. She plays a phrase from each of the unknown tunes and uses MATT2 to 

identify the tunes. Once she has the names of the tunes she looks them up in Breandán 

Breathnach’s Ceol Rince na hÉireann series of books and uses the bibliographic notes 

therein to write the CD notes. 

 Treasa works for the Irish Traditional Music Archive. One of her jobs is to 

digitise analogue recordings which the archive receives. The archive is working on a 

project to make its collection available for streaming on the internet. The archive has 

just been bequeathed a set of recordings made between 1900 and 1930 by a collector 

in Chicago. The recordings are on wax cylinders and shellac discs and are in 

remarkably good condition. Treasa uses equipment in the archive to transfer the 

recordings to WAV format for inclusion in the public archive. When listening to the 

recordings Treasa is surprised to hear several unusual settings of common tunes. She 

uses MATT2 to annotate the WAV files with the tune titles. In one cases MATT2 

returns a version of a tune from O’Neills Dance Music of Ireland as the closest match 

and the same tune as transcribed in the website thesession.org as the second closest 

match. Treasa feels that this is an example of how the interpretation of tunes can 

change as a consequence of regional style and the tastes of period. She adds a 

bibliographic note to the recording marking it as an example of this phenomenon. 
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1.3 Original Contribution 

The development of a novel and useful recording annotation system for traditional 

Irish music represents an important contribution to the traditional music community 

and to the study of content based music information retrieval. This work is a unique 

attempt to develop a content based music information retrieval system which 

explicitly supports traditional Irish dance music. In particular, this work improves on 

existing systems because it accommodates and compensates for expressive elements 

commonly used by players of traditional dance music. The principal specific 

contributions to knowledge are listed as Contribution 1 - Contribution 4 as follows: 

 

Contribution 1. The development of a content based music information retrieval 

system (MATT2) which supports the input of queries played on traditional 

instruments. The algorithms presented were developed to support woodwind 

traditional instruments, but experiments reported in this thesis demonstrate that the 

system presented is equally effective for the fiddle, uilleann pipes, accordion, and 

concertina and for recordings of ensemble playing in sessions. ABC notation, the de 

facto annotation language used by traditional musicians is natively supported by 

MATT2. Special accommodation is included for the transposition that occurs in the 

tin-whistle, the most common of traditional instruments. MATT2 works equally well 

with short extracts, complete tunes, complete tunes played multiple times and with the 

use of the TANSEY algorithm given in Contribution 4 (Chapter 8), sets of tunes 

played segue as is the custom in Irish traditional music. 

 

Contribution 2. The development of a new automatic transcription approach for 

traditional music that supports transposition invariance for the keys and modes used to 

play traditional music, while minimising pitch spelling errors. This transcription 

approach automates the approach adopted by Breandán Breathnach in the Ceol Rince 

na hÉireann series of tune books. Breathnach's approach was to transcribe tunes 

played on unusually pitched instrument as if the fundamental note of the instrument 

was D. Results reported in Chapter 7 demonstrate that this approach contributes to a 

significant improvement over transposition invariant edit distance cost functions. 
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Contribution 3. The development of a framework of algorithms to accommodate 

expressiveness in audio queries to a content based music information retrieval system. 

These algorithms accommodate ornamentation, the "long note", phrasing and 

reversing, four common techniques employed by traditional musicians. These 

techniques are discussed in detail in Chapter 2. In particular, a new algorithm for 

dealing with ornamentation is presented called Ornamentation Filtering. The 

Ornamentation Filtering algorithm is also tolerant of the types of tempo deviations 

that commonly occur in the performance of traditional Irish dance music. This thesis 

represents a unique attempt to specifically address the playing of ornamentation in 

queries to a CBMIR system. The results discussed in 7.2 and 7.3 establish that 

accommodating expressiveness results in a statistically significant improvement in 

annotation accuracy over approaches that do not accommodate expressiveness. 

 

Contribution 4. The development of a novel algorithm based on similarity profiles 

to annotate sets of traditional Irish dance tunes. A set consists of multiple tunes 

repeated several times individually, played segue (without an interval). The playing of 

tunes in sets presents segmentation problems. As tunes in sets are always in the same 

time signature, often in the same key and can be repeated several times or not at all, 

there is a significant challenge in counting the repetitions of each tune and 

determining where each new tune begins, so that the subsequent tune can be 

annotated. An algorithm called TANSEY (Turn ANnotation in SEts using SimilaritY 

profiles) is presented that can accurately identify turns in sets played segue as is the 

custom in traditional music. TANSEY makes use of similarity profiles and it differs 

from existing approaches for audio segmentation that rely on recognising repetitive 

audio segments. Precision and recall scores are given for TANSEY on a set of thirty 

test recordings that establish its effectiveness. 

1.4 Organisation 

The remaining sections of this document are organised as follows: 

 

Chapter 2 contains a comprehensive overview of the domain of traditional 

music. The main tune types are given with examples. The instruments most 

commonly used to play traditional music are presented and the modes and keys 



Introduction 

 8

playable on these instruments are discussed. Initiatives to catalogue the repertoire of 

traditional music are described including the use of ABC notation. This chapter 

contains an extensive discussion on creativity and expressiveness in traditional music 

as these features will be referenced in later chapters. The research presented in 

Chapter 2 is distilled into the main challenges to implementing MIR in the domain of 

traditional Irish dance music. 

Chapter 3 discusses work on the problem of feature extraction from digital audio 

focusing on the components required to build a transcription system. Onset detection 

approaches are presented with an emphasis on Onset Detection using Comb Filters 

(ODCF), an onset detection algorithm developed for the transcription of woodwind 

traditional instruments. An overview of relevant pitch detection approaches that work 

in both the time and frequency domains are also presented.  

Chapter 4 describes algorithms used to measure similarity in symbolic 

representations of music. Simplified representation schemas common in MIR systems, 

such as Parsons Code and implication-realisation annotations are discussed. 

Geometric distances such as the Earth Movers Distance (EMD) are compared with 

string based measures such as the Edit (Levenstein) Distance.  

Chapter 5 presents related work in the field of music information retrieval (MIR). 

This chapter categorises approaches as working in the symbolic domain, the signals 

domain (so called audio fingerprinting systems) and hybrid approaches (so called 

query-by-humming systems). This chapter concludes with an evaluation of the 

suitability of existing approaches to address the challenges presented in Chapter 2. 

Chapter 6 presents a new system called MATT2. The transcription algorithms 

used by MATT2 are given. These are developed from the research presented in 

Chapter 3. A novel transcription approach is presented based on Breathneach's 

"fundamental note" observation in traditional music. A novel algorithm for dealing 

with ornamentation is presented called Ornamentation Filtering. A query and corpus 

normalisation approach is presented which compensates for phrasing and reversing 

(Chapter 2) is given.  

Chapter 7 presents an evaluation of the system presented in Chapter 6 by 

comparing it with two alternative approaches suggested by the research presented in 

Chapters 4 and 5, melodic contours (Parsons Code) and a transposition invariant edit 

distance measure. Accuracy and error scores are given for two different categories of 

test audio (whole tunes and short excerpts). Statistical significance tests are presented 
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which establish the effectiveness of the proposed algorithms when compared with the 

two alternative approaches. 

Chapter 8 presents a novel algorithm called TANSEY (Turn ANnotation from 

SEts using SimilaritY profiles) which uses similarity profiles to annotate recordings of 

sets of tunes played segue as is the style in traditional Irish dance music. The 

TANSEY algorithm described in this chapter can identify the start and end of each 

repetition of a tune, can count the repetitions and can retrieve the title and associated 

metadata associated with each tune in a set. This enhancement to MATT2 is evaluated 

on a set of thirty test recordings. Measures of precision and recall, common in the 

domain of Information Retrieval, are given for the TANSEY algorithm for different 

time accuracy thresholds. 

Finally, Chapter 9 concludes the thesis, summarises the main findings, restates 

the contributions to the body of knowledge and suggests further work which could be 

investigated. 
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2 Traditional Irish Dance Music 

The main contribution of this thesis is a novel system for machine annotation of 

traditional Irish dance music. This chapter therefore begins this thesis by presenting 

the principal characteristics of traditional Irish dance music. The aim of this chapter is 

to establish the challenges that this form of music presents to existing CBMIR 

(Content Based Music Information Retrieval) approaches. New algorithms to address 

these challenges will be presented in later chapters. 

Irish traditional music includes several musical forms. In the song tradition, 

both sean nós ("old style" singing in the Irish language) and singing in English exist. 

The baroque  music of Turlough O'Carolan (section 2.4.5) is also considered part of 

the tradition  (Vallely 1999). This project however, is primarily concerned with 

traditional dance music. The most common forms of dance tunes are: reels, double 

jigs and hornpipes. Other tune types include marches, set dances, polkas, mazurkas, 

slip jigs, single jigs and reels, flings, highlands, scottisches, barn dances, strathspeys 

and waltzes (Larson 2003). These forms differ in time signature, tempo and structure. 

For example a reel is generally played at a lively tempo and is in 4/4 time (written as 

eight quavers in a bar) while a waltz is generally played at slower pace and is in 3/4 

time. The time signature, tempo and structure of a tune form are determined by the 

dance it accompanies.  Most tunes consist of a common structure of two parts 

traditional musicians refer to as the A part and B part. Section 2.1 discusses the 

common tune forms in detail.  

Tunes are typically arranged into sets. A set consists of a number of tunes 

(commonly two, three or four) played sequentially. Each tune in a set is usually 

repeated two or three times (Vallely 1999). Certain common sets were originally put 

together to accompany set dances (Vallely 1999), while other sets have become 

popular as a result of recordings made by emigrant Irish musicians in America during 

the early part of the twentieth century. The origin of many sets of tunes is unknown 

and musicians often compile new sets "on the fly" in traditional music sessions. 

Chapter 8 presents a novel algorithm to annotate tunes played segue in a set. 

Instruments used to play traditional dance music include the tin-whistle, fiddle 

(violin), uilleann (elbow) pipes, accordion, concertina, harp and the banjo (Wallis and 

Wilson 2001). Section 2.4 describes the main characteristics of the instruments used 
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to play traditional Irish music, with a focus on the keys and modes these instruments 

typically play in. 

Music is a creative art form and "individual expression" is a defining 

component of traditional Irish music. Creativity in traditional music takes three forms 

(Breathnach 1977): 

 

1. The composition of new tunes. 

2. The arrangement of tunes into sets. 

3. The individual creativity of a musician in interpreting a tune. 

 

This work focuses on developing algorithms for content based music 

information retrieval that specifically address points two and three above. When a 

traditional musician plays a tune, it is never played exactly as transcribed, though 

because the tune forms evolved from dances, traditional musicians never deviate from 

the structure of the tune. In fact an experienced musician rarely plays the same tune 

twice identically. Interestingly, there is no scope in traditional dance music for rubato 

(tempo flexibility). Instead, a musician will employ ornamentation and variation to 

interpret the tune (Larson 2003). Breathnach (1976) writes: 

 

"Players must avoid tying themselves to a text. If they hear a turn or a twist in 

another setting they should make their own of it. All have equal rights in this 

field: they are subject only to the norms observed by players who are accepted 

as good performers by other bearers of the tradition." 

 

Ornamentation plays a key role in the individual interpretation of traditional 

Irish music. In Irish traditional music ornamentation is played on the beat, and alters 

the onset of the notes (Larsen 2003). The usage of ornamentation is highly personal 

and large variations exist in the employment of ornamentation from region to region, 

instrument to instrument and from musician to musician. The playing of 

ornamentation presents a unique challenge to measures of musical similarity. This 

problem is discussed in detail in section 2.9.1 and a novel approach for dealing with 

ornamentation is presented in sections 6.4.1 and 6.7.  
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2.1 Tune types 

This section presents the background and history of the most common forms of 

traditional Irish dance music. Table 1 summarises the main tune types1. 

 

Metre Tune Types 
Time 
Signature 

Simple Duple Metre 

Reel 2/2 or 4/4 
Polka 2/4 
Hornpipe 2/2 or 4/4 
March 2/2 or 4/4 
Schottische, Highland, Fling, Highland 
Fling, 

4/4 

German, Barn Dance 4/4 
Strathspey 4/4 

Compound Duple 
Metre 

Double jig 6/8 
Single jig 6/8 
Slide 12/8 or 6/8 
March 6/8 or 12/8 

Simple Triple Metre 
Waltz 3/4 
Mazurka, Varsovienne 3/4 

Compound Triple 
Metre 

Slip jig 9/8 

Table 1: Types of dance music (Larsen 2003) 

2.1.1 Reel 

A reel is a tune in 4/4 time usually played at a lively pace, where each bar typically 

contains eight quaver notes. There is an accent on the first and third beats of each bar. 

Most reels have an AABB form, where each "part" contains eight bars (sixty four 

notes). The part is repeated before the "turn"2 (the subsequent part) is introduced and 

repeated. This thirty two bar melody is usually repeated two or three times before a 

second reel is introduced segue (Chapter 6). Although the AABB structure is the most 

                                                 
1 Audio examples of many of the tunes given in this section, played by the author on 

the concert flute can be listened to at:  

http://www.comp.dit.ie/bduggan/music. 
2 A turn in traditional music is distinguished here from a turn in classical music, 

which is a four note ornament with a similar note sequence to a roll in traditional 

music (Virginia Tech 2009) 
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common structure for reels other structures exist. Examples include "the Dublin Reel" 

(ABC) "Kiss the Maid Behind the Barrel" (ABCD) and the "Banks of the Ilen" 

(ABB). The reel originated in France in the early sixteenth century and became played 

in Ireland in the eighteenth century. Many older reels originated in Scotland and it is 

common for variants of the same tune to appear with different titles. Reels make up 

the bulk of tunes played by many traditional musicians. Figure 3 shows the tune 

"Come west along the road" which is a tune commonly played at traditional music 

sessions (section 2.5) as transcribed in O'Neill's The Dance Music of Ireland – 1001 

Gems (O'Neill 1907) (section 2.6).  

 

  

Figure 3: The Reel "Come west along the road" (O'/eill 1907) (see also Figure 

15 and Figure 42 and Figure 44) 

2.1.2 Jig 

Jigs are the second most common musical form in traditional Irish dance music. A jig 

is a tune in 6/8 time, usually with an AABB structure. The double jig, which has this 

structure is characterised by the rhythmic pattern of groups of three quavers. The jig 

tempo is usually lively when played for listening however when played to accompany 

for dancers in competitions, a greatly reduced tempo is often required in order to 
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allow the dancers to execute their complicated footwork. Many traditional jigs are 

native in origin unlike reels which often originate in Scotland. Variations of the 

double jig include the single jig, the hop (slip) jig (a tune in 9/8 time) and the slide, (a 

tune in 12/8 time) the latter being used to accompany set (group) dances.  

2.1.3 Hornpipe 

A hornpipe is a complex dance tune in 4/4 time with a dotted rhythm played at a much 

slower tempo than a reel. Hornpipes are played in a deliberate manner to accompany a 

solo dance performance. Figure 4 shows the hornpipe "The Plains of Boyle" 

 

 

Figure 4: The hornpipe "The Plains of Boyle"(O'/eill 1907) 

2.1.4 Polka 

The polka is a dance tune in 2/4 time. It was developed in Bohemia in the early 

nineteenth century, from where it spread throughout Europe due to its popularity. 

Polka's and slides are most commonly played in the Sliabh Luchra region on the 

border between Cork and Kerry to accompany set dances (Vallely 1999). 
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2.1.5 Mazurka 

A mazurka is a tune in 3/4 time popular in the Donegal fiddle tradition. Mazurka's 

originated in the Mazovia province of Poland and arrived in Ireland in the middle part 

of the nineteenth century (Vallely 1999). 

2.1.6 Slow Air 

Slow airs are pieces of music in various metres, often based on the melodies to sean 

nós songs, and which are always played solo, at a slow tempo. The emphasis in 

interpretation of an air is on the expression of emotion.  

 

Figure 5: The slow air "Táimse Im' Chodladh" (thesession.org 2007)  
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Slow airs are particularly suited to the uilleann pipes (section 2.4.4) and are 

usually part of a piper's repertoire. Often a slow air is followed by a dance tune as a 

way of demonstrating skill and as a method of lifting the often sombre mood which 

can follow the playing of an air (Vallely 1999).  

2.2 Modes & tempo 

Irish traditional music is modal in character. These modes, are known as: Ionian, 

Dorian, Phrygian, Lydian, Myxolidian, Aeolian and Locrian (Vallely 1999). Each of 

these modes produces a scale based on a sequence of five tones and two semitones. 

The Ionian and Aeolian modes are the standard major and natural minor scales in 

western music. Irish traditional music uses four of the seven modes: Ionian (major 

scale), Dorian, Aeolian (minor scale) and Myxolidian. A list of the most commonly 

utilised modes in Irish traditional music is given in (Larsen 2003). The same modes 

are repeated in Table 2, where M* denotes that the mode M is less used than the rest 

of the modes of the list. 

 

Mode type  Mode tonal centre 
Ionian (major) D, G and A* 
Mixolydian D, G and A 
Dorian E, A and B* 
Aeolian (minor) E, A and B 

Table 2: Most commonly used modes by the tin-whistle, concert flute and the 

uilleann pipes (Gainza 2006) 

The final note on which the phrases end is usually the tonal centre of the 

mode. If a melody is played on a tin-whistle (section 2.4.1), concert flute (section 

2.4.2) or uilleann pipes (section 2.4.4) pitched in a different key, then the mode tonal 

centre shifts appropriately. For example, the mode of a tune in G Ionian becomes F 

Ionian when played on a C chanter instead of the modern standard D chanter. 

Breathnach (1985) writes of his transcriptions in the introduction to Ceol Rince na 

hÉireann Cuid III: 

 

"In notating tunes from the playing of pipers, flutes and whistle players I have 

ignored the pitch of the instruments involved and proceeded on the basis that 

the bottom or fundamental note was D, the practice in use among all 



  Traditional Irish Dance Music 

 17

traditional players. Where a performer obviously adopted an unusual key in 

which to play a tune I notated it as played. This device is most used by fiddle 

players and amongst these more frequently in the United States than in 

Ireland." 

 

 Section 6.6 presents a pitch spelling algorithm that exploits this "mental 

transposition" which is used in the transcription of traditional music. On tempo, 

Breathnach (1963) gives Table 3, the recommended tempo for traditional tunes to be 

played at, but adds: 

 

"To play music at a quicker pace detracts from the melody; to play it somewhat 

slower can do no harm. It was customary for many of the older musicians when 

playing for themselves to adopt a slower pace than demanded by the dancers" 

 

Double Jigs 
 = 127 

Slip Jigs 
 = 144 

Single Jigs 
 = 137 

Reels  = 224 
Hornpipes  = 180   

Table 3: Tempo for each metre of dance music (Breathnach 1963) 

 In (Breathnach 1976) he writes: 

 

"A great variety is encountered in the speeds at which tunes for the sets and half 

sets are played." 

 

It can therefore be concluded that a CBMIR for Irish traditional music should 

make no assumptions about the tempo a query recording could be played at. Section 

6.4.1 presents the Ornamentation Filtering algorithm that adapts to tempo variation 

and deviation. 

2.3 Tune titles 

There is a great variety of titles for traditional dance tunes and these have no 

particular pattern. Carson (1997) writes: 
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"At any rate, the tune is not a story, but stories might lie behind the tune. For, 

as mnemonics, the names summon up a tangled web of circumstances; they not 

only help to summon the tune into being, but recall other times and other 

places where the tune was played, and the company there might have been. 

The same tune – or what is recognised by some as the same might have many 

names." 

 

Titles might be classified as per Table 4. 

 

Classification Examples 
Place (area, country, town or 
townland) 

The Liffey Banks 
The Bucks of Oranmore 
Come West along the Road 

People (the composer or person 
who is associated with the 
playing of the tune) 

McFadden's Favourite 
Paddy Murphy's Wife 
Dr O'Neills 

Political aspiration or event The Home Ruler 
O'Connell's Trip to Parliament 
Repeal of the Union 

Animals The Pullet 
The Chicken that Made the Soup 
The Hare in the Corn 

Aspects of nature The Morning Dew 
The Rolling Wave  
The Green Mountain 

Domestic situation or event The Smokey House 
If it's Sick you are Tea you Wants 

Sport related The Foxhunters 
Curragh Races 
The Mullingar Races 

Alcohol related Dowd's Number 9 
The Humours of Whiskey 
The Broken Pledge 

Work related The Woman of the House 
The Maid behind the Bar 
The Merry Blacksmith 

Various women Lovely Nancy 
The Youngest Daughter 
Over the Moore to Maggie 

Sexual allegory and courting Courting Them All 
The Night we made the Match 

Unclassifiable More Power to your Elbow 
Are you Willing 
Give us Another 

Table 4: Tune titles taken from (O'/eill 1903) 
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2.4 Instruments 

This section describes the main instruments used to play Irish traditional music 

currently.  Music in Ireland has a history of over two thousand years (ÓhAllmhuráin 

1998). In the years since the sixteenth century, Irish traditional musicians have used 

bag pipes, fiddles, harps, uilleann pipes, whistles, flutes and harps. Uilleann pipes 

from the late eighteenth century still survive in playing order as do concert flutes. 

Accordions and concertinas do not appear until after the mid nineteenth century. 

Other less popular instruments not included in this section are the mandolin, 

harmonica and dulcimer. The transcription algorithms described in Chapter 3, need to 

support the instruments given in this section. 

2.4.1 Tin-whistle 

The tin-whistle is a six-holed woodwind instrument which is played by blowing into a 

fipple (mouthpiece) attached on one end of the instrument. A tin-whistle player is 

called a tin-whistler or whistler. Most modern tin-whistle's are made from brass 

tubing, or nickel plated brass tubing, with a plastic fipple, though instruments can also 

be made entirely from plastic or from wood. Tin-whistles are a common starting 

instrument for musicians, since they are inexpensive, easy to play and the fingerings 

are identical to those on the concert flute (section 2.4.2). The tin-whistle is the most 

popular instrument in Irish traditional music and almost every traditional musician can 

play one. The oldest surviving tin-whistles date from the twelfth century, but 

McCullough (1987) notes: 

 

"Players of the feadán are also mentioned in the description of the King of 

Ireland's court found in the Brehon Laws dating from the third century A.D." 

 

Different pitches are achieved by covering and uncovering the holes, 

shortening and lengthening the resonant length. With all the holes closed, the whistle 

generates its lowest note. In contrast to the concert flute (section 2.4.2), whose second 

register is achieved by narrowing the lips, the tin-whistle's second and higher register 

is achieved by increasing the air velocity into the fipple. The tin-whistle is a 

transposing instrument. It is pitched an octave higher than other instruments. For 

example, a D4 is sounded as a D5 on a tin-whistle.  Tin-whistles are available in the 
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keys given in Table 5. The algorithm given in section 6.6 (Chapter 6) automatically 

detects whether a query recording contains a transposing instrument and adapts the 

pitch spelling appropriately. 

Key Fundamental note (Hz) 
Bb 466.16 
C 523.25 
D 554.37 
Eb 622.25 
F 698.46 
G 783.99 

Table 5: Tunings for tin-whistles  

Table 5 is similar to Table 6 (given on page 20), with the pitches of the 

fundamental notes shifted up one register and the addition of the G fundamental note. 

2.4.2 Flute 

The "Irish flute" is also known as the concert flute (because it is in concert pitch), the 

timber flute (because it is made from wood), the simple system flute or the fheadóg 

mhór (big whistle).  The flute is a woodwind instrument which is played by blowing a 

stream of air across the embouchure (hole) at the mouth end of the instrument. The 

stream of air is split as it hits the embouchure which sets up sound waves in the air 

column in the body of the instrument. 

Different pitches are produced by covering and uncovering holes cut into the 

body of the flute. A concert flute has six holes tuned such that the lowest playable 

pitch; the fundamental note, with all holes closed is the D above middle C, and the 

instrument will play a D scale (D, E, F#, G, A, B, C#) as the holes are uncovered 

sequentially to shorten the resonant length of the bore (Figure 6). Flutes in alternative 

tunings are also available (Table 6).  

 

Key Fundamental note (Hz) 
Bb 233.08 
C 261.63 
D 293.66 
Eb 311.12 
F 349.23 

Table 6: Tunings for concert flutes 
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The basic flute is often augmented with the addition of up to eight keys 

(typically made from silver, mounted on wooden blocks) used to play pitches which 

are impossible to produce on the basic flute, though many traditional players do not 

make use of these. Many traditional tunes make use of the C natural note, which is 

played on a tin-whistle (section 2.4.1) by cross fingering as given in Figure 6 or by 

using a key on the flute if available. 

 

● ● ● ● ● ● ○ ○ ○ 
● ● ● ● ● ○ ● ○ ● 
● ● ● ● ○ ○ ● ○ ● 
● ● ● ○ ○ ○ ○ ○ ● 
● ● ○ ○ ○ ○ ○ ○ ● 
● ○ ○ ○ ○ ○ ○ ○ ● 
D4 E4 F4 G4 A4 B4 C#5 C5 D5 

Figure 6: Fingering chart for the wooden flute/tin-whistle 

 It is not often practical to use a key to play C natural at speed however and 

consequently musicians often resort to cross fingering the note or playing a C# 

instead, in particular when playing an ascending BCD run (Figure 16, page 40). In 

fact, the C and C# notes are sometimes played interchangeably and consequently the 

pitch spelling algorithm described in section 6.6 (Chapter 6) spells them the same. 

A concert flute theoretically has a range of three octaves, though the third 

octave is almost never used in traditional music. The technique used to play in the 

second register is known as overblowing although this is generally done by narrowing 

the lip/embouchure rather than by blowing harder (Hamilton 1990). Playing in the 

third register is achieved by cross-fingering. In traditional Irish flute playing, tonguing  

as used as a note attack technique by classical flute players is rarely used. Instead a 

technique called throating is often used (the stop is produced by the throat rather than 

by the tongue) (Hamilton 1990). This can sometimes result in the note following the 

attack to be perceived as of one of the harmonics of the fundamental rather than the 

fundamental itself. On the flute, the timbre achieved by a musician can vary widely 

between a broad/breathy sound and a sharp/clear sound and naturally volume also can 
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characterise a musician's individual style. Figure 7 depicts an unkeyed flute pitched in 

D and made from African black wood flute by Eamon Cotter, an unkeyed bamboo 

flute made by Patrick Olwell in the key of F and a six-keyed concert flute pitched in D 

made from African black wood by Eamon Cotter.  

 

 

Figure 7: Keyed and unkeyed concert flutes  

Concert flutes from the nineteenth century were originally designed to play 

classical music, but with the invention of the Boehm system flute in 1847, concert 

flutes became unpopular amongst classical musicians and thus came to be acquired by 

traditional musicians. Since the 1970’s, there has been a renaissance in concert flute 

making and now many musicians play modern flutes based on the nineteenth century 

designs (Vallely 1999). 

The flute has a strong association with the counties of Sligo, Leitrim and 

Roscommon (Figure 18, page 43) to which Tansey (2006) attributes to the coal 

mining in those areas. He argues that the flute was considered good for the 

development and health of the lungs of coal miners, constantly exposed to high levels 

of coal dust in their profession.  Although the fingerings used to play the concert flute 

are similar to those used to play the tin-whistle (section 2.4.1), the instrument has a 

completely different character and timbre and is considerably more expressive in the 

range of tones that can be produced. Carson (1997) writes: 

 

"...a flute is not a tin-whistle. Though the fingering for both is more or less 

identical, you can't hit the notes the same way because of the cramped posture if 

your hands, the added stretch, the very thickness of the flute with it's sometimes 
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painful pressure against the inside of the palm-knuckle of the left forefinger. 

Then there is the question of the breath and how you take it, and how to let it 

out. The flute resists your breath in a very necessary way; the whistle offers no 

resistance, and the breathing is very different" 

2.4.3 Fiddle (Violin) 

There is a long history of bowed instrument playing in Ireland, stretching back at least 

as far as the eleventh century (ÓhAllmhuráin 1998). The modern day fiddle was 

invented in Italy in 1550. It is a four stringed instrument played by drawing a bow 

across the strings. It is held between the chin and the chest, while the fingers on one 

hand press down on the strings, shortening and lengthening the resonances, thus 

changing the pitch. The other hand is used to draw the bow, which is made from 

horsehair impregnated with rosin, across the strings. The strings are tuned to the notes 

G3, D4, A4, and E5. Most fiddles are made from wood, but fiddles made from tin or 

brass were popular particular in remote areas of Donegal, where the robustness of a 

metal instrument was considered an advantage (Vallely 1999).  

 

 

Figure 8: Fiddle player Siobhan Peoples 

Most traditional musicians play in the "first position" giving the instrument a 

range of just over three octaves. The fiddle is a very suitable instrument for traditional 

music because of the relative ease by which ornamentation (section 2.9.1) can be 

executed (Vallely 1999). The fiddle is particular prominent in the areas of Donegal, 

Sligo, East Clare and Sliabh Luchra (on the Cork/Kerry border) (Figure 18, page 43), 
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where distinctive interpretive styles have emerged. Donegal style fiddle playing is 

generally known for its fast pace and staccato timbre achieved with short bow strokes. 

The Sligo style of fiddle playing is inspired by the playing of Michael Coleman 

(section 2.9.3), with extensive use of ornamentation (section 2.9.1). The East Clare 

(Figure 18, page 43) style is known to be slower, more melodic and with a strong use 

of ornamentation. The Sliabh Luchra area is also particularly known for the playing of 

slides and polkas (section 2.1.2, 2.1.4 and Figure 18). 

2.4.4 Uilleannn Pipes 

The Uilleannn Pipes (elbow pipes) is a bellows blown bagpipe with a chanter, three 

drones and three regulators for generating sound. The uilleannn pipes is the most 

complex instrument of its type and Tansey (1999) describes the uilleannn pipes as the 

"sacred tabernacle" reflecting its overwhelming importance in the development of 

traditional Irish music.  

 

Figure 9: The main components of the uilleann pipes (Vallely 1999) 
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 The famous piper and collector Séamus Ennis is reported to have said that it 

takes seven years learning, seven years practising and seven years playing to master 

the uilleann pipes. The player plays seated with the bag under the left arm and the 

bellows under the right arm. The bellows is used to blow air into the bag. The player 

uses pressure on the bag to maintain a constant flow of air through reads in the 

chanter drones and regulators to generate the sound. The chanter has a range of two 

octaves using the technique of overblowing, similar to overblowing on the tin-whistle 

(section 2.4.1) and concert flute (section 2.4.2). A fingering chart for the chanter is 

given in Figure 10.  

 

○ Chanter raised  

● Chanter lowered  

● ● ● ● ● ● ● ● ○ 
● ● ● ● ● ● ○ ○ ● 
● ● ● ● ● ○ ● ● ● 
● ● ● ● ○ ○ ● ● ● 
● ● ● ○ ● ● ● ● ● 
● ● ○ ○ ● ● ● ○ ● 
● ○ ● ● ● ● ● ● ● 
● ○ ● ● ● ● ● ● ● 
D4 E4 F4 G4 A4 B4 C#5 C5 D5 

Figure 10: Fingering chart for the uilleann pipes chanter 

In common with the tin-whistle and concert flute, the modern chanter is 

typically pitched in the key of D major, though chanters with other fundamental notes 

are available (Table 7).  

 

Key Fundamental note (Hz) 
Bb 233.08 
B 246.94 
C 261.63 
C# 277.18 
D 293.66 

Table 7: Tunings for uilleann pipe chanters 
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Sharps and flats can be achieved through the use of additional keys if available 

or through cross fingering. The drones are tuned to the fundamental note of the 

chanter, with each of the three drones pitched an octave apart.  

Valves controlling the drones are typically opened for the duration of a 

melody providing a droning accompaniment for the melody played on the chanter. 

Three regulators lie on top of the drones and consist of tenor, baritone and bass. They 

possess keys which only sound a note when opened. They are played with the side of 

the hand and are used to harmonise the melody. 

The uilleann pipes originated in the early eighteenth century and were 

originally known as the "Irish pipes" or "Union pipes". The pipes in their modern 

form, with three drones and regulators was introduced around 1770. The pipes 

idiosyncratic ornaments "yelping" and "craning" have been adapted by flute players, 

notably the flute player Matt Molloy, who was one of the first to introduce "craning" 

(section 2.9.1) to the playing of the concert flute.  

2.4.5 Harp 

The harp is the national symbol of Ireland appearing on coins and on government 

publications. The Brian Boru harp on display in Trinity College, is the harp from 

which the national symbol of Ireland is copied.  

 

 

Figure 11: The Brian Boru Harp (Eagan 1998) 
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The earliest surviving harps from Ireland date from the 15th century. For centuries, 

the harp and the harpist were integral components of cultural and social life in 

Ireland.  Turlough O'Carolan (1670-1738), the blind Irish harpist, wrote many tunes in 

the Baroque style - many of which are still popular amongst traditional musicians and 

appear in popular collections (O'Neill 1903). 

 The harp is a stringed instrument which has the plane of its strings positioned 

perpendicular to the soundboard. All harps have a neck, resonator and strings. The 

Irish harp went into decline in the seventeenth centaury and by the nineteenth century 

it had practically disappeared, until it had a renaissance since the 1950's (Vallely 

1999). For further discussion on the Irish harp see (Clark 2003). 

2.4.6 Free-reed instruments 

Free reed instruments include the piano accordion, the button accordion and the 

concertina. In these instruments, the air stream is generated by the action of blowing a 

bellows using the hands, which go across a set of paired metal reeds causing them to 

vibrate. Each note in these instruments is produced using a different set of reeds, with 

a valve which is opened by pressing a key on the instrument. The piano accordion is a 

double draw instrument (same note on push and draw) common in ceilí band music. 

The button accordion and concertina are single draw instruments meaning that each 

key press can produce two notes depending on whether the player pushes or draws the 

bellows (Vallely 1999). The melodeon (a predecessor of the button accordion) has a 

set of ten keys, which produces twenty notes of the diatonic scale. A development of 

the melodeon is the button accordion, which includes a row of keys to produce a full 

chromatic scale. Since traditional music is essentially diatonic, the second row is 

reserved for producing ornamentations. Finally, the concertina is a small accordion 

with hexagonal shape, having five keys at each side (Vallely 1999).The concertina is 

particularly common in County Clare (Figure 18, page 43). 

2.4.7 Percussion 

Written and pictorial records point to Irish traditional music being melodic in nature. 

Where it is present percussion is usually in the form of the bodhrán, bones, spoons, or 

drums in ceilí band music. The bodhrán is a shallow, circular frame-drum with a skin 

of goat hide or dog skin. Before the 1960's, the bodhrán was only played on St. 
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Stephen's day (the day after Christmas day) as part of the "wren boys" tradition 

(Vallely 1999), though this view seems to be contradicted by its appearance in the 

plays of Kerry playwright John B Keane (Keane 1986; Keane 1959). It appears to 

have been popularised as a result of Seán O Riada's seminal performances with radio 

ensemble Ceoltóirí Chualann in the 1960's. The bodhrán is played with a beater or 

tipper. Figure 12 illustrates the technique of holding and playing a bodhrán.  

 

 

Figure 12: Bodhrán player Peter Blaney 

Rib-bones from an animal and kitchen spoons, played castanet-fashion are also 

occasionally used to provide percussive accompaniment. Commonly heard at 

traditional music performances is the distinctive tapping of the feet of listeners and the 

musicians. Fiddle player Martin Hayes comments on this in the sleeve notes to his CD 

recording "The Lonesome Touch" (Hayes & Cahill 1997). 

2.4.8 Lilting 

Lilting, known as port béal in Irish, is a term used to describe a musical style known 

as vocalisation, which is found in many world cultures. It refers to the use of nonsense 

words, meaningless syllables or non-lexical symbols to vocalise a melody. In lilting, 

the placing of syllables is used to articulate rhythmic patterns and ornamentation 

characteristic of a musical instrument. Similar musical styles exist in Jazz, Scots, 

Ghanaian and Indian classical musical idioms. Lilting is very widespread and lilting 
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might be considered as the "third instrument" of most traditional musicians, the 

second being the tin-whistle (section 2.4.1), which the majority of musicians can play. 

Vallely (1999) speculates that lilting may have developed as a response to a shortage 

of musical instruments. Lilting is a respected form of musical expression and 

Comhaltas Ceoltóirí Éireann has a separate competition for lilting in its annual 

fleadhanna (musical competitions).   

 Lilting is often used between musicians when they are talking about a tune or 

in the teaching of a tune. Although lilting is very popular, it is currently not supported 

as a query mechanism for any of the MIR systems discussed in Chapter 5. It is hoped 

to add support for lilted queries to a future version of the system presented in Chapter 

6. 

2.5 Solo versus ensemble playing 

When traditional musicians play together, all musicians play the same melody. 

Breathnach (1985) criticises the trend towards the playing of accompaniment or 

ensemble playing in Irish traditional music and argues that it diminishes the skill of 

solo performance. He writes: 

  

"A good performer, playing solo – the best way of rendering this music – will 

play a tune over 3, 4 or more times, introducing as he proceeds fresh forms of 

ornamentation, melodic and rhythmic variations." 

 

Nonetheless, it is common for Irish music to be played in sessions at ceilithe 

and on commercial recordings in unison. Similarly piano accompaniment has been a 

feature of traditional music since the availability of 78 RPM records of traditional 

music since the 1920's with accompaniment on piano. In the 1960s, it became popular 

to incorporate guitar accompaniment and in the 1970's the bouzouki was introduced. 

Since the 1960's it is common for traditional music to be played at sessions – semi-

formal gatherings of musicians and occasionally dancers which often take place in 

pubs. Often sessions are anchored by one or two core musicians who may be paid to 

play, though sessions are generally open to guests of appropriate standard. The 

session is largely controlled by the relative status of the people playing, with the 

higher status musicians exercising more control over the way the session develops. 
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Figure 13: Fiddle player Colm Logue, the author, and flute player Patsy Hanley 

at an informal session at Fleadh Cheoil na hÉireann 2008 

Hamilton (1990) identifies status in the session as depending on a musician's 

age, competence, reputation, and instrument played. Musician Charlie Lennon is 

quoted in (O'Shea 2006) as saying: 

 

"The importance of good listeners positioned around the musicians cannot be 

overstated as they help to bring the best out of the musicians and make the 

session a success" 

 

Ensemble performance of Irish traditional music is a social opportunity for 

musicians to meet and the playing of music in sessions can be understood as a modern 

manifestation of the sociality of rural house dances common in Ireland before the 

1930's. O'Shea (2006) writes: 

 

"At two (or three) in the morning, only a handful of musicians remained and 

the dancers were still roaring for music.  Perhaps it was the company's 

conviviality certainly the whiskey contributed or the  fact that I was now 

familiar with the other musicians repertoire, but as we played together I 

experienced a surge of euphoria, a feeling that I was right at the centre of the  
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music I loved, that I understood through my body the meaning of dance music, 

a level of exhilaration as if I were dancing myself, and to the best possible 

music. Other factors contributed to my sense that I was at one with the music 

making, for the evening was a culmination of many years of learning and 

playing within a cultural narrative that accorded the highest value to a house 

dance with older musicians such as those present. Or perhaps it was simply 

that, with my tapping toes at times literally under the feet of the dancers as 

they stamped their rhythm on the music, I was sitting in the best seat in the 

house..."  

2.6 Collections 

There have been several notable initiatives to catalogue the canon of Irish traditional 

music (Petrie 1855; Bunting 1840; Joyce 1909; Shields 1998) but the majority of 

traditional tunes were not transcribed until the turn of the twentieth century when 

Francis O’Neill, the then police chief in Chicago, transcribed and documented a large 

body of dance tunes and airs from immigrant Irish musicians.  

 In 1903, he published a book of his collected tunes entitled The Music of 

Ireland. The 1,850 tunes presented in the collection were classified according to tune-

type (airs and songs, Carolan compositions, double jigs, slip jigs, reels, hornpipes, 

long dances, marches and miscellaneous). In 1907, he published The Dance Music of 

Ireland – 1001 Gems. This collection focused entirely on the dance music repertoire 

and contained many tunes published in his previous collection. O’Neill’s second book 

was considered the definitive source for traditional musicians and musicians would 

often refer to a tune by its reference number in the book (Wallis & Wilson 2001). 
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Figure 14: Police Chief Francis O' /eill and the cover of O' /eill's "The Dance 

Music of Ireland" 

 Brendan Breathnach’s Ceol Rince ;a hÉireann series in five volumes is 

regarded as the most significant and influential collection of traditional Irish music 

after O' Neill's books (Breathnach 1963; Breathnach 1976; Breathnach 1985; 

Breathnach 1996; Breathnach 1999). Breathnach’s books contain tunes from many 

sources including field recordings, commercial recordings and manuscript collections 

of dance music held in private hands. 

By identifying duplicates and variations Breathnach sought to identify the 

earliest occurrences of tunes and trace their history through printed manuscript 

collections and recordings. His books contain detailed bibliographic notes on each of 

the tunes included, an example of which is given in translation (Translation by 

Breandán Breathnach, as posted to IRTRAD-L on 15/08/98 by Terry McGee): 

 

"23. Scaip an Puiteach [Scatter the Mud]: O';eill has a setting (O'; i, 187) 

and Roche another, The Maids of Tramore (R i, 129). The tune [first part] 

which Roche has is faulty at the end, and the turn [second part] is not from 

this jig at all [The Eviction in Ryan's Mammoth Collection, p104, is almost 

identical to the Roche tune]. This jig is also called The ;oonday Feast." 
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2.7 Collections in electronic format 

ABC is a music notation language introduced by Chris Walshaw in 1991 (Walshaw 

2007) for the typesetting of traditional tunes. The format was designed primarily for 

folk and traditional tunes of Western European origin which can be written on one 

stave in standard classical notation (Walshaw 2007).  

The tune given in Figure 15 is typical of the transcriptions that can be sourced 

in ABC from publicly available databases (see also Appendix C and Appendix E).  

X:422 
T:Come West Along the Road 
R:reel 
S:Session 
H:See also #432, in A. This version is also played in A. 
H:1st part similar to "Over the Moor to Peggy", #710 
D:Arcady: Many Happy Returns 
D:Noel Hill & Tony McMahon: \'I gCnoc na Gra\'i 
Z:id:hn-reel-422 
M:C| 
K:G 
d2BG dGBG|~G2Bd efge|d2BG dGBG|1 ABcd edBc:|2 ABcd edBd|| 
|:g2bg egdg|(3efg dg edBd|1 g2bg egdB|ABcd edBd:|2 gabg 
efge|dega bage|| 

Figure 15: The tune "Come West Along the Road" in the ABC format (/orbeck 

2007) (see also Figure 3, Figure 42 and Figure 44) 

 In this transcription the transcriber has helpfully included a significant amount 

of useful metadata with the notation for the tune such as the source of the 

transcription, the discography and a listing of similar tunes.  ABC files are 

ASCII text files and so can be edited by any text editor, without the necessity for 

special software. Each file (known as a tune book) can contain multiple tunes. File 

sizes are typically measured in kilobytes and this facilitates easy transmission by 

electronic means. The small size of ABC files also makes them an ideal medium for 

the storage of tunes on a memory constrained mobile device (Duggan 2007b). 

The header section contains amongst other fields, the title, composer, source, 

tempo, key, geographical origin and transcriber (Mansfield 2007). As tunes can have 

several titles, the title field can be repeated for a given tune.  The tune body contains 

the notation for the tune. The body encoding supports such features as ornaments 

(section 2.9.1), bar divisions, sharps, flats, naturals, repeated sections, key changes, 
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guitar chords, lyrics and variations. Appendix B gives a short tutorial on ABC 

notation. There is an active and vibrant community supporting ABC notation and a 

range of tools have been developed for a variety of platforms and purposes. Some 

examples include website thesession.org, a text based MIR (Music Information 

Retrieval) system that contains over 7,000 tunes collaboratively transcribed by the 

traditional music community (thesession.org 2007) (section 5.1) and TunePal an MIR 

system which runs on a PDA or smartphone which enables access to collections of 

tunes for playback in traditional music sessions (Duggan 2007a; Duggan 2007b; 

Duggan 2006) (section 5.1). 

 Between 1997 and 2000, a group of musicians under the leadership of Dan 

Beimborn and John Chambers, undertook a grass roots project to transcribe three of 

O’Neill’s books to electronic format using ABC notation. As copyright had expired 

on O’Neill’s original books, they made their work freely available on the internet 

(Chambers 2007).  Many of the tunes from O’Neill’s books are played differently by 

musicians today, as is normal with a living tradition. Around the same period (the late 

1990’s) Henrik Norbeck collected nearly two thousand tunes in ABC notation from 

various sessions and recordings. Again this collection was made freely available on 

the internet. This collection contains many modern settings of tunes from O’Neill’s 

books (Norbeck 2007). The experiments presented in Chapter 7 and Chapter 8 use 

Norbeck's reel and jig corpus to identify recordings of tunes.  

2.8 Musical creativity 

Götz (1981) relates creativity to "making" and defines creativity as "the process or 

activity of deliberately concretising insight". Boden (1996) distinguishes two types of 

creativity. Psychological creativity (P-creativity) occurs when an individual has an 

idea which is novel to that individual, regardless of how many other individuals have 

had the same idea. Historical creativity (H-creativity) defines ideas that are novel not 

only to an individual, but also novel in the history of human endeavour. P-creativity is 

therefore judged by an individual. H-creativity is judged by society at large. The 

concept of two levels of creativity is also proposed by (Gardner 1993), who 

distinguishes between "little c" and "big C" creativity.  

There are examples in traditional music of both P-creativity and H-creativity 

as defined in (Boden 1996). Individual expression (P-creativity) is in fact a defining 
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component of traditional Irish music. In the introduction to the revised edition of O’ 

Neill’s Music of Ireland, Krassen (1975) describes a typical scenario: 

 

"It seems that on this particular occasion Touhey wanted to learn a tune from 

McFadden. He had McFadden play it for him several times and then tried his 

own hand at it. Of course McFadden had to play it again, pointing out several 

"errors." This happened a number of times until Touhey finally gave up, for 

McFadden was playing the tune a little differently each time through!" 

        

A traditional musician will usually employ variations, ornamentation, timbre 

and phrasing to interpret a tune (Larson 2003). How these elements are 

accommodated in this work is described in Chapter 6. 

 H-creativity by definition, more rarely occurs in traditional music. Some 

examples might include the introduction of the concert flute in the nineteenth century, 

the development of the ceilí band form in the 1920’s and 1930's, the renaissance of 

traditional music led by Sean O’ Riada and Ceoltóirí Chualann  in the 1960’s and the 

introduction of the Bouzuki in the 1970’s (Wallis and Wilson 2001). 

 The cognition of individual creativity implies that an individual musician 

demonstrates a style which can be recognised. Meyer (1989) defines musical style as: 

 

"a replication of patterning…that results from a series of choices made within 

some set of constraints".  

 

Keegan (1992) again associates the concept of style with creativity and claims 

that the technique of an individual and their musical style are one and the same thing.  

2.9 Style & expressiveness in traditional Irish dance music 

Until the 1940’s there existed distinct regional styles of playing Irish traditional music 

attributed mainly to the isolation of rural communities prior to the advent of mass 

communication (Keegan 1992). This section concentrates on flute and tin-whistle 

styles, though the techniques explored in this section are also used in other traditional 

instruments to varying extents and each instrument adds its own idiosyncrasies. 
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There are a number of authoritative sources which describe characteristics that 

can define an individual musician’s style. For the concert flute, these include Valley’s, 

"Timber: The Flute Tutor", and his PhD thesis, "Flute Routes to 21st Century Ireland" 

(Vallely 2004), Larson’s "The Essential Guide to Irish Flute and Tin Whistle", 

McCormack’s, "Fliúit: Irish Flute Tutorial", Keegan’s  (1992) MPhil thesis "Words of 

Traditional Flute Style". In addition there is Casey’s "Traditional Irish Flute Music 

from East Galway A Regional study and Documentary Field Collection". Additionally 

Tansey’s (1999) "The Bardic Apostles of Inishfree", a profile of Sligo musicians 

makes reference to ornaments (section 2.9.1) not described in any of the other 

literature, (bark, backstitch, run and pop). In personal interviews he has elaborated on 

the meaning of these terms (Tansey 2006). Breathnach's (1963) Ceol Rince na 

hÉireann Cuid I and Cuid III contain detailed tables indicating how ornamentation 

should be performed on the pipes, whistle, fiddle and the accordion. 

Although there are some disagreements in definitions of certain features, the 

literature generally agrees that interpretative style can be characterised by features that 

include use of ornamentation, phrasing (where a musician takes a breath), use of 

variation, staccato or legato playing (with throating/ tonguing attacks), the timbre a 

musician achieves with an instrument, bowing style on the fiddle, tempo, choice of 

tune, choice of tune type and the arrangement of tunes into sets. Certain instruments 

are also more popular in some regions of Ireland than others, such as the flute in 

counties Sligo, Leitrim and Roscommon (sections 2.4.2 and 2.9.3) the fiddle in 

Donegal (section 2.4.3) and the button accordion in Sliabh Luchra. 

2.9.1 Ornamentation 

Larsen (2003) defines ornamentation as: 

  

"…ways of altering or embellishing small pieces or cells of a melody that are 

between 1 and 3 8-note beats long. These alterations and embellishments are 

created mainly through the use of special fingered articulations."  

        

The playing of ornamentation is a defining characteristic of traditional Irish 

music. The sound of most ornaments is very brief. Although generated by inserting 

additional notes, Larsen (2003) argues that the notes are played at such speed that they 
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are not perceived as having a discernible pitch or duration. Breathneach's (1963) 

descriptions of ornaments however seems to contradict this view as he distinguishes 

different fingerings for ornaments played on different instruments. Keegan (1992) 

similarly suggests that the use of different fingerings is a characteristic of musical 

style and ability.  

Further, there are differing opinions as to the origins of ornamentation in 

traditional Irish music. Larsen (2003) suggests that ornamentation is derived from the 

playing of the píob mór, a mouth blown bagpipe which predated the development of 

the modern uilleann pipes. The píob mór had no capacity for momentary interruptions 

to the flow of air and thus melodies were played as unbroken streams of sound. In 

order to generate a stop between two notes of the same pitch, a musician would play a 

third note momentarily between the two notes.  

Tansey (1999) however argues that ornamentation developed as an attempt to 

mimic the sounds of nature. He compares for example the sound of a cran to that of a 

sheep’s "baa" and postulates that the ornament was developed by shepherd’s who 

played wooden flutes while tending sheep: 

 

"I put it to you therefore that it had to come from the throats of birds, the wild 

animals, the ancient chants of our forefathers, the hum of the bees and the 

mighty rhythms of the galloping hooves of wild horses all moulded together…"  

 

The main types of ornamentation are now identified3. 

A cut is defined as an articulation used to separate two notes. A cut is 

articulated by playing a middle note momentarily at a higher pitch than the second 

note. The overall length of the two notes does not change when cutting and so the 

length of the second note must be shortened very slightly to accommodate the cut. 

A tap (referred to in some sources as a strike or a bounce) is an articulation 

also used to separate two notes. A tap is articulated by playing a middle note 

momentarily at a lower pitch than the second note. 

A long roll is an ornament used to separate three notes. The second note in the 

sequence is cut and the third note is tapped. Again, the overall length of the three 
                                                 
3 Audio examples of each of the ornaments described in this section can be listened to 

at: http://www.comp.dit.ie/bduggan/music 
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notes does not change. A short roll is similar to a long roll, but the first note in the 

sequence of three is dropped. Jackie Small in the introduction to (Breathnach 1996) 

describes a roll as similar to a gruppetto in classical music, but with a different 

emphasis. He writes: 

 

"The use of the roll is best learned by traditional musicians: notation cannot 

adequately express the secret of this little rhythmic 'knot' which is such a 

characteristic of Irish traditional dance music. Where a roll or triplet is 

indicated...one could play the roll appropriate to one's instrument, or a triplet 

or other ornamental device; or indeed no ornament at all and instead opt for 

'the long note'" 

 

Rolls therefore can be played or not according to preference and so melodic 

similarity metrics (Chapter 4) should consider a phrase played with or without 

ornamentation to have a distance of zero. This requires that the measure will be a non 

metric (Chapter 4). 

Uilleann pipes' chanters (section 2.4.4), concert flutes (section 2.4.2) and tin-

whistles are usually pitched in D.  As there is no note lower than a low D on these 

instruments, a tap on the low D is not possible. Instead, to execute a "roll" type 

ornament on a low D, a musician will play a cran. In order to play a cran, the 

musician replaces the tap with a second cut. The second cut uses a different note, 

usually higher than that of the first cut. This creates a "bubbling" sound characteristic 

of the playing of flute player Matt Molloy. In cases where the instrument is pitched 

differently (Table 5, Table 6, Table 7) the pitches generated by craning are adjusted as 

appropriate. Not all musicians use crans, for example, the flute player Catherine 

McEvoy rarely plays crans. Although Larsen (2003) suggests that crans can be done 

on any note, most other sources suggest that crans are only played on the low and 

middle D and E (Vallely 1999; Vallely 1986). They can be played long or short as 

with rolls. An example of the several ways in which the musical phrase GGG (3 

quaver length G4's) in ABC notation may be interpreted is given in Table 8 (see also 

Appendix B).  
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Example 
(in ABC format) 

Meaning 

GGG 3 quaver notes 
ggg 3 quaver notes transposed 1 octave 
~G3 A G roll, 5 notes 
~g3 A G roll, 5 notes, transposed 1 octave 
G~G2 A G followed by a 4 note roll 
g~g2 A G followed by a 4 note roll, transposed 1 octave 
G3 A dotted crochet (The long note) 
g3 A dotted crochet (The long note), transposed one octave 
G2z A crochet G followed by a breath 
g2z A crochet G followed by a breath, transposed one octave 
G{B}G{D} A 5 note G roll, ornamented with an unusual fingering. Many 

variations are possible. 

Table 8: Variations on the notes GGG in ABC notation 

With the above articulations, the actual pitch of the "extra" notes may vary 

depending on which finger the musician feels most comfortable lifting at speed 

(Keegan 1992). Using different fingers to perform the ornamentation also gives the 

ornament a specific character which can be part of a musician’s unique sound. 

Breathnach (1963) writes: 

 

"The single grace note is shown as being the next highest note to that being 

ornamented although in fact this may not have been so; this form also varies 

from instrument to instrument" 

 

This contrasts with Larson's (2003) more limited explanations of 

ornamentation.  

A trill is defined as a rapid alteration of the principal note and the note above 

it. A trill may begin on either the principal note or on the higher ornamental note. 

Trills are usually played for short durations in traditional music, with longer duration 

trills being considered too much of an allusion to classical music.  

A tight triplet also called a treble in (Tansey 1999) is a stepwise rising or 

falling sequence of 3 notes played in quick succession in the rhythm of two notes. A 

specific type of tight triplet mentioned in (Tansey 1999) is a back stich which he 

describes as a treble using the notes BCD. 

A run as described by Tansey (2006) is a descending sequence of two tight 

triplets as illustrated in Figure 16. In the note sequence, the first four notes are played 
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without the use of a run while the second sequence of six notes are two tight triplets, 

in other words a run on the four note sequence. 

 

K:D 
M:Reel 
=cABG (3=cBA (3BAG 

 

Figure 16: An example of a run in ABC notation (see also Appendix B and 

http://www.comp.dit.ie/bduggan/music) 

Figure 17 gives examples of the ornamentation discussed in this section in 

piano-roll format. As can be seen from the diagram the inserted notes take duration 

from the subsequent note. This characteristic is exploited in the Ornamentation 

Filtering algorithm presented in section 6.4.1. 

 

Figure 17: Examples of ornamentation in piano roll format (see also 

http://www.comp.dit.ie/bduggan/music for example audio 

recordings) 

Switching between octaves on a wooden flute or tin-whistle is achieved using 

overblowing (Hamilton 1990). Overblowing is also used as a technique in the 

sounding of a hard D on a concert flute. A hard D is achieved on a wooden flute by 

overblowing the D in the lower register to the extent that the note is perceived as a 

group of harmonics of D which can be impossible to distinguish (Keegan 1992). The 

hard D is also played on the pipes.  

Reversing is a technique common in the Donegal fiddle tradition which is also 

popular amongst certain flute players. Reversing describes where a musician 

transposes a melody by one octave in order to add a "baser" sound. This commonly 

occurs in the B part of a tune which is usually played in the high register of an 

instrument. In ensemble playing, this has a similar effect to the technique of doubling 
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(playing the melody in two octaves simultaneously) on the concertina and it can be 

used to create a simple polyphony. Reversing can be done whereby a phrase or entire 

part of a tune is transposed (Robinson 1999). Many examples of this phenomenon can 

be heard on the CD recording "O Bhéal go Béal" by Marcas O'Murchu (O'Murchu 

1997). This is also a characteristic technique of the flute player Seamus Tansey which 

Carson (1997) describes as a "Tansey stock-in-trade, blowing the high notes low and 

visa-versa, jumping octaves all the time". This seemingly random transposition by 

octave will affect measures of melodic similarity described in Chapter 4 and so this is 

compensated for in section 6.7. 

2.9.2 Phrasing 

Phrasing in concert flute and tin-whistle music is easily identified as the timings in a 

performance of a tune where a musician takes a breath. Traditional music scores are 

not annotated with breath marks and it is up to an individual musician to decide where 

a breath should be taken. Taking a breath usually means leaving out a note or several 

notes from the score in a performance.  Phrasing is therefore more obvious in music 

played on the flute and tin-whistle than on any other traditional instruments. Keegan 

(1992) in his interviews establishes that phrasing (and in particular the length of 

phrases) is a strong indicator of a particular regional and individual style.  

 Table 9 summarises the features elaborated upon in this section. 
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Ornamentation Single-note Cut 
Tap 

Multi-note Roll 
Cran 
Triplet 
Run 

Breathing Phrasing  
Throating (attacks)  
Overblowing  
Timbre  

Variation   
Repertoire Reels  

Jigs  
Hornpipes  
Polkas  
Slides  

Sets   
Tempo  Fast  
 Slow  
 Tempo deviation  

Table 9: Features which characterise creativity in traditional Irish flute playing 

2.9.3 Regional Styles 

Canainn (1978) describes regional style as the common features which distinguish the 

majority of performances by musicians from a particular area. Keegan (1992) 

attempts to understand the cognition of regional styles of Irish flute music by 

conducting a series of interviews with prominent musicians. He reports that four 

regional flute styles were identified by his subjects, though his work suggests that the 

characteristics which distinguished these styles varied somewhat. The regional styles 

identified in his work are: The West Clare style, the Ballinakill/East Galway style, the 

Fermanagh/Northern style and the Sligo/Roscommon style. Figure 18 shows a map of 

Ireland with the locations of the four regions identified by Keegan. 

 The West Clare and Ballinakill/East Galway styles he describes as 

demonstrating much use of ornamentation and accidentals, with the melody played at 

a relatively slow pace. These styles differ in repertoire and use of breath articulation, 

with The West Clare style being characterised by the use of throating to emphasise 

rhythm. The Ballinakill/East Galway style developed from the playing of the 

musicians in one of the first ceili bands, The Ballinakill Traditional Players. Keegan 

suggests that the Ballinakill/East Galway sound is more legato, with an emphasis on 
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melody rather than rhythm. This is evident in the repertoire played by musicians in 

that style, which contains tunes with several parts. He suggests that in the past a 

substantial group of East Galway musicians have adopted the Boehm system flute or 

other fully keyed instruments, which are more suitable for the repertoire which 

involve tunes in unusual keys and with accidentals. 

 

 

Figure 18: Geographic origin of regional style (Source: Author based on (Keegan 

1992)) 

The Fermanagh/Northern style he describes as being sparsely-ornamented, but 

with heavy stress on breath articulation techniques. Keegan (1992) states that there 

exist two styles of phrasing. In some examples, there is an emphasis on natural-

phrasing (regular two-bar phrases), while other musicians demonstrate short irregular 

phrasing, characteristic of the music of North Leitrim (and hence similar to the Sligo-

Roscommon style).  

There is a strong concentration of flute players in the 

Leitrim/Sligo/Roscommon area which Tansey (2006) attributes to the prevalence of 

coal mining in the region. He argues that the flute was considered good for the 

development and health of the lungs of coal miners, constantly exposed to high levels 

of coal dust in their profession. Vallely (1999) suggests that the Sligo style was 
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inspired by the playing of emigrant fiddlers of the 1920's such as Michael Coleman, 

whose 78 RPM records were very popular at the time. Although Keegan's (1992) 

subjects reported contradictory opinions on many aspects of the Sligo/Roscommon 

style, they agreed that the style is very rhythmical because of the use of breath 

articulation and emphasis. They also suggest that the overuse of ornamentation is not 

characteristic of many musicians of the Sligo/Roscommon style (though he points out 

several notable exceptions). Vallely (1999) seems to disagree with this assessment 

and suggests that phrases and variations are ornate in the Sligo style, with an emphatic 

puff from the diaphragm accenting each new phrase. This is evident in the playing of 

modern archetypal Sligo flute players Seamus Tansey, Catherine McEvoy and Matt 

Molloy. 

Vallely (1999) distinguishes a distinctive Leitrim style of flute playing 

inspired by the flute player John McKenna of Arigna, near Drumshambo who 

recorded extensively in the early part of the twentieth Century (Figure 19).  

 

 

 Figure 19: John McKenna (flute) and Michael Gaffney (banjo) 

He proposes that the Leitrim style pre-dates the Sligo/Roscommon style and is 

reminiscent of an older flute playing style, likely at one time to be common to both 

Sligo and Leitrum. McKenna's style was driving, breathy and comparatively sparing 

in the use of ornamentation, with short melodic phrasing. 
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2.9.4 Expressive examples 

To better illustrate the variation that occurs in the employment of the expressive 

elements outlined in this chapter, Appendix H presents note for note transcriptions of 

the tune "Ambrose Moloney's" played by two expert flute players, Catherine McEvoy 

and Eamon Cotter. Catherine McEvoy plays in the Sligo/Roscommon style and in fact 

has a released a CD recording entitled "Traditional Flute Music in the Sligo-

Roscommon Style" (McEvoy 1998). Eamon Cotter combines elements of the East 

Galway flute style and elements of the East Clare fiddle tradition in his flute playing 

(Hurley 2005). These transcriptions show marked differences in how each musician 

has chosen to interpret the tune. The first difference is that McEvoy has chosen to 

play the reel three times, while Cotter plays the tune just twice. There are many 

examples of variation in the employment of both ornamentation and phrasing. 

Consider the phrase from the B part of the tune the first time around: 

 

dgbg a2fa|gedB GABd| 
eaag agef|g2bg age2| 
 

Which McEvoy interprets as: 

 
dzb a{c'}ag{g}ea|{c'}g{g}edB ~g3d| 
{f}a4{c'}a {b}g{b}ed|gzbg abge| 
 

McEvoy has taken a breath in the first and last bars, employed cuts at the onset 

of many of the notes in the second register, played a g roll in the second register 

instead of the phrase GAB (in the lower register) and replaced the phrase eaag with 

"the long note" a4 with a corresponding cut at the onset, amongst other melodic and 

ornamental transformations. In contrast, Cotter plays the same phrase as: 

 
dgbg ~a2f{ag}a|gedB GDBD| 
ea{b}a^g a{gf}=gef|gzbg{b}a{gf}gez| 
 

 He takes two breaths, but in the last bar and in different places to McEvoy. He 

replaces the phrase a2 with a short roll on the note a and again cuts at the onset of 

many of the notes in the second register. Cotter however also plays trills instead of 

cuts at the onsets of the notes a and g. Interesting Cotter makes use of the accidental 
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g# (transcribed as ^g in ABC notation), the use of accidentals being a characteristic 

of the East Galway flute style (Hurley 2005).  

2.10 Conclusions 

From this introduction to the domain of traditional Irish dance music, it can be 

concluded that an MIR system for traditional dance music must deal with many 

challenges which would present difficulties for the MIR systems presented in Chapter 

5. These challenges are distilled into P1-P10 in Table 10.  

 

P1 Support for traditional instruments 
P2 Commonly used  keys & modes  
P3 Reversing  
P4 C, C# similarity  
P5 Phrasing  
P6 Transposition in tin-whistles 
P7 Ornamentation 
P8 The long note  
P9 Tempo deviation  
P10 The playing of tunes in sets 

Table 10: Summary of the main challenges in performing CBMIR on traditional 

music sources 

Firstly and most obviously, the system should support the input and annotation 

of queries played in traditional instruments such as the flute, tin-whistle, fiddle and 

uilleann pipes or alternatively lilted queries (P1, P6). Irish traditional music is usually 

played legato and so any transcription system needs to support legato note onsets 

(section 3.1). Interestingly, although some of the Query by Humming MIR systems 

described in Chapter 4 contain traditional Irish dance tunes in their corpora, they do 

not generate positive results when queries are played on the tin-whistle or wooden 

flute (as tested by the author). 

Stylistic variation (P3, P5, P8, P9) is very common even within the same 

performance of a tune and therefore any system developed needs to be robust to 

melodic variations. The use of ornamentation (P7) means that transcribed melodies 

are always augmented when performed. From Breathneach's comments, it can be 

understood that the playing of ornamentation is optional and according to Keegan, is 

an indication of personal and regional style. Ornamentation can be played or not or 
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replaced by "the long note" according to preference and so melodic similarity 

measures (Chapter 4) should consider a phrase played with or without ornamentation 

to have a distance of zero. The MATT2 system proposed in Chapter 6 filters 

ornamentation notes "intelligently" and also deals with the long note in traditional 

music. 

 Where a musician makes use of reversing (P3), this should be considered the 

same as a melody played without reversing. As a simple example, the musical phrase 

GGG in ABC notation may be interpreted in many ways as indicated in Table 8. This 

will affect melodic similarity measures (Chapter 4) that depend on exact matches.  

  The collection of tunes into sets played in a segue creates segmentation 

problems (P10). An input query to a CBMIR system for traditional music may consist 

of a phrase from any part of a melody, an entire melody, an entire melody played 

multiple times or multiple melodies played multiple times without an interval, in the 

same time signature and often in the same key. The challenge therefore is in 

segmenting a query appropriately so that each individual tune in a set can be 

annotated correctly. This challenge is address in Chapter 8 with the introduction of a 

new algorithm called TANSEY (Turn ANnotation from SEts using SimilaritY 

profiles). 

 Given the dominance of concert pitch instruments used to play traditional 

dance music, transposition invariance is only required for the keys and modes 

playable on the concert pitch instruments given in Table 5, Table 6 and Table 7 (P2). 

This can be achieved by modifying the pitch spelling algorithm as described in section 

6.6 to suit the fundamental note (section 2.2) of the instrument playing the query, 

rather than by using a transposition invariant similarity measure (section 4.4) which 

doubly weights replacements, insertions and deletions. Polyphony also does not need 

to be considered as, when Irish traditional music is played in unison the same melody 

is simultaneously played by all the performers. Where accompaniment is present, 

Gainza's (2006) work on the separation of melody from accompaniment in recordings 

of traditional music can be used to extract the melody component of the signal. 

 Chapter 3 considers the problem of how to build a transcription system that 

can extract note onset time and pitch information from query recordings and reviews a 

number of the main approaches to these problems.  
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3 Features of Music 

CBMIR (Content Based Music Information Retrieval) involves the extraction, and 

analysis of information from audio signals. The aim of this thesis to develop an 

approach whereby a digital recording of traditional music can be annotated by 

comparing it against a representation of a melody in a symbolic format. In order to 

achieve this, it is necessary to extract a representation of the melody contained in the 

digital recording by performing a transcription.  

Audio signal features can be categorised into low-level and high-level features. 

Examples of the former are frequency spectrums, spectral centroid or Mel-frequency 

cepstral coefficients (MFCC's). High-level features describe properties like rhythm, 

tempo, melody and structure. In general, low-level features are closely related to the 

audio signal, whereas high-level features represent more abstract properties of music 

(Schedl 2008). Developing even a monophonic transcription system that performs as 

well as a human is an open research question as Dixon (2004) writes: 

 

"The main problem in music signal analysis is the development of algorithms to 

extract sufficiently high level content from audio signals. The low level signal 

processing algorithms are well understood, but they produce inaccurate or 

ambiguous results, which can be corrected given sufficient musical knowledge, 

such as that possessed by a musically literate human listener. This type of 

musical intelligence is difficult to encapsulate in rules or algorithms that can be 

incorporated into computer programs." 

 

This chapter presents the main features of music and discusses techniques to 

extract these features from digital signals. In particular, this chapter focuses on note 

onset time and pitch extraction techniques as these will form the basis for the 

transcription components of the CBMIR system presented in Chapter 6.  

3.1 Onset-detection 

A note onset describes the start time of a note. A note offset gives the end time of the 

note. In music played legato, the offset of a note is concurrent with the onset of the 

subsequent note. Timbre (section 3.3) is related to note onset, as listeners use the 
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attack of a note in distinguishing notes played on different instruments. For example, 

note attack in percussive instruments such as the piano (Figure 21, page 50) sound 

different to note attack in a concert flute (Figure 20).   

 

Figure 20: Waveform plot of a concert flute playing the notes A to G legato 

Figure 20 and Figure 21 compare waveform plots of a concert flute playing the 

notes A to G legato with waveform plots of the same notes being played on a piano. 

As can be seen from these figures, there is a significant energy change in the plot from 

the piano between the offset of the first note and the onset of the second note, whereas 

with notes played legato on the wooden flute there is a no significant energy change 

from one note to the next. Also significant in these plots is the contrast in onsets 

between the two plots. In Figure 20, the onset to the first note is gradual as the energy 

builds up, in contrast to the second plot, where the signal reaches maximum energy 

very quickly. 

Vos & Rasch (1981) distinguish between actual and perceived onset times of 

musical notes, and showed that the perceived onset occurs when the tone reaches a 

level of approximately 6 – 15dB below its maximum value. Dixon (2006) identifies 

factors such as masking, temporal order thresholds and "just noticeable differences" 
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that make the definition of onset for real-world audio data a challenge. For example, 

in polyphonic music, the onsets of nominally simultaneous notes (chords) might be 

spread over tens of milliseconds. 

 

Figure 21: Waveform plot of a piano playing the notes A to G  

Algorithms that identify note onsets typically try to identify transient regions 

in the signal. Transient regions can include a sudden change in energy, or a change in 

the profile of the frequency spectrum of a signal, for example. Onset detection 

algorithms derive a function called an Onset Detection Function (ODF) from the 

audio signal at a lower sampling rate than the original signal and apply a peak-picking 

algorithm to locate the onsets (Bello et al. 2005; Dixon 2006). The peak picking 

algorithm is normally limited to identifying local maxima above a defined threshold. 

Thresholds can be fixed or adaptive. A fixed threshold can be employed on signals 

with little dynamics, however as music can have has significant amplitude changes 

over the course of a performance, a fixed threshold will tend to generate false 

negatives in quiet passages and false positives in noisy ones. For this reason, 

adaptation of the threshold to the characteristics of the signal is usually employed 

(Bello et al. 2005). Note-onset detection is an important subproblem in the domains of 
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automatic transcription, instrument identification and rhythm estimation (Gainza 

2006).  

Onsets can be classified as either sharp or slow. A sharp onset has a short 

duration and is characterised by a sharp change in the energy profile of the signal. 

Instruments with a sharp attack include the piano and the plucking of a string on a 

guitar. Woodwind instruments such as the concert flute and tin-whistle in contrast 

have a slow onset meaning that the signal takes much longer to reach maximum 

amplitude.  

Early methods of onset detection were derived from the observation that the 

onset of a note is often accompanied by an increase in the signal's amplitude (section 

3.4). An envelope following onset detector can be derived by low pass filtering the 

signal and applying a peak picking algorithm to the subsequent signal (W. Schloss 

1985). Chafe & Jaffe (1986) analyse the amplitude envelope of the entire input signal 

however their approach only works for signals with prominent onsets. Dixon (2004) 

uses a simple energy based onset detection function in the time domain that looks at 

the energy changes in successive frames. The author claims that this approach worked 

well for percussive instruments such as the piano, but admits that the algorithm often 

detected false onsets and also failed to detect onsets for simultaneously sounding 

notes.  

 Several onset detection studies separate the signal into frequency bands in 

order to more accurately analyse the salient components. Masri (1996) proposes using 

spectral flux (section 3.3) restricted to positive changes and summed across all 

frequency bins to detect onsets. He also proposes a high frequency content (HFC) 

function which looks at changes between frames, in the high frequency component of 

a signal. The HFC function is reported to produce peaks in the note attack phase and 

is notably successful when faced with percussive onsets, where transients consist of 

bursts of white noise. Scheirer's (1998) approach is inspired by psychoacoustics.  He 

separates the signal into six frequency bands, covering an octave each. He then 

extracts the amplitude envelope for each band which is smoothed using a half 

Hanning window (section 3.2) (Figure 25). These are fed into comb-filter resonators 

in order to estimate the tempo of the signal. Klapuri (1998) develops the relative 

difference function by dividing Scheirer's (1998) first order difference by the 

amplitude envelope to give an onset detection function that works better for slower 

onsets. Klapuri (1999) employs a filter bank which divides the signal into eight non-
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overlapping bands. In each band, onset times and intensities are detected and finally 

combined. The eight filter-bank model is used as an approximation of the mechanics 

of the human cochlea. 

 When a new note is played, it is likely that the new note will be out of phase 

with the previous note, and so irregularities in the phase of various frequency 

components can also indicate the presence of an onset (Dixon 2006). A phase vocoder 

is an algorithm which modifies the Short-Time Fourier transform STFT (section 3.2) 

of an input signal, before re-synthesising the sound. Phase vocoders can be used to 

achieve high quality time scale and pitch modifications of a signal (Dolson 1986). A 

phase based onset detection approach based on phase vocoder theory is proposed in 

(Settel & Lippe 1994). This approach looks at phase differences in the frequency bins 

between consecutive frames in an STFT of the signal (section 3.2). These differences 

are used to separate steady and transient bin components of the STFT. The work of 

(Settel & Lippe 1994) is developed by (Duxbury et al. 2001) who suggest combining 

the transient separation with energy based onset detection methods into a complex 

domain method. Their approach however requires the user to manually input a 

threshold to be used in the calculation of note onsets. Methods which analyse the 

distribution of phase deviations across the frequency domain are proposed in 

(Duxbury et al. 2003; Bello & M Sandler 2003). In the steady-state part of a signal, 

phase deviations approach zero, thus a histogram of the distributions of phase 

deviations will have a peak in the zero bin. During attack transients, values increase, 

widening and flattening the distribution. To measure the spread of the distribution per 

frame, they compute the Inter Quartile Range (IQR); that is the difference between the 

75th and the 25th percentiles of the data being analysed. 

 Duxbury et al. (2002) present a complex domain method which splits the 

signal into four frequency bands. The two lowest frequency bands use a function 

based on spectral difference. The highest two bands use energy based methods. A 

statistical analysis is carried out on the onset detection function to set the threshold 

above which onsets are identified. 

 Lacoste & Eck (2005) use an artificial neural network (ANN) to classify 

frames of audio in a signal as either onset or non-onset. They propose two algorithms 

which they call single-net and many-net. The single-net algorithm computes the 

spectrogram of the signal, uses a neural network to find an onset trace and then makes 

use of a peak picking algorithm to identify candidate onset times. The many-net 
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algorithm repeats the single-net algorithm n times with different hyperparameters and 

then combines the classifications using another neural network. Tempo information is 

used to filter spurious onsets. Their many-net algorithm scored highest in the MIREX 

2005 onset detection competition, but they comment on the poor performance of the 

algorithms due to the inefficiency of neural networks.  

 Gainza et al. (2005) propose an onset detection method based on comb filters 

which specifically addresses the problem of how to detect slow onsets in woodwind 

traditional instruments such as the concert flute and the tin whistle. Onset Detection 

using Comb Filters (ODCF) discovers harmonic characteristics of the input signal and 

is therefore more tolerant to energy changes in an input signal and is also better at 

detecting onsets in legato playing, where there is no significant change in energy at 

the onset of a new note. To generate the Onset Detection Function (ODF) using 

ODCF, the input signal is first sampled at 44100Khz. The input signal is then 

segmented into overlapping frames of 2048 samples (approximately 46 milliseconds). 

Each frame overlaps with the previous frame by 75%. Each frame is then passed 

through a bank of twelve FIR (Finite Impulse Response) comb filters.  

A FIR comb filter works by summing the time domain input signal with a 

delayed version of the same input signal (section 3.2). The delay of the filter is 

calculated as being the length in time of a single period of a waveform at the 

frequency. This has the effect of amplifying the frequency or a harmonic in the input 

signal which matches the frequency being filtered. Thus, the energy of the input signal 

is doubled only if the peaks of the signal coincide with the peaks of the FIR comb 

filter. This will only occur for a given delay and its integer multiples (Smith 1997). 

Equation 1 which gives the output power of each of twelve filters E(m, D) with 

different delays corresponding to the twelve semitones in the key of D3, where m is 

the frame, D is the delay in samples, x is the signal being filtered and ; is the length 

of the frame being filtered (Gainza & Coyle 2007). Figure 37 (Chapter 6) gives an 

extract from the author’s implementation of Equation 1 in Java. 

���, �� =  	 
���� + ��� − ���������� 4 ∗ �����  

Equation 1 

For each frame of audio examined, the outputs of the frame for each of the 

twelve filters are calculated. A value for the ODF is then calculated as being the sum 
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of the difference between the outputs of each of the twelve filters in successive frames 

squared, as given by Equation 2 (Gainza & Coyle 2007).  

 

������ =  �
���, ��� −  ��� − 1, �������
���  

Equation 2 

A dynamic threshold is then calculated above which peaks in the ODF are 

recognised as being candidate note onsets. The dynamic threshold is calculated as the 

mean of the amplitude of the entire signal plus the standard deviation for the frame 

being considered (Gainza et al. 2005). 

 

 

Figure 22: Onset Detection Function (ODF) for a musical phrase calculated using 

ODCF implemented by the author in Java (Chapter 6) 

Figure 22 shows the ODF calculated in this way (using the authors 

implementation in Java described in Chapter 6) with an input signal of a wooden flute 

playing the notes D, E and F# legato.  As illustrated, the onsets detected correspond to 

the onsets of each new note.  

Collins (2005) thesis is that stable pitch queues can be used to segment a signal 

into note onsets. He uses a pitch tracker based on cross correlating a harmonic 

template with a constant Q spectrum, with the signal to extract the best fitting F0 

estimation (section 3.2). He uses 4096 point FFT with a step size of 512 samples. He 
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post processes the output of the pitch tracker to remove momentary octave errors and 

rogue outliers. Further, he employs both a vibrato suppression algorithm and silence 

detection algorithm to filter spurious onsets, and generates an ODF by tracking pitch 

changes between successive frames. To extract peaks from the onset detection 

function, an adaptive threshold is used similar to those described in (Bello et al. 2005; 

Gainza 2006; Gainza et al. 2005). Reported results show that Collins (2005) ODF 

gives better performance than Bello et al.'s (2005) phase deviation algorithm. Collins 

(2005) attributes this improvement to the incorporation of vibrato suppression which 

establishes the importance of modelling higher level musical features into music 

analysis systems. 

 Dixon (2006) improves on phase analysis approaches discussed by (Bello et 

al. 2005) by proposing weighted phase deviation (WPD) and normalised weighted 

phase deviation (NWPD). Using WPD, frequency bins are weighted by their 

magnitude and using NWPD the sum of the weights is factored out. In their reported 

experiments on test audio from various instruments, WPD and NWPD perform 

significantly better than phase deviation alone and are comparable with spectral flux 

(Masri 1996),  and complex domain methods (Bello et al. 2004). Further, Dixon  

(2006) proposes rectified complex domain (RCD) as an improvement on the complex 

domain methods proposed by (Duxbury et al. 2002) and (Bello et al. 2004) which 

adapts Masri's (1996) usage of positive changes in spectral flux.    

3.2 Pitch 

Pitch represents the perception of the fundamental frequency of a sound. The 

fundamental frequency (F0) is given as the number of oscillations per second. In 

Western music pitch information is considered to be more discriminative than rhythm, 

since there are more possibilities for a sequence of n pitches than for a sequence of n 

durations (Lemstrom & Perttu 2000). Sounds generated by real instruments and by the 

human voice usually contain overtones, also known as partials. When these partials 

occur at integer multiples of the fundamental frequency, they are known as 

harmonics. Algorithms to detect pitch can work in either the time domain or the 

frequency domain. Figure 23 shows a plot of a wooden flute playing the note D4, with 

the normalised absolute values of the Discrete Fourier Transform (DFT) of this signal 
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given in Figure 24. Harmonics of the fundamental frequency are clearly visible as 

periodic peaks in the plot.  

 

Figure 23: A concert flute playing the note D4 

 

Figure 24: The normalised absolute FFT values of the signal from Figure 23 



  Features of Music 

 57

In the time domain, Rabiner et al. (1976) suggest that are peak and valley 

measurements, zero-crossing measurements, and autocorrelation measurements may 

be used to estimate pitch, but that these measurements are sensitive to noise. Pitch 

estimation based on maximum likelihood is proposed in (Wise et al. 1976). Maximum 

likelihood pitch estimation analyses the periodicity of the autocorrelation function in 

the time domain. 

Finite Impulse Response (FIR) comb filters are used in the work of (Moorer 

1975; Miwa et al. 2000; Tadokoro et al. 2003; Cheveigne 1991). Comb filters are so 

named because the peaks and troughs in their magnitude frequency response resemble 

the teeth of a comb. A FIR comb filter works by summing the input signal with a 

delayed version of the same input signal. The delay of the filter is calculated as being 

1 / frequency being filtered (the length in time of a single period of a waveform at the 

frequency). This has the effect of amplifying the frequency (or a harmonic thereof) in 

the input signal which matches the frequency being filtered. For example, given a 

sample rate sr=44100 and a frequency of 293Hz, the delay is 151 samples. The output 

of a comb filter can be calculated in the time domain as given in Equation 1 (see also 

section 6.2). 

 Autocorrelation as a means of estimating pitch, is suggested in (Brown 1993). 

Autocorrelation is the correlation of a signal with itself in the attempt to discover 

repeating patterns in the signal such as the presence of a periodic signal. The 

autocorrelation algorithm exploits the fact that a periodic signal will be similar from 

one period to the next. The autocorrelation function is defined as the sum of the 

absolute difference between the two signals over some interval. The resulting function 

will have peaks at integer multiples of the signal period in a similar manner to a comb 

filter. The frame of audio being analysed should have a length ; at least twice as long 

as the longest period being searched for.  Ghias et al (1995) use autocorrelation to 

estimate pitches in their QBH (Query By Humming) system (section 5.3), but report 

that autocorrelation is subject to aliasing (picking an integer multiple of the actual 

pitch) and is computationally complex. 

 To convert a time domain signal to a frequency domain signal, the Discrete 

Fourier Transform (DFT) is computed. The DFT takes a signal and decomposes it into 

a sum of sines and cosines of different frequencies. In Equation 3, x is the signal in the 

time domain, and an and bn are unknown coefficients of the series. The integer n has 

units of Hertz(Hz)  and corresponds to the frequency of the wave (Storey 2002). 
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���� = � + ���� sin�2πnt� + '� cos�2πnt��*
���  

Equation 3 

 Figure 24 (page 56) shows the absolute values of the FFT of a wooden flute 

playing the note D4. The short-time Fourier transform (STFT) is used to convert local 

sections of a signal from the time domain to the frequency domain. An STFT is 

usually calculated on a frame of audio windowed using a Hanning function (Figure 

25) so that out of phase signal components from the start and end of the frame have 

minimal impact on the energies computed. This is also known as spectral leakage 

(Smith 1997).  

 

 

Figure 25: Hanning function 

Figure 26 shows the effect of windowing using a Hanning function on a frame 

of audio from the sample given in Figure 23 (page 56). 
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Figure 26: A frame of audio from Figure 23 windowed by the Hanning function 

from Figure 25  

 The STFT is given by Equation 4 where w(m) is the window which selects an 

L length block from the input signal x(m), n is the frame number and H is the hop 

length in samples (Gainza et al. 2005).  

 

+��, ,� =  � ��� + �-�.���/01��2� �3450�
4�  

Equation 4 

Evaluating these sums directly would take O(;2) arithmetical operations and 

so this is usually achieved using the Fast Fourier Transform algorithm (FFT). An FFT 

is an algorithm to compute the same result in O(; log ;) operations. In the 

straightforward case, the fundamental frequency (F0) will be the frequency bin with 

the highest energy, though this is not always the case. Sometimes a harmonic of the 

fundamental frequency will contain the highest energy in the spectrum and peak 

picking algorithms have been widely employed to retrieve the FFT bin which 
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corresponds with the perceived pitch (Kasi & Zahorian 2002; Dogan & Mendel 1992; 

Atal 1973; Klapuri 1998; Klapuri 2003). 

In the frequency domain, autocorrelation can again be used (Kunieda et al. 

1996), though harmonics of the fundamental frequency will also correlate using this 

method. Brown (1992) cross-correlates the spectrum with spectral representations of 

different harmonics, where the frequency components are logarithmically separated. 

In this representation, harmonic frequency components are equally spaced in the 

frequency domain regardless of the fundamental frequency. A pattern is built for all 

pitch candidates and cross-correlated with the spectrum to give a maximum in the 

position of the fundamental frequency. Klapuri's (2003) approach is similar. He splits 

the signal into 17 overlapping logarithmically distributed frequency bands. A 

weighted vector is then calculated for each candidate fundamental frequency to obtain 

the fundamental frequency that best explains the energy band. 

Frequency domain periodicity methods such as those described are susceptible 

to both high and low octave pitch detection errors (Gainza 2006). A comprehensive 

review of pitch detection algorithms and their applicability to transcription in 

traditional Irish music is given in (Gainza 2006). 

3.3  Timbre 

Timbre is the quality of a sound which distinguishes different types of sound 

production, such as a note played on a concert flute compared to the same note played 

on an accordion. The physical characteristics of sound which affect the perception of 

timbre include the harmonic series generated by the instrument and the ADSR 

(Attack, Decay, Sustain, Release) amplitude envelope of a note played on the 

instrument. Brightness is a measure of the energy in higher-frequency bands of the 

signal. The spectral-centroid is an indication of the "center of mass" of the frequency 

spectrum. It is calculated as the weighted mean of the frequencies present in the 

signal, with their magnitudes as the weights as per Equation 5. 

 

6/�789:; =  	 ���������0��� 	 �����0���  

Equation 5 
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 Bandwidth can be computed as the magnitude-weighted average of the 

differences between the spectral components and the spectral-centroid of the 

frequency spectrum (Smith 1997). It is zero for a single sinewave, while ideal white 

noise has an infinite band-width (Typke et al. 2005). Spectral flux measures the 

change in magnitude in each frequency bin of an STFT of a signal (Dixon 2006).  

3.4 Loudness 

Loudness is the perceived amplitude of a sound. The perception of loudness varies 

from person to person and is affected by parameters other than sound pressure, 

including frequency and duration. Loudness is commonly measured on a logarithmic 

scale, called decibel SPL (Sound Power Level). On this scale, 0 dB SPL is a sound 

wave power of 10-16 watts/cm2, the weakest sound detectable by the human ear. 

Normal speech is at about 60 dB SPL, while painful damage to the ear occurs at about 

140 dB SPL (Smith 1997). 

3.5 Rhythm 

Rhythm is the term which denotes the organisation of sound in time; the temporal 

quality of sound. Rhythm is related to the concepts of grouping, metre and structural 

accents. Music is organised to equal sized bars, where each bar contains the same 

number of beats. Metre gives the number of beats in a bar, while accent gives the 

measure of which beats receive emphasis (Lerdahl & Jackendoff 1983). An onset 

detection function is often used to estimate rhythm. For example Scheirer (1998) uses 

an onset detection function (section 3.1) to extract beat and tempo information from 

digital audio. The BeatRoot system is given in (Dixon 2004). BeatRoot models the 

perception of beats in a piece of music. BeatRoot first analyses the input signal to 

extract note onsets. Dixon's first attempt to extract note onsets used a time domain 

algorithm which looked at the energy changes in successive frames. The authors claim 

that this approach worked well for percussive instruments such as the piano, but admit 

that the algorithm often detected false onsets and also failed to detect onsets for 

simultaneously sounding notes. Their second attempt improves accuracy by 

separating the signal into frequency bands and looking for onsets in each band. The 

system then uses an array of agents initialised with a tempo hypothesis. The agent 

then predicts further beats and is evaluated according to how well the predicted and 
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actual beat times correspond. The system was evaluated against a corpus of Mozart 

sonatas and popular music and the authors claim a success rate of 90%.  

3.6 Structure 

Tonal music is usually organised into higher level groupings of musical segments 

aligned with the rhythm. In pop music for example, these segments might be labelled 

as intro, verse, chorus and refrain with segments such as verse and chorus being 

repeated at intervals in the music (Peiszer et al. 2008). In classical music, a fugue 

opens with a main subject, which is transformed and repeated in the parts (voices) of 

the fugue. These transformed subjects are known as countersubjects and must be 

contrapuntal (sound different from each other, but harmonious when played together). 

These contrapuntal variations may imitate the main subject, be transformed in pitch or 

rhythm be augmented or diminished or the melody may be inverted (Hofstadter 1979). 

 In Irish traditional dance music, tunes are usually structured in repeated 

monophonic sections known as the A part and the B part of a tune. Occasionally there 

can also be a C and D part. An AABB reel for example contains a 64 note sequence 

repeated and then followed by second 64 note sequence repeated after which the 

entire tune is repeated. An ABC jig contains a 48 note sequence followed by a second 

48 note sequence followed by a third 48 note sequence, after which the entire tune is 

usually repeated. 

 The automatic inference of structure from digital audio recordings of music is 

known as Automatic Audio Segmentation. Foote (2000) uses a self similarity matrix 

of pitch based features vectors extracted from each frame of audio using an STFT 

(section 3.2). The similarity of frames on the horizontal axis to frames on the vertical 

axis is plotted in a matrix. Using this approach, musical structure can be inferred from 

patterns in the matrix. A measure of novelty is extracted from the matrix by 

calculating the correlation of the matrix with a "checkerboard kernel", with peaks in 

the novelty profile used to extract segment boundaries. The size of the kernel is varied 

to detect novelty over different time scales.  

 Maddage et al. (2004) use high level metadata such as rhythm extracted from 

the signal in combination with low level features to improve segmentation accuracy. 

Firstly, the rhythm structure of the audio is inferred using an Onset Detection 

Function (section 3.1). The audio is then segmented into beat length frames. A 
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statistical learning method based on Hidden Markov Models (section 4.5) is then used 

to identify chord sequences in the frames and to detect vocal/instrumental boundaries. 

Finally repeated chord patterns and vocal content analysis is used to define the 

structure of the song. 

Peiszer (2007) expands Foote's (2000) work by developing a two phase 

approach to segmentation. First, various features are extracted from each frame of 

audio such as the spectrogram, Mel Frequency Cepstrum Coefficients, rhythm-based 

features and harmony related features. Then, the self-similarity matrix between these 

feature vectors is calculated and a novelty profile generated. The novelty profile is 

then smoothed using a low pass filter and peaks are extracted as candidate segment 

boundaries. In phase two, the extracted segments are clustered. Segments that cluster 

together are labelled identically.  

3.7 Conclusions 

The aim of this thesis is to develop an approach whereby a digital recording of 

traditional music can be annotated by comparing it against representations of melodies 

in a symbolic format. In order to achieve this, it is necessary to extract a 

representation of the melody contained in the digital recording by performing a 

transcription. Transcription systems can be built by combining onset and pitch 

detection. This chapter contained a review of several of the main algorithms used in 

pitch and onset detection. Energy based onset detection approaches can achieve a high 

degree of accuracy when the input audio signal contains significant energy transitions 

around the onset of new notes. This is the case in instruments such as the piano for 

example. However, in the case of traditional Irish dance music played on woodwind 

instruments in particular, legato playing is the norm. Typically these instruments do 

not generate transients and will have slow onsets difficult to detect using energy based 

methods. Also the playing of ornamentation (section 2.9.1) will be difficult to isolate 

using the energy based approaches described.  

Phase based methods are sensitive to noise which increase the number of 

spurious onsets. In order to address the unique problems of transcription in traditional 

Irish dance music, Onset Detection using Comb Filters is proposed in (Gainza et al. 

2005; Gainza 2006). These papers report extensive testing using this approach on 
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recordings of various traditional instruments. This is therefore the approach taken in 

developing MATT2 described in Chapter 6. 

Various approaches for performing pitch detection are given in section 3.2. FIR 

comb filters, autocorrelation functions and maximum likelihood are approaches used 

in the time domain as monophonic pitch detectors. To convert a time domain signal to 

frequency domain representation a Fast Fourier Transform is performed. Both time 

and frequency domain pitch estimation approaches report octave pitch estimation 

errors. For monophonic music, peak picking from the frequency spectrum can be 

employed. In implementing MATT2, described in Chapter 6, a variation of Klapuri's 

(2003) peak picking approach for multi-pitch estimation is employed.  

The output of the transcription system will be a representation in a symbolic 

format. Chapter 4 continues by describing approaches used to compare symbolic 

representations of music. 
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4 Melodic Similarity 

The output of the transcription subsystem described in sections 6.2 and 6.3 will be a 

time indexed vector of pitches and durations extracted from a query recording. It will 

then be necessary to compare these extracted features against a corpus so that an 

annotation can be made. This chapter therefore describes several of the main methods 

for gauging similarity between melodies. These measures may be more accurately 

described as dissimilarity metrics as each of the methods presented calculates the 

distance between melodies. A higher distance implies that the melodies are less 

similar. A metric is a function on a set S,d : S × S → ℝ+ ⋃ {0} with the following 

properties (Typke 2007): 

 

i. Self-identity: For all x ∈ S, d(x,x) = 0 

ii. Positivity: For all x≠y in S, d(x,y) > 0 

iii. Symmetry: For all x, y ∈ S, d(x,y) = d(y, x) 

iv. Triangle inequality: For x, y, z ∈ S, d(x,z) ≤ d(x, y) + d(y, z) 

 

For measuring melodic dissimilarity in a way which agrees with human 

perception, a measure should possess the self identity property. This implies that two 

identical melodies should have a distance of zero. Typke (2007) states that positivity 

is usually, but not always desired. This implies that it is usually desirable for different 

melodies to have a positive distance. This fact has been explored in sections 2.8 and 

2.9, where it is suggested that a melody can be interpreted differently by different 

musicians, but perceived as the same (having a distance of zero) by a human listener. 

This is the premise behind the expressiveness accommodation algorithms developed 

in section 6.4. Typke (2007) further states that symmetry, while useful may not 

correlate with how humans perceive melodic dissimilarity. Included in this chapter 

also are alternative representation schemas whose aim is to present a simplified 

representation of a melody so that comparisons can be more easily made. 

4.1 Melodic contour (Parsons code) 

Parsons' thesis is that a simplified encoding which ignores most of the information in 

the melody can provide sufficient discriminatory power to distinguish between 
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significant numbers of tunes. Parsons Code includes only the directions of melodies 

and ignores pitch, duration and rhythm. Each pair of consecutive notes is coded as 

"U" ("up") if the second note is higher than the first note, "S" ("same") if the pitches 

are equal, and "D" ("down") otherwise. Figure 27 shows the first two bars from the 

tune "Banish Misfortune" in ABC notation and in stave music notation, with the 

corresponding Parsons Code.  

 

=fed cAG|AGd cAG 

 

DDDDDDUDUDDD 

Figure 27: The first 2 bars from the tune "Banish Misfortune" in ABC format 

and in music notation, with the corresponding Parsons Code 

The opening note of any melody is used only as a reference point and does not 

show up explicitly in the Parsons Code representation. An enhancement of this idea is 

presented in (Downie 1999) where monophonic melodies are represented as string of 

note intervals (n-grams). His corpus contains 9354 folksongs. He uses three different 

encoding schemes to represent the interval set. Each encoding scheme is based on a 

different representation of the intervals. Set C3 represents all melodies as "a" (no 

interval) "b" (negative interval) or "c" (positive interval) Set C7 represents negative 

1,2,3 as "b", "c", "d"; positive 1,2, 3 as "B", "C", "D"; all negatives <=-4 as "d"; all 

positives >= +4 as "D". Set C15 represents negative 1to 6 as "b" to "g"; positive 1 to 6 

as "B" to "G"; all negatives <=-7 as "h"; all positives >= +7 as "H". Section 5.1 

discusses Downie's MIR system based on this representation. 

4.2 Implication-realisation 

Grachten et al. (2005) present a similarity measure based on Narmour's 

Implication/Realisation (IR) model (Narmour 1992). Narmour's theory applies gestalt 

principals to music. According to Narmour, certain melodic structures imply 

subsequent structures in order to be "closed". The Principle of Registral Direction 

(PRD) states that small intervals imply an interval in the same registral direction. A 
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small upward interval implies another upward interval and a small downward interval 

implies another downward interval. Large intervals imply a change in registral 

direction. A large upward interval implies a downward interval and a large downward 

interval implies an upward interval. The Principle of Intervallic Difference (PID) 

states that a five semitone or fewer intervals implies a similarly-sized interval and a 

seven semitones or more interval implies a smaller interval. Based on these two 

principles, melodic patterns are identified which either satisfy or violate the 

implication as predicted by the principles. Such patterns are called structures and 

labelled to denote characteristics in terms of registral direction and intervallic 

difference. 

 To use this model as a similar measure, Grachten et al. (2005) have developed 

an annotation system which annotates monophonic melodies in MIDI format with the 

appropriate IR tags. Since the annotations are sequential, they propose using edit 

distances (section 4.4) with parameterised editing costs to compare melodic strings. 

They suggest that concrete melody representations better discriminate on the short 

range of melodic similarity and that a more abstract melody representation such as IR 

representation provides more discriminatory power on the long range of similarity. 

They present the results of an evaluation of 11 queries against 558 incipits, where they 

received a favourable ranking compared to other similarity measures (including those 

discussed in section 4.3), but note that the test corpus had had grace notes removed to 

make the task easier. 

4.3 Transportation distance 

The usage of transportation distances to measure melodic dissimilarity is proposed in 

(Typke 2007; Typke et al. 2003). First melodies are converted into weighted point sets 

in 2-dimensional Euclidian space. The dimensions are the onset time (horizontal) and 

pitch (vertical) of each note, while the weight is the duration of the note. The Earth 

Movers Distance (EMD) between two weighted point sets measures the minimum 

amount of work required to transform one into the other by moving weight (Rubner et 

al. 2000). Flow is measured as weight unit multiplied by ground distance. If A = {a1, 

a2..am} is a weighted point set such that ai = {(xi, wi), 1 ≤ i ≤ m, where xi ∈∈∈∈    ℝ and wi  ∈∈∈∈    ℝ  + ⋃ {0}, E =  	 .�4��� is the total weight of set A. EMD can be formulated as a 

linear programming problem (Hitchcock 1941).  
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 Given two weighted point sets A and B, fi,j is the flow of weight from ai to bi 

over the distance di,j. If W and U are the total weights of A and B, the set of all 

possible flows of fi,j is defined as by the constraints set out in Equation 6. 

 

1. ��,1 ≥ 0, 1 ≤ : ≤ �, 1 ≤ H ≤ � 

2. 	 ��,1 ≤  .��1�� , 1 ≤ : ≤ � 

3. 	 ��,1 ≤  .��1�� , 1 ≤ H ≤ � 

4. 	 	 ��,1 = min �E, J��1��4���  

Equation 6 

Constraint one allows moving weight from A to B and not vice versa. 

Constraints two and three limit the amount of weight which can be sent by the 

elements in A to their weights, and the elements in B to receive no more weight than 

the weight they can hold. Constraint four means that the total transported weight is the 

minimum of the total weights of the two sets. The total cost for transforming A to B is 

the sum of the weights fi,j multiplied by the distance di,j, normalised by the weight of 

the lighter set as per Equation 7. 

 

�K��L, M� =  min �	 	 ��,1�1�� ;�14��� �min �E, J�  

Equation 7 

EMD is a metric as described in the introduction to this chapter, if the ground 

distance is a metric and if EMD is applied to two sets with equal weights. In the case 

of unequal total weights, the EMD does not obey the triangle inequality. The 

Euclidian distance is used as the ground distance as per Equation 8 (Typke 2007). 

 

; =  N��� − ���� +  �.� − .��� 

Equation 8 

In order to recognise augmented or diminished versions of a melody as 

similar, Typke  (2007) proposes stretching the melody with the smaller maximum 

time coordinate, but leaving the durations (represented as point weights) of the notes 
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unchanged.  Typke (2007) proposes two methods of making the measure transposition 

invariant. First, he proposes moving one or other of the melodies up or down until a 

minimum distance is reached, with a corresponding repeated application of the 

dissimilarity measure and increase in computational complexity. The second method 

he proposes is to transform one of the melodies so that the weighted average pitch is 

equal. This second method works to the extent that transposed versions of the same 

melody appear closer than other melodies from his test corpus of melodies. Time and 

pitch are also normalised so that transportations in time and pitch are equally 

expensive (Typke 2007).   

This method was evaluated in a number of ways. For example the EMD was 

used to identify 80,000 incipits from anonymous composers by comparing the incipits 

against the RISM/A/II (Répertoire International des Sources Musicales International 

Inventory of Musical Sources) corpus in Plaine & Easie (Howard 1997) format. Using 

this method 3.9% of previously unidentified incipits could be now be identified. This 

compares favourably with (Schlichte 1990). A segmentation algorithm is also reported 

in (Typke 2007), where incipits from the corpus and queries are split into segments of 

between five and sixteen notes. This is used to match incipits and queries in the case 

where different length musical sequences are to be matched. The author reports that 

this technique provided good results at the MIREX 2006 (Music Information 

Retrieval Evaluation eXchange) competition. The author attributes this to the fact that 

the distance measure is continuous (in that small changes to either of the melodies 

result in small changes to the distance) and works well with non-quantised data such 

as hummed queries. Transportation distance is used in Musipidia  (Prechelt & Typke 

2001) (section 5.3). 

4.4 Edit (Levenshtein) distance 

Edit distance, also known as Levenshtein distance or evolutionary distance is a 

concept from information retrieval and it describes the number of edits (insertions, 

deletions and substitutions) that have to be made in order to change one string to 

another. It is the most common measure to expose the dissimilarity between two 

strings (Levenshtein 1966; Navarro & Raffinot 2002).  

 The edit distance ed(x, y) between strings x=x1 ... xm and y=y1 ... yn, where x, y 

∈ Σ∗ is the minimum cost of a sequence of editing steps required to convert x into y. 
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The alphabet Σ of possible characters ch gives Σ∗, the set of all possible sequences of 

ch ∈ Σ. Edit distance can be calculated using dynamic programming (Navarro & 

Raffinot 2002). Dynamic programming is a method of solving a large problem by 

regarding the problem as the sum of the solution to its recursively solved 

subproblems. Dynamic programming is different to recursion however. In order to 

avoid recalculating the solutions to subproblems, dynamic programming makes use of 

a technique called memoisation, whereby the solutions to subproblems are stored once 

calculated, to save recalculation.  

To compute the edit distance ed(x,y) between strings x and y, a matrix 

M1...m+1,1...n+1 is constructed where Mi,j is the minimum number of edit operations 

needed to match x1...i to y1...j. Each matrix element Mi,j  is calculated as per Equation 9, 

where O��, '� = 0 if a = b and 1 otherwise. The matrix element M1,1 is the edit 

distance between two empty strings.  K�,� ← 0 
K�,1 ←  min Q  K�0�,1 + 1K�,10� + 1K�0�,10� +  OR�� ,S1TU 

Equation 9 

The algorithm considers the last characters, xi and yj. If they are equal, then x1..i 

can be converted into y1..j at a cost of Mi-1,j-1. If they are not equal, xi can be converted 

to yj  by substitution at a cost of Mi-1,j-1 + 1, or xi can be deleted at a cost of Mi-1,j + 1 or 

yj can be appended to x at a cost of Mi,j-1 + 1. The minimum edit distance between x 

and y is given by the matrix entry at position Mm+1,n+1.   

 Table 11 is an example of the matrix produced to calculate the edit distance 

between the strings "DFGDGBDEGGAB" and "DGGGDGBDEFGAB". The edit 

distance between these strings given as Mm+1,n+1 is 3. 
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  D G G G D G B D E F G A B 
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 
D 1 0 1 2 3 4 5 6 7 8 9 10 11 12 
F 2 1 1 2 3 4 5 6 7 8 8 9 10 11 
G 3 2 1 1 2 3 4 5 6 7 8 8 9 10 
D 4 3 2 2 2 2 3 4 5 6 7 8 9 10 
G 5 4 3 2 2 3 2 3 4 5 6 7 8 9 
B 6 5 4 3 3 3 3 2 3 4 5 6 7 8 
D 7 6 5 4 4 3 4 3 2 3 4 5 6 7 
E 8 7 6 5 5 4 4 4 3 2 3 4 5 6 
G 9 8 7 6 5 5 4 5 4 3 3 3 4 5 
G 10 9 8 7 6 6 5 5 5 4 4 3 4 5 
A 11 10 9 8 7 7 6 6 6 5 5 4 3 4 
B 12 11 10 9 8 8 7 6 7 6 6 5 4 3 

  

Table 11: Edit distance matrix for the strings "DFGDGBDEGGAB" and 

"DGGGDGBDEFGAB" with the minimum edit distance position highlighted 

An alternative expression of the edit distance equation which gives identical 

results is given in Equation 10, which is equivalent to Equation 9 because 

neighbouring cells in M differ by at most 1. 

 K�,� ← : − 1, K�,1 ← H − 1  
K�,1 ← V K�0�,10� 1 + minRK�0�,10�, K�0�,1, K�,10�TU 

 

if xi=yi 

else 

Equation 10 

The algorithm can be adapted to find the lowest edit distances for x in 

substrings of y. This is achieved by setting M1,j = 0 for all j ∈ 1...n+1. In contrast to 

the edit distance algorithm described above, the last row Mm+i,j is then used to give a 

sliding window edit distance for x in substrings of y as per Equation 11 (Navarro & 

Raffinot 2002). 

 /;W��, S� =  min� X1 X���RK4��,1T 

Equation 11 

An example of this variation on the edit distance applied to search for the 

pattern "BDEE" in "DGGGDGBDEFGAB" is given in Table 12. The minimum edit 
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distance positions are highlighted. Variations on the edit distance algorithm have been 

applied in domains such as DNA analysis and automated spell checking and are 

commonly used in MIR systems (Birmingham et al. 2001; Lemstrom & Perttu 2000; 

Rho & Hwang 2004; McPherson & Bainbridge 2001; Prechelt & Typke 2001).  

 

    D G G G D G B D E F G A B 
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 
B 1 1 1 1 1 1 1 0 1 1 1 1 1 0 
D 2 1 2 2 2 1 2 1 0 1 2 2 2 1 
E 3 2 2 3 3 2 2 2 1 0 1 2 3 2 
E 4 3 3 3 4 3 3 3 2 1 1 2 3 3 

 

Table 12: Edit distance for the string "BDEE" in "DGGGDGBDEFGAB". This 

string represents the first 13 notes from the tune "Jim Coleman's" in normalised 

ABC format 

 Instead of using dynamic programming, bit-parallelism can be employed to 

compare strings with at most n errors. Bit-parallel algorithms simulate classical string 

matching algorithms, but use bit-masks to store the number of errors allowed. In this 

way, the algorithms are limited by the word size of the masks used (Navarro & 

Raffinot 2002). Bit-parallel algorithms have the advantage of having faster execution 

times, but the disadvantage of limiting of the maximum number of allowable errors to 

the word size of the bit-masks used (Lemstrom & Perttu 2000; Navarro & Raffinot 

2002).  

It is understood from experiments with human listeners that humans perceive 

transposed melodies to be similar. Interestingly studies in animals have demonstrated 

that this ability is unique to humans (Kenneally 2008).  Hence there have been several 

attempts to adapt the edit distance algorithm for melodic dissimilarity to provide 

transposition invariant melodic dissimilarity. Mongeau & Sankoff (1990) for example 

use intervals between successive pitches to represent a melody for a dissimilarity 

comparison instead of the absolute values of pitches. Their algorithms can be 

understood by first considering the note alphabet Σ to be = ℤ or ℝ, the integer or real 

alphabet. The string x' represents the transposed copy of x, transposed by t,  if x' = (x1 

+ t) (x2 + t)...(xm + t). For example if a melody was represented by the string x = {3, 

7, 5, 5, 8, 7, 7,5 ,3} it could be relatively encoded as x' = {4, -2, 0, 3, -1, 0, -2, -2}. 
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Using this scheme, there is naturally one less element in interval representation of the 

melody then in the original melody. The crucial property of this representation is that 

it is transposition invariant. In other words, if x and y are transpositions of each other, 

then x' = y'. The limitation of this approach becomes apparent if the case of an 

insertion or a deletion is considered. Consider the two strings x = {1, 2, 3, 4, 5} and y 

= {1, 3, 4, 5}. The edit distance between these strings ed(x, y) = 1. When converted to 

an interval representation these strings become x'={1, 1, 1, 1} and y' = {2,1, 1}. The 

edit distance between these strings ed(x', y') = 2. Hence each insertion and deletion 

has a double weighting on the calculation of the transposition invariant edit distance 

of two melodic strings. Lemstrom & Ukkonen (2000) state that using interval 

encodings; when intervals are calculated on the fly from absolute sequences, a 

deletion or insertion transposes the rest of the melody and so as an alternative, they 

propose instead adapting a cost function for local transformations (insert, delete, 

replace) which is transposition invariant. A "standard" edit distance cost function 

considers the insertion, deletion and replacement of each pair of elements in x and y. 

In Lemstrom & Ukkonen's (2000) proposed transposition invariant edit distance 

calculation, the cost function is adapted to consider in addition, the previous and 

current characters in x and y. Equation 12 provides a transposition invariant method of 

calculating edit distance which is equivalent to Equation 9 for calculating 

transposition invariant edit distances. 

 

 K�,� ← 0 
K�,1 ←  min Q  K�0�,1 + 1K�,10� + 1K�0�,10� +  RZ� �� −  ��0� =  S1 −  S10� 7ℎ/� 0 /\W/ 1TU 

Equation 12 

Algorithms for calculating transposition invariant distances (Hamming 

distance, longest common subsequence, edit distance) between strings are also given 

in (Makinen et al. 2003). Their transposition invariant minimum edit distance edt 

between �′ and y, where x and y are melodic strings and �^ is x transposed by t, is 

given in Equation 13. 
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/;7��′, S� = min �_∈`     /;�� + 7, S�� 

Equation 13 

T = {xi - yj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, in other words, the set of all possible values 

for t which would result in an alignment between x and y. In order to calculate 

edt(x',y), they propose using a brute force approach by calculating ed(x + t,y) for all T. 

This is similar to the approach described in section 4.3. This obviously increases the 

computational complexity of the algorithm over a straightforward edit distance 

calculation between the two strings. In order to speed up the calculation, they propose 

using sparse dynamic programming. Sparse dynamic programming was introduced in 

(Eppstein et al. 1992a; Eppstein et al. 1992b). The main idea behind these techniques 

is that only elements in a string associated with a match are visited. In order to 

achieve this, the authors propose calculating an ordered set of matching elements in x' 

and y for every value of t such that Mt = {(i, j) | xi + t = yj}. Using sparse dynamic 

programming, the computational complexity of the transposition invariant edit 

distance algorithm is O(mn log n) compared to O(mn) for standard edit distance. They 

also present a measure called "Longest Common Hidden Melody", which is a 

transposition invariant version of the longest common subsequence measure.  

Edit distances are calculated in the SEMEX MIR system (Lemstrom & Perttu 

2000) described in section 5.1, in Musipidia  (Prechelt & Typke 2001) (section 5.3), 

in Lu et al.'s (2001) QBH MIR system (section 5.3), in Fast Melody Finder (Rho & 

Hwang 2004)  described in section 5.3, in (Grachten et al. 2005) and (Duggan et al. 

2006) amongst others (section 5.3). 

4.5 Hidden Markov Models 

A Markov Model (MM) is a probabilistic model of a system which transitions through 

a sequence of states S = S1, S2...S;. The Markov property of the model states that the 

probability of the current state Si is based only on the previous state Si-1. This is 

described as a first order Markov process.  

Hidden Markov Models (HMM) extend the concept to include the case where 

an observation O is a probabilistic function of the state. Rabiner (1989) describes a 

HMM as:  
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"a doubly embedded stochastic process with an underlying stochastic process 

that is not observable (it is hidden), but can only be observed through another 

set of stochastic processes that produce the sequence of observations". 

 

In other words, given an observation, what is the probability of a particular 

state? A HMM is formally defined as a triple λ = (A,B,π), where A is the state 

transition matrix, B is the confusion matrix and π is a vector of the initial state 

probabilities. The state transition matrix A is a matrix which gives the probability of 

every state following every other state. If there are ; states, this matrix will be of size 

; × ;. In the case where a state cannot follow another state, the probability is given as 

0. The confusion matrix gives the probability of each state given each observation O. 

If there are M observations, then the confusion matrix will be of size M × ;.  

There are three basic problems that HMM's can be used to solve. Firstly to 

calculate P(O|λ), the probability of an observation sequence O=O1,O2...OM given a 

model λ. This can be calculated efficiently using the forward algorithm with a 

complexity of O(;2M) (Rabiner 1989). If multiple models exist, then this algorithm 

can be used to decide which model most likely gave rise to the set of observations.  

Secondly, a HMM can be used to calculate the sequence of states S = S1, 

S2...S;  most likely to have generated the set of observations O=O1,O2...OM. To solve 

this, the Viterbi dynamic programming algorithm can be used (Viterbi 1967; Forney 

Jr 1973). The third problem that can be addressed by a HMM is to adjust the model 

parameters (A,B,π) to maximise the probability of the observation sequence given the 

model. This can be computed using the forward-backward algorithm (Rabiner 1989). 

The probability distribution of a HMM allows modelling of uncertainties such 

as a singer's inability to accurately sing the exact pitch or rhythm of a query to a 

CBMIR system. Features of melodies such as pitch, interval or rhythm sequences, can 

be used to calculate Markov chains. A Markov chain is a state graph, where nodes 

represent states and weighted directed edges represent the probabilities of state 

transitions. States can correspond with features such as pitch levels, intervals, or note 

durations. Transition probabilities are calculated as the counts of subsequent states. 

Similarity between a query and a candidate piece in the corpus can be determined by 

calculating the product of the transition probabilities, based on the transition matrix of 

the candidate piece, for each pair of consecutive states in the query (Birmingham et al. 
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2003). HMM's are used in Guido/MIR (Hoos 2001) (section 5.1) and in Birmingham 

et al.'s (2001) Musart QBH system (section 5.3). 

4.6 Conclusions 

The output of a transcription system based on the algorithms described in Chapter 3 

can be considered to be a set ;, whose elements ;j consist of vectors of the features 

{os, of, f} possibly containing transcription errors, where os and of are the onset and 

offset respectively and f  is the extracted frequency.   From Chapter 2, it is clear that a 

query will contain ornamentation and phrasing resulting from the creative 

interpretation of music by the musician; however matching polyphonic queries to 

polyphonic transcriptions is not required due to the essentially monophonic nature of 

traditional music. The algorithms discussed in this chapter describe methods of 

calculating distances between representations of melodic sequences. Methods based 

on transportation distance, edit distance and Hidden Markov Models are given, which 

work on representations including Implication/Realisation annotations, MIDI 

sequences, MIDI intervals and melodic contours. The task being considered in this 

work is to retrieve the human annotated musical sequence from a corpus which is the 

closest match for the transcription vector ;. Any distance measure therefore needs to 

support the following characteristics: 

 

1. Alignment should be possible so that short queries can be matched against 

segments of longer musical strings from the corpus. Short queries should not 

be penalised.  

2. An unknown number of possible transformations may have occurred in the 

query as a result of creative interpretation and transcription errors, but the 

nature and scope of many of these transformations is understood. It will be 

possible to accommodate interpretative elements such as those described in 

Chapter 2. How this is achieved is discussed in Chapter 6, however distance 

measures still need to be tolerant of errors (Chapter 3). 

3. Transposition invariance is required to the extent that the keys and modes 

discussed in section 2.2 are supported. Similarly the transpositions that occur 

from the playing of instruments with the fundamental notes given in Table 5, 

Table 6 and Table 7 should be supported. 
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Although melodic contours are widely used in query-by-humming systems 

(section 5.3) as a means of compensating for singer error, the literature suggests that 

this representation schema results in too many false positives (Lu et al. 2001; 

Schlichte 1990; Adams et al. 2003; Downie 1999) and so a more discriminate 

representation should be used. Similarly, ornamentation involves inserting additional 

notes at higher and lower pitches which means that strings can be transformed in a 

way which makes the original string difficult to recognise (section 4.1).  

Typke's (2007) implementation of Earth Movers Distance has the advantage of 

being a linear measure, in that small modifications to a query result in corresponding 

small changes in the distances calculated. He also proposes two methods for 

calculating transposition invariant distances. However aligning short queries with 

longer corpus strings is only possible by expanding the query so that its length is the 

same as the corpus string. This is not true alignment however and short phrases will 

not match with substrings of long corpus strings using this method. A further 

limitation with this measure is that there is no obvious method for calculating 

appropriate weights when queries are played at different tempos to melodies from the 

corpus (section 2.2). 

Hidden Markov Models can be developed which make use of the forward-

backward algorithm to maximise the probability of the observation sequence given the 

model. Models can be built from pitches, intervals and rhythm sequences with 

example queries. The disadvantage of HMM's is that they require a large number of 

ground truth example queries with errors, in order to be error tolerant (Birmingham et 

al. 2003). 

Edit distance is difficult to use for polyphonic music, but widely used for 

monophonic comparisons as in the case in traditional Irish music. This is therefore the 

approach used to measure melodic similarity in the MATT2 system described in 

Chapter 6. Lemstrom & Ukkonen (2000) point out that when comparing music, the 

transposition invariant version of the edit distance is generally more useful except 

when it is known a priori that strings x and y being compared are in the same key. 

Using the transposition invariant edit distance requires that pitches are quantised to 

the nearest semitone. This method also doubly weights insertions and deletions. If it is 

known that the melodies being compared are in a particular key, then it is better to 

quantise pitches to the playable notes on the instrument so that transcription errors are 

avoided. Also as highlighted in (Typke 2007; Schlichte 1990), the transposition 
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invariant edit distance algorithm suffers from another problem: classifying melodies 

with similar intervals as similar, when the melodies are in fact different. 

Section 6.6 proposes a pitch spelling algorithm to transcribe melodies to 

playable notes on an instrument rather than the nearest semitone, and so the standard 

edit distance can be used. Similarly, edit distance supports alignment based on 

(Navarro & Raffinot 2002). This method is exploited particularly in the TANSEY set 

segmentation algorithm given in Chapter 8. Edit distances are tolerant of insert, 

update and delete substitutions but cannot explicitly accommodate ornamentation. 

Section 6.4.1 proposes a method of effectively filtering ornamentation notes in 

melodies so that they can be compared using edit distances. Moreover, the 

expressiveness accommodation algorithms proposed in section 6.4 are actually 

independent of the metric used and any of the metrics discussed in this chapter would 

be improved with their employment. 

 Chapter 5 shows how the techniques explored in this and the previous chapter 

have been combined to produce experimental systems for content based music 

information retrieval. 



  Content Based Music Information Retrieval 

 79

5 Content Based Music Information Retrieval 

This chapter describes a number of related systems and approaches to the CBMIR 

system proposed in this thesis. Music Information Retrieval can be defined as:  

 

"the task of extracting from a large quantity of musical data, the portions of 

that data with respect to which some musicological statement is true" 

-  (Kassler 1966) 

 

The origins of this field of research are in paper collections of incipits, short 

melodic fragments drawn from the opening phrases of pieces of music. These 

collections were manually compiled by researchers or librarians, and usually covered 

one narrow field of music (Lemstrom & Perttu 2000). The term Music Information 

Retrieval is first mentioned in the context of computer science literature in (Kassler 

1966). In this work the author presents MIR, an assembly like language for 

formulating musical queries and navigating scores.  He suggests that MIR could form 

part of a "library of the future" although he recognises the limitations of the language 

proposed. 

 More recently it is suggested that there are three main classifications of MIR 

systems: those for searching symbolic representations of music, those for searching 

audio data and those systems that combine both approaches by first converting audio 

data to a symbolic representation and then searching for a match in a corpus of 

symbolically notated music (Typke et al. 2005; Typke 2007). Downie (2003) proposes 

analytic/production systems and locating MIR systems, a classification analogous to 

the first two classifications. This section presents related work in each of the three 

classifications of MIR system given in (Typke et al. 2005; Typke 2007) and concludes 

with an analysis of the suitability of the existing approaches explored to perform MIR 

for traditional Irish music. 

5.1 Searching symbolic representations 

Symbolic MIR has its origins in dictionaries of musical themes such as (Barlow & 

Morgenstern 1948). Monophonic music can be represented as a one-dimensional 

string of characters, where each character represents a musical note. Strings can be 
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made up of characters representing pitches, pitch intervals or melody contours. In 

systems which use this format, standard string matching algorithms such as Knuth-

Morris-Pratt, Boyer-Moore, Levenstein (Edit) Distance (section 4.4), longest common 

sub-sequence or regular expression searching have been applied (Navarro & Raffinot 

2002).  

Themefinder is a symbolic MIR system that provides a web-based interface to 

the Humdrum thema command (Kornstadt 1998). The Humdrum Toolkit is a set of 

software tools for music researchers which manipulate ASCII data conforming to the 

Humdrum syntax (Humdrum 2008) . The thema command allows searching of 

corpora of musical themes or incipits. There are almost ten thousand themes in the 

Themefinder collection encoded in the kern music data format (a markup language for 

musical scores). Queries can match the incipit or any part of a theme in the corpus, 

but the system requires knowledge of the Humdrum Syntax. Figure 28 is a screenshot 

of the interface to Themefinder which illustrates some of the query possibilities. 

 

 

Figure 28: The Themefinder user interface 

 The encoding scheme for melodies discussed in section 4.1 is used to build a 

symbolic MIR system using the SMART Information Retrieval System in (Downie 

1999). The SMART system has the advantage of being an off the shelf textual 

information retrieval system. Downie (1999) builds n-grams of note interval 

sequences where n = 4, 5, and 6, by treating melodies as long strings of intervals and 
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taking all substrings of a fixed length. His hypothesis is that there is an equivalency 

between interval only melodic n-grams (i.e. "musical words") and "real words"; 

intervals and letters. To retrieve matching melodies, he uses the TF × IDF (Term 

Frequency * Inverse Document Frequency) ranking method from information 

retrieval and text mining. TF × IDF is a statistical measure used to evaluate how 

important a word is to a document in a corpus. The importance increases 

proportionally to the number of times a word appears in the document but is offset by 

the frequency of the word in the corpus. Variations of the TF × IDF weighting scheme 

are used by search engines as a tool in scoring and ranking a document's relevance 

given a user query. Downie uses melodic strings, extracted from melodies in the 

corpus as queries to evaluate the system. He artificially creates expansion, 

compression, repetition and omission errors in the queries to simulate potential error 

types that might be introduced by human subjects (see also section 5.3).  

SEMEX (Search Engine for Melodic Excerpts) has a corpus where strings are 

represented as integer pitch levels of the notes (Lemstrom & Perttu 2000). Rhythm is 

not considered. Queries are similarly represented, but are usually considered to be 

shorter than strings from the corpus and so edit distances with alignment are 

calculated to find a match. SEMEX makes use of the transposition invariant cost 

function given in (Lemstrom & Ukkonen 2000) (section 4.4) in the calculation of edit 

distances, using bit-parallelism instead of dynamic programming to allow queries to 

match strings from the corpus with at most n errors, with low computational 

complexity. Bit-parallel algorithms simulate classical string matching algorithms, but 

use bit masking to store the number of errors allowed. In this way, the algorithms are 

limited by the word size of the bit masks used (Navarro & Raffinot 2002). 

Monophonic queries can be matched against polyphonic music from the corpus by 

either reducing the corpus to a monophonic representation or by using an algorithm 

known as MonoPoly, which makes it possible to locate occurrences that are 

distributed among several voices. SEMEX is implemented in C++ and has a 

command line interface. 

GuidoMIR is a symbolic MIR system which has a native corpus of melodies in 

the Guido/XML music notation language (Hoos 2001). The authors claim that using a 

symbolic musical score language such as Guido/XML has a number of advantages 

over MIDI, a format designed for playback. They cite the ability to store metadata 

with the melody as the main advantage, but list several others. They also do not use 
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any form of database engine and instead their system is built entirely in Perl and uses 

a database of flat files.  Although their corpus is text based, the authors use a 

probabilistic matching algorithm based on first order Markov chains to match queries 

to corpus strings (section 4.5). Their system supports queries based on both pitch and 

rhythm.  

 C-Brahms uses nine different algorithms which support monophonic, 

polyphonic, rhythm invariant, transposition invariant, partial or exact matches for 

queries against a corpus of polyphonic music in a database of symbolically encoded 

music, drawn from MIDI files (Makinen et al. 2003; Ukkonen et al. 2003; Wiggins et 

al. 2002; Lemstrom et al. 2003). The algorithms use a number of different techniques, 

including dynamic programming, bit-parallelism and a two-dimensional geometric 

representation of music. In the latter algorithms, music is represented as horizontal 

line segments in Euclidean two-dimensional space. The horizontal axis represents 

time and the vertical axis, the pitch values. Some of these algorithms are discussed in 

section 4.4. C-Brahms has a public user interface available on the web so that the 

different algorithms can be evaluated. 

In (Widmer et al. 2005) the authors describe a system which uses web mining 

to classify music by genre.  Their system called GenreCrawler applies Term 

Frequency × Inverse Document Frequency (TF × IDF) (Salton and Buckley 1988) to 

extract meta data about a term (for example an artist name) from the results of Google 

queries. They hierarchically cluster the results using a Self Organising Map (Kohonen 

2001). They do not present any results for this system, but suggest that it is only 

useful for well known (and hence well documented) artists. 

 TunePal is an MIR system whose main advantage is that it runs on a mobile 

device such as PDA or smartphone and so can be used in traditional music sessions 

and workshops (Duggan 2007b; Duggan 2006). Figure 29 shows musicians 

comparing tunes using TunePal at a traditional music session. TunePal has a corpus of 

approximately five thousand  traditional Irish dance melodies in ABC notation 

(section 2.7 and Appendix B & C) drawn from transcriptions of O’Neill (O'Neill 

1903; Krassen 1975; Chambers 2007) and Henrik Norbeck (Norbeck 2007).  
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Figure 29: Musicians in a session compare tunes using TunePal  

The system supports text queries on melodies or any of the metadata such as 

tune name, type or composer. For melodic queries, the system requires knowledge of 

ABC notation. It has an elementary query normalisation algorithm which normalises 

text queries into the same register and removes ornamentation from corpus strings, but 

otherwise it requires exact matches with strings from the corpus. TunePal’s main 

purpose is as an aid memoir for a musician who wants to play a tune, but can 

remember the name the tune and not the melody. Hence matching melodies can be 

easily converted to MIDI and played back at an adjustable tempo. Figure 30 shows 

screenshots of TunePal running on a Windows Mobile smartphone.  

 

 

 Figure 30: Screenshots of TunePal running on a Windows Mobile Smartphone  

Website thesession.org (thesession.org 2007) is not discussed in the literature, 

but is important because it contains a collection of over seven thousand traditional 

Irish dance tunes in ABC notation (section 2.6) entered by the traditional music 

community that can be searched using text queries by any of the metadata associated 

with a tune or by melodic queries in ABC notation. The website is significant, 
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because unlike much of the work discussed in this chapter that has grown out of 

academic research projects, thesession.org is supported by an active community of 

thousands of musicians who regularly contribute tunes, report on traditional music 

sessions (section 2.5) and engage in lively discussions. Figure 31 shows an example 

of the search results generated for the query "broom". Appendix E gives an extract 

from a discussion on the tune "Down the Broom" which is returned when this search 

is entered. 

 

 

Figure 31: thesession.org user interface. (See also Appendix E) 

5.2 Searching audio data 

Systems that match digital recordings of audio to digests or hashes of known 

recordings are known as Audio fingerprinting or Content-Based Audio Identification 

(CBID) systems (Cano et al. 2005). Using fingerprints and matching algorithms, these 

systems have several requirements:  

 

1. They must be robust to compression and noise in the transmission channel.  

2. They must be able to identify whole titles from excerpts a few seconds long.  

3. They should be computationally efficient.  

 

In order to index audio, it must be reduced in dimensionality. This is known as 

fingerprint extraction. Fingerprint extraction derives a concise set of relevant features 

of a recording. Extracted fingerprints must support discrimination over large numbers 
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of other fingerprints, be invariant to distortions, compact and efficient to compute. 

Audio is sometimes preprocessed to simulate the channel. For a telephone task, the 

audio could be band pass filtered to emulate the frequency bandwidth of telephone 

audio. Audio is then segmented into overlapping tapered frames (section 3.2) and 

transformed. Some common transformations include Fast Fourier Transform (FFT) 

(section 3.2), the Discrete Cosine Transform (DCT), the Haar Transformor the Walsh-

Hadamard Transform (Subramanya et al. 1997), and the Modulated Complex 

Transform (MCLT) (Mihgak & Venkatesan 2001). Additional transformations are 

then applied in order to generate the final feature vectors for each frame. Mel-

Frequency Cepstrum Coefficients are proposed in (Blum et al. 1999). Spectral 

Flatness Measure (SFM) is used in (Allamanche et al. 2001). Band representative 

vectors; an ordered list of indexes of bands with prominent tones are used by 

(Papaodysseus et al. 2001), while (Burges et al. 2002) use principal component 

analysis (PCA) to find to find the optimal representative features. 

A set of features is usually extracted for each frame of audio examined and a 

fingerprint derived by summarising the multidimensional vector sequences of an 

entire piece of audio in a single vector. Some systems include high-level musically 

meaningful attributes, like rhythm (section 2.2 and 3.5) or prominent pitch (section 

3.2) (Relatable 2008; Blum et al. 1999). 

Matching algorithms usually employ indexing as sequential scanning will be 

too slow. Indexing algorithms build sets of equivalence classes, discard some classes 

and search the rest exhaustively (Chávez et al. 2001). Algorithms should have a low 

False Rejection Rate (FRR), be memory efficient and should allow insert, delete and 

update operations (Cano et al. 2005). Euclidian distances are used in (Blum et al. 

1999). Allamanche et al. (2001) use Hidden Markov Models (section 4.5). (Mihgak & 

Venkatesan 2001) reports on the use of a measure called "Exponential Pseudo Norm". 

Finally thresholding is used to determine if a correct identification has been 

made. In the process of comparing fingerprints extracted from queries against the 

corpus of known fingerprints, scores (resulting from distances) are calculated. If a 

score is less than a certain threshold, then this indicates that a system has confidence 

in its classification. Several factors influence the identification of a threshold 

including the fingerprint model employed, the discriminative information of the 

query, the similarity of the fingerprints in the corpus, and the corpus size. Larger 

databases increase the probability of false positives.  
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Commercial examples of audio fingerprinting systems include Shazam and 

MusicBrainz (Shazam 2008; MusicBrainz 2008). Shazam is a subscription based 

service, aimed at mobile phone users. To use the service, users dial a special phone 

number and play a segment of the audio to software listening on the other end. 

Shazam includes an application for the Apple iPhone, which identifies audio and then 

allows a user to purchase the identified track from the iTunes music store (Apple 

2008). 

 

Figure 32: Shazam audio fingerprinting running on an iPhone (Shazam 2008) 

MusicBrainz is an "open source community music metadatabase", with clients 

for a number of operating systems including Windows, Mac OS X and Linux 

(MusicBrainz 2008). MusicBrainz clients generate a fingerprint known as a PUID 

(Portable Unique Identifier). To annotate a file with metadata, the PUID is sent to a 

server, which compares it with the PUID's of known audio. If a match is found, the 

server returns the set of metadata for the audio file which includes artist name, album, 

track name and track number. The MusicBrainz corpus is maintained by a community 

of users. 
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Figure 33: The "Picard" MusicBrainz client 

For a more detailed profile of algorithms used in audio fingerprinting, refer to 

(Cano et al. 2005) 

5.3 Hybrid approaches 

Most research into hybrid MIR systems has focused on developing Query-By-

Humming (QBH) interfaces to corpora of symbolically annotated melodies.  QBH 

describes music information retrieval systems where audio clips of singing, humming 

or whistling act as queries. The premise is that if user wants to retrieve a melody from 

a large collection of music, a natural option is to sing, hum, or whistle a part of the 

melody into a microphone and let the system retrieve the matching melodies. The 

QBH task can be divided into two sub problems (Ryynanen & Klapuri 2008): 

 

1. Converting a query into a format which enables searching. This problem is 

explored in detail in Chapter 3. 
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2. Matching the query with melodies in the corpus. This problem is explored in 

detail in Chapter 4. 

 

The former problem is one of automatically transcribing a query into a sequence 

of note events (Chapter 3), whereas the latter is the problem of measuring melodic 

dissimilarity between the query string (which may contain errors) and strings from the 

corpus (Chapter 4). 

Cornell’s Query-By-Humming is one of the earliest examples available of a 

query-by-humming system (Ghias et al. 1995). It has a corpus of 183 pieces of music 

in MIDI format stored in a flat file database. Pitch tracking is performed using 

Matlab, chosen for it's built in audio processing facilities. The system transcribes 

hummed queries into Parsons’ Code (Section 4.1) using a modified autocorrelation 

algorithm (section 3.2) (Dubnowski et al. 1976). The corpus is then similarly 

converted to Parsons' Code and matched against a query using Baeza-Yates & 

Perleberg's (1996) approximate string matching algorithm. This algorithm matches 

strings with a configurable maximum of n errors. The authors report a success rate of 

90% using their techniques for queries of between ten and twelve characters. 

The MELDEX system has a pitch tracking interface which allows users to sing 

queries (McNab et al. 1997; McNab et al. 1996; McPherson & Bainbridge 2001). The 

system depends on the user separating each note by singing "da" or "ta". The 

articulation of the consonant is used to detect the onset of each note. As queries are 

generated by humans, they naturally contain errors.  The classification of the errors 

into four types: expansion, compression, repetition, and omission (see also section 

5.1) is reported in (Downie 1999). MELDEX has a database of approximately ten 

thousand folk songs, compiled from the Essen collection. The system uses the 

approximate string matching methodology of (Mongeau & Sankoff 1990) (section 

4.4). This methodology was designed explicitly for the musicological analysis of 

melodic strings. Melody contour searches use Parsons (1975) interval direction 

method (section 4.1). Matching melodies are ranked based on the degree of similarity 

between query and the items returned. Initially, MELDEX supported queries based on 

incipit’s (McNab et al. 1996), however subsequent improvements facilitated the 

matching of queries where the match occurs not only in the incipit, but also anywhere 

within a melody (McNab et al. 1997). Early reported performance of the system is 

quite poor, with simple, exact match searches, taking an average of five hundred 
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milliseconds to perform and twenty note approximate search pattern, requiring 

approximately twenty one seconds. Nevertheless, Downie (2003) describes MELDEX 

as a "gold standard" in monophonic, symbol-based, locating retrieval systems. Figure 

34 shows a screen shot of the interface to a typical MELDEX screen. 

 

Figure 34: MELDEX Interface. A user can play a part of melody or record a 

query for transcription 

Musipedia (previously known as Tuneserver) is a web-based MIR system 

which supports queries entered by whistling, playing on a virtual piano keyboard, 

tapping the rhythm on the computer keyboard, or entering the melodic contour 

(Prechelt & Typke 2001). For whistled input, the audio is first sampled and a Fast 

Fourier Transform, frequency domain algorithm is used to estimate pitch (section 

3.2). Note onsets (section 3.1) are noted using a combination of silence windows and 

pitch changes between consecutive frames of audio. The audio is then converted to 

Parsons Code (section 4.1) and a melodic contour search calculates the weighted edit 

distances (section 4.4) between the query and strings from the corpus. Results are 

ranked in order of ascending distance from the query. The authors report a success 

rate of approximately 80% for queries with an average of sixteen notes, where the 

correct melody was within the top forty matches. The correct melody was returned as 

the closest match in just 44% of queries. The authors ascribe mistakes to transcription 

errors and queries which were too short to discriminate similar representations of 
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different melodies. The front end to Musipedia is also known as Melodyhound. 

Interestingly, although Musipedia contains traditional Irish dance tunes as part of its 

corpus, it does not generate positive results when queries are played on the tin-whistle 

or wooden flute (as tested by the author). A later implementation of Musipedia 

supports pitch and onset time-based searches by representing the query as a weighted 

point set and calculating the Earth Mover's Distance (section 4.3) for each query point 

set and pre-computed point sets representing segments of melodies from the database. 

The "query by tapping" method which only takes the rhythm into account uses the 

same algorithm as the pitch and onset time method, but assumes all pitches to be the 

same. The system accelerates searches using an indexing technique based on vantage 

objects (Typke et al. 2004; Typke et al. 2003).  

Lu et al. (2001) describe a QBH MIR system which represents queries as a 

triplet consisting of pitch contour, pitch interval, and duration, where pitch contour is 

U, or D, pitch interval is the difference between the frequencies of two consecutive 

notes and duration represents how long a note is played or hummed. The authors 

convert their MIDI corpus to this format using a heuristic to extract the melody line 

from a polyphonic MIDI representation of the audio. To convert audio to a query, 

they use an energy based onset detection function to determine the onsets of new 

notes in query audio (section 3.1). The authors point out the flaw in this method given 

that humans usually hum melodies legato and hence their algorithm misses onsets. 

Their corpus consists of approximately one thousand melodies in MIDI format. To 

match a query to a melody, their system first calculates the edit distance between the 

query and strings from the corpus. Strings whose edit distances are above a threshold 

are discarded. Strings for further consideration have interval and duration similarity 

calculated. They describe this as a "hierarchical matching algorithm". The final 

measure of similarity is the weighted sum of the three similarities. They observe that 

people hum the pitch variations more correctly than rhythm and conclude that errors 

are more likely to involve rhythm than pitch interval. Hence they assign a larger 

weight to the duration similarity. In 74% of queries, the correct song was listed among 

the first three matches and that 59% of queries, the corresponding correct song was 

retrieved as the first match. 

Fast melody Finder (FMF) is a web based music information retrieval 

prototype whose key feature is that it indexes the corpus according to a scheme 

known as FAI (Frequently Accessed Index) (Rho & Hwang 2004). The principal 
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behind FAI is that a piece of music is often identifiable from a few specific melody 

segments of the overall melody. In FAI, segments are automatically induced from 

previous user queries. Each entry in the FAI structure has four variables: access count, 

age, repetition and size. The authors propose an index maintenance system which 

supports merging of similar indexes. 

Their prototype system has a corpus of twelve thousand MIDI files that they 

pre-process to extract meta data in XML format such as time signature and key. 

Melodies are represented as pitch (U, D, S) and time contours (L, S, S) (section 4.1). 

Queries can be input by humming or by drawing the melody on a graphical 

representation of a five line stave. The system presumably incorporates a transcription 

subsystem, but this is not discussed in the work. Matching is achieved using the Boyer 

Moore algorithm (Navarro & Raffinot 2002) initially to search for an exact match and 

if an exact match is not found the system falls back to calculating the edit distance 

using dynamic programming (section 4.4). Index entries are searched in order of 

access count. The authors present results which indicate that queries using both pitch 

and time contours are more accurate than pitch contours alone and also that their 

indexing scheme increased the performance of the system. 

Ryynanen & Klapuri (2008) describe a QBH system which uses Locality 

Sensitive Hashing (LSH) to speed up retrieval of matching melodies. They use a 

corpus of 6030 melodies in MIDI format. They use a transcription algorithm 

described in detail in (Ryynanen & Klapuri 2006). This algorithm uses a frame based 

pitch salience estimator to measure the strength of different fundamental frequencies 

in successive frames. The algorithm also applies a musicological model to filter note 

transitions. As an output, the algorithm produces a sequence of notes in the format {pi, 

bi, e}} where pi is MIDI note number (Table 22, page 119), bi is the onset time and ei 

is the offset time of the note in seconds. Their system then generates sub-sequences of 

the transcribed melody the authors refer to as pitch vectors, with different durations. 

This process is carried out not only on the transcribed melody, but also on each 

melody from the corpus. The similarity of melodic fragments is measured using the 

Euclidean distance between pitch vectors. To obtain a sub-linear time complexity, the 

authors employ LSH (Andoni & Indyk 2006). LSH is an algorithm for searching 

approximately nearest neighbours in high dimension spaces. The principal behind 

LSH is that points whose distances are within the threshold r will be hashed to the 

same bucket. Each query pitch vector is matched against melodic fragments in the 
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database using LSH. The LSH returns the nearest neighbours and their distances to 

the query as matches. To obtain the final list of retrieved melodies, the candidate 

melodies are ranked according to their distance to the entire query note sequence. 

They report a top-three hit rate of 90% for 427 queries and a performance increase of 

between four and twenty times compared to exact nearest neighbour search. 

The QBH system TuneBot which develops singer profiles by learning from 

user provided feedback on the search results is presented in (Little et al. 2007). This 

happens automatically, letting the performance of the system improve while deployed. 

Figure 35 illustrates the TuneBot user interface. 

 

 

Figure 35: TuneBot user interface 

TuneBot incorporates a transcription subsystem that transcribes a sung query 

into a pitch and duration interval representation. Pitch intervals are given as the 

semitone interval between adjacent note segments while duration intervals are given 

as the log of the ratio between the length of a note segment and the length of the 
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subsequent note segment. Thus the authors claim the representation is both pitch and 

tempo invariant. TuneBot uses a genetic algorithm to tune the transcription subsystem 

so that the more instances a user corrects the system when it generates an incorrect 

result, the better the system performs. Matching in TuneBot is achieved using 

dynamic programming to align queries with strings from the melody corpus (section 

4.4). An evaluation of the system is reported in (Little et al. 2007), with a corpus of 

1001 melodies of Beatles songs, folk songs and classical music used. After training, 

the system gives a Mean Reciprocal Rank (MRR) of 0.289 meaning that the correct 

match for queries was, on average, in the top four songs returned by the search 

engine. 

5.4 Conclusions 

This chapter presented a selection of the available literature on MIR systems. Three 

classifications of systems were presented; those that work on symbolic representations 

of music, those that work on digital signals and hybrid systems.  

 This work seems to demonstrate characteristics of two types of MIR systems. 

It is similar to the systems outlined in section 5.2 in the sense that the aim of the work 

is to annotate a digital recording. However the systems in section 5.2 work entirely in 

the signals domain. Their aim is to identify a digital recording as being an instance of 

another digital recording. These systems create hashes of recordings known as audio 

fingerprints in order to decrease computational complexity and minimise memory 

usage. In these systems two versions of the same piece of music will be annotated 

differently. In this work, the aim is to annotate different interpretations of the same 

piece of music identically. This is particularly important if the work is to facilitate the 

types of queries suggested in section 1.2. Several of the papers report on the difficulty 

of extracting performance data from digital signals and hence used either MIDI data, 

data captured from custom instruments or on-screen representations of instruments 

that a user must "play" using the mouse in the query by-example paradigm. It can 

therefore be concluded that there are additional challenges in developing MIR systems 

that work on audio from real instruments.  

 It seems reasonable to understand the aim of a typical QBH system to be to try 

to find a melody from a corpus which is similar to a hummed query. The systems 

outlined in section 5.3 would require adaptation to address P1-P10 from Table 10. To 



  Content Based Music Information Retrieval 

 94

address P1-P10, it is necessary to identify the melodic query as being an instance of a 

melody from a corpus. The approach proposed in Chapter 6 maximises similarity 

between pieces of music played on different instruments, in different tempos and most 

importantly in different regional and individual styles and ground truth transcriptions 

of the musical pieces. In order to achieve this it is necessary to first normalise both the 

query and strings from the corpus, where normalisation involves removal of musical 

style elements. To do this requires a consideration of which parts of a melody are 

core, which parts are subject to interpretation and also the nature of the interpretation. 

This question is explored in section 2.9.1. Removal of musical features should 

increase accuracy. This is not the case in gross contour representations of melodies 

such as those described in section 5.3 used in many MIR systems, which as the 

literature suggests results in too many mismatches (Schlichte 1990; Adams et al. 

2003; Lu et al. 2001). Gross contour representations of traditional melodies are 

evaluated in section 7.2. Instead the melody representation scheme should be fine 

grained enough to minimise the possibility of mismatches.  

 There should be no arbitrary limits in this system on the length of a query. 

Queries might conceivably consist of a melody fragment, an entire tune, or multiple 

tunes played segue in a set (Chapter 8). For longer phrases, it makes sense to extract 

the maximum amount of relevant information from a query to use in matching. 

Chapter 6 addresses the problem of how to normalise traditional music queries to 

maximise melodic similarity. It also addresses the problem of how to match melody 

fragments and entire melodies. Chapter 8 extends this to address the problem of how 

to annotate multiple segue melodies played in a set. 
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6 Machine Annotation of Traditional Tunes (MATT2) 

In this chapter MATT2, a new system for automatically annotating recordings of 

traditional Irish dance music is presented. MATT2 addresses P1-P9, the main 

problems in performing MIR on traditional Irish dance music identified in Chapter 2 

(Table 10, page 46). MATT2 represents Contribution 1 of this thesis. P10 is addressed 

using the Turn ANnotation in SEts using SimilaritY profiles (TANSEY) algorithm 

proposed in Chapter 8. TANSEY represents Contribution 4. 

 First, using Gainza's (2005) onset detection algorithm  (section 3.1), a 

frequency domain pitch detection algorithm (section 3.2), and a  pitch spelling 

algorithm based on Breathneach's (1985) observations about the transcription of 

traditional Irish dance music discussed in section 2.2, tunes are transcribed to strings 

of a reduced alphabet of ABC music notation (Contribution 2, section 2.7). The 

transcriptions are normalised to take account of various expressive transformations 

that can occur in the interpretation of traditional music, such as ornamentation (P7, 

section 2.9.1), the "long note", (P8, section 2.9.1), reversing (P3, section 2.9.1) and 

phrasing (P5, section 2.9.2). The purpose of normalisation is to extract the core 

melody from an augmented interpretation of the melody played by a musician. An 

algorithm known as Ornamentation Filtering is proposed to normalise queries played 

with ornamentation. Compensating for expressiveness in this way represents 

Contribution 3 of this thesis. 

Once a transcription is made, the system compares it against a corpus of human 

made ground truth transcriptions of tunes. The corpus used is in ABC notation which 

has the advantage of being based on ASCII text and so tunes in ABC can be easily 

processed and analysed using algorithms for textual information retrieval. The 

transcriptions used are normalised in a five stage process, before comparison, to 

remove ornamentation, to compensate for reversing and to expand the tunes as they 

would be typically played by a musician interpreting the tune. Levenshtein's (1966) 

edit distance (section 4.4) is used to calculate a measure of melodic dissimilarity, with 

Navarro & Raffino's (2002) variation which allows for searching for substrings. Using 

the approach proposed in this chapter, a high success rate is reported for test audio 

consisting of long and short phrases of music, incipits and extracts from the middle of 

tunes, solo and ensemble playing, (with up to ten musicians on various traditional 
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instruments), field recordings from concerts, informal pub sessions and badly 

degraded archive recordings. The work reported in this chapter was first presented at 

the Sixth International Workshop on Content-Based Multimedia Indexing as "A 

System for Automatically Annotating Traditional Irish Music Field Recordings" 

(Duggan et al. 2008a). 

6.1 System design 

A high level diagram of the subsystems which make up MATT2 are presented in 

Figure 36. The subsystems present in MATT2 will now be described. 

 

 

Figure 36: High level diagram of MATT2 

MATT2 works on mono digital audio files in the WAV format recorded at 

44.1KHz. There are two core components; a transcription algorithm and a matching 

algorithm. The transcription algorithm is made up of a number of subsystems for 

onset detection, pitch detection, pitch spelling, breath detection and Ornamentation 

Filtering. The output of the transcription algorithm can be considered to be the set ;, 

where each element in ;  is a vector with various dimensions describing features of 

the audio being analysed. A string t is extracted from the notes, where t contains 

characters of the reduced alphabet of the ABC music notation language.  

The matching algorithm compares the transcription t against transcriptions 

from Z, the corpus of known tunes allowing errors, and returns elements from Z in 
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order of ascending dissimilarity. Elements in Z are preprocessed as described in 

section 6.8 before matching. 

6.2 Onset detection 

The audio file to be annotated is first segmented into candidate note onsets and offsets 

using an onset detection function adapted from (Gainza 2006; Gainza & Coyle 2007) 

(section 3.1). The onset detection function, ODCF (Onset Detection using Comb 

Filters) is based on time domain FIR comb filters. ODCF discovers harmonic 

characteristics of the input signal and is therefore tolerant to energy changes in an 

input signal not caused by note onsets and is also better at detecting onsets in legato 

playing typical of woodwind traditional instruments such as the concert flute, the tin-

whistle and the uilleann pipes. The use of ODCF specifically addresses P1 from Table 

10; that is support for queries played on the main instruments used in traditional 

music. 

The input signal is first segmented into overlapping frames of 2048 samples 

(approximately 46 milliseconds). Each frame overlaps with the previous frame by 

75%. Each frame is then passed through a bank of twelve FIR comb filters. A FIR 

comb filter works by summing the input signal with a delayed version of the same 

input signal. The delay of the filter is calculated as being the length in time of a single 

period of a waveform at the frequency. This has the effect of amplifying the frequency 

or a harmonic of the frequency in the input signal which matches the frequency being 

filtered. Thus, the energy of the input signal is doubled only if the peaks of the signal 

coincide with the peaks of the FIR comb filter (Smith 1997). Twelve filters with 

different delays are used. The delays are calculated as being the twelve semitones 

succeeding one octave below the fundamental note (Breathnach 1985) of the 

instruments in the audio file being analysed as per Equation 1 (Chapter 3, page 58). 

Figure 37 gives an extract from the author’s implementation of Equation 1 in Java.  
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public class TimeDomainCombFilter { 
  private float[] frame; 
  private int frequency; 
  private int sampleRate; 
  private int delay; 
 
  public void setFrequency(int frequency) { 
    this.frequency = frequency; 
    delay = (int) ((1.0f / (float) frequency) * (float) 
sampleRate); 
  } 
  public float calculateOutputPower() { 
    float power = 0; 
    for (int i = 0; i < frame.length + delay; i++) { 
      // Add 0's at the start 
      if (i < delay) { 
        power += Math.pow(frame[i], 2); 
      } // Add 0's at the end 
      else if (i >= frame.length) { 
         power += Math.pow(frame[i - delay], 2); 
      } 
      else { 
        power += Math.pow(frame[i] + frame[i - delay], 
2); 
      } 
    } 
    return power; 
  } 
  private float calculateInputPower() { 
    float power = 0; 
    for (int i = 0; i < frame.length; i++) { 
      power += Math.pow(frame[i], 2); 
    } 
      return power; 
  } 
  public float calculateHarmonicity() { 
    float inputPower, outputPower, power; 
 
    inputPower = calculateInputPower(); 
    outputPower = calculateOutputPower(); 
    power = (float) outputPower / (4.0f * inputPower); 
    return power; 
  } 
} 
 

Figure 37: Extract from the author’s implementation of a time domain comb 

filter (Equation 1) in Java 
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  The usual fundamental note for traditional music is D (Breathnach 1985), 

however if the music is played on an instrument pitched as per Table 5, Table 6 or 

Table 7, then the fundamental note changes appropriately. In this way, P2 from Table 

10 is addressed and the main modes and keys used to play traditional music are 

supported by the system. Table 13 shows the frequencies and corresponding delays 

for the fundamental notes used in traditional music (Chapter 2). 

For each frame of audio examined, the outputs of the audio passed through 

each of the twelve filters are calculated. A value for the ODF is then calculated as 

being the sum of the difference between the outputs of each of the twelve filters in 

successive frames squared, as described in Equation 2 (Chapter 3, page 54).  

In the case where the pitch of the input signal changes from one note to 

another, this will result in a peak in the ODF graph. A dynamic threshold is then 

calculated above which peaks in the ODF are recognised as being candidate note 

onsets (section 3.1). 

   

Bb C D Eb F G 

f D f D f D f D f D f D 

116 380 130 339 146 302 155 284 174 253 196 225 

123 358 138 319 155 284 164 268 184 239 207 213 

130 339 146 302 164 268 174 253 195 226 220 200 

138 319 155 284 174 253 184 239 207 213 233 189 

146 302 164 268 184 239 195 226 219 201 247 178 

155 284 174 253 195 226 207 213 233 189 261 168 

164 268 184 239 207 213 219 201 246 179 277 159 

174 253 195 226 219 201 233 189 261 168 293 150 

184 239 207 213 233 189 246 179 277 159 311 141 

195 226 219 201 246 179 261 168 293 150 329 134 

207 213 233 189 261 168 277 159 311 141 349 126 

219 201 246 179 277 159 293 150 329 134 370 119 

Table 13: Delays D in samples for frequencies f in Hz sampled at 44.1Khz, used 

in ODCF for differently pitched instruments. (See also Table 5, Table 6 and 

Table 7). 

The peak detection algorithm identifies a peak in the ODF as being a value 

preceded by four ascending values and followed by four descending values, though 

MATT2 supports a configurable value for this. This value was discovered by 

experimenting with different values until the algorithm generated the fewest false 
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positives. Onsets and offsets are considered by the system to be concurrent and so a 

candidate note is considered to be a segment bounded by two adjacent onsets.  

Figure 38 shows the signal for the first bar of the tune "The Boyne Hunt" 

played on a concert flute (section 2.4.2) with the detected candidate note onsets 

marked. The second plot in this figure shows the ODF for the signal, with the 

dynamic threshold and the candidate onsets marked. In this plot, it is significant that 

the first note contains a dynamic energy change approximately half way through the 

note which the ODF has correctly ignored.  

 

Figure 38: Signal and ODF plots of the first bar of the tune "The Boyne Hunt" 

The onset detection function returns a set of candidate notes ; indexed by j, 

where each element in ;j ∈ ; consists of the vector {os, of, dS, nD} and j∈ℕ, 1 ≤ j ≤ 

J. The dimension osj is the onset point in samples, ofj is the offset point and dSj is the 

length of the segment in samples, given by ofj – osj. The dimension nDj is the note 

duration in seconds and is calculated by dividing dSj by the sample rate (44100Hz). 

The count of notes detected by the onset detection function is given by J. 
6.3 Pitch detection 

To estimate the perceived pitch of each note, the fundamental frequency (F0) of the 

note is derived. MATT2 makes use of a frequency domain pitch detector and so a Fast 

Fourier Transform (FFT, section 3.2) is first performed on each candidate note 
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segment. As the FFT algorithm  requires the frame size to be a power of two (Smith 

1997), the pitch detector subsystem first calculates the highest number, which is a 

power of two nPj, that is less than the length in samples dSj of each segment ;j of 

audio bordered by onsets. For example, a note of length 0.28 seconds (Figure 41) and 

a sample rate of 44.1Khz, gives an audio segment of 12348 samples. This gives an nPj 

of 8192. For a typical nPj of 8192, the bin width of the FFT is 5.38Hz. This gives 

sufficient pitch discrimination to distinguish the notes playable on the instruments 

used to play traditional music and so interpolation is not necessary 

An FFT is then performed on the segment of length nPj. To determine the pitch, 

the system first evaluates the indices of frequency spectrum where peaks occur. A 

peak detection algorithm is again employed which identifies values bordered by two 

ascending/descending values. The algorithm extracts the bin indices of five peaks 

with the maximum amplitude from the spectrum as the set of candidate pitches cpi. 

For each candidate pitch cpi the algorithm calculates the harmonicity hi by summing 

the amplitudes of the ten integer multiples of the candidate as per Equation 14. A 

border b is set each side of the integer multiple of the candidate index and the 

algorithm picks the maximum energy from the range. This gives the algorithm 

tolerance to inexact periodicity.   

ℎ�� � ���1�bcd ×40fbcd ×4�f ���7�H��� 
4�  

Equation 14 

The algorithm then picks the candidate with the highest harmonicity cp.  The 

note frequency fj is then calculated by multiplying cp by the FFT bin width. The 

algorithm adds fj as a dimension to each element of ; as fj,. Figure 39 gives an extract 

from the implementation of this algorithm in Java. 
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int numCandidates = 5; 
int numHarmonics = 10; 
float maxEnergy = 0; 
float maxCandidate = 0; 
 
float binWidth = (float) sampleRate / (float) frameSize;         
for (int i=0 ; i < numCandidates ; i ++) 
{ 
    int candidate = peaks.elementAt(i).intValue(); 
    float energy = 0; 
    int border = 2; 
    for (int j = 0 ; j < numHarmonics ; j ++) 
    {                 
        int harmonic = candidate + (j * candidate);              
        float hLow = (int) ((float) harmonic - border); 
        float hHigh = (int) ((float) harmonic + border); 
 
        float harmonicity = -1; 
        for (int k = (int) hLow; k <= (int) hHigh ; k ++) 
        { 
            if (k < fftMag.length) 
            { 
                if (fftMag[k] > harmonicity) 
                { 
                    harmonicity = fftMag[k]; 
                } 
            } 
        } 
        energy += harmonicity; 
    } 
 
    if (energy > maxEnergy) 
    { 
        maxEnergy = energy; 
        maxCandidate = candidate; 
    } 
} 
frequency = maxCandidate * binWidth;    
return frequency; 

Figure 39: Extract from the author's frequency domain, harmonicity based pitch 

detector code in Java 

6.4 Compensating for expressiveness in queries 

At this stage ;, the set of candidate notes is the set of note vectors consisting of ;j = 

{os, of, dS, nD, f}, where osj is the onset point in samples, ofj is the offset point and 

dSj is the length of the segment in samples, given by ofj – osj, nDj is the note duration 
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in seconds and fj  is the detected pitch.  The system next attempts to compensate for 

expressiveness in the playing that generated the transcription. Four expressive 

characteristics are accommodated: ornamentation (P7), the "long note" (P8), phrasing 

(P5) and reversing (P3) (section 2.9 and 2.9.1).  Accommodation for ornamentation is 

discussed in section 6.4.1. Compensation for phrasing and reversing are discussed in 

sections 6.5, 6.8 and 6.7 respectively. Compensating for expressiveness represents 

Contribution 2 in this thesis. 

6.4.1 Ornamentation Filtering 

Firstly, the system attempts to identify ornamentation notes (section 2.9.1) in the 

transcription and filter them. An ornamentation note in traditional music takes 

duration from the subsequent note, so the aim of this algorithm is to identify the 

ornamentation notes, remove them from the transcription and give back duration to 

the subsequent note (Figure 17). This algorithm has no a priori knowledge of note 

durations and works equally well with tunes played at a variety of tempos (P9 from 

Chapter 1). 

In order to achieve this, the system generates a histogram of note durations, 

nDj from ;, the set of transcribed notes. To count notes for inclusion in a histogram 

bin, the algorithm identifies bin widths on the fly. When a note is being considered, 

the algorithm first searches the histogram to see if there is a bin with a width, within 

+/- 33% of the duration of the note. 33% is the fuzz referred to in Figure 40.   

The value 33% was chosen, because ornaments (notes of extremely short 

durations) get counted together, but triples (melodically significant) will get counted 

with quavers. The algorithm also updates the bin width each time a note is added to 

the bin, so that the bin widths contain the cumulative average note durations counted. 

The histogram bin with the highest count is considered to be the initial length of a 

quaver note qL. Pseudocode for this algorithm is given in Figure 40. 
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foreach (note in transcribed_notes) 
begin 

  found � false 
  foreach(bin in histogram) 
  begin 

    bin_start � bin.width - fuzz 

    bin_end � bin.width + fuzz    
  if (note.duration >= bin_start and 
     note.duration <= bin_end) 
  begin 

     found � true 
     bin.count ++ 

   bin.width � (bin.width  + 
     note.duration) / 2 

     break 

    end 

  if not found 
  begin 

   newNote.count � 1 

   newNote.width � note.duration 
   histogram.add(newNote) 
  end 

end 

quaver_length � max(histogram)   
 

Figure 40: Pseudocode for the quaver duration calculation algorithm 

Figure 41 shows the duration histogram for the incipit from the tune "The 

Kilmovee Jig". The system then calculates the integer, quaver multiple qQj of each 

note by dividing each duration nDj by qL and rounding to an integer (Equation 15).  

 

gh1 = 89i�; j ��1gk l 

Equation 15 

From Figure 41, the bin counting notes of 0.28 +/- 33% seconds has the 

highest count and so this is considered to be the initial average length of a quaver in 

the piece of music analysed. Table 14 shows a subset of the durations measured by the 

onset detection function for the phrase of music used to generate Figure 41, with the 

rounded multiple of qL = 0.28. Tempo in jigs is counted as dotted crochets per minute 

(Table 3) and so a qL of 0.28 seconds represents a tempo of 71 BPM. 
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Figure 41: Histogram of candidate note durations in seconds, from a 25 second 

phrase from the tune "The Kilmovee Jig" 

Notes whose multiples are zero are classified as ornamentation notes and 

removed from the transcription. These notes have their durations added to the 

subsequent notes. This has the effect of eliminating ornamentation notes such as those 

found in rolls, cuts taps and crans typical of traditional Irish music (section 2.9.1) and 

also of eliminating consecutive onsets (false positives caused by noisy onsets). The 

merging of ornamentation notes in this manner addresses P7 from Table 10. In Table 

14, notes 3, 6, 7, 8, 23 and 29 will be removed and their durations added to the 

subsequent notes.   

MATT2 then calculates the bin width, with the maximum bin count in a 

second histogram of the new note durations after ornamentation elimination as the 

quaver length may have changed as a result of merging ornamentation notes. The 

system uses this value to be the new length of a quaver qL'. The duration calculator 

then evaluates the nearest multiple qQ of the quaver length qL' for each candidate 

note as per Equation 15.  

In order to compensate for "long notes" (P8) (section 2.9.1), the algorithm splits 

notes with durations qQj > 1 into multiple quaver length notes, so that all notes are 

quantised to be of quaver length. New notes have their frequencies recalculated using 

the pitch detection algorithm described in section 6.3. Table 15 (page 107) shows the 
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results of this process on the transcription given in Table 14 (page 106). Notes added 

by "long note" compensation are highlighted in blue in Table 15.  

 
# Onset Time Duration Multiple Frequency Energy 
1 0.00 0.35 1 296.08 587.09 
2 0.35 0.24 1 392.98 1806.87 
3 0.59 0.07 0 430.66 1836.28 
4 0.66 0.46 2 1181.63 2040.67 
5 1.13 0.26 1 495.26 2736.67 
6 1.38 0.05 0 559.86 1727.08 
7 1.43 0.12 0 495.26 2269.23 
8 1.54 0.03 0 430.66 1030.49 
9 1.58 0.34 1 495.26 2820.16 
10 1.92 0.24 1 392.98 2147.70 
11 2.16 0.27 1 441.43 2486.53 
12 2.43 0.29 1 495.26 2599.07 
13 2.72 0.26 1 441.43 2347.55 
14 2.97 0.27 1 392.98 2024.66 
15 3.24 0.26 1 333.76 1129.72 
16 3.49 0.27 1 296.08 1281.40 
17 3.76 0.17 1 333.76 1161.26 
18 3.94 0.35 1 392.98 2133.99 
19 4.28 0.28 1 495.26 2523.68 
20 4.56 0.23 1 586.78 1217.29 
21 4.79 0.29 1 785.96 3093.80 
22 5.09 0.22 1 667.53 1096.09 
23 5.31 0.07 0 818.26 1254.11 
24 5.38 0.46 2 664.84 1090.16 
25 5.84 0.27 1 592.16 1257.22 
26 6.11 0.26 1 489.88 1708.94 
27 6.36 0.30 1 441.43 1996.61 
28 6.66 0.26 1 392.98 1947.37 
29 6.92 0.06 0 495.26 1668.10 
30 6.98 0.49 2 785.96 1970.59 

Table 14: Calculated note onset times, durations, quaver multiples, frequencies 

and energies for the first 30 notes from the tune "The Kilmovee Jig" played on a 

concert flute 

In this way notes are quantised as being quavers, ornamentation notes are 

filtered and their durations added to the subsequent notes in the transcription.  

Ornamentation Filtering is carried out on a sliding window of the set of 

transcribed notes (with no overlaps). In this way Ornamentation Filtering accounts for 

tempo deviation (P9) which may occur in the audio being analysed. The window size 

used for the experiments described in Chapter 7 is six seconds. If the last window is of 
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duration less than the window size, then the last window is combined with the 

previous window for analysis, so that no window is shorter than the window size. 

 

# Onset Time Duration Multiple Frequency Energy 

1 0 0.35 1 296.08 587.09 

2 0.35 0.24 1 392.98 1806.87 

3 0.59 0.27 1 395.67 2103.44 

4 0.86 0.27 1 392.98 1950.97 

5 1.13 0.26 1 495.26 2736.67 

6 1.38 0.16 1 495.26 2269.23 

7 1.54 0.37 1 495.26 2820.16 

8 1.92 0.24 1 392.98 2147.70 

9 2.16 0.27 1 441.43 2486.53 

10 2.43 0.29 1 495.26 2599.07 

11 2.72 0.26 1 441.43 2347.55 

12 2.97 0.27 1 392.98 2024.66 

13 3.24 0.26 1 333.76 1129.72 

14 3.49 0.27 1 296.08 1281.40 

15 3.76 0.17 1 333.76 1161.26 

16 3.94 0.35 1 392.98 2133.99 

17 4.28 0.28 1 495.26 2523.68 

18 4.56 0.23 1 586.78 1217.29 

19 4.79 0.29 1 785.96 3093.80 

20 5.09 0.22 1 667.53 1096.09 

21 5.31 0.27 1 664.84 1112.75 

22 5.57 0.27 1 667.53 1081.67 

23 5.84 0.27 1 592.16 1257.22 

24 6.11 0.26 1 489.88 1708.94 

25 6.36 0.30 1 441.43 1996.61 

26 6.66 0.26 1 392.98 1947.37 

27 6.92 0.27 1 392.98 1940.54 

28 7.19 0.27 1 392.98 2140.87 

Table 15:  Calculated note durations after Ornamentation Filtering and long 

note compensation of the data presented in Table 14 

Table 16 shows the number of notes filtered and inserted by Ornamentation 

Filtering for the first twenty pieces of test audio (WT & E) used in the experiment 

described in Chapter 7. 
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Whole Tunes (WT) Excerpts (E) 

# Original Filtered Inserted /ew Original Filtered Inserted /ew 
1 293 63 26 256 80 18 10 72 
2 287 55 30 262 61 19 2 44 
3 421 67 51 405 100 27 21 94 
4 283 41 25 267 129 38 12 103 
5 287 49 36 274 49 8 6 47 
6 296 66 50 280 68 16 8 60 
7 320 64 19 275 54 4 39 89 
8 428 52 183 559 91 21 5 75 
9 606 115 255 746 81 11 3 73 

10 229 43 99 285 65 15 11 61 
11 295 55 87 327 433 90 36 379 
12 275 43 33 265 49 18 3 34 
13 168 41 26 153 157 44 13 126 
14 278 41 34 271 54 17 8 45 
15 226 46 21 201 70 15 2 57 
16 263 49 50 264 170 20 84 234 
17 291 61 108 338 35 6 3 32 
18 267 38 177 406 63 12 25 76 
19 172 43 14 143 64 18 13 59 
20 693 163 92 622 261 37 47 271 

Table 16: Filtered and inserted note counts using Ornamentation Filtering. See 

also Appendix A 

6.5 Breath detection 

Flute and tin-whistles commonly used to play traditional music are woodwind 

instruments and hence a musician must periodically take breaths as a piece of music is 

being played (Larsen 2003; Hamilton 1990) (section 2.9.2). MATT2 incorporates an 

energy based breath detector subsystem to transcribe a breath in the signal. The breath 

detector first calculates amplitude for each candidate note segment and compares it 

with the average absolute amplitude of the entire signal. A breath is marked with a 

pitch spelling pSj = "z" if the average amplitude of a candidate note is less than a 10% 

threshold of the average amplitude over the entire signal.  

A "z" is the symbol used in ABC notation to denote a rest. Again, this 

threshold is configurable. Silence segments or breaths detected before the 

transcription of the first pitched note or at the end of the transcription are removed.  
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6.6 Pitch spelling 

The pitch spelling subsystem assigns a symbol in ABC notation to each detected note 

frequency. Concert flutes, tin-whistles and uilleann pipes used to play traditional 

music have a range of two octaves, though this can be extended by cross fingering 

techniques (section 2.4.2) and consequently most traditional tunes have a range of two 

octaves. The pitch spelling algorithm employed again takes advantage of Breathnach's 

(1985) observation reported in section 2.2, that transcriptions should be made relative 

to the fundamental note of the instrument. When an instrument is being transcribed, 

the frequencies in the spelling/frequency table (Table 17) are adjusted relative to the 

fundamental note of the instrument (Table 5, Table 6 and Table 7, Chapter 2). In this 

way, MATT2 addresses P2 from Table 10 and is transposition invariant to the keys 

used to play Irish traditional music. It also ensures that pitches are quantised to the 

nearest playable note rather than the nearest semitone as is the case with other 

transcription systems. Occasionally, tunes use notes below the fundamental note. On 

concert flutes, tin-whistles and uilleann pipes, these notes are transposed up one 

octave to make them playable, however on a fiddle, accordion or harp, these notes are 

played as per the score. The pitch spelling algorithm recognises pitches one octave 

below the fundamental note fn and three octaves above the fundamental note. To 

assign each note with a pitch spelling pSj, each calculated note frequency is compared 

with the frequencies of the notes in the major key of the fundamental note fn. As the C 

natural note is used extensively in traditional tunes (particularly those transcribed in 

G), the C natural spelling is added to the frequencies of known notes and both the C 

and C#  are spelled as C. This gives the pitch spelling algorithm a range of thirty three 

notes. The nearest match for the frequency fj is the assigned the pitch spelling pSj 

(Equation 16).  

 

mn1 = min o�'WR�1 −  ,4 | 1 ≥ � ≥ 33, 1 ≥ H ≥ rTs 

Equation 16 

Frequencies and pitch spellings (the corresponding symbol from ABC 

notation) for the fundamental note D are given in Table 17 as an example.  

 

 



Machine Annotation of Traditional Tunes (MATT2) 

 110

Spelling Frequency 
D, 146.83 
E, 164.81 
F, 184.99 
G, 195.99 
A, 220.00 
B, 246.94 
C 261.62 
C 277.18 
D 293.66 
E 329.62 
F 369.99 
G 391.99 
A 439.99 
B 493.88 
c 523.24 
c 554.36 
d 587.32 
e 659.24 
f 739.98 
g 783.98 
a 879.99 
b 987.75 
c' 1046.49 
c' 1108.71 
d' 1174.64 
e' 1318.49 
f' 1479.96 
g' 1567.96 
a' 1759.97 
b' 1975.50 
c'' 2092.97 
c'' 2217.43 
d'' 2349.28 

 Table 17: Pitch spellings for the D flute pitch model 

P6 is the problem that tin-whistles are pitched an octave higher than other 

traditional instruments. To annotate tunes played on the tin-whistle, the system first 

counts the number of transcribed notes either side of half way between the combined 

pitch range of a flute fc and a tin-whistle tc.  For a flute with a fundamental note of 

D4, this note would be G5 and is calculated as being seventeen semitones up from the 

fundamental note (Table 18). If tc > fc, then the pitch spelling algorithm is adjusted 

by one octave. 
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←              Flute Range fc              → 
D
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F
6 

G
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A
6 

B
6 

C
7 

D
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       ←              Tin-Whistle Range tc              → 
 

Table 18: Pitch range of a flute and tin-whistle with overlap 

As all notes are normalised to the same register for comparison, this has no 

effect on the melodic similarity, but it adapts the transcription algorithm to the pitch 

range of a tin-whistle. 

Pitch spellings pSj are added as a dimension to each element in the set ;, so that 

the final set of transcribed notes consist of the set of vectors {os, of, dS, f, e, nD, qQ, 

pS}, where osj is the onset point in samples, ofj is the offset point and dSj is the length 

of the segment in samples, given by ofj – osj. nDj is the note duration in seconds, ej is 

the energy of the note (calculated for breath detection), qQj is the quaver multiple 

(now always 1) and pSj is the pitch spelling in ABC notation. The updated count of 

notes after Ornamentation Filtering and "long note" compensation is given by the 

variable J. 

For many of the test recordings used to evaluate MATT2 recorded in imperfect 

conditions, this approach results in remarkably few transcription errors. A string t is 

then extracted from ;, consisting of the ordered string of pitch spellings. 

6.7 Corpus normalisation 

The corpus used in the experiments described in Chapter 7 is Norbeck's reel and jig 

collection, which contains 1582 reels and jigs, with variations (Norbeck 2007). 

MATT2 supports ABC notation which, being a text format, requires minimal pre-

processing before it can be compared using the edit distance algorithm. Before edit 

distance matching against the corpus is carried out, both the transcribed string and 

strings from the corpus are normalised. This step is necessary as ABC notation 

supports features such as repeated sections, which need to be expanded so that they 

can be correctly matched against transcribed phrases (Appendix B). It also removes 

ornamentation from the transcriptions. Normalisation involves five stages. Figure 42 

shows examples of each stage in the ABC normalisation process. Appendix C and D 

give further examples of tunes before and after normalisation.  
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Firstly, all whitespace, ornamentation markers and text comments are 

removed. When ornamentation markers (~{}) are filtered from ABC transcriptions, 

this has the effect of quantising the duration of the majority of notes in corpus strings 

to multiples of the duration of a quaver. The (X symbol in ABC is used to indicate a 

duplet, where X indicates the number of notes in the duplet. For example (3 indicates 

a triplet. These markers are removed, but the notes in the duplet are left intact. This 

again addresses P7 from Chapter 1. 

 

Original: 
d2BG dGBG|~G2Bd efge|d2BG dGBG|1 ABcd edBc:|2 ABcd edBd|| 

 
After ornamentation filtering: 
d2BGdGBG|G2Bdefge|d2BGdGBG|1ABcdedBc:|2ABcdedBd|| 

 
After note expansion: 
ddBGdGBG|GGBdefge|ddBGdGBG|1ABcdedBc:|2ABcdedBd|| 

 
After section expansion: 
ddBGdGBGGGBdefgeddBGdGBGABcdedBc 
ddBGdGBGGGBdefgeddBGdGBGABcdedBd 

 
After register normalisation: 
DDBGDGBGGGBDEFGEDDBGDGBGABCDEDBC 
DDBGDGBGGGBDEFGEDDBGDGBGABCDEDBD 

 

Figure 42: /ormalisation stages for the A part of the tune "Come West Along 

the Road". See also Figure 3, Figure 15 and Figure 44 

Secondly, all notes of duration greater than that of a quaver are expanded to be 

multiple instances of a quaver. This removes the effect of long notes on distance 

calculations addressing P8 from Chapter 1. 

Thirdly repeated sections are expanded and bar divisions are removed. ABC 

supports several notations for different types of repeated phrases (Mansfield 2007) 

(Appendix B). This means for example, that if the transcribed query was the A part of 

a tune played twice, this would be correctly matched against the expanded A part of a 

tune from the corpus.  

Finally all notes are transformed to be in the same register. All octave (',) 

indicators are removed and all lower case characters in the ABC notation of tunes are 
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transformed to upper case. This removes the skewing of melodic similarity measuring 

as a result of reversing (P3) in the interpretation of a tune.  

6.8 Matching 

One final transformation is carried out on strings from the corpus before they are 

compared with transcribed strings. Occasionally, strings from the corpus are shorter 

than transcribed strings. For example, the transcribed string might be from a double 

reel, while the string from the corpus could be from a single reel (a tune half the 

length). In order to gain the maximal usage from the transcription, corpus strings 

shorter then transcribed strings are duplicated until their length is greater than the 

length of the transcribed string. This approximates what a real musician would do in 

order to extend the duration of a tune (Vallely 1999; Mansfield 2007; Zheng & 

Duggan 2007). 

 The minimum edit distance (section 4.4) eF(c) for each string c from the corpus 

Z then calculated using a cost of one for insertions, deletions and substitutions, for 

each pair consisting of the transcribed string s in substrings of c. In order to take a 

breath, a musician must leave out a note. Therefore, the edit distance cost function is 

adapted so that breath marks ("z") are allowed to match any character. This addresses 

P5 from Chapter 1. The substring variation of the classic edit distance algorithm, 

described in (Navarro & Raffinot 2002) and discussed in section 4.4 is used to search 

for the minimum edit distance for a search string in substrings of a target string. This 

way any phrase from a tune can be matched; not just complete tunes and not just 

incipits. MATT2 returns the top ten matching tunes in order of ascending distance 

from the automatically transcribed query string. 

6.9 Interface 

MATT2 is developed in Java. A screenshot of the system is presented in Figure 43.   
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Figure 43: Screenshot of MATT2 

 The interface to MATT2 displays several useful plots of the outputs of each 

stage in the transcription and the matching algorithm such as the current frame being 

analysed (the blue graph), the onset detection function (the yellow graph) and the FFT 

of each detected note (the white graph). Additionally, the interface displays the 

transcription in ABC notation and the title of the current closest tune match. MATT2 

can also play the original WAV file being analysed, the transcribed pitches, the 

transcription in ABC notation, the closest match and any of the matched tunes. When 

the matching algorithm terminates, MATT2 can play and display any of the top ten 

closest matching tunes, with their corresponding edit distances. It can also operate in 

batch mode where it will attempt to annotate all the WAV files in a folder. MATT2 

also keeps several log files as it annotates through files in a folder. The source code 

for MATT2 is available under the GNU General Public License v2 from: 

 

http://code.google.com/p/matt2/ 
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6.10 Conclusions 

In this chapter MATT2, a new system for annotating recordings of traditional Irish 

dance music with metadata was described. MATT2 combines a novel transcription 

system which makes use of ODCF to detect onsets and a pitch spelling algorithm 

based on Brendan Breathneach’s observations about the transcription of traditional 

Irish music which provides transposition invariance for the keys and modes used to 

play traditional music thus addressing P1, P2 P4 and P6 given in Chapter 2. This 

complete, working system represents Contribution 1.  

The automatic pitch spelling approach employed in MATT2, minimises pitch 

spelling errors by quantising to the nearest likely playable note and represents 

Contribution 2. A new algorithm for dealing with ornamentation and compensating 

for "the long note" in traditional music called Ornamentation Filtering was presented 

that addresses P7 and P8 given in Chapter 2. A matching technique was presented that 

aligns audio queries with complete tunes from a corpus and that takes account of 

phrasing and reversing effects in the interpretation of traditional Irish dance music 

thus addressing P3 and P5 from Chapter 2.  

Compensating for expressiveness using the proposed Ornamentation Filtering 

algorithm, normalising ABC scores and adapting the edit distance cost function to 

account for breath marks represents Contribution 3. 

In order to evaluate the effect of the expressiveness compensation algorithms 

described in this chapter, Chapter 7 presents a comprehensive evaluation of MATT2 

and compares it with two standard approaches suggested by the MIR literature, 

reviewed in Chapter 4 and Chapter 5. The recordings used in the experiment 

described in Chapter 7 are of whole tunes and short excerpts of tunes. Chapter 8 

presents Contribution 4, a new algorithm and an evaluation of the algorithm for 

annotating recordings of sets of tunes.  
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7 Evaluation 

This chapter presents an experimental evaluation of MATT2. In order to evaluate the 

effect of the expressiveness compensation algorithms described in Chapter 6, MATT2 

is compared with two alternative approaches common in the MIR literature that do not 

make any accommodation for expressive performance. These are an approach based 

on comparing melodic contours and an approach based on comparing pitch intervals. 

Studies of experimental evaluations sometimes critique the number of systems that are 

not evaluated on real-world problems (Prechelt 1996; Salzberg 1999) and so in order 

to evaluate MATT2, audio was acquired in real world conditions. Test audio contains 

fifty whole tunes and fifty short incipits and excerpts from tunes played by a variety 

of musicians on traditional instruments. This chapter also includes statistical 

significance tests that evaluate the significance of the results of the experiment. The 

work reported in this chapter was first presented at the 2009 International Computer 

Music Conference as "Compensating for Expressiveness in Queries to a Content 

Based Music Information System" (Duggan et al. 2009). 

7.1 Experiment 

For the experiment described in this section, audio was acquired from real-world 

sources including field-recordings of musicians, traditional music sessions and 

commercial recordings. More than thirty musicians made recordings which were used 

in testing. Appendix A lists the audio used in the experiment. 

Field recordings were made in imperfect conditions such as a kitchen in a 

house, a school room, various concerts in public halls and various public sessions, and 

contain ambient noise such as chairs moving, doors opening, foot taps and crowd 

noises. The recordings were edited so that the audio being tested contained fifty whole 

tunes (WT) and fifty short excerpts (E) from tunes. Deliberately challenging audio 

was used, including degraded archive recordings, flute duets, flute and fiddle duets, 

fiddle solos, sessions with ensembles of up to ten musicians and ensemble playing in 

unusual keys with background noise. Table 19 classifies the test audio used by 

instrument. 
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Instrument WT E 
Solo flute 21 29 
Solo tin-whistle  4 6 
Flute duets 3 0 
Solo fiddle 5 0 
Solo pipes 2 2 
Flute & fiddle duet 4 1 
Flute & guitar duet 1 3 
Flute & pipes duet 0 1 
Solo concertina 2 4 
Solo accordion 1 1 
Sessions (ensembles of up to 10 musicians) 7 3 
Total 50 50 

Table 19: Sources of MATT2 test audio by instrument 

 Table 20 classifies the test audio by fundamental note. 

 

Fundamental note WT E 
Bb 2 3 
C 0 1 
D 39 42 
Eb 4 2 
F 5 2 
Total 50 50 

Table 20: Sources of MATT2 test audio by fundamental note 

 Table 21 gives the durations in seconds of the audio used in the test. Audio 

used to develop the system was removed from the test audio. 

 

 WT E 
Minimum 21.23 4.74 
Maximum 84.00 65.43 
Average 43.91 14.17 

Table 21: Durations in seconds for MATT2 test audio 

 The ABC corpus mostly contains single instances of each tune. Some entries 

in the corpus are variations of the same tune, but no more than three variations of each 

tune is included and usually only a single variation is included if at all. In most cases 

the aim therefore is to retrieve the single match from the corpus and annotate the 

audio query recording appropriately and so precision and recall scores are not 

appropriate in this experiment (section 8.3). Three scenarios are evaluated: 
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MC-ED: Edit distance matching based on melodic contours. This approach is 

common in the literature and is similar to the approaches employed by (Downie 1999; 

Ghias et al. 1995; McNab et al. 1997; McNab et al. 1996; McPherson & Bainbridge 

2001; Lu et al. 2001; Rho & Hwang 2004; Prechelt & Typke 2001). To perform this 

experiment, the corpus was first converted to MIDI format using the open source 

ABC2MIDI program from the ABC Music Project (Shlien 2008). ABC2MIDI creates 

a MIDI rendering of a transcription in ABC format. Significantly, ABC2MIDI creates 

MIDI versions of any ornaments included in the transcription. The sequence of MIDI 

note numbers (Table 22) was extracted from each file and an algorithm was developed 

to convert this sequence to a melodic contour of "U", "D" and "S" characters (section 

4.1). Some examples of the output of the algorithm are given in Figure 44.  

 

 

d2BG dGBG|~G2Bd efge|d2BG dGBG|1 ABcd edBc:|2 ABcd edBd|| 

|:g2bg egdg|(3efg dg edBd|1 g2bg egdB|ABcd edBd:|2 gabg 

efge|dega bage|| 

74,71,67,74,67,71,67,69,67,71,74,76,78,79,76,74,71,67,74,

67,71,67,69,71,72,74,76,74,71,72,74,71,67,74,67,71,67,69,

67,71,74,76,78,79,76,74,71,67,74,67,71,67,69,71,72,74,76,

74,71,74,79,83,79,76,79,74,79,76,78,79,74,79,76,74,71,74,

79,83,79,76,79,74,71,69,71,72,74,76,74,71,74,79,83,79,76,

79,74,79,76,78,79,74,79,76,74,71,74,79,81,83,79,76,78,79,

76,74,76,79,81,83,81,79,76 

DDUDUDUDUUUUUDDDDUDUDUUUUUDDUUDDUDUDUDUUUUUDDDDUDUDUUUUUD

DUUUDDUDUDUUDUDDDUUUDDUDDDUUUUDDUUUDDUDUDUUDUDDDUUUUDDUUD

DUUUUDDD  

Figure 44: Various representations of the tune "Come West Along the Road". 

(See also Figure 3, Figure 42 and Figure 15) 

The transcription system was adapted so that instead of quantising to the 

nearest playable note as described in section 6.3, the detected pitches were spelled as 
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the closest MIDI note numbers and the sequence of MIDI note numbers was extracted 

from the transcription. As can be seen in Table 22, MIDI notes are quantised to the 

nearest semitone.  

 

Octave # /ote /umbers 
 C C# D D# E  F F# G G# A A# B 
-1 0 1 2 3 4 5 6 7 8 9 10 11 
0 12 13 14  15 16 17 18 19 20 21 22  23 
1 24 25 26 27 28 29 30 31 32 33 34 35 
2 36 37 38 39 40 41 42 43 44 45 46 47 
3 48 49 50 51 52 53 54  55 56 57 58 59 
4 60 61 62 63 64 65 66 67 68 69 70 71 
5 72 73 74 75 76 77 78 79 80 81 82 83 
6 84 85 86 87 88 89 90 91 92 93 94 95 
7 96 97 98 99 100 101 102 103 104 105 106 107 
8 108 109 110 111 112 113 114 115 116 117 118 119 
9 120 121 122 123 124 125  126 127     

Table 22: MIDI note numbers (adapted from (Huber 1991)) 

From this sequence of MIDI note numbers, the melodic contour was 

generated.  Matching was performed using Navarro & Raffinot's (2002) substring edit 

distance algorithm. 

 

TI-ED: A transposition invariant edit distance matching between the corpus 

and transcribed queries was tested in the second scenario. For this experiment, the 

expressiveness compensation algorithms (Ornamentation Filtering, phrasing 

compensation, reversing and lengthening) described in Chapter 6 were not employed. 

This was carried out to evaluate the impact of these algorithms. To perform this 

experiment, distances were calculated using (Navarro & Raffinot 2002) substring edit 

distance algorithm between the MIDI note sequences for the query and MIDI note 

sequences derived from strings from the corpus as described above, with a 

transposition invariant edit distance cost function (Lemstrom & Ukkonen 2000). This 

experiment might be considered similar to the SEMEX system described in 5.1 

(although technically SEMEX works entirely on symbols and does not have a 

transcription system). It is also similar to the many QBH systems that employ edit 

distances based on pitch intervals described in Chapter 5. 
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MATT2: The complete system as described in Chapter 6. The system 

annotated the test audio as described in Chapter 6. In this experiment, the 

expressiveness compensation algorithms of Ornamentation Filtering and ABC corpus 

normalisation were employed. Pitches were spelled as ABC characters as described in 

section 6.6 and transcriptions (and the corpus) were normalised to take account of 

reversing as described in section 6.7. The edit distance cost function was adapted to 

allow breath marks to match any character as described in section 6.8. 

For each of the three scenarios, the results were validated by a human expert who 

verified the accuracy of the annotations by proof listening to confirm that the retrieved 

scores were correct. Each test audio file was annotated with the metadata from the 

corpus string with the minimum distance. In this way, the experiment only considered 

true positives TP and false positives FP. If there are T audio files to be annotated, then 

scores for accuracy and error are calculated as per Equation 17. 

 

�tti8�tS =  uvu  /8898 = �vu  

Equation 17 

7.2 Results 

Table 23 presents the accuracy and error rates for the MC-ED, TI-ED and MATT2 for 

the fifty whole tunes (WT) and for the fifty excerpts (E).  

 

  MC-ED TI-ED MATT2 
  WT E WT E WT E 
TP 10 1 28 19 47 46 

FP 40 49 22 31 3 4 
Total 50 50 50 50 50 50 
accuracy 0.20 0.02 0.56 0.38 0.94 0.92 
error 0.80 0.98 0.44 0.62 0.06 0.08 
Total 1.00 1.00 1.00 1.00 1.00 1.00 

Table 23: Results for MC-ED, TI-ED and MATT2 for WT and E 

Table 24 gives the combined results for WT and E. When the results are 

combined, it can be seen that MC-ED gives 11% accuracy, TI-ED gives 47% 

accuracy and MATT2 gives 93% accuracy. MC-ED gives very poor accuracy and a 

high error rate for both WT and E. This can be attributed to the effect of 
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ornamentation notes at higher and lower pitches on the generation of Parsons Code 

and to the minimal discriminative power of this format. TI-ED is able to successfully 

annotate about half the whole tunes and less than half of the excerpts. TI-ED is 

therefore better at discriminating melodies than MC-ED, even though the effect of 

ornamentation is still evident in the results. MATT2 however gives 93% accuracy for 

both WT and E leading to the conclusion that the expressiveness compensation 

algorithms employed have significantly increased annotation accuracy. 

 MC-ED TI-ED MATT2 
TP 11 47 93 
FP 89 53 7 
Total 100 100 100 
accuracy 0.11 0.47 0.93 
Error 0.89 0.53 0.07 
Total 1.00 1.00 1.00 

Table 24: Combined WT and E results for the 3 systems 

7.3  Significance 

The probability that these results could be achieved by random selection can be 

calculated with a binomial distribution. A Bernoulli process must possess the 

following properties (Walpole 2002): 

 

1. An experiment consists of n queries to a system. 

2. Each query results in an outcome that is classified as either a true positive or a 

false positive. 

3. The probability of success denoted by p, is the same for all queries. 

4. Repeated queries are independent. 

 

 In practice, there are some variations of the same tune in the corpus used in 

these experiments however for the purposes of this test; it is assumed that there is only 

one correct match in the corpus for each query audio file.  Each query therefore can be 

considered as a Bernoulli trial with a possible outcome of either true positive or false 

positive. A true positive indicates that the query audio file was annotated with the 

correct melody from the corpus, with a false positive indicating that an incorrect 

melody was returned as the closest match. A Bernoulli trial can result in a true 

positive with a probability of p and a false positive with a probability of q = 1 – p. 
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These experiments can therefore be considered as a Bernoulli process and 

consequently the probability of getting the results given in Table 24 using random 

selection can be calculated. The number of true positives in n Bernoulli trials is 

known as a binomial random variable and is denoted by X. The probability 

distribution of X (known as the binomial distribution) is denoted by b(x;n, p). This can 

be calculated as per Equation 18, where o��s is the binomial coefficient and p is the 

probability of a true positive in a single trial.  

'��; �, m� =  o��s mxg�0x 

 Equation 18 

 The binomial coefficient o��s is equal to the number of partitions of n 

outcomes into two groups, with x in one group and n-x in the second group. This can 

be calculated as per Equation 19. 

o��s = �!�! �� − ��! 
Equation 19 

 If a query audio file is annotated by selecting a single melody at random from 

the corpus of 1582 melodies then the probability p of selecting the correct melody is 

calculated as 
��z{�. Table 25 gives the probabilities of getting x true positives, by 

random selection, calculated as per Equation 18. 

x � p |�}; ~, �� 
0 100 11582 

0.93873 

1 100 11582 
0.05938 

2 100 11582 
0.00186 

3 100 11582 
0.00004 

>0 100 11582 
0.06127 

>2 100 11582 
0.00004 

>3 100 11582 
0.00000 

Table 25: Probability of x true positives by random selection 
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 The probability of getting no true positives is 0.93873 at five decimal places. It 

is therefore likely that with random selection, none of the tunes will be annotated 

correctly. The probability of annotating more than three tunes correctly by random 

selection approaches zero at five decimal places. It can therefore be concluded that 

each of the systems tested, MC-ED, TI-ED and MATT2 performs significantly better 

than random selection of tunes from the corpus.  

The error rates of the three systems can be analysed using a McNemar's test 

which is used to determine statistical significance when comparing the performance of 

systems (Dietterich 1998). To apply McNemar's test, queries used to develop the 

system are removed from the set of queries used to evaluate the system. Given two 

systems A and B, for each example x ∈ T, where T  is the set of test queries, a 

contingency table is constructed as per Table 26.  

 

Number of examples misidentified by 
both A & B 

Number of examples misidentified by A 
and identified correctly by B 

Number of examples misidentified by 
B and identified correctly by A 

Number of examples identified correctly 
by both A and B 

Table 26: Mc/emar's contingency table 

 The notation given in Table 27 is used to represent the cells in Table 26 where 

n = n00 + n01 + n10 + n11 is the total number of examples in the test set T.  

 

n00 n01 
n10 n11 

Table 27: Representation of Mc/emar's contingency table 

 A null hypothesis is a hypothesis set up to be nullified, refuted, or rejected in 

order to support an alternative hypothesis. Under the null hypothesis, the systems 

being compared should have the same error rate, which means that n01 = n10. 

McNemar's test is based on a Χ2 (chi squared) test for goodness of fit which compares 

the distribution of counts expected under the null hypothesis to the observed counts. 

Χ2 is calculated as per Equation 20 (Dietterich 1998). 

 

�� = �|� � − �� | − 1��� � + ��  

Equation 20 
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 This statistic is distributed (approximately) as �� with one degree of freedom.  

If the null hypothesis is correct then the probability that ��, .�z� > 3.841459 is less 

than 0.5. The null hypothesis can therefore be rejected in favour of the hypothesis that 

the two systems have different performance. McNemar's test has a lower probability 

of incorrectly detecting a difference when no difference exists but it also possesses 

good discriminative power (the ability to detect a difference where one does exist) 

(Dietterich 1998). 

To establish the statistical significance of the results given in section 7.2, 

contingency tables are presented in Table 28, Table 29 and Table 30. Table 28 

presents a contingency which that compares MC-ED and TI-ED. Table 29 presents a 

contingency table which compares MC-ED and MATT2, while Table 30 presents a 

contingency table which compares TI-ED and MATT2. The data used to generate 

these tables are given in Appendix F. 

 

53 36 

0 11 

Table 28: Contingency table for MC-ED and TI-ED 

 

7 82 

0 11 

Table 29: Contingency table for MC-ED and MATT2 

7 46 
0 47 

Table 30: Contingency table for TI-ED and MATT2 

 The Χ2 value for MC-ED and TI-ED (Table 28) is calculated as per Equation 

20 as 34.03. It can therefore be concluded that as Χ2 > 3.841459, TI-ED improves on 

the annotation accuracy of MC-ED. The Χ2 value for MC-ED and MATT2 (Table 29), 

calculated as per Equation 20 is 80.01. The Χ2 value for TI-ED and MATT2 (Table 

30) calculated as per Equation 20 is 44.02.  That both of these values are above 

3.841459 indicates that there is a statistical significant improvement in the 

performance of MATT2 compared with both MC-ED and TI-ED.  
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While Dietterich (1998) suggests a significance level of 0.05, in all cases the Χ2 

scores calculated are above the significance level of 0.001 for a Χ2 test with one 

degree of freedom which is 10.83.  If the null hypothesis is correct that the systems 

performance is equal, then the probability that �� > 10.83 is less than 0.001. It can 

therefore be concluded that the improvement in annotation accuracy offered by 

MATT2 over MC-ED and TI-ED is statistically significant at a confidence level of 

0.001. 

7.4 Conclusions 

Chapter 7 presented an experimental evaluation that used MATT2 from Chapter 6 to 

annotate one hundred real-world field recordings of traditional music consisting of 

whole tunes and extracts from sessions, classes and concerts. Results were reported 

using standard measures from the field of information retrieval (IR) of accuracy and 

error and the system was compared to two alternatives suggested by the literature. 

From the results of the experiment, it can be concluded that MATT2 

substantially improves on pitch contour representations of music applied to MIR for 

traditional music. Pitch contour representations give very poor accuracy when queries 

and the corpus contain ornamentation. In comparing MATT2 with a SEMEX like 

approach, it is evident that the proposed system also substantially improves accuracy 

over a system that has better discriminative power than Parsons Code, but has no 

specific accommodation for expressiveness. Further, to the authors knowledge, 

MATT2 represents a unique attempt to adapt MIR to the specific characteristics of 

traditional Irish dance music.  

The experiments presented in this chapter give MATT2 an accuracy of 93% 

for the one hundred real world queries against a 1582 piece corpus. By comparison, 

Cornell’s Query-By-Humming (Ghias et al. 1995) reports accuracy of 90% for queries 

of between ten and twelve notes against a corpus of 183 pieces. Tuneserver (Prechelt 

& Typke 2001) is reported as having 44% accuracy for 100 whistled queries against 

its corpus of 10,370 pieces. The QBH system described by Lu et al. (2001) has an 

accuracy of 59% for queries against a database of 1000 pieces, while Ryynanen & 

Klapuri (2008) report an accuracy of 89% for 2797 sung queries against a 6030 piece 

corpus. MATT2 therefore compares very favourably with other similar systems. 
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In successfully testing MATT2 with audio acquired from real world sources it 

can be further concluded that the approaches outlined in Chapter 6 are robust to 

variations in musician, style and instrument and it is hoped that the work presented 

can be further developed for use on the many thousands of hours of archived 

recordings of traditional music that currently exist and that are being collected 

representing an important contribution to the traditional music community.   
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8 Annotating Sets of Tunes Played Segue 

The work described in Chapter 6 solves the problem of annotating single tunes, 

however in traditional music tunes are rarely played singly. More commonly tunes are 

played in groups of at least two tunes known as a set of tunes. The aim of this chapter 

is to present a new algorithm for annotating sets of traditional Irish dance tunes.  

 A set typically consists of two, three or four tunes played in succession 

without an interval (Vallely 1999; Duggan et al. 2008b). Typically each tune in the set 

is played twice or three times before musicians advance to the subsequent tune in the 

set. A turn4 in a tune represents the point when the B or subsequent part of the melody 

is introduced. For the purposes of this work, the meaning is expanded so that a turn in 

a set is taken to mean the time when a repetition of a tune begins or a second or 

subsequent tune is introduced. As tunes in sets are always in the same time signature 

and often in the same key, the challenge therefore is in segmenting sets into tunes and 

repetitions. Carson (1997) writes: 

 

"Such is the bent of Irish traditional music that tunes repeat: they are played at 

least twice, or maybe three, four or more times; then the players generally 

change to another tune. Getting "the change" is a skill; it has to be watched for, 

and listened for even if the number of repeats has been determined in advance 

(some players can't count). If the repeats have not been predetermined, the 

players will use body language to communicate the change – eyes, shoulders, 

elbows, knees, feet and hands may be deployed. Hence the manic widening of 

the flute-player's eyes at the end of the first tune the third time round, or the 

shaking of her head which means you play the first tune again. If not agreed in 

advance, it will be assumed that the second tune will always be that which is 

normally associated with the first; that is they will form a set, as in 'The Boys of 

Ballisodare' and 'The Five Mile Chase', or 'The Sally Gardens' and 'The Sligo 

Maid'. But sometimes there may be two or three possibilities for the second tune 

in the set, or you are playing with unfamiliar musicians who have a different 

                                                 
4 A turn in traditional music is distinguished here from a turn in classical music, 

which is a four note ornament with a similar note sequence to a roll in traditional 

music (Virginia Tech 2009) 
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notion of the set. Or maybe someone is inspired to form a new set there and 

then..." 

 

The approach presented in this chapter addresses this problem by making use 

of melodic similarity profiles calculated using Navarro & Raffinot's (2002) variant of 

the edit distance string matching algorithm described in section 4.4 which searches for 

strings in substrings of a target string. The TANSEY (Turn ANnotation from SEts 

using SimilaritY profiles) algorithm described in this chapter can retrieve the start and 

end of each repetition of a tune, can count the repetitions and can identify the title and 

associated metadata associated with each tune in a set.  This chapter also includes 

experimental results using precision and recall scores for the algorithm which 

establish its effectiveness. Work in this chapter was originally presented at the Ninth 

International Conference on Music Information Retrieval (ISMIR) as "Machine 

Annotation of Sets of Traditional Irish Dance Tunes" (Duggan, et al. 2008b). 

8.1 Sets of traditional Irish dance tunes 

Traditional Irish dance tunes are typically played as sets. Certain common sets were 

originally put together to accompany set dances (Vallely 1999), while other sets have 

become popular as a result of recordings made by emigrant Irish musicians in 

America during the early part of the twentieth century. Figure 45 shows a waveform 

plot from a turn from one tune to the subsequent tune played in a set.  

 

Figure 45: Waveform of the last phrase from the tune "Jim Coleman’s" and the 

first phrase from the tune "George Whites Favourite" played in a set 
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The tunes were played on a concert flute and as can be seen in the plot, there is 

no obvious indication of the end of the first tune and the start of the second tune. 

Maddage et al. and other audio segmentation approaches generally look for repetitive 

patters in a music recording (Maddage et al. 2004). This is not the case in the 

approach presented in this chapter, where each tune in the set can be played once or 

many times.  The origin of many sets of tunes is unknown and musicians often 

compile new sets "on the fly" in traditional music sessions. 

8.2 TA/SEY (Turn A/notation from SEts using SimilaritY 

profiles)  Algorithm 

In this section TANSEY is described. TANSEY is an enhancement to MATT2 

described in the previous chapter. TANSEY makes use of the transcription algorithm 

and expressiveness compensation algorithms from the previous chapter. The purpose 

of TANSEY is to annotate tunes played in sets consequently TANSEY will now be 

described. 

The shortest tune in the corpus Z used by TANSEY is a single jig. A single jig 

sj is a tune in 6/8 time with an A and B part played singly (forty eight quaver notes in 

duration). The length of sj is given by |sj|. The shortest possible set therefore would 

contain two single jigs (ninety six notes) played with no repetitions. To annotate a set 

of tunes, the input audio is first analysed, transcribed, ornamentation filtered and 

normalised as described in sections 6.2, 6.3, 6.4, 6.5, 6.6, and 6.8, to produce t, a 

string in the reduced alphabet of the ABC music notation language. The vector ; 

consisting of ;j = {os, of, dS, f}, where osj is the onset point in samples, ofj is the 

offset point and dSj is the length of the segment in samples, given by ofj – osj and fj  is 

the detected pitch (section 6.2) is retained for later use as this vector contains the 

onset times of all the notes in t.  TANSEY first uses a heuristic to determine if the 

string of transcribed notes t is longer than the length of the shortest set |sj|×2. When 

this is the case, the TANSEY algorithm is used instead of the minimum edit distance 

algorithm described in sections 4.4 and 6.8. Pseudocode for the TANSEY algorithm is 

presented in Figure 46. 

  The TANSEY algorithm first extracts a substring ss from t the transcription. If 

the length ss is given by |ss|, then |ss| = |sj| at position p=1 in t. TANSEY then 

searches the corpus Z using the edit distance algorithm described in sections 4.4 and 
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6.8 to find the closest match for ss. When a match is found TANSEY knows the name 

of the first tune and has c', a transcription of the tune played with no repetitions from 

the corpus Z. TANSEY then generates a similarity profile edp for c', the matching 

tune, in t the transcription. The profile edp is given as the last row of the edit distance 

matrix and can be understood as the positions where substrings in t match c' with the 

minimum edit distance .  

 

p � 0 

rem � length(t) - p 
while (rem >= sj) 
begin 

 ss � substring(t, p, p + sj) 
 foreach (c in Z) 
 begin 

   ed_c � min(ed(ss, c)) 
   if (ed_c < min_ed) 
   begin 

    min_ed � ed_c 

    c' � c 
   end 

 end 

 edp � ed(c', t) 

 edp � normalise(edp) 

 edp � filter(edp, 10) 

 th � 0.3 

 v � troughs(edp, th) 
 foreach (tr in v) 
 begin 

  convertToTime(tr) 
 end 

 r � length(v) 

 p � v[r] 
 print c’, r 

 rem � length(t) - p 
end 
 

Figure 46: Pseudocode for the TA/SEY set annotation algorithm 

  Figure 47 shows the similarity profiles for the set of tunes "Jim Coleman’s", 

"George Whites Favourite" and "the Virginia" played in a set. The algorithm has 

identified the first tune as "Jim Coleman’s" and has subsequently generated a 

similarity profile (plot B in Figure 47) for the first tune in the transcription. The two 
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troughs in this graph indicate the end of the two repetitions of the tune in the 

transcription. These can be considered as turns in the set. 

 

Figure 47: Similarity profiles for three tunes played in a set 

  The TANSEY algorithm passes the profile through a low pass filter which 

filters frequencies less than 10Hz. This has the effect of smoothing the profile. An 

example of a smoothed similarity profile is given in Figure 48. This graph illustrates 

plot B in Figure 47 after low pass filtering has been applied. 
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  The algorithm then detects troughs in the graph less than a threshold initially 

set to t=0.3. The algorithm varies this threshold dynamically by trying different 

values until the number of troughs in the graph is between one and five. It is rare in 

traditional music for a tune to be played more than five times in a set.   

 

Figure 48: Filtered version of plot B from Figure 47.  

  The trough detection algorithm in TANSEY returns a vector of troughs v, such 

that |v| is the number of troughs (elements in the troughs vector) and the elements in v 

are the positions of the bottom of the troughs. A heuristic is applied which eliminates 

troughs less than |sj| apart, which removes consecutive troughs which might be 

marked as false positives. A trough in TANSEY need only have a descending wall as 

a trough can occur at the end of a tune and hence may not contain an ascending wall. 

An example of this is the plot D in Figure 47. Each element in v is used to retrieve the 

note onset time osj from ;. This value is output from the algorithm as the turn time. 

  The algorithm repeats this process with a new p given as the last entry in the 

troughs vector to extract the second and subsequent tunes in the set until it is no 

longer possible to extract a substring ss, where |ss| = |sj| starting at p because we have 

reached the end of t. The second tune in the set, "George Whites Favourite" was 

played once and there is a corresponding single trough in the graph of the edit 
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distance function (plot C in Figure 47) for the tune from the corpus c' in the 

transcription t. The third tune "the Virginia" was repeated twice and so there are two 

troughs in plot D in Figure 47. 

8.3 Experiment 

To evaluate MATT2, standard measures from information retrieval (IR) of precision 

and recall are presented (Manning 1999). These measures are based on the concept of 

relevancy of results. Given a retrieval strategy S, precision and recall evaluate the 

similarity between the set of results retrieved by S and the set of results provided by 

experts, thus providing an estimation of the usefulness of S. Precision gives a measure 

of the accuracy of a system. From an IR perspective, if a system returns ten 

documents and only two of the documents are relevant, then the system has a 

precision of 0.2. Recall counts how many relevant documents are returned. In Figure 

49 tn is true negatives, fp is false positives, tp is true positives and fn is false 

negatives. 

 

Figure 49: A diagram motivating the measures of precision and recall (Manning 

1999) 

In order to test the robustness of MATT2 with TANSEY, thirty audio files of 

musicians playing sets of tunes on traditional instruments were used. The sets 

consisted of single and double jigs and reels played multiple times in sets (segue). 

Table 31 classifies the test audio used by instrument.  
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Instrument Count 
Solo flute 15 
Solo tin-whistle 6 
Flute duet 1 
Flute & fiddle duet 2 
Session (ensembles of at least 5 musicians) 1 
Solo concertina 3 
Solo fiddle 1 
Solo uilleann pipes 1 

Table 31: Sources of TA/SEY test audio by instrument 

Table 32 classifies the test audio by fundamental note. The test audio contains 

mostly flute and tin-whistle music, but fiddle, uilleann pipes and concertina music 

was also included, where available. Appendix A details the audio used in the 

experiment. 

Fundamental note Count 
Bb 3 
D 26 
F 2 

Table 32: Sources of TA/SEY test audio by fundamental note 

Table 33 gives the durations in seconds of the audio used in the test. The total 

duration of the test audio annotated was 1 hour 27 minutes and 18 seconds. In total, 

the test audio contained 64 separate tunes with 141 turns.  

 

Minimum 70.53 
Maximum 322.08 
Average 174.61 
Total 5238.25 

Table 33: Durations in seconds for TA/SEY test audio 

The end of a set is the time when the last tune in the set concludes and so this 

is also considered as a turn for annotation purposes. As each test audio file begins 

with the start of a set at a time of 0 seconds, the starts of sets are not considered. In 

carrying out this experiment, the aim was to establish if MATT2 could correctly 

identify the names of the tunes and if TANSEY could figure out the timings of turns. 

To establish a ground truth for the experiment, a human domain expert manually 

annotated the turns in the sets of tunes. A true positive TP is a turn annotated by the 
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system which agrees with a human annotated turn within a threshold timeframe tf. 

The threshold used in this experiment was +/- 2 seconds.  

A false positive (FP) is a turn identified by the system which does not 

correspond with a human annotated turn within a threshold tf of +/- 2 seconds. A false 

negative is a turn identified by the human expert, but missed by the algorithm. 

Precision and recall are calculated as per Equation 21 and Equation 22.  

 

8/t�\\ = uvuv + �� 

Equation 21 

Precision is the fraction of the retrieved documents which is relevant 

(Equation 22). 

 

m8/t:W:9� =  uvuv + �v 

Equation 22 

8.4 Results 

MATT2 successfully identified 63 out of the 64 tunes in the experiment, and 

recognised each input audio file as a set and so used the TANSEY set annotation 

algorithm (Table 34). Interestingly, the one tune missed was a result of the TANSEY 

algorithm missing a turn and hence not being able to extract a substring to use to 

identify the subsequent tune.  

 Actual Percentage 
Correctly identified: 63 98.44% 
Incorrectly identified: 1 1.56% 
Total: 64 100.00% 

Table 34: Correctly and incorrectly identified tunes  

 Table 35 shows a sample of the data collected in this experiment for the audio 

file used to generate Figure 47 and Figure 48. The full table is given in Appendix G. 

 The Tune column in Table 35 gives the name of the tune introduced at the 

time given by the Human column. The Human and Machine columns in Table 35 list 

the onset times in seconds for turns in the set.  
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Set Tune Human Machine |Human – Machine| 
15 Jim Coleman's 0.00 0.00   

    20.80 21.90 1.10 

  George White's Favourite 41.50 43.15 1.65 

  The Virginia 83.00 84.24 1.24 

    124.00 125.41 1.41 

    166.30 166.78 0.48 

  Average: 1.18 

Table 35: Human & machine annotated turns 

 From this table it can be seen that for this piece of audio, TANSEY was on 

average within 1.18 seconds of the human annotations. The overall annotation 

accuracy is obtained by calculating precision and recall. Table 36 shows the 

annotation accuracy with a threshold t of 2.0 seconds. It can be seen from precision 

and recall that the algorithm provides a high degree of accuracy at detecting turns. 

Because the algorithm can successfully identify turns, it can also correctly extract a 

suitable prefix from the subsequent tune in the set and so can identify the subsequent 

tune. The precision score given means that 86.36% of the turns returned by the 

TANSEY algorithm were within two seconds of the human annotations. The recall 

score given means that TANSEY recalled 80.28% of the human annotated turns from 

the test audio. F;’s were caused by the algorithm failing to correctly identify the 

transitions between tunes in a set.  

 

TP F� FP precision(%) recall(%) 

114 28 18 86.36% 80.28% 

Table 36: Annotation accuracy 

 When this happens the algorithm cannot extract a representative prefix from 

the next tune and so all subsequent turns are usually misidentified.  In some cases, 

FP’s were within a few seconds of the two second threshold set. Table 37 and Figure 

50 give precision and recall scores for different values of t. 
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t TP F� FP precision(%) recall(%) 

1 92 50 40 69.70% 64.79% 
2 114 28 18 86.36% 80.28% 
3 122 20 10 92.42% 85.92% 
4 125 17 7 94.70% 88.03% 
5 126 16 6 95.45% 88.73% 
6 128 14 4 96.97% 90.14% 
7 128 14 4 96.97% 90.14% 
8 128 14 4 96.97% 90.14% 
9 128 14 4 96.97% 90.14% 

10 129 13 3 97.73% 90.85% 

Table 37: Precision and recall scores for TA/SEY with different values of t 

These values are plotted in Figure 50. 

 

 

Figure 50: Graph of precision and recall scores for TA/SEY with different 

values of t 

8.5 Conclusions 

Irish traditional dance tunes are almost never played singly. Instead, tunes are usually 

repeated several times individually and grouped into sets of multiple tunes played 

segue (without an interval). Any annotation system for traditional music must take 

this fact into consideration and be able to annotate a recording of a set of tunes played 

in this fashion. Due to tempo deviation in the performance of traditional dance tunes 

(section 2.2), it is difficult to determine the timings of turns in sets by using calculated 
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timing information. Also it is possible in a set, for a single tune to be played once or 

many times and so looking for repetitive patterns in the overall recording is also not 

an option. 

This chapter presented a novel algorithm which addresses this problem in the 

domain of Irish traditional dance music. A set can contain an arbitrary number of 

tunes played segue without an interval and tunes in sets are repeated an arbitrary 

number of times. Tunes in a set are always in the same time signature and often in the 

same key and so there is a significant challenge in recognising where one tune ends 

and the next tune starts. TANSEY solves this problem by first extracting a melodic 

subsequence from the start of a recording and then using that subsequence to identify 

the first tune. TANSEY takes advantage of the transcription and expressiveness 

compensation algorithms which address P1-P9 from Chapter 2, presented in Chapter 

6. A similarity profile is then used to find instances of that tune in the transcription of 

the overall recording. The end of last instance of the tune in the similarity profile is 

used to identify the turn, whereby a second and subsequent subsequence can be 

extracted. TANSEY represents a unique solution to P9 from Chapter 2 and 

Contribution 4 of this PhD thesis. 

An experiment was carried out using TANSEY to annotate thirty recordings of 

sets of tunes played on a variety of traditional instruments. Results were presented 

using standard measures of precision and recall from the field of information retrieval. 

The results of this experiment prove that the approach of using similarity profiles is 

effective at segmenting sets, counting repetitions and at annotating individual tunes 

played in a set. To the authors knowledge this is the first time this specific problem 

has been addressed in an MIR system and it is suggested that the proposed approach 

can be adapted to segmenting repeated tunes from other genres played segue. 
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9 Conclusions & Future Work 

As described in Chapter 1, Irish traditional music is an aural tradition and for many 

hundreds of years, repertoire was acquired through a process of listening and learning. 

Due to geographic isolation of rural communities and the creativity of musicians who 

played and composed the music, the canon has grown to include over seven thousand 

compositions. The work of collectors and archivists from the pre-digital age such as 

Petrie, Bunting, Joyce, O'Neill, Small, Breathneach, O’ Riada and Tansey, and those 

from the digital age such as Walshaw, Norbeck, Beimborn, Chambers and Keith has 

ensured that this heritage is available for future generations. It is hoped that the work 

presented in this thesis will make a contribution towards this goal. This chapter 

summarises the main contributions made and presents a number of important ways in 

which this work may be extended. 

9.1 Conclusions 

Chapter 2 distilled ten problems which make the task of Content Based Music 

Information Retrieval (CBMIR) challenging when applied to the domain of traditional 

Irish dance music. This work proposes a solution for each of these problems.  

 P1: Support for traditional instruments: The QBH MIR (Query-by-

Humming Music Information Retrieval) systems described in Chapter 5 require a 

vocal articulation at the onset of new notes. Consequently, these systems typically do 

not give positive results when queries are presented in the form of melodies played on 

traditional instruments such as the concert flute or tin-whistle. These instruments have 

slow onsets which are difficult to detect using the onset detection techniques 

discussed in Chapter 3. This work presents a transcription system which makes use of 

Onset Detection using Comb Filters (ODCF) (Gainza et al. 2005). This algorithm was 

specifically developed and tested on recordings of woodwind traditional instruments. 

Similarly, the frequency domain harmonic energy-based pitch detection algorithm 

employed works well at extracting pitch features from harmonic traditional 

instruments. Results presented in sections 7.2 and 8.4 establish the effectiveness of the 

transcription system developed, in transcribing audio from a variety of traditional 

instruments. 
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 P2: Commonly used keys and modes: Table 5, Table 6 and Table 7 from 

Chapter 2 present the fundamental notes for traditional instruments. A pitch spelling 

approach was presented in Chapter 6 which follows from Breathnach's (1985) 

observations that transcriptions should be made relative to the fundamental note of the 

instrument as if the fundamental note was D. This approach ignores the pitch of the 

instrument and quantises pitches to the nearest playable note rather than the nearest 

semitone. Using this pitch spelling approach, transcriptions can be compared against 

transcriptions from corpora in ABC format. This approach also minimises pitch 

spelling transcription errors that might occur if pitches were quantised to the nearest 

semitone and avoids the double weighting of substitutions, insertions and deletions 

that occurs when edit distances are calculated on pitch intervals. 

P3: Reversing: Reversing as an expressiveness technique was described in 

Chapter 2. Reversing means that segments of melodies will be transposed by an 

octave, with a corresponding increase in distance between queries and corpus strings. 

MATT2 normalises melodies by transposing all melodies to be in the same register 

thus compensating for this. 

 P4: C, C# similarity: Transcriptions of traditional tunes in ABC format 

represent C and C# identically as the key of a tune is encoded into the header of the 

tune. Also, due to the physical characteristics of the instruments used to play 

traditional music and fingerings used to produce C and C#, the pitches of these notes 

are difficult to distinguish, even for human listeners and particularly when these notes 

are played at speed. The pitch spelling algorithm proposed in Chapter 6 therefore 

spells C and C# identically, so that the pitch can be matched against a transcription in 

ABC format. 

 P5: Phrasing: When taking a breath, a musician is required to leave out one 

or more notes. As described in sections 6.5 and 6.8, MATT2 detects when a musician 

takes a breath and allows a transcribed breath to correspondingly match with any 

character from a corpus string.  

 P6: Transposition in tin-whistles: The literature suggests that the tin-whistle 

is the most popular of the instruments used to play traditional music, being played by 

most musicians as a first or second instrument. The tin-whistle is a transposing 

instrument as pitches are played one octave higher than written. The pitch spelling 

algorithm proposed in section 6.6 first automatically detects if the query was played 
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on a tin-whistle and if so, the frequencies used by the pitch spelling algorithm are 

increased by twelve semitones, so that tunes are transcribed correctly. 

 P7: Ornamentation: The playing of ornamentation is a defining characteristic 

of traditional music. Ornamentation is feature which can distinguish both individual 

and regional styles of playing. Ornamentation can be played or not played and 

differences exist in the fingerings used to play ornamentation on different instruments 

and by different musicians. It is both difficult to transcribe accurately and will have an 

impact on melodic distances that do not compensate for the playing of ornamentation. 

Section 6.4.1 proposes a filtering method called Ornamentation Filtering which 

extracts the core melody from a performance played with ornamentation by merging 

ornamentation notes with subsequent notes. Section 6.7 describes how corpus strings 

in ABC notation are normalised so that the core melody is extracted. These techniques 

combined mean that appropriate distances can be calculated between melodies that 

otherwise would be considered to be different. 

 P8: The long note: Related to P7 is the problem of how to compensate for the 

playing of "the long note" as described by Small (Breathnach 1996). Ornamentation 

Filtering splits long notes into multiple quaver length notes in transcriptions (section 

6.4.1) and expands notes from the corpus whose durations are greater than a quaver to 

be multiple quaver length notes (section 6.7).  

 P9: Tempo deviation: Section 2.2 gives Breathnach's (1963) recommended 

tempo for that playing of traditional tunes, but as explained, tempos vary widely from 

musician to musician and from performance to performance. Additionally tempo 

deviation is common in traditional music even within the performance of the same 

piece of music, particularly in ensemble playing where, if one musician increases the 

tempo the other musicians will usually follow. Consequently, the Ornamentation 

Filtering algorithm presented in section 6.4.1 makes no a priori assumption about the 

tempo used to play the query being processed and adapts to the tempo being played. It 

also operates on a sliding window across the audio being analysed and so takes 

account of tempo deviations that occur within the performance. Results presented in 

sections 7, 7.2, 8.3 and 8.4 with test audio recorded by many real musicians playing 

without a metronome establish that the work presented in this thesis works equally 

well with music played at various tempos. 

 P10: The playing of melodies in sets, segue: The playing of tunes in sets as 

is typical in traditional music presents particular segmentation problems. As tunes in 
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sets are always in the same time signature, often in the same key and can be repeated 

several times or not at all, there is a significant challenge in counting the repetitions of 

each tune and determining where each new tune begins, so that the subsequent tune 

can be annotated. Chapter 8 proposed a novel algorithm called TANSEY (Turn 

ANnotation from SEts using SimilaritY profiles) which makes use of similarity 

profiles to address this challenge. Precision and recall scores for MATT2 with the 

TANSEY algorithm indicate a high degree of accuracy in segmenting sets of 

traditional tunes.  

 The work presented in Chapter 6 addresses P1-P9, the main challenges to MIR 

in traditional dance music. This work was validated in experiments on real world field 

recordings and compared with two alternatives suggested by the MIR literature in 

Chapter 7. From the experimental results reported in Chapter 7 it can be concluded 

that making specific accommodations for expressive elements present in recordings 

made by traditional musician's results in significant improvement in annotation 

accuracy over systems that do not compensate for expressiveness. Chapter 8 address 

P10 from Chapter 2. From the experimental results reported in sections 8.3 and 8.4, it 

can be concluded that the TANSEY algorithm proposed in this chapter gives good 

accuracy in annotating sets of traditional music.  

These solutions to these problems form the basis for four specific contributions to the 

body of knowledge: 

 

Contribution 1: The development of a content based music information retrieval 

system (MATT2) which supports the input of queries played on traditional 

instruments. This is addressed in solutions to P1, P2, P4 and P6 discussed in Chapter 

2 and is presented in Chapter 6. 

 

 Contribution 2: The development of a new automatic transcription approach for 

traditional music that supports transposition invariance for the keys and modes used to 

play traditional music, while minimising pitch spelling errors and avoiding the double 

weighting of substitutions, insertions and deletions that occurs when edit distances are 

calculated on pitch intervals.. This is addressed in the solution to P2 presented in 

Chapter 6. 
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Contribution 3: The development of a framework of algorithms to accommodate 

expressiveness in audio queries to a content based music information retrieval system 

is addressed in solutions to P5, P7 and P8 discussed in Chapter 2 and presented in 

Chapter 6. 

 

Contribution 4: The development of a novel algorithm based on similarity profiles to 

annotate sets of traditional Irish dance tunes. This is addressed in the solution to P10 

presented in Chapter 8. 

9.2 Future work 

Recent work in MIR has focused on mining the web for information on artists and 

performances (Widmer et al. 2005; Schedl 2008). The most obvious method of 

disseminating the work presented in this thesis to the wider traditional music 

community would be to develop a version of MATT2 which could be hosted in a web 

browser. This is feasible as MATT2 is entirely written in Java and can be easily 

divided into a client component which would run as a Java applet and a server 

component. The client component would be responsible for recording and transcribing 

audio, while the server component could perform matching. This work should also 

extend the corpus of tunes to include those transcribed by the traditional music 

community and hosted by websites such as thesession.org. Interestingly, 

thesession.org often contains detailed discographies and discussions on each of the 

tunes transcribed, which could be made available through MATT2 (see Appendix E). 

 It is common in traditional music sessions where groups of musicians meet 

informally to play together for tunes to be played that none of the musicians know the 

names off. Consequently, musicians wishing to add the tune to their repertoire cannot 

easily do so. The algorithms developed could be made available on a mobile device 

such as a smartphone, so that CBMIR can be performed insitu. It would also be 

interesting to study the impact of the usage of such technology on the transmission of 

music in an aural idiom. It is hoped that disseminating this work over the web and on 

mobile devices will make a significant contribution decreasing the number of gan 

ainm's being played. 

 In the cases where MATT2 did not identify the correct tune, it can be 

concluded that the transcription subsystem was not able to accurately transcribe the 
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tune. This is also the cause of set segmentation errors reported in section 8.4. While it 

is often possible to identify a single tune from an approximate transcription, the 

TANSEY algorithm depends on there being measurable troughs in the similarity 

profiles, which do not occur if the transcriptions have too many errors. It is therefore 

proposed that improving transcription accuracy will lead to more accurate matching 

and this will be the focus of future work. In particular, the usage of a less sensitive 

onset detection function, which would be more appropriate for ensemble playing, is 

suggested. Currently, setting the correct fundamental note for transcription is done 

manually, but it should be straightforward to derive this automatically from a 

chromagram of the audio being analysed. 

 Interesting work is reported by (Repp 1992; R.B. Dannenberg et al. 1997; 

León & Iñesta 2004; Widmer & Goebl 2004; Widmer et al. 2005), who use various 

techniques to try and model the cognition of musical style. Repp’s (1992) statistical 

analysis of performances of the same piece of piano music by twenty four pianists 

showed notable differences in both note level features and also phrasing between the 

performances. To acquire a corpus for testing, the performances were manually 

transcribed and thus, due to the difficulty of this task, Repp’s analyses were limited to 

one particular piece. Later work mainly uses machine learning to induce structure 

level expressive patterns from music performances, often from augmented music 

instruments. Currently this work extracts many of the features that characterise 

individual and regional style such as ornamentation and phrasing, and with further 

development it will be possible to classify audio being annotated. One possible 

approach would be to use graph theory to develop models  to represent the stylistic 

similarities between musicians and see if this maps onto real world relationships that 

might have led to this similarity. 

One interesting feature not yet exploited is the metadata typically present in an 

ABC transcription. Effectively the time signature and key of an input audio file can be 

determined by melodic similarity with a known tune. This can be exploited in several 

interesting ways. Firstly, if the first tune in a set were to be identified as a reel, the 

search for subsequent tunes can be limited to reels, thus speeding up annotation. 

Conversely, if a number of reels were to be identified in a set and a single tune in a 

different time signature was to be identified this could be recognised as a potential 

error. Finally, the approaches and systems presented in this thesis have applicability in 

other musical genres which remains to be explored. 
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"They have been worn into shape by many ears...and have been contemplated often. 

But every time is new because the time is new, and there is no time like now... 

 

Then he passes round the rosin and the other fiddle-players take a ritual rub of it. 

They start to play. They hit the time just right and everybody else joins in."  

- (Carson 1997) 
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Appendix A – Test Audio Listing 

Test audio used in the experiments described in Chapters 7 and Chapter 8 can be 
downloaded from: 
 
http://www.comp.dit.ie/bduggan/music/ 
 

1 – 50 are the whole tunes (WT) test audio 

51 – 100 are the excerpts (E) test audio 

101 – 130 are the sets (S) test audio 

 

# Title Source 

1 Ambrose Moloney's Solo Flute 

2 Boy in the Boat, The Solo Flute 

3 Christmas Eve Solo Flute 

4 Cooley's Solo Flute 

5 Dan Breen's Solo Flute 

6 Devanny's Goat Solo Tin-whistle 

7 Fisherman's Island Solo Fiddle 

8 Jackson's Solo Flute 

9 Last Night's Fun Solo Flute 

10 Frost is all over, The Session 

11 McFadden's Favourite Session 

12 Micho Russell's Solo Flute 

13 Rolling in the Ryegrass Solo Pipes 

14 Sean Reid's Solo Flute 

15 Ship in Full Sail, The Solo Flute 

16 Sonny Martin's 
Flute & Fiddle 
Duet 

17 Speed the Plow Flute & Guitar 

18 Sweeney's Dream Session 

19 Five Mile Chase, The Solo Fiddle 

20 Ashplant, The Session 

21 Banshee, The 
Flute & Fiddle 
Duet 

22 Boys of the Town, The Solo Flute 

23 Bucks of Oranmore, The Solo Flute 

24 Burnt Old Man, The Solo Fiddle 

25 College Groves, The Solo Fiddle 

26 Corner House, The Solo Concertina 

27 Dublin Lasses, The Session 

28 Dublin Reel, The Session 
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29 Earl's Chair, The Solo Pipes 

30 Golden Keyboard, The Solo Flute 

31 Green Mountain, The Solo Flute 

32 Humours of Lissadell, The 
Flute & Fiddle 
Duet 

33 Kilmovee Jig, The Solo Flute 

34 Kilmovee Jig, The Solo Tin-whistle 

35 Banks of the Liffey, The Flute Duet 

36 Morning Star, The Solo Flute 

37 Otter's Holt, The Solo Flute 

38 Ravelled Hank of Yarn, The Solo Tin-whistle 

39 Reel of Rio, The Flute Duet 

40 Roscommon Reel, The Session 

41 Salamanca Reel, The Solo Fiddle 

42 Salamanca Reel, The Solo Tin-whistle 

43 Shaskeen Reel, The Solo Flute 

44 Skylark, The Solo Flute 

45 Swallow's Tail, The Solo Flute 

46 Tarbolton, The Solo Accordion 

47 Touch Me If You Dare 
Flute & Fiddle 
Duet 

48 Traver's Jig Solo Concertina 

49 Trim the Velvet Solo Flute 

50 Young Tom Ennis Flute Duet 

51 Ambrose Moloney's Solo Flute 

52 Butlers of Glen Avenue, The Solo Tin-whistle 

53 Christy Barry's Solo Tin-whistle 

54 Colonel Frazer Flute & Guitar 

55 Cooley's Solo Flute 

56 Dan Breen's Solo Flute 

57 Dinky Dorian's Session 

58 Dowd's #9 Solo Flute 

59 Drowsy Maggie Solo Flute 

60 Gorman's Solo Flute 

61 Green Fields of Rossbeigh, The Solo Flute 

62 Happy to Meet and Sorry to Part Solo Concertina 

63 Happy to Meet and Sorry to Part Solo Flute 

64 Jackson's Bottle of Brandy Solo Concertina 

65 Jackson's Solo Flute 

66 Jackson's Solo Flute 

67 Mrs McLeod's Solo Tin-whistle 

68 O'Connell's Trip to Parliament Solo Flute 

69 Paddy in London Solo Concertina 
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70 Rakish Paddy Solo Flute 

71 Rolling in the Ryegrass Solo Flute 

72 Rolling in the Ryegrass Solo Pipes 

73 Scartaglen Reel, The Session 

74 Strop the Razor Solo Flute 

75 Five Mile Chase, The Solo Flute 

76 Banks of the Ilen Session 

77 Belles of Tipperary, The Flute and Pipes 

78 Bucks of Oranmore, The Solo Flute 

79 Corner House, The Solo Concertina 

80 Earl's Chair, The Solo Pipes 

81 Galway Rambler, The Solo Flute 

82 Golden Keyboard, The Solo Flute 

83 Gooseberry Bush, The Solo Flute 

84 Green Groves of Erin, The Flute & Guitar 

85 Green Groves of Erin, The Solo Flute 

86 Green Mountain, The Solo Flute 

87 Green Mountain, The Solo Flute 

88 Humours of Ballyloughlin, The Solo Tin-whistle 

89 Humours of Lissadell, The 
Flute & Fiddle 
Duet 

90 Humours of Loughrea, The Solo Flute 

91 Jolly Clamdiggers, The Flute & Guitar 

92 Killavel Jig, The Solo Flute 

93 Lilting Fisherman, The Solo Tin-whistle 

94 Skylark, The Solo Flute 

95 Sporting Pitchfork, The Solo Tin-whistle 

96 Tarbolton, The Solo Accordion 

97 Virginia, The Solo Flute 

98 Touch Me If You Dare Solo Flute 

99 Trim the Velvet Solo Flute 

100 Upstairs in a Tent Solo Flute 

101 Concert reel, The; Salute to Baltimore, The 
Flute & Fiddle 
Duet 

102 Touch Me if you Dare 
Flute & Fiddle 
Duet 

103 McKenna's 1 & 2 Flute Duet 

104 Billy Brocka's; Green Mountain, The Session 

105 Happy to Meet sorry to Part; Jackson's Bottle of Brandy Solo Concertina 

106 Cornerhouse The, Boys of Portaferry, The Solo Concertina 

107 Travers Jig, Paddy in London Solo Concertina 

108 Dublin Lassies, The 5 Mile Chase Solo Fiddle 

109 Connie O ' Connells 1, 2, 3 Solo Flute 

110 Cooley's set Solo Flute 
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111 Down the broom, the Gatehouse maid Solo Flute 

112 Galway Rambler London Lassies Solo Flute 

113 Geese in the bog, Connaughtman's rambles Solo Flute 

114 Green mountain, John Stenson's #2 Solo Flute 

115 Humours of Ballyloughlan Solo Flute 

116 Jim Coleman's, George Whites Favourite, the Virginia Solo Flute 

117 Strop the Razor, The Kilaval, Boys of the Town Solo Flute 

118 The Copper Plates (Old & new) Solo Flute 

119 The Cup of Tea, Upstairs in a tent Solo Flute 

120 
The Gooseberry Bush, The Limestone Rock, the Humours of 
Loughrea 

Solo Flute 

121 The Humours of Ballyconnell Solo Flute 

122 The Skylark, Roaring Mary Solo Flute 

123 Tonres & the Kilaval Solo Flute 

124 The Wandering Minstrel Solo Pipes 

125 Christy Barry's, The Butlers of Glenavenue Solo Tin-whistle 

126 Devaney's Goat, Tommy Peoples Solo Tin-whistle 

127 
Micho Russell's, The Maids of Moncisco, the Green Groves of 
Erin 

Solo Tin-whistle 

128 Scully Casey's, The Kilmovee Jig Solo Tin-whistle 

129 The Lilies in the Field, Tommy Peoples Solo Tin-whistle 

130 
The Lilting Banshee, The Mouse in the Cupboard, The 
Tenpennybit 

Solo Tin-whistle 
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Appendix B – ABC /otation 

Appendix B presents a summary of the main features of ABC notation. It is adapted 

from Mansfield's (2007) tutorial available from: 

 

http://www.lesession.co.uk/abc/abc_notation.htm 

 

ABC notation is an ASCII musical notation format, devised by Chris Walshaw in 

1992. ABC is widely used for the notating and distribution of traditional Irish music 

and is the native music notation language supported by website thesession.org 

amongst others. A tune notated in ABC can be played directly from the notation, or 

alternatively converted into MIDI, printed as sheet music or played by the computer. 

 

/otes 

Middle C is notated as: 

C 

The D immediately above middle C is notated as: 

D 

The E above which is notated as: 

E 

And so on up the scale. Starting at middle C, the notes in that octave are shown as 

CDEFGAB 

The next note up is a C again – but to show it is in the higher octave than C is shown 

in lowercase as: 

c 

So a full one-octave C major scale from middle C is: 

CDEFGABc 

Going from middle C to the B one octave and seven notes above that is therefore: 

CDEFGABcdefgab 

The next octave up is shown by an apostrophe immediately after the note name:  

c' 

The scale now runs two octaves from middle C: 

CDEFGABcdefgabc’ 

Using the apostrophe to denote the upper octave the scale can be extended further: 
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CDEFGABcdefgabc'd'e'f'g'a'b' 

The octave below middle C is shown by a comma immediately following the note 

name: 

B, 

This gives a range of 4 octaves, but the range can be extended further by adding more 

commas or apostrophes. 

 

/otes of different lengths (the L: field) 

ABC allows the setting of a default note length for each tune. This is set as a fraction 

in the tune header in the L: field. The following table shows the most common 

default note lengths for traditional music, with the equivalent terms from standard 

music notation: 

  

Default note length ‘English’ terminology ‘American’ terminology 
1/2 Minim Half note 
1/4 Crotchet Quarter note 
1/8 Quaver Eighth note 
1/16 Semi-quaver Sixteenth note 

 

For example, a tune where the default note length is a quaver, or eighth note, would 

have: 

L:1/8 

in its header. 

The C major scale: 

CDEFGABcdefgabc' 

If this had a default note length of L: 1/8 field is: 

 

 

 

If the default length was 1/4, L:1/4, the scale is now a scale of crotchets: 
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If the current note is half the length of the default note length, it is shown with a 

forward slash immediately after it: 

C/ 

This can also be written as: 

C/2 

Other fractions (/3, /5, /7, /16 etc.) are also legal. 

If the current note is twice the default note length, it is shown as:  

C2 

If the current note is four times the default note length, it is shown as:  

C4 

Other multiples (3, 5, 7, 8 etc.) are also legal. 

The length of any particular note is always calculated according to the default note 

length of the tune. 

The hornpipe rhythm is useful to illustrate an additional method to represent notes of 

differing length. 

A hornpipe could be notated with a default note length of 1/16: 

L:1/16 

D3EF3G 

An alternative is to set the default note length to 1/8 and use the > symbol: 

L:1/8 

D>EF>G 

The greater than (and less than) sign can be used wherever groups of dotted notes are 

found. 

The < symbol has the same effect in the other direction, that is shortening the first 

note and lengthening the second, as found in strathspeys. 

Standard note lengths for different tune types are given: 

Jig 1/8 
Reel 1/8 
Schottische 1/8 
Waltz 1/4 
Polka 1/8 
Bourree 1/8 

An L: field can be placed in the middle of a tune to denote a change of default note 

length. 

 



Appendix B 

 153

Rests 

Rests are indicated by the (lower case) letter z. The length of rest is set in a similar 

way to the length of note: 

z4 

 

Key (the K: field) 

The key is specified by the K: field: 

K:G 

The G major scale can be written as:  

K:G 

GABcdefg 

The G minor scale as  

K:Gm 

GABcdefg 

In the key field sharps are noted by character # and flats by the letter b: 

 

B flat K:Bb 

C sharp K:C# 

 

Modal keys (the Lydian, Ionian, Mixolydian, Dorian, Aeolian, Phrygian and Locrian 

modes) can be specified by either name in full or by the first 3 letters of the mode. 

 

Sharps, flats and naturals 

To sharpen a note it should be preceded with the circumflex or caret ^ 

^c 

To flatten a note it should be preceded with an underscore _ 

_B 

To naturalise a note it should be preceded with an equals sign = 

=c 

So a scale of G major could be notated as: 

GABcde^fg 

The scale of G minor as: 

GA_Bcd_efg 
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However as standard Western musical notation has a key, the player automatically 

knows to (for example) play all Fs as F# in the key of G  

 

Time signatures (the M: field) and the rhythm R: field 

Time signatures, or meters, are shown as fractions in the M: field: 

 

Jig M:6/8 

Reel M:4/4 

Waltz M:3/4 

 

Common time is shown as C, and cut time as C| (the letter C followed by the pipe 

symbol). 

ABC also includes a rhythm field, R: which is free text and used for cataloguing and 

sorting collections of ABC tunes. 

 

Bar lines and spaces 

Bar lines are denoted by the pipe symbol | as:  

ABAF DFAF|G2BG dGBG|~A3F DFAF|GBAF EFDF| 

A double bar is shown by || 

 

Repeats 

The start of a repeated section is shown by: 

|: 

The end of a repeated section by: 

:| 

Where the end of one repeated section, and the beginning of the next, the symbols 

:: 

Are used. 

Numbered and alternate repeats are indicated by [1 and [2 (etc.). Where the start of a 

section coincides with a bar line the [ symbol may be omitted: 

DE FF |[1 GA Bc :|[2 GA BG || 

Can also be written as:  

DE FF |1 GA Bc :|2 GA BG || 

 



Appendix B 

 155

Ornaments and grace notes 

The general symbol for an ornament is the tilde ~. 

The symbol is placed before the note to be ornamented: 

~G2 

Note that the tilde is a general mark to indicate the presence of an ornament, and does 

not specify a particular ornamentation - it is usually interpreted as a roll or a cran.  

 

Triplets, quadruplets, and the various other tuplets 

The basic notation for duplets, triplets and quadruplets is an opening round bracket, 

the number, and the notes within the tuplet: 

 

Duplet (2GA 

Triplet (3GAB 

Quadruplet (4GABA 

And so on, up to 

(9GABcdcBAG 

The values of the particular tuplets are: 

 

(2 2 notes in the time of 3 
(3 3 notes in the time of 2 
(4 4 notes in the time of 3 
(5 5 notes in the time of n 
(6 6 notes in the time of 2 
(7 7 notes in the time of n 
(8 8 notes in the time of 3 
(9 9 notes in the time of n 
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Appendix C – Example Tunes in ABC Format (/orbeck 

2007) 

X:16 
T:Tenpenny Bit, The 
T:Three Little Drummers, The 
R:jig 
Z:id:hn-jig-16 
M:6/8 
K:Ador 
eAA eAA|BAB GBd|eAA eAA|def gfg|eAA eAA|BAB GBd|~e3 
gdB|BAG A3:| 
|:eaa aga|bab age|eaa aga|bgf ~g3|eaa aga|bab ged|~e3 
gdB|BAG A3:| 
 
X:19 
T:Old Maid, The 
T:Hag at the Spinning Wheel, The 
T:Maid at the Spinning Wheel, The 
T:Old Maid at the Spinning Wheel, The 
R:jig 
D:Paddy Moloney & Sean Potts: Tin Whistles. 
Z:id:hn-jig-19 
M:6/8 
K:G 
~G3 B2G|BcA B2D|~G3 cAG|F2G AFD|~G3 B2G|BcA B2g|fed cAF|1 
GAG G2D:|2 GAG G2c|| 
|:BAG AFD|~D3 AFD|~D3 AFD|EFG ABc|BAG AFD|~D3 AFD|ded 
cAF|1 GAG G2c:|2 GAG G2D|| 
|:GBd gba|gdB ecA|dBG cAG|EFG AFD|GBd gba|gdB ecA|fed 
cAF|1 GAG G2D:|2 GAG G2c|| 
|:BAG Agd|Bgd Agd|Bgd cBA|EFG ABc|BAG AFD|~D3 AFD|ded 
cAF|1 GAG G2c:|2 GAG G2D|| 
 
 
X:30 
T:Morrison's Jig 
T:Stick Across the Hob, The 
R:jig 
Z:id:hn-jig-30 
M:6/8 
K:Edor 
~E3 ~B3|~E3 AFD|~E3 BAB|dcB AFD|~E3 BAB|~E3 AFD|~G3 
FGA|dAG FED:| 
Bee fee|aee fed|Bee fee|a2g fed|Bee fee|aee fed|gfe 
d2A|BAG FED| 
Bee fee|aee fed|Bee fee|faf def|~g3 gfe|def g2d|edc 
d2A|BAG FED|| 
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"Variation" 
EBE BEB|EBE AFD|EDE BAB|dcB AFD|EBE BEB|EBE AFD|~G3 
FGA|dAG FED:| 
Bee fee|aee fed|Bee fee|a2g fed|Bee fee|aee fed|gfe 
d2A|BAG FED| 
Bee fee|aee fed|Bee fee|faf def|~g3 gfe|def g2d|edc 
d2A|BAG FED|| 
 
 
X:2 
T:Trim the Velvet 
R:reel 
S:Mary Bergin 
H:Similar to "Kiss the Maid behind the Barrel", #549 
D:Mary Bergin: Feadoga Stain 2. 
Z:id:hn-reel-2 
M:C| 
K:G 
~G3B AGFD|GBdB BAFA|~G3B AGFA|defd cAFA| 
~G3B ~A3c|BcdB BAFA|~G3B AGFA|defd cAFA|| 
dgeg dg~g2|dedB cAFA|dgeg dg~g2|defd cAFA| 
d3e dBGB|dGBd cAFA|dgeg dg~g2|defd cAFA|| 
~g3a bgaf|g2ab c'baf|g2af g2af|defd cAFA| 
~g3a bgaf|g2ab c'ba2|bg~g2 af~f2|defd cAFA|| 
BGdG BG~G2|(3BAG dB cAFA|BGdG BG~G2|defd cAFA| 
BGdG BG~G2 |DGBd cAFA|~B3G c2ce|defd cAFA|| 
 
X:6 
T:Mullingar Lee, The 
T:Nine Pint Coggie, The 
R:reel 
S:Kevin Burke 
D:Milestone at the Garden 
D:Hugh Gillespie 1937 
Z:id:hn-reel-6 
M:C| 
K:Gmix 
BG~G2 GFDE|F2AF CFAc|BG~G2 DEFE|1 FAdc BGGA:|2 FAdc 
BG~G2|| 
|:~g3d Bcde|~f3c ABcd|1 ~g3d BddB|dgga bga^f:|2 ed~d2 
DEFE|FAdc BGGA|| 
 
X:7 
T:For the Sakes of Old Decency 
T:Farewell to Old Decency 
R:reel 
D:Chieftains Live. 
D:Michael Tubridy: The Eagle's Whistle. 
Z:id:hn-reel-7 
M:C| 
K:G 
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d2BG AGEG|DGBG A2AB|d2BG AGEG|1 DGAG EGAB:|2 DGAG EG~G2|| 
|:~G3B d2Bd|eaag eg~g2|~G3B d2Bd|1 dega bged:|2 dega 
bage|| 
 
X:8 
T:Over the Moor to Maggie 
R:reel 
D:Oisin: Over the Moor to Maggie. 
D:Music at Matt Molloy's. 
Z:id:hn-reel-8 
M:C| 
K:G 
~G3A BGBd|efge dBAG|EAAG ABAG|EAAG A2DE| 
~G3A BGBd|efge dBAG|EG~G2 BGAG|1 EGGF G2DE:|2 EGGF G2ga|| 
|:~b3g ~a3f|gage d2Bd|eaag abag|eaag a2ga| 
bg~g2 af~f2|gage d2Bd|eg~g2 bgag|1 eggf g2ga:|2 eggf 
g2Bd|| 
|:~e3c d2dB|c2cA B2AG|EAAG ABAG|EAAG ABcd| 
~e3c dedB|cA~A2 B2AG|EG~G2 BGAG|1 EGGF G2Bd:|2 EGGF 
G2DE|| 
 
 
X:11 
T:Star of Munster, The 
R:reel 
H:Also in Edor, #626. Also as jig#282 
D:Chieftains Live. 
Z:id:hn-reel-11 
M:C| 
K:Ador 
c2Ac BAGB|AGEF GEDG|EAAG ABcd|e2af gfed| 
c2Ac BAGB|AGEF GEDG|EAAG ABcd|ecdB cA~A2:| 
|:eaag ageg|a2bg agef|~g3a gdBd|gaba gedg| 
eaag ageg|a2bg agef|g2~g2 a2ga|1 bgaf gedg:|2 ~b3a gedB|| 
"Variations:" 
|:c2cA B2BG|AGEA GEDG|EAAB cBcd|e2ge dBGB| 
(3cde cA (3Bcd BG|EAAF GEDG|EAAG ABcd|(3efg dB ~A3z:| 
|:eaab ae~e2|aebe aeef|g2fa gede|geae gedB| 
Aaab ae~e2|aebe agef|~g3e a2ga|1 ~b3a gedg:|2 bgaf gedB||
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Appendix D – Example Tunes after /ormalisation 

Tenpenny Bit, The 

EAAEAABABGBDEAAEAADEFGFGEAAEAABABGBDEEEGDBBAGAAAEAAEAABAB

GBDEAAEAADEFGFGEAAEAABABGBDEEEGDBBAGAAAEAAAGABABAGEEAAAGA

BGFGGGEAAAGABABGEDEEEGDBBAGAAAEAAAGABABAGEEAAAGABGFGGGEAA

AGABABGEDEEEGDBBAGAAA 

 

Old Maid, The 

GGGBBGBCABBDGGGCAGFFGAFDGGGBBGBCABBGFEDCAFGAGGGDGGGBBGBCA

BBDGGGCAGFFGAFDGGGBBGBCABBGFEDCAFGAGGGCBAGAFDDDDAFDDDDAFD

EFGABCBAGAFDDDDAFDDEDCAFGAGGGCBAGAFDDDDAFDDDDAFDEFGABCBAG

AFDDDDAFDDEDCAFGAGGGDGBDGBAGDBECADBGCAGEFGAFDGBDGBAGDBECA

FEDCAFGAGGGDGBDGBAGDBECADBGCAGEFGAFDGBDGBAGDBECAFEDCAFGAG

GGCBAGAGDBGDAGDBGDCBAEFGABCBAGAFDDDDAFDDEDCAFGAGGGCBAGAGD

BGDAGDBGDCBAEFGABCBAGAFDDDDAFDDEDCAFGAGGGD 

 

Morrison's Jig 

EEEBBBEEEAFDEEEBABDCBAFDEEEBABEEEAFDGGGFGADAGFEDEEEBBBEEE

AFDEEEBABDCBAFDEEEBABEEEAFDGGGFGADAGFEDBEEFEEAEEFEDBEEFEE

AAGFEDBEEFEEAEEFEDGFEDDABAGFEDBEEFEEAEEFEDBEEFEEFAFDEFGGG

GFEDEFGGDEDCDDABAGFED 

 

Morrison's Jig (Variation) 

EBEBEBEBEAFDEDEBABDCBAFDEBEBEBEBEAFDGGGFGADAGFEDEBEBEBEBE

AFDEDEBABDCBAFDEBEBEBEBEAFDGGGFGADAGFEDBEEFEEAEEFEDBEEFEE

AAGFEDBEEFEEAEEFEDGFEDDABAGFEDBEEFEEAEEFEDBEEFEEFAFDEFGGG

GFEDEFGGDEDCDDABAGFED  

 

Trim the Velvet 

GGGBAGFDGBDBBAFAGGGBAGFADEFDCAFAGGGBAAACBCDBBAFAGGGBAGFAD

EFDCAFADGEGDGGGDEDBCAFADGEGDGGGDEFDCAFADDDEDBGBDGBDCAFADG

EGDGGGDEFDCAFAGGGABGAFGGABCBAFGGAFGGAFDEFDCAFAGGGABGAFGGA
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BCBAABGGGAFFFDEFDCAFABGDGBGGGBAGDBCAFABGDGBGGGDEFDCAFABGD

GBGGGDGBDCAFABBBGCCCEDEFDCAFA 

 

Mullingar Lee, The 

BGGGGFDEFFAFCFACBGGGDEFEFADCBGGABGGGGFDEFFAFCFACBGGGDEFEF

ADCBGGGGGGDBCDEFFFCABCDGGGDBDDBDGGABGAFGGGDBCDEFFFCABCDED

DDDEFEFADCBGGA 

 

For the Sakes of Old Decency 

DDBGAGEGDGBGAAABDDBGAGEGDGAGEGABDDBGAGEGDGBGAAABDDBGAGEGD

GAGEGGGGGGBDDBDEAAGEGGGGGGBDDBDDEGABGEDGGGBDDBDEAAGEGGGGG

GBDDBDDEGABAGE 

 

Over the Moor to Maggie 

GGGABGBDEFGEDBAGEAAGABAGEAAGAADEGGGABGBDEFGEDBAGEGGGBGAGE

GGFGGDEGGGABGBDEFGEDBAGEAAGABAGEAAGAADEGGGABGBDEFGEDBAGEG

GGBGAGEGGFGGGABBBGAAAFGAGEDDBDEAAGABAGEAAGAAGABGGGAFFFGAG

EDDBDEGGGBGAGEGGFGGGABBBGAAAFGAGEDDBDEAAGABAGEAAGAAGABGGG

AFFFGAGEDDBDEGGGBGAGEGGFGGBDEEECDDDBCCCABBAGEAAGABAGEAAGA

BCDEEECDEDBCAAABBAGEGGGBGAGEGGFGGBDEEECDDDBCCCABBAGEAAGAB

AGEAAGABCDEEECDEDBCAAABBAGEGGGBGAGEGGFGGDE 

 

Star of Munster, The 

CBABAGAGEGEDEAAABDEAFGEDCBABAGAGEGEDEAAABDEDBAAACBABAGAGE

GEDEAAABDEAFGEDCBABAGAGEGEDEAAABDEDBAAAEAAAGEAAAAGEGGGGED

GAGGEDEAAAGEAAAAGEGGGAGABBAGEDEAAAGEAAAAGEGGGGEDGAGGEDEAA

AGEAAAAGEGGGAGABBAGED 

 

Star of Munster, The (Variation) 

CCCABBBGAGEAGEDGEAABCBCDEEGEDBGBCDECABCDBGEAAFGEDGEAAGABC

DEFGDBAAAZCCCABBBGAGEAGEDGEAABCBCDEEGEDBGBCDECABCDBGEAAFG

EDGEAAGABCDEFGDBAAAZEAABAEEEAEBEAEEFGGFAGEDEGEAEGEDBAAABA

EEEAEBEAGEFGGGEAAGABBBAGEDGEAABAEEEAEBEAEEFGGFAGEDEGEAEGE

DBAAABAEEEAEBEAGEFGGGEAAGABGAFGEDB
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Appendix E – Extract from a discussion on the tune "Down 

the Broom" from thesession.org (Accessed 22 August, 2008) 

Reel: "Down The Broom" 
 
Here's a set with this reel that was played by a band known as THE IRISH 
TRADITION They played CONGRESS REEL / DOWN THE BROOM / STAR OF 
MUNSTER. It's on their CD "The Corner House" (Green Linnet recording #1016; 
1978). It's also one of the tracks on Green Linnet's double-CD "25 Years Of Celtic 
Music" (Green Linnet, 2000). 
 
# Posted on January 31st 2002 by Munsondr 
 
By the by, that's a really good album. 
 
# Posted on February 4th 2002 by Josh Kane 
 
At a summer school for ITM that I attended last year, the teacher (from Sligo I 
believe) said that this tune ALWAYS was played in set with the Gatehouse Maid. 
 
# Posted on April 13th 2003 by lars 
Classic Set! 
 
Lars, det har du ratt i! And as an illustration of this -- this tune came up yersterday at a 
session "somewhere in the USA" and, when the change was signaled, I immediately 
went roaring into "The Gatehouse Maid" and temporarily ground the set 
to a halt as my American friends had started another tune. Automatic reflex on my 
part. I wonder if this is the first time I have ever heard "Down The Broom" not 
followed by "Gatehouse Maid". A classic set and not heard all that often here. Halsa 
Uppsala fran mig. Jag bodde dar i nastan tre ar. 
 
# Posted on April 13th 2003 by LongNote 
Down the Broom 
 
I finally learned this session standard today. It shares almost the same second part 
with "The Bag of Spuds," so it was easy to pick up. Mayo flute player Paul Smyth's 
solo album is the source. That's a cracking track, joined by a piper. I might 
misremember it but the version on the recording is something like this: 
 
K: Ador 
G|EAAG A2Bd|eg~g2 egdc|BGGF GAGE|D2BD GABG| 
EAAG A2Bd|eg~g2 egdg|eg~g2 dgba|gedB BAA:| 
g|a2ea ageg|agbg agef|gedc BGBd|~g3a bgeg| 
a2ea ageg|agbg ageg|dg~g2 dgba|gedB BAA:| 
 
I happened to record Clare flute player Christy Barry play the tune, and found he has a 
very similar version to this. 
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I heard it played coupled with "The Gatehouse Maid" just once, but this tune is still 
referred to as the tune before "The Gatehouse Maid" quite often. 
 
# Posted on October 26th 2004 by slainte 
Down the Broom 
 
Here is the link to the northern versions of the tune: 
http://thesession.org/tunes/display.php/3871 
 
# Posted on December 12th 2004 by slainte 
 
Link to the old setting of the tune: http://www.thesession.org/tunes/display.php/837 
 
# Posted on April 7th 2005 by slainte 
Regarding the Tune Down the Broom 
 
Does anyone know which version of "Down the Broom" is on the CD, Traditional 
Irish Fiddle Music, by the Kilfenora Ceili Band? I am uncertain as to whether the 
Down the Broom reel that is linked to the Recording on the session is the same 
version they play. 
 
# Posted on August 25th 2006 by enirehtac 
Re: Regarding the Tune Down the Broom 
 
I think I've got this recording on a compilation and also one by Paddy Killoran (which 
is a knockout - absolutely love his playing). This seems to be close (copied from 
another archive - credit as below): 
X:1 
T:DOWN BROOM (THE) 
R:Reel 
S:Paddy Canny and Peter O'Loughlin, Clare (fiddles) 
N:As played (P O'L much the louder) 
Z:Bernie Stocks 
H:Played with "The Gatehouse Maid" 
M:4/4 
K:G 
EA(3.A.A.A A2Bd | eg~g2 egdc | BG~G2 ~G3E | {G}EDB,D GABG | EA(3.A.A.A 
A2Bd | 
eg~g2 egdg | eg~g2 dgbg | {a}gedB {d}BAA2 :| a2ea {b}ageg | agbg agef | g2dg 
Bgdg | 
{a}geaf gedg | a2ea {b}ageg | agbg ageg | dg~g2 dgba | gedB {d}BAA2 :| 
 
# Posted on August 25th 2006 by RichardB 
 
You can actually listen to Killoran play this tune: 
http://tedmcgraw.com/mp3/KilloranBroom.mp3 
From N. American Archive of Traditional Irish Music: 
http://tedmcgraw.com/recimages/Irish_clips.htm 
 
# Posted on August 25th 2006 by slainte 
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"The Cottage in the Glen / Grove" / "The Crosses of Annagh" 
 
Damn, I was trusting slainte to make these connections... 
 
The Cottage in the Glen ~ reel 
Key signature: E Dorian 
Submitted on February 21st 2002 by barney morgan. 
http://www.thesession.org/tunes/display/558 
 
The Crosses Of Annagh ~ reel 
Key signature: A Dorian 
Submitted on November 30th 2002 by gian marco. 
http://www.thesession.org/tunes/display.php/1170 
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Appendix F – Results of MC-ED, TI-ED and MATT2 

(sections 7, 7.2 and 7.3) 

1 = True Positive, 0 = False Positive 

 

        MC-ED, TI-ED MC-ED, MATT2 TI-ED, MATT2 

Audio T1 T2 T3 n00 n01 n10 n11 n00 n01 n10 n11 n00 n01 n10 n11 

1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 

2 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

3 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 

4 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 

5 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

6 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 

7 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

8 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

9 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

10 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

11 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

12 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

13 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

14 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

15 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

16 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

17 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

18 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

19 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

20 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

21 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

22 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

23 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

24 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

25 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

26 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 

27 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

28 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

29 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

30 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

31 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

32 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

33 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 

34 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 

35 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 
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36 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

37 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

38 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

39 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

40 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

41 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

42 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 

43 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

44 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

45 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 

46 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

47 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

48 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

49 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

50 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

51 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

52 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

53 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

54 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

55 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

56 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

57 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

58 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

59 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

60 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

61 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

62 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

63 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

64 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

65 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

66 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

67 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

68 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

69 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

70 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

71 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

72 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

73 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

74 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

75 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

76 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

77 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

78 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

79 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

80 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 
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81 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

82 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

83 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

84 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

85 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

86 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

87 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

88 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

89 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

90 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

91 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

92 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

93 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

94 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 

95 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

96 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

97 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 

98 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

99 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

100 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

Total (1) 11 47 93 53 36 0 11 7 82 0 11 7 46 0 47 

Total (0) 89 53 7                         
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Appendix G – Results of TA/SEY Evaluation described in 

sections 8.3 and 8.4 

Set Tune Human Machine 
|Human - 
Machine| TP FP F/ 

1 Billy Brocker's 0.00 0.00   0 0 0 

    19.20     0 0 1 

    38.13 37.96 0.17 1 0 0 

    56.95 57.43 0.48 1 0 0 

  Green Mountain, The 76.00     0 0 1 

    113.20     0 0 1 

    150.63     0 0 1 

    188.02     0 0 1 

2 Christy Barry's 0.00 0.00   0 0 0 

    34.40     0 0 1 

  
Butlers of Glenavenue, 
The 69.80 72.71 2.91 0 1 1 

    105.10 110.32 5.22 0 1 1 

    141.53 141.30 0.23 1 0 0 

3 Connie O'Connell's 0.00 0.00   0 0 0 

    46.40 46.68 0.28 1 0 0 

  Cullen Jig, The 92.63 92.69 0.06 1 0 0 

    123.23 123.52 0.29 1 0 0 

  Cordal Jig, The 153.73 154.34 0.61 1 0 0 

    184.73 184.65 0.08 1 0 0 

    217.93 217.80 0.13 1 0 0 

4 Cooley's 0.00 0.00   0 0 0 

    41.10 41.51 0.41 1 0 0 

  Dick Gossip's 82.30 82.76 0.46 1 0 0 

    122.50 123.70 1.20 1 0 0 

  Bird in the Bush, The 164.84 165.06 0.22 1 0 0 

    206.44 207.30 0.86 1 0 0 

    248.54 250.06 1.52 1 0 0 

5 Devaney's Goat 0.00 0.00   0 0 0 

    44.48 45.26 0.78 1 0 0 

  Tommy Peoples 89.48 87.14 2.34 0 1 1 

    111.86 114.35 2.49 0 1 1 

    134.13 134.78 0.65 1 0 0 

6 Down the broom 0.00 0.00   0 0 0 

    43.70     0 0 1 
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  Gatehouse Maid, The 86.30 87.67 1.37 1 0 0 

    107.60 109.18 1.58 1 0 0 

    128.90 129.80 0.90 1 0 0 

    152.50 153.22 0.72 1 0 0 

7 Dublin Lasses, The 0.00 0.00   0 0 0 

    28.10 28.49 0.39 1 0 0 

  Five Mile Chase, The 47.28 47.42 0.14 1 0 0 

    66.38 66.70 0.32 1 0 0 

    86.55 87.14 0.59 1 0 0 

8 Galway Rambler, The 0.00 0.00   0 0 0 

    20.50 20.75 0.25 1 0 0 

    39.70 40.12 0.42 1 0 0 

    59.00 59.34 0.34 1 0 0 

  London Lasses, The 78.40 78.91 0.51 1 0 0 

    117.50 118.21 0.71 1 0 0 

    158.20 161.04 2.84 0 1 1 

9 Geese in the bog 0.00 0.00   0 0 0 

9   33.20 32.94 0.26 1 0 0 

  
Connaughtman's 
Rambles, The 64.00 64.78 0.78 1 0 0 

    95.10 96.77 1.67 1 0 0 

  Black Rogue, The 125.80 128.16 2.36 0 1 1 

    156.30 157.59 1.29 1 0 0 

    187.00 189.44 2.44 0 1 1 

    219.00 215.42 3.58 0 1 1 

10 Green Mountain, The 0.00 0.00   0 0 0 

    39.10 48.46 9.36 0 1 1 

    77.30   77.30 0 0 1 

  John Stensons # 2 115.10 115.62 0.52 1 0 0 

    152.80 153.36 0.56 1 0 0 

    189.70 189.81 0.11 1 0 0 

    227.50 227.65 0.15 1 0 0 

11 
Happy to Meet Sorry to 
Part 0.00 0.00   0 0 0 

    41.80 42.54 0.74 1 0 0 

  
Jacksons Bottle of 
Brandy 82.30 83.58 1.28 1 0 0 

    122.30 124.24 1.94 1 0 0 

    163.45 163.28 0.17 1 0 0 

12 
Humours of Bally 
Loughlan 0.00 0.00   0 0 0 

    63.58 64.00 0.42 1 0 0 

    126.65 127.47 0.82 1 0 0 

    191.24 191.09 0.15 1 0 0 
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13 McKenna's #1 0.00 0.00   0 0 0 

    41.50 41.31 0.19 1 0 0 

    81.10 82.41 1.31 1 0 0 

  McKenna's # 2 121.00 122.28 1.28 1 0 0 

    140.73 141.64 0.91 1 0 0 

    160.50 161.36 0.86 1 0 0 

    182.90 183.88 0.98 1 0 0 

14 Micho Russles 0.00 0.00   0 0 0 

    46.00 46.32 0.32 1 0 0 

  
Maid of Mount Kisco, 
The 91.50 91.80 0.30 1 0 0 

    144.39 145.86 1.47 1 0 0 

  
Green Groves of Erin, 
The 196.09 197.64 1.55 1 0 0 

    237.99   237.99 0 0 1 

    279.10 281.32 2.22 0 1 1 

    321.19 321.91 0.72 1 0 0 

15 Jim Coleman's 0.00 0.00   0 0 0 

    20.80 21.90 1.10 1 0 0 

  
George White's 
Favourite 41.50 43.15 1.65 1 0 0 

  The Virginia 83.00 84.24 1.24 1 0 0 

    124.00 125.41 1.41 1 0 0 

    166.30 166.78 0.48 1 0 0 

16 Scully Casey's 0.00 0.00   0 0 0 

    31.30 31.25 0.05 1 0 0 

  Kilmovee Jig, The 62.01 60.97 1.04 1 0 0 

    94.10 94.53 0.43 1 0 0 

    126.60 126.45 0.15 1 0 0 

17 Strop the Razor 0.00 0.00   0 0 0 

    47.70 47.88 0.18 1 0 0 

  Killavel Jig, The 94.10 94.64 0.54 1 0 0 

    124.30   124.30 0 0 1 

  Boys of the Town, The 154.70 155.46 0.76 1 0 0 

    185.71 189.42 3.71 0 1 1 

    215.70 220.23 4.53 0 1 1 

    247.11 247.93 0.82 1 0 0 

18 Concert Reel, The 0.00 0.00   0 0 0 

    39.65 39.61 0.04 1 0 0 

    77.67 77.82 0.15 1 0 0 

  Baltimore Salute, The 115.67 115.75 0.08 1 0 0 

    153.67 153.72 0.05 1 0 0 

    193.84 193.67 0.17 1 0 0 
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19 Copperplate, The 0.00 0.00   0 0 0 

    40.10 40.16 0.06 1 0 0 

  Old Copperplate, The 80.00 80.04 0.04 1 0 0 

    120.00 120.02 0.02 1 0 0 

    161.20 161.53 0.33 1 0 0 

20 Corner House, The 0.00 0.00   0 0 0 

    54.30 55.51 1.21 1 0 0 

  Boys of Portaferry, The 108.54 110.62 2.08 0 1 1 

    135.13 136.21 1.08 1 0 0 

    161.63 162.83 1.20 1 0 0 

21 Cup of Tea, The 0.00 0.00   0 0 0 

    62.10 62.31 0.21 1 0 0 

  Upstairs in a Tent 122.00 122.06 0.06 1 0 0 

    161.70 162.14 0.44 1 0 0 

    204.50 203.68 0.82 1 0 0 

22 Gooseberry Bush, The 0.00 0.00   0 0 0 

    61.20 61.56 0.36 1 0 0 

  Limestone Rock 121.30 121.68 0.38 1 0 0 

    141.78 141.50 0.28 1 0 0 

    162.08 161.27 0.81 1 0 0 

23 
Humours of Loughrea, 
The 181.88 181.80 0.08 1 0 0 

    201.88 201.26 0.62 1 0 0 

    221.78 221.33 0.45 1 0 0 

    242.91 242.43 0.48 1 0 0 

24 
Humours of 
Ballyloughlin, The 0.00 0.00   0 0 0 

    65.27 65.47 0.20 1 0 0 

    130.81 131.22 0.41 1 0 0 

25 Lillies in the Field, The 0.00 0.00   0 0 0 

    20.30 21.28 0.98 1 0 0 

    40.50 41.18 0.68 1 0 0 

  Tommy Peoples 61.16 62.12 0.96 1 0 0 

    81.16 81.96 0.80 1 0 0 

    101.26 102.05 0.79 1 0 0 

    122.50 123.01 0.51 1 0 0 

26 Lilting Banshee, The 0.00 0.00   0 0 0 

    30.80 54.94 24.14 0 1 1 

    62.00 86.13 24.13 0 1 1 

  Mice in the Cupboard 92.90 107.23 14.33 0 1 1 

    123.40 124.96 1.56 1 0 0 

  Tenpenny Bit, The 154.30 155.02 0.72 1 0 0 

    185.30 186.40 1.10 1 0 0 
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    217.00 217.47 0.47 1 0 0 

27 Skylark, The 0.00 0.00   0 0 0 

    43.80 43.07 0.73 1 0 0 

  Roaring Mary 86.40 85.91 0.49 1 0 0 

    129.20 129.44 0.24 1 0 0 

    173.27 173.95 0.68 1 0 0 

28 Wandering Minstrel, The 0.00 0.00   0 0 0 

    52.14 52.04 0.10 1 0 0 

    104.29 104.13 0.16 1 0 0 

29 Touch Me If You Dare 0.00 0.00   0 0 0 

    34.10 34.05 0.05 1 0 0 

    70.53 70.41 0.12 1 0 0 

30 Traver's Jig 0.00 0.00   0 0 0 
    43.70 46.92 3.22 0 1 1 

    84.30 89.55 5.25 0 1 1 

    124.21 123.91 0.30 1 0 0 

 Total: 142     114 18 28 
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Appendix H – Example transcriptions in ABC notation 

discussed in section 2.9.4 

X:1 
T:Ambrose Maloneys 
R:Reel 
H:No ornamentation 
M:C| 
L:1/8 
K:G 
B3G ABGE|DGBG A3d| 
BGGG A2ef|gedg eAAA| 
B3G ABGE| DGBG A3d| 
BGGG A2ef |ged=c BGGG:| 
dgbg a2fa|gedB GABd| 
eaag agef|g2bgage2| 
dgbg a2fa|gedB GABd| 
eaag e2fa|ged=cBggg:| 
 
X:2 
T:Ambrose Maloneys 
R:Reel 
D:Catherine McEvoy: Recorded The Cobblestone 01/02/2006 
M:C| 
L:1/8 
K:D 
Bd{c}BG A{c}BGE|DG{c}BG ~A3d| 
B~G3 Azeg|{c'}gedg e~A3| 
(3Bcd BD ABGE| DzBG ~A3d| 
B~G3 ABea |{c'}ged=c B~G3| 
 
Bz{c}BG A{c}BGE|D~G3 AzaD| 
B~G3 ABea|{c'}gedg e~A3| 
(3Bcd {c}BD ABGE| dz{c}BG ~A3D| 
B~G3 Azeg |{c'}ged=c B~g3| 
 
dzb a{c'}ag{g}ea|{c'}g{g}edB ~g3d| 
{f}a4{c'}a {b}g{b}ed|gzbgabge| 
dgbz {c'}agea|{c'}gedB ~g3z| 
~a3g (3efg fa|{b}ged=cB~g3| 
 
dgba {c'}a ge z | {c'}gedb gabd| 
ea{c'}a^g {c'}a=ged |~g3b abge| 
dzbg{c'}agea|{c'}gedB~g3z| 
~a3g ezfa |{c'}ged=c B~G3| 
 
Bz{c}BG A{c}BGE|DG{c}BG ~A3d| 
B~G3 ABea|{c}gedg e~A3| 
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(3Bcd BD ABGE| Dz{c}BG ~A3d| 
B~G3 Azea |{c'}ged=c B~G3| 
 
BdBD ABGE|Dz{c}BG AGAD| 
B~G3 Azea|{c'}gedg e~A3| 
(3Bcd BD ABGE| Dz{c}BG ~A3D| 
B~G3 Azeg |{c'}ged=c B~g3| 
 
dzb a{c'}agea|gedB ~g3d| 
~a3b  aged|gzbga{c'}bge| 
d~g3 {c'}agez|{c'}gedB GABD| 
gzag egfa |{b}ged=cB~g3| 
 
{a}b3 a {b}agea | {c'}gedB ~g3 z| 
~a3b aged |gz{c'}bg a{c'}bge| 
d~g3 {c'}agea|{b}gedB ~g3z| 
~a3g ez fa|{b}ged=cB~g3| 
 
Bz{c'}BG A{c}BGE|D~G3 ~A3d| 
B~G3 ABea|{c'}gedg e~a3| 
Bz{c}BG A{c}BGE| DzBG ~A3D| 
B G{A}g{e}g azeg |{c'}ged=c B~G3| 
 
Bz{c}BG ABGE|DGBG ~A3D| 
B~G3 ABea|{c'}gedg e~a3| 
Bz{c}BG AGGE| D2BG ~A3z| 
B ~G3 ABea |{c'}ged=c B~GGB| 
 
dgb z{c'}agea|{c'}gedB GABD| 
ea{b}ag  aged|~g3z abge| 
d~g3 ~a3b | {c'}gedB GzBD| 
~a3ge zfg | gedGB~G3| 
 
dgba {c'}agea|{c'}gedB GzBD| 
ea{b}ag  aged|gb{c'}bg abge| 
Dzbg ~a3e|{c'}gedB ~g3z| 
~a3g ez fa|{c'}gedG BDAD| 
{c}G4| 
 
 
X:3 
T:Ambrose Maloneys 
R:Reel 
D:Eamon Cotter: Traditional Irish Music From County Clare 
M:C| 
L:1/8 
K:D 
"A1 1:12:00" 
~B3G A{c}BGE|DGBG ~A3d| 
B~G3 Azef|{a}g{ef}edg e~A3| 
BdBG A{c}BGE| DGBG ~A3d| 
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B~G3 Azef |~g2d=c B~G3| 
"A2 1:20:58" 
BdBG A{c}BGE|DGBG ~A3d| 
B~G3 Azef|g{b}gda e~A3| 
BdBG A{c}BGE|DzBD ~A3d| 
B~G3 Azef |~g2d=c B~g3| 
"B1 1:30:00" 
dgbg ~a2f{ag}a|gedB GDBD| 
ea{b}a^g a{gf}=gef|gzbg{b}a{gf}gez| 
dgbg ~a2f{ag}a|gedB GA(3Bcd| 
ea{b}a{gf}g ezfa|{gf}ged=cB~g3| 
"B2 1:38:50" 
bdga ~a2fa|{gf}gedB GDBz| 
ea{b}a^g a{gf}=gef|gzbg{b}a{gf}gez| 
dgbg ~a2f{ag}a|gedB GA(3Bcd| 
ea{b}a{gf}g ezfa|{gf}ged=cB~G3| 
"A3 1:47:00" 
~B3G A{c}BGE|DGBG ~A3d| 
B~G3 Azef|{a}geda e~A3| 
BdBG A{c}BGE| DzBD ~A3d| 
B~G3 Azef |~g2d=c B~G3| 
"A4 1:56:10" 
BdBG A{c}BGE|DGBD ~A3d| 
B~G3 Azef|g{a}gda e~A3| 
BdBG AzG{EG}E| DGBD ~A3d| 
B~G3 Aze=c |{a}g{ef}ed=c B~G3| 
"B3 2:05:10" 
dgbg ~a2f{ag}a|gedB GDBz| 
ea{b}a^g a{gf}=gef|~g2bg{b}a{gf}gez| 
dgbg azfa|{fa}gedB GA(3Bcd| 
ea{b}a{gf}g eafd|{a}ged=cB~g3| 
"B4 2:13:00" 
dgbg azfa|{ge}gedB {Ga}GDBz| 
ea{b}a^g a{gf}=gef|gzbg{b}a{gf}geg| 
dgbg ~a2fa|{fa}gedB GA(3Bcd| 
ea{b}a{gf}g ezfa|{a}ged=cB~G3| 
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