166 research outputs found

    Heuristic algorithms for payment models in project scheduling

    Get PDF
    Imagine that the city council of Ghent has approved the construction of a new bridge across the Leie. The bridge will serve as a means to reduce traffic congestion in the city center, and the city council imposes a deadline to ensure the bridge is completed in time. Based on the specifications, a contractor subsequently determines the required resources (e.g. manpower, machines) and constructs a project schedule. This schedule holds the start and finish times of each activity (e.g. pouring concrete for the bridge foundations), and respects the imposed resource restrictions and the order in which the activities have to be executed (e.g. excavate the river banks before pouring concrete for the foundations). Whereas the objective of the client (i.e. the city council) is clear, they want the bridge to be constructed within the specified deadline, the objective for the contractor is less obvious. Is the goal to minimize the project duration, minimize total costs, maximize net present value (NPV), etc.? Assume that the contractor can construct two schedules. The first schedule minimizes the project duration, obtains a duration of 6 weeks less than the deadline and has a NPV of € 1 mio. The second schedule, on the contrary, maximizes the project NPV, which results in a duration equal to the deadline and a NPV of € 1.2 mio. The latter schedule is obtained by delaying certain activities within the imposed restrictions, starting from the first schedule. If we assume that sufficient margins are included in the proposed schedules to compensate for any delays, the contractor would obviously prefer the second schedule, since the financial return is larger. The crucial question here is, however, how the second schedule can be obtained in an effective and efficient manner starting from the first schedule. This dissertation aims to develop algorithms, which optimize the project NPV under different restrictions, by means of five studies. The first paper chapter focuses on NPV optimization subject to precedence and resource restrictions. It is furthermore assumed that both cash inflows (payments received from the client) and cash outflows (payments to subcontractors) occur at the end of each activity. This way, the size of payments is set in advance by the client and corresponds with each activity’s cash flows, whereas the timing depends on the project schedule by means of the selected activity finish times, and is controlled by the contractor. The second and third studies consider other payment models, in which the client determines the payment times in advance, rather than the size of payments. As an example, the client may stipulate that the contractor is paid every month, whereas the size of the payments depends on the work performed by the contractor in each month. Both studies furthermore include several alternatives or modes for each activity. These modes constitute different duration-resource combinations for an activity, out of which one has to be selected by the contractor, and allow for a greater degree of flexibility. The fourth paper chapter introduces capital management on the side of the contractor, by imposing that the total funds available should not become negative during the project. The total funds or cash balance consider the initial capital available and respectively add or subtract cash in- and outflows. A general model is constructed which affects the capital availability throughout the project. The fifth and final study integrates the resource availability in the scheduling process, and as such optimizes the NPV of the project including the resource usage cost, rather than decide on the amount of a resource made available first and schedule the activities second

    A hybrid genetic algorithm application for a bi-objective, multi-project, multi-mode, resource-constrained project scheduling problem

    Get PDF
    Here we consider a bi-objective, multi-project, multi-mode, resource-constrained project-scheduling problem. The objectives were to minimize the makespan, minimize the mean of the flow times for individual projects, minimize the mean completion times for individual projects and maximize the total net present value of all projects. As a solution method, we used the non-dominated sorting genetic algorithm II (NSGA-II). To improve NSGA-II, a backward–forward pass (BFP) procedure was proposed for post-processing and for new population generation. Different alternatives for implementing BFP were tested with the results reported for different objective function combinations. To increase diversity, an injection procedure was introduced and implemented. Both the BFP and injection procedures led to improved objective function values. Moreover, the injection procedure generated a significantly higher number of non-dominated solutions with more diversity. A detailed fine-tuning process was conducted by employing a response surface optimization method. An extensive computational study was performed. Managerial insights are presented

    Meta-heuristic based Construction Supply Chain Modelling and Optimization

    Get PDF
    Driven by the severe competition within the construction industry, the necessity of improving and optimizing the performance of construction supply chain has been aroused. This thesis proposes three problems with regard to the construction supply chain optimization from three perspectives, namely, deterministic single objective optimization, stochastic optimization and multi-objective optimization respectively. Mathematical models for each problem are constructed accordingly and meta-heuristic algorithms are developed and applied for resolving these three problems

    A Bi-objective Optimization for Vendor Managed Inventory Model

    Get PDF
    Vendor managed inventory is a continuous replenishment program that is designed to provide major cost saving benefits for both vendors and retailers. Previous research on this area mainly included single objective optimization models where the objective is to minimize the total supply chain costs or to maximize the total supply chain benefits. This paper presents a bi-objective mathematical model for single-manufacture multi-retailer with multi-product in order to maximize their benefits. It is assumed that demand is a decreasing and convex function of the retail price. In this paper, common replenishment cycle is considered for the manufacturer and its retailers. Then, the proposed model converts to the single-objective optimization problem using a weighted sum method. A genetic algorithm (GA) is applied to solve it and response surface methodology is employed to tune the GA parameters. Finally, several numerical examples are investigated to demonstrate the applicability of the proposed model and solution approach

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development
    corecore