
FACULTY OF ECONOMICS
AND BUSINESS ADMINISTRATION

Heuristic algorithms for payment models in project

scheduling

Pieter Leyman

Dissertation submitted to the Faculty of Economics and Business Administration,

Universiteit Gent, in fulfillment of the requirements for the degree of

Doctor of Applied Economic Sciences

“All truths are easy to understand once they are discovered; the point is to discover

them.”

Galileo Galilei

FACULTY OF ECONOMICS
AND BUSINESS ADMINISTRATION

Promotor:

Prof. dr. Mario Vanhoucke

Doctoral jury:

Prof. dr. Marc De Clercq Universiteit Gent, Dean

Prof. dr. Patrick Van Kenhove Universiteit Gent, Academic Secretary

Prof. dr. Tarik Aouam Universiteit Gent

Prof. dr. José Coelho Universidade Aberta, Lisbon (Portugal)

INESC, Porto (Portugal)

Prof. dr. Broos Maenhout Universiteit Gent

Prof. dr. Geert Poels Universiteit Gent

Prof. dr. Vincent Van Peteghem EDHEC Business School, Lille (France)

Dankwoord

Mijn doctoraat is tot stand gekomen dankzij de bijdragen en steun van een aantal

bijzondere mensen, want het schrijven van dit boek is absoluut geen solotraject geweest.

Elk op hun eigen manier hebben zij er toe bijgedragen dat ik volhardde en moed bleef

houden, want telkens opnieuw beginnen na een tegenslag is het moeilijkste dat er bestaat.

Ik heb gepoogd om dan ook iedereen die me de afgelopen 4 jaar bijgestaan heeft op te nemen

in dit dankwoord. Om enigszins te vermijden dat ik iemand vergeet wil ik, net als een

sympathieke voorganger van mij, reeds iedereen die dit leest bedanken. Ongetwijfeld heb

jij bijgedragen aan mijn doctoraat of mijn leven daarbuiten de afgelopen jaren, ofwel omdat

je interesse hebt in het gevoerde onderzoek of in mij als persoon. Daarnaast wil ik me

ook nog tot enkele personen in het bijzonder richten, die me, ondanks mijn koppige, soms

brompotachtige en niet altijd even communicatieve karakter, telkens opnieuw gesteund

hebben.

In academische omgeving, dien ik in de eerste plaats mijn promotor Mario te bedanken.

Zonder zijn enthousiasme en niet–aflatende stroom aan suggesties en opmerkingen zou ik

nooit geraakt zijn waar ik nu sta. Onze discussies hebben me in staat gesteld mijn inzichten

te verfijnen en te streven naar telkens beter en meer. Verder gaat mijn dank uit naar alle

leden van mijn examencommissie, Marc, Patrick, Tarik, José, Broos, Geert en Vincent.

Dankzij hun interesse en waardevolle commentaren ben ik er in geslaagd om dit doctoraat

succesvol af te werken. I would like to specifically thank the members of my reading

committee (Tarik, José, Broos, Geert and Vincent), for the many questions and insightful

suggestions to further improve the quality of my dissertation. Daarnaast dien ik ook het

“Bijzonder Onderzoeksfonds”(BOF) en de Nationale Bank van België te bedanken voor

de financiële ondersteuning die dit doctoraat mogelijk gemaakt heeft (contractnummer

BOF12GOA021). De ondersteuning van Martine en Machteld liet me dan weer toe om

me voornamelijk te focussen op mijn onderzoek en andere taken, terwijl zij de bijhorende

administratie voor hun rekening namen. Ook met vragen rond lessenroosters en examens

kon ik keer op keer bij hen terecht.

Het leven op kantoor zou een stuk saaier (en ook minder productief) geweest zijn zonder

i

ii Dankwoord

toffe collega’s. Ik wens Christophe, Jeroen C., Len en Mathieu te bedanken om me goed

op te vangen toen ik startte, en een breed scala aan vragen telkens opnieuw met hetzelfde

enthousiasme te beantwoorden. Daarnaast wil ik ook Eva en Thomas bedanken, omdat hun

regelmatige aanwezigheid de lunchpauzes (en het eten van De Brug) een stuk aangenamer

maakten. Ook de gebeurlijke koffie of thee in de OR hielp vaak als nodige opkikker.

Specifiek, wil ik Christophe nog bedanken omdat hij de rol als mijn peter op zich nam,

met vaak nuttige maar soms ook grappige suggesties en tips tot gevolg. Mijn dank gaat

tevens uit naar de jongere collega’s Jonas, Laura, Annelies, Jeroen B., Tom en Mick, die de

afgelopen twee jaar de trend van gezamenlijke middag- en namiddagpauzes hebben helpen

in stand houden. Ook werd dankzij hen het concept van vrijdag na het werk pinten te gaan

drinken op gang getrokken en in stand gehouden, waarbij ook Jordy en Louis–Philippe

regelmatig present tekenden. Bovendien wil ik Jordy en Lynn bedanken om me beter

wegwijs te maken in Barcelona, onder meer door enkele uitstekende suggesties te doen met

betrekking tot bezienswaardigheden en eetgelegenheden. Een speciale bedanking gaat uit

naar Annelies en Jeroen B. voor het vele werk dat zij verricht hebben aan het groepswerk

voor het vak Applied Operations Research, en de vlotte en constructieve samenwerking

doorheen het hele traject. Jeroen B., Jonas en Len wil ik nog eens extra bedanken omdat

ik bij hen als medeplanners altijd terecht kon met vragen groot en klein, wat dikwijls leidde

tot geanimeerde maar altijd productieve discussies. Dank aan Niels, omdat zijn inzichten

en onze discussies me hebben in staat gesteld om een volwaardig hoofdstuk van dit boek

te schrijven, vertrekkend van zijn masterproef. Keer op keer stelde hij enthousiast zijn

werk voor en bracht hij waardevolle inzichten aan.

Ik wil mijn vrienden Jonas, Mathias, Michaël en Steven bedanken omdat ze me steeds

weer hielpen om te ontspannen. Of het nu was door een vaak voorkomend avondje film

(gaande van de nieuwste Marvel prent tot Star Wars), samen iets gaan drinken of eten, of

een VOSEKO event, ze waren telkens paraat. Ze lieten me toe om mijn hart te luchten

indien nodig, of zorgden voor geanimeerde discussies over allerhande absurde en minder

absurde onderwerpen, wat voor de nodige ontspanning zorgde. Bovendien waren ze ook

keer op keer benieuwd naar de voortgang van mijn doctoraat. Jonas, je was de afgelopen

jaren naast een collega tevens een goede vriend, die altijd klaar stond met goed advies,

zowel in de werksfeer als privé. Je luisterend oor en goede smaak voor bier vormden de

basis van menig goed gesprek. Michaël, als medegamer en filmnerd kon ik bij jou in het

bijzonder terecht met beslommeringen rond het einde van Bioshock Infinite, en de vraag

of Batfleck nu een goed idee was of niet. Je hebt me ook gëıntroduceerd in de fantastische

werelden (of moet ik zeggen universa?) van Mass Effect en Dragon Age, waarvoor ik

je enorm dankbaar ben. Daarnaast wekte je enthousiasme voor alles (werk-, gaming-,

filmgerelateerd en nog veel meer) vaak aanstekend, en was je altijd beschikbaar voor een

Dankwoord iii

goede babbel. Mathias, jouw neiging om alles ludiek en genuanceerd te bekijken zorgde

vaak voor de nodige humor, zeker als de discussies op café iets te serieus werden. Je hebt

me geleerd dat het zowel professioneel als privé kan helpen om regelmatig een stap terug

te zetten, me meer te ontspannen, en de dingen te durven nemen zoals ze komen. Steven,

jouw gevoel voor humor lag de afgelopen jaren vaak aan de basis van menig amusant

gesprek. Je oprechte interesse in en enthousiasme voor politiek (en een bepaalde partij)

kwamen ook regelmatig aan bod, waardoor je me hebt bijgebracht dat het belangrijk is

om een zekere vorm van idealisme te behouden.

Tot slot, wil ik me tot mijn familie richten. Om te beginnen, wil ik mijn grootouders

bedanken, niet alleen voor de afgelopen 4 jaar, maar ook voor de 24 jaar daarvoor. Het

doet me enorm veel pijn dat jullie niet allemaal de voltooiing van mijn doctoraat kunnen

meemaken, maar weet dat het me zonder jullie steun niet zou gelukt zijn. Daarnaast gaat

mijn dank uit naar nonkel Edwin, die steeds zijn interesse liet blijken in mijn onderzoek,

en me ook aanmoedigde telkens als ik het wat moeilijker had. Vervolgens, wil ik ieder-

een thuis bedanken voor jullie steun, die vaak tot op mijn werkplek voelbaar was, en in

het bijzonder mijn broer Gert en mijn ouders. Gert, je hebt me de afgelopen jaren tel-

kens onvoorwaardelijk gesteund en je was ook steeds beschikbaar als ik een opbeurende

babbel nodig had. Onze, vaak ludieke, discussies gaande van werkomstandigheden en

“rare”collega’s tot bij welke voetbalclub een zekere (oude) rot het veld nu weer onveilig

maakte, waren een aangename afleiding. Je interesse in actiefilms en -reeksen zoals Ja-

son Bourne en The Blacklist, samen met mijn hernieuwde bekommernis om het wel en

wee van de Rode Duivels, zorgde dan weer voor het amusante avondje uit of voor de tv.

Daarnaast was je ook steeds bereid om mijn teksten (inclusief dit dankwoord!) na te lezen

op mogelijke taal- en tikfouten. Mama, Papa, er bestaan geen woorden die mij in staat

stellen om uit te drukken wat jullie voor me betekenen en betekend hebben de afgelopen

jaren. Desalniettemin, ga ik toch een poging ondernemen. Zonder jullie onvoorwaardelijke

steun, vertrouwen en liefde zou ik dit doctoraat nooit hebben kunnen voltooien, en zou

ik niet de persoon zijn die ik vandaag ben. Jullie zijn er altijd voor mij geweest, bij ups

en al helemaal bij downs. Als het wat minder ging, slaagden jullie er keer op keer in om

me te motiveren en te zorgen dat ik volhardde. Jullie zijn mijn rots in de branding, mijn

toeverlaat, mijn thuis, en dat zullen jullie ook altijd blijven! Vanuit de grond van mijn

hart: bedankt!

Pieter Leyman

Gent, 2 september 2016

Nederlandstalige samenvatting

Veronderstel dat het stadsbestuur van Gent beslist om een nieuwe brug te laten bouwen

over de Leie. Het doel is om de verkeersdrukte in het centrum te verminderen, en als

gevolg stelt het stadsbestuur een uiterste datum voorop voor de ingebruikname van de

brug. Op basis van de specificaties gaat een aannemer vervolgens het benodigd aantal

midellen (bv. machines, mankrachten) bepalen en een project schema opstellen. Dit

schema bevat de start- en eindtijden van elke activiteit (bv. het gieten van beton voor de

funderingen), en houdt rekening met de opgelegde middelen beperkingen en de volgorde

waarin de activiteiten uitgevoerd moeten worden (bv. de oevers moeten afgegraven worden

alvorens de funderingen kunnen gegoten worden). Terwijl de doelstelling van de klant

(het stadsbestuur) duidelijk is, ze willen namelijk dat de brug op tijd voltooid is, is de

doelstelling voor de aannemer een stuk minder voor de hand liggend. Zou de aannemer

best de totale duurtijd minimaliseren, de totale kost minimaliseren, of de netto actuele

waarde (NAW) maximaliseren, etc.?

Veronderstel dat de aannemer twee schema’s kan opstellen. Het eerste schema minima-

liseert de project duurtijd, heeft een totale duur die zorgt voor een voltooiing van de brug

6 weken voor de uiterste datum, en heeft een NAW van e1 miljoen. Het tweede schema,

daarentegen, maximaliseert de NAW, met als gevolg een voltooiing van de brug die sa-

menvalt met de uiterste datum en een NAW van e1,2 miljoen. Het tweede schema kan

bekomen worden door het later inplannen van sommige activiteiten, gegeven de opgelegde

beperkingen, vertrekkend van het eerste schema. Als we er van uitgaan dat er voldoende

marges zijn voorzien tegen mogelijke vertragingen, dan zou de aannemer logischerwijs het

tweede schema verkiezen, omdat dit financieel aantrekkelijker is. De cruciale vraag wordt

dan hoe het tweede schema op een efficiënte en effectieve manier kan bekomen worden,

vertrekkend van het eerste schema. Deze doctoraatsthesis heeft als doel om algoritmen te

ontwikkelen die de NAW van projecten optimaliseren onder verschillende omstandigheden.

In hoofdstuk 1 geven we een beknopte inleiding tot project management, alvorens

project planning als deelgebied toe te lichten. We bespreken kasstromen in project plan-

ning, op basis van betaalmomenten en -groottes, en geven een overzicht van de volgende

v

vi Nederlandstalige samenvatting

hoofdstukken, vertrekkend van vijf onderzoeksvragen.

Hoofdstuk 2 gaat dieper in op NAW optimalisatie gegeven volgorderelatie- en midde-

lenbeperkingen. Daarnaast, veronderstellen we dat zowel de kasinstromen (ontvangen van

de klant) als de kasuitstromen (betaald aan onderaannemers) gebeuren op het einde van

elke activiteit. Op deze manier, is de grootte van de betalingen vastgelegd door de klant

en komt deze overeen met de kasstromen per activiteit. De betaalmomenten, daarentegen,

hangen af van de concreet gekozen eindtijden per activiteit, gekozen door de aannemer in

het gebruikte schema.

Hoofdstukken 3 & 4 behandelen andere betalingsmodellen, waar de klant de betaal-

momenten vastlegt in plaats van de groottes van de betalingen. De klant kan bijvoorbeeld

vooropstellen dat de aannemer elke maand betaald wordt, terwijl de grootte van de beta-

lingen afhangt van het werk dat uitgevoerd is door de aannemer in elke maand. Ook kan de

klant opleggen dat de betalingen afhangen van de voortgang van het project in functie van

gecreërde waarde of van de gemaakte kosten door de aannemer. In beide laatste gevallen

kan de aannemer dan zowel de betaalmomenten als -hoeveelheden bepalen, maar zijn er

andere beperkingen opgelegd. In zowel hoofdstuk 3 als 4, gaan we bovendien verschillende

alternatieve uitvoeringsmogelijkheden voor elke activiteit in beschouwing nemen. Deze

alternatieven zorgen voor verschillende combinaties van duurtijd en middelenvraag per ac-

tiviteit, uit de welke telkens één dient gekozen te worden per activiteit. Als gevolg hiervan

heeft de aannemer een grotere flexibiliteit bij het plannen.

In hoofdstuk 5 introduceren we kapitaal als middel voor de aannemer. De bijkomende

beperking met betrekking tot kapitaal stelt dat dit nooit negatief mag worden tijdens het

project. Anders heeft de aannemer immers geen geld meer om het project verder uit te

voeren. Het beschikbare kapitaal hangt af van de initieel beschikbare hoeveelheid, maar

ook van de kas in- en uitstromen, die respectievelijk zorgen voor toenames en afnames.

We gebruiken een algemeen model om de beschikbaarheid van kapitaal in een project te

bepalen en bëınvloeden. Hierbij is het cruciaal om de activiteiten zodanig te plannen

dat de volgorde toelaat dat er telkens voldoende kapitaal beschikbaar is om met latere

activiteiten te starten. Belangrijke inzichten worden aangeboden voor de aannemer, opdat

deze kan bepalen wat het belangrijkst is bij het plannen van het project, namelijk de NAW

optimaliseren of een gunstige kaspositie waarborgen.

Hoofdstuk 6 zorgt voor de integratie van de middelenbeschikbaarheid in het plannings-

proces. Als gevolg, kan de NAW van het project geoptimaliseerd worden samen met de

gebruikskosten van de middelen, eerder dan beide los van mekaar te behandelen. Belang-

rijk hierbij is dat door de integratie van beide stappen, dit een efficiënter middelengebruik

bij de aannemer toelaat. Deze gaat immers enkel het benodigd aantal middelen aan een

project toekennen, gegeven de opgelegde beperkingen en de NAW doelstelling, eerder dan

Nederlandstalige samenvatting vii

een (ruwe) schatting maken zoals in eerdere hoofdstukken het geval was.

Tot slot, geven we in hoofdstuk 7 een samenvatting van het onderzoek, samen met de

belangrijkste bevindingen, en formuleren we een antwoord op de gestelde onderzoeksvra-

gen. We geven ook aan wat mogelijke pistes zijn voor toekomstig onderzoek rond NAW

optimalisatie binnen project planning.

Table of Contents

Dankwoord i

Nederlandstalige samenvatting v

1 Introduction 1

1.1 What does project management entail? . 2

1.2 Research contribution . 3

1.2.1 General concepts in project scheduling 4

1.2.2 Cash flows in project scheduling . 5

1.2.3 Research questions . 6

1.2.4 Chapter overview . 8

2 A new scheduling technique for the resource–constrained project schedul-

ing problem with discounted cash flows 11

2.1 Introduction . 12

2.2 Literature overview . 13

2.3 Problem formulation . 14

2.4 Schedule generation . 15

2.4.1 Initial schedule and deadline feasibility 15

2.4.2 Activity move rules . 17

2.4.2.1 Network–based moves . 17

2.4.2.2 Schedule–based delays . 21

2.5 Genetic algorithm . 23

2.5.1 Representation . 24

2.5.2 Initial population . 24

2.5.3 Selection . 24

2.5.4 Crossover . 25

2.5.5 Mutation . 25

2.5.6 Evaluation and population update 25

ix

x Table of Contents

2.6 Computational results . 26

2.6.1 Configuration of the algorithm . 26

2.6.2 Comparison with literature . 29

2.7 Conclusions . 33

3 Payment models and net present value optimization for resource–constrained

project scheduling 35

3.1 Introduction . 36

3.2 Literature overview . 37

3.2.1 Single–mode . 37

3.2.2 Multi–mode . 37

3.3 Problem description . 40

3.3.1 Payments at activities’ completion times 40

3.3.2 Progress payments . 41

3.3.3 Payments at event occurrences . 42

3.3.4 Problem complexity & classification 42

3.4 Schedule generation . 43

3.4.1 Initial schedule . 43

3.4.1.1 Mode improvement . 43

3.4.1.2 Schedule construction . 45

3.4.2 Activity move rules . 45

3.4.2.1 NPV–profiles . 47

3.4.2.2 Network–based moves . 48

3.4.2.3 Schedule–based moves . 52

3.4.2.4 Example . 52

3.5 Genetic algorithm . 54

3.5.1 Representation . 55

3.5.2 Preprocessing . 55

3.5.3 Initial population . 56

3.5.4 Selection . 56

3.5.5 Crossover . 56

3.5.6 Mutation . 56

3.5.7 Evaluation and population update 57

3.6 Computational results . 57

3.6.1 Test data . 57

3.6.2 Algorithm configuration . 58

3.6.2.1 Parameter testing . 59

Table of Contents xi

3.6.2.2 Mode improvement . 60

3.6.2.3 Activity move rules . 61

3.6.3 Best known results . 62

3.7 Conclusions . 67

4 Metaheuristics for the discrete time/cost trade–off problem with net

present value optimization and different payment models 69

4.1 Introduction . 70

4.2 Problem definition . 71

4.2.1 Progress–based payment pattern . 72

4.2.2 Expense–based payment pattern . 75

4.2.3 Time–based payment pattern (progress payments) 76

4.2.4 Example . 76

4.3 Solution representation & schedule generation 77

4.3.1 Mode list and deadline–feasibility . 78

4.3.2 Finish time list . 79

4.3.3 Slack list . 80

4.3.4 NPV improvement . 82

4.4 Genetic algorithm . 83

4.4.1 Preprocessing . 84

4.4.1.1 Initial population . 84

4.4.1.2 Selection . 85

4.4.1.3 Crossover . 85

4.4.1.4 Mutation . 85

4.4.1.5 Population evaluation & update 85

4.5 Computational results . 86

4.5.1 Test data . 86

4.5.2 Algorithm configuration . 87

4.5.3 Comparison with literature . 89

4.6 Conclusions & future research . 92

5 Capital– and resource–constrained project scheduling with net present

value optimization 95

5.1 Introduction . 96

5.2 Literature overview . 97

5.3 Problem definition . 99

xii Table of Contents

5.3.1 The capital–constrained project scheduling problem with discounted

cash flows . 99

5.3.2 The capital– and resource–constrained project scheduling problem

with discounted cash flows . 102

5.4 Scheduling techniques with capital constraints 105

5.4.1 A scheduler for the CCPSPDC . 105

5.4.1.1 Initial schedule . 105

5.4.1.2 Capital feasibility evaluation 106

5.4.1.3 NPV improvement . 106

5.4.2 A scheduler for the CRCPSPDC . 107

5.4.2.1 Initial schedule . 107

5.4.2.2 Capital feasibility improvement 108

5.4.2.3 NPV improvement . 113

5.5 Metaheuristics . 114

5.6 Computational results . 116

5.6.1 Test data . 116

5.6.2 Algorithm configuration . 118

5.6.2.1 Algorithm parameters . 118

5.6.2.2 CCPSPDC . 119

5.6.2.3 CRCPSPDC . 121

5.6.3 Discussion & comparison . 124

5.6.4 Managerial insights . 129

5.7 Conclusions & future research . 131

5.A Appendix . 133

5.A.1 Example 1 . 133

5.A.2 Example 2 . 136

6 The resource availability cost problem with net present value objective139

6.1 Introduction . 140

6.2 Problem definition . 141

6.3 A genetic algorithm for the RACPDC . 142

6.3.1 Preprocessing . 143

6.3.2 Solution representation . 144

6.3.3 Decoding procedure . 144

6.3.3.1 Initial schedule & deadline feasibility 145

6.3.3.2 Resource usage reduction 145

6.3.3.3 NPV improvement . 146

Table of Contents xiii

6.3.4 The genetic algorithm . 147

6.4 Results . 148

6.4.1 Algorithm configuration . 149

6.4.2 Analysis RACP . 149

6.4.3 Analysis RACPDC . 151

6.5 Conclusions & future research . 153

7 Conclusions & recommendations for future research 155

7.1 Conclusions . 156

7.2 Recommendations for future research . 158

References 161

List of Figures

1.1 Three dimensions of Dynamic Scheduling (Vanhoucke, 2012). 3

1.2 Project Life Cycle (PMBOK, 2004). 3

1.3 Overview of the research on project scheduling with NPV optimization. . . 7

2.1 Overview of the research on project scheduling with NPV optimization in

chapter 2. 12

2.2 Schedule generation flow. 16

2.3 Network & initial schedule example 1. 18

2.4 Network–based delays example 1. 20

2.5 Schedule–based delays example 1. 22

2.6 Network, optimal and suboptimal schedule example 2. 23

3.1 Overview of the research on project scheduling with NPV optimization in

chapter 3. 36

3.2 Schedule generation flow. 43

3.3 Network & initial schedule example. 47

3.4 Activity profit curve PP and PEO. 48

3.5 Flow of NPV improvement. 51

3.6 Schedule examples PP model. 54

3.7 Genetic algorithm: procedure. 55

4.1 Overview of the research on project scheduling with NPV optimization in

chapter 4. 70

4.2 Example data & schedule. 78

4.3 Flowchart schedule generation. 79

4.4 Flowchart genetic algorithm. 84

4.5 Convergence GA–SL algorithm (PBPP). 88

4.6 Summary insights. 93

xv

xvi List of Figures

5.1 Overview of the research on project scheduling with NPV optimization in

chapter 5. 96

5.2 History of the max–NPV problem and its extensions. 98

5.3 Example applications of model CCPSPDC. 101

5.4 Data example. 103

5.5 Schedules example. 104

5.6 Schedule generation flow CCPSPDC. 105

5.7 Schedule generation flow CRCPSPDC. 107

5.8 Capital feasibility improvement flow. 110

5.9 Convergence GA. 125

5.10 Impact of single–factor effects OS, RC and CC on %C and AvNPV (model

2). 131

5.11 Impact of two–factor cross effects OS, RC and CC on %C and AvNPV

(model 2). 132

5.12 Data and initial schedule example 1. 134

5.13 Schedules example 1 after network– & schedule–based capital feasibility

improvement. 135

5.14 Alternative schedule example 1. 136

5.15 Data and schedules example 2. 137

6.1 Overview of the research on project scheduling with NPV optimization in

chapter 6. 140

6.2 Flowchart decoding procedure . 144

6.3 Insights . 153

7.1 Overview of the research on project scheduling with NPV optimization. . . 156

List of Tables

1.1 Contents of different chapters. 7

2.1 Parameters dataset. 26

2.2 Parameters of the penalty function. 27

2.3 Comparison of schedule step combinations. 28

2.4 Comparison between GA1, GA2 and 5,000 randoms. 29

2.5 Comparative computational results part 1 (5,000 schedules). 30

2.6 Comparative computational results part 2 (5,000 schedules). 31

2.7 Comparative computational results 12,500 schedules. 33

2.8 Computation times 12,500 schedules. 33

3.1 Literature overview MRCPSPDC. 39

3.2 Data example. 46

3.3 Overview of notations activity move rules. 52

3.4 Parameter settings of test instances. 58

3.5 Algorithm parameters. 59

3.6 Parameters penalty function (3.13). 60

3.7 Applicability improvement methods. 60

3.8 Added value of mode improvement. 61

3.9 Added value of activity move rules (average % improvement). 62

3.10 Best known results single–mode. 63

3.11 Best known results MMLIB. 64

3.12 Best known results multi–mode PSPLIB. 65

3.13 Solutions makespan minimization multi–mode. 66

3.14 Results multivariate regression. 67

4.1 Overview of notations. 72

4.2 Parameter settings of test instances. 86

4.3 Algorithm parameters. 87

xvii

xviii List of Tables

4.4 Comparison of two repair methods FTL. 87

4.5 Comparison of two representations. 87

4.6 Added value of NPV improvement. 88

4.7 Comparison with literature: average NPV. 91

4.8 Comparison with literature: computation times (s). 91

5.1 Literature overview max–NPV problem. 98

5.2 Overview of notations capital feasibility improvement. 110

5.3 Parameter settings of test instances. 117

5.4 Penalty function parameters. 118

5.5 Metaheuristic parameters. 119

5.6 Added value NPV improvement CCPSPDC. 120

5.7 Comparison of metaheuristics CCPSPDC. 120

5.8 Computation times (s). 120

5.9 Added value capital feasibility improvement CRCPSPDC (%C–Feas). . . . 121

5.10 Added value NPV improvement CRCPSPDC. 122

5.11 Comparison of metaheuristics CRCPSPDC. 122

5.12 Additional comparison of metaheuristics CRCPSPDC (model 2). 124

5.13 Comparison with literature CCPSPDC. 127

5.14 Best results CRCPSPDC. 128

5.15 Parameter settings insights. 129

6.1 Parameter testing. 149

6.2 Comparison RACP30 (%AvImpr). 150

6.3 Comparison PSPLIB (%AvImpr). 151

6.4 Local search comparison NPV improvement (AvNPV). 152

6.5 Final results RACPDC (AvNPV). 152

1
Introduction

1

2 Chapter 1

1.1 What does project management entail?

A broad definition of project management can be given as follows: “Project manage-

ment is the discipline of planning, organizing and managing resources to bring about the

successful completion of specific project goals and objectives” (Vanhoucke, 2012). From

this definition of project management, three crucial characteristics can be determined:

• A project has specific goals and objectives. With each project we want to

achieve certain objectives, e.g. build a new bridge crossing the Leie for both motor-

ized vehicles and pedestrians.

• A project is finite in runtime. A project has a clear start and end, which is in

stark contrast with e.g. a production line. E.g. the work on a new bridge has a

predefined number of steps which have to be completed. Once all steps involved are

finished, the project is terminated.

• Project management involves planning of resources. If we aim to build the

aforementioned bridge, we have to manage resources such as workers and machinery.

We have to determine when each resource is required, at what level and for how long.

As a general framework for project management, we briefly discuss two possibilities.

Together, both options allow for broad overview of the steps involved in project manage-

ment as a whole. The first framework is Dynamic Scheduling, of which the three dimensions

are displayed in figure 1.1 (Vanhoucke, 2012), and summarized along the following lines.

• Baseline Scheduling: establish a start and end time for each of the activities in the

project. Relations between the activities and the resource demands of each activity

are taken into account, given a predefined scheduling objective.

• Schedule Risk Analysis: consider the strong and weak points of the baseline

schedule, and determine the impact of unforeseen events on the project schedule and

objective.

• Project Control: determine the project performance during its execution both

in terms of duration and cost. Update and adapt the project schedule based on

information from the Baseline Scheduling and Schedule Risk Analysis parts.

The second framework is the Project Life Cycle (PMBOK, 2004), as shown in figure

1.2. Six distinct phases can be observed.

• Concept: determine the need for and general objective of a project.

1.2. RESEARCH CONTRIBUTION 3

Dynamic
Scheduling

Baseline
Scheduling

Schedule
Risk

Project
Control

Figure 1.1: Three dimensions of Dynamic Scheduling (Vanhoucke, 2012).

• Definition: delineate the individual project activities, the relations between the

activities, and the specific goals of the project.

• Scheduling: construct a timetable for the project based on the requirements of the

definition phase.

• Execution: implementation of the project activities.

• Control: evaluate the performance and take corrective actions if needed (feedback

loop in figure 1.2).

• Termination: complete the project and do a final evaluation of its performance.

Concept Definition Scheduling Execution Control Termination

Feedback

Figure 1.2: Project Life Cycle (PMBOK, 2004).

1.2 Research contribution

In this section, we first provide details with respect to some general concepts on project

scheduling and cash flows. The research contribution of this PhD is subsequently high-

4 Chapter 1

lighted, based on the models used for payments. Finally, an overview of the different

chapters is included.

1.2.1 General concepts in project scheduling

The focus of this PhD is on project scheduling, which implies that our research re-

volves around the Baseline Scheduling part of Dynamic Scheduling (figure 1.1) and around

the Scheduling phase of the Project Life Cycle (figure 1.2). A project can typically

be represented by a directed graph or network G(N,A) with N used for the project

activities or nodes and A the precedence relations or arcs between the nodes N . We

employ the activity–on–the–node (AoN) representation and assume a time–lag of zero

for the precedence relations. No preemption of activities is allowed. Each activity i

(i ∈ N = {1, . . . , n}) has a duration di, and a resource demand of rik of type k. Each

renewable resource type k (k ∈ R = {1, . . . , |R|}) has a limited availability of ak. Addi-

tionally, a start dummy 0 and end dummy n + 1 are included. A schedule corresponds

with an assignment of finish times for all activities.

The resource–constrained project scheduling problem (RCPSP) aims to minimize project

makespan subject to precedence and renewable resource restrictions. The RCPSP has been

extensively discussed in literature, but it is a relatively basic problem with assumptions

which may not always be applicable in practice (Hartmann and Briskorn, 2010). However,

several extensions have been proposed and discussed in literature. Hartmann and Briskorn

(2010) provide a recent overview on extensions of the RCPSP, and distinguish between

activity concepts, temporal constraints, resource constraints and the objective.

• Activity concepts: No preemption, or interruption of an activity once it has been

started, is allowed in the RCPSP. Other activity concepts aside from preemption are

setup costs and multiple activity modes. In this PhD, we assume no preemption is

allowed, but include multiple activity modes in several of the chapters.

• Temporal constraints: The RCPSP assumes that only minimal time lags of zero

between activities are imposed, i.e. an activity can start once all of its predecessors

have been completed. This is also called a finish–start precedence relation with a

minimal lag of zero. Several alternatives exist in literature, e.g. maximum time lags

and release dates, but in the research presented here, we always assume minimal

time lags of zero.

• Resource constraints: In the RCPSP only one type of resources is used, namely

renewable ones. These resources are called renewable because their availability equals

full capacity in every time period. Examples are manpower and machine hours. We

1.2. RESEARCH CONTRIBUTION 5

include renewable resources, but also discuss two other types of resources. Non–

renewable resources have a limited fixed available for the entire project, and only

need to be considered in a multi–mode context. Examples are the available hours

of a manager for a project and raw materials available. Cumulative resources have

a variable availability, which is not necessarily the same after the completion of an

activity (Neumann and Schwindt, 2002). Examples of a cumulative resource are

inventory and capital.

• Objective: As stated earlier, the objective of the RCPSP is makespan minimization.

However, several other objectives exist such as total cost minimization, resource idle

time minimization and resource levelling. In this PhD, the focus lies on net present

value (NPV) optimization, subject to different types of restrictions. As a result, a

cash inflow ci,in (> 0) and a cash outflow ci,out (< 0) are assigned to each activity.

1.2.2 Cash flows in project scheduling

In NPV optimization, the activity cash flows are discounted based on a discount rate

and the occurrence of the cash flows. The timing and size of these cash flows, however,

often depend on a negotiation between the client and contractor of a project. The client

is the party receiving the benefits and paying for the execution of the project, whereas the

contractor is the party responsible for the execution of the project. In this PhD, we assume

that the negotiations between both parties have been completed, and we employ the con-

tractor’s point of view. Hence, the objective is to optimize the contractor’s NPV, given the

project characteristics (i.e. activity, temporal and resource specifications) and restrictions

with respect to the timing and/or size of cash flows. Additionally, a project deadline is

imposed, since otherwise negative cash flows may be delayed indefinitely, resulting in the

project never being completed.

The research presented here, tackles different models for the timing and size of both

cash in– and outflows. The timing of cash flows determines when payments are received

from the client (cash inflows) and when payments are due to e.g. subcontractors (cash

outflows), whereas the size regulates the amount to be received or paid respectively. The

distinction can be made between three general classes of payment models:

1. The size of payments is determined in advance, but the timing depends on the

schedule constructed. In this case, the contractor can influence the occurrence times

of payments by changing the finish times of activities, but the size of the payments

always equals the activity cash flows. This model is called payments at activities’

completion times (PAC) in literature.

6 Chapter 1

2. The timing of payments is set, but the size depends on the schedule, namely on

the work done since the previous payment. This model assumes payments occur at

regular intervals, e.g. every 2 weeks, and is called progress payments (PP). A variant

exists in which payments occur at irregular intervals, which is called payments at

event occurrences (PEO). In both cases, payments are linked to the progress of the

project in terms of time. An extreme case is the lump sum payment (LSP) model,

in which only one payment occurs upon project completion.

3. Both the size and timing depend on the schedule of the contractor. In this case,

several possibilities exist. First, the contractor is free to optimize their NPV as long

as a predefined number of payments is guaranteed (see e.g. Dayanand and Padman

(1997)). Second, the contractor may impose that progress is measured differently

than in the PP and PEO models, namely based on the created value for the client

or based on the cost incurred by the contractor (see e.g. He et al. (2009b)). These

models are called the progress–based payment pattern (PBPP) and expense–based

payment pattern (EBPP) respectively.

Figure 1.3 provides an overview of the models discussed in this book, for both cash in–

and outflows, and is repeated at the start of each chapter. The figure shows the distinction

between the three general classes, namely timing, size and timing & size of cash flows. We

apply five different models for the cash inflows of activities. For cash outflows, however,

in literature only the PAC model is used. As a result, we start with this model for cash

outflows, but introduce a general model for cash outflows as part of capital management

for the contractor in chapter 5, whereas resource usage costs are included in chapter 6. The

LSP model is not discussed in this PhD, because this model corresponds with a RCPSP

in which all activities with a negative cash flow should be scheduled as late as possible,

given the obtained makespan. Hence, we believe no additional research is needed for the

LSP model.

1.2.3 Research questions

The complex payment models highlight the need for specialized scheduling techniques,

which are currently lacking in literature, in particular for problems of a realistic size (e.g.

50 or more activities). Hence, the goal of this PhD is as follows: we aim to analyze the

models discussed above in detail, propose new scheduling techniques to handle the inherent

complexity, and make the models more realistic by including e.g. capital management on

the side of the contractor. We focus on heuristic optimization to allow for a greater degree

of complexity and to be able to construct good schedules in reasonable time. The following

research questions (RQ) summarize the goal of the PhD:

1.2. RESEARCH CONTRIBUTION 7

Cash in

Cash out

Timing Size Timing & size

Payments at activities’
completion times (PAC)

Progress payments
(PP)

Payments at event
occurences (PEO)

Progress based payment
pattern (PBPP)

Expense based payment
pattern (PBPP)

Payments at activities’
completion times (PAC)

General capital modelResource usage costs

Figure 1.3: Overview of the research on project scheduling with NPV optimization.

• RQ1: What is a good scheduling technique to use for the timing of cash flows?

• RQ2: What is a good scheduling technique to use for the size of cash inflows?

• RQ3: How can these schedulers be applied in case of different types of activity

trade–offs?

• RQ4: How can cash outflows and capital be managed for the contractor, under

different assumptions?

• RQ5: How can resource usage costs be optimized and integrated in NPV optimiza-

tion?

With each of the proposed methodologies in the different chapters we aim to answer one

or more of these research questions. The added value from a methodological point of view

lies in on one or more of the following: solution representation (R), scheduling techniques

(S), and metaheuristics (M). The contents of the different chapters is summarized in table

1.1, and a more detailed chapter overview is given in section 1.2.4.

Chapter Focus Methodology
R S M

2 RQ1 X X
3 RQ2 & 3 X
4 RQ2 & 3 X X
5 RQ4 X X
6 RQ5 X X

Table 1.1: Contents of different chapters.

8 Chapter 1

1.2.4 Chapter overview

In chapter 2 (Leyman and Vanhoucke, 2015), we extend the RCPSP by including the

PAC model for both the cash in– and outflows, and aim to answers RQ1. As a result, we

optimize the project NPV subject to precedence and resource restrictions, and a deadline.

We propose a new scheduling technique, which moves sets of activities based on their

combined or cumulative NPV. These sets can be constructed based on the project network

or based on the schedule under consideration. This distinction allows the procedure to

focus on either the precedence or resource restrictions. Two variants of a metaheuristic

are analyzed and tested. We successfully show the added value of our scheduler by out-

performing two benchmarks from literature. Both the methods employed and the results

obtained in this chapter serve as a starting point for the subsequent chapters.

In chapter 3 (Leyman and Vanhoucke, 2016b), we build upon the previous chapter

and focus on RQ2 and RQ3. The PP and PEO models for the cash inflows are included

on top of the PAC model, whereas cash outflows are paid at activity completion in all

three cases. A more complex variant of the scheduler of chapter 2 is introduced, which

considers the peaks in the NPV profiles of activities. The problem is also extended to

its multi–mode variant, by including trade–offs between different execution modes for

each activity. Each activity mode considers different requirements for both renewable

and non–renewable resources and provides a different activity duration. The inclusion of

non–renewable resources because of the different activity modes, increases complexity with

respect to the project resources. The results show the strong added value of the scheduling

techniques, both in a single–mode and multi–mode context.

In chapter 4 (Leyman et al., 2016), we discuss three variants to the PAC model of

chapter 2, namely the PP, PBPP and EBPP models. Unlike in the previous chapters, the

payment models are not applied in the context of the RCPSP, but rather in a discrete

time/cost trade–off problem (DTCTP). The activity modes in the DTCTP consider only

the activity duration and a single non–renewable resource, and can as such be seen as a

more specific application of multi–mode scheduling. Given the nature of the three models

and the existence of different activity modes in the DTCTP, we again aim to answer

RQ2 and RQ3, but consider these questions from a different angle than in chapter 3.

Aside from the models, the main focus of this chapter is to compare different solution

representations and their specific schedulers. Our results are favorably compared with

literature, and we highlight insights for contractors.

In chapter 5 (Leyman and Vanhoucke, 2016a), we propose a general model for the

cash outflows and include capital management for the contractor (RQ4). The cash flow

distribution model can be seen as a generalized variant of the payment models, which uses

1.2. RESEARCH CONTRIBUTION 9

the cash outflows instead of the cash inflows of each activity. The inclusion of capital

furthermore states that at no point in time the cash balance, or available capital, can be

negative. Hence, cash outflows can only be paid if sufficient capital is available. Both the

problem with and without renewable resources are discussed separately, and a different

scheduler is proposed for each problem. Both schedulers reduce capital shortages by

delaying cash outflows such that these cash flows can be compensated by cash inflows of

other activities. A clear added value of the capital feasibility method is demonstrated in

the results, and three metaheuristics with each two variants are implemented to analyze

their performance. Finally, we provide managerial insights to contractors with respect to

their capital management and the integration with NPV optimization.

In chapter 6 (Leyman and Vanhoucke, 2016c), the question is posed whether it makes

sense to consider the renewable resource availability as a given (RQ5). Hence, we assign

a cost to each renewable resource and include this cost in the NPV objective, rather than

decide on the amount of a resource made available first and schedule the activities second.

These resource usage costs are assigned at the start of the project (fixed timing), but their

size depends on the schedule. As a result, resource usage costs are included as a form of

variable size of cash outflows in figure 1.3. We design a resource cost reduction step, which

is integrated with the scheduler of chapter 2. Furthermore, we compare the results with

those of the two solution representations of chapter 4. Insights are provided in the

importance of resource costs and activity cash flows.

Finally, in chapter 7, conclusions are drawn from the research presented in this book,

and the five research questions are revisited. Recommendations for future research are

also discussed in this chapter.

10 Chapter 1

Publications in international journals

• Chapter 2: Leyman, P. & Vanhoucke, M. (2015). A new scheduling technique for

the resource–constrained project scheduling problem with discounted cash flows.

International Journal of Production Research, 53(9): 2771–2786.

• Chapter 3: Leyman, P. & Vanhoucke, M. (2016b). Payment models and net present

value optimization for resource-constrained project scheduling. Computers & Indus-

trial Engineering, 91: 139–153.

• Chapter 5: Leyman, P. & Vanhoucke, M. (2016a). Capital– and resource–constrained

project scheduling with net present value optimization. European Journal of Oper-

ational Research, Article in press.

Unpublished working papers

• Chapter 4: Leyman, P., Van Driessche, N. & Vanhoucke, M. (2016). Metaheuristics

for the discrete time/cost trade–off problem with net present value optimization and

different payment models. Working paper.

• Chapter 6: Leyman, P. & Vanhoucke, M. (2016c). The resource availability cost

problem with net present value objective. Working paper.

2
A new scheduling technique for the

resource–constrained project scheduling problem

with discounted cash flows

In this chapter, we discuss the resource–constrained project scheduling problem with

discounted cash flows (RCPSPDC). We introduce a new schedule construction technique

which moves sets of activities to improve the project net present value (NPV) and consists

of two steps. In particular the inclusion of individual activities into sets, which are then

moved together, is crucial in both steps. The first step groups activities based on the

predecessors and successors in the project network, and adds these activities to a set based

on their finish time and cash flow. The second step on the contrary does so based on the

neighboring activities in the schedule, which may but need not include precedence related

activities. The proposed scheduling method is implemented in a genetic algorithm (GA)

metaheuristic and we employ a penalty function to improve the algorithm’s feasibility with

respect to a tight deadline. All steps of the proposed solution methodology are tested in

detail and an extensive computational experiment shows that our results are competitive

with existing work.

11

12 Chapter 2

2.1 Introduction

The resource–constrained project scheduling problem (RCPSP) has been extensively

discussed in literature in the past few decades. Subsequently, the problem has been covered

in a multitude of extensions and variations (Hartmann and Briskorn, 2010). Whereas the

basic RCPSP and most its extensions focus on total project duration minimization, other

variations aim to minimize resource idle time, minimize project costs or maximize the

project net present value (NPV).

In this chapter, we focus on the RCPSP with discounted cash flows (RCPSPDC)

and aim to maximize a project’s total NPV. The RCPSPDC can be seen as a variant

of the RCPSP in which each activity has a cash flow, which can be either positive or

negative. Furthermore, since the focus is on maximizing the NPV, a deadline is imposed

on the project to avoid that activities with negative cash flows may be delayed indefinitely.

Figure 2.1 shows that the focus is on the PAC model for both cash in– and outflows in

this chapter. From a solution methodology perspective, we develop a new scheduling

technique and integrate it with two variants of a metaheuristic.

Cash in

Cash out

Timing Size Timing & size

Payments at activities’
completion times (PAC)

Progress payments
(PP)

Payments at event
occurences (PEO)

Progress based payment
pattern (PBPP)

Expense based payment
pattern (PBPP)

Payments at activities’
completion times (PAC)

General capital modelResource usage costs

Figure 2.1: Overview of the research on project scheduling with NPV optimization in chapter 2.

The remainder of this chapter is organized as follows. Section 2.2 starts with a lit-

erature overview of the existing papers on the RCPSPDC. In section 2.3 we discuss the

mathematical problem formulation, whereas in section 2.4 we go into detail about our

schedule generation procedure and illustrate all of its steps on a problem example. Sec-

tion 2.5 gives an overview of our proposed metaheuristic and results of a computational

experiment are shown in section 2.6. We finish with a conclusion in section 2.7.

2.2. LITERATURE OVERVIEW 13

2.2 Literature overview

Overviews of the existing literature on the RCPSPDC and its extensions have been

given by Herroelen et al. (1997) and Mika et al. (2005). In this manuscript we briefly

discuss all papers to–date which handle the RCPSPDC as formulated in section 2.3. We

first discuss the existing exact methods, then the multi–pass heuristics, and finally the

metaheuristic procedures.

Exact procedures: Yang et al. (1995) employ a branch–and–bound procedure to solve

the RCPSPDC and make use of a depth–first search. The authors apply node fathoming

rules to reduce the size of the tree and show that these rules significantly reduce computa-

tion times. Icmeli and Erengüç (1996) also propose a branch–and–bound procedure which

introduces additional precedence relations to avoid resource conflicts. Branching is done

according to the minimal delaying alternatives concept proposed by Demeulemeester and

Herroelen (1992) and their results outperform other existing procedures. Another branch–

and–bound procedure is used by Baroum and Patterson (1996) and tested on instances

from Patterson’s dataset, with networks consisting of up to 51 activities. Vanhoucke et al.

(2001b) propose a branch–and–bound procedure for the RCPSPDC based on an exact

recursive method for the resource–unconstrained case. The procedure can solve relatively

small problems to optimality within a limited computation time. Schutt et al. (2012) use

lazy clause generation for the RCPSPDC and come up with three appropriate propagators

for maximizing the NPV. These propagators are tested using a branch–and–bound algo-

rithm and several binary search heuristics. The authors compare their results with those

of Vanhoucke et al. (2001b) and conclude that their proposed method finds both better

and a higher number of feasible solutions than those of the benchmark.

Multi–pass heuristics: Russell (1986) proposed the first heuristic for the RCPSPDC

and uses six rules to solve the problem. The work has shown that heuristics which perform

well for duration minimization do not necessarily provide good results for NPV maximiza-

tion. A backward scheduling method is used by Smith-Daniels and Aquilano (1987), with

a lump–sum payment at activity completion and cash outflows occurring at the start of

each activity.

Metaheuristics: Zhu and Padman (1999) apply a tabu search procedure to the

RCPSPDC and show considerably better results than any single–pass heuristic available.

Kimms (2001) employs Lagragian relaxation and derives tight upper bounds. Based on

these upper bounds feasible solutions are constructed, which are shown to be very close to

the optimal solutions. Selle and Zimmermann (2003) schedule large–scale projects subject

to resource constraints and temporal constraints. A new bi–directional scheduling ap-

proach is proposed which simultaneously schedules activities forward and backward. The

14 Chapter 2

new approach manages to outperform existing scheduling approaches. Vanhoucke (2010)

employs a scatter search metaheuristic and makes use of a bi–directional schedule gener-

ation scheme and a recursive search method to improve the project NPV. The results are

compared with both the exact procedure of Vanhoucke et al. (2001b) and several different

metaheuristics coded by the author, including the genetic algorithm of Vanhoucke (2009).

It is concluded that the proposed method outperforms all others. Next, Gu et al. (2012)

discuss the RCPSPDC for large project instances. The authors apply Lagrangian relax-

ation to projects with up to 11,000 activities and employ three improvements to ensure

scalability of their algorithm. These steps involve the relaxation of precedence constraints,

parallel implementation and a hierarchical subgradient algorithm. The results produced

are highly competitive given a reasonable computation time. Gu et al. (2013) improve

on the results of Schutt et al. (2012) by making use of a Lagrangian relaxation based

forward–backward improvement heuristic, to ensure tight deadlines are met. The authors’

forward–backward method used is that of Li and Willis (1992), who use the activity start

(finish) times of the previously generated forward (backward) schedule to construct the

current schedule. The authors compare their procedure with the algorithm of Vanhoucke

(2010) based on a 5 minutes time limit and find that their method performs best. It

is however important to note that the results of Vanhoucke (2010) are based on a 5,000

schedule limit instead of a run time restriction and have an average computation time of

2.2 seconds.

Based on this overview, we conclude that the papers of Vanhoucke (2010) and of Gu

et al. (2013) are the most recent ones which discuss a metaheuritic solution methodology

for the RCPSPDC. Thus, we will compare the results of our algorithm with the procedures

of these papers in section 2.6.

2.3 Problem formulation

A project can be represented as an activity–on–the–node (AoN) network G(N,A)

with N representing the nodes or project activities, and A the network arcs or precedence

relations between the activities. For the precedence relations a time–lag of zero is assumed.

The activities are numbered from the start dummy 0 to the end dummy n + 1. Each

activity i (i ∈ N = {1, . . . , n}) has a duration di, renewable resource demand rik and

cash flow ci. The latter is composed by discounting the pre-specified cash flow cfit of an

activity i at time t to its finish time and can be mathematically formulated as follows:

ci =
∑di

t=1 cfit · eα(di−t). Each renewable resource k has a limited constant availability of

ak. The decision variables fi contain the finish time for each activity i. Finally, the project

has a deadline δn+1.

2.4. SCHEDULE GENERATION 15

The RCPSPDC was proven to be NP–hard by Blazewicz et al. (1983) and can be

represented as m, 1|cpm, δn, ci|npv according to the classification scheme of Herroelen et al.

(1999), and as PS|prec|
∑
CFi β

Ci according to Brucker et al. (1999).

Mathematically, the problem is conceptually formulated as follows:

Maximize

n∑
i=1

ci · e−αfi (2.1)

Subject to:

fi ≤ fj − dj , ∀(i, j) ∈ A, (2.2)∑
i∈S(t)

rik ≤ ak, k = 1, . . . , R; t = 1, . . . , δn+1, (2.3)

fn+1 ≤ δn+1, (2.4)

fi integer, ∀i ∈ N (2.5)

The objective function (2.1) aims to optimize the project NPV, whereas constraints

(2.2) ensure precedence feasibility. Constraints (2.3) impose the renewable resource limits

with S(t) the set of activities in progress at time t. Constraint (2.4) enforces deadline

feasibility and finally constraints (2.5) ensure the decision variables are integer.

2.4 Schedule generation

In this section, we discuss the schedule generation employed by the metaheuristic

(section 2.5) and all of the included steps. A distinction is made between two variants of

the scheduling approach based on the percentage of activities with a negative cash flow. If

this percentage is lower than or equal to 50%, we start with a forward schedule generation

scheme (SGS) and subsequently delay activities. If more than 50% of the activities have a

negative cash flow, a backward SGS is first applied followed by the advancing of activities.

The overall flow of the schedule generation can be seen in figure 2.2. The subsequent

subsections go into detail about each individual step of the scheduling process.

2.4.1 Initial schedule and deadline feasibility

The first step in the scheduling process is the construction of an initial deadline–feasible

schedule. To construct this schedule we use the well–known forward serial schedule gen-

eration scheme (SSGS) (Kelley, 1963; Kolisch, 1996) if no more than half of the activities

have a negative cash flow. If the result is feasible with respect to the project deadline, we

continue with the first set of activity move rules as described in section 2.4.2. If however,

16 Chapter 2

Serial
SGS

Deadline
feas?

Schedule
improve

Deadline
feas?

Activity
move
rules 1

Repeat until
no change

Use
penalty
function

Repeat until
no change

Activity
move
rules 2

Start End
Y

Y
N

N

Figure 2.2: Schedule generation flow.

the schedule is infeasible (D–Infeas) we apply the forward–backward improvement method

of Li and Willis (1992) to reduce the project duration, until no further improvement is

possible. If the resulting schedule after applying Li and Willis (1992) is feasible, we pro-

ceed with the activity move rules. If even after the schedule improvement method the

schedule is still infeasible, we add the following penalty function to the project NPV:NPV = −Y1 +NPVinfeas · Y fn+1−δn+1

2 if NPVinfeas ≥ 0

NPV = −Y1 +
NPVinfeas

Y
fn+1−δn+1
2

otherwise
(2.6)

with Y1 and Y2 variables to be tested in section 2.6.1, and NPVInfeas the NPV of the

D–Infeas schedule.

• Y1 represents a large fixed value which is subtracted from the project NPV to ensure

that the infeasible solution’s NPV is considerably worse than that of any feasible

solution.

• Y2 aims to penalize the NPV based on the difference between the solution’s project

duration and the project deadline. As such this parameter has a fractional value

in order to exponentially reduce the project’s NPV. The value of the parameter

furthermore depends on the absolute value of the NPV, with a higher absolute NPV

requiring a parameter value closer to 1 than a lower absolute NPV.

As an example, assume a project with a total duration of 19, a project NPV of 800

and a deadline of 17. If Y2 = 0.9 we first adjust the NPV by multiplying 800 with 0.919−17

and the remaining NPV is 648. We then subtract Y1 from this value, assume Y1 = 1, 000,

and receive -352. This way the NPV of the D–Infeas project has been reduced from 800 to

-352. If by comparison the project duration is 18 instead of 19, the adjusted NPV would

2.4. SCHEDULE GENERATION 17

be -280. As such, a schedule with a lower deadline violation is penalized less than one

with a higher deadline violation. Both are however reduced to a value well below that of

NPVInfeas.

If the project NPV is on the contrary relatively small, assume 80, and the deadline

is again 17, the corrected NPV would be -935.20 for a project duration of 19 and -928

for a duration of 18. In this case the absolute difference between both corrected values is

much smaller than it was for a larger project NPV (7.2 versus 72). If we however apply a

lower value for Y2, e.g. 0.50, the corrected NPV becomes -980 and -960 respectively. As

a result, the difference between both corrected NPV has increased (20 versus 7.2), more

clearly distinguishing both schedules from one another.

In case more than half of the activities have a negative cash flow, the backward instead

of the forward scheduling approach is selected. If the resulting schedule proves to be

infeasible with respect to the project deadline, we again apply the method of Li and Willis

(1992) until no improvement can be found. The schedule is then once more evaluated. If

it is still D–Infeas we use the penalty function, otherwise we move on to the activity move

rules.

2.4.2 Activity move rules

This subsection gives an overview of the rules applied to delay (advance) activities,

starting from the initial forward (backward) schedule constructed by the SSGS. In order

to illustrate these rules, we use an example which is shown at the top of figure 2.3. We

assume a single renewable resource with an availability of 5 and a project deadline of 22.

The initial schedule, based on the forward SSGS (≤50% negative cash flows), is shown at

the bottom of figure 2.3 with the renewable resource (RR) on the vertical axis and the

time on the horizontal axis. The activities are scheduled according to the priority list (PL)

(1, 2, 3, 4, 6, 7, 5, 8, 9, 10). The initial NPV based on a discount rate of 1% is 25.72 (=

38.82 + 19.22 - 28.82 + 13.85 - 4.30 + 4.62 - 17.56 - 8.61 + 25.06 - 16.54). Note that

the schedule shown is deadline–feasible, and no schedule improvement is needed. Finally,

since we start from a forward schedule, we aim to delay sets of activities.

2.4.2.1 Network–based moves

The first set of rules delays or advances activities based on the precedence relations

in the project network. Depending on whether the initial schedule is an earliest finish

(forward scheduling) or latest finish (backward scheduling) schedule, the procedure aims

to delay or advance activities. First, we discuss the delay algorithm in detail and then we

highlight the differences when activities should be advanced.

18 Chapter 2

1

6

4

7

8

9

i

 ri1, ci

4, 40

1, 20 3, -20

2, 30

2, -10

3

1

7

3

5

di

3

2

10

5

1

3, -20

3, -5

2

4, -30

1

4

3, 15

2, 5

4
a1

t
0

1

2

0

3

4

5

1 2 3 4 6 8 10 12 14 16 185 7 9 11 13 15 17 19

1(+)
4
(+)

2
(+)

NPV=25.72

7(-)

20 21 22

3
(-)

6(+)
8(-)

9(+)

10
(-)

5
(-)

Figure 2.3: Network & initial schedule example 1.

With an initial forward schedule, we delay both individual activities with a negative

cash flows and sets of activities with a negative cumulative NPV (NPVcum). Starting

from the last activity in the PL each activity is evaluated with respect to its cash flow.

If the activity cash flow ci is negative, the activity finish time is not equal to its latest

finish time lfi and a delay is possible based on the successors, the algorithm delays the

activity as much is possible. If however a delay is impossible due to at least one successor

with a start time equal to the activity’s finish time, algorithm 1 is applied. This recursive

method includes all activities which should be delayed together in a set. Starting from the

current activity it adds all successors Si which start immediately after this activity and

then recursively calls the procedure again for each of these successors. For each of those,

all predecessor activities Pi with both a negative cash flow and a finish time not smaller

than the initial activity’s finish time are also added to the activity set. Note that algorithm

1 does not take the predecessors of the start activity into account, because these will be

considered in a next iteration. Once this set is complete and algorithm 1 returns to the

start activity, the cumulative NPV of the set is calculated and evaluated. If it is negative,

the minimum delay is calculated based on the earliest successor not in the set, and this

for all activities in the set. The global minimum of all these minima then constitutes the

maximum allowable delay and can be formulated as follows: ∆ = min{fk − dk − fi|i ∈
setAct, k ∈ Si, k /∈ setAct}. Then each activity in the set has its finish time increased by

this ∆. If the schedule is feasible with respect to the renewable resources the current finish

times are retained. If the schedule is infeasible we decrease ∆ by 1 and continue until we

find a feasible solution or until ∆ reaches 0. When the search for a delay is complete,

the procedure moves on the previous activity in the PL. Finally, the algorithm is repeated

until no more changes occur and the procedure reaches the first activity in the PL without

delaying any activity.

If the initial schedule is a backward one, the goal is to advance both individual activities

with a positive cash flow and sets of activities with a positive cumulative NPV. This states

2.4. SCHEDULE GENERATION 19

Algorithm 1 Get all successors

GetAllSuc (current activity i, start activity k, set[], NPVcum)

∀j ∈ Si
If j /∈ set ∧ fj − dj = fi

Add j to set
Add NPVj to NPVcum
GetAllSuc (j, k, set, NPVcum)

End if
∀j ∈ Pi

If j /∈ set ∧ fj + di = fi ∧ j 6= k ∧ fj ≥ fk ∧ fj < lfj ∧ cj < 0
Add j to set
Add NPVj to NPVcum
GetAllSuc (j, k, set, NPVcum)

End if
Return set, NPVcum

the first major difference with the delay procedure, where we aimed to delay activities. As

a consequence, we now have to consider the finish time of predecessors instead of the start

time of successors when determining the potential change in activity finish time. Finally,

algorithm 1 needs to be inverted to a GetAllPred variant which finds all predecessors of

an activity and any successors with both a positive cash flow and a finish time no more

than that of the start activity.

It is important to note that at most half of the activities are considered for a move.

Recall that we start from a forward (backward) schedule if at most (less than) half of the

activities has a negative cash flow meaning that at most half of the activities has to be

considered for a delay (advance).

To illustrate these rules we go back to the example. Recall that the PL of the example

was (1, 2, 3, 4, 6, 7, 5, 8, 9, 10). Starting from the final activity, we first consider activity

10. Since it has a negative cash flow and no successors it is delayed until time 22. Next is

activity 9 which however has a positive cash flow and is skipped. We move on to activity

8 which has a negative cash flow but cannot be delayed due to its successor 9. Algorithm

1 is used and returns the set {8, 9} since 9 is the only successor of 8. No other activities

are included since 9’s only other predecessor is 7, but 7 finishes 2 time units before the

start of 9. The cumulative NPV of both 8 and 9 is positive so they are not considered

for delay. To further illustrate why only 8 and 9 are in the set, consider the top left of

figure 2.4 which shows the project network but with only those precedence relations which

constitute equalities in the mathematical model of section 2.3. In the figure activity 9 is

only connected to 8, which still has 4 as a predecessor, but this activity is not taken into

account. This way the set is limited to the activities 8 and 9. Next in the PL is activity

5 which has a negative cash flow and whose only successor is 10. As such, activity 5 can

be delayed beyond activity 9 to time 21. Note that due to this delay, the ordering of the

20 Chapter 2

activities in the schedule is changed. After 5 also activity 7 can be delayed because its

only successor is 9 which is scheduled later. Activities 6 and 4 are not delayed because

they have a positive cash flow, whereas 3 cannot be delayed due to the renewable resource

constraint. Finally, activities 2 and 1 are also not eligible for delay because of their positive

cash flow.

Since at least one delay has occurred, the procedure starts again. Activities 10 and 9

can be skipped because the former is scheduled at its latest finish time and the latter has a

positive cash flow. Next is activity 8 which cannot be delayed because of its successor 9. If

algorithm 1 is applied this time, it returns the set {7, 8, 9} because 7 as a predecessor of 9

now has a finish time equal to its successor’s start time. The cumulative NPV of the three

activities is negative and their maximum allowable delay is 1. Since this delay is feasible

with respect to the renewable resource, the three activities are all delayed by 1 time unit.

The top right graph of figure 2.4 illustrates that activity 7 is now also added to the set

because its finish time equals activity 9’s start time and hence both are connected. No

further delays are possible both in this iteration and the procedure’s next, so it terminates.

The resulting schedule can be found at the bottom of figure 2.4.

1

6

4

7

8

93

2

10

5

1

6

4

7

8

93

2

10

5

a1

t
0

1

2

0

3

4

5

1 2 3 4 6 8 10 12 14 16 185 7 9 11 13 15 17 19

1(+)
4(+)

2
(+)

NPV=26.81

7(-)

20 21 22

3
(-)

6(+)
8(-)

9(+)

10
(-)

5
(-)

Figure 2.4: Network–based delays example 1.

2.4. SCHEDULE GENERATION 21

2.4.2.2 Schedule–based delays

The second set of rules delays or advances activities based on neighboring activities in

the project schedule, which can but need not be precedence related. Whereas in section

2.4.2.1 activities were grouped together based on their precedence relations, we here group

activities together based on their neighbors, which means that one activity’s finish time

equals another’s start time. These neighboring activities may be precedence related, but

can also be scheduled one after another because of the renewable resources. This way, the

first set of rules is extended, because these rules may not delay activities due to a resource

conflict with other activities. In such cases, it may however be possible that if all of these

activities would be considered together, in spite of the absence of any precedence relations

between some of them, a delay would be beneficial. Algorithm 2 shows how to find all

such neighboring activities. The manner in which delays occur and with what ∆ are the

same as for the network–based delays in section 2.4.2.1.

Algorithm 2 Get all later neighbors

GetLaterNeighb (current activity i, start activity k, set[], NPVcum)

∀j ∈ N ∧ fi = fj − dj
If j /∈ set

Add j to set
Add NPVj to NPVcum
GetLaterNeighb (j, k, set, NPVcum)

End if
∀j ∈ N ∧ fi − di = fj

If j /∈ set ∧ j 6= k ∧ fj ≥ fk ∧ fj < lfj ∧ cj < 0
Add j to set
Add NPVj to NPVcum
GetLaterNeighb (j, k, set, NPVcum)

End if
Return set, NPVcum

Just like for the first set of rules, we distinguish between a delay and an advance case.

The differences between a forward and backward approach are however the same as those

discussed in section 2.4.2.1 and are hence not repeated here. Obviously, in this case we

also need a reverse version of algorithm 2 to find an activity’s earlier neighbors.

Also, similar to the first set of rules, only at most half of the activities are considered

for a move.

Let us apply this second set of rules to the example. Starting from the back of the PL

and the schedule of figure 2.4 it should be clear that activities 10, 9, 8, 5 and 7 should

not be considered anymore since they cannot be delayed any further. The only remaining

activity with a negative cash flow is 3, but as stated in section 2.4.2.1 there are insufficient

renewable resources available to allow for a delay. This means that the first set of rules

will never delay activity 3 because none of its successors have a start time equal to activity

22 Chapter 2

3’s finish time. If we however apply algorithm 2 we notice that both activities 4 and 6

have a start time equal to 3’s finish time, hence both are added to the activity set. This

way, the resulting set is {3, 4, 6} and has a negative cumulative NPV. The maximum

allowable delay is 1, because of activity 8 as a successor of 4, and is feasible with respect

to the renewable resource. To further illustrate why exactly these activities are included

in the set, consider both graphs at the top of figure 2.5 which show the neighbors of each

activity both before and after the delay.

Although the procedure for this second set of rules is repeated because a change has

occurred, no further improvements are possible. The bottom of figure 2.5 shows the

example schedule after the second set of rules has been applied, which is also the optimal

one.

1

6

4

7

8

93

2

10

5

1

6

4

7

8

93

2

10

5

a1

0

1

2

0

3

4

5

1 2 3 4 6 8 10 12 14 16 185 7 9 11 13 15 17 19

1(+)
4
(+)

2
(+)

NPV=26.92

7(-)

20 21 22

3
(-)

6(+)
8(-)

9(+)

10
(-)

5
(-)

t

Figure 2.5: Schedule–based delays example 1.

Note that for both sets of activity move rules, the activities are considered starting

from the last activity in the PL. This is done to allow the enveloping metaheuristic (section

2.5) to fully exploit its potential. Let us illustrate the potential problems of not using the

discussed approach, but for instance start with the activities which have the smallest

cumulative NPV, based on the example network in figure 2.6. The project deadline is

15, the renewable resource availability is 5 and the discount rate is again 1%. If we start

from an initial schedule with finish times {0, 1, 5, 9, 10, 10} then it should be clear that

improvement is possible, as both activities 4 and 5 have a negative cash flow and are

2.5. GENETIC ALGORITHM 23

only succeeded by the dummy end activity. The optimal solution in this case is to delay

activity 5 to time 15, and delay 4 to 14, as can be seen from the bottom left schedule

in figure 2.6. If we would however employ a heuristic such as the smallest cumulative

NPV first rule, activity 4 will always be delayed first, as can be seen in the bottom right

schedule in figure 2.6. What is worse is that regardless of the activity ordering, meaning

that regardless of which one of both activities has the highest priority and occurs after the

other in the PL, activity 4 will be moved first. This means that not only will our solution

always be suboptimal, it will also always be the same independent of the PL provided by

the metaheuristic. Thus, we have chosen to consider activities for delay in the backward

order of the PL, rather than a static heuristic like the one discussed here. Initial tests with

heuristics such as smallest cumulative NPV first and largest finish time first confirmed this

reasoning.

3

4

5 i

 ri1, ci

3, 40

5, -30

1, -20

4

5

1 di

61

0 0

0, 00, 0

2

1

5, 80

a1

0

1

2

0

3

4

5

1 2 3 4 6 8 10 12 145 7 9 11 13 15

3

2

5

4

NPV=73.52

t

a1

0

1

2

0

3

4

5

1 2 3 4 6 8 10 12 145 7 9 11 13 15

3

2

5

4

NPV=73.96

t

Figure 2.6: Network, optimal and suboptimal schedule example 2.

2.5 Genetic algorithm

Whereas in the previous section the focus was on the schedule generation of a solution,

we here discuss the proposed metaheuristic, namely a genetic algorithm (GA).

The GA was first proposed by Holland (1975) and is inspired by evolutionary biology.

The technique makes use of such operators as selection, crossover and mutation to com-

bine existing solution into new ones, and has already extensively been used in existing

24 Chapter 2

project scheduling literature. A GA typically has a selection operator which selects parent

elements to be combined in new offspring using a crossover operator and which constitutes

the intensification step of the algorithm. A small percentage of these children are then

mutated to diversify the population. Finally, a population update is applied to reduce the

population size by retaining the best parents and replacing the rest by the best children.

We continue this section by going into detail about the selected solution representation,

and then discuss each part of our GA in more detail. The differences between two options

of our GA are discussed in detail in the following subsections.

2.5.1 Representation

In section 2.4.2.2 we emphasized the importance of delaying activities in the order of

the solution’s PL. We can further improve upon this by using the topological order (TO)

instead of the PL representation (Valls et al., 2004, 2003). The TO representation as used

by Debels et al. (2006) not only ensures the ordering of activities is precedence feasible,

but also takes the actual activity start or finish time into account. Once all activity move

rules have been applied to a schedule, its corresponding PL is transformed into a finish

time ordered activity list. Finally, if two activities have the same finish time, we break

ties by randomly selecting one of them to go first in the TO representation.

To illustrate the TO we take another look at the first example. Recall that there, we

started with the PL (1, 2, 3, 4, 6, 7, 5, 8, 9, 10). Based on the final schedule of figure 2.5

the TO representation becomes (1, 2, 3, 6, 4, 7, 8, 9, 5, 10), with 6 randomly chosen from

{4, 6} as tie–breaker to go earlier in the list since both have the same finish time, and 7

randomly chosen from {7, 8}.

2.5.2 Initial population

The initial population is generated by creating random precedence feasible PLs for

each element in the population. Whereas typically the initial population is larger than the

actual population, our tests indicated that better results are achieved by simply copying

the initial population as the start population of the metaheuristic. This initial population

generation is the same for both GA1 and GA2.

2.5.3 Selection

For the selection operator of our GA we have chosen to implement two alternatives.

Selection 1 for GA1 constitutes a four–tournament selection for both parents. This im-

plies that for both the father and mother four elements are randomly selected from the

population, of which in both cases the best one is retained.

2.5. GENETIC ALGORITHM 25

In the case of GA2 we employ an elite selection, which means that the father is always

selected out the pool of best |X2| elements. This does however not mean that the set of best

X2 elements is always the same. Once the population as a whole has been updated, the

set with size |X2| is updated as well since the new elements may contain better solutions.

Each element in the population is evaluated with respect to its NPV and the best |X2|
elements are stored as an elite set. This way this subset always contains the best |X2|
elements once a population update has been done. The mother on the contrary is still

chosen using a four–tournament selection.

Other selection operators for both parents in GA1 and the mother in GA2, such as a

roulette wheel and rank selection were tested, but the selection discussed earlier performed

best.

2.5.4 Crossover

Our crossover operator is a one–point crossover as typically used in a GA, for both GA1

and GA2. We also tested the two–point crossover, the MCUOX (Ulusoy et al., 2001), and

the partially–mapped crossover, but they were all outperformed by the one–point crossover.

2.5.5 Mutation

For both GA1 and GA2 we use the same mutation operator, namely a two–activity

swap. The difference between both algorithms however is the employed mutation rates

R1 and R2. For GA1 we expect that a relatively low mutation rate is sufficient since its

methods correspond with those typically used in literature. GA2 on the other hand requires

a higher rate to serve as counterweight to the elite selection of section 2.5.3 to ensure the

population is diverse enough. Our results of section 2.6.1 confirm these assumptions.

Alternatively, the mutation operators scramble, inversion and insertion were tested,

but they performed worse than the proposed swap operator.

2.5.6 Evaluation and population update

For updating the population we retain the best |X1| parents for GA1 and best |X2| for

GA2. The rest of the parents are replaced by the best newly generated children. Note that

the X2 parameter also determines the size of the pool out of which the father is always

selected in GA2.

26 Chapter 2

2.6 Computational results

In this section, we show and discuss our computational results by first configuring both

GAs, and then by comparing with the best known results from literature.

In terms of test data, we have chosen to use the same projects as employed by Van-

houcke (2010), downloaded from www.projectmanagement.ugent.be. On this site the au-

thor’s solutions, computation times and employed upper bounds are also available for each

datafile. The dataset itself consists of 720 networks with 25, 50, 75 or 100 activities. Each

datafile can be executed with 6 different cash flow files, with the percentage of negative

cash flows (%Neg) ranging from 0% to 100%, in steps of 20%. Furthermore, a deadline

is imposed based on the optimal RCPSP project duration of the procedure by Demeule-

meester and Herroelen (1992) for the projects with 25 activities and on the best known

heuristic solutions of Debels and Vanhoucke (2007) for a higher number of activities. This

minimum project duration is then increased by a specific percentage (D–Incr), ranging

from 5% to 20% in steps of 5%, and constitutes the project deadline. As such, the prob-

lem set contains 720 * 6 * 4 = 17,280 problem instances. The order strength (OS) and

resource constrainedness (RC) of the networks are both either 0.25, 0.50 or 0.75. The

resource usage (RU) is 2 or 4. Finally, we employ a discount rate of 1%. A summary of

the parameters of the dataset is given in table 2.1.

Parameter Values
Act 25, 50, 75, 100
OS 0.25, 0.50, 0.75
RU 2, 4
RC 0.25, 0.50, 0.75
D–Incr 5, 10, 15, 20
%Neg 0, 20, 40, 60, 80, 100

Table 2.1: Parameters dataset.

2.6.1 Configuration of the algorithm

In this subsection, we configure both our GAs. We first give an overview of the values

of the parameters of both algorithms and of the penalty function. Then we show that the

proposed order in which the two sets of activity move rules are applied is the best and

illustrate the relevance of both steps. Finally, we compare both GAs and also show the

results if 5,000 random schedules had been generated instead of making use of the proposed

metaheuristic. This way the added value of our GA approaches is also emphasized. Each

time we make use of the 5,000 schedules termination criterion, and employ 20% of data.

2.6. COMPUTATIONAL RESULTS 27

The parameters that were tested are the population sizes |P1| and |P2|, the number

of retained elements |X1| and |X2| and the mutation rates R1 and R2. Computational

experiments showed a best |P1| and |P2| equal to 50, |X1| equal to 10 and |X2| equal to 5,

and a mutation rate R1 of 20% and R2 of 95%. Note that the assumption of GA2 needing

a higher mutation rate R2 than R1 of GA1 as stated in section 2.5.5 is confirmed. The

tested population sizes range from 25 to 100 in steps of 5, whereas the number of retained

elements |X1| and |X2| tested range from 1 to 15 in steps of 1. Finally, the mutation rates

were tested in steps of 5%, from 5% to 95%.

The Y1 and Y2 parameters of the penalty function have also been tested.

• The tested values for Y1 range from 15, 000 to 25, 000 in steps of 1, 000 and its optimal

value equals 20, 000, much larger than that of any feasible solution’s NPV.

• Y2 was initially tested with values between 0.50 and 0.95 in steps of 0.05. Additional

finetuning of the latter was done to further improve the performance of the penalty

function. The parameter’s optimal value was found to depend on the absolute value

of the average NPV (AvNPV) of all test instances with a fixed percentage of negative

cash flows. The values for Y2 are found in table 2.2. It should be clear based on

the table that the suggested relation does indeed exist. As the absolute value of

AvNPV decreases, so does the factor Y2. Observe in table 2.2 that starting from 0%

negative cash flows Y2 decreases along with the absolute average NPV until 60%,

whereas from 80% on both increase together. This way, our results confirmed what

we already suspected in section 2.4.1, namely that a lower Y2 value is required for

a lower absolute project NPV, to more clearly distinguish solutions with a different

deadline violation from one another.

%Neg 0% 20% 40% 60% 80% 100%
AvNPV 7,930.42 4,763.23 1,436.95 263.86 -1,369.12 -5,736.01

Y2 0.995 0.95 0.85 0.70 0.92 0.97

Table 2.2: Parameters of the penalty function.

Next, we compare different combinations of the activity move rules of section 2.4 and

use GA2 to make this comparison. The reason that GA2 and not GA1 is used for the

comparison, is because GA2 not only performs better, but also because it more clearly

illustrates the value of each step. To validate both distinct steps, each step is first excluded

from the method. These results are displayed in the table under NoStep1 (the network–

based moves are excluded) and NoStep2 (the schedule–based moves are excluded). Finally,

we also tested a switch in the order in which the network– and schedule–based moves are

28 Chapter 2

applied (Switch1&2). Recall that otherwise we first apply step 1 and then step 2, hence

for the Switch1&2 case we first apply step 2 and then step 1. As a benchmark, we use the

case in which only single activity moves are applied (OnlySingle).

The results of this analysis are shown in table 2.3 and are based on their deviations from

the best known solutions for the resource–unconstrained max–NPV problem, as discussed

by Vanhoucke (2006). The table displays the relative average deviation (%AvDev) which

stands for the percentage average deviation of the solutions of this manuscript in com-

parison with the results for the resource–unconstrained case. A lower value corresponds

with a better solution. The results from the comparison with the max–NPV in the table

only take those data files into account for which all alternatives are able to find deadline

feasible solutions, this to ensure a correct comparison. The table also compares all options

based on the percentage average difference (%AvDiff), which shows the performance of the

proposed method in comparison with the scatter search of Vanhoucke (2010). A positive

value corresponds with a better performance of the proposed option, whereas a negative

value means that the scatter search has better results. Finally, the percentage of better

solutions (%Better) found by each combination in comparison with the scatter search is

shown.

Based on the results in the table it can be seen that BothSteps does better than all

other options on all three performance criteria, which means that the proposed scheduling

steps and their ordering are justified.

Option BothSteps NoStep1 NoStep2 Switch1&2 OnlySingle
%AvDev 211.37 214.55 214.29 214.73 216.60
%AvDiff 10.67 8.68 8.72 8.87 3.95
%Better 60.48 59.50 58.08 59.53 53.53

Table 2.3: Comparison of schedule step combinations.

Finally, table 2.4 compares GA1 and GA2 with 5,000 random schedules, only problem

instances for which all three methods could find a deadline feasible solution are taken into

account. The percentage feasible (%Feas) shows the number of deadline feasible solutions

found.

Based on the table the following can be concluded:

• GA2 performs best both overall and for all values of the six parameters of the dataset.

Hence, in section 2.6.2 where we compare with existing methods, we only show the

results of GA2.

• GA2 furthermore reports the largest percentage of feasible solutions found. Addi-

tionally, the percentage of feasible solutions found between on the one hand both

2.6. COMPUTATIONAL RESULTS 29

GAs and the 5,000 random schedules on the other hand illustrates the added value

of the proposed penalty function as part of our metaheuristic.

• The difference in performance between GA2 and GA1 in terms of %Neg is larger

when %Neg> 50% compared to the cases with %Neg≤ 50%.

• The larger the OS the better GA2 performs in comparison with GA1.

• The smaller the RC the better GA2 performs in comparison with GA1.

GA1 GA2 5,000 randoms
%AvDev %Feas %AvDev %Feas %AvDev %Feas

Act 25 198.93 99.44 194.41 99.51 235.53 98.56
50 319.23 98.84 305.53 99.03 412.73 89.77
75 151.73 97.18 148.71 98.06 200.35 79.70
100 183.76 96.64 177.89 97.55 230.93 74.10

OS 0.25 147.94 96.82 143.68 98.00 201.63 83.07
0.50 213.97 97.66 208.39 97.95 265.62 83.02
0.75 280.69 99.60 270.24 99.65 344.55 90.50

RU 2 271.19 97.36 263.06 98.38 344.73 81.16
4 166.71 98.69 160.97 98.69 208.10 89.91

RC 0.25 368.35 97.38 357.92 98.13 468.72 84.55
0.50 137.72 98.28 132.20 98.75 172.02 85.07
0.75 145.22 98.42 140.48 98.73 181.19 86.98

D–Incr 5% 251.73 92.78 248.68 94.21 306.27 61.13
10% 124.45 99.81 114.68 99.93 154.02 84.19
15% 344.50 99.51 335.10 100.00 441.55 96.97
20% 147.74 100.00 143.43 100.00 189.31 99.84

%Neg 0% 30.77 98.33 30.53 98.85 32.87 91.98
20% 28.49 98.75 28.02 99.34 32.60 92.22
40% 73.57 98.99 72.53 98.85 92.47 93.36
60% 572.16 97.36 551.35 97.40 743.61 78.72
80% 402.13 97.60 388.02 98.33 518.50 79.10
100% 277.84 97.12 270.08 98.44 329.13 78.82

Overall 216.21 98.03 209.34 98.54 272.84 85.53

Table 2.4: Comparison between GA1, GA2 and 5,000 randoms.

2.6.2 Comparison with literature

To the best of our knowledge, the scatter search of Vanhoucke (2010) and the Lagrangian–

based heuristic of Gu et al. (2013) are the best known algorithms for the RCPSPDC. Both

however report their results based on a different termination criterion. Whereas Vanhoucke

(2010) uses the 5,000 schedules criterion, Gu et al. (2013) terminate after 5 minutes. As

such we compare with both algorithms separately.

30 Chapter 2

First, in table 2.5 we compare our GA with Vanhoucke (2010). The percentage of

instances for which the best known solution is found (%Best) constitutes the number of

instances for which either method found the best known solutions. Note that the sum of

both percentages is larger than 100% because of the cases in which both algorithms have

the same result are included twice.

The following conclusions can be drawn from the table:

• Overall our results outperform those of Vanhoucke (2010).

• Our proposed method performs better comparatively with a decreasing value of the

OS, and an increasing value of the RC and RU.

• A similar trend can be observed as Act increases, but it is less pronounced.

• For the instances with %Neg equal to 40% or 60% the %AvDev of GA2 is worse than

that of Vanhoucke (2010), but this is offset by a larger %Best.

This chapter Vanhoucke (2010)
AvDev %AvDev %Feas AvDev %AvDev %Feas

Act 25 371.41 192.59 99.51 370.89 192.46 100.00
50 1,295.24 294.05 99.03 1,327.73 291.75 99.86
75 2,458.97 153.97 98.06 2,540.08 160.30 99.72
100 3,744.92 204.38 97.55 3,858.48 223.42 99.58

OS 0.25 2,254.87 166.00 98.00 2,356.44 179.67 99.69
0.50 2,046.98 203.56 97.95 2,098.45 210.55 99.69
0.75 1,577.06 263.71 99.65 1,593.62 260.23 100.00

RU 2 1,696.00 251.76 98.38 1,746.26 252.45 99.79
4 2,217.88 171.18 98.69 2,280.20 181.82 99.79

RC 0.25 1,887.70 342.07 98.13 1,942.33 342.11 99.58
0.50 1,983.81 141.25 98.75 2,039.25 149.67 99.90
0.75 2,000.15 151.81 98.73 2,058.96 160.33 99.90

D–Incr 5% 2,119.16 228.94 94.21 2,192.98 234.86 99.17
10% 1,970.61 133.91 99.93 2,052.91 152.41 100.00
15% 1,919.04 337.93 100.00 1,945.71 332.34 100.00
20% 1,830.39 145.83 100.00 1,873.86 149.71 100.00

%Neg 0% 4,480.55 30.84 98.85 4,535.76 31.16 99.79
20% 2,569.39 28.59 99.34 2,626.96 29.17 99.79
40% 1,022.16 71.21 98.85 1,064,49 69.78 99.79
60% 703.17 487.85 97.40 758.32 482.66 99.79
80% 933.29 415.22 98.33 1,023.84 442.50 99.79
100% 2,011.40 240.45 98.44 2,048.43 252.93 99.79

Overall 1,957.38 211.40 98.54 2,013.68 217.08 99.79

Table 2.5: Comparative computational results part 1 (5,000 schedules).

2.6. COMPUTATIONAL RESULTS 31

Table 2.6 shows a more detailed overview of the comparative performance of both

algorithms. In this table both algorithms are compared based on the percentage average

difference (%AvDiff) between them, which shows the performance of the proposed method

in comparison with the scatter search of Vanhoucke (2010). A positive value corresponds

with a better performance of our GA2, whereas a negative value means that the scatter

search has better results. The percentages of better, equal and worse (%Better, %Equal

and %Worse) solutions by GA2 in comparison with the scatter search are also shown.

Again, only problem instances for which both methods could find a deadline feasible

solution are taken into account in both tables. Based on both table 2.5 and 2.6, it can be

seen that GA2 outperforms the algorithm of Vanhoucke (2010). The only case for which a

slightly worse performance can be observed based on all comparative factors is when Act

is set to 25.

%AvDiff %Better %Equal %Worse
Act 25 -1.35 30.03 32.43 37.54

50 14.52 66.99 1.50 31.51
75 16.97 73.68 0.24 26.09
100 12.69 71.67 0.00 28.33

OS 0.25 12.90 70.01 3.29 26.70
0.50 9.49 60.85 7.44 31.71
0.75 9.63 50.75 15.02 34.23

RU 2 10.27 55.68 10.26 34.06
4 11.06 65.26 6.99 27.75

RC 0.25 12.96 59.52 8.09 32.40
0.50 10.29 61.41 8.23 30.36
0.75 8.76 60.51 9.55 29.95

D–Incr 5% 7.66 61.13 9.14 29.73
10% 21.19 64.70 7.67 27.63
15% 5.73 55.02 9.28 35.69
20% 7.92 61.11 8.43 30.46

%Neg 0% 0.80 58.59 13.28 28.13
20% 1.18 66.41 9.47 24.12
40% 2.01 56.87 6.92 36.21
60% 37.07 60.11 5.85 34.04
80% 22.22 61.33 3.35 35.31
100% 1.15 59.54 12.80 27.65

Overall 10.67 60.48 8.62 30.90

Table 2.6: Comparative computational results part 2 (5,000 schedules).

As already stated the algorithm of Gu et al. (2013) compares with the results of

Vanhoucke (2010) based on a 5 minutes stopping criterion instead of the 5,000 schedules

criterion. This means that in order to properly compare our own method with the former

we should also terminate after 5 minutes. We have, however, chosen to employ a stopping

32 Chapter 2

criterion of 12,500 schedules with a maximum time limit of 5 minutes per instance. We

furthermore use a 2.5 GHz Dual Core processor, whereas Gu et al. (2013) use a computing

cluster where each node consists of two 2.8 GHz 6–Core processors.

The results of the comparison with the algorithm of Gu et al. (2013) can be found

in table 2.7. The results used of the latter are those of the CP–LR since the authors

show this method clearly performs best compared to others. This CP–LR is one of several

alternatives tested by them and constitutes a hybrid approach of constraint programming

and Lagrangian relaxation.

Table 2.7 is constructed similarly to table 2.5, of which the latter compares our GA2

with the scatter search of Vanhoucke (2010). This way, a similar analysis can be made

and the following conclusions can be drawn:

• The overall results show a better performance of our GA2 than the CP–LR of Gu

et al. (2013).

• In particular our %Best is larger in nearly all cases.

• Comparatively our method performs better as Act increases meaning that it is more

robust as the project size increases. This can be seen by an increasing %Best of our

method as the number of activities increases, whereas the results of Gu et al. (2013)

show alternating decreases and increases. The gap between both methods in terms

of %AvDev furthermore becomes larger in favour of GA2 with an increasing number

of activities.

In table 2.8 we show the average computation times of our own algorithm (AvTime) and

the percentage of instances for which the 5 minutes limit was actually reached (%Limit).

Only for a very small number of instances is the 5 minutes limit actually reached.

Although the improvement of our method in table 2.7 is smaller than the one in tables

2.5 and 2.6, it is important to take into account that our algorithm on average only takes

10.28 seconds, see table 2.8, whereas Gu et al. (2013) always use 5 minutes. We furthermore

employ a computer with a slower processor to test our method. As such, based on both

tables 2.7 and 2.8 it can be concluded that our proposed scheduling method and GA2 are

not only faster but also provide better results than the methodology of Gu et al. (2013).

In particular, the number of generated schedules is set to 12,500 since this can be seen as

the cut–off point in terms of number of schedules where our GA2 outperforms the CP–LR

of Gu et al. (2013).

2.7. CONCLUSIONS 33

This chapter Gu et al. (2013)
%AvDev %Best %Feas %AvDev %Best %Feas

Act 25 194.05 67.13 99.58 190.05 85.83 100.00
50 289.57 79.53 99.54 285.36 54.28 100.00
75 149.66 89.46 99.07 153.51 70.69 99.98
100 201.62 89.81 98.77 208.08 61.13 99.68

OS 0.25 161.83 84.35 98.75 161.09 76.40 99.91
0.50 203.33 81.43 99.11 207.53 68.26 99.83
0.75 260.60 76.08 99.86 257.26 59.31 100.00

RU 2 248.57 78.34 99.06 248.18 73.44 99.83
4 169.16 82.86 99.42 169.18 62.55 100.00

RC 0.25 333.43 79.35 99.03 65.50 82.83 100.00
0.50 139.87 81.02 99.15 338.33 62.09 99.74
0.75 153.61 81.44 99.55 224.44 59.06 100.00

D–Incr 5% 228.47 82.49 97.04 222.64 74.16 99.65
10% 138.93 83.74 99.93 142.94 69.68 100.00
15% 328.22 77.27 100.00 323.67 65.32 100.00
20% 140.15 78.98 100.00 146.57 62.78 100.00

%Neg 0% 30.55 84.36 99.48 30.64 74.31 99.90
20% 28.13 87.26 99.51 28.42 73.20 99.90
40% 63.69 80.68 99.41 67.03 64.60 99.90
60% 476.10 75.93 98.68 460.68 66.95 99.93
80% 422.20 70.95 99.20 422.21 65.39 99.93
100% 234.78 84.38 99.17 247.07 63.52 99.93

Overall 208.71 71.97 99.24 209.33 67.99 99.91

Table 2.7: Comparative computational results 12,500 schedules.

Act AvT ime (s) %Limit
25 1.48 0.00
50 5.05 0.00
75 11.58 0.00
100 23.42 0.47

Overall 10.28 0.12

Table 2.8: Computation times 12,500 schedules.

2.7 Conclusions

In this chapter, we discussed the RCPSPDC with payments at activities’ completion

times. We proposed a new scheduling technique which makes use of rules to move activ-

ities. These rules focus on maximizing project NPV by delaying sets of activities with a

negative cumulative NPV or advancing those with a positive NPV. An important part of

our methodology is the construction of sets of activities which have to be moved together

and can be built in two ways. A first method evaluates the predecessors and successors of

34 Chapter 2

an activity and determines whether they should be included in the set or not. A second

method focusses on the neighboring activities in the project schedule which means the

activities under consideration need not be precedence related. A penalty function was also

included for the schedules infeasible with respect to the project deadline. Each step of

our algorithm has been extensively tested and two variants of a genetic algorithm were

proposed. Our final procedure was compared with the best known results from literature

and was shown to perform considerably better.

3
Payment models and net present value

optimization for resource–constrained project

scheduling

This chapter focuses on the single– and multi–mode resource–constrained project

scheduling problem with discounted cash flows (RCPSPDC and MRCPSPDC) and three

payment models. The contribution of the chapter is twofold. First, we extend a new

scheduling technique, which moves activities in order to improve the project net present

value. This more general version is applicable to multiple problem formulations and pro-

vides an overarching framework in which these models can be implemented. The changes

in activity finish times take other activities and the possible changes in the finish times

of these other activities into account, by forming a set of activities which is subsequently

moved in time. The scheduling technique is implemented within a genetic algorithm meta-

heuristic and employs two penalty functions, one for deadline feasibility and one for non–

renewable resource feasibility. Second, we test the proposed approach on several datasets

from literature and illustrate the added value of each part of the algorithm. The influence

of data parameters on the project net present value is highlighted. The detailed results

provided in this chapter can be used as future benchmarks for each of the six models

discussed.

35

36 Chapter 3

3.1 Introduction

In this chapter, we focus on the maximization of the project NPV and discuss the

RCPSP with discounted cash flows (RCPSPDC) and its multi–mode variant the multi–

mode resource–constrained project scheduling problem with discounted cash flows (MRCP-

SPDC). Furthermore, we apply three payment models to these two problem formulations.

The three payment models discussed are payments at activities’ completion times (PAC),

progress payments (PP) and payments at event occurrences (PEO). These payment mod-

els determine the timing and amounts of cash inflows received and are based on different

assumptions. Cash outflows are assumed to occur upon activity finish time for all models.

The PAC model assumes cash inflows are received upon activity completion. This in turn

implies a net cash flow can be calculated for each activity. In the PP and PEO models

however, cash inflows occur at regular or irregular times throughout the project duration

and are based on the project progress up until the payment time. From a solution method-

ology perspective, the added value of this chapter is a new scheduling technique, which

can handle the PP and PEO models, on top of the PAC model.

Cash in

Cash out

Timing Size Timing & size

Payments at activities’
completion times (PAC)

Progress payments
(PP)

Payments at event
occurences (PEO)

Progress based payment
pattern (PBPP)

Expense based payment
pattern (PBPP)

Payments at activities’
completion times (PAC)

General capital modelResource usage costs

Figure 3.1: Overview of the research on project scheduling with NPV optimization in chapter 3.

The problems discussed are relevant from a practical point of view since several possi-

bilities exist for the receipt of cash flows during the project runtime. The manner in which

these cash flows are received is however often beyond the control of the party responsi-

ble for executing the project. This highlights the need to analyze the effect of different

payment models on the project schedule and its resulting NPV. Furthermore, individual

activities may be executable in different modes, i.e. with different combinations of activ-

ity duration and resource demand. This way, additional flexibilities exist for the project

schedule, which however also increase the problem complexity (Kolisch and Drexl, 1997)

and as such require more complex algorithms to properly solve the problem.

The remainder of this chapter is organized as follows. In section 3.2 we give an overview

3.2. LITERATURE OVERVIEW 37

of the existing literature and section 3.3 discusses the single– and multi–mode RCPSPDC

along with the investigated payment models. In section 3.4 we go into detail about our

proposed scheduling approach, as part of the metaheuristic presented in section 3.5. The

results of our computational experiments are discussed in section 3.6. Finally, in section

3.7 we formulate our conclusions.

3.2 Literature overview

In this section, we provide a literature overview of the problems under consideration.

We however only include research done after the general literature overview on NPV

optimization of Herroelen et al. (1997). The distinction is made between the RCPSPDC

(single–mode) and the MRCPSPDC (multi–mode).

3.2.1 Single–mode

A recent overview of the RCPSPDC with the PAC model is given in chapter 2 (Leyman

and Vanhoucke, 2015). To the best of our knowledge only three papers exist which discuss

other payment models for the RCPSPDC. The first is the paper of Sepil and Ortac (1997),

in which the authors apply the PP model to the RCPSPDC and propose three different

heuristic rules. These rules are applied in a single-pass greedy forward algorithm and

determine the priority given to the different feasible activities at a specific time instance.

The first heuristic gives priority to the activities with the highest NPV, whereas the second

one applies a pairwise comparison of the NPV of all feasible activities. Finally, the third

priority rule takes the slope of the activity profit curves into account. The other two papers

of Möhring et al. (2001) and Möhring et al. (2003) tackle project scheduling problems with

irregular objective functions and propose a uniform methodology for solving resource–

constrained project scheduling problems based on minimum cuts. The focus of both papers

lies on the mathematical problem formulation and a Lagrangian relaxation based approach

to solve the problems to optimality. The authors conclude that the relaxed problem can

be solved efficiently by minimum cut computations.

3.2.2 Multi–mode

Table 3.1 provides details of the research done for the MRCPSPDC since the literature

overview of Herroelen et al. (1997).

• The objective of each paper can be found in the second (NPV) and third (Dur)

column. Four papers combine NPV maximization and makespan minimization in

a single objective. Mika et al. (2005) only work with positive cash flows for the

38 Chapter 3

NPV objective (footnote 1 in table), whereas Kazemi and Tavakkoli-Moghaddam

(2010) include a robustness measure as part of their makespan minimization objective

(footnote 2 in table).

• Columns four to seven display the payment models used in the different research

papers. These models constitute the PAC, PP, PEO and lump sum payment (LSP)

variants.

• In columns eight to ten the required resource types are displayed. These resources

include renewable resources (RR), non–renewable resources (NRR) and capital (C).

If a cost is assigned to these resource types and these costs are included in the NPV

objective, a footnote 3 is included.

• The final two columns show whether the authors additionally discuss a client–

contractor trade–off (CC) and whether a bonus/penalty (B/P) structure is included

with respect to the project deadline.

Based on table 3.1 it can be concluded that a multitude of problem formulations exist in

literature when discussing NPV optimization in a multi–mode context.

3
.2

.
L

IT
E

R
A

T
U

R
E

O
V

E
R

V
IE

W
39

Objective Payment models Resources Other

Authors NPV Dur PAC PP PEO LSP RR NRR C CC B/P

Özdamar and Dündar (1997) X X X X

Özdamar (1998) X X X X

Ulusoy and Cebelli (2000) X X X X X

Ulusoy et al. (2001) X X X X X X

Mika et al. (2005) X1 X X X X X X

Chen and Chyu (2008) X X X3 X3

Seifi and Tavakkoli-Moghaddam (2008) X X X X X X X

Kavlak et al. (2009) X X X X X X

Chen et al. (2010) X X X3 X3 X

Kazemi and Tavakkoli-Moghaddam (2010) X X2 X X X

Azimi et al. (2011) X X X X

Aboutalebi et al. (2012) X X X X3

Chen and Zhang (2012) X X X3 X3 X

Hosseini et al. (2014) X X X X
1: Only positive cash flows are used, 2: Robustness is included in the duration measure, 3: A cost is assigned to this resource type.

Table 3.1: Literature overview MRCPSPDC.

40 Chapter 3

3.3 Problem description

In this section, we first discuss the mathematical models for both the single–mode

and multi–mode RCPSPDC. We present the PAC model since this payment model is

most commonly used, especially in the single–mode literature (Herroelen et al., 1997;

Leyman and Vanhoucke, 2015; Vanhoucke et al., 2001b). Both mathematical models are

subsequently extended to the PP and PEO payment models.

3.3.1 Payments at activities’ completion times

We use the activity–on–the–node (AoN) representation for a network G(N,A) with

N the set of project activities or network nodes and A the set of precedence relations or

network arcs. The activities are numbered from the start dummy 0 to the end dummy

n + 1. Each activity i (i ∈ N = {1, . . . n}) has a duration di, a cash in– and ouflow,

respectively ci,in (> 0) and ci,out (< 0), and a RR demand rρik of type k. Each RR of

type k (k ∈ Rρ = {1, . . . , |Rρ|}) has a constant availability of aρk throughout the project

duration. A time–lag of zero is assumed for the precedence relations, and the project has

a deadline δn+1. The finish time of each activity i is contained in the decision variables fi.

Conceptually, the RCPSPDC with PAC can be formulated as follows:

Maximize

n∑
i=1

(ci,in + ci,out) · e−αfi (3.1)

Subject to:

fi ≤ fj − dj , ∀(i, j) ∈ A (3.2)∑
i∈S(t)

rρik ≤ a
ρ
k, ∀k ∈ R

ρ, t = 1, . . . , δn+1 (3.3)

fn+1 ≤ δn+1 (3.4)

fi ∈ int+ ∀i ∈ N (3.5)

The objective function (3.1) maximizes the project NPV by discounting the cash in–

and outflows to each activity’s finish time. Hence the objective function can be simplified

to
∑n

i=1 ci,net · e−αfi , with ci,net = ci,in + ci,out. Constraints (3.2) enforce the precedence

constraints, whereas constraints (3.3) impose the renewable resource limits, with S(t) the

set of activities in progress at time t (S(t) = {i ∈ N : fi − di ≥ t ∧ fi < t}). Constraint

(3.4) makes sure the deadline is met, and finally constraints (3.5) state that the decision

variables should be integers.

The RCPSPDC model from (3.1)–(3.5) can be extended to its multi–mode variant,

based on the model of Van Peteghem and Vanhoucke (2014) for the multi–mode RCPSP

3.3. PROBLEM DESCRIPTION 41

(MRCPSP). Each activity now has a duration dimi , which differs depending on the mode

mi selected for each activity i out of a set |Mi| of different modes with Mi = {1, . . . , |Mi|}.
Furthermore, each mode has a unique RR demand rρimik per resource type k and a NRR

demand rνimil per resource type l. Each (N)RR of type k (l) has an availability of aρk (aνl),

with k ∈ Rρ = {1, . . . , |Rρ|} (l ∈ Rν = {1, . . . , |Rν |}). Constraints (3.2) are adjusted

to (3.6) and (3.3) to (3.7) to include the different modes. Additionally constraints (3.8)

ensure that the total NRR availability is not exceeded whereas constraints (3.9) make sure

that each activity’s mode is selected from the set of available modes for that activity.

fi ≤ fj − djmj , ∀(i, j) ∈ A (3.6)∑
i∈S(t)

rρimik ≤ a
ρ
k, ∀k ∈ R

ρ, ∀mi ∈Mi, t = 1 . . . , δn+1 (3.7)

n∑
i

rνimil ≤ a
ν
l , ∀l ∈ Rν , ∀mi ∈Mi (3.8)

mi ∈Mi, ∀i ∈ N (3.9)

3.3.2 Progress payments

In the PP model, payments are made at regular time intervals, and the final payment

is made at project completion. For a project with a deadline of 19, this could mean that

payments are made e.g. every 5 time instances, namely at time instances 5, 10, 15 and

19. In terms of changes in the model’s objective function (3.1), cash inflows ph occur at

H − 1 regular payment times every T time instances. The final payment pH is incurred

at project completion. Each of these payments amount to the monetary value of the work

done since the previous payment time. The cash inflow of each activity is furthermore

calculated based on a profit margin applied to each activity’s cash outflow. Assume for

instance an activity with a cash outflow of -100 and a profit margin of 20%. In this case

the activity’s cash inflow is 120 (= 100 * 1.20). The objective function can be adjusted in

the following way:

Maximize

H−1∑
h=1

ph · e−αT ·h + pH · e−αδn+1 +

n∑
i=1

ci,out · e−αfi (3.10)

It is important to stress that Ulusoy et al. (2001), Mika et al. (2005) and Seifi and

Tavakkoli-Moghaddam (2008) discuss an alternative to PP, namely the equal time intervals

(ETI) model. The major difference between these two models is that for PP the interval

between payments is given, whereas for ETI the number of payments is used to determine

42 Chapter 3

the payment times. Recall the earlier example for PP with payments at times 5, 10, 15 and

19. Assume we state a total of 4 payments, then the payment scheme for ETI would be the

same as for PP, since ETI assumes the final payment interval to be smaller than or equal

to the other intervals. Both the PP and ETI model also involve payments which occur

with a fixed payment interval, with the final payment possibly occurring earlier. Since we

do not aim to determine either the payment interval size or the number of payments we

treat both models as the PP model.

The major difference between the PP and PAC model can be seen as follows. In the

PAC model the payment times are not set in advance since cash inflows occur at activity

completion times, which depend on the actual schedule. The payment amounts however

are known in advance since they are equal to the cash inflows of the individual activities.

For the PP model on the contrary the payment times are determined in advance whereas

the payment amounts depend on the actual schedule, i.e. the work completed since the

previous payment.

3.3.3 Payments at event occurrences

The payments at event occurrences (PEO) model can be seen as an irregular variant of

the PP model. Whereas in the latter case cash inflows are received every T time instances,

except for the final payment which may be irregular, in the PEO case all payment are of

the irregular type. Given a project deadline of 19, payments for the PEO model could

occur at time instances 4, 10, 16 and 19 for example. The objective function can be altered

in the following way, with Th the time instance at which payment h is received:

Maximize

H∑
h=1

ph · e−αTh +

n∑
i=1

ci,out · e−αfi (3.11)

3.3.4 Problem complexity & classification

Blazewicz et al. (1983) have proven the optimization variant of the RCPSP, and by

extension the RCPSPDC, to be strongly NP–hard. It can be represented as m, 1|cpm, δn, ci
|npv for the PAC model and as m, 1|cpm, δn, per|npv for the PP and PEO models according

to the classification scheme of Herroelen et al. (1999), and as PS|prec|
∑
CFi β

Ci according

to Brucker et al. (1999).

The optimization variant of the MRCPSP is also strongly NP–hard, whereas the deci-

sion variant has been proven to be NP–complete by Kolisch and Drexl (1997), once at least

two non–renewable resources are included. This implies that the MRCPSPDC is at least as

complex. The MRCPSPDC can furthermore be formulated as m, 1T |cpm, δn, disc,mu, ci

3.4. SCHEDULE GENERATION 43

|npv (PAC) or m, 1T |cpm, δn, disc,mu, per|npv (PP and PEO) following the scheme of

Herroelen et al. (1999) and as MPS|prec|
∑
CFi β

Ci following Brucker et al. (1999).

3.4 Schedule generation

In this section, we go into detail about our schedule generation scheme and its applica-

tions to the payment models of section 3.3. We start with the initial schedule generation

and penalty functions for both the single– and multi–mode cases. We discuss the details

of our activity move rules as crucial improvements of the initial schedule. An overview

of the entire schedule generation is given in figure 3.2. We assume that each schedule

is constructed based on an ordering of activities provided by our metaheuristic (section

3.5), namely a priority list (PL). The list holds the order in which the activities should

be scheduled and is precedence feasible. If the problem discussed involves the trade–off

between different activity modes, a mode list (ML) is also used. The ML contains the

selected mode for each activity.

Mode
improveStart Deadline

feas?

Schedule
improve

Deadline
feas?

Netw-
based
moves

Penalty
function

2

Repeat until
no change

EndY

Y
N

N

NRR
feas?

Reduce
ERR

Y

N

NRR
feas?

Penalty
function

1

N

Y

Extended
SSGS

Sched-
based
moves

Repeat until
no change

Initial schedule Activity move rules

Mode improvement Schedule construction

Figure 3.2: Schedule generation flow.

3.4.1 Initial schedule

We first discuss the mode improvement steps, which are only applicable for the MR-

CPSPDC, and continue with the schedule construction which is used for both the single–

and multi–mode case.

3.4.1.1 Mode improvement

In this section, we discuss three steps which make changes on the ML to improve

the NRR feasibility and to help achieve a shorter project duration to ensure the deadline

feasibility of the resulting schedule.

44 Chapter 3

ERR reduction: The first step involves the calculation and feasibility test of the

NRR. We calculate the solution’s Excess of Resource Request (ERR) (Van Peteghem and

Vanhoucke, 2010) defined as ERR =
∑|Rν |

l=1 (max(0,
∑n

i=1 r
v
iml − aνl)). This value is 0 if

the demand of each NRR does not exceed its availability and is larger than 0 if any of

these constraints are violated. If ERR > 0 we apply the feasibility improvement method

of Van Peteghem and Vanhoucke (2011), which decreases the ERR by changing modes of

activities. The method is repeated until either no further improvements can be made or

until the ERR has been reduced to 0. This step corresponds with the first “NRR feas?”

and “Reduce ERR” in figure 3.2.

ERR penalty function: If the ERR is still positive we apply a penalty function.

In the MRCPSP literature several penalty functions exist for makespan minimization,

but when the goal is to maximize project NPV only the function of Mika et al. (2005)

for positive cash flows exists. Since we consider both positive and negative cash flows,

we propose the following alternative, with NPVERR−Infeas the NPV of a solution with

ERR > 0: NPV = −Y1 + NPVERR−Infeas · Y ERR2 if NPVERR−Infeas ≥ 0

NPV = −Y1 +
NPVERR−Infeas

Y ERR2
otherwise

(3.12)

• Y1 constitutes a large fixed value to be subtracted from the project NPV to ensure that the

infeasible solution’s NPV is considerably worse than that of any other feasible solution in

the solution set.

• Y2 has a fractional value between 0 and 1 to reduce the project NPV based on the ERR.

The larger the ERR the more the project NPV is reduced.

This step corresponds with the second “NRR feas?” and “Penalty function 1” in figure

3.2.

Project duration improvement: If the ERR is equal to 0, we calculate the critical

sequence lower bound (CSLB) of Stinson et al. (1978). If this bound is larger than the best

deadline–feasible project duration found so far, two of the mode improvement methods of

Van Peteghem and Vanhoucke (2011) can be applied. The first method is the critical path

(CP) improvement which aims to minimize the CP length. The second method focuses on

work content (WC) improvement to reduce the total work content of the proposed ML.

This step corresponds with “Mode improve” in figure 3.2.

3.4. SCHEDULE GENERATION 45

3.4.1.2 Schedule construction

For both the RCPSPDC and the MRCPSPDC, the next step in our algorithm is the

construction of an initial schedule with the serial schedule generation scheme (SSGS) of

Kelley (1963). The initial schedule is then extended by applying an adjusted version of

the improvement method of Van Peteghem and Vanhoucke (2010), which aims to reduce

each activity’s finish time by applying mode changes. For each activity, starting from the

first activity in the PL, this method randomly selects a mode different from the current

one. If the mode change does not increase the ERR, it aims to reschedule the activity

with an earlier finish time. If a finish time reduction can be achieved, we retain the mode

change and continue with the next mode of the current activity. Once all modes of an

activity have been considered, we move on to the next activity in the PL until we reach

the end of the PL. Finally, for each activity the method is applied with a fixed probability

MI (mode improvement).

If the schedule is deadline–feasible we continue with the activity move rules of section

3.4.2. If the schedule turns out to be infeasible with respect to the project deadline (D–

Infeas), we apply one iteration of the forward–backward improvement method of Li and

Willis (1992) (“Schedule improve” in figure 3.2), which reduces the project duration as

much as possible. If the schedule is then deadline–feasible we continue with the activity

move to improve the project’s NPV. Otherwise, we use the penalty function of chapter 2

(Leyman and Vanhoucke, 2015):NPV = −Y3 + NPVD−Infeas · Y fn+1−δn+1

4 if NPVD−Infeas ≥ 0

NPV = −Y3 +
NPVD−Infeas

Y
fn+1−δn+1
4

otherwise
(3.13)

• Y3 is similar to Y1 in function (3.12) and is a large fixed value.

• Y4 is a fractional value similar to Y2 of function (3.12).

If a solution has both an ERR > 0 and a project duration larger than the deadline,

we first apply function (3.12) and subsequently function (3.13). The values of Y1, Y2, Y3

and Y4 are tested in section 3.6.2.

3.4.2 Activity move rules

In this subsection, we give an overview of the rules for delaying activities which start

from the initial forward schedule of the SSGS. We go into detail about NPV–profiles

and then discuss the generalized rules applicable to all three payment models. The rules

correspond with the “Activity move rules” in figure 3.2.

46 Chapter 3

To properly illustrate these improvements we use the example shown in table 3.2 and in

figure 3.3 and apply the PP model. The left side of the figure displays the project network

with the cash outflows for each activity. A profit margin of 20% is used to calculate the

activity cash inflows. We assume that the project has both a single RR and NRR with

availabilities of respectively 5 and 21. Finally, the project deadline is 18. Note that the

maximum NRR demand is 24, larger than the available 21, meaning that the NRR is not

redundant (Sprecher et al., 1997).

Act Mode Dur RR NRR
1 1 3 3 3

2 4 2 1
2 1 1 4 3

2 5 5 1
3 1 4 3 2
4 1 5 2 3
5 1 2 4 2

2 1 5 5
6 1 2 2 4

2 3 3 3
7 1 1 2 2
8 1 2 4 1

2 1 5 2

Table 3.2: Data example.

The initial RR, NRR and deadline feasible schedule of the example with PL (1, 2, 4,

3, 5, 7, 6, 8) and ML (1, 1, 1, 1, 1, 1, 1, 1) can be found on the right in figure 3.3. As

an example, the set S(t) of activities in progress at time t consists of activities 3 and 4

at time 6. The PL constitutes the order in which the scheduler considers the activities,

whereas the ML shows the selected modes for each activity. Both lists are part of our

schedule representation and are discussed in more detail in section 3.5.1. The horizontal

axis of figure 3.3 shows the time and the vertical one the RR usage. Since the activity

move rules do not make any changes on the ML, the ERR of the example remains equal to

zero throughout the example schedules in this section. We assume payments occur every 5

time units for the PP model, meaning payments happen at times 5, 10, 15 and 18. We use

the same discount rate of 0.167% as employed by Vanhoucke et al. (2003) for the example.

The example’s initial NPV with this discount rate is 42.73 (= 7.80 + 3.93 + 1.96 + 5.91

+ 11.61 + 1.92 + 5.70 + 3.90).

3.4. SCHEDULE GENERATION 47

1

-40

2

3

4

5

8

6

7

i

-20

-10

-30

-60

-30

-10

-20

ci,out

a1

t
0

1

2

0

3

4

5

1 2 3 4 6 8 10 12 14 165 7 9 11 13 15 17

1
4

2 8
6

5

3
7

18

Figure 3.3: Network & initial schedule example.

3.4.2.1 NPV–profiles

For the PP and PEO models the NPV profiles or activity profit curves have a typical

sawtooth pattern, as discussed in Kazaz and Sepil (1996) and Vanhoucke et al. (2003).

For the discount rate we follow the reasoning, presented by Kazaz and Sepil (1996) and

used by Vanhoucke et al. (2003), that for PP and PEO the NPV curves of an activity can

be approximated by a piecewise linear one, if the daily discount rate is smaller than 2%.

Kazaz and Sepil (1996) furthermore show that such a discount rate amounts to an annual

rate of 730%, which is deemed very unrealistic.

Two examples of such a sawtooth pattern are shown in figure 3.4. The possible finish

times of the activity can be found on the horizontal axis, ranging from the critical path

method’s (CPM) earliest finish time (efi) to the latest finish time (lfi, taking δn+1 into

account). The activity NPV is shown on the vertical axis. Ti is used to signify the ith

payment time in the example for both payment models, in line with the notation used in

section 3.3. The graph on the left is typical for the PP model, where payments occur at

regular time intervals, e.g. every 5 time units, and constitutes the activity profit curve of

activity 2 in the example. In terms of an activity’s NPV profile this means that a later

peak in the NPV is always lower than a previous one. For the PEO model, we employ the

same example data, but assume payments occur at times 9, 11 and 18. The right graph

in figure 3.4 corresponds with activity 4 in the example. As can be observed, for the PEO

model a later peak may be higher than an earlier one.

In order to determine how much an activity or set of activities should be delayed we

need the finish times at which each activity reaches a peak in terms of NPV for both the

PP and PEO models. Since the cash inflow for an activity is received proportionally to the

percentage of the activity completed at the payment time, we can conclude that peaks are

always reached if an activity’s finish time equals a payment time (Vanhoucke et al., 2003).

In such a case, both the cash in–and outflows occur at the same time and the difference

between the payment and receipt of cash is minimized. As an example, consider the left

48 Chapter 3

3.65%

3.7%

3.75%

3.8%

3.85%

3.9%

3.95%

4%

4% 5% 6% 7% 8% 9% 10% 11% 12%

N
PV

$

FT$

5.65$

5.7$

5.75$

5.8$

5.85$

5.9$

5.95$

6$

8$ 9$ 10$ 11$ 12$ 13$ 14$ 15$

N
PV

$

FT$

PP: activity 2 PEO: activity 4

ef2

ef4

lf2

lf4

T2
T1

T1

T2

Figure 3.4: Activity profit curve PP and PEO.

graph of figure 3.4, which illustrates that the peaks occur at payment times 5 and 10, and

that the NPV at time 10 is lower than the NPV at time 5. For the PEO model peaks

occur at payment times 9 and 11 (right graph of figure 3.4). Since the NPV at time 11 is

however higher than the NPV at time 9, we only take the peak at time 11 into account.

For the PAC model on the contrary each activity either has a positive or negative cash

flow, which means that the activity has a strictly decreasing or increasing NPV–curve,

and that it should be scheduled as soon as possible or as late as possible respectively. As

a result, the solution approach of chapter 2 for the PAC model (Leyman and Vanhoucke,

2015) cannot be used for the PP and PEO models, since it only considers strictly increasing

or decreasing linear profit curves. In sections 3.4.2.2 and 3.4.2.3 more complex activity

move rules are presented which take piecewise linear activity profit curves (such as for

the PP and PEO models) into account. These rules can be applied to all three payment

models as part of a single approach.

3.4.2.2 Network–based moves

The first set of activity move rules or network–based moves delays sets of activities

based on the project network’s precedence relations. Starting from the schedule generated

by the forward SSGS we delay individual activities or sets of activities to improve the

project NPV. We start from the last activity in the PL and determine for each activity

whether it is at a peak in the profit curve or not. If the activity under consideration (called

the current activity hereafter) does not have a finish time which also constitutes a peak

in the activity profit curve and at least one later peak exists, two cases are possible:

Single activity: If a delay is possible based on the activity’s successors we set the

activity’s finish time equal to the next peak and check the RR availability. If sufficient

3.4. SCHEDULE GENERATION 49

resources are available we retain the new activity finish time. Otherwise we reduce the

new finish time by 1 and repeat the RR check. The reduction by 1 of the new finish time

is only applied while both a delay is possible and such a delay leads to an increase in the

project NPV. Once either condition is violated, the search for a new activity finish time

terminates.

Algorithm 3 Get all successors

GetAllSuc (current activity i, start activity k, setAct[], NPVcum,0)

∀j ∈ Si
If j /∈ setAct ∧ fj − dj(mj) = fi

Add j to setAct
Add NPVj to NPVcum,0

GetAllSuc (j, k, setAct, NPVcum,0)
End if

∀j ∈ Pi
If j /∈ setAct ∧ fj + di(mi) = fi ∧ j 6= k ∧ fj ≥ fk ∧ fj < lfj ∧ ∃npj

Add j to setAct
Add NPVj to NPVcum,0

GetAllSuc (j, k, setAct, NPVcum,0)
End if

Return setAct and NPVcum,0

Activity set: If a delay is impossible due to at least one successor with a start time

equal to the current activity’s finish time, we apply algorithm 3. This algorithm finds the

set of activities which should be considered together for a potential delay. Starting from

the current activity all successors are added which start immediately after the current

activity, and the procedure is recursively applied again for each of these successors. For

all these activities, predecessors with a finish time not smaller than the current activity’s

finish time and for which a later peak in the activity profit curve exists, are also added. If

no later peak exists for these predecessors, they are not added because they should not be

delayed together with the other activities in the set. Predecessors of the current activity

are not taken into account since these activities are considered when they are reached in

the PL.

Once algorithm 3 returns to the current activity, we calculate each activity’s allowable

delay, based both on a later peak and on any successors not in the set. The global minimum

of these allowable delays is the maximum allowable delay ∆ and is calculated as follows:

∆ = min(npj−fj ,min(fk−dk(mk)−fj |k ∈ Sj , k /∈ setAct)|j ∈ setAct), with setAct the set

of activities returned by algorithm 3 and npj the next peak of activity j. dk(mk) is used to

signify that in case the multi–mode problem is solved the activity duration depends on the

mode selected for that activity, whereas this is not the case for a single–mode problem. If

no later peak exists for activity j, npj is set to infinity. Next, we calculate NPVcum,∆ which

is the cumulative NPV of all activities in the set if their finish time would be increased

50 Chapter 3

by ∆, and compare with the cumulative NPV of all activities in the set without a delay

NPVcum,0.

1. NPVcum,∆ > NPVcum,0: we increase the finish time of each activity in the set by ∆

and check whether the resulting schedule is RR feasible. If the schedule is feasible

the new finish times are retained. Otherwise, we decrease ∆ by 1 and repeat until we

either find a RR feasible ∆ or until ∆ reaches 0. We only repeat this RR feasibility

check while NPVcum,∆ > NPVcum,0, since a delay always has to lead to a NPV

increase.

2. NPVcum,∆ ≤ NPVcum,0: we calculate NPVcum,pot, which is the potential cumulative

NPV calculated by delaying individual activities in the set by more than ∆.

Starting from the activity in the set with the latest finish time, we check whether

for that activity j the following applies:

min(npj − fj ,min(fk − dk(mk) − fj |k ∈ Sj , k /∈ setAct))

≤ min(fk + ∆k − dk(mk) − fj |k ∈ Sj , k ∈ setAct) (3.14)

The left hand side of this inequality calculates the possible delay of the activity j

based on its next peak npj and based on the finish time fk of any succeeding activities

not in setAct. The right hand side determines the activity’s possible delay based on

any delays ∆k of successors k of j which are included in the set. ∆j can furthermore

be different for any activity j in the set. The inequality as a whole tests whether

activity j can indeed be delayed further based on additional delays of any successors

k in the set.

Subsequently, we evaluate the following inequality:

∆ < min(npj − fj ,min(fk − dk(mk) − fj |k ∈ Sj , k /∈ setAct)) (3.15)

The right hand side of this inequality is the same as the left hand side of inequality

(3.14), whereas the left hand side of (3.15) constitutes the original delay ∆ calculated

for the set as a whole. Inequality (3.15) is used to evaluate whether activity j can

be delayed by more time units than ∆.

If both inequalities (3.14) and (3.15) are met we set ∆j = min(npj − fj ,min(fk +

∆k − dk(mk) − fj |k ∈ Sj , k /∈ setAct)), which implies that j may now be delayed

further because of the later finish time of its successors in the set, i.e. ∆j > ∆.

We also add activity j’s NPV given ∆j to NPVcum,pot. If both inequalities are not

satisfied, ∆ is retained as ∆j and we add the activity NPV of activity j given ∆ to

NPVcum,pot.

3.4. SCHEDULE GENERATION 51

We move on to the activity j in the set with the highest finish time which has not yet

been considered, and repeat the same ∆j calculations until all activities in setAct

have been considered. Once all activities in setAct have been considered, we evaluate

NPVcum,pot.

(a) NPVcum,pot > NPVcum,0 and the delay is RR feasible for all activities in the

set: we delay each activity j with ∆j and the schedule is updated.

(b) NPVcum,pot > NPVcum,0 and the delay is not RR feasible for all activities in

the set: The ∆h for any activity h with an infeasible delay is decreased by 1.

Furthermore, the values of each ∆j corresponding to an activity j in the set

with a finish time smaller than that of activity h are recalculated if a decrease

in ∆h has occurred. These ∆j are recalculated because the decrease of ∆h may

lead to a violation of equation (3.14) due to a decrease in the right hand side.

As such the possible delays of any such activity j need to be adjusted. We

repeat the evaluation of NPVcum,pot for the entire set.

(c) NPVcum,pot ≤ NPVcum,0: no NPV improvement can be achieved by the poten-

tial NPV calculations and the delay rule terminates for activity i of the PL.

If an activity on the contrary is scheduled at a peak, no later peaks exist, or the search

for a delay is completed, we continue with the previous activity in the PL until the first

activity in the PL is reached. Finally, if at least one change has occurred the procedure is

repeated until no more delays are needed.

Figure 3.5 gives an overview of the flow of the activity move rules for an activity i.

We assume algorithm 3 has been applied and we start by calculating the set’s ∆ and then

evaluate ∆ and the corresponding NPV change.

Start
Calculate

Δ
Y

N

Δ>0?
Y

NPV↑? RR feas?

Calculate
Δj

Δj >0 ⋀
NPV↑?

RR feas?

EndRetain
new fj

N N

N

N

Y

Y

Y

Figure 3.5: Flow of NPV improvement.

Finally, table 3.3 gives an overview of the notations used in this section. Additionally,

the values of the notations are shown for two iterations of the example of section 3.4.2.4.

52 Chapter 3

Notation Definition Example
Network–based Schedule–based

i Current act in PL 5 2
setAct Set of act j returned by alg 3 or 4 {5, 6, 7, 8} {2, 4}
∆ Max allowable delay for setAct 2 1
∆j Individual delay of act j ∈ setAct 2, 2, 2, 3 /
NPVcum,0 NPV of setAct without delay 23.18 10.08
NPVcum,∆ NPV of setAct with delay ∆ 23.16 10.10
NPVcum,pot NPV of setAct with ∆j (∀j ∈ setAct) 23.19 /

Table 3.3: Overview of notations activity move rules.

3.4.2.3 Schedule–based moves

The second set of activity move rules or schedule–based moves delays sets of activities

based on their neighboring activities in the project schedule. These neighboring activities

may, but need not, be precedence related. Instead, in this second set of rules we group

activities together if one activity’s finish time equals another’s start time.

The network–based rules are extended because activities may not be delayed due to

non–precedence related activities which cause a resource conflict. The only difference with

the methodology discussed in section 3.4.2.2 is the way sets of activities are constructed,

which means algorithm 3 needs to be adjusted. Algorithm 4 shows the adjusted version

which adds neighboring activities to the set even if they are not precedence related.

Algorithm 4 Get all later neighbors

GetLaterNeighb (current activity i, start activity k, setAct[], NPVcum,0)

∀j ∈ N ∧ fi = fj − dj(mj)
If j /∈ setAct

Add j to setAct
Add NPVj to NPVcum,0

GetLaterNeighb (j, k, setAct, NPVcum,0)
End if

∀j ∈ N ∧ fi − di(mi) = fj
If j /∈ setAct ∧ j 6= k ∧ fj ≥ fk ∧ fj < lfj ∧ ∃npj

Add j to setAct
Add NPVj to NPVcum,0

GetLaterNeighb (j, k, setAct, NPVcum,0)
End if

Return setAct and NPVcum,0

3.4.2.4 Example

Let us illustrate both the network– and schedule–based rules on the example for the

PP model.

3.4. SCHEDULE GENERATION 53

1. Network–based moves: starting from the schedule in figure 3.3 and PL (1, 2, 4, 3,

5, 7, 6, 8), we first try to delay activity 8. This activity is however scheduled at a peak

(time 15) and has no successors, so we move on to activity 6. This activity would

have to be delayed together with its successor activity 8, but this would decrease

the total NPV. Next, activity 7 can be delayed by 1 time unit to time instance 13,

since from time 12 to 15 the slope of its activity profit curve is increasing. The delay

is furthermore RR feasible. Next, we try to delay 5 but this is impossible due to

activity 6. Hence, we apply algorithm 3 and the returned set is {5, 6, 7, 8}. Its

minimal allowable delay is 2 because of the peaks of activities 6 and 7 at time 15.

Doing so would however decrease the project NPV, so we calculate the potential

NPV by delaying activity 8 with an additional time unit to time 18. Activity 8 can

be delayed further because it has no successors and has a peak at time 18. As such,

given the delay of 2 for the entire set it makes sense to additionally delay activity 8

by 1 time unit with a total delay of 3 time units. For activities 6 and 7 this implies

that the right hand side of equation (3.14) is increased by 1 and that both activities

could also be delayed by an additional time unit. Both activities however have a

peak at time 15 (given a delay of 2 time units) and are not considered for further

delay, although it is possible. Based on this additional delay of activity 8, the project

NPV increases so we delay activities 5, 6 and 7 by 2 time units and 8 by 3 time units.

The values for the notations of the delay of activity 5 and the resulting setAct are

shown as an example in the third column of table 3.3. The next activity in the PL

is activity 3 which can be delayed by 2 time units because it has a peak at time 10.

Then, activity 4 is not considered because its duration equals the payment interval

size and hence its NPV curve only decreases. Activity 2 cannot be delayed due to

activity 4, which is not a successor of activity 2. Finally, it is impossible to delay

activity 1 due to its successor activity 2. Since we have reached the first activity in

the PL and at least one change has occurred, the procedure is repeated. No further

delays are possible however. The resulting schedule is shown at the left in figure 3.6

and the project NPV is 42.80.

2. Schedule–based moves: the first activity to be considered is activity 5, since

activities 8, 6 and 7 are scheduled at a peak. Activity 5 however cannot be delayed

to due activities 6 and 7. We apply algorithm 4 and its returns the set {5, 6, 7}.
Delaying this set any further would however decrease the project NPV. Next, is

activity 3 which is also scheduled at a peak, so we move on to activity 4. This

activity’s NPV however only decreases, so we skip it. Activity 2 can be delayed but

this is prohibited by activity 4. After applying algorithm 4 we get the set {2, 4}

54 Chapter 3

which can be delayed by 1 time unit. It is crucial to take into account that this delay

would never have been possible based on the first set of rules. The values for the

notations of the delay of activity 2 and the resulting setAct are shown as an example

in the fourth column of table 3.3. Finally, we reach activity 1 which, due to the delay

of activities 2 and 4, can also be delayed by 1 time unit because it reaches a peak

at time 5. The method is repeated but no further delays are possible. The project

NPV after both sets of rules have been applied is 42.89 and the project schedule can

be seen at the right of figure 3.6.

NPV=42.80 NPV=42.89a1

t
0

1

2

0

3

4

5

1 2 3 4 6 8 10 12 14 165 7 9 11 13 15 17

1
4

2 8

6

5

3
7

18

a1

t
0

1

2

0

3

4

5

1 2 3 4 6 8 10 12 14 165 7 9 11 13 15 17

1
4

2 8

6

5

3
7

18

Figure 3.6: Schedule examples PP model.

3.5 Genetic algorithm

In this section, we discuss the details of our genetic algorithm (GA). Holland (1975)

was the first to discuss the GA. The algorithm is based on evolutionary biology and makes

use of selection, crossover and mutation operators to produce new solutions based on

existing ones. The GA has already been extensively discussed in literature and the flow

of the procedure can be described in the following way. A starting population with size

|P0| is created either randomly or based on existing heuristics. The starting population

P0 is then reduced to a parent population P , which is used for the creation of the next

generation of elements. From the parent population the selection operator chooses two

parents. Each pair of parents is used by a crossover operator which combines characteristics

of the parents to come up with new promising solutions. These new solutions or children

are then mutated with a predefined percentage (M1 for the PL and M2 for the ML) and

can be inserted into the parent population by a population update. This update retains a

limited number |R| of the best parents and replaces the rest by elements from the children

set. An overview of the proposed GA, with the scheduler of section 3.4 as an integral part

for the solution evaluation, is shown in figure 3.7. We continue this section by discussing

each part of our GA in more detail.

3.5. GENETIC ALGORITHM 55

Pre-
processing

Initial
population

P0
Population

P

Retained
elements R

Selection &
crossover

Children
C

Mutation
ML & PL

Evaluation Evaluation

Best |P-R| elements
Until stop criterion reached

HIGH

LOW

M1

M2

Mode
improveStart Deadline

feas?

Schedule
improve

Deadline
feas?

Netw-
based
moves

Penalty
function

2

Repeat until
no change

EndY

Y
N

N

NRR
feas?

Reduce
ERR

Y

N

NRR
feas?

Penalty
function

1

N

Y

Extended
SSGS

Sched-
based
moves

Repeat until
no change

Initial schedule Activity move rules

Mode change Schedule construction

Mode
improveStart Deadline

feas?

Schedule
improve

Deadline
feas?

Netw-
based
moves

Penalty
function

2

Repeat until
no change

EndY

Y
N

N

NRR
feas?

Reduce
ERR

Y

N

NRR
feas?

Penalty
function

1

N

Y

Extended
SSGS

Sched-
based
moves

Repeat until
no change

Initial schedule Activity move rules

Mode change Schedule construction

Figure 3.7: Genetic algorithm: procedure.

3.5.1 Representation

The PL has to be linked as closely as possible to the final schedule of the scheduling

method, since in section 3.4 we move activities and change modes in the order of the PL.

Hence we adjust the PL to the topological order (TO) representation discussed by Valls

et al. (2004, 2003), and used for the RCPSP by Debels et al. (2006). The latter make

sure the PL is precedence feasible and take the activity finish times into account when

determining the order of activities in the list. We transform an element’s PL into a TO

representation once all steps of the scheduling procedure of section 3.4 have been applied.

If two or more activities have the same finish time, ties are broken by randomly selecting

which activity goes first. Recall in the example from section 3.4 that the initial PL was

(1, 2, 4, 3, 5, 7, 6, 8). Based on the final schedule at the right of figure 3.6 the TO

representation is (1, 2, 3, 4, 5, 6, 7, 8), with ties between activities 3 and 4, and between

6 and 7 broken randomly.

The ML is represented as is typically done in the MRCPSP literature (see e.g. Van Pe-

teghem and Vanhoucke (2014)) and holds the selected mode per activity. Only feasible

activity modes with respect to the preprocessing rules (section 3.5.2) are used.

3.5.2 Preprocessing

Before starting with the GA, several preprocessing steps are required. Specifically,

the modes which are infeasible with respect to the RR, the inefficient modes and the

redundant NRR need to be eliminated. The first need to be omitted because these modes

will always violate the RR constraints, whereas the second are worse than other modes

for the same activity due to e.g. requiring the same RR and NRR but having a longer

duration. The omission of NRR is needed if for all activities the mode with the largest

NRR is selected and the NRR availability is sufficient. For a more detailed description of

these three preprocessing steps we refer to Sprecher et al. (1997).

56 Chapter 3

3.5.3 Initial population

For the initial population P0 we generate |P0| number of ML. We randomly select a

mode for each activity which is not eliminated based on the preprocessing rules. In order

to reduce this initial population with size |P0| of ML to a size of |P |, we apply one of two

criteria (Van Peteghem and Vanhoucke, 2011) to evaluate each of the ML. The first is the

sum of activity durations and the second is the total work content. The |P | number of

elements from P0 with the lowest value for the selected evaluation criterion are retained

for P whereas the rest is deleted. Additionally, for each of the retained ML we randomly

generate a precedence feasible PL. These random solutions are then inserted in the GA’s

population P , and are evaluated based on the scheduler of section 3.4.

3.5.4 Selection

A selection operator is needed in a GA to ensure that the best elements are selected for

reproduction in the crossover step. We test several alternatives, namely a roulette wheel

selection, rank selection, four–tournament selection for both parents and the elite selection

of chapter 2 (Leyman and Vanhoucke, 2015). The latter selects the father from the |R|
best elements in the population whereas the mother is chosen using a four–tournament

selection.

3.5.5 Crossover

The crossover operator in a GA combines a number of existing parent elements and

generates a number of children |C| by recombining the information stored in the PL and

ML. In this case, we always select two parents and produce two children. The alternatives

tested are the one–point crossover, the two–point crossover, the MCUOX (Ulusoy et al.,

2001) and the partially–mapped crossover.

3.5.6 Mutation

A mutation operator makes changes to the children created by the crossover with a

certain probability. For the RCPSPDC we only apply mutation to the PL with a proba-

bility of M1, whereas for the MRCPSPDC we also mutate the ML with probability M2.

We implement and test the mutation operators scramble, insertion, inversion and swap for

both the PL and ML.

3.6. COMPUTATIONAL RESULTS 57

3.5.7 Evaluation and population update

Once the PL and ML of the children have been created, we apply the scheduling

procedure discussed in section 3.4. We retain the best |R| elements from the parent

population, while the rest of the parents are replaced by the best children. |R| also

constitutes the size of the pool of elements from which the father is selected with the elite

selection operator.

3.6 Computational results

This section shows the results of our computational experiments and goes into detail

about the configuration of our algorithm. As shown in section 3.2 no papers exist in

literature which discuss metaheuristics for the problems as defined in section 3.3. We

however clearly illustrate the added value of each part of our proposed algorithm.

The 5,000 schedules stopping criterion as defined by Lova et al. (2009) is used for all

tests. These authors define the number of generated schedules as the total number of

times each project activity has received a new finish time divided by the total number of

activities in the project. This definition implies that any change in activity finish or start

time increases the number of generated schedules by 1/n. Assume that the SSGS generates

an initial schedule for a project with 5 activities, of which each activity has three possible

modes. Additionally, a mode improvement method evaluates one other feasible mode for

two of the activities, and afterwards 3 activities are delayed to improve the project NPV.

The last two steps have no effect on the rest of the schedule. Based on the reasoning of

Lova et al. (2009) the algorithm has generated 2 schedules ((= 5 + 2 x 1 + 3)/5). Finally,

we employ a discount rate of 1% for all tests.

3.6.1 Test data

For the single–mode methods we use the project data of Vanhoucke (2010). For the

multi-mode problems we use the MMLIB data of Van Peteghem and Vanhoucke (2014)

since these authors show that the PSPLIB (Kolisch and Sprecher, 1996) and Boctor (Boc-

tor, 1993) datasets contain shortcomings. The multi–mode data is extended with the cash

flow data of Vanhoucke (2010), since no such data is included in the MMLIB datasets. An

overview of the parameters of both relatively new datasets can be found in table 3.4.

No cash flow data and payment times data is however publicly available for the PP

and PEO model. In terms of cash flow data, we use the 100% negative cash flow files of

Vanhoucke (2010) as cash outflows and apply a profit margin (%Prof) ranging from 0%

to 100% in steps of 20%. For PP we assume payments occur every 10 time units, with

58 Chapter 3

Parameter Vanhoucke (2010) MMLIB

Number of activities (Act) 25, 50, 75 or 100 50 or 100
Order strength (OS) 0.25, 0.50 or 0.75 0.25, 0.50 or 0.75
Renewable resource usage (RU) 2 or 4 /
Renewable resource factor (RF ρ) / 0.50 or 1
Non–renewable resource factor (RF ν) / 0.50 or 1
Renewable resource constraindness (RC) 0.25, 0.50 or 0.75 /
Renewable resource strength (RSρ) / 0.25, 0.50 or 0.75
Non–renewable resource strength (RSν) / 0.25, 0.50 or 0.75
Deadline increase (D–Incr) 5, 10, 15 or 20 5, 10, 15 or 20
Percentage negative cash flows (%Neg) (PAC) 0, 20, 40, 60, 80 or 100 0, 20, 40, 60, 80 or 100
Profit margin (%Prof) (PP & PEO) 0, 20, 40, 60, 80 or 100 0, 20, 40, 60, 80 or 100

Table 3.4: Parameter settings of test instances.

the final payment at project deadline, whereas for PEO we have generated payment times

with a payment interval size randomly generated from [5;15].

With respect to %Prof used by the PP and PEO models the following has to be

clarified. Since this profit margin has to be applied on each activity separately (Vanhoucke

et al., 2003), this implies that the magnitude of the project NPV between the PAC model

on the one hand and the PP/PEO models on the other hand will be different, with a

smaller average NPV for the PAC model (tables 3.10 to 3.12) for the cash flows used in

this research. The assumptions of the models (section 3.3) do not allow for the exact same

cash flow data to be used for all three payment models since a positive profit margin for an

activity (PP/PEO) always leads to a positive net activity cash flow, which would render

the %Neg parameter for the PAC model useless. Vica versa the %Neg has no link to

%Prof. The only way to link both parameters is by setting a profit margin on the project

as a whole rather than on the activity level, but doing so would violate assumptions made

in literature with respect to the PP model (Vanhoucke et al., 2003).

The problem set for the RCPSPDC contains 17,280 (= 720 x 4 x 6) problem in-

stances and 103,680 (= (540 + 540 + 3,240) x 4 x 6) instances for the MRCPSPDC. All

data of both Vanhoucke (2010) and Van Peteghem and Vanhoucke (2014), and the data

generated for this chapter, along with the best known solutions are available online at

http://www.projectmanagement.ugent.be.

3.6.2 Algorithm configuration

In this section, we configure our algorithm. We start by showing the values of the

parameters for each payment model and the factors of the penalty functions. We further-

more give an overview of the added value of the mode improvement of section 3.4.1.1 and

of each of the activity move rules (section 3.4.2). All tests are run on 20% of either the

3.6. COMPUTATIONAL RESULTS 59

dataset of Vanhoucke (2010) for the single–mode case or on 20% of both the MMLIB50

and MMLIB100 datasets for the multi–mode case.

3.6.2.1 Parameter testing

Table 3.5 shows the best found values for the parameters of our GA. As part of the

finetuning of our GA we also tested different operators and found that the elite selection,

one–point crossover and swap mutation for both the PL and ML performed best. It is

important to stress that although both mutation rates and operators are the same, they

are applied independently. This means that for a specific PL and ML, a swap is first

applied to the PL and a different swap is subsequently applied to the ML, given both their

mutation rates. Based on the tests for the proposed GA, it can be concluded that the

results are in line with those of chapter 2 for the single–mode PAC model (Leyman and

Vanhoucke, 2015) and that the GA used here is similar to the GA2 algorithm proposed

by the authors, which displayed the best results to date for the RCPSPDC.

PAC/PP/PEO PAC PP/PEO
|P0| |P | |C| |R| M1 M2 MI Y1 Y2 Y1 Y2

500 50 50 5 0.95 0.95 0.35 10,000 0.85 10,000 0.75

Table 3.5: Algorithm parameters.

Next, we consider the parameters of both penalty functions, namely Y1, Y2, Y3 and Y4.

For Y1 and Y2 the best found values are displayed in table 3.5, whereas the values for Y3

and Y4 are shown in table 3.6. Based on the second table the following can be concluded:

• SM–PP/PEO: A higher profit margin leads to a higher value for the Y4 parameter,

with the exception of the case in which %Prof is 0%. This implies that for a higher

(lower) average project NPV (AvNPV) a higher (lower) value for Y4 is required.

• MM–PAC: Starting from a %Neg of 0% the values of Y4 first decrease and subse-

quently increase as %Neg increases. The same trend can be observed in the absolute

values of AvNPV, which means that a higher (lower) value for the Y4 parameter is

needed as the absolute value of the average project NPV increases (decreases).

• MM–PP/PEO: As the profit margin increases a higher Y4 value is required until a

profit margin of 40%, after which the Y4 value decreases. No clear link can however

be made between AvNPV and the value of Y4.

We test under what conditions the three mode improvement methods of section 3.4.1.1

are applied. The ERR reduction is always applied if the solution has a positive ERR,

60 Chapter 3

SM–PP/PEO MM–PAC MM–PP/PEO

%Neg/%Prof Y3 Y4 AvNPV Y3 Y4 AvNPV Y3 Y4 AvNPV

0% 20,000 0.75 -35.32 17,500 0.50 15,649.97 17,500 0.25 -238.68
20% 20,000 0.70 1,374.27 17,500 0.45 9,026.78 17,500 0.45 2,697.71
40% 20,000 0.70 2,899.61 17,500 0.35 2,471.52 17,500 0.50 5,678.73
60% 20,000 0.80 4,433.25 17,500 0.35 -855.54 17,500 0.50 8,690.59
80% 20,000 0.85 5,959.59 17,500 0.40 -5,623.10 17,500 0.40 11,654.86
100% 20,000 0.995 7,494.97 17,500 0.50 -14,304.44 17,500 0.20 14,665.94

Table 3.6: Parameters penalty function (3.13).

independent of the resource characteristics, whereas the CP and WC improvement methods

are used if the ERR is equal or has been reduced to zero. Specific conditions apply for the

CP and WC methods depending on the renewable and non–renewable resource strength,

as can be seen in table 3.7.

RSρ

0.25 0.50 0.75
0.25 CP CP

RSν 0.50 WC CP+WC CP
0.75 WC CP+WC CP

Table 3.7: Applicability improvement methods.

The conditions under which the minimal sum of durations or minimal total work con-

tent is chosen to evaluate the initial |P0| random ML also depend on the resource strength.

The sum of durations is selected if the problem instance under consideration’s RSρ is larger

than 0.25, whereas the total work content is employed otherwise.

3.6.2.2 Mode improvement

Table 3.8 shows the added value of penalty function (3.12) for the ERR violations, of

the three mode improvement steps of section 3.4.1.1 (ERR reduction, CP improvement and

WC improvement) and of the schedule improvement applied after the SSGS. Each of the

three parts of our algorithm are omitted (NoPenFunc, NoModeChange and NoSchedImpr)

and compared with the results of the method without any omissions (Full). The results

are evaluated based on the percentage of D–Feas solutions found (%D) and based on

the percentage of ERR–Feas solutions found (%E). For %D any solutions which are D–

Feas but ERR–Infeas have been counted as D–Infeas to ensure only feasible solutions with

respect to both the RR and NRR are taken into account for %D, since deadline infeasibility

can be caused by the PL, ML or both. %E on the contrary takes ERR–Feas solutions into

account regardless of deadline feasibility since the ERR value is only determined by the

3.6. COMPUTATIONAL RESULTS 61

ML. The following can be concluded from table 3.8:

• For all three payment models, penalty function (3.12) has a clear added value, since

not applying it (NoPenFunc) reduces the %E and the %D. Whereas the decrease in

%E was expected in advance the decrease in %D shows that due to the interaction

with penalty function (3.13), function (3.12) also helps to improve the deadline

feasibility.

• Without the mode improvement steps (NoModeChange) the performance of our al-

gorithm is considerably worse both in terms of %D and %E.

• Omitting the schedule improvement (NoSchedImpr) leads to a decrease in %D,

whereas %E remains largely unchanged. The decrease in %D is furthermore larger

than if the mode improvement steps are not included (NoModeChange).

Full NoPenFunc NoModeChange NoSchedImpr
%D %E %D %E %D %E %D %E

PAC 50 91.32 100.00 83.64 97.18 78.55 91.13 83.45 99.92
100 86.11 100.00 78.82 99.85 58.10 85.34 76.62 100.00

PP 50 93.56 100.00 83.02 96.80 86.54 90.01 77.62 99.85
100 86.88 100.00 75.42 98.61 71.99 83.22 62.08 99.92

PEO 50 91.74 100.00 82.18 97.18 82.95 87.89 74.50 99.85
100 84.91 100.00 73.77 98.80 67.75 83.10 57.91 100.00

Table 3.8: Added value of mode improvement.

3.6.2.3 Activity move rules

Table 3.9 displays the added value of both the network– and schedule–based activity

move rules. In the table we compare the average percentage improvement of several cases

with the results if no activity move rules at all are applied. We compare the proposed

scheduler (S1–2) with the results if only the network–based moves are used (S1), if only

the schedule–based moves are included (S2) and if both steps are swapped (S2–1). The

latter case implies that instead of first applying the network–based moves and then the

schedule–based delays, we now first employ the schedule–based moves and only use the

network–based moves afterwards. For the PP and PEO models we test the additional

case if the potential NPV calculations and moves are omitted (NoNPVpot). Finally, only

problem instances for which all methods could find a D–Feas solution are taken into

account in the table.

62 Chapter 3

First, we discuss the results for the single–mode (SM) PP and PEO models. Based on

table 3.9 it is clear that applying any form of activity moves is guaranteed to improve the

project NPV, but that some options have a higher added value than others. The proposed

methodology seen under S1–2 clearly performs best for both the PP and PEO model.

The schedule–based moves have a strong added value whereas if only the network–based

moves would be applied, this would lead to the worst results of the five options in table

3.9. The added value of the potential NPV calculations can be seen by comparing the last

column with the previous two columns. Without the potential NPV the added value of

the activity move rules would be lower.

Second, we focus on the results for the multi–mode (MM) cases of the PAC, PP and

PEO models. For the PAC model the results of S1–2 are best, but S1 is a close second.

The schedule–based moves have a smaller added value, which is in line with the results

for the single–mode PAC as reported in chapter 2 (Leyman and Vanhoucke, 2015). For

the multi–mode PP and PEO models the largest added value is again created by the

network–based moves (S1), which is in stark contrast with the single–mode cases where

the schedule–based rules have the largest added value. The contribution of the potential

NPV can be seen by comparing the final three columns, which show that the results would

not be as good without the potential NPV. Finally, the best results are achieved by S1–2.

All the average percentage improvements in the table reported a p–value smaller than

0.01, when tested for statistical significance, with both a one–way ANOVA and paired

samples t–tests (*).

S1 S2 S1–2 S2–1 NoNPVpot
PAC MM50 3.89* 3.65* 3.90* 3.87* /

MM100 6.22* 6.14* 6.23* 6.19* /
PP SM 5.56* 6.53* 6.70* 6.65* 6.14*

MM50 9.17* 8.48* 9.26* 9.23* 9.08*
MM100 8.86* 7.84* 8.92* 8.85* 8.57*

PEO SM 9.77* 10.99* 12.38* 12.14* 10.37*
MM50 7.19* 6.28* 7.22* 7.13* 7.03*
MM100 6.75* 5.52* 6.82* 6.79* 6.61*

Table 3.9: Added value of activity move rules (average % improvement).

3.6.3 Best known results

In this section, we show the final results of our algorithm for the single– and multi–

mode cases based on tests for the entire datasets. Table 3.10 displays the results for the

single–mode PP and PEO models, and also includes the results of chapter 2 for the PAC

3.6. COMPUTATIONAL RESULTS 63

model (Leyman and Vanhoucke, 2015) for the sake of completeness. Table 3.11 shows the

results for the multi–mode PAC, PP and PEO models for MMLIB50, MMLIB100 and

MMLIB+ respectively. Since the MMLIB data however is relatively new, we also employ

the PSPLIB data of Kolisch and Sprecher (1996) (table 3.12). The results are evaluated

based on two criteria, namely the average project NPV (AvNPV) of all feasible solutions,

and the percentage D–Feas solutions (%D). All reported results are ERR–Feas as a result

of the ERR improvement method and of penalty function (3.12).

Based on the results in table 3.10 for the single–mode cases the following can be

concluded:

• Increases in Act increase AvNPV and decrease the deadline feasibility for all three

models, although the decrease in %D is limited which reflects favorably on the meth-

ods used.

• An increase in D–Incr improves AvNPV but only for PAC, whereas the deadline

feasibility increases for all three payment models.

PAC PP PEO
AvNPV %D AvNPV %D AvNPV %D

Act 25 290.13 99.51 2,067.45 99.77 2,036.09 99.75
50 978.02 99.03 3,514.95 99.28 3,467.58 99.49
75 1,648.44 98.06 4,376.94 98.31 4,322.15 98.08
100 2,014.01 97.52 4,980.82 97.25 4,915.11 97.06

D–Incr 5% 986.13 94.21 3,610.71 94.65 3,569.77 94.40
10% 1,179.56 99.93 3,761.39 99.95 3,703.56 99.98
15% 1,290.03 100.00 3,762.73 100.00 3,709.23 100.00
20% 1,440.25 100.00 3,758.98 100.00 3,708.81 100.00

Table 3.10: Best known results single–mode.

Based on the results in tables 3.11 and 3.12 for the multi–mode cases the following can

be concluded:

• A higher number of activities decreases deadline feasibility, similar to the single–

mode results. The decrease in %D–Feas is lowest for the PP and PEO models on

the PSPLIB and MMLIB50 data, but largest on the MMLIB100 and MMLIB+ data.

A larger decrease between the MMLIB50 and MMLIB100 results on the one hand

and the MMLIB+ results on the other hand can be observed. This implies that

the proposed algorithm scales well as Act increases, but that it has more difficulty

finding D–Feas solutions with a greater number of resources and activity modes.

64 Chapter 3

• Increases in D–Incr considerably increase %D especially for the MMLIB data. An

increase in %D has a positive effect on AvNPV for PSPLIB. The effect of AvNPV is

not clear for MMLIB, though this may be due to more instances becoming D–Feas

with an increase in project deadline. This would imply that these, in terms of D–Feas

more difficult, instances in general have a lower NPV.

PAC PP PEO
D–Incr AvNPV %D AvNPV %D AvNPV %D

MMLIB50 5% 839.21 76.14 5,259.72 79.10 5,167.08 78.83
10% 655.95 93.64 5,166.80 97.93 5,034.61 97.38
15% 545.35 98.58 5,154.78 99.78 5,059.46 99.69
20% 568.48 99.72 5,159.60 99.91 5,047.04 99.94

MMLIB100 5% 2,696.03 62.65 9,943.92 58.95 9,634.86 59.07
10% 2,285.26 86.98 9,637.29 90.40 9,450.83 90.00
15% 2,078.43 95.93 9,576.37 98.49 9,381.59 98.18
20% 1,905.87 99.07 9,529.43 99.69 9,317.80 99.81

MMLIB+ 5% 2,002.44 35.46 6,472.98 20.75 6,323.49 20.80
10% 2,016.36 68.55 6,177.09 55.27 6,066.63 55.35
15% 1,669.42 87.14 6,177.92 79.53 6,043.29 79.64
20% 1,470.68 95.49 6,239.32 90.88 6,109.93 91.11

Table 3.11: Best known results MMLIB.

In table 3.11 we see that the deadline feasibility is relatively low for MMLIB compared

to the single–mode results of table 3.10, especially when D–Incr is 5%. As such, we have

decided to test our methodology for the maximization of project NPV on the makespan

minimization variant of the MRCPSPDC, namely the MRCPSP, by omitting all activity

move rules and by setting the project deadline to the best known solution to date (i.e.

D–Incr is set to 0%). The penalty functions’ parameters are those used for MM–PAC

with %Neg equal to 0%.

In table 3.13 we compare our results with the best known results from literature based

on the average percentage deviation from the critical path based lower bound for the

MMLIB50, MMLIB100 and MMLIB+ datasets. The percentage between brackets for the

paper of Van Peteghem and Vanhoucke (2010) means that the algorithm proposed in the

paper was only able to find ERR–Feas solutions in 97.59% of the cases, whereas all other

algorithms shown always found a feasible solution. Based on the results from the table

it should be clear that whereas Van Peteghem and Vanhoucke (2011) still have the best

results to date, our algorithm consistently performs second best. This implies that our

makespan minimization methods and penalty functions still perform well, but shows that

it is considerably more difficult to reach strict deadlines, as Act increases and as a higher

number of activity modes and resources is used. The results in table 3.13 also display

3.6. COMPUTATIONAL RESULTS 65

PAC PP PEO
D–Incr AvNPV %D AvNPV %D AvNPV %D

J10 5% 399.13 98.41 1,126.29 99.60 1,096.03 99.63
10% 415.02 99.81 1,135.44 100.00 1,108.88 100.00
15% 423.39 100.00 1,136.28 100.00 1,113.56 100.00
20% 433.14 100.00 1,137.94 100.00 1,113.59 100.00

J12 5% 245.32 97.78 1,362.20 99.36 1,331.69 99.18
10% 257.01 99.70 1,367.21 100.00 1,334.19 100.00
15% 268.91 100.00 1,369.01 100.00 1,341.45 100.00
20% 282.19 100.00 1,370.27 100.00 1,341.35 100.00

J14 5% 315.27 96.55 1,431.11 98.67 1,390.00 98.55
10% 316.70 99.82 1,436.33 100.00 1,399.34 99.94
15% 328.90 99.97 1,439.65 100.00 1,411.30 99.94
20% 343.23 100.00 1,441.60 100.00 1,411.44 100.00

J16 5% 271.83 94.18 1,519.76 98.88 1,484.50 98.36
10% 265.97 98.67 1,530.88 100.00 1,492.82 100.00
15% 278.21 99.70 1,534.98 100.00 1,500.50 100.00
20% 294.11 99.91 1,537.51 100.00 1,502.23 100.00

J18 5% 159.62 94.20 1,654.53 98.07 1,616.84 97.74
10% 146.66 98.82 1,658.87 99.91 1,619.76 99.88
15% 164.12 99.46 1,663.67 100.00 1,631.59 100.00
20% 183.14 99.76 1,665.74 100.00 1,629.60 100.00

J20 5% 309.22 93.02 1,876.57 97.32 1,834.20 97.26
10% 273.81 98.83 1,876.76 99.76 1,836.98 99.85
15% 286.32 99.88 1,880.75 100.00 1,842.36 100.00
20% 308.06 99.82 1,882.68 100.00 1,842.76 100.00

J30 5% -272.39 85.60 2,832.14 91.55 2,772.72 91.82
10% -344.44 97.89 2,834.11 99.70 2,765.70 99.76
15% -341.33 99.58 2,837.21 99.97 2,775.68 100.00
20% -305.19 100.00 2,841.30 100.00 2,784.58 100.00

Table 3.12: Best known results multi–mode PSPLIB.

the percentage of instances for which the best known solution to date is found by our

algorithm (%BestFound) and the percentage of instances for which our results improved

upon the best known solutions (%NewBest).

We use a multivariate linear regression analysis to clearly and statistically show the

effect of the project parameters on the objective function. The results are reported in

table 3.14 which provides the R2–value, the constant (Const) and the coefficient for each

parameter. An asterisk (*) is used to indicate that a coefficient is significant at the 1%

confidence level.

With respect to the data parameters, the following conclusions can be drawn:

• Act: An increase in the number of activities reflects favorably on AvNPV. Although

the coefficients are rather small for all six models, they are all significant at the 1%

66 Chapter 3

MMLIB50 MMLIB100 MMLIB+
Van Peteghem and Vanhoucke (2011) 25.45 26.51 101.45
This chapter 26.36 27.88 106.37
Van Peteghem and Vanhoucke (2010) 27.12 29.55 (97.59)
Lova et al. (2009) 28.59 31.01 114.07
Damak et al. (2009) 32.46 36.87 126.69
Józefowska et al. (2001) 33.81 39.05 121.09
%BestFound This chapter 50.93 40.19 11.11
%NewBest This chapter 0.37 0.37 0.68

Table 3.13: Solutions makespan minimization multi–mode.

level of confidence.

• OS: An increase in OS greatly and significantly decreases project NPV for all six

models. In more parallel networks AvNPV is larger because more activities can be

scheduled in parallel. Specifically, for the PAC model more cash inflows (outflows)

can be scheduled earlier (later). In the PP and PEO models the activities can be

scheduled closer to payment times, which reduces the NPV of cash outflows, and

more activities can be completed at earlier payment times, which increases the NPV

of cash inflows.

• RU/RF: The RU (data of Vanhoucke (2010)) and RF (MMLIB) have a strong

negative effect on project NPV, both for the single– and multi–mode parameters

(RF ρ and RF ν). The larger the average number of project resources used the lower

AvNPV, except for the SM–PAC case.

• RC/RS: In terms of the average amount of resource usage it can be observed that

a higher value for RC, which implies a higher average resource usage, has a negative

impact on the project NPV for the SM–PP and SM–PEO cases, whereas the impact

is positive for the SM–PAC model. The coefficient of the latter is however not

significant at the 1% confidence interval. In terms of the RS parameter values (RSρ

and RSν) a similar trend can be observed: a higher resource usage leads to a lower

average NPV. Take into account however that, unlike for RC, increases in the value

of the RS parameters imply a lower resource usage. As such the coefficients for the

multi–mode cases which use RS instead of RC have a positive sign.

• D–Incr: For the PAC model an increase in the project deadline leads to a signifi-

cantly higher AvNPV, although the effect is limited in size. For the PP and PEO

models on the contrary no significant effect exists for the single–mode cases. In the

multi–mode cases an increase in D–Incr slightly decreases the project NPV.

3.7. CONCLUSIONS 67

• %Neg/%Prof: As could be expected, increases in %Neg (%Prof) lead to a lower

(higher) AvNPV. All six coefficients are significant at the 1% confidence interval.

SM–PAC SM–PP SM–PEO MM–PAC MM–PP MM–PEO
R2 0.771 0.768 0.768 0.853 0.883 0.883
Const 5,966.77* -132.74 -155.62 10,531.86* -3,186.76* -3,263.21*
Act 23.29* 38.51* 37.99* 28.72* 79.09* 77.32*
OS -1,540.60* -1,191.89* -1,182.57* -929.89* -3,371.26* -3,266.13*
RU/RF ρ 132.13* -541.47* -535.79* -207.79* -1,617.20* -1,522.37*
RC/RSρ 121.59 -371.59* -369.97* 614.78* 1,859.05* 1,799.46*
RF ν / / / -220.52* -919.12* -919.45*
RSν / / / 479.03* 1,191.05* 1,160.87*
D–Incr 30.95* 4.93 5.50 27.97* -9.91* -8.12*
%Neg/%Prof -125.58* 76.21* 75.63* -234.47* 130.16* 129.16*

Table 3.14: Results multivariate regression.

Since the reported R2 values lie between 0.771 and 0.883 the proposed models can

predict the project NPV well based on the problem characteristics. Given that most

coefficients are furthermore significant at the 1% confidence interval, the models can be

used as predictors for our algorithm’s performance in terms of AvNPV, and clearly show

the effect of the data parameters on the objective function.

3.7 Conclusions

In this chapter, we discussed the resource–constrained project scheduling problem with

discounted cash flows (RCPSPDC) and its multi–mode variant the MRCPSPDC for mul-

tiple payment models. First, we have extended an existing scheduling technique to make

it applicable in all of the six cases used in the manuscript. To do so, we have discussed

the importance of peaks in the activity profit curves for optimizing the activity schedule

with different payment models. The activity move rules have been applied in two ways,

namely based on the network predecessors and successors, and based on the neighboring

activities in the project schedule. These rules move a set of activities together in order

to improve project net present value (NPV). We have introduced the notion of potential

NPV to delay certain activities in the set beyond the delay for the entire set. Two penalty

functions have been applied to improve project feasibility with respect to both the project

deadline and the mode selection feasibility. Furthermore, several mode improvements from

literature have been used as part of a proposed genetic algorithm metaheuristic. Second,

the proposed solution methodology has been extensively tested on several existing datasets

and conclusions have been drawn with respect to the influence of the data’s parameters

68 Chapter 3

on the project NPV. Finally, the results in this chapter can be used as future benchmarks

for each of the six models discussed.

In the future, it may be worthwhile to propose local searches, which simultaneously

delay activities and make mode changes, in order to improve NPV in two ways. In doing so,

explicit rules to improve the project NPV by applying mode changes, could be incorporated

in the overall framework discussed in this chapter. Another future research avenue concerns

the proposed penalty functions. Different types of functions could be investigated in detail,

whereas the integration and generalization of the two functions discussed in this chapter,

may increase performance.

4
Metaheuristics for the discrete time/cost trade–off

problem with net present value optimization and

different payment models

In this chapter, we focus on the deadline version of the discrete time/cost trade–off

problem with net present value optimization (DTCTP–NPV). We apply three payment

models from literature, which all assume that cash outflows occur at activity completion

and that cash inflows depend on the actual project schedule. Our contribution to existing

literature is threefold. First, we introduce a full activity–on–the–node mathematical model

for the DTCTP–NPV with the three payment models. Care has been taken to model

the problem in line with the time indexed binary decision variables commonly used in

literature. Second, we propose two solution representations as part of a metaheuristic to

solve the DTCTP–NPV with the three payment models. Third, we compare the proposed

methodologies and show that our results significantly outperform existing work, based on

an extensive computational experiment.

69

70 Chapter 4

4.1 Introduction

Time/cost trade–off problems have been extensively discussed in literature and focus on

the trade–off between an activity’s duration and its associated cost. In the discrete variant

of the problem it is assumed that the trade–off follows a discrete non–increasing pattern,

which implies that an activity’s duration can be shortened by incurring a higher activity

cost. Three different problem formulations can be distinguished in literature. The first is

called the deadline problem and focusses on minimizing the total project cost given a fixed

deadline. The second variant is the budget problem which aims to minimize the project

duration without exceeding a cost threshold. A third problem constructs the complete

and efficient frontier in terms of time/cost combinations for all feasible project durations.

For overviews of the discrete time/cost trade–off problem, we refer to Vanhoucke and

Debels (2007) and Hazir et al. (2010). In the remainder of this chapter, we go into detail

about an extension of the deadline variant of the DTCTP, namely the DTCTP with net

present value (NPV) optimization (DTCTP–NPV), for three payment models. From a

methodology perspective, we focus on solution representations and schedulers for

these representations as part of a metaheuristic.

Cash in

Cash out

Timing Size Timing & size

Payments at activities’
completion times (PAC)

Progress payments
(PP)

Payments at event
occurences (PEO)

Progress based payment
pattern (PBPP)

Expense based payment
pattern (PBPP)

Payments at activities’
completion times (PAC)

General capital modelResource usage costs

Figure 4.1: Overview of the research on project scheduling with NPV optimization in chapter 4.

The DTCTP–NPV has first been discussed by Erengüç et al. (1993). Cash flows are

associated with events and the authors illustrate that the DTCTP–NPV is a combination

of both the DTCTP and the payment scheduling problem. Vanhoucke and Debels (2007)

extend upon the work of Erengüç et al. (1993) and assume cash outflows are associated with

arcs and cash inflows with events as part of an activity–on–the–arc (AoA) representation.

The authors propose a metaheuristic algorithm which succeeds in finding near–optimal

solutions for the DTCTP–NPV. He and Xu (2008) discuss the DTCTP–NPV with a bonus–

penalty structure and include a trade–off mechanism between the contractor and the client.

Their model assigns cash in– and outflows to event occurrence times. The objective is to

4.2. PROBLEM DEFINITION 71

determine both activity completion times and payment times to balance the NPV of both

parties. A simulated annealing metaheuristic is proposed, which is tested on an example

from literature. The client’s perspective is analyzed by He et al. (2009a) by making use

of a simulated annealing algorithm similar to the authors’ previous approach. He et al.

(2009b) extend their earlier work by introducing three types of payment models on top of

the previously used general model, and study the problem from the contractor’s point of

view. It is concluded that the simulated annealing algorithm performs best out of several

alternatives. He et al. (2012) further extend the problem formulation by including a capital

constraint for the models discussed, which ensures that the cash position of the contractor

can at no point in the project schedule become negative. The results show that the loop

nested tabu search algorithm leads to the best results. Last, He et al. (2014) apply their

simulated annealing algorithm to the DTCTP–NPV with the inclusion of financing costs.

The goal is to distribute these financing costs among the contractor and client in a manner

acceptable for both parties.

In this chapter, we focus on the DTCTP–NPV from the contractor’s perspective with

the three different payment models of He et al. (2009b). We propose two metaheuristics

to solve the problem. The remainder of this chapter is organized as follows. In section 4.2,

the problem definition of the DTCTP–NPV is discussed, whereas section 4.3 focuses on

two solution representations. Section 4.4 provides details of our proposed metaheuristic.

In section 4.5, the results of our algorithm are analyzed and compared with the method of

He et al. (2009b). We finish with a conclusion and recommendations for future research

in section 4.6.

4.2 Problem definition

In this section, the problem definition of the DTCTP–NPV is highlighted for each of

the three employed payment models of He et al. (2009b). We furthermore use an example

to illustrate the three payment models.

In general, a project can be represented by a network or directed graph G(N , A) with N

the nodes or project activities and A the arcs of precedence relations between individual

activities. In this chapter, we use the activity–on–the–node (AoN) representation and

assume a finish–start time–lag of zero for the precedence relations, which implies an activity

can be started once all of its predecessors have been completed. The activities i (i ∈ N =

{1, . . . , n}) each have a mode m with m ∈ Mi = {1, . . . , |Mi|}. Each of these modes m

of an activity i has a duration dim and a cost cim. These activity durations are discrete

non–increasing functions of the costs associated with them, i.e. di1 > di2 > . . . > di|Mi|

and ci1 < ci2 < . . . < ci|Mi|. Additionally, a start dummy activity 0 and an end dummy

72 Chapter 4

activity n + 1 are included, but both activities only have one mode with a duration and

cost of zero. The project has a deadline equal to δn+1.

The deadline variant of the discrete time/cost trade–off problem with NPV maximiza-

tion aims to optimize the project NPV subject to precedence constraints. The project

NPV consists of two parts, namely the earlier defined cash outflows or costs cim of an

activity i executed in mode m, and the additionally introduced cash inflows c+
i for each

activity i, which are independent of the selected modes. The cash outflows are discounted

to activity completion and are accrued in a linear manner starting from the activity start

time, whereas the receipt of cash inflows depends on the payment model used.

Table 4.1 provides an overview of the notations used and explained in the following

sections.

Notation Definition
A Set of arcs
N Set of activities
i Activity index
Mi Set of modes of activity i
m Mode index
Pi Set of immediate predecessors of activity i
Si Set of immediate successors of activity i
efi Earliest finish time of activity i
lfi Latest finish time of activity i
si Available slack of activity i, i.e. si = lfi − efi
dim Duration of activity i with mode m
cim Cost/cash outflow of activity i with mode m (contractor)
c+i Cash inflow of activity i (contractor)
pt Payment amount received at time t (contractor)
vi Total created value of activity i (client)
cvimtw Created value of activity i with mode m and finish time t, at time w (client)
θ Compensation proportion
K Number of payments
B Benchmark for project costs
δn+1 Project deadline
α Discount rate

Table 4.1: Overview of notations.

4.2.1 Progress–based payment pattern

The progress–based payment pattern (PBPP) assumes payments are arranged accord-

ing to the progress in the project schedule. In this payment model the project client,

or party receiving the benefits of the project, pays the contractor, or party responsible

for executing the project, according to the work done in terms of created value for the

4.2. PROBLEM DEFINITION 73

client. The total created value for the client and the total reimbursement or cash inflow

for the contractor, are furthermore linked by a compensation proportion θ (0 < θ < 1):∑n
i=1 c

+
i = θ ·

∑n
i=1 vi, with vi the total created value by activity i. A threshold value,

which determines when payments are received by the contractor, is introduced and equals∑n
i=1 vi/K, with K the number of payments. The number of payments is determined in

advance. This reasoning ensures that once the accumulated created value since the previ-

ous payment exceeds this threshold value, a payment pt is received. This payment equals

the total created value until the payment time multiplied with θ and minus any previous

payments. The final payment is received at the project deadline. The following can be

concluded with respect to the cash flows of the contractor and the client:

• Client: a created value
∑|N |

i=1 vi is generated by the project, independent of the

contractor’s actions. The NPV of this value, on the contrary, depends on the finish

times of the activities, which are based on the contractor’s schedule.

• Contractor: a cost is incurred for each activity, which depends on the selected ac-

tivity modes by the contractor. The activity costs are discounted to the activity

finish times. A portion θ of the total created value is received from the client as

compensation for the work done. The size and timing of payments depend on the

work completed. This way, the value of θ determines the profitability of the project

for the contractor. In this chapter, we focus on the contractor’s perspective and

optimize this party’s NPV.

As stated, the progress of the project is measured at any time unit w during the project

duration based on the created value until that point in the schedule. This translates into

a created value of
∑|Mi|

m=1

∑lfi
t=efi

cvimtw ·ximt for each activity i, with the parameter cvimtw

the created value of activity i executed in mode m with a finish time of t, at time w.

The value of this parameter cvimtw can be calculated in advance for all activity, mode and

finish time combinations for each time unit w until the project deadline:

1. Activity i has not yet been started by time w:
∑|Mi|

m=1

∑lfi
t=efi

cvimtw · ximt = 0.

2. Activity i is in progress at time w: 0 <
∑|Mi|

m=1

∑lfi
t=efi

cvimtw · ximt < vi.

3. Activity i has been completed by time w:
∑|Mi|

m=1

∑lfi
t=efi

cvimtw · ximt = vi.

In our model we consider the traditional time indexed binary decision variables ximt

(Kolisch and Drexl, 1997; Pritsker et al., 1969), and include additional variables yt to

model the occurrence time of payments.

74 Chapter 4

ximt =

1 if activity i is executed in mode m and finishes at time t

0 otherwise

yt =

1 if payment is received at time t

0 otherwise

A mathematical model for the DTCTP–NPV with the PBPP is constructed as follows:

Maximize

δn+1∑
t=1

pt · e−αt −
|N|∑
i=1

|Mi|∑
m=1

lfi∑
t=efi

cim · e−αt · ximt (4.1)

Subject to:

|Mi|∑
m=1

lfi∑
t=efi

ximt = 1, ∀i ∈ N, (4.2)

|Mj |∑
m=1

lfj∑
t=efj

t · xjmt ≤
|Mi|∑
m=1

lfi∑
t=efi

(t− dim) · ximt, ∀i ∈ N ; ∀j ∈ Pi, (4.3)

lfn+1∑
t=efn+1

t · x(n+1)1t ≤ δn+1, (4.4)

pw =

θ · |N|∑
i=1

|Mi|∑
m=1

lfi∑
t=efi

cvimtw · ximt −
w−1∑
t=0

pt

 · yw, w = 1, . . . , δn+1, (4.5)

|N|∑
i=1

|Mi|∑
m=1

lfi∑
t=efi

cvimtw · ximt −
|N|∑
i=1

vi/K ·
w−1∑
t=0

yt ≥
|N|∑
i=1

vi/K · yw −M · (1− yw), w = 1, . . . , δn+1, (4.6)

|N|∑
i=1

|Mi|∑
m=1

lfi∑
t=efi

cvimtw · ximt −
|N|∑
i=1

vi/K ·
w−1∑
t=0

yt <

|N|∑
i=1

vi/K · (1− yw) +M · yw, w = 1, . . . , δn+1, (4.7)

δn+1∑
t=0

pt = θ ·
|N|∑
i=1

vi, (4.8)

δn+1∑
t=0

yt = K, (4.9)

y0 = 0, p0 = 0, (4.10)

yδn+1 = 1, (4.11)

ximt ∈ {0, 1}, ∀i ∈ N ; m ∈Mi; t = efi, . . . , lfi, (4.12)

yt ∈ {0, 1}, t = 0, . . . , δn+1 (4.13)

The objective function (4.1) maximizes the project NPV based on a discount rate α.

The payments pt constitute the cash inflows for the model, whereas the cash outflows

4.2. PROBLEM DEFINITION 75

cim depend on the selected activity modes and are discounted to the activity completion

time. Constraints (4.2) ensure that every activity is executed in exactly one mode and has

exactly one finish time, whereas constraints (4.3) enforce the precedence relations between

activities. The project deadline is included in constraint (4.4). Constraints (4.5) determine

the size of a payment based on the compensation proportion θ and on the total created

value at time w. Constraints (4.6)–(4.7) are big M constraints (with M a very large positive

integer), which model the occurrence time of payments included in the variables yw and

which are based on the threshold value of
∑n

i=1 vi/K. The total monetary value of the

payments received has to be in line with θ and the created value for the client (constraint

(4.8)), and the number of payments has to equal K (constraint (4.9)). Constraints (4.10)

model that no payment can occur at time 0, and constraint (4.11) ensures that the final

payment is received at the project deadline. The binary variable constraints are included

in (4.12)–(4.13).

The PBPP can be represented as 1, T |cpm, δn, disc,mu, sched|npv according to the

classification scheme of Herroelen et al. (1999), and as MPS1|prec|
∑
CFi β

Ci following

Brucker et al. (1999).

4.2.2 Expense–based payment pattern

The expense–based payment pattern (EBPP) focusses on refunding the expenses of the

contractor. Payments are received every time the total expenses of the contractor exceed

a threshold. This threshold is calculated as B/K with B the agreed upon benchmark

for the project costs and K the number of payments. B is calculated as the sum of the

average mode cost for all activities: B =
∑|N |

i=1(
∑|Mi|

m=1 cim/|Mi|). The model of the PBPP

in section 4.2.1 can be used for the EBPP as well, with the only difference that constraints

(4.6) and (4.7) should be replaced with constraints (4.14) and (4.15), to account for the

difference in payment threshold between both payment models.

|N |∑
i=1

|Mi|∑
m=1

w∑
t=efi

cim · ximt −B/K ·
w−1∑
t=1

yt ≥ B/K · yw −M · (1− yw), w = 1, . . . , δn+1 (4.14)

|N |∑
i=1

|Mi|∑
m=1

w∑
t=efi

cim · ximt −B/K ·
w−1∑
t=1

yt < B/K · (1− yw) +M · yw, w = 1, . . . , δn+1 (4.15)

The EBPP can be represented as 1, T |cpm, δn, disc,mu, sched|npv according to the

classification scheme of Herroelen et al. (1999), and as MPS1|prec|
∑
CFi β

Ci following

Brucker et al. (1999).

76 Chapter 4

4.2.3 Time–based payment pattern (progress payments)

The third model is the time–based payment pattern (TBPP), in which payments occur

once a specified amount of time has passed in the project. The threshold is set to dδn+1/Ke,
with K the number of payments. A simplified mathematical model can be applied since

the payment times are known in advance and independent of the project schedule, which is

not the case for the PBPP and EBPP. Specifically, constraints (4.5)–(4.7) can be omitted

as well as the yw decision variables. pw equals
∑|N |

i=1

∑|Mi|
m=1

∑lfi
t=efi

cvimtw if time w is a

payment time and is set to zero otherwise. Just like for the PBPP and EBPP the size

of the payments pw still depends on the schedule under consideration and on previous

payments made, but the binary decision whether time w is a payment time no longer

depends on the project schedule. As a result, the TBPP corresponds with the progress

payments (PP) model discussed in chapter 3.

The TBPP can be represented as 1, T |cpm, δn, disc,mu, per|npv according to the classi-

fication scheme of Herroelen et al. (1999), and as MPS1|prec|
∑
CFi β

Ci following Brucker

et al. (1999).

4.2.4 Example

To illustrate the three payment models, we use the example project shown at the top

of figure 4.2. We assume a discount rate of 1%, a project deadline of 14, a compensation

proportion of 0.9 and three payments. Based on the data in the figure it can be concluded

that the total created value is 3,360 (= 300 + 360 + 660 + 900 + 540 + 600) and that

the total cash inflow for the contractor equals 3,024 (= 0.9 x 3,360).

The project schedule used for the three models is shown at the bottom of figure 4.2 and

uses the following mode list: (1, 1, 1, 2, 2, 1). Since the costs incurred by the contractor

only depend on the modes selected for the activities, these costs are independent of the

payment model used. The total costs of the schedule in figure 4.2 equal 1,370 (= 140 +

100 + 280 + 280 + 240 + 330) and the NPV of the costs is 1,247.22 (= 135.86 + 94.18

+ 261.07 + 258.47 + 210.74 + 286.89). The total created value (
∑
vi) and total costs

(
∑
cim) incurred at every time unit during the project duration are shown beneath the

schedule in the figure.

• PBPP: Based on the total created value and the number of payments K, the payment

threshold is set to 1,120 (= 3,360/3). As can be seen from figure 4.2 this implies that

the first payment is received at time 6 and equals 1,039.50 or 0.9 x 1,155 (1,155 =

300 + 360 + 660 x 0.75). The second and third payments are received at times 8 and

14, and equal 1,055.70 (= 0.9 x (300 + 360 + 660 + 900 + 540 x 0.2) - 1,039.50) and

4.3. SOLUTION REPRESENTATION & SCHEDULE GENERATION 77

928.80 (= 0.9 x 3,360 - 1,039.50 - 1,055.70) respectively. These three time instances

are selected as payment times since the total created value becomes at least 1,120

(1x threshold of 1,120), 2,240 (2x threshold) and 3,360 (3x threshold) respectively at

these time units (marked in bold in the
∑
vi row). The corresponding cash inflows

are displayed in the PBPP row in figure 4.2. The NPV of the cash inflows is 2,760.96

and the total project NPV is 1,513.75.

• EBPP: The benchmark cost B for the project equals 1,470 (= 140+170
2 + 100+200

2 +
280+360

2 + 240+280
2 + 200+240

2 + 330+400
2) and the threshold based on the costs is set to

490 (= 1,470/3). Payments are received at times 7 (1,593 = 0.9 x (300 + 360 + 660

+ 900 x 0.5)) and 12 (810 = 0.9 x (300 + 360 + 660 + 900 + 540) - 1,593), since

at these time units the total costs becomes at least 490 and 980 respectively. The

third payment is received at the project deadline and equals 621 (= 0.9 x 3,360 -

1,593 - 810). The time instances for which the values for
∑
cim exceed the threshold

are marked in bold in figure 4.2. The cash inflows, which are received at these time

instances, are displayed in the EBPP row in figure 4.2. The NPV of the cash inflows

is 2,743.58 and the total project NPV is 1,496.37.

• TBPP: Payments are received at times 5, 10 and 14 since dδn+1/Ke equals 5. The

cash inflows received are 783 (= 0.9 x (300 + 360 x 0.67 + 660 x 0.5)), 1,506.60 (=

0.9 x (300 + 360 + 660 + 900 + 540 x 0.6) - 783) and 734.40 (= 0.9 x 3,360 - 783

- 1,506.60) respectively (displayed in the TBPP row of figure 4.2), which amount to

a NPV of 2,746.50. The total project NPV is 1,499.28.

4.3 Solution representation & schedule generation

To properly represent a solution of the DTCTP–NPV, we employ two types of lists.

The first is a mode list (ML), which contains the number of the selected mode for each

activity in ascending order of the activity numbers, i.e. the first position in the ML holds

the selected mode for the first activity, and the last position contains the value for the last

activity. For the second list, a solution encoding is required to determine activity finish

times. The activity list (AL) and random key (RK) representations are most commonly

used (Kolisch and Hartmann, 1999). In the AL representation, the position of an activity in

the list determines its relative priority, whereas in the RK representation, the priority value

attributed to each activity determines the order of scheduling. We use two alternatives,

namely a finish time list (FTL) and a slack list (SL). We discuss the ML, FTL and SL in

the following sections.

78 Chapter 4

Time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 6
4

3 5

i
dim

2

 ∑vi

 ∑cim

0 100 200 300 585 870 1,155 1,770 2,328 2,436 2,544 2,652 2,760 3,060 3,360

0 0 0 140 140 140 240 520 800 800 800 800 1,040 1,040 1,370

1

i
di1, ci1

2

5

4

vi

6

300

3

di2, ci2

360 900

660 540

600

2, 170
3, 140

1, 200
3, 100

2, 280
5, 240

3, 360
4, 280

5, 240
6, 200

1, 400
2, 330

Threshold: 1,120

Threshold: 433

0 0 0 0 0 0 1,040 0 1,056 0 0 0 0 0 929

0 0 0 0 0 0 0 1,485 0 0 0 0 810 0 621

0 0 0 0 0 783 0 0 0 0 1,507 0 0 0 734

PBPP

EBPP

TBPP

Figure 4.2: Example data & schedule.

Figure 4.3 displays a flowchart of the proposed schedule generation, and distinguishes

between the FTL and SL representations and their corresponding approaches. The sched-

ule generation is employed to evaluate the solutions of the metaheuristics in section 4.4.

4.3.1 Mode list and deadline–feasibility

Since the selected modes for an activity determine both its duration and its cost, it

is possible that the project’s earliest finish time exceeds the deadline. In such a case,

we apply a deadline feasibility improvement method, which changes activity modes until

a deadline–feasible combination is found. The method changes the mode of a random

activity on the critical path to the least expensive mode in terms of costs with a lower

duration. Afterwards, the critical path and minimum project duration are recalculated. If

the ML is now deadline feasible, the procedure terminates. Otherwise, it is repeated until

a feasible mode combination has been found. These steps correspond with efn+1 ≤ δn+1

and Mode change in figure 4.3.

4.3. SOLUTION REPRESENTATION & SCHEDULE GENERATION 79

efn+1

≤δn+1?

Mode
change

Y

N

TPV>0?

!=1?
Schedule:
largest
first

Schedule:
smallest

first

NPV
improve

Repair
method

Y

Y

N

N

Input
FTL
∀i: mi, fi

Input
SL

!,#∀i: mi, ri

Output
NPV

FTL

SL

Figure 4.3: Flowchart schedule generation.

4.3.2 Finish time list

In this section, we discuss the scheduling approach which corresponds with the FTL

part of figure 4.3. A finish time list (FTL) holds the finish time of each activity, with the

possible values ranging from the activity’s earliest finish time to its latest finish time. In

order to schedule a FTL provided by a metaheuristic, it is sufficient to simply introduce the

finish times from the list in the project schedule. Whereas such a schedule is always feasible

with respect to the project deadline, a major drawback is, however, that the precedence

relations may be violated, i.e. a predecessor ends later than the start time of its successor.

The total predecessor violation (TPV) is used to denote the total precedence violation and

holds the total number of time units of overlap between activities:
∑n

i=1

∑|Si|
j=1max(0, fj−

djm − fi). To remedy these overlaps, we propose two variants of a repair method.

Both variants consist of a forward and backward step. In the first variant (Repair1),

the forward step moves all activities as late as possible, given the project deadline and the

precedence relations. This step considers the activities in decreasing order of finish time,

starting from the activity with the highest finish time. Subsequently, the backward step

advances all activities as early as possible, in order of increasing start time. Algorithm 5

displays the resulting repair method.

A major downside of the first variant, however, is that the obtained presence feasible

finish times may deviate considerably from the FTL provided by the metaheuristic. More

specifically, activities which need not have been moved to improve the feasibility, may also

80 Chapter 4

Algorithm 5 Precedence feasibility improvement 1

Repair1 ()
Sort activities in decreasing order based on their finish time: List[]
For k = 1 to |N |: i = List[k], max = δn+1 − fi

For j ∈ Si
If fj − djm − fi < max then max = fj − djm − fi

End for
fi = fi +max

End for
Sort activities in increasing order based on their start time: List[]
For k = 1 to |N |: i = List[k], max = fi − dim

For j ∈ Pi
If fi − dim − fj < max then max = fi − dim − fj

End for
fi = fi −max

End for

have been assigned a different finish time. Hence, we propose an adjusted version of this

repair method as well (Repair2). The second variant considers the cumulative successors

and predecessors of an activity i (CSi and CPi respectively). In the forward step, only

activities which overlap with one of their predecessors, or for which at least one of the

cumulative predecessors has an overlap, are delayed. Similarly, the backward step only

advances activities for which an overlap exists, or for which at least one of the cumula-

tive successors has an overlap. Finally, now that we have obtained a precedence feasible

schedule, we aim to minimize the deviation between the original finish times before the

repair method and the ones afterwards. Starting from the activity with the highest finish

time, we evaluate the deviation between both finish times, and if the deviation is positive,

we delay the activity by the minimum of the deviation and the allowable delay based on

immediate successors. The pseudocode of the second variant is shown in algorithm 6,

with countCPi (countCSi) the number of cumulative predecessors (successors) of activity

i which violate precedence constraints (including i), and bfi the back–up or original finish

time of activity i before the repair method.

4.3.3 Slack list

In this section, we discuss the scheduling approach which corresponds with the SL

part of figure 4.3. A slack list (SL) holds a value ri, with ri ∈ [0; 1[, for each activity i

and displays the percentage of the available slack si which should be used by an activity.

The finish time of activity i is set as efi + b(si + 1) · ric. As a result, the finish for an

activity always lies between its earliest and latest finish time. Let us illustrate the use of

the SL with an example. Assume that we aim to schedule a project of three activities and

the selected ML is (1, 3, 2) and the SL is (0.42, 0.83, 0.57). Assume, furthermore, that

4.3. SOLUTION REPRESENTATION & SCHEDULE GENERATION 81

Algorithm 6 Precedence feasibility improvement 2

Repair2 ()
Sort activities in decreasing order based on their finish time: List[]
For k = 1 to |N |: i = List[k], max = δn+1 − fi

If countCPi > 0
For j ∈ Si

If fj − djm − fi < max then max = fj − djm − fi
End for

End if
Else max = 0
fi = fi +max

End for
Sort activities in increasing order based on their start time: List[]
For k = 1 to |N |: i = List[k], max = fi − dim

If countCSi > 0
For j ∈ Pi

If fi − dim − fj < max then max = fi − dim − fj
End for

End if
Else max = 0
fi = fi −max

End for
Sort activities in decreasing order based on their finish time: List[]
For k = 1 to |N |: i = List[k]

If bfi > fi then max = bfi − fi
For j ∈ Si

If fj − djm − fi < max then max = fj − djm − fi
End for
fi = fi +max

End if
End for

activities 1 and 2 have already been scheduled and that based on their finish times and

the ML it is concluded that activity 3 has an earliest finish time of 7 and has a slack of 3.

This implies that activity 3 has 4 possible finish times, namely 7, 8, 9 and 10. The finish

time of activity 3 can be calculated as follows: f3 = 7 + b(3 + 1) · 0.57c = 9.

Since the available slack of an activity, however, depends on the finish times of other

activities which have already been scheduled, the activity slack needs to be updated every

time an activity is scheduled. For scheduling the activities we use algorithm 7. The

activity slack is dynamically calculated, based on the early and latest finish times of other

activities and takes the selected activity modes m into account. The dynamic slack of

activities which have been scheduled is set to zero, whereas the slack of the unscheduled

activities is reevaluated each time an activity is scheduled. U is the set of unscheduled

activities and F the set of scheduled activities. Based on a binary directional variable γ,

we first schedule the activities with the largest SL value ri (γ = 1) or the activities with

the smallest ri (γ = 0). The value for γ is determined by the employed metaheuristic

(section 4.4). An advantage of working with the proposed scheduler is that, unlike for

82 Chapter 4

the FTL representation, no precedence infeasible finish times can be assigned, due to the

recalculation of the activity slack.

Algorithm 7 Schedule generator slack list

SchedGenSL (binary directional variable γ)
Set U = {1, 2, . . . , n}; F = ∅; count = |N |; ef0 = lf0 = 0; efn+1 = lfn+1 = δn+1

While count > 0
For i = 1 to |N |

If i /∈ F then calculate efi = max{efj + dim|j ∈ Pi}
End for
For i = |N | to 1

If i /∈ F then calculate lfi = min{lfj − djm|j ∈ Si}
End for
For i = 1 to |N | do si = lfi − efi
If γ = 1 then find k: rk = max{rj |j ∈ U}
Else find k: rk = min{rj |j ∈ U}
fk = efk + b(sk + 1) · rkc; efk = lfk = fk; count=count-1; U = U \ {k}; F = F ∪ {k}

End while

It can be observed that the proposed SL representation is somewhat similar to the

float factor proposed by Tavares et al. (1998) to analyze project risk, since both allow for

scheduling an activity between its earliest and its latest finish time. The major difference

is, however, that the float factor is assumed to be the same for all activities, whereas the

SL representation does not necessarily employ the same ri for each activity.

4.3.4 NPV improvement

Once the project has been scheduled, either based on the FTL or on the SL represen-

tation, we improve the project NPV in the following manner. Starting from the activity

i with the largest finish time fi, the NPV improvement checks whether the activity i is

scheduled earlier than its latest finish time lfi, and if activity i is scheduled entirely within

a payment interval. The latter condition implies that fi is smaller than a time instance

t for which yt = 1, and that the start time of activity i is greater than or equal to the

previous w (w < t) for which yw = 1: fi ∈ [max{w|yw = 1 ∧ w < t}, t|yt = 1[. If both

conditions are met, the activity i is delayed as much as possible in the payment inter-

val: fi = min{min{fj − djm|j ∈ Si}, t}. Otherwise, we continue with the next activity

with the largest finish time. The procedure terminates once the activity with the smallest

finish time has been reached and evaluated. The updated project NPV is subsequently

calculated. The NPV improvement method corresponds with NPV improve in figure 4.3.

As an example, assume an activity i with a start time of 12 and a finish time of 14,

and two payments at times 11 and 19. Since the activity’s current start time 12 is larger

than the previous payment time of 11 (fj − djmj ≥ w) and its current finish time 14 is

smaller than the next payment time of 19 (fi < t), the NPV improvement method delays

4.4. GENETIC ALGORITHM 83

the activity by 5 time units such that its finish time now equals 19. This way, the NPV

of the activity’s cash outflows is reduced without lowering the NPV of the cash inflows.

Alternatively, assume the activity has a successor with a start time of 17. In this case, the

activity is only delayed by 3 time units and its new finish time is 17 (=min{17, 19}).
More complex NPV improvement methods (chapters 2 & 3) are not employed in this

chapter, since the goal of the research here is to investigate the impact of different (atypical)

solution representations, rather than propose a new scheduling technique. Furthermore,

the problems discussed (section 4.2) consider both timing and size of payments, unlike

previous chapters. As a result, there is an interaction between the timing and size of cash

inflows, which may result in delays of activities having the opposite effect on project NPV

than what was desired. Simply put, if both timing and size of cash flows are variable,

delaying an activity beyond a payment time (e.g. based on the scheduler from chapter 3),

may delay the payment time as well, reducing the NPV instead of increasing it.

4.4 Genetic algorithm

In this section, we provide a detailed overview of our solution method for the DTCTP–

NPV with the three payment models, based on a genetic algorithm (GA).

A GA was first proposed by Holland (1975) and employs aspects from evolutionary bi-

ology, namely selection, crossover and mutation operators. The goal is to combine existing

individuals into new solutions in order to improve the algorithm’s objective. A selection

operator chooses individuals, i.e. parents, from the population and applies a crossover

operator to generate better individuals, i.e. children. The crossover part constitutes the

intensification step of the GA whereas the diversification step is applied as a part of mu-

tation operator. This operator makes adjustments on a small percentage of population

elements to ensure that diverse solutions exist in the population. Afterwards, a population

update is done to retain the best individuals and omit the worst solutions. The selection,

crossover and mutation steps are repeated until a stopping criterion has been reached.

Figure 4.4 displays an overview of the GA implementation. We use the notations P0

and P1 to clearly distinguish between the current population of elements and the newly

generated children. It is assumed that both populations have the same size. Starting

from an initial population, new elements are generated (intensification), after which a

diversification step is applied to ensure that the procedure does not get stuck in local

optima. These intensification (crossover) and diversification (mutation) steps are repeated

until a stop criterion has been reached. Both the FTL and the SL representation can

be included in the GA. In the following subsections we go into detail about each of the

procedures’ steps.

84 Chapter 4

Pre-
processing

Population
P0

Retained
elements PR

Selection &
crossover

Children
P1

Mutation
ML

Best |P1|-|PR| individuals
Until stop criterion reached

HIGH

LOW

R1 R2
Evaluation

Mutation
FTL/SL

Figure 4.4: Flowchart genetic algorithm.

4.4.1 Preprocessing

Before we start with the GA metaheuristic, a preprocessing step is required in order

to eliminate infeasible modes. The proposed preprocessing method is the elimination of

long modes procedure of Akkan et al. (2005). An infeasible mode can be described as a

mode which always leads to a deadline violation if selected. This can be tested for every

mode of an activity by selecting the shortest mode for all other activities and calculating

the minimum project duration. If this duration exceeds the project deadline, the selected

mode is infeasible and should not be taken into further consideration. For each activity

we start with the shortest mode such that, if an infeasible mode is found, any modes of

the same activity with a longer duration can also be immediately omitted.

4.4.1.1 Initial population

In the initial population we randomly generate |P0| times both a ML and a FTL/SL,

with P0 the population of the GA. The FTL is generated in between each activity’s earliest

and latest finish time. For this representation, we explicitly ensure that at least one

precedence feasible element is included, by setting the finish time fi of each activity equal

to its corresponding earliest finish time efi for this single solution. A SL value is chosen

from the interval [0; 1[. The binary direction variable γ of section 4.3.3 is used to determine

how the project schedule should be constructed by algorithm 7 for the SL representation,

and is randomly set to 0 or 1.

All elements are subsequently evaluated, based on the schedule generation of figure

4.3. The best |PR| elements are determined and are considered the elite individuals of the

population.

4.4. GENETIC ALGORITHM 85

4.4.1.2 Selection

Since a GA typically combines existing solutions to create new solutions, a selection

operator is required to determine what individuals are used for crossover. In the proposed

GA, we employ the elite selection operator of chapter 2 (Leyman and Vanhoucke, 2015).

This operator selects the father from the set of best elements PR, and the mother based

on a four–tournament selection from the entire population P0.

4.4.1.3 Crossover

A crossover operator in a GA combines several existing individuals (parents) into new

individuals (children), with the goal of generating better solutions (intensification). We

propose to always combine two parents and always produce two children. To do so, we

apply a one–point crossover to both the ML and the FTL/SL, with the same cut–off point.

We continue generating children until we have a total of |P1| (=|P0|) elements. For the

SL, the directional variable γ is randomly copied from one of the parents.

4.4.1.4 Mutation

To diversify the newly generated children, a mutation operator is used. For the ML,

we apply a random mode change on each activity with a probability of R1. The new mode

is required to be different from the old mode. Once the mutation operator has finished the

mode change, we evaluate the deadline feasibility of the ML. If the adjusted ML is deadline

infeasible, we employ the deadline feasibility improvement method of section 4.3.1. If the

FTL representation is used, we have to additionally check whether the FTL values lie

within their feasible range based on the available slack in the altered ML. If this is not

the case for an activity, it is assigned a random FTL value in between its updated earliest

and latest finish time.

In terms of mutation of the FTL, we randomly select a different value between the

activity’s earliest and latest finish time. In the SL representation, a different value from

the interval [0; 1[is chosen. In both cases, a mutation probability R2 is used for each

activity.

4.4.1.5 Population evaluation & update

After the different genetic operators have been applied, we apply the scheduler of figure

4.3 for each individual of P1. We subsequently introduce the best |P1| − |PR| children in

the population P0. The best |PR| parents are retained. Afterwards, we reevaluate which

|PR| elements are the best in the updated population.

86 Chapter 4

4.5 Computational results

In this section, we discuss our computational results for the DTCTP–NPV with the

three payment models. We provide details of the data used and configure our algorithms.

Our results are compared with the work of He et al. (2009b). We employ the 5,000

schedules stopping criterion as defined by Lova et al. (2009) for all tests, and the discount

rate is set to 1%.

4.5.1 Test data

The problem set used in our experiments is the dataset of Demeulemeester et al. (1998),

which contains 1,800 AoN instances for the DTCTP. We have generated a created value

vi for each activity from the interval [101;150], to ensure that an activity’s created value is

always larger than the cost of any of its modes (table 4.2). The benchmark cost B for the

EBPP is calculated as the sum of the average mode costs: B =
∑|N |

i=1(
∑|Mi|

m=1 cim/|Mi|).
For the TBPP, payments are assumed to occur every 10 time units.

We extend the data with a deadline, which varies from the shortest to the longest

project duration in steps of 0.25, based on a parameter D. Additionally, we include a

parameter K for the number of payment times, which is set to 4, 6 or 8, and a parameter

θ for the compensation proportion. The value for θ is 0.7, 0.8 or 0.9. In total, 81,000 (=

1,800 x 5 x 3 x 3) test instances are used for each payment model. Both the instances

of Demeulemeester et al. (1998) and the file with created values, are available online at

www.projectmanagement.ugent.be.

An overview of the data parameters is provided in table 4.2. A comparison is made

with the data parameters used by He et al. (2009b). It can be concluded that our proposed

test design allows for more variation in the data parameters. Additionally, the data of He

et al. (2009b) is not publicly available, whereas our data is available online.

Parameter Values this chapter Values He et al. (2009b)
Number of activities (Act) 10, 20, 30, 40 or 50 10, 20, 30 or 40
Number of modes (Modes) 2, 4 or 6 or from [1,3], [1,7] or [1,11] 2
Coefficient of network complexity (CNC) 1.5, 1.8 or 2.1 NA
Size of durations and costs (Size) Both from [1,20] or [1,100] dim: [1,10], cim: [10,24]
Deadline increase factor (D) 0, 0.25, 0.50, 0.75 or 1 From [0,1]
Number of payments (K) 4, 6 or 8 3, 4 or 5
Compensation proportion (θ) 0.7, 0.8 or 0.9 0.75, 0.85 or 0.95
Total number of instances 81,000 4,320

Table 4.2: Parameter settings of test instances.

4.5. COMPUTATIONAL RESULTS 87

4.5.2 Algorithm configuration

We go into detail about the two alternatives proposed, namely a GA with either a

FTL or SL representation (GA–FTL & GA–SL). All tests are run on 20% of the data. An

overview of the best found parameter values for each algorithm is shown in table 4.3.

|P0|(=|P1|) |PR| R1 R2

GA–FTL 100 5 0.05 0.03
GA–SL 20 4 0.03 0.05

Table 4.3: Algorithm parameters.

Both repair methods of section 4.3.2 are compared based on their average NPV (AvNPV)

and based on the percentage average difference between both (%AvDiff) in table 4.4. The

p–values are those of a paired samples t–test. The results in table 4.4 confirm our earlier

assumption that Repair1 is less efficient than Repair2 due to unnecessary moves.

Repair1 Repair2 Difference
AvNPV AvNPV %AvDiff p–value

PBPP 1,115.38 1,190.05 6.69 <0.001
EBPP 1,088.13 1,121.52 3.07 <0.001
TBPP 1,081.20 1,109.91 2.06 <0.001

Table 4.4: Comparison of two repair methods FTL.

Table 4.5 displays the results for both representations based on AvNPV for the three

payment models, and based on %AvDiff. The column p–value reports the corresponding

p–value of a paired samples t–test, which compares both options. It can be concluded that

the results for the SL representation are best for all three payment models. Hence, we can

safely assume that the SL representation is a more effective solution representation for the

DTCTP–NPV than the FTL.

GA–SL GA–FTL Difference
AvNPV AvNPV %AvDiff p–value

PBPP 1,190.05 1,215.54 2.14 <0.001
EBPP 1,121.52 1,206.93 7.62 <0.001
TBPP 1,109.91 1,146.45 3.29 <0.001

Table 4.5: Comparison of two representations.

In table 4.6 we compare the results of the GA–SL algorithm with (Full) and without

the NPV improvement (NoImpr) of section 4.3.4. The results show an added value of the

88 Chapter 4

NPV improvement (all three p–values <0.001), but it can be noted that the difference is

on average rather small. This rather small improvement is due to the NPV improvement

only delaying activities under very specific conditions (activity entirely within a payment

interval).

NoImpr Full Difference
AvNPV AvNPV %AvDiff p–value

PBPP 1,213.64 1,215.54 0.16 <0.001
EBPP 1,203.33 1,206.93 0.30 <0.001
TBPP 1,145.22 1,146.45 0.11 <0.001

Table 4.6: Added value of NPV improvement.

In figure 4.5 the convergence of the GA–SL for the PBPP is displayed, with the average

number of generations of the GA on the horizontal axis and the average NPV on the

vertical axis. Since the final values in the graph, i.e. those with an approximately 240

generations, correspond with 5,000 schedules, it can be concluded that the GA–SL has a

good convergence. In the first couple of generations the NPV improves considerably, but

the improvement becomes progressively less as more generations are run. Similar graphs

can be constructed for the EBPP and TBPP.

1000

1050

1100

1150

1200

1250

1300

0 20 40 60 80 100 120 140 160 180 200 220 240

PBPP

Av
N

PV

#generations GA-SL

Figure 4.5: Convergence GA–SL algorithm (PBPP).

4.5. COMPUTATIONAL RESULTS 89

4.5.3 Comparison with literature

We compare the results of our GA–SL with the results of the simulated annealing (SA)

algorithm of He et al. (2009b). The major differences between their work and ours, can

be summarized as follows:

• He et al. (2009b) claim to solve a multi-mode payment scheduling problem. Given

existing work on multi-mode project scheduling (see e.g. the overview paper of

Hartmann and Briskorn, 2010), we claim that a multi-mode problem in general

requires renewable resources in the problem definition. Time/cost trade-offs, which

constitute the actual problem discussed by He et al. (2009b), are a subclass of multi-

mode problems without renewable resources and only one resource, i.e. a single

non–renewable resource. Furthermore, the authors limit their data parameters to

a point where we believe the question can be raised whether He et al. (2009b) not

simply discuss a simplified variant of a DTCTP, i.e. only two modes per activity.

• He et al. (2009b) assume the AoA network representation. As a result, payments of

cash inflows can only occur upon event completion, which always correspond with the

finish time of one or more activities. We, however, employ an AoN representation,

which results in payments able to occur at any time instance between the start and

end of the project (end included). This way, the problem discussed in this chapter is

in fact more complex than the one used by He et al. (2009b), but also more realistic

and more flexible in terms of occurrence of payments.

Based on these differences, we believe that the algorithm of He et al. (2009b) can be used

for comparison, but the results should be taken with a pinch of salt. We have implemented

the SA ourselves since the data used by the authors is not publicly available. The following

changes have been made to the SA algorithm, in order to improve performance:

• The preprocessing method of section 4.4.1 is included, to allow for the same mode

elimination as in our approach.

• The deadline feasibility improvement method of section 4.3.1 is inserted to improve

the ML feasibility of newly generated lists. The SA discussed in He et al. (2009b)

on the contrary continues searching by randomly generating a new neighbor of the

current ML, until a feasible mode combination has been found.

• The activity finish times are updated after a mode change if any precedence relations

are violated. We delay successors or advance predecessors to ensure precedence

feasibility. If no feasible schedule can be constructed, another neighbor of the ML is

generated, until a feasible list has been found.

90 Chapter 4

• We include the 5,000 schedules criterion as stopping condition for the outer loop of

the SA, to ensure a proper comparison with our proposed solution method.

Table 4.7 provides an overview of the comparison of our GA–SL approach with the SA

of He et al. (2009b), based on the average project NPV reported for both algorithms. The

column %∆ reports the percentage difference between both approaches. The statistical

significance of the difference between the two algorithms is tested based on a paired samples

t–test and reported a p–value < 0.001. Based on the results in the table, the following

can be concluded:

• Overall, the GA–SL outperforms the SA for all three payment models. The largest

improvement is found for the EBPP model.

• The relative performance of the GA–SL compared to the SA increases for larger

values of Act and Modes, which implies that our approach scales well as the problem

complexity increases.

• Larger deadlines lead to an improved performance of the GA–SL, signifying that this

algorithm is better at handling larger solution spaces.

• Increases in the number of payments K increase project NPV, but decrease the

difference between both algorithms, in particular for the PBPP and EBPP.

In table 4.8, we compare the average computation times of the GA–SL and SA ap-

proaches. It can be concluded that the GA–SL algorithm leads to considerably smaller

computation times than the SA algorithm. The effect is found to be particularly strong

for increases in the data parameters Act, Size and D, as shown in the table. Overall, the

EBPP is slowest and the PBPP and TBPP are fastest, for the SA and GA–SL method

respectively.

Based on the results of the GA–SL approach, several observations can be made:

• A larger average project NPV is obtained for the PBPP and EBPP compared to the

TBPP (table 4.7). The PBPP and EBPP allow for a greater degree of flexibility by

the contractor, since the payment times are linked to the project schedule. This way,

the contractor can ensure payments are received earlier by effectively optimizing the

receipt of cash inflows. In the TBPP on the contrary, the payment times are fixed

which implies less flexibility for the contractor. Thus, the contractor can increase

his NPV by obtaining variable payment times.

• The top left graph of figure 4.6 displays the impact of the CNC (network structure)

on the project NPV. These results are in line with literature (e.g. Herroelen et al.,

4.5. COMPUTATIONAL RESULTS 91

PBPP EBPP TBPP
GA–SL SA %∆ GA–SL SA %∆ GA–SL SA %∆

Act 10 507.46 485.73 4.47 494.72 458.76 7.84 497.55 478.41 4.00
20 896.91 789.20 13.65 886.37 750.05 18.18 856.80 772.83 10.86
30 1,236.06 1,032.70 19.69 1,225.20 979.05 25.14 1,165.87 1,010.53 15.37
40 1,571.30 1,254.76 25.23 1,564.03 1,192.14 31.20 1,463.04 1,220.61 19.86
50 1,865.99 1,489.36 25.29 1,864.32 1,420.02 31.29 1,748.98 1,459.10 19.87

Modes 2 1,150.67 983.70 16.97 1,143.69 938.98 21.80 1,090.41 957.90 13.83
4 1,246.70 1,026.39 21.46 1,238.91 972.07 27.45 1,174.33 1,004.38 16.92
6 1,317.14 1,060.57 24.19 1,308.24 1,005.28 30.14 1,225.15 1,038.81 17.94

[1,3] 1,102.49 947.98 16.30 1,091.72 904.23 20.73 1,052.22 926.74 13.54
[1,7] 1,224.01 1,103.83 20.73 1,216.16 961.41 26.50 1,155.52 992.38 16.44
[1,11] 1,252.25 1,029.62 21.62 1,242.85 978.06 27.07 1,181.04 1,009.57 16.98

CNC 1.5 1,198.68 1,005.05 19.27 1,191.30 955.52 24.68 1,132.37 981.14 15.41
1.8 1,209.82 1,004.28 20.47 1,199.98 954.76 25.68 1,138.68 982.78 15.86
2.1 1,238.13 1,021.73 21.18 1,229.50 969.74 26.79 1,168.28 1,000.97 16.71

Size [1,20] 1,975.72 1,741.37 13.46 1,989.73 1,707.47 16.53 1,949.26 1,708.96 14.06
[1,100] 455.37 279.33 63.02 424.13 212.54 99.55 343.63 267.64 28.39

D 0 1,239.63 1,191.42 4.05 1,219.30 1,158.13 5.28 1,220.49 1,179.28 3.50
0.25 1,242.31 1,120.73 10.85 1,225.10 1,088.14 12.59 1,203.22 1,102.88 9.10
0.50 1,216.72 1,017.43 19.59 1,205.97 976.12 23.55 1,151.09 993.24 15.89
0.75 1,197.07 911.58 31.32 1,195.26 846.47 41.21 1,101.86 884.08 24.63

1 1,181.99 810.59 45.82 1,189.01 731.16 62.62 1,055.56 782.00 34.98
K 4 1,139.03 933.26 22.05 1,137.50 887.11 28.23 1,064.45 916.41 16.15

6 1,229.98 1,022.28 20.32 1,220.24 968.99 25.93 1,160.03 997.42 16.30
8 1,277.62 1,075.51 18.79 1,263.05 1,023.92 23.35 1,214.86 1,051.06 15.58

θ 0.7 1,018.27 856.34 18.91 1,006.54 807.29 24.68 966.88 838.85 15.26
0.8 1,214.24 1,009.86 20.24 1,206.25 959.42 25.73 1,145.48 988.07 15.93
0.9 1,414.12 1,164.85 21.40 1,407.99 1,113.30 26.47 1,326.98 1,137.98 16.61

Overall 1,215.54 1,010.35 20.31 1,206.93 960.00 25.72 1,146.45 988.30 16.00

Table 4.7: Comparison with literature: average NPV.

PBPP EBPP TBPP
GA–SL SA GA–SL SA GA–SL SA

Act 10 0.09 0.19 0.11 0.25 0.08 0.19
20 0.21 0.64 0.30 0.99 0.20 0.69
30 0.37 1.46 0.52 2.39 0.34 1.64
40 0.56 2.61 0.79 4.56 0.50 2.93
50 0.75 3.63 1.05 7.05 0.67 4.53

Size [1,20] 0.25 0.72 0.32 1.10 0.23 0.78
[1,100] 0.55 2.81 0.79 5.00 0.48 3.20

D 0 0.32 1.42 0.38 2.13 0.30 1.47
0.25 0.36 1.39 0.46 2.16 0.34 1.47
0.50 0.39 1.66 0.55 2.79 0.36 1.81
0.75 0.43 1.96 0.65 3.52 0.38 2.24

1 0.49 2.40 0.74 4.66 0.40 2.98
Overall 0.40 1.77 0.55 3.05 0.36 1.99

Table 4.8: Comparison with literature: computation times (s).

1998) and show that a higher CNC value, and hence a higher connectedness of the

project network, leads to a better objective function value, i.e. a higher NPV. These

92 Chapter 4

findings are furthermore generalizable to all three models. Hence, more complex

networks allow for higher NPV for contractors, because a good schedule is then

easier to obtain, since less possible schedules exist.

• As can be observed in the top right graph of figure 4.6, the effect of increases in

K on the project NPV is larger from 4 to 6 compared to the increase from 6 to 8.

This implies that for relatively few payments a considerable increase in project NPV

can be obtained by the contractor, if an increase in the number of payment times

can be negotiated with the client. This is particularly true for the TBPP. As such,

it is important for the contractor to obtain a sufficiently high number of payment

times. In an ideal situation, the contractor would receive payments at every time

instance. However, the contractor would then still have to decide on the modes of

each activity, e.g. execute an activity in a shorter, more expensive mode, to receive

payments earlier or not. Furthermore, a situation such as this assumes that all

negotiation power lies with the contractor, in terms of the negotiations with the

client to determine the details of the payments’ timing and size, which is a rather

unrealistic assumption.

• The bottom right graph focusses on the impact of the size of the activity durations

and costs (Size). The vertical axis displays the proportion in average NPV between

the PBPP and EBPP for both a low ([1,20]) and high ([1,100]) value for Size. It

can be concluded that for low values of Size it is better to employ a cost–based

reimbursement (EBPP, proportion<100%) and a progress–based reimbursement for

higher values (PBPP, proportion>100%). These results indicate that if the costs are

relatively low compared to the revenues, the contractor should aim to incur costs

early and let the resulting cost curve drive the income of payments, whereas in case of

relatively high costs the contractor should delay costs while ensuring project progress

based on created value.

4.6 Conclusions & future research

We have discussed three payment models for the deadline variant of the discrete time/-

cost trade–off problem with net present value optimization (DTCTP–NPV). A full math-

ematical model formulation for the three payment patterns has been proposed, based on

an activity–on–the–node (AoN) representation. A finish time list (FTL) and slack list

(SL) representation have been implemented as part of both a genetic algorithm (GA). The

combination of the SL representation and the GA (GA–SL) was shown to perform best.

4.6. CONCLUSIONS & FUTURE RESEARCH 93

80.0%

87.5%

95.0%

102.5%

110.0%

[1,20] [1,100]

Pr
op

or
tio

n

Size

1000

1075

1150

1225

1300

PBPP EBPP TBPP

Av
N

PV

Payment model

K=4
K=6
K=8

1100

1150

1200

1250

1300

PBPP EBPP TBPP

Av
N

PV

Payment model

CNC=1.5
CNC=1.8
CNC=2.1

Figure 4.6: Summary insights.

The results of GA–SL have, furthermore, been proven to significantly outperform the best

results available in literature. An analysis of the impact of the data parameters showed

their effect on the objective function.

Several avenues for future research exist. First, the FTL and SL representations could

be compared with the topological ordering (TO) employed in chapters 2 and 3. Second,

more complex schedulers, e.g. those of the previous chapters, can be extended or adjusted

to determine both timing and size of cash inflows. Third, it may be worthwhile to also

consider different models for the cash outflows of each activity (see chapter 5), on top of

the payment models for cash inflows.

94 Chapter 4

5
Capital– and resource–constrained project

scheduling with net present value optimization

In this chapter, we study the capital–constrained project scheduling problem with

discounted cash flows (CCPSPDC) and the capital– and resource–constrained project

scheduling problem with discounted cash flows (CRCPSPDC). The objective of both prob-

lems is to maximize the project net present value (NPV), based on three cash flow models.

Both problems include capital constraints, which force the project to always have a posi-

tive cash balance. Hence, it is crucial to schedule activities in such an order that sufficient

capital is available. The contribution of this chapter is threefold. First, we propose three

distinct cash flow models, which affect the capital availability during the project. Second,

we introduce two new schedulers to improve capital feasibility, one for the CCPSPDC and

one for the CRCPSPDC. The schedulers focus on delaying sets of activities, which cause

cash outflows to be received at later time instances, in order to reduce capital shortages.

Both schedulers are implemented as part of three metaheuristics from literature, in order

to compare the metaheuristics’ performance. Two penalty functions have been included,

one to improve capital feasibility and another to improve deadline feasibility. Third, the

proposed procedure has been tested on a large dataset and the added value of the sched-

ulers has been validated. Managerial insights are provided with respect to the impact of

key parameters.

95

96 Chapter 5

5.1 Introduction

In this chapter, we extend the resource–unconstrained max–NPV problem with capital

constraints and three cash flow models, and refer to this problem as the capital–constrained

project scheduling problem with discounted cash flows (CCPSPDC). Furthermore, the

problem is also extended with the presence of renewable resource constraints, and we refer

to this problem as the capital– and resource–constrained project scheduling problem with

discounted cash flows (CRCPSPDC). In the max–NPV problem and in the RCPSPDC

no limit is set on the cash balance (the sum of the cash inflows received and the cash

outflows paid) at any particular time, which implies that the cash balance may very well

be negative at certain times during the project duration. The CCPSPDC and CRCPSPDC

impose the additional constraints that at no point in time the cash balance, or available

capital, can be negative. This way, cash outflows can only be paid if sufficient capital is

available, whereas cash inflows add to this capital. The cash outflows are included as part

of a general model. We present metaheuristic solution procedures with new scheduling

techniques tailored to the needs of the problems, in particular to the capital constraints.

The solution procedures in this chapter focus on solving capital shortages by delaying

negative cash flows in order to move these cash flows later than the capital shortage.

Cash in

Cash out

Timing Size Timing & size

Payments at activities’
completion times (PAC)

Progress payments
(PP)

Payments at event
occurences (PEO)

Progress based payment
pattern (PBPP)

Expense based payment
pattern (PBPP)

Payments at activities’
completion times (PAC)

General capital modelResource usage costs

Figure 5.1: Overview of the research on project scheduling with NPV optimization in chapter 5.

The remainder of this chapter is organized as follows. A literature overview is given in

section 5.2. The mathematical problem definitions of the CCPSPDC and the CRCPSPDC

are discussed in section 5.3, whereas two schedulers are the focus of section 5.4. In sec-

tion 5.5 an overview of the metaheuristics employed is given, whereas the computational

experiments and their results are analyzed in section 5.6. We finish with a conclusion and

recommendations for future research in section 5.7.

5.2. LITERATURE OVERVIEW 97

5.2 Literature overview

Figure 5.2 provides an overview of the history of the max–NPV problem, since NPV

optimization in project scheduling was first introduced by Russell (1970). The years in

the figure indicate when the first research on the problem (extension) was conducted. The

distinction is made between three large areas of research with respect to the cash inflows

of activities, which depend on the negotiations between the contractor and the client:

• Timing: the size of the cash inflows can be determined in advance, but the occur-

rence of payments depends on the actual project schedule. This is typically the case

if cash inflows occur at each activity’s completion time. As a result, the contractor

can only control the timing of cash inflows, but the size is determined by the client.

• Size: the payment times are selected in advance (e.g. progress payments every

10 time units), but the size of the payments can only be determined based on the

schedule. The contractor can influence the size of the cash inflows, but not their

occurrence times.

• Both: the timing and size both depend on the project schedule. In this case, the

contractor can determine both, but can only employ a limited number of payments

(e.g. Dayanand and Padman, 1997), or the payment times depend on the progress of

the project (e.g. based on total costs incurred by the contractor (He et al., 2009a)).

Additionally, two of these research classes, namely the research on timing of cash

inflows and on the combination of timing and size, have been extended to include capital

and multiple activity modes. In the latter case, each activity can be executed with different

time–resource combinations.

For an overview of the project scheduling literature with NPV optimization up to 1997,

we refer to Herroelen et al. (1997). A summary of more recent work from 1997 on the

max–NPV problem and its extensions is displayed in table 5.1. In the “Cash in” columns

of the table, we highlight whether the objective includes the determination of the timing

and/or size of the cash inflows. The “Extensions” columns distinguish the papers in the

table based on the inclusion of more specific problem characteristics. A trade–off between

multiple modes of an activity (MM) is specified as well. At the bottom of the table, all

papers that include capital constraints (C), even those published before 1997, are included

since these papers solve a problem closely related to the one of this manuscript.

From the table and figure 5.2 we conclude that the majority of the research on the

max–NPV problem has been on the timing of cash inflows and several extensions. Chapters

2 and 3 on the single– and multi–mode RCPSPDC respectively (Leyman and Vanhoucke,

98 Chapter 5

Russell
(1970)

Size
(1994)

Timing
(1970)

Timing
+size

(1997)

Cash in Extensions

Multi-mode
(1994)

Capital
(1977)

Multi-mode
(2012)

Capital
(2012)

Figure 5.2: History of the max–NPV problem and its extensions.

Cash in Extensions
Authors Timing Size MM C
Dayanand and Padman (1997) X X
Shtub and Etgar (1997) X
Etgar and Shtub (1999) X
Dayanand and Padman (2001a) X X
Dayanand and Padman (2001b) X X
Schwindt and Zimmermann (2001) X
Vanhoucke et al. (2001a) X
Vanhoucke et al. (2001b) X
Vanhoucke et al. (2003) X
Vanhoucke and Debels (2007) X X
He and Xu (2008) X X X
He et al. (2009a) X X X
He et al. (2009b) X X X
He et al. (2014) X X X
Doersch and Patterson (1977) X X
Smith-Daniels and Smith-Daniels (1987) X X
Sung and Lim (1994) X X X
Smith-Daniels et al. (1996) X X

Özdamar and Dündar (1997) X X X

Özdamar (1998) X X X
He et al. (2012) X X X X
This work X X

Table 5.1: Literature overview max–NPV problem.

2015, 2016b), however, show that no research has been done on capital restrictions in

combination with renewable resource limitations.

5.3. PROBLEM DEFINITION 99

In this chapters, we contribute to the literature on NPV maximization in project

scheduling in three ways. First, we propose a new scheduling technique as part of a

metaheuristic approach for the max–NPV problem with capital constraints, and compare

with existing work. Second, we focus on the problem with renewable resource and capital

constraints, which has not yet been discussed in literature. We introduce a scheduler which

handles both restrictions, while optimizing the project NPV. Third, whereas the focus in

literature has been on the timing and/or size of cash inflows, we model the timing and size

of cash outflows as part of a general model. These cash outflows are particularly relevant

with capital constraints, since their timing and size have a profound impact on the capital

level available during the project (section 5.3).

5.3 Problem definition

In this section, we discuss the problem definitions of the capital–constrained project

scheduling problem with discounted cash flows (CCPSPDC), and of its renewable resource–

constrained extension the CRCPSPDC.

5.3.1 The capital–constrained project scheduling problem with discounted

cash flows

A project can typically be represented by a directed graph or network G(N,A) with

N used for the project activities or nodes and A the precedence relations or arcs between

the nodes N . We employ the activity–on–the–node (AoN) representation and assume a

time–lag of zero for the precedence relations. Each activity i (i ∈ N = {1, . . . n}) has a

duration di, a cash inflow ci,in (> 0) and a cash outflow ci,out (< 0). Additionally, a start

dummy 0 and end dummy n + 1 are included. The project has a deadline of δn+1. The

finish times fi of the activities are the decision variables.

Mathematically, the max–NPV problem can be conceptually formulated as follows:

Maximize

n∑
i=1

(ci,in + ci,out) · e−αfi (5.1)

Subject to:

fi ≤ fj − dj , ∀(i, j) ∈ A, (5.2)

fn+1 ≤ δn+1, (5.3)

fi ∈ int+, ∀i ∈ N (5.4)

The objective function (5.1) optimizes the project NPV based on a discount rate α,

100 Chapter 5

and discounts both the cash in– and outflow to the activity finish time. Constraints (5.2)

enforce precedence feasibility. Constraint (5.3) makes sure the project deadline is met. If

no deadline were imposed, cash outflows could be delayed indefinitely. Finally, constraints

(5.4) state that the decision variables should be integer values.

In objective function (5.1), it is assumed that cash in– and outflows both occur at

activity completion time. However, for the extension with capital constraints (CCPSPDC)

we consider alternative occurring times for the cash outflows, since the cash outflows

have an impact on the capital balance. We propose the following general model for the

CCPSPDC, as an extension to the max–NPV model:

Maximize

n∑
i=1

ci,in · e−αfi +

n∑
i=1

di∑
t=0

ci,out · vit · e−α(fi−di+t) (5.5)

Subject to:

C0 +
∑

i∈Qf (t)

ci,in +
∑

i∈Qs(t)

min(t−(fi−di),di)∑
w=0

ci,out · viw ≥ 0, t = 0, . . . , δn+1, (5.6)

fi ≤ fj − dj , ∀(i, j) ∈ A, (5.7)

fn+1 ≤ δn+1, (5.8)

fi ∈ int+, ∀i ∈ N (5.9)

The objective function (5.5) optimizes the project NPV, with the first term containing

the NPV of the cash inflows. It is assumed that cash inflows always occur upon activity

completion. The second term models the cash outflows based on a parameter vit (vit ∈
[0; 1]), which holds the fraction of an activity i’s cash outflow to be paid at time fi−di+ t.

In order to ensure that the entire cash outflow ci,out of each activity i is assigned to a time

period during the activity’s duration, we set
∑di

t=0 vit = 1. This way, ci,out is distributed

over the activity duration in a predefined manner. Constraints (5.6) model the capital

feasibility and ensure that the capital does not become negative at any time unit t. Qs(t)

is the set of activities which have been started on and before time t, and Qf (t) is the set

of activities finished on and before time t. min(t− (fi − di), di) in the third sum ensures

that for the capital evaluation at time t, only cash outflows of activity i up until time

t are considered. Constraints (5.7)–(5.9) are the same as constraints (5.2)–(5.4) in the

max–NPV model.

Figure 5.3 provides an overview of five different applications of the general CCPSPDC

model. Each separate graph shows the capital profile of a single activity i, with on the

horizontal axis the time t and on the vertical axis the capital Ct at time t. The values for

Ct are calculated based on constraints (5.6). The bold line in each of the graphs is the

5.3. PROBLEM DEFINITION 101

ci,in>ci,out

Ct

t

di

ci,in
ci,out

vi,0=1

Ct

t

di

ci,in+ci,out

vi, di=1

ci,in=ci,out

Ct

t

di
ci,inci,out

ci,in<ci,out

Ct

t

di ci,in

ci,out

t

di

ci,in
ci,out

Ct

t
di

ci,in
ci,out

Ct

t
di

ci,in

vi,0=0.6,
vi,1=0.4

Ct

t

di
ci,inci,out

Ct

t

di ci,in

ci,out

vi,0..di-1=1/di

Ct

t
di

ci,inci,out

Ct

t
di

ci,in

ci,out

vi,di-2=0.4,
vi,di-1=0.6

ci,out

Ct

t
di

ci,inci,out

Ct

t
di

ci,inci,out

Ct

t

di

Ct

t

di ci,in+ci,out

Model 1 Model 2 Model 3

Ct

Figure 5.3: Example applications of model CCPSPDC.

capital profile of activity i during its required duration. Each column in the figure displays

a different application based on different values for the vit parameters to model the way

the cash outflows are spread over the duration, whereas the rows distinguish between the

three possibilities regarding the comparative values of ci,in and ci,out. In the remainder of

this chapter, we focus on the three highlighted applications. Models 1 and 3 constitute

two extreme cases, since it is assumed that the cash outflows occur at the start and end

of an activity respectively. Without loss of generality, it can be stated that model 2 serves

as a representation of all model variations in between both extremes, in which the cash

outflows are distributed over the time instances between the activity start and finish times.

• Model 1: cash outflows are paid at activity start times (vi,0 = 1), and hence reduc-

tions in available capital occur at the start of an activity. The resulting objective

and capital constraints can be simplified and correspond with functions (5.10) and

(5.11) respectively.

Maximize

n∑
i=1

ci,in · e−αfi +

n∑
i=1

ci,out · e−α(fi−di) (5.10)

C0 +
∑

i∈Qf (t)

ci,in +
∑

i∈Qs(t)

ci,out ≥ 0, t = 0, . . . , δn+1 (5.11)

102 Chapter 5

• Model 2: cash outflows are paid on a per time unit basis during the activity duration

(vi,0...di−1 = 1/di). The objective function and capital limitations are adjusted to

functions (5.12) and (5.13) respectively.

Maximize

n∑
i=1

ci,in · e−αfi +

n∑
i=1

di−1∑
t=0

ci,out/di · e−α(fi−di+t) (5.12)

C0 +
∑

i∈Qf (t)

ci,in +
∑

i∈Qs(t)

min(t− (fi − di) + 1, di) · ci,out/di ≥ 0, t = 0, . . . , δn+1 (5.13)

• Model 3: cash outflows are paid at activity finish times (vi,di = 1), along with

the receipt of the cash inflows. The simplified objective function (5.14) and capital

constraints (5.15) are shown below.

Maximize

n∑
i=1

ci,net · e−αfi (5.14)

C0 +
∑

i∈Qf (t)

ci,net ≥ 0, t = 0, . . . , δn+1 (5.15)

5.3.2 The capital– and resource–constrained project scheduling problem

with discounted cash flows

As an extension to the problem discussed in section 5.3.1, we propose to also include

renewable resource (RR) constraints. The mathematical models of section 5.3.1 have to

be extended with renewable resource constraints. Each activity i has a resource demand

rig of type g, whereas each RR type g (g ∈ R = {1, . . . , |R|}) has a limited availability of

ag. Functions (5.16) have to be added as additional constraints to the models of section

5.3.1. S(t) are the set of activities in progress at time t.

∑
i∈S(t)

rig ≤ ag, ∀g ∈ R, t = 0, . . . , δn+1 (5.16)

The CRCPSPDC contains both renewable resource and capital constraints, both of

which are fundamentally different as discussed along the following lines:

• Renewable resources have a fixed availability, are decreased at the start time of an

activity, and are renewed at activity finish time. Examples include machines and

workers, which are owned by the company executing the project and do not need to

be purchased (Blazewicz et al., 1983; Pritsker et al., 1969).

5.3. PROBLEM DEFINITION 103

• Cumulative resources (CR) have a variable availability, which is not necessarily the

same after the completion of an activity (Neumann and Schwindt, 2002). Examples

of a cumulative resource are inventory and capital.

As an example, consider the network in figure 5.4 with a single RR (a1 = 3), an initial

capital C0 of 30 and a deadline of 10. The discount rate is assumed to be 1%. The graph

displays the example’s network structure with a duration, RR demand, and cash out–

and inflow for each activity. We assume model 1 from section 5.3.1 is applied, with cash

outflows at the activity start times and inflows at the activity finish times. We consider

the optimal solution to the example and its corresponding schedule in three distinct cases.

1

i
ri1, ci,out, ci,in

0

0, 0, 0
di

6

2

3

4

3 0

3

4

2, -10, 20 0, 0, 0

1, -20, 10

2, -20, 20

5

2

1, -25, 30

Figure 5.4: Data example.

1. CCPSPDC: the optimal schedule is displayed in the top left of figure 5.5. The width

of each of the blocks corresponds with the activities’ durations. The bold line displays

the capital level available throughout the project (e.g. C3 = 30−10−20+20 = 20). In

the schedule, activity 3 is scheduled at its earliest finish time because of its positive

NPV, whereas activity 2 is scheduled at its latest finish time due to its negative

NPV. The cumulative NPV of activities 4 and 5 is positive so both are scheduled at

their earliest finish time, even though the NPV of activity 4 is negative. No capital

shortages occur. The project NPV equals 3.26 (= −18.65 + 9.05− 10 + 19.41− 20 +

19.22 − 24.02 + 28.25). The only trade–off to be made in this case is between the

capital availability and the project NPV.

2. RCPSPDC: the optimal schedule is shown in the top right schedule of figure 5.5, with

the height of each of the blocks corresponding with its RR demand. The additionally

introduced right vertical axis displays the RR availability a1. Compared to the top

right schedule, activities 4 and 5 have been delayed because activities 3 and 4 can

104 Chapter 5

no longer be scheduled in parallel. Since the cumulative NPV of activities 4 and 5

is smaller than the NPV of activity 3, it is best to delay the former activities. It

can, however, be observed that the resulting schedule is capital infeasible since the

capital drops to -5 between times 7 and 9. The only trade–off in this case is between

the RR availability and the project NPV.

3. CRCPSPDC: the optimal schedule can be found at the bottom of figure 5.5. Due

to the limited capital availability, activity 2 has to be scheduled at time 7 since

otherwise insufficient capital is available to start activity 5. Alternatively, delaying

activity 4 and 5 does not ensure a non–negative capital during the project duration.

Hence, this case involves trade–offs between capital availability and project NPV,

between RR availability and NPV, but also between capital and RR availability.

Ct

t0
10
20
30
40
50

-10 0 1 2 3 4 5 6 7 8 9 10

2

3

4

NPV=3.26

5

Ct

t0
10
20
30
40
50

-10 0 1 2 3 4 5 6 7 8 9 10

2
3 4

NPV=3.16 a1

0

1

2

3

5

Ct

t0
10
20
30
40
50

-10 0 1 2 3 4 5 6 7 8 9 10

2

3 4

NPV=2.86 a1

0

1

2

3

5

CR RR

CR+RR

Figure 5.5: Schedules example.

Based on the three different example schedules, it can be concluded that more trade–

offs are included in the CRCPSPDC, when compared to both the CCPSPDC and the

RCPSPDC.

5.4. SCHEDULING TECHNIQUES WITH CAPITAL CONSTRAINTS 105

5.4 Scheduling techniques with capital constraints

In this section, we first discuss our proposed scheduler for the CCPSPDC. Second, we

propose a more complex version of the scheduler, which also takes the renewable resource

constraints into account. Both schedulers consists of three main parts: an initial schedule,

a capital feasibility evaluation or improvement step, and a NPV improvement part.

5.4.1 A scheduler for the CCPSPDC

We start with the construction of an initial schedule and evaluate the capital feasibility.

If the schedule is capital feasible (C–Feas), a NPV improvement is applied, otherwise a

penalty function is employed, used to denote that the resulting schedule is capital infeasible

(C–Infeas).

The proposed scheduler is applied on a single priority list (PL) generated by a meta-

heuristic (section 5.5), and is used for each list generated by the metaheuristic. An overview

of the overall flow of the scheduler is shown in figure 5.6.

Start C-Feas?Initial
schedule

NPV
improve

Repeat until
no change

Use
penalty

function 1

EndY

N

Figure 5.6: Schedule generation flow CCPSPDC.

5.4.1.1 Initial schedule

The initial schedule aims to schedule all activities subject to the precedence relations

and to the capital constraints. The activities are scheduled in the order in which they

appear in the PL, starting with the first activity in the list. The method aims to find a

C–Feas finish time and starts from the activity’s earliest finish time.

• The partial schedule is C–Feas: the finish time of activity i is retained, the capital

availability is updated for the entire project duration, and the scheduler continues

with the next activity in the PL.

• The partial schedule is C–Infeas: the proposed finish time is incremented and the

C–Feas evaluation is repeated. If the finish time, however, cannot be incremented,

106 Chapter 5

i.e. it would become larger than the latest finish time, no C–Feas finish time could

be found. Activity i is then scheduled at its earliest finish time and the scheduler

continues with the next activity in the PL.

5.4.1.2 Capital feasibility evaluation

Once the initial schedule of section 5.4.1.1 has been completed, we evaluate the capital

feasibility of the schedule by calculating the Excess of Capital Request (ECR), which is

defined as: ECR =
∑δn+1

t=0 max(0;−Ct), with Ct the capital level at time t. The ECR

adds the shortages of capital of all time units t during the planned project duration for

which the capital Ct is negative. The resulting ECR value gives an indication of the capital

feasibility of the schedule. A large ECR value on the one hand means that many shortages

in capital exist or that the existing shortages are large, or both. A small ECR value on

the other hand implies that the shortages are limited both in number of periods and in

size. Finally, an ECR value of zero means no capital shortages exist.

If the initial schedule of section 5.4.1.1 has an ECR value equal to 0, the scheduler

continues with the NPV improvement of section 5.4.1.3. Otherwise, penalty function (5.17)

is applied, after which the schedule is returned to the metaheuristic (section 5.5).NPV = NPVC−Infeas · Y ECR
1 if NPVC−Infeas ≥ 0

NPV =
NPVC−Infeas

Y ECR
1

otherwise
(5.17)

NPVC−Infeas is the NPV of the C–Infeas schedule, whereas Y1 (Y1 ∈[0;1]) is a param-

eter which is tested in section 5.6.2. Function (5.17) ensures that the NPV of a C–Infeas

schedule is considerably worse than that of any C–Feas schedule by reducing NPVC−Infeas,

based on the size of the ECR. A larger ECR value leads to a larger reduction in project

NPV.

5.4.1.3 NPV improvement

The NPV improvement is an adjustment of the network–based moves of chapter 2

(Leyman and Vanhoucke, 2015) to improve the project NPV for the RCPSPDC. For a C–

Feas schedule, the goal is to improve the project NPV while maintaining capital feasibility,

by delaying sets of activities with a negative cumulative NPV. These sets are constructed

by taking the precedence relations between activities into account. The method of chapter

2 (Leyman and Vanhoucke, 2015) is adjusted by omitting the renewable resources and by

including a capital feasibility check of each proposed delay. Once the NPV improvement

method is completed, the schedule is returned to the metaheuristic.

5.4. SCHEDULING TECHNIQUES WITH CAPITAL CONSTRAINTS 107

5.4.2 A scheduler for the CRCPSPDC

The scheduler for the CCPSPDC is extended to cope with the effects of both the

capital and renewable resource limitations. Due to the addition of renewable resource

constraints, a more complex scheduler is required. We start with the construction of an

initial schedule and continue with the capital feasibility improvement method if the initial

schedule is C–Infeas. Finally, we go into detail about the changes in activity finish times

to improve the project NPV.

The proposed scheduler is applied on a single PL generated by a metaheuristic (section

5.5), and is used for each solution generated by the metaheuristic. An overview of the

overall flow of the proposed scheduler is shown in figure 5.7. In general, the scheduler

consists of three parts, namely an initial schedule (section 5.4.2.1) and two types of delays:

• The first type of delays (Capital feasibility improvement) are discussed in section

5.4.2.2, which aim to improve capital feasibility and delay sets of activities.

• The second type of delays (NPV improvement) improve the project NPV by delaying

sets of activities with a negative cumulative NPV and are discussed in section 5.4.2.3.

Serial
SGS

D-Feas?
(1)

Use
penalty

function 2

Start
Y

N

Schedule
improve

D-Feas?
(2)

N

Y

Activity
move
rules 1

Repeat until
no change

EndC-Feas?
(1)

Y

N

Capital
improve

C-Feas?
(2)

Y

N Use
penalty

function 1

Activity
move
rules 2

Repeat until
no change

Delay
negatives

Initial schedule

Capital feasibility
improvement

NPV
improvement

Figure 5.7: Schedule generation flow CRCPSPDC.

5.4.2.1 Initial schedule

For the initial schedule we aim to obtain a deadline feasible (D–Feas) earliest start

schedule and use the first three steps outlined below. The fourth step improves the earliest

start schedule for use in the Capital feasibility improvement (section 5.4.2.2) and NPV

improvement (section 5.4.2.3) methods.

1. The serial schedule generation scheme (SSGS) of Kelley (1963) (Serial SGS in figure

5.7) is applied.

108 Chapter 5

2. If the resulting schedule of the first step is deadline–infeasible (D–Infeas), the forward–

backward improvement method of Li and Willis (1992) is used to reduce the project

duration (D–Feas?(1) and Schedule improve in figure 5.7). This method terminates

if no further reductions in project duration can be made. If the schedule of the first

step is D–Feas the procedure continues with step 4.

3. If the schedule is still infeasible after step 2 the penalty function of chapter 2 (Leyman

and Vanhoucke, 2015) is applied (D–Feas?(2) check and Apply penalty function 2 in

figure 5.7):

NPV = −Y2 +NPVD−Infeas · Y fn+1−δn+1

3 if NPVD−Infeas ≥ 0

NPV = −Y2 +
NPVD−Infeas

Y
fn+1−δn+1
3

otherwise
(5.18)

NPVD−Infeas is the NPV of the D–Infeas schedule, whereas Y2 and Y3 are parameters

(Y2 > 0, Y3 ∈ [0; 1]) which are tested in section 5.6.2. Function (5.18) ensures that the

NPV of a D–Infeas schedule is considerably worse than that of any D–Feas schedule

by reducing NPVD−Infeas in two ways. First, the parameter Y3 reduces the project

NPV based on the difference between the project duration fn+1 and the project

deadline δn+1. Second, Y2 subtracts a large positive value from NPVD−Infeas.

4. All activities i with a negative NPV are delayed as late as possible (Delay negatives

in figure 5.7). These delays are done in the order in which the activities occur in

the solution’s PL (section 5.5), starting from the back of the list. If any delays

have occurred, the fourth step is repeated until no more changes are applied. The

repetition is used to ensure that all activities with a negative NPV are scheduled as

late as possible, given the schedule after the previous steps and any delays of other

activities.

Once the initial schedule has been generated and the method terminates with step

4, the capital feasibility improvement method of section 5.4.2.2 is applied. If however no

D–Feas schedule could be found, the method terminates in step 3 and returns the schedule

to the metaheuristic, since a D–Infeas schedule is not considered for further improvement.

5.4.2.2 Capital feasibility improvement

The goal of the improvement method is to evaluate the capital feasibility of a D–Feas

schedule generated by the initial scheduler (section 5.4.2.1), and to improve the capital

feasibility if the schedule is C–Infeas. If the schedule under consideration has an ECR

equal to zero the algorithm continues with the NPV improvement of section 5.4.2.3. If the

5.4. SCHEDULING TECHNIQUES WITH CAPITAL CONSTRAINTS 109

ECR is positive, however, a capital feasibility improvement method is applied to reduce

the ECR value. Figure 5.8 gives an overview of the capital feasibility improvement method

discussed in this section, which corresponds with Capital improve, C–Feas?(2) check, and

Use penalty function 1 in figure 5.7. C–Feas?(1) states the condition under which the

capital feasibility improvement method is applied.

The goal of the method is to improve a solution’s capital feasibility by delaying cash

outflows. Delays for activities may require sets of succeeding activities to be delayed as well.

These sets can be constructed in two ways, namely based on the network successors and

based on the schedule neighbors. In the former case only precedence related activities are

included in the set, whereas in the latter case neighboring activities in the project schedule,

which may or may not be precedence related, are used. This way, both alternatives consider

different sets of activities, which can lead to different changes in the ECR. We propose

to first apply the schedule–based capital feasibility improvement and second the network–

based variant. These delays not only delay sets of activities with a negative cumulative

NPV but may also delay sets with a positive cumulative NPV, since the goal is to delay

cash outflows to obtain a C–Feas solution. We discuss each of the method’s large parts

(Check time t, Seti calculations, Delay until next positive, Delay until next successor and

Schedule seti) and the links between the parts in more detail. Table 5.2 provides an

overview of the notations used in the remainder of this section.

Check time t: the first large part of the capital feasibility improvement method

checks the capital feasibility of all time instances t, starting from time 0 to the project

deadline δn+1. If the capital Ct at time t is negative then the set earlySet is constructed

by including all activities i with a start time smaller than or equal to t in earlySet. The

capital feasibility improvement method aims to improve the capital feasibility at time t, by

delaying the cash outflows corresponding with some or all of these activities i in earlySet to

time units later than time t. The activities added to earlySet are sorted in decreasing order

of their appearance in the PL, which implies that the later the position in the PL of an

activity i in earlySet, the earlier that activity i is considered by the part Seti calculations.

The two possible end nodes in figure 5.8 for the capital feasibility improvement method

are linked with the Check time t part in the following way. If the project deadline can be

reached without any remaining capital shortages, the procedure terminates in the node

End: feas, and a C–Feas schedule has been found. The scheduler continues with the NPV

improvement part of the algorithm (section 5.4.2.3). If, however, a capital shortage still

exists at time t but no more unconsidered activities i remain in earlySet, the method

finishes in the node End: infeas, and no C–Feas schedule could be found based on the

corresponding PL. In this case penalty function (5.17) is applied, after which the solution

110 Chapter 5

t>δn+1?
Start:
t=0

Y

N

End:
feas

Ct<0? ∃i∈
earlySet?

End:
infeas

Find seti
(alg 1)

Δi,next≤
Δi,max?

Calculate
Δi,max,
Δi,next

RR feas?

Δi,next++

Update
schedule

Delay
negatives

i++

Δi,max.>0? RR feas?

Δi,max--

Find
earlySet

Δi,next<
+∞?

t++ N

Y Y

N

N

Y

N

N

YY

Y Y

N

N

Schedule seti Delay until
next positive

Delay until
next successor

Check time t Seti calculations

Δi,next≤
Δi,max?

Y

N

Figure 5.8: Capital feasibility improvement flow.

is returned to the metaheuristic (section 5.5).

Notation Definition

t Time at which capital feasibility is evaluated
Ct Capital available at time t
earlySet Set of activities which may be delayed to improve Ct
i Index of activity from earlySet currently under consideration
seti Set of activities to be delayed together with i based on algorithm 8
k Index for activities in seti
Sk Set of immediate successors of activity k based on the set of arcs A in G(N,A)
j Index of successor of activity k
Bk Set of neighbors of activity k scheduled after k
h Index of neighbor of activity k
∆i,max Maximum allowable delay for seti based on any immediate successors not in seti
l Index of earliest activity after time t which can reduce the project ECR
∆i,next Minimum required delay for seti based on activity l
Sched Boolean used by algorithm 8 to distinguish between network– and schedule–based variant

Table 5.2: Overview of notations capital feasibility improvement.

Seti calculations: the second part starts with an activity i from earlySet provided

by Check time t and aims to find the set of activities seti which has to be delayed together

with i, to ensure precedence feasibility. To find seti, algorithm 8 is applied for the network–

5.4. SCHEDULING TECHNIQUES WITH CAPITAL CONSTRAINTS 111

or schedule–based delays:

• Network–based moves (sched = false): the algorithm finds the set of all immediate

successors of activity i, for which the start time equals the finish time of activity i.

The algorithm then recursively determines whether any successors of these successors

should also be added.

• Schedule–based moves (sched = true): the algorithm finds the set of all neighbors of

activity i, for which the start time equals the finish time of activity i. These neighbors

are those activities which are scheduled immediately after activity i and which may

or may not be precedence related to activity i. The algorithm then recursively

determines whether any later scheduled neighbors of these neighbors should also be

added.

The capital feasibility improvement method aims to delay seti to reduce the capital

shortage at time t, and calculates two types of delays. The maximum allowable delay for

seti, ∆i,max, based on immediate successors not in seti is calculated as follows: ∆i,max =

min(fj − dj − fk|k ∈ seti, j ∈ Sk, j /∈ seti). ∆i,max holds the maximum delay possible for

all activities k from seti, based on their successors j not in seti.

Algorithm 8 Get all successors

GetAllSuc (current activity k,seti[],boolean sched)

If sched = false (network–based)
For j = 1 to |Sk|

If fj − dj = fk ∧ j /∈ set
set = set ∪ {j}
GetAllSuc (j,seti,sched)

End if
End for

End if
If sched = true (schedule–based)

For h = 1 to |Bk|
If h /∈ set

set = set ∪ {h}
GetAllSuc (h,seti,sched)

End if
End for

End if
Return set

In order to reduce the capital shortage at time t, a second minimum delay has to

be calculated. Activity i from earlySet has to be delayed at least until the earliest next

activity l (l /∈ seti), to reduce the impact of activity i on the capital shortage. Such

an activity l furthermore has to be scheduled after time t. The goal is to determine a

minimum delay for activity i such that its cash outflows are (partially) compensated by

112 Chapter 5

the cash inflow of activity l. Additionally, we do not wish to delay activity i any further

than required to reduce the capital shortage at time t, to avoid an unnecessary reduction

of the project NPV. The minimum required delay based on such an activity l is called

∆i,next, and depends on the cash flow model used:

• Model 1 (cash outflows occur at activity start time): activity i should be scheduled

later than activity l, i.e. fi − di ≥ fl, to allow for a proper compensation of ci,out.

• Model 3 (cash outflows occur at activity finish time): activity i should have a finish

time equal to at least the finish time of activity l, i.e. fi ≥ fl.

• Model 2 (cash outflows occur in a stepwise manner during the duration of activity i):

the required delay should be in–between the delays for model 1 and 3: fi −X ≥ fl,
with X ∈ {1; di}. The value for X determines the part of activity i that has to be

delayed after time t, in order to reduce the capital shortage at time t by the largest

amount possible.

If no such activity l exists, the capital conflict at time t cannot be solved. In that

case, ∆i,next = +∞, the procedure terminates, penalty function (5.17) is applied and the

solution is returned to the metaheuristic. If such an activity l does exist, the procedure

compares ∆i,next and ∆i,max and either continues with Delay until next positive (∆i,next ≤
∆i,max) or with Delay until next successor (∆i,next > ∆i,max).

Delay until next positive: this part is applied if ∆i,next ≤ ∆i,max, which implies

that a sufficient delay to reach activity l found by the Seti calculations part exists. The

goal of Delay until next positive is to ensure that a delay of at least ∆i,next is achieved.

This way, the capital feasibility at time t can be improved since the negative cash flow of

activity i is (partially) compensated by the positive cash flow of activity l. The set seti is

delayed by at least ∆i,next time units, and subsequently scheduled at the earliest possible

time for which the capital increases.

The method starts with a delay of ∆i,next and checks the RR availability for all activities

in seti. In case a feasible delay is found, the procedure continues with the Schedule seti

part. Otherwise, ∆i,next is incremented. The RR availability check continues until a

feasible delay is found (continue with Schedule seti) or until ∆i,next becomes larger than

∆i,max. The latter case implies that no RR feasible delay of at least ∆i,next could be

found, in which case the procedure returns to the set earlySet of the Check time t part.

The algorithm then continues with the next activity i in earlySet and repeats the Seti

calculations until a feasible delay is found or until earlySet is empty. If no next activity

i in earlySet exists, the capital feasibility improvement procedure terminates, penalty

function (5.17) is applied and the solution is returned to the metaheuristic.

5.4. SCHEDULING TECHNIQUES WITH CAPITAL CONSTRAINTS 113

Delay until next successor: this part is applied if ∆i,next > ∆i,max, which means

that activity i cannot reach activity l obtained by the Seti calculations part. The goal of

Delay until next successor is to delay seti as late as possible to reduce the capital shortage

at time t. The set seti is delayed by at most ∆i,max time units, and scheduled at its latest

possible time given this maximum delay.

The method starts with a delay of ∆i,max and evaluates the RR availability for all

activities in seti. If a feasible delay is found, Schedule seti is applied. If the delay is

infeasible, ∆i,max is decreased by 1 and the RR check is repeated. Delay until next successor

terminates if a feasible delay is found (continue with Schedule seti), or if ∆i,max equals

zero (return to the set earlySet of the Check time t part as done for the Delay until next

positive part).

Schedule seti: the fifth part is used if either Delay until next positive or Delay until

next successor has found a feasible delay for seti. The schedule is updated based on the

delay, and single activities with a negative NPV are scheduled as late as possible. Once

the Schedule seti part has been completed, the procedure returns to the Check time t part,

and searches again for periods t with a negative capital in order to construct a new seti

to shift.

5.4.2.3 NPV improvement

In this section, we briefly discuss the NPV improvement method. The activity move

rules of this section correspond with the steps Activity move rules 1 (network–based moves)

and Activity move rules 2 (schedule–based moves) in figure 5.8, and are adapted versions

of the activity move rules of chapter 2 (Leyman and Vanhoucke, 2015) for the RCPSPDC.

Once a schedule is both D–Feas and C–Feas our algorithm aims to improve the project

NPV while maintaining both deadline and capital feasibility. The goal of the NPV im-

provement move rules is to delay sets of activities with a negative cumulative NPV. Similar

to the rules for capital feasibility improvement (section 5.4.2.2) we distinguish between a

network– and schedule–based variant. The network–based delays consider an activity’s

predecessors and successors based on the project network, whereas the schedule–based

delays consider the neighboring activities in the project schedule. We propose to first

employ the network–based delays and then the schedule–based delays, in line with the

results reported in chapter 2 for the RCPSPDC (Leyman and Vanhoucke, 2015). The only

adaptation required for the CRCPSPDC, is a capital feasibility evaluation of every RR

feasible delay. When the NPV improvement method is completed, the resulting schedule

is returned to the metaheuristic.

114 Chapter 5

5.5 Metaheuristics

In this section, we focus on the details of the metaheuristics used. We choose to

compare the performance of three metaheuristics, namely a tabu search, a genetic algo-

rithm and a scatter search. These three metaheuristics are selected since they allow for

a comparison between single solution, single population and multi population approaches

respectively. The specific implementation of each of the metaheuristics is based on three

applications from literature, which report the best result to date for the problems studied

in the respective papers. All three algorithms can be applied to both the CCPSPDC and

the CRCPSPDC. The algorithm parameters are tested in section 5.6.2. We provide an

overview of the application of each metaheuristic in the following paragraphs, but first

discuss the solution representation used by all three algorithms.

Solution representation: since delays in sections 5.4.1 and 5.4.2 are done according

to the order in which activities appear in the PL, we employ the topological order (TO)

representation first proposed by Valls et al. (2004, 2003), and used for the RCPSP by

Debels et al. (2006). The TO representation ensures a precedence feasible ordering of

activities and is updated based on actual finish times after the improvement methods dis-

cussed in sections 5.4.2.2 and 5.4.2.3 have been applied. This way, a population element’s

initial PL is transformed into a finish time ordered activity list. Ties are broken randomly.

For an example of the PL and TO representations, we refer to 5.A.1.

Tabu search (TS): we employ the TS of He et al. (2012) for the multi–mode capital–

constrained project payment scheduling problem. The authors showed that the proposed

TS performs best out of several alternatives. The initial solution’s PL is generated ran-

domly and is set as both the best and current solution. The appropriate scheduler of either

section 5.4.1 or 5.4.2 is applied to evaluate the initial solution. Afterwards, a neighbor is

generated from the current solution by applying a two–activity swap. If the neighbor’s

NPV (based on the scheduler used) is better than the best solution found, the latter is

updated along with the current solution, and the reverse of the swap is added to the tabu

list with length L. For the tabu list, the first–in–first–out principle is used, which means

that once the list is full, the swap which has been in the list the longest is removed. If the

neighbor’s NPV is worse than the best solution found, the algorithm checks whether the

swap employed is in the tabu list. If this is not the case, the current solution is updated

and the reverse of the swap is added to the tabu list. Otherwise, the current solution is

retained. Once the neighbor has been evaluated, and the current solution may have been

updated, the TS again generates another neighbor of the current solution. If no change in

the current solution has occurred after C neighbors have been generated, a new random

PL is generated. New neighboring solutions are generated until a stopping criterion is

5.5. METAHEURISTICS 115

met.

Genetic algorithm (GA): we apply the GA proposed in chapter 2 for the RCP-

SPDC (Leyman and Vanhoucke, 2015). The GA obtained the best results to date and

has subsequently been employed for the multi–mode RCPSPDC with different payment

models in chapter 3 (Leyman and Vanhoucke, 2016b), based on extensive computational

experiments. For the initial population |P | PLs are randomly generated, with |P | the GA’s

population size. The scheduler of either section 5.4.1 or 5.4.2 is employed for all elements.

These |P | elements are then all introduced in the GA’s population P on which the selec-

tion, crossover and mutation operators are applied. A selection operator is used to select

parents used for crossover. The elite selection operator is implemented, which randomly

selects one parent from the subset R of the best solutions in the population, and uses

four–tournament selection for the second parent. A one–point crossover is subsequently

applied on the two selected parents to create two children. Afterwards, a two–activity

swap mutation is imposed on each child with a probability of M , and the appropriate

scheduler is employed. These steps for generating and updating children are repeated

until |P | children have been created. Once |P | children have been generated, the best |R|
parents are retained and the rest of the parents are replaced by the best |P | − |R| chil-

dren. The set R is subsequently updated to contain the best elements in the population.

Consider that this subset R is also the set from which the first parent is always selected

in the elite selection operator. The selection, crossover and mutation operators are then

again applied, and this is repeated until a stopping criterion has been met.

Scatter search (SS): the SS procedure used in this chapter is the algorithm of Van Pe-

teghem and Vanhoucke (2011), which has the best results to date for the multi–mode

RCPSP. First, an initial population with size B · (|B1|+ |B2|) is randomly generated (Di-

versification generation). B1 is the subset of best elements, whereas B2 holds the most

diverse elements found. B is a multiplication factor applied for the initial population. The

scheduler of either section 5.4.1 or 5.4.2 is used to determine the NPV of each element

from the initial population. Once the initial population has been generated, the subsets

are constructed (Subset generation). Solutions are added to B1 if their NPV is better than

the best solution currently in B1. Alternatively, if the solution NPV is better than the

worst schedule in B1, and if the minimum distance of the new solution to any solution in

B1 is greater than v1 · n (v1 ∈ [0; 1]), the new solution is also added to B1. The minimum

distance condition is imposed to ensure some degree of diversity in the set B1. Solutions

are added to B2 if they are more diverse from any solution in B1 than any other solution

in B2, or if the minimum distance of the new solution to any solution in B1 is greater than

v2 · n (v2 ∈ [0; 1], v2 > v1). The distance between two solutions is calculated based on the

following formula, similar to Van Peteghem and Vanhoucke (2011):

116 Chapter 5

dfp1,p2 =

n∑
i=1

|fp2i − f
p1
i | (5.19)

p1 and p2 are the two solutions which are compared, and fp1i and fp2i their correspond-

ing finish times for activity i. Additionally, if there are less elements in B2 than |B2|, the

subset is seeded with random solutions. Solutions are subsequently combined by grouping

all pairs from B1 that contain at least one new solution, and all pairs with one solution

from B1 and one solution from B2 (Solution combination). Two children are generated

for every pair based on a one–point crossover. Each of the newly generated elements are

scheduled (Improvement method), and afterwards both reference sets B1 and B2 are up-

dated based on the same criteria discussed earlier (Reference set update). The generation

of new elements and subsequent steps are repeated until a stopping criterion has been met.

5.6 Computational results

In this section, we discuss our computational results for both the CCPSPDC and the

CRCPSPDC. We first give details of the proposed test data and subsequently configure

the proposed schedulers and the three metaheuristics. We clearly show the added value of

the steps of the capital feasibility improvement method. We analyze the influence of the

data parameters and compare the results for the CCPSPDC with literature. Finally, we

provide some managerial insights based on the trade–offs discussed in section 5.3.2. The

stopping criterion based on 5,000 generated schedules as defined by Lova et al. (2009) is

employed for all tests, and we assume a discount rate of 1%.

5.6.1 Test data

Project network: we use the same dataset as employed for the RCPSPDC by Van-

houcke (2010), which consists of 2,880 instances, but omit the renewable resources for

the CCPSPDC. The parameter settings of the data are shown in table 5.3 and constitute

the first five parameters, with deadline increase the percentage increase of the minimum

project duration for the RCPSP. The project deadline is set by increasing the minimum

project duration for the RCPSP with this percentage D–Incr.

Cash flows: we generate cash flow data for each of the 2,880 instances based on

two parameters. Smith-Daniels and Smith-Daniels (1987) and Smith-Daniels et al. (1996)

state that a project which does not generate capital will not be executed from a capital

management point of view, which implies that the total cash inflows of a project have

to exceed its total cash outflows. A profit margin percentage (PMP) parameter is used

5.6. COMPUTATIONAL RESULTS 117

Parameter Values Source
Number of activities (Act) 25, 50, 75 or 100 Vanhoucke (2010)
Order strength (OS) 0.25, 0.50 or 0.75 Vanhoucke (2010)
Resourse usage (RU) 2 or 4 Vanhoucke (2010)
Resource constrainedness (RC) 0.25, 0.50 or 0.75 Vanhoucke (2010)
Deadline increase (D–Incr) 5, 10, 15 or 20 Vanhoucke (2010)
Profit margin percentage (PMP) 0.33, 0.50 or 0.67 This chapter
Cash flow distribution (CFD) 0.33, 0.50 or 0.67 This chapter
Capital constrainedness (CC) 0.25, 0.50 or 0.75 This chapter

Table 5.3: Parameter settings of test instances.

to determine the difference between the total cash in– and outflows. The values for the

PMP parameter are 0.33, 0.50 and 0.67, which correspond with a low, medium and high

profit margin respectively. We start from the cash flow data of Vanhoucke (2010) for the

RCPSPDC with 100% negative cash flows and apply the PMP on this data to generate a

total cash inflow.

The distribution of the cash inflows over the activities in the project network also has

an impact on the capital feasibility. As such, we introduce a cash flow distribution (CFD)

parameter, which determines the distribution of the cash inflows over the activities in the

project. The value of the CFD is set to 0.33, 0.50 or 0.67 which implies that respectively

33% (67%), 50% (50%) or 67% (33%) of the total cash inflow is evenly distributed over

the first (second) n/2 activities. The division of activities in the first or second half of the

project is based on the activity numbers. A low value for the CFD means that the cash

inflows received by the first (second) n/2 activities are relatively small (large), whereas

those received by the second n/2 activities are relatively large (small). The cash inflow

for each of the first n/2 activities is equal to −CFD ·
∑n

i=1 ci,out ·
1
n/2 , whereas the second

n/2 activities’ cash inflow equals −(1 − CFD) ·
∑n

i=1 ci,out ·
1
n/2 . Based on the settings

for both the PMP and CFD parameters, 9 combinations can be generated for each of the

2,880 instances.

Initial capital: we define a new parameter capital constrainedness (CC), inspired by

the definition of resource constrainedness (RC) (Patterson, 1976), as follows:

CC = −
∑n
i=1 ci,out/n

C0
(5.20)

The enumerator of the right hand side holds the average of the cash outflows of all

the activities in the project, whereas the denominator is the initial capital C0. Based on

a value set for the CC on the left hand side, the value for C0 can be calculated. As an

example, assume a project with 10 activities and a total cash outflow of -1,000. We wish

to set the CC to 0.50. In this case, the initial capital C0 is set to -(-1,000/10)/0.50 = 200.

118 Chapter 5

Similar to the values chosen for the RC in the data of Vanhoucke (2010), we choose to

employ values of 0.25, 0.50 or 0.75 for the CC. Finally, consider that the CC is independent

of both the PMP and the CFD, since different values of both cash flow parameters change

the cash inflows of the activities but not the cash outflows.

An overview of the values of the three additional data parameters PMP, CFD and CC

can be found at the bottom of table 5.3. As a result, the total number of test instances

is 2,880 x 9 cash flow variants x 3 CC levels = 77,760 instances per cash flow model.

The 9 cash flow files for each project instance of Vanhoucke (2010) can be found online at

www.projectmanagement.ugent.be (Research → Project scheduling → Net present value),

along with the network data and the best known solutions for the CCPSPDC and the

CRCPSPDC.

5.6.2 Algorithm configuration

In this section, we discuss the results of the configuration of our algorithm. We first

briefly discuss the settings of the algorithm parameters, and subsequently go into detail

about the added value of the proposed scheduler for both the CCPSPDC and the CRCP-

SPDC. The performance of the three metaheuristics is also analyzed for both problems.

All tests are run on 20% of the data presented in section 5.6.1, by employing each first out

of five instances.

PMP
0.33 0.50 0.67

Y1 Y3 Y1 Y3 Y1 Y3

0.33 0.99 0.85 0.95 0.90 0.70 0.90
Model 1 CFD 0.50 0.95 0.90 0.75 0.95 0.70 0.95

0.67 0.85 0.95 0.70 0.95 0.70 0.95
0.33 0.99 0.85 0.95 0.80 0.70 0.80

Model 2 CFD 0.50 0.85 0.90 0.75 0.85 0.65 0.85
0.67 0.80 0.95 0.65 0.90 0.60 0.90
0.33 0.99 0.85 0.90 0.90 0.80 0.90

Model 3 CFD 0.50 0.90 0.90 0.80 0.95 0.75 0.95
0.67 0.80 0.95 0.75 0.95 0.70 0.95

Table 5.4: Penalty function parameters.

5.6.2.1 Algorithm parameters

Y2 of penalty function (5.18) is set to 20,000, a value much larger than the NPV of

any feasible solution, whereas the values for Y3 can be found in table 5.4, along with the

best found values for the Y1 parameter of penalty function (5.17) for the capital feasibility.

5.6. COMPUTATIONAL RESULTS 119

Based on our tests, we found that both values for Y1 and Y3 depend on PMP and on CFD,

although the impact is larger for Y1. Furthermore, minor differences can be observed in

the values of both Y1 and Y3 between the three cash flow models. The values for the

penalty function parameters are applicable to all three metaheuristics.

The best found values for the parameters of each of the metaheuristics are displayed

in table 5.5. These values are, in general, in line with the values reported by the three

applications of the algorithms in literature (He et al., 2012, Leyman and Vanhoucke, 2015,

and Van Peteghem and Vanhoucke, 2011 respectively).

Parameter Value
TS L 20

C 10
GA |P | 50

|R| 5
M 0.95

SS B 9
|B1| 10
|B2| 8
v1 0.30
v2 0.50

Table 5.5: Metaheuristic parameters.

5.6.2.2 CCPSPDC

NPV improvement: we evaluate the added value of the NPV improvement, which

is applied if the initial schedule is C–Feas. We compare the scheduler without the NPV

improvement (NPV−) and the scheduler with the NPV improvement of chapter 2 (Leyman

and Vanhoucke, 2015) (NPVL) in table 5.6. In both cases the GA is used as metaheuristic.

The comparison between both alternatives is done based on the percentage average devia-

tion from an upper bound (%AvDev). The lower the percentage deviation, the better the

performance of the algorithm. The upper bound is calculated by the optimal procedure of

Vanhoucke et al. (2001b) for the max–NPV problem. Only the instances for which both

alternatives found a feasible solution are included. The percentage of C–Feas solutions

found is displayed in the %C columns. We also compare the results based on the per-

centage average difference between the NPV in both cases (%AvDiff), and calculate the

p–values (p) of the difference between the two options. Based on the results in the table

it can be stated that the NPV improvement method has a clear added value for all three

models, with the highest added value achieved for model 1.

Metaheuristics: in table 5.7 we compare the three metaheuristics. Only instances for

120 Chapter 5

NPV− NPVL ∆NPV
%AvDev %C %AvDev %C %AvDiff p

Model 1 11.37 94.10 5.35 94.13 7.38 <0.001
Model 2 7.65 96.14 2.25 96.12 6.35 <0.001
Model 3 4.37 98.57 0.07 98.59 4.85 <0.001

Table 5.6: Added value NPV improvement CCPSPDC.

which all alternatives found a feasible solution are taken into account. The GA is shown

to perform best (p < 0.001) for all three models, although it can be observed that the

difference between the three alternatives is very small for model 3.

TS GA SS
%AvDev %C %AvDev %C %AvDev %C

Model 1 5.31 92.91 5.00 94.13 5.30 93.08
Model 2 2.19 94.73 1.98 96.12 2.20 95.27
Model 3 0.07 98.09 0.06 98.75 0.07 98.25

Table 5.7: Comparison of metaheuristics CCPSPDC.

Computation times: table 5.8 provides an overview of the average computation

times in seconds (s) for the three models, given the 5,000 schedules stopping criterion.

We distinguish between the average computation time used by the scheduler (AvCTS),

the time used by the metaheuristic (AvCTM), and the total computation time (AvCTT).

The numbers between brackets display the percentage of the total computation used for

the scheduler, metaheuristic and the total procedure respectively. The results in the table

indicate that the majority of the computation time is spent applying the scheduler to

solutions generated by the GA. The average computation times are the highest for model

2 due to the more complex cash flow profiles (section 5.3.1).

CCPSPDC CRCPSPDC
AvCTS AvCTM AvCTT AvCTS AvCTM AvCTT

Model 1 1.04 0.16 1.21 4.78 0.16 4.94
(86.37) (13.63) (100.00) (96.82) (3.18) (100.00)

Model 2 1.41 0.16 1.58 7.87 0.17 8.04
(89.57) (10.43) (100.00) (97.87) (2.13) (100.00)

Model 3 0.66 0.16 0.82 4.45 0.19 4.64
(80.37) (19.63) (100.00) (95.83) (4.17) (100.00)

Table 5.8: Computation times (s).

5.6. COMPUTATIONAL RESULTS 121

5.6.2.3 CRCPSPDC

Capital feasibility improvement: we test the added value of each part of the

capital feasibility improvement, by comparing several options based on the percentage of

C–Feas solutions found (%C–Feas) in table 5.9, with the best option marked in bold. The

alternatives which we consider are the following: C−−: no capital feasibility improvement;

CSD: only the schedule–based moves (S) and the delay of activities with a negative NPV

(D); CND: only the network–based moves (N) on top of D; CFD: the full proposed method

(F) with first the schedule– and then the network–based moves, including the delay of

activities with a negative NPV; CRD: first the network– and then the schedule–based

moves (reverse: R); CF−: the proposed method without the delay of activities with a

negative NPV.

C−− CSD CND CFD CRD CF−
Model 1 43.94 78.86 77.00 80.19 79.31 76.36
Model 2 57.58 86.94 85.80 87.77 87.10 86.16
Model 3 95.22 97.39 97.36 97.42 97.36 97.30

Table 5.9: Added value capital feasibility improvement CRCPSPDC (%C–Feas).

Based on the results in table 5.9, we conclude that the proposed capital feasibility

improvement method, with first the schedule– and then the network–based moves, per-

forms best for all three models. As illustrated in 5.A.1, the schedule–based variant of the

improvement method offers a more efficient way to reduce capital shortages, which leads

to a higher capital feasibility. Hence, the schedule–based delays should be applied first

for all three models. The added value of delaying single activities with a negative NPV

is made clear as well by comparing the %C–Feas values for the CFD and CF− options.

Based on the higher feasibility for CFD, we conclude that the single activity delays have

an added value by allowing more capital shortages to be solved (5.A.2). It can, however,

be observed that for model 3 only small differences can be found between the different

options for the capital feasibility improvement method, but that the method allows for an

improvement nonetheless when compared to C−−.

NPV improvement: the proposed scheduler without any NPV improvement (NPV−)

is compared with the scheduler with the NPV improvement of chapter 2 (Leyman and Van-

houcke, 2015) (NPVL) in table 5.10, based on the GA. Only instances for which a feasible

solution could be found by both NPV− and NPVL, are included in the %AvDev and

%AvDiff calculations in the table. %D is the percentage of deadline feasible solutions

found. Based on the results in the table, we conclude that the NPV improvement method

has a significant, albeit small, added value for all three models. The added value is rela-

122 Chapter 5

tively small due to the rules for capital feasibility improvement delaying sets of activities,

independent of the set’s cumulative NPV. As such, sets of activities with a negative cumu-

lative NPV may already have been delayed, in particular by the Delay until next successor

part of the capital feasibility improvement method of section 5.4.2.2 and by the Delay

negatives step.

NPV− NPVL ∆NPV
%AvDev %C %D %AvDev %C %D %AvDiff p

Model 1 33.59 80.19 98.86 33.56 80.39 99.01 0.08 <0.001
Model 2 31.88 87.77 99.02 31.81 87.13 99.11 0.18 <0.001
Model 3 30.34 97.45 99.02 30.30 97.58 99.09 0.05 <0.001

Table 5.10: Added value NPV improvement CRCPSPDC.

Metaheuristics: in table 5.11 we compare the performance of the three metaheuris-

tics. We also compare with 10,000 random schedules. Only instances for which all al-

ternatives found a feasible solution are taken into account. We conclude that the GA

performs best for all three models (lowest %AvDev and highest %C), with the SS second

best. Additionally, all p–values, based on a pairwise comparison between each of the four

alternatives, are smaller than 0.001, indicating a significant difference. Only the difference

between TS and 10,000 randoms had a slightly bigger p–value of 0.004 for model 1.

TS GA SS 10,000 randoms
%AvDev %C %AvDev %C %AvDev %C %AvDev %C

Model 1 38.02 72.99 33.62 80.39 35.98 74.49 38.02 72.49
Model 2 35.36 79.69 31.49 87.13 33.60 83.11 35.39 80.74
Model 3 33.20 92.26 29.91 97.58 31.69 95.36 33.29 91.79

Table 5.11: Comparison of metaheuristics CRCPSPDC.

The differences in performance between the three metaheuristics (tables 5.7 & 5.11)

can be explained along the following lines:

• The TS is a single solution–based metaheuristic, whereas the GA and SS are population–

based metaheuristics. As a result, there is no interaction between different solutions

in the TS, whereas the GA and SS on the contrary allow for interaction by making

use of a crossover operator, resulting in a better performance for the latter.

• A TS algorithm may be too local and can have issues with respect to diversity as a

result (Gendreau and Potvin, 2010).

• Based on section 5.5, it can be stated that the GA employs an elite set and as a

result requires a higher mutation rate (Reeves, 2010). This way, the GA implicitly

5.6. COMPUTATIONAL RESULTS 123

distinguishes between a high quality set and between a diverse set, similarly to the

SS algorithm. The main difference with the SS is the lack of distance functions to

permit entrance into both sets.

• The use of the elite set in the GA bears resemblances to evolutionary path relinking,

namely the combination of high quality solutions (Resende et al., 2010).

• Based on these final two observations, we can state that the GA contains elements of

both a SS and of a path relinking algorithm, but that the inclusion of these elements

in the GA framework leads to better results than in the SS framework.

To mitigate these issues, and to show the validity of our explanation, we have adjusted

the three metaheuristics in the following way:

• In the TS we implement some form of interaction by applying a one–point crossover.

The generated child is used as new starting solution, whereas the father is the best

results obtained after the previous run of 500 generations, and the mother is a

randomly generated element. Furthermore, for generating a neighboring solution,

the TS now applies a two–activity swap operator repeatedly, in order to increase

diversity. Our tests indicate that a factor 4 is appropriate. The resulting algorithm

is referred to as TS’ in the remainder of this section.

• The GA’ algorithm is more similar to the “standard” GA framework (Reeves, 2010),

and uses a four–tournament selection for both parents instead of the elite selection.

A lower mutation rate of 5% is also used, along with a population size of 90 and only

the best element is retained after each generation. These parameter settings have

been tested and displayed the best results.

• The SS’ algorithm omits the distance function on the diverse set B2 and applies a

two–activity swap with a mutation rate of 10% on all new elements generated with

one parent from the high quality set B1 and one parent from B2. This way, the

diversity is amplified in the SS’ algorithm in comparison to the SS algorithm. In

doing so, we introduce several elements more typical for a GA in the SS framework.

All additional tests with respect to the TS’, GA’ and SS’ algorithms have been run

for the CRCPSPDC with model 2, since this model can be seen as a middle ground in

the general model of section 5.3. A summary of the results is displayed in table 5.12,

which shows the differences between the six metaheuristics based on %AvDev, the average

project NPV of the feasible instances found by all alternatives (AvNPV), and %C. We

can conclude that:

124 Chapter 5

• The TS’ and SS’ have a better performance than the TS and SS respectively, which

validates our claims with respect to the shortcomings in the TS and SS frameworks

for the problem under consideration.

• The results of the GA’ are worse than those of the GA, which highlights the added

value of including some SS and path relinking concepts in the GA.

• GA’ still obtains better results than the improved SS’, which shows that the GA

framework allows for a higher performance than the SS framework on the CRCP-

SPDC. In chapter 2 (Leyman and Vanhoucke, 2015), similar results were obtained

when comparing the GA and a more “standard” GA implementation with the SS of

Vanhoucke (2010) for the RCPSPDC. It can furthermore be stated that a GA typ-

ically employs randomization, whereas a SS uses memory–based strategies (Mart́ı

et al., 2006), which shows that randomization is more important given the NPV

objective and the proposed schedulers.

TS TS’ GA GA’ SS SS’
%AvDev 35.40 35.24 31.53 32.00 33.64 32.99
AvNPV 3,831.74 3,853.80 4,109.67 4,074.26 3,954.48 3,996.73
%C 79.69 80.59 87.13 87.31 83.11 84.37

Table 5.12: Additional comparison of metaheuristics CRCPSPDC (model 2).

Computation times: an overview of the average computation times for the CR-

PCPSDC is included in the right part of table 5.8. The conclusions are similar as for the

CCPSPDC (left part of the table), and show that the majority of the computation time is

used for the scheduler, and that the procedure is the slowest for model 2. The computation

times for the scheduler are considerably higher for the CRCPSPDC compared to those for

the CCPSPDC, which was to be expected given the more complex scheduler due to the

additional resource limitations.

Convergence: we analyze the convergence of the GA based on the number of gen-

erations until the 5,000 schedules stopping criterion is reached. Figure 5.9 displays the

average project NPV for the three models as the number of generations of the GA in-

creases for the CRCPSPDC. The average number of generations is 54, and an average of

1.85 schedules are used for a single application of the scheduler.

5.6.3 Discussion & comparison

In this section, we discuss the best results for the CCPSPDC (table 5.13) and for the

CRCPSPDC (table 5.14). We compare the results for the CCPSPDC with a composite

5.6. COMPUTATIONAL RESULTS 125

1,500%

2,000%

2,500%

3,000%

3,500%

4,000%

4,500%

1% 6% 11% 16% 21% 26% 31% 36% 41% 46% 51%

Av
er
ag
e'
N
PV

'

Number'of'genera1ons'GA'

M1%

M2%

M3%

Figure 5.9: Convergence GA.

heuristic, which is based on two algorithms from literature. The composite algorithm

splits the problem into two parts, namely optimize the project NPV and reduce capital

shortages, similar to Smith-Daniels et al. (1996). The proposed heuristic employs the

best method of Smith-Daniels et al. (1996) to make decisions with respect to capital, but

uses the exact recursive method of Vanhoucke et al. (2001b) for the max–NPV problem.

In the remainder of this section, the composite procedure is abbreviated as SD–V, or

Smith–Daniels–Vanhoucke.

From the results in tables 5.13 and 5.14 the following general conclusions can be drawn:

• The GA outperforms the SD–V algorithm for all three models (table 5.13). The

p–values of the comparison between both algorithms are smaller than 0.001 for the

three models.

• Capital feasibility is the hardest to obtain with a small or a large number of activities.

For a low number of activities, i.e. 25, only a small number of possible sequences

exist in which the activities can be scheduled. This implies that capital shortages

are harder to solve, because fewer activities can be moved to reduce shortages. For

a high number of activities, i.e. 100, a great many ways exist in which activities

can be delayed. Hence, it is more difficult to find the best delays to solve capital

shortages.

• The impact of the distribution of the cash inflows over activities (CFD) has a larger

impact on the project NPV and on capital feasibility, compared to the profit of the

126 Chapter 5

project (PMP).

• The inclusion of renewable resources makes the problem harder to solve (higher

%AvDev and lower %C when comparing tables 5.13 and 5.14). In the CRCPSPDC

(table 5.14), imposing a stronger RR restriction (a higher RU and RC value) makes

it easier to construct a C–Feas schedule, but at the cost of a lower project NPV.

• The computation times in table 5.14 give an indication of the drivers of algorithm

complexity in terms of the data parameters. The number of activities and the re-

source usage have the largest impact.

5
.6

.
C

O
M

P
U

T
A

T
IO

N
A

L
R

E
S

U
L
T

S
127

Model 1 Model 2 Model 3
GA SD–V GA SD–V GA SD–V

%AvDev %C %AvDev %C %AvDev %C %AvDev %C %AvDev %C %AvDev %C
Act 25 3.50 87.84 5.51 79.62 1.41 92.25 2.39 88.19 0.06 98.33 0.10 97.67

50 3.84 97.13 6.33 93.13 1.43 98.80 2.49 96.98 0.03 99.99 0.01 99.94
75 4.86 97.85 7.86 94.28 1.85 99.09 3.15 96.93 0.05 99.96 0.06 99.67
100 6.01 95.07 9.65 89.76 2.58 96.08 4.33 92.16 0.08 96.27 0.14 95.45

OS 0.25 4.49 98.61 6.75 95.94 1.91 99.78 2.88 98.96 0.04 100.00 0.01 99.98
0.50 4.95 95.70 8.13 88.92 1.92 98.06 3.38 93.74 0.06 99.54 0.09 99.26
0.75 4.29 89.10 7.32 82.75 1.60 91.82 3.01 87.99 0.07 96.37 0.15 95.30

D–Incr 5 4.54 92.87 7.33 86.41 1.79 95.95 3.04 92.15 0.05 98.55 0.08 98.14
10 4.56 94.24 7.35 88.80 1.81 96.51 3.08 93.46 0.05 98.65 0.08 98.19
15 4.59 95.12 7.41 90.25 1.83 96.79 3.11 94.19 0.06 98.68 0.08 98.19
20 4.62 95.66 7.46 91.35 1.84 96.97 3.13 94.47 0.06 98.66 0.08 98.21

PMP 0.33 4.98 90.22 8.42 82.48 2.20 93.12 3.91 87.58 0.12 96.12 0.18 95.14
0.50 4.80 95.57 7.64 90.61 1.88 97.52 3.15 95.05 0.04 99.79 0.06 99.43
0.67 4.02 97.64 6.24 94.51 1.42 99.02 2.30 98.06 0.01 100.00 0.00 99.98

CFD 0.33 8.89 85.44 14.98 74.42 3.73 90.05 6.74 82.33 0.10 95.91 0.24 94.55
0.50 3.32 98.48 5.24 95.75 1.14 99.72 1.90 98.95 0.02 100.00 0.00 100.00
0.67 2.53 99.50 3.71 97.43 0.91 99.90 1.25 99.41 0.05 100.00 0.00 100.00

CC 0.25 2.51 98.78 4.60 96.34 0.64 99.41 1.33 98.47 0.04 99.49 0.02 99.21
0.50 5.06 94.18 8.04 88.14 1.96 96.50 3.41 93.01 0.05 98.58 0.09 98.27
0.75 6.47 90.46 9.92 83.11 2.97 93.75 4.70 89.22 0.07 97.84 0.13 97.06

Overall 4.58 94.47 7.39 89.20 1.82 96.55 3.09 93.56 0.06 98.64 0.08 98.18

Table 5.13: Comparison with literature CCPSPDC.

1
28

C
h

ap
ter

5

Model 1 Model 2 Model 3
%AvDev %C AvCT (s) %AvDev %C AvCT (s) %AvDev %C AvCT (s)

Act 25 16.89 73.21 0.55 15.37 83.07 0.71 14.45 97.67 0.49
50 28.85 83.80 2.67 27.13 91.52 4.00 25.93 99.52 2.20
75 38.58 83.20 6.04 36.59 91.18 9.11 35.71 98.72 5.02
100 47.45 78.81 12.34 45.59 85.96 18.92 44.61 94.35 10.15

OS 0.25 32.71 85.64 6.78 31.17 93.60 10.88 30.53 98.84 5.52
0.50 35.06 79.00 5.25 32.89 87.84 7.87 31.32 98.16 4.34
0.75 31.92 74.62 4.17 29.80 82.36 5.80 28.23 95.70 3.53

RU 2 26.79 72.90 2.02 24.47 84.80 2.97 23.19 97.53 1.87
4 38.66 86.61 8.78 37.69 91.06 13.40 36.90 97.60 7.05

RC 0.25 32.16 76.37 4.79 29.84 85.95 7.17 28.22 97.24 4.02
0.50 33.61 80.64 5.52 31.84 88.47 8.37 30.71 97.67 4.50
0.75 33.87 82.26 5.90 32.22 89.37 9.01 31.19 97.79 4.88

D–Incr 5 36.25 65.41 3.97 33.03 77.54 5.98 30.79 94.24 3.44
10 33.51 80.24 5.06 31.44 89.38 7.59 30.09 98.55 4.30
15 32.32 85.31 5.93 30.71 91.78 8.79 29.75 98.71 4.72
20 31.64 88.05 6.65 30.37 93.02 10.37 29.60 98.76 5.39

PMP 0.33 32.47 74.59 6.63 30.57 82.50 10.54 29.64 94.86 5.58
0.50 33.59 80.95 5.41 31.65 89.15 8.30 30.19 98.72 4.35
0.67 33.58 83.73 4.16 31.67 92.15 5.71 30.29 99.12 3.46

CFD 0.33 49.21 64.10 4.82 45.59 73.26 7.63 40.33 94.42 4.01
0.50 31.19 85.86 4.71 29.34 94.34 6.44 28.47 99.12 3.84
0.67 23.74 89.29 6.67 22.39 96.19 10.48 21.83 99.16 5.54

CC 0.25 30.88 93.54 5.54 30.15 96.87 8.26 30.13 98.54 4.58
0.50 33.82 77.82 5.50 31.35 87.51 8.46 29.98 97.54 4.54
0.75 35.82 67.90 5.16 32.70 79.41 7.83 30.03 96.62 4.27

Overall 33.24 79.75 5.40 31.32 87.93 8.18 30.05 97.57 4.46

Table 5.14: Best results CRCPSPDC.

5.6. COMPUTATIONAL RESULTS 129

5.6.4 Managerial insights

In order to evaluate the different trade–offs for the CRCPSPDC (section 5.3.2), we

generate additional project data with the network generator RanGen (Demeulemeester

et al., 2003). The focus lies on testing the impact of the OS, RC and CC values on the

project NPV and capital feasibility in more detail. An overview of the data parameters

is given in table 5.15, with a total of 32,805 instances (= 5 instances x 9 OS levels x 9

RC levels x 9 CC levels x 3 PMP levels x 3 CFD levels), applicable to each of the three

models. The cash flow data, with three levels for the PMP and CFD factors, is generated

similarly as done in section 5.6.2. The additional instances generated are available online

at www.projectmanagement.ugent.be, along with the cash flow data and reported results

for each instance.

Parameter Values
Number of activities (Act) 30
Resourse usage (RU) 4
Deadline increase (D–Incr) 10
Profit margin percentage (PMP) 0.33, 0.50 or 0.67
Cash flow distribution (CFD) 0.33, 0.50 or 0.67
Order strength (OS) 0.10 to 0.90 in steps of 0.10
Resource constrainedness (RC) 0.10 to 0.90 in steps of 0.10
Capital constrainedness (CC) 0.10 to 0.90 in steps of 0.10

Table 5.15: Parameter settings insights.

We have applied an ANOVA to determine the effect of OS, RC and CC on the average

project NPV (AvNPV) for the three models. All single–factor and two–factor cross effects

have a p–value lower than 0.001, except for the combination of RC and CC for all models

(p–values of nearly 1) and the cross effect of OS and CC for model 3 (p–value of 0.264).

The three–factor term (OS*RC *CC) obtained a p–value of 1 for the three models and is

not considered. Based on significant p–values for the single– and most of the two–factor

effects, it is worthwhile to investigate the impact of the factors OS, RC and CC further.

We continue the remainder of the analysis with model 2, since this model is a middle

ground in the general model of section 5.3. Furthermore, aside from the aforementioned

difference for model 3, the same conclusions apply to all three models, and by extension

to the general model. We analyze the impact of the network structure (OS), the resource

availability (RC), and the capital availability (CC) on the project NPV (AvNPV) and

on the capital feasibility (%C). The latter can be seen as a measure for the required

capital management by the contractor, since a higher (lower) feasibility implies that it

is easier (harder) to schedule the project given the available capital. Typically, a higher

130 Chapter 5

NPV and higher capital feasibility are preferable for the contractor, because the project

then has a greater contribution to the company profits and requires a smaller focus on the

optimization of the available capital.

Figure 5.10 displays the single–factor effects of OS, RC and CC on %C and AvNPV,

whereas figure 5.11 shows the two–factor cross effects. The following guidelines can be

stated for the contractor:

• Network

– The contractor can on average increase the project NPV and reduce the need

for capital management by making a project more parallel (lower OS value).

This way, cash inflows can be received earlier, resulting in a higher NPV and a

lower initial capital requirement (figure 5.10).

– In more parallel projects the effect of the renewable resource availability plays a

greater role. More capital management is on average required in case the project

has a high resource availability (lower RC value), whereas the contractor should

pay more attention to the project NPV if fewer resource units can be used (top

two graphs of figure 5.11).

– In more serial projects with a relatively high initial capital (low CC value)

the contractor should focus on properly optimizing the project NPV, whereas

decreases in capital availability warrant on average a greater focus on capital

management (middle two graphs of figure 5.11).

• Resource availability

– A high resource availability reflects favorably on the project NPV but requires

more capital management, whereas the opposite holds true for a low resource

availability (figure 5.10).

– Capital management is particularly crucial in case of a low initial capital and

a large availability of renewable resources (bottom two graphs of figure 5.11).

• Capital availability

– Lowering the initial capital mainly results in a higher degree of capital manage-

ment, but has on average little effect on the project NPV (figure 5.10).

– Increasing the initial capital decreases the project NPV on average, since less

profitable projects can then be executed. The major question for the contractor

then becomes whether the resulting project NPV is worth the required capital

investment (figure 5.10).

5.7. CONCLUSIONS & FUTURE RESEARCH 131

70%$

75%$

80%$

85%$

90%$

95%$

100%$

105%$

0.1$ 0.2$ 0.3$ 0.4$ 0.5$ 0.6$ 0.7$ 0.8$ 0.9$

%
C#

Factor#value#

OS$

RC$

CC$

2000#

2100#

2200#

2300#

2400#

2500#

2600#

2700#

2800#

2900#

0.1# 0.2# 0.3# 0.4# 0.5# 0.6# 0.7# 0.8# 0.9#

Av
N
PV

&

Factor&value&

OS#

RC#

CC#

Figure 5.10: Impact of single–factor effects OS, RC and CC on %C and AvNPV (model 2).

5.7 Conclusions & future research

In this chapter, we have presented new scheduling techniques for the capital–constrained

project scheduling problem with discounted cash flows (CCPSPDC) and for the capital–

and resource–constrained project scheduling problem with discounted cash flows (CRCP-

SPDC). The objective is to schedule the project activities to maximize the project net

present value (NPV). Capital constraints impose that the sum of the cash inflows received

and cash outflows paid, given an initial capital, cannot be negative at any point in time

during the project duration. We apply three cash flow models, as part of a general model

for the distribution of cash outflows, to both problems.

In order to solve capital shortages, activities can be delayed together with the set of

succeeding activities. The distinction is made between two types of delays to reduce the

capital shortage. The first type delays sets of activities such that cash outflows leading to

a capital shortage are compensated by cash inflows of other activities. The second type

delays activities until a succeeding activity is reached, in which case later iterations of the

procedure allow for additional delays. Once the capital shortages have been solved, activity

move rules are applied, which improve the project NPV by delaying sets of activities with

a negative cumulative NPV. The proposed scheduling techniques have been implemented

as part of three metaheuristics from literature, along with two penalty functions, one to

improve deadline feasibility and another to improve capital feasibility.

Extensive computational experiments have shown the added value of the delay rules

for both the capital feasibility improvement and for the NPV improvement. The best

results for the CCPSPDC have been favorably compared with a composite method based

on literature.

As a first future research avenue, the proposed models and scheduling techniques can

be applied in a multi–mode context. In doing so, the contractor can decide between

132 Chapter 5

Figure 5.11: Impact of two–factor cross effects OS, RC and CC on %C and AvNPV (model 2).

different modes for each activity, and this allows for the inclusion of different applications

per activity of the general model for cash outflows.

5.A. APPENDIX 133

Second, whereas the focus of this manuscript has been on the cash outflows and capital

restrictions, it may be interesting to extend these models to include different scenarios for

the cash inflows as well (table 5.1).

Finally, including a client–contractor negotiation process would allow for the deter-

mination of the timing and size of the cash inflows based on interactions between both

parties. Furthermore, the timing and size of cash outflows can be linked to the negotiation

with subcontractors. This way, the entire interaction process between the three parties

(i.e. client, contractor and subcontractor) can be integrated and optimized.

5.A Appendix

In this appendix, we illustrate the capital feasibility improvement method of section

5.4.2.2 with two examples. The first example shows the network– and schedule–based

variants of the improvement method, whereas the second example details the added value

of delaying activities with a negative NPV for the capital feasibility.

5.A.1 Example 1

Example data: the example of figure 5.12 is used to illustrate the concepts of the

capital feasibility improvement method for model 3. We make use of a single RR with

availability of 5, assume a deadline of 19, and an initial capital C0 of 20. The discount rate

is set to 1%. The initial schedule of the example is constructed based on the PL (1, 3, 5,

2, 4, 6, 7, 10, 9, 8, 11, 12, 13). Activity 4 is delayed by 1 time unit due to its negative net

cash flow. The resulting initial schedule can be found on the right in figure 5.12, with the

time on the horizontal axis, the RR level a1 on the left vertical axis and the capital Ct at

time t on the right vertical axis. The bold line indicates the available capital during the

project duration, with decreases and increases corresponding with cash out– and inflows

respectively. The capital at time 0 equals the initial capital of 20, whereas the capital at

each time t is equal to the sum of C0 and the net cash flows of all activities completed

no later than time t. E.g. C5 = 20 (C0) - 15 (c2,net) - 25 (c4,net) + 5 (c5,net) = -15. The

capital at time 19 is the sum of C0 and the cash flows of all activities and equals 60. Based

on this schedule it is clear that a capital shortage exists of 15 at times 5 and 6, which leads

to an ECR value equal to 30.

Network–based moves: the network–based capital feasibility improvement is first

applied. The Check time t part leads to an earlySet consisting of activities 4 and 2 at time

5. Activity 4 occurs last in the PL, so this activity is used first for the Seti calculations

part. The corresponding set set4 consists of activities 4 and 7. The earliest cash inflow

134 Chapter 5

1

i
ri1, ci,net

0

0, 0

di

4

13

0

0, 0

5

2

3

7

6 9

10

118

12

4

2, -25

9

1, 5

2

1, -15

5

1, 5

6

1, 20

8

1, 5

1

2

3, 30

2

4, -20

2

1

2, 10

4, 5

2, 20

a1

t
0

1

2

0

3

4

1 2 3 4 6 8 10 12 14 16 185 7 9 11 13 15 17 19

2(-)

3(+)

NPV=34.80 Ct
60

50

40

30

20

10

0

-10

-20

5

4(-)

5(+)

6(+) 9(+)

12
(+)

7(+)

10(+)

8(-)

11
(+)

ECR=30

Figure 5.12: Data and initial schedule example 1.

to occur after f4 = 5 is that of activity 6 at time 8. As such, ∆4,next equals 3 (= 8 -

5). ∆4,max is determined by the successors not in set4 of both activities 4 and 7. Only

activity 10 meets these criteria and with its finish time of 11 this leads to ∆4,max being

equal to 2. Since ∆4,max is smaller than ∆4,next, the Delay until next successor part of the

capital feasibility improvement method is used next. The RR availability is evaluated for

a delay of ∆4,max by set4, which is feasible. Hence, both activities 4 and 7 are delayed by

the Schedule seti part with ∆4,max time units, and the capital and RR levels are updated.

Finally, the Schedule seti part checks whether any activities with a negative NPV can be

delayed, but this is not the case.

The procedure returns to the Check time t part and once again evaluates the capital

feasibility at time 5, based on the left schedule of figure 5.13. Since the capital level at time

5 is positive t is incremented to 6, at which the available capital is also non–negative. The

procedure continues to time 7, which has a negative capital so earlySet is constructed and

consists of activities 4 and 2. Seti calculations is applied for activity 4 and set4 consists

of activities 4, 7 and 10. ∆4,next is calculated based on activity 6 and equals 1. ∆4,max

equals 8 since the only successor not in set4 of any of the three activities is the end dummy.

Delay until next positive is applied but the method cannot find any RR feasible delay for

set4. As such the capital feasibility improvement method backtracks to earlySet in the

Check time t part. Seti calculations is done for activity 2 which results in set2 consisting

of activities 2, 6, 9 and 12. ∆2,next is determined based on activity 6 and equals 6, whereas

∆2,max is 2 due to the project deadline. The Delay until next successor part is applied,

but no feasible delays can be found. The procedure returns to earlySet, but all activities

in the set have been considered, so the capital feasibility improvement method terminates

since the capital shortage at time 7 could not be solved. The resulting schedule after the

network–based moves of the capital feasibility improvement method have been applied is

shown in the left schedule of figure 5.13. The capital shortage has both been reduced (ECR

5.A. APPENDIX 135

equal to 15 instead of 30) and moved later in time, but the project NPV has decreased

due to the delay of a set of activities with a positive cumulative NPV (activities 4 and 7).

Schedule–based moves: the schedule–based variant of the capital feasibility im-

provement method is started based on the left schedule of figure 5.13. For the capital

shortage at time 7, earlySet consists of activities 4 and 2. Seti calculations is first applied

for activity 4 since this activity appears after activity 2 in the PL. The set set4 holds

activities 4, 7, 10, 8 and 11, the last two of which would never have been included in the

network–based version of the improvement method. ∆4,next equals 1 based on the positive

cash flow of activity 6 and ∆4,max is 5 because of the end dummy activity 13 as successor of

activity 11. Since ∆4,next is smaller than ∆4,max, the procedure continues with the Delay

until next positive part. A delay of 1 time unit is RR feasible for set4, so the Schedule

seti part is used next. The activity finish times for all activities in set4 are updated, as

are the capital and RR levels. No activities with a negative NPV can be delayed as part

of Schedule seti. The procedure returns to part Check time t, but no capital shortages

remain so a C–Feas schedule has been found and the method terminates. The schedule

after both variants of the capital feasibility improvement method have been applied can

be found in the right schedule of figure 5.13.

a1

0

1

2

0

3

4

1 2 3 4 6 8 10 12 14 16 185 7 9 11 13 15 17 19

2(-)

3(+)

NPV=34.72
5

4(-)

5(+)

6(+) 9(+)

12
(+)

7(+)

10(+)

8(-)

11
(+)

t

Ct
60

50

40

30

20

10

0

-10

-20

ECR=15

a1

0

1

2

0

3

4

1 2 3 4 6 8 10 12 14 16 185 7 9 11 13 15 17 19

2(-)

3(+)

NPV=34.59
5

4(-)

5(+)

6(+) 9(+)

12
(+)

7(+)

10(+)

8(-)

11
(+)

t

Ct
60

50

40

30

20

10

0

-10

-20

Figure 5.13: Schedules example 1 after network– & schedule–based capital feasibility improve-
ment.

Solution representation: recall that the PL of the schedule in figure 5.12 was (1, 3,

5, 2, 4, 6, 7, 10, 9, 8, 11, 12, 13). Based on the right schedule of figure 5.13, the updated

list, or TO, becomes (1, 2, 5, 6, 4, 3, 7, 10, 8, 11, 9, 12, 13), with the tie between activities

4 and 6 broken randomly in favor of activity 6.

Alternative: assume that the schedule–based variant of the capital feasibility im-

provement is first applied for the same example. We again start from the schedule in

figure 5.12. Activities 4 and 7 are first delayed by 2 time units in the same manner as

done before. The available capital at time 7 is, however, negative and earlySet consists

of activities 4 and 2. Unlike for the network–based improvement, a delay of activity 4,

along with activities 7, 8, 10 and 11 is now possible. This delay of 1 time unit would not

136 Chapter 5

have been considered in the network–based step. The resulting schedule is C–Feas and

is displayed in figure 5.14. It is important to consider that the schedule–based moves are

more efficient for the example, since fewer moves are required to obtain a C–Feas schedule.

Our results of section 5.6.2 confirm that it is indeed best to first apply the schedule–based

variant of the capital feasibility improvement method.

a1

t
0

1

2

0

3

4

1 2 3 4 6 8 10 12 14 16 185 7 9 11 13 15 17 19

2(-)

3(+)

NPV=34.46 Ct
60

50

40

30

20

10

0

-10

-20

5

4(-)
5(+)

6(+) 9(+)

12
(+)

7(+)
10(+)

8(-)

11
(+)

Figure 5.14: Alternative schedule example 1.

5.A.2 Example 2

In step 4 of section 5.4.2.1 and the Schedule seti part of section 5.4.2.2, we stressed

the need for delaying single activities with a negative NPV as much as possible given both

the precedence relations and the RR constraints. Let us illustrate the reasoning behind

these delays with the simple example for model 3 shown in figure 5.15. The project has a

RR availability of 4, a deadline of 14 and an initial capital C0 of 10. The PL used is (1,

3, 2, 4, 5, 6), and the discount rate is 1%. The top right schedule in figure 5.15 shows the

initial schedule of the example with the omission of step 4 (i.e. the delaying of activities

with a negative NPV). We observe a capital shortage of 5 at times 5 and 6.

We apply the capital feasibility improvement method and start with the schedule–based

variant. We aim to solve the capital conflict at time 5 and can use both activities 2 and 3.

set2 only contains activity 2 but cannot be scheduled later than time 5, so a delay of set2

cannot solve the capital shortage. set3 on the contrary contains activities 3, 4, 5 and 6 and

can be delayed to time 6 beyond the conflict at time 5. Additional delays until time 8 are,

however, required for the set, due to capital shortages. Delaying activity 2 cannot solve

any of these conflicts, so no change with respect to activity 2 occurs. No further delays

are possible because of the project deadline of 14. Applying the network–based variant of

the capital feasibility improvement method can also not solve the capital conflicts. The

resulting final infeasible schedule is shown on the bottom left of figure 5.15.

5.A. APPENDIX 137

If activity 2 is on the contrary delayed to time 5, set2 contains both activities 2 and

4 at time 5. Both activities are delayed by 2 time units (∆2,next = 4, ∆2,max = 2) and

the capital shortage at time 5 is solved. Now a shortage at time 7 occurs but this can be

solved by delaying set2 (= {2, 4, 6}) by 2 time units. The resulting and optimal schedule

is C–Feas and can be found on the bottom right of figure 5.15.

Based on this example, we can conclude that the delays of single activities with a

negative NPV are indeed necessary since otherwise we may not be able to solve some

capital shortages, as is the case in the bottom left schedule of figure 5.15. These conclusions

are furthermore verified in our computational experiments in section ??.

1

3

i
ri1, ci,net

1
2

5

4

3, 5

di

2 2

4 4

2, -15

1, -5 2, 20

2, 10

6

2

2, 10

a1

t
0

1

2

0

3

4

1 2 3 4 6 8 10 12 145 7 9 11 13

1
(+)

3(-)

Ct
40

30

20

10

0

-10

2(-)

5(+)

4(+)

6(+)

ECR=10

Initial

a1

t
0

1

2

0

3

4

1 2 3 4 6 8 10 12 145 7 9 11 13

1
(+)

3(-)

Ct
40

30

20

10

0

-10

2(-) 5(+)

4(+)

6(+)

ECR=10

Infeasible
a1

t
0

1

2

0

3

4

1 2 3 4 6 8 10 12 145 7 9 11 13

1
(+)

3(-)

Ct
40

30

20

10

0

-10

2(-)

5(+) 4(+) 6(+)

Optimal

Figure 5.15: Data and schedules example 2.

138 Chapter 5

6
The resource availability cost problem with net

present value objective

The resource availability cost problem (RACP) is a variant of the well–known resource–

constrained project scheduling problem (RCPSP). Whereas the latter minimizes project

makespan given precedence and resource restrictions, the former minimizes total project

cost subject to precedence and deadline constraints. We extend the RACP by including

cash flows, and optimize the project net present value (NPV). This NPV consists of the

activity cash flows discounted to the activity finish times, and the costs of the resource

usages. The RACPDC objective allows for a trade–off between the resource usage costs

on the one hand and the NPV of individual project activities on the other hand.

In this chapter, we propose to solve the RACP with discounted cash flows (RACPDC)

by employing a genetic algorithm and specialized local searches. The added value of the

local searches lies in their ability to translate problem characteristics into a good schedule,

given the scheduling objective. The local searches are tested in detail for both the RACP

and the RACPDC.

139

140 Chapter 6

6.1 Introduction

In this chapter, the goal is to develop a metaheuristic solution procedure for the re-

source availability cost problem with discounted cash flows (RACPDC), and with the

payments at activities’ completion times (PAC) model. The RACPDC is an extension of

the resource availability cost problem/resource investment problem (RACP/RIP) first pro-

posed by Möhring (1984). This problem minimizes the total resource usage cost, subject

to precedence constraints and a project deadline. This is in contrast with the more exten-

sively studied resource–constrained project scheduling problem (RCPSP), which minimizes

the project duration subject to precedence and renewable resource restrictions.

The RACPDC is a practically relevant problem since contractors, or the party re-

sponsible for executing a project, only receive a project deadline aside from the project

characteristics, i.e. the network structure and required resources per activity. The con-

tractors, however, often have to decide themselves upon the resource capacity assigned

to a project. Form this point of view, it makes sense to integrate the decision of the

required resource levels and associated costs with a net present value (NPV) objective

based on activity cash flows. This way, the overall NPV of the project, including the

resource costs, can be evaluated. Additionally, this allows the contractor to consider the

trade–off between the employment of additional resource units and maximizing the NPV

of the project activities. The resource usage costs are assumed fixed in terms of timing,

namely at the start of the project, but their size can be linked to the project schedule,

specifically to the amount of resources required. We extend existing work from chapter

2 in terms of scheduling technique, but also analyze the effect of different solution

representations.

Cash in

Cash out

Timing Size Timing & size

Payments at activities’
completion times (PAC)

Progress payments
(PP)

Payments at event
occurences (PEO)

Progress based payment
pattern (PBPP)

Expense based payment
pattern (PBPP)

Payments at activities’
completion times (PAC)

General capital modelResource usage costs

Figure 6.1: Overview of the research on project scheduling with NPV optimization in chapter 6.

For a recent overview on the RACP literature, we refer to Van Peteghem and Vanhoucke

(2013). Since 2013, two more papers have been published on the RACP. The paper of

6.2. PROBLEM DEFINITION 141

Qi et al. (2015) proposes a schedule generation scheme for the multi–mode RACP. The

authors employ a metaheuristic which is a combination of a particle swarm optimization

algorithm and of a scatter search algorithm, and their results are validated on a test

set from literature. Shahsavar et al. (2015) use a multi–objective approach to minimize

the resource cost, minimize the variability in resource usage, and minimize the project

duration. The Pareto–optimal frontier is approximated by making use of three genetic

algorithm variations.

To the best of our knowledge no papers exist in literature which discuss the RACPDC.

Four papers, however, exist which discuss an extension to the resource renting problem

(RRP) (Nübel, 2001). The RRP differs from the RACP based on the resource availability

throughout the project. Whereas in the RACP it is assumed that resource levels employed

are set for the entire project runtime (Demeulemeester, 1995; Möhring, 1984), in the RRP

time–dependent renting costs and time–independent procurement costs are included in-

stead. The recent papers of Najafi and Niaki (2006), Najafi et al. (2009), Najafi and Azimi

(2009) and Shahsavar et al. (2010) consider NPV optimization in a RRP context with gen-

eralized precedence relations, but incorrectly call the problem the RACP with discounted

cash flows. Based on the problem definitions of Möhring (1984), Demeulemeester (1995)

and Nübel (2001) we, however, argue that the problem discussed in the papers should

be called the resource renting problem with discounted cash flows subject to generalized

precedence relations (RRPDC–GPR) (De Reyck and Herroelen, 1998).

The remainder of this chapter is organized as follows. Section 6.2 describes the problem

definition of the RACPDC, whereas in section 6.3 we discuss our proposed metaheuristic

approach. In section 6.4 we report detailed computational results, compare with existing

work, and highlight insights. We finish with a conclusion in section 6.5.

6.2 Problem definition

A directed graph or network G(N,A) can be used to represent a project, with N the

nodes or project activities, and A the arcs or precedence relations between the activities.

We use the activity–on–the–node (AoN) representation and employ a time–lag of zero for

the precedence relations. Each activity i (i ∈ N = {1, . . . n}) has a duration di, a resource

demand rik for each renewable resource type k (k ∈ R = {1, . . . , |R|}), a cash outflow ci,out

(< 0) and a cash inflow ci,in (> 0). A start dummy 0 and end dummy activity n + 1 are

also included, and a project deadline is set equal to δn+1. The activity finish times fi are

used as decision variables along with the availability ak of each resource k. Each resource

type k furthermore has an associated cost ck (> 0). Mathematically, the problem can be

conceptually formulated as follows:

142 Chapter 6

Maximize

n∑
i=1

(ci,in + ci,out) · e−αfi −
|R|∑
k=1

ck · ak (6.1)

Subject to:

fi ≤ fj − dj , ∀(i, j) ∈ A (6.2)∑
i∈S(t)

rik ≤ ak, ∀k ∈ R, t = 1, . . . , δn+1 (6.3)

fn+1 ≤ δn+1 (6.4)

fi ∈ int+, ∀i ∈ N (6.5)

ak ∈ int+, ∀k ∈ R (6.6)

In the model, the costs of the resources are assumed to occur at the project start time

in the objective function (function (6.1)), hence no discount factor is applied. The cash

in– and outflows are both discounted to the activity finish times based on a discount rate

α. The precedence relations are imposed in constraints (6.2). The resource restrictions are

included in constraints (6.3), with S(t) the set of activities in progress at time t. Constraint

(6.4) states the project deadline, and the integrality constraints of the decision variables

are modelled in (6.5) and (6.6).

6.3 A genetic algorithm for the RACPDC

In this section, we discuss our proposed genetic algorithm for the RACPDC. We employ

a metaheuristic to solve the RACPDC due to three reasons:

1. The RACP (with cost minimization objective instead of NPV maximization) is al-

ready difficult to solve. Only the exact procedures of Demeulemeester (1995) and of

Rodrigues and Yamashita (2010) exist. The latter improve the results of the former,

but state that for projects with 45 activities their procedure could only solve 30%

of the test instances. Hence, we believe that a metaheuristic solution procedure is

required to solve larger instances of e.g. 60, 90 and 120 activities.

2. The RACPDC is a more complex variant of the RACP due to the non–linear NPV

objective. In recent years, metaheuristic approaches have been shown to perform well

in solving NPV maximization problems (Vanhoucke, 2010), in particular the genetic

algorithms of chapters 2 and 3 (Leyman and Vanhoucke, 2015, 2016b) obtained

excellent results.

3. A genetic algorithm has already been successfully applied to several problems from

6.3. A GENETIC ALGORITHM FOR THE RACPDC 143

literature. The decomposition–based genetic algorithm of Debels and Vanhoucke

(2007) currently holds the best results for the resource–constrained project schedul-

ing problem (RCPSP), whereas the genetic algorithm of chapter 2 (Leyman and

Vanhoucke, 2015) obtained the currently best known solutions for the RCPSP with

discounted cash flows (RCPSPDC), and the procedure of chapter 3 (Leyman and

Vanhoucke, 2016b) solved the multi–mode RCPSPDC.

We start with preprocessing to determine lower and upper bounds for the required

resource levels. We subsequently go into detail about the solution representation and the

proposed decoding procedure. Finally, we discuss the different GA operators.

6.3.1 Preprocessing

The preprocessing method of this section determines both a minimum availability

amink and a maximum availability amaxk for each resource k. The goal of the method is to

narrow down the possible feasible values of each resource’s availability, without omitting

the optimal resource levels.

Minimum resource availability: we employ the same calculations as Van Peteghem

and Vanhoucke (2013) for each resource k:

amink = max

(∑n
i=1 rik · di
δn+1

,max(rik|i ∈ N)

)
(6.7)

This minimum availability is subsequently tightened by applying the critical sequence

based lower bound of Stinson et al. (1978). The availability is tightened until the lower

bound is smaller than or equal to the project deadline.

Maximum resource availability: the cumulative successors and cumulative prede-

cessors are determined for each activity i. We then calculate the total resource usage of

type k for each activity i and all activities not included in the set of cumulative successors

(CSi) or the set of cumulative predecessors (CPi) of activity i. The maximum of these

requirements over all activities is used as upper bound for resource type k:

amaxk = max

 n∑
j=1

(rjk|j /∈ CSi, j /∈ PSi)|i ∈ N

 (6.8)

This maximum availability allows for a tighter bound than
∑n

i=1 rik, without neglecting

any precedence feasible solutions. This way, the optimal solution, given all resources, is

not omitted.

144 Chapter 6

6.3.2 Solution representation

In terms of solution representation, we distinguish between a topological ordering to

determine the order in which the activities are scheduled by the decoding procedure of

section 6.3.3, and a resource capacity list which holds the resource availabilities.

Topological ordering (TO): this representation was proposed by Debels et al. (2006)

for the RCPSP and holds a priority value for each activity based on the random key (RK)

representation. The RK has a size of n+2 (to include both dummies) and the value at

position i contains the priority value for activity i. The TO improves the RK representation

by avoiding scaling issues, ensuring precedence feasibility, neglecting timing anomalies and

solving issues when several activities have the same finish time (Debels et al., 2006).

Resource capacity list (RCL): this list with size |R| holds the resource capacity of

each resource r. The values ak in the list lie within the interval [amink ; amaxk].

Priority value γ: additionally, we include a binary variable γ, which determines the

order in which two parts of the decoding procedure of section 6.3.3 are applied.

6.3.3 Decoding procedure

In this section, we discuss the proposed decoding procedure for the RACPDC. The

algorithm is applied for each element (i.e. a TO, RCL and γ) of the metaheuristic’s

population (section 6.3.4). An overview of the decoding procedure is provided in figure

6.2. In the following subsections we go into detail about the different parts of the method.

Serial
SGS

Deadline
feas?

Reduce
duration

Deadline
feas?

Improve
NPV

Use
penalty
function

Reduce
ak ∀k

Start End
Y

Y
N

N

!=1? Reduce
ak ∀k

Improve
NPV

Y

N

Figure 6.2: Flowchart decoding procedure

6.3. A GENETIC ALGORITHM FOR THE RACPDC 145

6.3.3.1 Initial schedule & deadline feasibility

The first step of the decoding procedure is the construction of a deadline feasible

schedule. The serial schedule generation scheme (SGS) (Kelley, 1963) is applied based

on the provided TO and RCL (Serial SGS in figure 6.2). If the resulting schedule has

a project duration larger than the project deadline, the forward–backward improvement

method of Li and Willis (1992) is applied to reduce the project duration (Reduce duration

in figure 6.2). If the schedule is still deadline infeasible, we apply penalty function (6.9)

of chapter 2 (Leyman and Vanhoucke, 2015) (Use penalty function in figure 6.2) and the

decoding procedure terminates.NPV = NPVD−Infeas · Y fn+1−δn+1

1 − Y2 if NPVD−Infeas ≥ 0

NPV =
NPVD−Infeas

Y
fn+1−δn+1
1

− Y2 otherwise
(6.9)

Penalty function (6.9) reduces the project NPV from function (6.1) (NPVD−Infeas)

in order to distinguish the infeasible solutions from feasible ones. The project NPV of

infeasible solutions is reduced in two ways, to ensure that the NPV of an infeasible so-

lution is considerably worse than that of any feasible solution. Y1 (Y1 ∈ [0; 1]) reduces

NPVD−Infeas based on the difference between the finish time of the end dummy and the

project deadline. Y2 (Y2 > 0) is a large positive value which is subtracted from the project

NPV. The variables Y1 and Y2 are tested in section 6.4.1.

If a deadline feasible schedule is obtained, either with our without the application of

the improvement method of Li and Willis (1992), the decoding procedure continues in

one of two ways by evaluating the value of γ. If γ equals 0, the resource usage reduction

method of section 6.3.3.2 is first applied and then the NPV improvement method of section

6.3.3.3. If γ is 1, both improvement methods are applied in the reverse order. In either

case, both methods are repeated until no further changes occur in activity finish times.

Afterwards, the resulting schedule is returned to the metaheuristic.

6.3.3.2 Resource usage reduction

The goal of the resource usage reduction method (Reduce ak ∀k in figure 6.2) is to

decrease the total resource usage cost. Since the total cost is, however, determined by the

usage of all resources and their corresponding costs, reducing the total cost is no trivial

matter. We propose to calculate the total resource cost per time unit TCt based on the

resource usage of type k at time t (ukt): TCt =
∑|K|

k=1 ck · ukt. Based on this cost per time

unit t a total cost curve can be constructed for the every time unit between 0 and the

project deadline. A minimum total cost curve is also constructed: TCmint =
∑|K|

k=1 ck ·a
min
k .

Starting from the activity with the largest TO value, we compute the latest finish time

146 Chapter 6

lfi based on the finish times of any successors of activity i. We start from this latest

finish time and evaluate if this new finish time decreases the objective. If this is the case,

we determine the resource feasibility of the delay and remember the delay as best if it is

indeed feasible. Either way, we decrease lfi by 1 and continue with the evaluation of the

new lfi until it equals activity i’s current finish time. We then update the schedule based

on the best delay found. We continue with the next activity based on the highest TO

value of any unconsidered activities, until all activities have been considered. Algorithm

9 provides an overview of the resource usage reduction method.

Algorithm 9 Reduce resource usage

ReduceResUsage ()

For each activity i starting with the activity with the highest TO value to the lowest
ukt = ukt − rik, ∀t ∈ [fi − di; fi[, ∀k ∈ R
For t = lfi to fi + 1

TCbest =
∑lfi−1
w=fi−di TCw; fi,best = fi

ukw = ukw + rik, ∀w ∈ [t− di; t[, ∀k ∈ R
If
∑lfi−1
w=fi−di TCw < TCbest

If ukw ≤ ak, ∀w ∈ [t− di; t[, ∀k ∈ R then TCbest =
∑lfi−1
w=fi−di TCw; fi,best = t

End if
End for
If fi,best > fi then fi = fi,best
ukt = ukt + rik, ∀t ∈ [fi − di; fi[, ∀k ∈ R

End for
Return 0

Once algorithm 9 has been completed, we evaluate the maximum resource usage for

each resource type k (max(ukt|t ∈ {0, . . . , δn+1 − 1})). If this maximum is smaller than

the corresponding ak value from the RCL, we update ak. The objective function value

is subsequently updated based on any reductions in RCL and based on the delays of

activities.

6.3.3.3 NPV improvement

The goal of the NPV improvement method (Improve NPV in figure 6.2) is to delay

sets of activities with a negative cumulative NPV. The activity move rules of this section

are adapted from the network–based rules of chapter 2 for the RCPSPDC (Leyman and

Vanhoucke, 2015). For a deadline feasible schedule these rules aim to improve project NPV,

while maintaining feasibility. The move rules recursively consider an activity’s immediate

predecessors and successors based on the project network. Successors are always added to

the set, whereas predecessors are only added if they have a negative net cash flow. Once

the set has been constructed, the cumulative NPV of all activities in the set is calculated.

If the NPV is negative, a resource feasible delay is applied for the set.

6.3. A GENETIC ALGORITHM FOR THE RACPDC 147

6.3.4 The genetic algorithm

The genetic algorithm (GA) is based on evolutionary biology and was first proposed by

Holland (1975). The goal of the algorithm is to improve existing solutions by recombining

these solutions into new ones, and uses selection, crossover and mutation operators. We

briefly discuss each of the typical GA operators.

Initial population: for the initial population, we randomly generate 2 · |P | TO lists,

with P the population. In terms of the RCL, we randomly construct a list for each element

with values from [amink ; amaxk] for each resource type k. Finally, a random value γ is also

generated for each element. We apply the scheduler of section 6.3.3 to all elements and rank

the elements based on their NPV. The best |P |/2 elements are added to the population P .

The remaining |P |/2 positions in P are filled by elements which pass a diversity threshold

based on the distance function of Van Peteghem and Vanhoucke (2011):

dfp1,p2 =

n∑
i=1

|fp2i − f
p1
i | (6.10)

In the distance function p1 and p2 are two elements which are compared based on the

pairwise difference between their corresponding activity finish times. We state that the

distance of any element to be added to P in the remaining |P |/2 positions, compared to

any element already included in P , should be at least v · n (v ∈ [0; 1]). If no |P |/2 diverse

enough elements could be found in the initial population, we include those elements with

the highest diversity.

Selection: this step selects the couples of parents used for crossover. The first parent

is the index th element of the population P , with index a counter for the number of times

the selection operator has been called this generation. The second parent is selected based

on a four–tournament selection, in which four elements from P are randomly selected.

The element with the best objective function value is retained as the second parent. We

subsequently label one of both parents randomly as the father and the other as the mother.

Crossover: in this step we create two children based on the parent elements chosen

in the selection step. We apply a two–point crossover on each pair of parents, based

on random two cut–off points p1 and p2. For the first (second) child, all values up to

position p1 and after position p2 are copied from the father (mother), whereas all values

in between both positions are copied from the mother (father). It is furthermore ensured

in the second step that no value is included twice, by inserting that the missing elements

from the father (mother) in the first (second) child in the order in which they appear in

the mother (father). The crossover is applied separately to both the TO and the RCL,

with different crossover points. This way, the TO and RCL can be changed independently.

148 Chapter 6

The value for γ is copied from the father for the first child, and from the mother for the

second child. The selection and crossover steps are repeated until |P | children have been

generated.

Mutation: a mutation operator is included to ensure diversity in the newly generated

children by the crossover step. For the TO a two–activity swap is applied with a probability

of M1. In terms of the RCL, we randomly generate a new value from [amink ; amaxk] for each

resource k, with probability M2.

Population update: this step determines which of the parent elements are retained

in the population, and which of the children enter P . On the one hand, the best children

should enter P , but on the other hand the best parents should be retained. As such, we

choose retain the best R parents and replace the rest of parent population by the best

children. Once the population update has been completed, the GA returns to the selection

and crossover steps until a stopping criterion has been reached.

6.4 Results

In this section, we discuss our results for the RACPDC. We first configure the proposed

algorithm and we compare our results with literature. We finish with some insights. The

stopping criterion based on 5,000 generated schedules as defined by Lova et al. (2009) is

employed for all tests, and we assume a discount rate of 1%.

We use the RACP30 dataset and the resource costs of Van Peteghem and Vanhoucke

(2013). Additionally, we also test our procedure on the PSPLIB’s J30, J60, J90 and J120

datasets (Kolisch and Sprecher, 1996) and again use the cost file of Van Peteghem and

Vanhoucke (2013). The project deadline is set as follows: δn+1 = (1 + θ) · efn+1, with

efn+1 the earliest finish time of the project or critical path length, and θ set to 0, 0.10,

0.20, 0.30, 0.40 and 0.50. We generate a net cash flow ci,net for each activity i from the

interval [1;500]. Based on a percentage negative (%Neg, set to 0, 25, 50, 75 and 100) we

randomly assign negative signs to activity cash flows until %Neg of the activities have a

negative cash flow. This way, the test data include 240 files x 6 deadlines x 5 cash flows

= 7,200 instances for RACP30, 480 x 6 x 5 = 14,400 instances for J30, J60 and J90, and

600 x 6 x 5 = 18,000 instances for J120.

In the following subsections, we first configure our algorithm, compare with literature

and formulate insights from the best results obtained.

6.4. RESULTS 149

6.4.1 Algorithm configuration

All tests in this section are run on 20% of the RACP30, J30, J60, J90 and J120 datasets,

by selecting each first out of five instances.

We wish to determine a suitable value for each of the penalty function and metaheuristic

parameters. We test the parameters Y1 and Y2 from penalty function (6.9), the population

size |P |, the parameter v of the initial population, the mutation rates M1 and M2 and

the number of retained elements R. The Taguchi method (Montgomery, 2005) is used in

order to ensure a robust design of experiments. We employ the orthogonal array L’32 for

our experiments. The selected values for each parameter are shown in table 6.1, with the

best results (highest average NPV, AvNPV) marked in bold.

From the table, we can conclude that the greatest effect with respect to penalty function

(6.9) is obtained by the parameter Y2, whereas the parameter Y1 should simply be large

enough to allow for a clear distinction between the NPV of feasible and infeasible solutions.

It can also be observed that the mutation rate M1 for the TO is rather high, whereas M2

for the RCL is relatively low. The reason for the high value for M1 lies in the use of a

relatively simple mutation operator, i.e. a two–activity swap, and a retention of R elements

from the parent population. This way, a higher diversity is required from the offspring

in terms of TO value. For the RCL, the employed mutation operator is diverse enough,

since it allows for the generation of a new value for each resource k between the lower and

upper bounds.

Factor level Y1 Y2 |P | v M1 M2 R
1 5,000 0.85 50 0.20 0.85 0.05 1
2 10,000 0.90 60 0.25 0.90 0.10 3
3 15,000 0.95 70 0.30 0.95 0.15 5
4 20,000 0.99 80 0.35 0.99 0.20 7

Table 6.1: Parameter testing.

In the remainder of results section, we first analyze our results for the RACP and then

for the RACPDC.

6.4.2 Analysis RACP

We compare our algorithm, without the NPV improvement of section 6.3.3.3, with

results of the artificial immune system (AIS) of Van Peteghem and Vanhoucke (2013)

for the RACP (VP2013). In comparison with our approach, the VP2013 algorithm uses

an AIS instead of GA metaheuristic, but also a different scheduler. Their scheduler also

uses forward–backward improvement to allow for a shorter makespan within the project

150 Chapter 6

deadline, but uses an extension of the Burgess and Killebrew (1962) algorithm for resource

levelling. This extension aims to reduce resource usage instead by means of the objective∑δn
t=0

∑|R|
k=1 cku

2
kt. Hence, aside from the metaheuristic used, the major difference with our

approach lies in the resource usage reduction method.

To allow for a broader comparison, we compare VP2013 and our GA, including the

resource usage reduction method of section 6.3.3.2 (TO+RU), with the GA including

the adjusted resource levelling method of Van Peteghem and Vanhoucke (2013) instead

(TO+BK). Furthermore, we include results for both the finish time list (FTL) and slack

list (SL) representations of chapter 4. The latter two are tested without any local search,

since the representations allow for a broader range of finish times on their own (see chapter

4), and because this way the scheduler of section 6.3.3 as a whole can be evaluated.

In table 6.2 we compare the five alternatives based on the percentage average improve-

ment from an upper bound (%AvImpr) for the RACP30 dataset. The upper bound is set

as the total cost of the resource usage which would allow an implementation of the earliest

start schedule (Drexl and Kimms, 2001). The larger the improvement the better the re-

sults. The distinction is also made based on the values for the deadline parameter θ. We

can conclude that TO+RU outperforms the rest, including VP2013. However, based on an

ANOVA analysis we found that the first three alternatives are not statistically significant

at the 5% confidence level. As a result, we can state that both the GA and resource usage

reduction method show potential (TO+RU better than VP2013 and TO+RU better than

TO+BK respectively), but that the added value is limited.

The results for the FTL and SL are significantly worse than those of the other three

options, but do not differ statistically with one another. Hence, it is better to use the TO

representation with a specialized scheduler instead of the FTL or SL representations of

chapter 4.

θ VP2013 TO+RU TO+BK FTL SL
0 31.19 31.44 31.35 28.99 29.14
10 39.05 39.30 39.16 34.39 34.49
20 44.74 44.98 44.83 38.98 38.84
30 48.53 48.67 48.58 42.50 41.31
40 51.36 51.56 51.42 45.09 43.56
50 53.55 53.73 53.64 47.16 45.62

Overall 44.74 44.95 44.83 39.52 38.83

Table 6.2: Comparison RACP30 (%AvImpr).

In table 6.3 the approaches are compared for the PSPLIB datasets based on %AvImpr.

We do, however, not posses detailed results of the VP2013 procedure as we do for the

RACP30 dataset. Hence, the results are analyzed in an overall manner per PSPLIB

6.4. RESULTS 151

dataset.

We conclude that the difference between both approaches is small, but in favor of the

approach in this manuscript for a smaller number of activities, and in favor of Van Pe-

teghem and Vanhoucke (2013) for a larger number of activities. ANOVA analyses, for

all but the VP2013 algorithm, showed that the results for TO+RU and TO+BK are

not statistically significant at the 5% confidence level, but outperform the FTL and SL

approaches.

VP2013 TO+RU TO+BK FTL SL
J30 ? 44.08 43.99 37.96 37.23
J60 54.02 54.18 54.06 44.11 40.52
J90 58.78 58.75 58.57 45.59 41.07
J120 61.06 59.20 58.93 44.44 40.11

?: The data reported by Van Peteghem and Vanhoucke (2013)
corresponds with our results given a θ=0.

Table 6.3: Comparison PSPLIB (%AvImpr).

To summarize, we can state that the TO+RU performs equally good as the best known

procedure in literature of Van Peteghem and Vanhoucke (2013). Given that the goal of

this chapter is to propose an algorithm for the RACPDC and not for RACP, we believe

that these results are sufficient to show the quality of the proposed method.

6.4.3 Analysis RACPDC

We analyze the effect of the NPV improvement method based on five scenarios, by using

the TO+RU approach. We compare results without any NPV improvement (None), with

the resource usage always first (RU first), the NPV improvement always first (NPV first),

an integrated approach which optimizes the NPV of the activities and resources together

(Combo), and the complete procedure from figure 6.2 where the factor γ determines the

order of both improvement methods (Gamma (γ)). We conclude that either NPV first

or Gamma leads to the best results. Furthermore, the results for both alternatives do

not differ significantly. This highlights that the focus should be on first optimizing the

NPV and only afterwards reducing the resource usage. Alternatively, the results for the

Gamma option show that it makes sense to let the metaheuristic decide which method

to apply first, i.e. the NPV improvement or the resource usage reduction. On average,

however, the metaheuristic applies the former in approximately 60% of the schedules first

and the latter second. Finally, it can be observed that the Combo performs worst of the

four improvement options, which shows that it makes more sense to consider optimizing

the NPV of the activities and the resource usage costs separately.

152 Chapter 6

None RU first NPV first Combo Gamma (γ)
RACP30 -130.32 7.32 44.30 -118.10 47.37

J30 -79.64 85.18 131.97 -65.47 133.02
J60 601.85 1,058.10 1,154.91 629.66 1,154.83
J90 1,157.63 1,985.46 2,126.82 1,191.67 2,125.82
J120 1,483.89 2,705.90 2,867.63 1,509.73 2,866.20

Table 6.4: Local search comparison NPV improvement (AvNPV).

Table 6.5 provides an overview of the best results for the RACPDC. As stated earlier

(section 6.1), no papers exist in literature which discuss the RACPDC, so we have no point

of comparison for the results in the table. We do, however, provide the results in table 6.5

to allow for future comparison, and discuss insights to show more details of our results.

%Neg RACP30 J30 J60 J90 J120
0 5,366.67 5,162.46 10,443.81 14,960.82 19,230.67
25 2,384.84 2,264.65 5,396.00 8,329.83 11,241.84
50 -74.14 -6.53 906.92 1,676.88 2,062.54
75 -2,440.13 -2,214.52 -2,880.75 -3,760.16 -5,070.14
100 -5,015.72 -4,546.23 -8,091.43 -10,573.28 -13,126.76

Table 6.5: Final results RACPDC (AvNPV).

We analyze the effect of the size of the resource usage costs versus the activity cash

flows on the importance of both improvement methods. Figure 6.3 displays the average

NPV (AvNPV, right vertical axis) as the resource usage costs increase. The resource usage

costs are increased or decreased with the factors displayed on the horizontal axis. E.g.

a factor 10 means that the costs, as defined at the start of section 6.4 are multiplied by

10. Since we employ the methodology with γ as part of the GA, we also plot the curve

which displays the average percentage of solutions for which γ is set to zero (first apply

the resource usage reduction step, left vertical axis). Based on the average value for γ, we

can conclude whether the greatest impact on project NPV comes from the activity cash

flows or from the resource usage costs. The results displayed are those for the RACP30

dataset, but similar curves can be constructed for the other datasets.

From the figure, the following can be concluded:

• The effect of increases in the resource costs is larger on the project NPV than on γ,

i.e. the order in which both improvement methods should be applied. This can be

observed from the figure since the decrease in average project NPV is considerably

larger than the increase in %First resource usage. Hence, the activity cash flows have

a larger impact on project NPV than the resource costs, even as the latter increase.

6.5. CONCLUSIONS & FUTURE RESEARCH 153

!2500%

!2000%

!1500%

!1000%

!500%

0%

500%

0%%

10%%

20%%

30%%

40%%

50%%

60%%

0.5% 1% 2.5% 5% 7.5% 10%

Av
er
ga
e'
N
PV

'

%
Fi
rs
t'r
es
ou

rc
e'
us
ag
e'

Resource'usage'costs'

Gamma% AvNPV%

Figure 6.3: Insights

• Even with relatively high resource usage costs (e.g. 10), the NPV improvement

method for the activity cash flows remains at least as important as the resource

usage reduction (γ=48%).

• With lower resource usage costs (e.g. 5) the focus should be on NPV improvement

of the activity cash flows, but reduction of the resource usage costs is still important

(γ=40%).

6.5 Conclusions & future research

In this chapter, we have discussed the resource availability cost problem with dis-

counted cash flows (RACPDC). A specialized local search has been proposed as part of a

genetic algorithm for the problem, and the approach has been tested on several datasets

from literature. Each part of the local search has been validated, and the resource usage

reduction part has been compared with literature. The trade–off between the resource

usage costs and the activity cash flows has been discussed, along with their impact on the

project net present value.

In the future, it may be worthwhile to investigate the impact of the occurrence of the

resource usage costs, i.e. when the entire costs are not incurred at the start of the project.

Costs could be incurred in a manner similar to the models for cash outflows of chapter

5. A second possible future research avenue concerns solution representation, i.e. the

154 Chapter 6

slack and finish time lists. These representations could be investigated in more detail and

integrated with a resource capacity list and a specialized scheduler. Finally, even though

it has a clear potential, the proposed resource usage reduction method could be further

improved.

7
Conclusions & recommendations for future research

155

156 Chapter 7

7.1 Conclusions

In this book, we have presented our research on net present value (NPV) optimization

in project scheduling. In general, we have discussed multiple models for the timing and/or

size of both cash in– and outflows. These models have been heuristically optimized with

a strong focus on schedulers and local searches. To allow for an easier understandability

of the conclusions discussed here, we have again included the overview figure (figure 7.1).

Cash in

Cash out

Timing Size Timing & size

Payments at activities’
completion times (PAC)

Progress payments
(PP)

Payments at event
occurences (PEO)

Progress based payment
pattern (PBPP)

Expense based payment
pattern (PBPP)

Payments at activities’
completion times (PAC)

General capital modelResource usage costs

Figure 7.1: Overview of the research on project scheduling with NPV optimization.

In chapter 2, we have proposed two classes of activity move rules for the payments at

activities’ completion times (PAC) model, subject to precedence relations, resource restric-

tions and a project deadline. The goal was to improve the project NPV by moving sets of

activities, formed based on either the precedence relations or the neighboring activities in

the schedule. The activity move rules have been implemented as part of a metaheuristic,

and the results have been shown to outperform two benchmarks from literature.

Chapter 3 extended chapter 2 by including two additional models for cash inflows,

namely progress payments (PP) and payments at event occurrences (PEO). These models

assume that the cash inflows are received after fixed periods of time instead of at the

completion of each activity. The periods of time can furthermore be regular (PP) or

irregular (PEO). We have applied these payment models to the problem of chapter 2,

and also included its multi–mode variant, which involves the trade–off between different

activity modes in terms of duration and resource demands. A more complex scheduling

technique than the activity move rules of chapter 2 has been formulated to handle the PP

and PEO models, whereas the metaheuristic has been expanded to deal with the problem’s

multi–mode characteristics. The added value of the proposed techniques is shown based

on extensive computational experiments.

Chapter 4 discussed payment models, in which the occurrence time of payments

depend on the project schedule (PBPP and EBPP). This is in stark contrast with the

7.1. CONCLUSIONS 157

models of chapters 2 and 3, in which only the amount received depended on the schedule.

The link between payment times and the project schedule adds an extra dimension to

the problem, since changes in activity finish times can have an impact on the timing of

payments. Two solution representations have been proposed to handle this increased level

of problem complexity, as part of the discrete time/cost trade–off problem. This problem

involves trade–offs between different activity modes with different costs and durations

for each mode. The proposed solution approach has successfully been compared with a

benchmark from literature.

In chapter 5, we have extended the model of chapter 2 by imposing capital constraints,

which force the cash balance of the project to be positive at each time instance. Three

different models, which determine the occurrence of cash outflows, have been discussed as

part of a general model for the capital availability. These models determine the times at

which cash outflows take place, unlike the payment models discussed in chapters 2–4 which

focussed on the occurrence of cash inflows. In this chapter, we assume that cash inflows

are received at activity completion (PAC), as was the case in chapter 2. A new scheduling

technique has been proposed to reduce capital shortages by applying two types of delays.

The first type aims to delay activities such that their cash outflows are mitigated by

cash inflows of other activities, whereas the second type delays activities until succeeding

activities are reached to allow for more efficient delays in a later iteration. The scheduler

has been applied as part of three metaheuristic approaches from literature, and managerial

insights have been provided for contractors.

Finally, chapter 6 integrates the decision with respect to the required renewable

resource level in the NPV objective. This way, the overall NPV of the project, including the

resource usage costs, can be evaluated. Additionally, this allows the contractor to consider

the trade–off between the employment of additional resource units and maximizing the

NPV of the project activities. The resource usage costs are assumed fixed in terms of

timing, namely at the start of the project, but their size can be linked to the project

schedule, specifically to the amount of resources required. We have successfully compared

this approach with the two solution representations of chapter 4, and several insights are

given.

With respect to the research questions of chapter 1, we are now able to provide the

following answers:

RQ1: What is a good scheduling technique to use for the timing of cash flows?

• The cumulative NPV of sets of activities should be considered, either based on the

project network or based on schedule at hand, to move sets of activities.

RQ2: What is a good scheduling technique to use for the size of cash inflows?

158 Chapter 7

• A technique similar as for timing can be applied, but it should be able to take peaks

in activity profit curves into account.

• If timing and size are considered together, a greater focus should be on the solu-

tion representation and metaheuristic, due to the increase in complexity. Otherwise,

moves of activity sets may have the opposite effect than what is desired.

RQ3: How can these schedulers be applied in case of different types of activity trade–offs?

• The scheduling techniques should be incorporated in an overall framework (meta-

heuristic), which allows for the selection of modes fitting the problem restrictions.

RQ4: How can cash outflows and capital be managed for the contractor, under different

assumptions?

• The cash outflows should be incorporated in a general model, to make sure that timing

and size can be integrated.

• A scheduler should be used, which is able to construct a capital feasible schedule, by

allowing for the compensation of cash outflows by cash inflows of other activities.

RQ5: How can resource usage costs be optimized and integrated in NPV optimization?

• The resource usage costs should be an integral part of the project NPV, but the

trade–off between the resource usage costs and activity cash flows has to be taken

into account.

7.2 Recommendations for future research

Whereas future research recommendations have already been included in some chap-

ters, we here recapitulate the most important ones, along with research avenues which

apply to the overall PhD research.

A first major future research avenue concerns the integration of the problems discussed

in this book into an overarching framework for NPV optimization in project scheduling.

The general model for cash outflows of chapter 5 could be extended to apply to cash inflows

as well, which would allow for a more inclusive view on activity cash flows. Multiple activity

modes could be used to allow for greater flexibility in scheduling activities, and earliness

and tardiness costs could included per activity. This way, the framework should aim to

include all possible cash flows concerning a project. One way to provide a scheduler for

such a framework, would be to integrate the different scheduling techniques discussed as

modules in a general algorithm. This algorithm could then select which modules to use

based on the provided problem characteristics, and allow for a decision making tool.

7.2. RECOMMENDATIONS FOR FUTURE RESEARCH 159

Second, the financing of the contractor could be modelled and analyzed, by considering

e.g. loans. In doing so, the general framework could also include not just the optimization

of the NPV objective, but also the management of the contractor’s entire cash balance.

Building on this research avenue, it would be even better to consider financing decisions

in a multi–project context, since resources are in general available for the entire company

but assigned to specific projects. By taking financing decisions on a multi–project level, a

contractor would be able to optimize their entire (renewable, non–renewable and cumula-

tive) resource pool. Such an extension to the framework would ensure a more practically

relevant use for the techniques discussed in this PhD.

A third area for future research is the negotiation process with the client concerning

the timing and size of payments. Whereas in the research done we assumed that these

negotiations had already been completed, it may be worthwhile to analyze this interac-

tion process. Game theory may provide a particular useful avenue, since this would allow

different types of client and contractor behaviour. Furthermore, including other restric-

tions for the contractor, such as the project deadline, would make the negotiation process

more realistic. Current work in literature (e.g. Ulusoy and Cebelli, 2000) makes specific

assumptions with respect to the behaviour and preferences of both parties, but we believe

that this PhD may provide interesting insights and methodologies to improve upon the

existing work on negotiation.

160 Chapter 7

References 161

References

Aboutalebi, R., Najafi, A., and Ghorashi, B. (2012). Solving multi-mode resource-

constrained project scheduling problem using two multi objective evolutionary algo-

rithms. African Journal of Business Management, 6(11):4057–4065.

Akkan, C., Drexl, A., and Kimms, A. (2005). Network decomposition–based benchmark

results for the discrete time–cost tradeoff problem. European Journal of Operational

Research, 165:339–358.

Azimi, F., Aboutelabi, R. S., and Najafi, A. A. (2011). Using multi–objective particle

swarm optimization for bi–objective multi–mode resource–constrained project schedul-

ing problem. International Science Index, 54:242–246.

Baroum, S. and Patterson, J. (1996). The development of cash flow weight procedures

for maximizing the net present value of a project. Journal of Operations Management,

14:209–227.

Blazewicz, J., Lenstra, J., and Rinnooy Kan, A. (1983). Scheduling subject to resource con-

straints: notation, classification and complexity. Discrete Applied Mathematics, 5:11–24.

Boctor, F. (1993). Heuristics for scheduling projects with resource restrictions and several

resource-duration modes. International Journal of Production Research, 31:2547–2558.

Brucker, P., Drexl, A., Möhring, W., Neumann, K., and Pesch, E. (1999). Resource-

constrained project scheduling: Notation, classification, models, and methods. European

Journal of Operational Research, 112:3–41.

Burgess, A. and Killebrew, J. (1962). Variation in activity level on a cyclic arrow diagram.

Industrial Engineering, 2:76–83.

Chen, A. and Chyu, C. (2008). A memetic algorithm for maximizing net present value

in resource-constrained project scheduling problem. IEEE Congres on Evolutionary

Computation, pages 2401–2408.

Chen, W.-N. and Zhang, J. (2012). Scheduling multi-mode projects under uncertainty to

optimize cash flows: A monte carlo ant colony system approach. Journal of Computer

Science and Technology, 27(5):950–965.

Chen, W.-N., Zhang, J., Chung, H., Huang, R.-Z., and Liu, O. (2010). Optimizing dis-

counted cash flows in project scheduling - an ant colony optimization approach. IEEE

Transactions on Systems, Man., and Cybernetics - Part C: Applications and Reviews,

40:64–77.

162 References

Damak, N., Jarboui, B., Siarry, P., and Loukil, T. (2009). Differential evolution for

solving multi-mode resource-constrained project scheduling problems. Computers and

Operations Research, 36:2653–2659.

Dayanand, N. and Padman, R. (1997). On modelling payments in project scheduling.

Management Science, 48(9):906–918.

Dayanand, N. and Padman, R. (2001a). Project contracts and payment schedules: the

client’s problem. Management Science, 47(12):1654–1667.

Dayanand, N. and Padman, R. (2001b). A two stage heuristic for scheduling payments in

projects. Annals of Operations Research, 102:197–220.

De Reyck, B. and Herroelen, W. (1998). An optimal procedure for the resource-constrained

project scheduling problem with discounted cash flows and generalized precedence rela-

tions. Computers and Operations Research, 25:1–17.

Debels, D., De Reyck, B., Leus, R., and Vanhoucke, M. (2006). A hybrid scatter search/-

electromagnetism meta–heuristic for project scheduling. European Journal of Opera-

tional Research, 169:638–653.

Debels, D. and Vanhoucke, M. (2007). A decomposition–based genetic algorithm for the

resource–constrained project scheduling problem. Operations Research, 55(3):457–469.

Demeulemeester, E. (1995). Minimizing resource availability costs in time–limited project

networks. Management Science, 41(10):1590–1598.

Demeulemeester, E., De Reyck, B., Foubert, B., Herroelen, W., and Vanhoucke, M. (1998).

New computational results for discrete time/cost trade–off problem in project networks.

Journal of the Operational Research Society, 49:1153–1163.

Demeulemeester, E. and Herroelen, W. (1992). A branch-and-bound procedure for the mul-

tiple resource-constrained project scheduling problem. Management Science, 38:1803–

1818.

Demeulemeester, E., Vanhoucke, M., and Herroelen, W. (2003). Rangen: A random

network generator for activity-on-the-node networks. Journal of Scheduling, 6:17–38.

Doersch, R. and Patterson, J. (1977). Scheduling a project to maximize its net present

value: A zero-one programming approach. Management Science, 23(8):882–889.

References 163

Drexl, A. and Kimms, A. (2001). Optimization guided lower and upper bounds for the

resource investment problem. Journal of the Operational Research Society, 52(3):340–

351.

Erengüç, S., Tufekci, S., and Zappe, C. (1993). Solving time/cost trade–off problems

with discounted cash flows using generalized benders decomposition. Naval Research

Logistics, 40:25–50.

Etgar, R. and Shtub, A. (1999). Scheduling project activities to maximize the net present

value - the case of linear time-dependant cash flows. International Journal of Production

Research, 37(2):329–339.

Gendreau, M. and Potvin, J.-Y. (2010). Tabu search. In Gendreau, M. and Potvin, J.-Y.,

editors, Handbook of metaheuristics, pages 41–59. Springer.

Gu, H., Schutt, A., and Stuckey, P. (2013). A Lagrangian relaxation based forward-

backward improvement heuristic for maximising the net present value of resource-

constrained projects. Lecture Notes in Computer Science, 7874:340–346.

Gu, H., Stuckey, P., and Wallace, M. (2012). Maximising the net present value of large

resource-constrained projects. Lecture Notes in Computer Science, 7514:767–781.

Hartmann, S. and Briskorn, D. (2010). A survey of variants and extensions of the resource-

constrained project scheduling problem. European Journal of Operational Research,

207:1–14.

Hazir, O., Haouari, M., and Erel, E. (2010). Discrete/time cost trade–off problem: A

decomposition–based solution algorithm for the budget version. Computers & Opera-

tions Research, 37:649–655.

He, Z., Liu, R., and Jia, T. (2012). Metaheuristics for multi-mode capital-constrained

project payment scheduling. European Journal of Operational Research, 223:605–613.

He, Z., Liu, R., and Xu, Y. (2009a). Client perspective based multimode project pay-

ment scheduling problem and its heuristic algorithm. Systems Engineering – Theory &

Practice, 29(2):70–77.

He, Z., Wang, N., Jia, T., and Xu, Y. (2009b). Simulated annealing and tabu search for

multi–mode project payment scheduling. European Journal of Operational Research,

198:688–696.

164 References

He, Z., Wang, N., and Li, P. (2014). Simulated annealing for financing cost distribu-

tion based project payment scheduling from a joint perspective. Annals of Operations

Research, 213:203–220.

He, Z. and Xu, Y. (2008). Multi–mode project payment scheduling problem with bonus–

penalty structure. European Journal of Operational Research, 189:1191–1207.

Herroelen, W., De Reyck, B., and Demeulemeester, E. (1998). Resource-constrained

project scheduling: A survey of recent developments. Computers and Operations Re-

search, 25:279–302.

Herroelen, W., Demeulemeester, E., and De Reyck, B. (1999). A classification scheme for

project scheduling. In Weglarz, J., editor, Project Scheduling - recent models, algorithms

and applications. International Series in Operations Research and Management Science,

number 14, pages 77–106. Boston: Kluwer Academic Publishers.

Herroelen, W., Van Dommelen, P., and Demeulemeester, E. (1997). Project networks with

discounted cash flows: A guided tour through recent developments. European Journal

of Operational Research, 100:97–121.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan

Press, Ann Arbor.

Hosseini, Z. S., Pour, J. H., and Roghanian, E. (2014). A bi–objective pre–emption multi-

mode resource constrained project scheduling problem with due dates in the activities.

Journal of Optimization in Industrial Engineering, 15:15–25.

Icmeli, O. and Erengüç, S. (1996). A branch and bound procedure for the resource-

constrained project scheduling problem with discounted cash flows. Management Sci-

ence, 42(10):1395–1408.

Józefowska, J., Mika, M., Rózycki, R., Waligóra, G., and Weglarz, J. (2001). Simulated

annealing for multi-mode resource-constrained project scheduling. Annals of Operations

Research, 102:137–155.

Kavlak, N., Ulusoy, G., Sivrikaya-Şerifoğlu, F., and Birbil, I. (2009). Client-contractor

bargaining on net present value in project scheduling with limited resources. Naval

Research Logistics, 56:93–112.

Kazaz, B. and Sepil, C. (1996). Project scheduling with discounted cash flows and progress

payments. Journal of the Operational Research Society, 42:1262–1272.

References 165

Kazemi, F. and Tavakkoli-Moghaddam, R. (2010). Solving a multi–objective multi–mode

resource–constrained project scheduling problem with discounted cash flows. 6th Inter-

national Project Management Conference.

Kelley, J. J. (1963). The critical-path method: Resources planning and scheduling. In

Muth, J. and Thompson, J., editors, Industrial Scheduling, pages 347–365. Prentice-

Hall, New Jersey.

Kimms, A. (2001). Maximizing the net present value of a project under resource constraints

using a Lagrangian relaxation based heuristic with tight upper bounds. Annals of

Operations Research, 102:221–236.

Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling methods

revisited: Rules and computation. European Journal of Operational Research, 90:320–

333.

Kolisch, R. and Drexl, A. (1997). Local search for nonpreemptive multi-mode resource-

constrained project scheduling. IIE Transactions, 29:987–999.

Kolisch, R. and Hartmann, S. (1999). Heuristic algorithms for solving the resource- con-

strained project scheduling problem: Classification and computational analysis. Euro-

pean Journal of Operational Research, 112:3–41.

Kolisch, R. and Sprecher, A. (1996). PSPLIB - A project scheduling problem library.

European Journal of Operational Research, 96:205–216.

Leyman, P., Van Driessche, N., and Vanhoucke, M. (2016). Metaheuristics for the discrete

time/cost trade–off problem with net present value optimization and different payment

models. Working paper.

Leyman, P. and Vanhoucke, M. (2015). A new scheduling technique for the resource–

constrained project scheduling problem with discounted cash flows. International Jour-

nal of Production Research, 53(9):2771–2786.

Leyman, P. and Vanhoucke, M. (2016a). Capital– and resource–constrained project

scheduling with net present value optimization. European Journal of Operational Re-

search, Article in press.

Leyman, P. and Vanhoucke, M. (2016b). Payment models and net present value optimiza-

tion for resource-constrained project scheduling. Computers & Industrial Engineering,

91:139–153.

166 References

Leyman, P. and Vanhoucke, M. (2016c). The resource availability cost problem with net

present value objective. Working paper.

Li, K. and Willis, R. (1992). An interative scheduling technique for resource-constrained

project scheduling. European Journal of Operational Research, 56:370–379.

Lova, A., Tormos, P., Cervantes, M., and Barber, F. (2009). An efficient hybrid genetic al-

gorithm for scheduling projects with resource constraints and multiple execution modes.

International Journal of Production Economics, 117:302–316.

Mart́ı, R., Laguna, M., and Glover, F. (2006). Principles of scatter search. European

Journal of Operational Research, 169:359–372.

Mika, M., Waligóra, G., and Weglarz, J. (2005). Simulated annealing and tabu search for

multi-mode resource-constrained project scheduling with positive discounted cash flows

and different payment models. European Journal of Operational Research, 164:639–668.

Möhring, R. (1984). Minimizing costs of resource requirements in project networks subject

to a fixed completion time. Operations Research, 31(1):89–120.

Möhring, R., Shulz, A., Stork, F., and Uetz, M. (2001). On project scheduling with

irregular starting time costs. Operations Research Letters, 28:149–154.

Möhring, R., Shulz, A., Stork, F., and Uetz, M. (2003). Solving project scheduling prob-

lems by minimum cut computations. Management Science, 49(3):330–350.

Montgomery, D. (2005). Design and Analysis of Experiments. John Wiley and Sons Inc.,

Hoboken, New Jersey.

Najafi, A. and Azimi, F. (2009). A priority rule–based heuristic for resource investment

project scheduling problem with discounted cash flows and tardiness penalties. Mathe-

matical Problems in Engineering, 2009:1–10.

Najafi, A. and Niaki, S. (2006). A genetic algorithm for the resource investment problem

with discounted cash flows. Applied Mathematics and Computation, 183:1057–1070.

Najafi, A., Niaki, S., and Shahsavar, M. (2009). A parameter–tuned genetic algorithm for

the resource investment problem with discounted cash flows and generalized precedence

relations. Computers & Operations Research, 36:2994–3001.

Neumann, K. and Schwindt, C. (2002). Project scheduling with inventory constraints.

Mathematical Methods of Operations Research, 56:513–533.

References 167

Nübel, H. (2001). The resource renting problem subject to temporal constraints. OR

Spectrum, 23:359–381.

Özdamar, L. (1998). On scheduling project activities with variable expenditure rates. IIE

Transactions, 30:695–704.

Özdamar, L. and Dündar, H. (1997). A flexible heuristic for a multi–mode capital con-

strained project scheduling problem with probabilistic cash inflows. Computers & Op-

erations Research, 24(12):1187–1200.

Patterson, J. (1976). Project scheduling: The effects of problem structure on heuristic

scheduling. Naval Research Logistics, 23:95–123.

PMBOK (2004). A Guide to the Project Management Body of Knowledge, Third Edition.

Newton Square, Pa.: Project Management Institute, Inc.

Pritsker, A., Watters, L., and Wolfe, P. (1969). Multiproject scheduling with limited

resources: A zero-one programming approach. Management Science, 16(1):93–108.

Qi, J.-J., Liu, Y.-J., Jiang, P., and Guo, B. (2015). Schedule generation scheme for solving

multi–mode resource availability cost problem by modified particle swarm optimization.

Journal of Scheduling, 18:285–298.

Reeves, C. (2010). Genetic algorithms. In Gendreau, M. and Potvin, J.-Y., editors,

Handbook of metaheuristics, pages 109–139. Springer.

Resende, M., Ribeiro, C., Glover, F., and Mart́ı, R. (2010). Scatter search and path–

relinking: Fundamentels, advances, and applications. In Gendreau, M. and Potvin,

J.-Y., editors, Handbook of metaheuristics, pages 87–107. Springer.

Rodrigues, S. and Yamashita, D. (2010). An exact algorithm for minimizing resource avail-

ability costs in project scheduling. European Journal of Operational Research, 206:562–

568.

Russell, A. (1970). Cash flows in networks. Management Science, 16:357–373.

Russell, R. (1986). A comparison of heuristics for scheduling projects with cash flows and

resource restrictions. Management Science, 32:1291–1300.

Schutt, A., Chu, G., Stuckey, P., and Wallace, M. (2012). Maximising the net present

value for resource-constrained project scheduling. Lecture Notes in Computer Science,

7298:362–378.

168 References

Schwindt, C. and Zimmermann, J. (2001). A steepest ascent approach to maximizing the

net present value of projects. Mathematical Methods of Operations Research, 53:435–450.

Seifi, M. and Tavakkoli-Moghaddam, R. (2008). A new bi-objective model for a multi-

mode resource-constrained project scheduling problem with discounted cash flows and

four payment models. IJE Transactions A: Basics, 21(4):347–360.

Selle, T. and Zimmermann, J. (2003). A bidirectional heuristic for maximizing the net

present value of large-scale projects subject to limited resources. Naval Research Logis-

tics, 50:130–148.

Sepil, C. and Ortac, N. (1997). Performance of the heuristic procedures for constrained

projects with progress payments. The Journal of the Operational Research Society,

48(11):1123–1130.

Shahsavar, A., Najafi, A., and Niaki, S. (2015). Three self–adaptive multi–objective evo-

lutionary algorithms for a triple–objective project scheduling problem. Computers &

Industrial Engineering, 87:4–15.

Shahsavar, M., Niaki, S., and Najafi, A. (2010). An efficient genetic algorithm to maxi-

mize net present value of project payments under inflation and bonus–penalty policy in

resource investment problem. Advances in Engineering Software, 41:1023–1030.

Shtub, A. and Etgar, R. (1997). A branch and bound algorithm for scheduling projects to

maximize net present value: the case of time dependent, contingent cash flows. Inter-

national Journal of Production Research, 35(12):3367–3378.

Smith-Daniels, D. and Aquilano, N. (1987). Using a late-start resource-constrained project

schedule to improve project net present value. Decision Sciences, 18:617–630.

Smith-Daniels, D., Padman, R., and Smith-Daniels, V. (1996). Heuristic scheduling of

capital constrained projects. Journal of Operations Management, 14:241–254.

Smith-Daniels, D. and Smith-Daniels, V. (1987). Maximizing the net present value of a

project subject to materials and capital constraints. Journal of Operations Management,

7(1-2):33–45.

Sprecher, A., Hartmann, S., and Drexl, A. (1997). An exact algorithm for project schedul-

ing with multiple modes. OR Spektrum, 19:195–203.

Stinson, J., Davis, E., and Khumawala, B. (1978). Multiple resource-constrained schedul-

ing using branch-and-bound. IIE Transactions, 10:252–259.

References 169

Sung, C. and Lim, S. (1994). A project activity scheduling problem with net present value

measure. International Journal of Production Economics, 37:177–187.

Tavares, L., Antunes Ferreira, J., and Silva Coelho, J. (1998). On the optimal management

of project risk. European Journal of Operational Research, 107:451–469.

Ulusoy, G. and Cebelli, S. (2000). An equitable approach to the payment scheduling

problem in project management. European Journal of Operational Research, 127:262–

278.

Ulusoy, G., Sivrikaya-Şerifoğlu, F., and Şahin, S. (2001). Four payment models for the

multi-mode resource constrained project scheduling problem with discounted cash flows.

Annals of Operations Research, 102:237–261.

Valls, V., Ballest́ın, F., and Quintanilla, S. (2004). A population–based approach to

the resource–constrained project scheduling problem. Annals of Operations Research,

131:305–324.

Valls, V., Quintanilla, S., and Ballest́ın, F. (2003). Resource–constrained project schedul-

ing: A critical activity reordering heuristic. European Journal of Operational Research,

149:282–301.

Van Peteghem, V. and Vanhoucke, M. (2010). A genetic algorithm for the preemptive and

non-preemptive multi-mode resource-constrained project scheduling problem. European

Journal of Operational Research, 201:409–418.

Van Peteghem, V. and Vanhoucke, M. (2011). Using resource scarceness characteristics

to solve the multi-mode resource-constrained project scheduling problem. Journal of

Heuristics, 17:705–728.

Van Peteghem, V. and Vanhoucke, M. (2013). An artificial immune system algorithm for

the resource availability cost problem. Flexible Services and Manufacturing Journal,

25:122–144.

Van Peteghem, V. and Vanhoucke, M. (2014). An experimental investigation of meta-

heuristics for the multi-mode resource-constrained project scheduling problem on new

dataset instances. European Journal of Operational Research, 235:62–72.

Vanhoucke, M. (2006). An efficient hybrid search procedure for various optimization prob-

lems. Lecture Notes in Computer Science, 5482:13–24.

Vanhoucke, M. (2009). A genetic algorithm for net present value maximization for resource

constrained projects. Lecture Notes in Computer Science, 5482:13–24.

170 References

Vanhoucke, M. (2010). A scatter search procedure for maximizing the net present value

of a resource-constrained project with fixed activity cash flow. International Journal of

Production Research, 48(7):1983–2001.

Vanhoucke, M. (2012). Project Management with Dynamic Scheduling – Baseline Scehdul-

ing, Risk Analysis and Project Control. Springer–Verlag Berlin Heidelberg.

Vanhoucke, M. and Debels, D. (2007). The discrete time/cost trade–off problem: exten-

sions and heuristic procedures. Journal of Scheduling, 10:311–326.

Vanhoucke, M., Demeulemeester, E., and Herroelen, W. (2001a). Maximizing the net

present value of a project with linear time-dependant cash flows. International Journal

of Production Research, 39:3159–3181.

Vanhoucke, M., Demeulemeester, E., and Herroelen, W. (2001b). On maximizing the net

present value of a project under renewable resource constraints. Management Science,

47(8):1113–1121.

Vanhoucke, M., Demeulemeester, E., and Herroelen, W. (2003). Progress payments in

project scheduling problems. European Journal of Operational Research, 148:604–620.

Yang, K., Tay, L., and Sum, C. (1995). A comparison of stochastic scheduling rules

for maximizing project net present value. European Journal of Operational Research,

85:327–339.

Zhu, D. and Padman, R. (1999). A metaheuristic scheduling procedure for resource-

constrained projects with cash flows. Naval Research Logistics, 46:912,927.

	Dankwoord
	Nederlandstalige samenvatting
	Introduction
	What does project management entail?
	Research contribution
	General concepts in project scheduling
	Cash flows in project scheduling
	Research questions
	Chapter overview

	A new scheduling technique for the resource–constrained project scheduling problem with discounted cash flows
	Introduction
	Literature overview
	Problem formulation
	Schedule generation
	Initial schedule and deadline feasibility
	Activity move rules
	Network–based moves
	Schedule–based delays

	Genetic algorithm
	Representation
	Initial population
	Selection
	Crossover
	Mutation
	Evaluation and population update

	Computational results
	Configuration of the algorithm
	Comparison with literature

	Conclusions

	Payment models and net present value optimization for resource–constrained project scheduling
	Introduction
	Literature overview
	Single–mode
	Multi–mode

	Problem description
	Payments at activities' completion times
	Progress payments
	Payments at event occurrences
	Problem complexity & classification

	Schedule generation
	Initial schedule
	Mode improvement
	Schedule construction

	Activity move rules
	NPV–profiles
	Network–based moves
	Schedule–based moves
	Example

	Genetic algorithm
	Representation
	Preprocessing
	Initial population
	Selection
	Crossover
	Mutation
	Evaluation and population update

	Computational results
	Test data
	Algorithm configuration
	Parameter testing
	Mode improvement
	Activity move rules

	Best known results

	Conclusions

	Metaheuristics for the discrete time/cost trade–off problem with net present value optimization and different payment models
	Introduction
	Problem definition
	Progress–based payment pattern
	Expense–based payment pattern
	Time–based payment pattern (progress payments)
	Example

	Solution representation & schedule generation
	Mode list and deadline–feasibility
	Finish time list
	Slack list
	NPV improvement

	Genetic algorithm
	Preprocessing
	Initial population
	Selection
	Crossover
	Mutation
	Population evaluation & update

	Computational results
	Test data
	Algorithm configuration
	Comparison with literature

	Conclusions & future research

	Capital– and resource–constrained project scheduling with net present value optimization
	Introduction
	Literature overview
	Problem definition
	The capital–constrained project scheduling problem with discounted cash flows
	The capital– and resource–constrained project scheduling problem with discounted cash flows

	Scheduling techniques with capital constraints
	A scheduler for the CCPSPDC
	Initial schedule
	Capital feasibility evaluation
	NPV improvement

	A scheduler for the CRCPSPDC
	Initial schedule
	Capital feasibility improvement
	NPV improvement

	Metaheuristics
	Computational results
	Test data
	Algorithm configuration
	Algorithm parameters
	CCPSPDC
	CRCPSPDC

	Discussion & comparison
	Managerial insights

	Conclusions & future research
	Appendix
	Example 1
	Example 2

	The resource availability cost problem with net present value objective
	Introduction
	Problem definition
	A genetic algorithm for the RACPDC
	Preprocessing
	Solution representation
	Decoding procedure
	Initial schedule & deadline feasibility
	Resource usage reduction
	NPV improvement

	The genetic algorithm

	Results
	Algorithm configuration
	Analysis RACP
	Analysis RACPDC

	Conclusions & future research

	Conclusions & recommendations for future research
	Conclusions
	Recommendations for future research

	References

