9 research outputs found

    Unified Spatial Intersection Algorithms Based on Conformal Geometric Algebra

    Get PDF
    Conformal Geometric Algebra has been introduced into geographic information science as a mathematical theory because of its advantages in terms of uniform multidimensional representation and computation. The traditional intersection computation between two geometric objects of different types is not unified. In this study, we propose algorithms based on Conformal Geometric Algebra to determine the spatial relationships between geographic objects in a unified manner. The unified representation and intersection computation can be realized for geometric objects of different dimensions. Different basic judgment rules are provided for different simple geometries. The algorithms are designed and implemented using MapReduce to improve the efficiency of the algorithms. From the results of several experiments we provide, the correctness and effectiveness of the algorithms can be verified

    DWSI: AN APPROACH TO SOLVING THE POLYGON INTERSECTION-SPREADING PROBLEM WITH A PARALLEL UNION ALGORITHM AT THE FEATURE LAYER LEVEL

    Get PDF
    A dual-way seeds indexing (DWSI) method based on R-tree and the OpenGeospatial Consortium (OGC) simple feature model was proposed to solve the polygon intersection-spreading problem. The parallel polygon union algorithm based on the improved DWSI and the OpenMP parallel programming model was developed to validate the usability of the data partition method. The experimental results reveal that the improved DWSI method can implement a robust parallel task partition by overcoming the polygon intersection-spreading problem. The parallel union algorithm applied DWSI not only scaled up the data processing but alsospeeded up the computation compared with the serial proposal, and it showed ahigher computational efficiency with higher speedup benchmarks in the treatment of larger-scale dataset. Therefore, the improved DWSI can be a potential approach to parallelizing the vector data overlay algorithms based on the OGC simple data model at the feature layer level

    DWSI: AN APPROACH TO SOLVING THE POLYGON INTERSECTION-SPREADING PROBLEM WITH A PARALLEL UNION ALGORITHM AT THE FEATURE LAYER LEVEL

    Get PDF
    A dual-way seeds indexing (DWSI) method based on R-tree and the OpenGeospatial Consortium (OGC) simple feature model was proposed to solve the polygon intersection-spreading problem. The parallel polygon union algorithm based on the improved DWSI and the OpenMP parallel programming model was developed to validate the usability of the data partition method. The experimental results reveal that the improved DWSI method can implement a robust parallel task partition by overcoming the polygon intersection-spreading problem. The parallel union algorithm applied DWSI not only scaled up the data processing but alsospeeded up the computation compared with the serial proposal, and it showed ahigher computational efficiency with higher speedup benchmarks in the treatment of larger-scale dataset. Therefore, the improved DWSI can be a potential approach to parallelizing the vector data overlay algorithms based on the OGC simple data model at the feature layer level

    Parallel algorithm for binary space partitioning trees

    Get PDF

    Efficient soil loss assessment for large basins using smart coded polygons

    Get PDF
    Soil erosion is a severe ecological problem. Most conventional methodologies for soil-erosion assessment are appropriate for small or medium river basins. This paper presents an approach to soil-erosion intensity assessment in large basins, utilizing coded polygons identified by spatially overlapping gradation levels of primary environmental factors. Efficient assessment of soil-erosion intensity is achieved by matching the coded polygons to selected polygons pre-assigned to reference groups. A case study is presented for the soil-erosion assessment of the Yellow River Basin. It is found that the calculated and observed soil-erosion intensities are in close agreement for 86% of the total area. Sensitivity analysis indicates that acceptable results are obtained using a 5% sample of the original 9,921 coded polygons, thus reducing substantially the computational load. Direct comparisons between the polygon codes in the reference and test groups show that uncertainty is reduced with respect to previous methods. This is confirmed by the reduction in information entropy from 7.49 to 1.33. The proposed approach should be of particular use in the cost-effective assessment of soil erosion in large basins.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000338909700005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Environmental SciencesSCI(E)[email protected]; [email protected]

    Scientific High Performance Computing (HPC) Applications On The Azure Cloud Platform

    Get PDF
    Cloud computing is emerging as a promising platform for compute and data intensive scientific applications. Thanks to the on-demand elastic provisioning capabilities, cloud computing has instigated curiosity among researchers from a wide range of disciplines. However, even though many vendors have rolled out their commercial cloud infrastructures, the service offerings are usually only best-effort based without any performance guarantees. Utilization of these resources will be questionable if it can not meet the performance expectations of deployed applications. Additionally, the lack of the familiar development tools hamper the productivity of eScience developers to write robust scientific high performance computing (HPC) applications. There are no standard frameworks that are currently supported by any large set of vendors offering cloud computing services. Consequently, the application portability among different cloud platforms for scientific applications is hard. Among all clouds, the emerging Azure cloud from Microsoft in particular remains a challenge for HPC program development both due to lack of its support for traditional parallel programming support such as Message Passing Interface (MPI) and map-reduce and due to its evolving application programming interfaces (APIs). We have designed newer frameworks and runtime environments to help HPC application developers by providing them with easy to use tools similar to those known from traditional parallel and distributed computing environment set- ting, such as MPI, for scientific application development on the Azure cloud platform. It is challenging to create an efficient framework for any cloud platform, including the Windows Azure platform, as they are mostly offered to users as a black-box with a set of application programming interfaces (APIs) to access various service components. The primary contributions of this Ph.D. thesis are (i) creating a generic framework for bag-of-tasks HPC applications to serve as the basic building block for application development on the Azure cloud platform, (ii) creating a set of APIs for HPC application development over the Azure cloud platform, which is similar to message passing interface (MPI) from traditional parallel and distributed setting, and (iii) implementing Crayons using the proposed APIs as the first end-to-end parallel scientific application to parallelize the fundamental GIS operations

    Efficient Parallel and Distributed Algorithms for GIS Polygon Overlay Processing

    Get PDF
    Polygon clipping is one of the complex operations in computational geometry. It is used in Geographic Information Systems (GIS), Computer Graphics, and VLSI CAD. For two polygons with n and m vertices, the number of intersections can be O(nm). In this dissertation, we present the first output-sensitive CREW PRAM algorithm, which can perform polygon clipping in O(log n) time using O(n + k + k\u27) processors, where n is the number of vertices, k is the number of intersections, and k\u27 is the additional temporary vertices introduced due to the partitioning of polygons. The current best algorithm by Karinthi, Srinivas, and Almasi does not handle self-intersecting polygons, is not output-sensitive and must employ O(n^2) processors to achieve O(log n) time. The second parallel algorithm is an output-sensitive PRAM algorithm based on Greiner-Hormann algorithm with O(log n) time complexity using O(n + k) processors. This is cost-optimal when compared to the time complexity of the best-known sequential plane-sweep based algorithm for polygon clipping. For self-intersecting polygons, the time complexity is O(((n + k) log n log log n)/p) using p In addition to these parallel algorithms, the other main contributions in this dissertation are 1) multi-core and many-core implementation for clipping a pair of polygons and 2) MPI-GIS and Hadoop Topology Suite for distributed polygon overlay using a cluster of nodes. Nvidia GPU and CUDA are used for the many-core implementation. The MPI based system achieves 44X speedup while processing about 600K polygons in two real-world GIS shapefiles 1) USA Detailed Water Bodies and 2) USA Block Group Boundaries) within 20 seconds on a 32-node (8 cores each) IBM iDataPlex cluster interconnected by InfiniBand technology
    corecore