
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Efficient soil loss assessment for large basins using smart coded
polygons

Citation for published version:
Borthwick, A, Ni, J, Wu, A, Li, T & Yue, Y 2014, 'Efficient soil loss assessment for large basins using smart
coded polygons' Journal of environmental informatics, vol. 23, no. 2, pp. 47-57. DOI: 10.3808/jei.201400264

Digital Object Identifier (DOI):
10.3808/jei.201400264

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of environmental informatics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3808/jei.201400264
https://www.research.ed.ac.uk/portal/en/publications/efficient-soil-loss-assessment-for-large-basins-using-smart-coded-polygons(c34ac77b-31a9-45f0-8b30-cc88cd691ad7).html


 

 

Efficient Soil Loss Assessment For Large Basins Using Smart Coded Polygons  1 



 

 

Jinren Ni 2 

Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR 3 

China; Department of Environmental Engineering, Peking University, PR China 4 

Ao Wu 5 

Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR 6 

China; Department of Environmental Engineering, Peking University, PR China 7 

Tianhong Li 8 

Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR 9 

China; Department of Environmental Engineering, Peking University, PR China 10 

Yao Yue 11 

Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR 12 

China; Department of Environmental Engineering, Peking University, PR China 13 

Alistair GL Borthwick 14 

School of Engineering, The University of Edinburgh, The King’s Buildings, Edinburgh 15 

EH9 3JL, U.K. 16 

Corresponding Author 17 

Jinren Ni, Department of Environmental Engineering, Peking University, NO 5 18 

Yiheyuan Road, Beijing 100871, PR China 19 

Email: nijinren@iee.pku.edu.cn 20 

Tianhong Li, Department of Environmental Engineering, Peking University, NO 5 21 

Yiheyuan Road, Beijing 100871, PR China 22 

mailto:nijinren@iee.pku.edu.cn


 

 

Email: lth@pku.edu.cn  23 

mailto:lth@pku.edu.cn


 

 

Abstract 24 

Soil erosion is a severe ecological problem. Most conventional methodologies for 25 

soil-erosion assessment are appropriate for small or medium river basins. This paper 26 

presents an approach to soil-erosion intensity assessment in large basins, utilizing 27 

coded polygons identified by spatially overlapping gradation levels of primary 28 

environmental factors. Efficient assessment of soil-erosion intensity is achieved by 29 

matching the coded polygons to selected polygons pre-assigned to reference groups. A 30 

case study is presented for the soil-erosion assessment of the Yellow River Basin. It is 31 

found that the calculated and observed soil-erosion intensities are in close agreement 32 

for 86% of the total area. Sensitivity analysis indicates that acceptable results are 33 

obtained using a 5% sample of the original 9921 coded polygons, thus reducing 34 

substantially the computational load. Direct comparisons between the polygon codes 35 

in the reference and test groups show that uncertainty is reduced with respect to 36 

previous methods. This is confirmed by the reduction in information entropy from 37 

7.49 to 1.33. The proposed approach should be of particular use in the cost-effective 38 

assessment of soil erosion in large basins. 39 

 40 

Keywords 41 

Coded polygons, Soil erosion assessment, Yellow River Basin, Information 42 

classification, Semi-quantitative model 43 
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1. Introduction 45 

Soil erosion causes 84% of land degradation worldwide (Eswaran et al., 2001) and 46 

leads to other severe environmental problems such as river sedimentation and 47 

non-point pollution (Pimentel et al., 1995; UNEP, 2007; Telles et al., 2011). The global 48 

area of land degraded by water erosion covers nearly 1,100 Mha and is predominantly 49 

located in Asia and Africa (Oldeman, 1994). In China, the gross quantity of eroded soil 50 

exceeds 5 billion tons per year, accounting for about 8% of the World’s total (Jing et al., 51 

2005). The Second National Survey of Soil Erosion indicated that 37% of China’s land 52 

area was affected by water and soil loss, with an even larger area undergoing soil 53 

erosion and deposition processes (Jing et al., 2005). 54 

 55 

In the 20th Century, the primary factors influencing soil erosion were fully investigated, 56 

including precipitation, vegetation, soil type, and land management (Zingg, 1940; 57 

Smith and Whitt, 1948; Meyer, 1984). Several empirical models were proposed for 58 

assessing the status of soil erosion, based on knowledge of the environmental factors 59 

and physical processes involved. The Universal Soil Loss Equation (USLE) was 60 

proposed by the U.S. Department of Agriculture (Wischmeier and Smith, 1965; Meyer, 61 

1984), and later revised as RUSLE (Renard et al., 1997). Although USLE/RUSLE has 62 

been used worldwide (Wang and Jiao, 1996; Biesemans et al., 2000; Li et al., 2010; 63 

Dabney et al., 2011; Xu et al., 2011), it is not always exactly applicable and has 64 

occasionally been misused (Wischmeier, 1976; Boardman, 2006).  USLE works best 65 



 

 

for regions in the USA (Stocking, 1995; Vrieling et al., 2002), with amendments 66 

necessary for other areas. Moreover, the original USLE model was derived from plot 67 

experiments and so is only directly applicable at plot-scale (Terranova et al, 2009; 68 

Kinnell 2010). For large-scale applications, the study areas have to be separated into 69 

cells or sub-basins until the resulting units are sufficiently small for USLE to be 70 

correctly implemented (Millward and Mersey, 1999; Chen et al., 2011; Iroum et al, 71 

2011; Shinde et al., 2011). Ideally, the parameters required for each unit should be 72 

derived using 3S technology (Global Positioning System, Remote Sensing, and 73 

Geographic Information System). Remote sensing can provide high-resolution images 74 

and GIS enables rapid spatial analysis, incorporating the DEM dataset, slope 75 

calculations, division of river basins, and so on. However, such data requirements are 76 

presently beyond the capabilities of many developing countries in Asia and Africa 77 

where soil erosion is particularly severe (Stocking, 1995; Ananda and Herath, 2003; 78 

Vrieling, 2006). Physically-based models have been developed, including CREAMS 79 

(Chemicals, Runoff and Erosion from Agricultural Management Systems; Knisel, 80 

1980), AGNPS (Agricultural Nonpoint Pollution Source; Young et al., 1989), WEPP 81 

(Water Erosion Prediction Project; Nearing et al., 1989), ANSWERS (Areal Nonpoint 82 

Source Watershed Environment Response Simulation; Beasley et al., 1980), and HSPF 83 

(Hydro- logic Simulation Program Fortran; Johanson et al., 1984). Physically-based 84 

models are calibrated through empirical coefficients or exponents for practical 85 

applications (Borah and Bera, 2003; Aksoy and Kavvas, 2005), and thus are highly 86 



 

 

dependent on data accessibility (Boardman, 2006; De Vente et al., 2006), especially 87 

when applied to the assessment of large areas (Mutekanga et al., 2010). 88 

Semi-quantitative models such as PSIAC (PSIAC, 1968) and FSM (Verstraeten et al., 89 

2003) have less strict data requirements (De Vente and Poesen, 2005; Haregeweyn et 90 

al., 2005), but their applications to large basins are still limited owing to the 91 

divergence in empirical parameters for different small basins. With the aid of 3S 92 

technology, physically-based models (Vrieling, 2006; Tian, 2010) could be used for 93 

larger areas, but new challenges arise in how to deal with the massive quantity of data. 94 

For DMMP, uncertainty resulting from the discrimination analysis needs to be further 95 

minimized. 96 

 97 

Ni et al. (2008) proposed a Discrimination Method based on Minimum Polygons 98 

(DMMP) for assessment of soil erosion based on the overlay analysis of spatial 99 

multi- factors. An erosion index (EI) is used for each polygon by multiplying the 100 

normalized environmental factors by weights determined using the Analytic Hierarchy 101 

Process (Saaty, 1980). Representative polygons are selected and then clustered into 102 

reference groups according to erosion grade, whereas the others are assigned to test 103 

groups. For each reference group, a discrimination rule is derived between the 104 

soil-erosion grades of minimum polygons and their EIs in order to assess the 105 

soil-erosion severity level within each polygon in the test groups.  106 

 107 



 

 

This paper proposes a smart coding system (SCS) to encode graded information on 108 

each environmental factor. Increasingly large areas are represented by multiple coded 109 

polygons derived from the overlay of coded factors,. This permits efficient assessment 110 

of the severity of soil erosion in large basins such as the Yellow River Basin. 111 

 112 

2. Methodology 113 

2.1. Classification and Coding Schema for Geographic Information (CCSGI) 114 

Geographic information is often comprehensive and derived from different sources, 115 

including maps, numerical data and texts describing geographical entries. To facilitate 116 

data handling, Classification and Coding of Information (CCI) transforms geographic 117 

information into a set of coding elements via certain prescribed rules. Coding is based 118 

on information classification according to independent attributes (Figure 1). Standard 119 

methods for CCI include hierarchic classification and faceted classification (SAQSIQ, 120 

2002). For CCSGI, it is supposed that hierarchic classification is suitable for qualitative 121 

information, whereas faceted classification is suitable for detailed quantitative 122 

information. CCSGI unites qualitative and quantitative information by applying these 123 

two classification methods together. 124 

[Place Figure 1 here] 125 

 126 

Hierarchic classification is widely used in many fields given that hierarchic structures 127 

are commonplace (Boulton and Wallace, 1973; Zheng, 2000; Dale and Wallace, 2005; 128 



 

 

Dale et al., 2010). Figure 2 shows the dendrogram structure of a hierarchy with 129 

defined levels. In hierarchic classification, the population is divided into N classes, 130 

and then each class is further subdivided into independent refined sub-classes at the 131 

next level, based on the hierarchic relationships between sub-classes and their 132 

node-class. This process repeats until all terminal classes i.e. class-k at level-j (Figure 133 

2) contain enumerable or numeric information that are inappropriate for hierarchic 134 

classification but suitable for faceted classification. For a given level of hierarchic 135 

classification, a coding template is derived that consists of the terminal classes at this 136 

level. The coding template concisely conveys synthetic information concerning the 137 

geographic unit, and is represented by the following set: 138 

 139 

 
1 2{ | , ,... ,..., }i TX X X X XW=  (1) 140 

 141 

where Xi is an item in the coding template and T is the dimension of the set or the 142 

number of attributes considered. 143 

[Place Figure 2 here] 144 

 145 

Each item of this coding template is relatively independent and describes a single 146 

attribute of the geographic unit. At different levels of the hierarchic classification, the 147 

coding template changes. Therefore, this classification method adapts to different 148 

scales at different levels (Dale and Wallace, 2005). 149 



 

 

 150 

For each item quantified by enumerative or numeric information in the coding 151 

template, the faceted classification method is further used to categorize the information 152 

into a specific state or facet according to predefined partitioning rules. Each facet or 153 

state may represent several enumerable values or a range of detailed values between 154 

two thresholds. Hence, information on the population can be reduced to multi-states. 155 

Item Xi in set Ω is given as follows: 156 

 157 

 
1 2{ | , ,..., ,..., }j k

i i i i i iX X x x x x=  (2) 158 

 159 

where j

ix is the state j of Xi; k is the total number of states belonging to Xi. 160 

 161 

This classification scheme is inherently able to describe the subject domain using 162 

simplified quantitative information (Prieto-Diaz, 1991; Herring, 2007). Moreover, a 163 

specific numeric code is assigned for each state/facet and considered as a substitute 164 

for the source information. As classification information, the code is much more 165 

tolerant to data deficiency and inaccuracy than the quantitative numeric information. 166 

In other words, faceted classification helps the data requirement to be fulfilled. 167 

 168 

In short, a mass of given geographic information is partitioned into T classes by 169 

hierarchic classification rules. Subsequently, the codes are obtained by faceted 170 



 

 

classification rules as follows: 171 

 172 

 1 2 1 1 2 2{ | ( , ,..., ,..., ), , ,..., ,..., }i T i i T TC C c c c c c X c X c X c X= Î Î Î Î  (3) 173 

 174 

where ic is the code of element Xi in set Ω. 175 

 176 

The code value ic  is either assigned an ordered integer ranging from 1 to k, or else 177 

values based on its application so as to facilitate easy expansion of the coding system 178 

(and hence its usefulness). Adaptability of the code template at different levels in the 179 

hierarchical classification facilitates tolerance to data deficiency and inaccuracy; in 180 

other words, the CCSGI is self-adaptive at different spatial scales for data of moderate 181 

scarcity in a large basin. 182 

 183 

2.2. Selection, Classification, and Coding of Soil Erosion Environmental Factors  184 

The CCSGI is implemented in the selection, classification and coding of soil erosion 185 

environmental factors in order to complete the representation of environmental factors.  186 

Although information describing the environmental factors might be scale-dependent, 187 

the factors are generally classified under four main headings of climate, topography, 188 

soil, and vegetation (Ni et al., 2008). Figure 3 depicts the hierarchical classification 189 

scheme of environmental factors systematically selected for soil erosion. Here Level 1 190 

is at the highest level, whereas Level 4 the lowest level in the hierarchy. The attributes 191 



 

 

at Level 1 are more qualitative than those at lower levels. Macroscopic variables appear 192 

at Level 2 corresponding to basin-scale. For example, the climate variable at Level 1 is 193 

further specified as annual precipitation at Level 2 for soil loss caused by rainfall. At 194 

Level 3, the topographical variables are further specified as length and gradient, and 195 

slope pattern. Similarly, the vegetation could be interpreted more specifica lly than 196 

vegetation cover at the lower levels. Attributes representing precipitation, gully density 197 

and soil type may remain but be resampled at higher spatial resolution. It should be 198 

noted that the rain regime is more important in small than in large basins (Nearing et 199 

al 2005, Fang et al 2012). 200 

[Place Figure 3 here] 201 

 202 

Table 1 lists the faceted classification codes for each environmental factor at Level 2, 203 

based on the standard released by the Ministry of Water Resource (MWR), China 204 

(2008), which has been widely cited in the literature (see e.g. Shi et al., 2004; Yang et 205 

al, 2005; Fu et al., 2006; Zhou et al., 2008; Liu et al., 2012). Table 1 lists the 206 

multi-states and corresponding ranges of values or facets corresponding to each state. 207 

For example, annual rainfall less than 300mm is coded as 2; soil erodibility of loess 208 

parent material is coded as 5. This makes the categorization scheme more reliable than 209 

conventional empirical methods such as simple clustering or equal division (MWR, 210 

2008). Alternative methods like clustering discrimination could be used in cases where 211 

standardized classifications of factors such as vegetation type, slope length and slope 212 



 

 

pattern are lacking (MWR, 2008). For example, cover indices of different vegetation 213 

types (SEPA, 2006) could be simply calculated and graded for further coding. 214 

[Place Table 1 here] 215 

 216 

2.3. Comparison of Coding Sequences 217 

CCSGI produces representations of environmental factors affecting soil erosion, and 218 

then SCS compares the derived codes (Figure 4). The code with information on 219 

graded environmental factors in a mini-polygon indicates the severity level of soil 220 

erosion in the same geographic unit.  221 

[Place Figure 4 here] 222 

 223 

For comparison, reference groups are established in terms of coding sequences of 224 

environmental factors, and rapid soil-erosion assessment is undertaken as follows. 225 

 226 

(i) Coding of Mini-polygon 227 

The mini-polygon is the basic spatial geographical unit for evaluation of soil erosion 228 

(Wang, 1993), and is directly derived from the overlay of environmental factors using 229 

GIS (Cowen, 1988; Burrough, 1992). By coupling CCSGI with tools in ArcGIS, the 230 

geographic information stored in a minimum polygon is further transformed into a 231 

coding sequence that is easy to handle. Via CCSGI, geographic maps of the grades of 232 

each environmental factor are generated in vector format. Using ArcGIS overlay 233 



 

 

analysis, a coding-sequence map is produced that contains all graded environmental 234 

factors, from which the mini-polygons are generated and coded. Detailed advice on 235 

ArcGIS tools is available at ArcGIS Resource Center ( http://resources.arcgis.com ). 236 

 237 

(ii) Establishment of the Reference Group 238 

A sample of coded mini-polygons is used to establish the reference groups.  The 239 

remaining coded mini-polygons constitute the test groups.  Random sampling is used 240 

for large numbers of coded polygons to ensure the reference groups are representative. 241 

 242 

(iii) Matching of Polygons in the Test Group 243 

Matching of coding sequences of test and reference polygons is the key step to predict 244 

the severity level of soil erosion in the mini-polygons. To measure the similarity of a 245 

pair of coding sequences, a coding sequence with n bits is considered as an 246 

n-dimensional vector c= (c1, c2, ···, cj, ···, cn) T. Then, the cosine of the vector angle 247 

between two coding sequences is calculated from 248 

 249 

 
1 2

1 2

=

T
c c

c c
a  (4) 250 

 251 

in which c1, c2 are multi-dimensional vectors representing the two coding sequences to 252 

be compared. Taking the weights of the different factors into account, equation (4) 253 

becomes 254 

http://resources.arcgis.com/


 

 

 255 

 
1, 2,

1

1 2

=

n

i i i

i

w c c

c c
a =¢

å
 (5) 256 

 257 

in which wi is the weight of factor Xi with respect to soil loss; and ic ,1 , ic ,2  are 258 

elements of vectors c1 and c2 respectively. 259 

 260 

A series of similarity values α ( '‘a ) is acquired through comparison of the coding 261 

sequences in the test and reference groups. Consequently, similar soil erosion grades 262 

are found in the mini-polygons with maximum similarity values. 263 

 264 

3. Assessment of soil erosion status in the Yellow River Basin 265 

3.1. Study Areas and Data Presentation 266 

The Yellow River Basin covers a total area of 795,000 km2. It flows through the Loess 267 

Plateau which is experiencing severe soil erosion. As shown in Figure 5, the annual 268 

gross rate of hydraulically- induced soil erosion in 1990s exceeded 5000 t/km2 (MWR, 269 

2002).  270 

[Place Figure 5 here] 271 

 272 

Referring to CCSGI, information on environmental factors is classified into the 273 

attributes at Level 2 in Figure 3. Datasets (i) ~ (v) are described as follows: 274 



 

 

 275 

(i) Soil-erosion information extracted from 1:1,000,000 digital map of soil- loss 276 

intensity based on the 2nd National Soil Erosion Survey conducted in the 1990s by the 277 

Ministry of Water Resources, China and used as a data source for World Soil 278 

Information (Dijkshoorn et al., 2008). Figure 5 shows the soil erosion zonation map, 279 

with 6 grades ranging from slight erosion (Grade 1) to severe erosion (Grade 6). 280 

 281 

(ii) Daily rainfall records at 66 hydrological stations in the Yellow River Basin 282 

available from 1990 to 1999 via China Meteorological Data Sharing Service System 283 

(http://cdc.cma.gov.cn/index.jsp). 284 

 285 

(iii) Topography data extracted from a 90m resolution DEM, provided by International 286 

Scientific & Technical Data Mirror Site, Computer Network Information Center, 287 

Chinese Academy of Sciences (http://datamirror.csdb.cn). The DEM dataset was 288 

derived from SRTM (Shuttle Radar Topography Mission) digital elevation data V4.1. 289 

 290 

(iv) Soil data from 1:1,000,000 digital map of soil type, provided by the Institute of Soil 291 

Science in Nanjing, Chinese Academy of Sciences (http://www.soil.csdb.cn/). 292 

 293 

(v) Vegetation data from normalized difference vegetation index (NDVI) raster maps of 294 

8 km resolution for the period from 1990 to 1999, obtained from the Environmental and 295 

http://cdc.cma.gov.cn/index.jsp
http://datamirror.csdb.cn/
http://www.soil.csdb.cn/


 

 

Ecological Science Data Center for West China, National Natural Science Foundation 296 

of China (http://westdc.westgis.ac.cn, source for this dataset is the VITO (Flemish Inst. 297 

Technological Research, Belgium), http://www.vgt.vito). The data form part of the 298 

GIMMS (Global Inventory Modelling and Mapping Studies)-NDVI dataset with 299 

temporal scale 15-days and spatial scale 8km. The annual NDVI is the averaged value 300 

within each year, from which the multiple annual NDVI is further derived. 301 

 302 

Within the period of interest from 1990 to 1999, Dataset (i) is used for validation of 303 

assessment results of SCS, whereas Datasets (ii) ~ (v) are used as input information of 304 

SCS. The data are considered sufficiently accurate if they provide enough information 305 

is provided for the coding of each environmental factor based on Table 1. 306 

 307 

3.2. Assessment Process 308 

3.2.1. Data Processing 309 

(i) Rainfall factor: Mean annual rainfall are derived from the daily rainfall at each 310 

meteorological station, and then a scatter map is created using ArcGIS with 311 

corresponding information on the latitudes and longitudes of the stations. Kriging 312 

interpolation is used to obtain a raster map of mean annual rainfall throughout the 313 

basin. 314 

 315 

(ii) Topographical factors: Datum values of erosion surface elevation, gully density and 316 

http://westdc.westgis.ac.cn/
http://www.vgt.vito/


 

 

relative height of terrain are determined using ArcGIS from the DEM (Tang and Yang, 317 

2006). 318 

 319 

(iii) Soil factor: Erodibility grades are assigned to different soil types according to the 320 

classification rules listed in Table 1. 321 

 322 

(iv) Vegetation factor: Vegetation cover (C) is obtained from the NDVI map by (Zhao, 323 

2003) 324 

 325 

 
min

max min

NDVI NDVI
C

NDVI NDVI

-
=

-
 (6) 326 

 327 

where minNDVI  and maxNDVI  are the minimum and maximum values of NDVI, 328 

respectively. 329 

 330 

3.2.2. Coding and Identification of Mini-polygons 331 

The CCSGI is used to encode the environmental factors by faceted classification. 332 

Table 1 indicates how the rainfall, topography and vegetation cover factors are graded 333 

according to standard classification rules.  Coding maps are derived from the raw data 334 

on the environmental factors. All spatial gradation data at different scales are then 335 

transformed into vector format. Furthermore, all coded vector maps are overlaid and 336 

the mini-polygons generated. Each mini-polygon is identified by a specific coding 337 



 

 

sequence. The spatial accuracy of yielded polygons is determined by the minimum 338 

scale within the maps. 339 

 340 

3.2.3. Polygon Matching 341 

The coded minimum polygons are randomly divided into reference and test groups. 342 

For each mini-polygon within the reference group, the grade of soil erosion intensity 343 

is determined as follows. Six grades of soil-erosion intensities are classified in 344 

reference polygons according to the 1990s’ survey results. Polygon matching based on 345 

coding sequences is then undertaken to determine the soil- loss intensity of the test 346 

group. Equation (4) is used to examine the similarity of the coding sequence without 347 

considering the weights of the environmental factors. Figure 6 illustrates the 348 

pre-processing, coding, and classification procedure as applied to the assessment of soil 349 

erosion in the Yellow River Basin. 350 

 351 

[Place Figure 6 here] 352 

 353 

3.3. Evaluation Results 354 

The Yellow River Basin is divided into 9916 coded polygons, of which ~90% of the 355 

total area is covered by polygons each of area less than 100 km2, and ~75% by 356 

polygons each of area less than 50 km2. Each polygon is represented by a 357 

corresponding coding sequence generated from graded environmental factors.  Figure 358 



 

 

7 shows the soil erosion intensity with a sample ratio (SR) of 5%, i.e. ratio of the 359 

number of coded polygons in reference groups to the total number of coded polygons. 360 

[Place Figure 7 here] 361 

 362 

To quantify the degree of consistency between the calculated and observed results, a 363 

variable defined as area overlap ratio (R) is introduced as follows: 364 

 365 

 
ci

i

i

A
R

A
=
å
å

      (7) 366 

where Ri is the overlap ratio of the i-th grade soil erosion, Ai is the surveyed area of 367 

mini-polygons with i-th grade soil erosion over the whole basin area, and Aci is the 368 

area of mini-polygons with the same calculated and surveyed grades of soil erosion. 369 

 370 

Figure 8(a) presents the area overlap ratios for the six soil erosion grades. The mean 371 

value of R is about 86.1% (with a standard error of 1.2% for 8 sets of calculations) over 372 

the entire Yellow River Basin, whilst the minimum value of R is 75% for the sixth grade. 373 

The overall accuracy is enhanced by the SCS approach, as is evident by comparison 374 

against the average R of 76% by DMMP (Ni et al., 2008) for the same basin with the 375 

same input data. For the consistency ratio of each soil erosion grade in terms of the 376 

number of coded polygons, the accuracy ratio is 89.1% on average. Figure 8(b) 377 

depicts the detailed overlap ratios for each grade, showing that the minimum overlap 378 

ratio in terms of the number of coded polygons is 76.9% for the 6th grade of soil 379 



 

 

erosion intensity. 380 

[Place Figure 8 here] 381 

 382 

4. Discussion 383 

Based on a Smart Coding System, the relationship has been properly established 384 

between environmental factors and soil erosion intensity. For the Yellow River Basin, 385 

a sample ratio of 5% achieves an average area overlap ratio of 86.1% with standard 386 

error of 1.2% over the whole study area. Moreover, the sensitivity analysis 387 

demonstrates that the sample ratio/number can be reduced further, with hardly any 388 

effect on prediction accuracy. Meanwhile, the modeling uncertainty also reduces 389 

compared to DMMP. SCS is not only applicable to larger basins but also more 390 

efficient through data compression via CCSGI. 391 

 392 

4.1. Sensitivity Analysis of Sample Ratio/Number 393 

A sensitivity analysis is undertaken to examine the influence of sample ratio/number on 394 

the predicted results. Figure 9 shows the change of mean area overlap ratio (R) as 395 

sample ratio (SR) is increased from 0.2% to 15%.  At least 8 simulations are carried 396 

out for each SR to avoid uncertainty from random sampling. It can be seen that R 397 

increases monotonically whereas the standard error decreases with increasing SR.  For 398 

SR > 5%, R and its standard error reach 95% and 0.5% respectively. 399 

[Place Figure 9 here] 400 



 

 

 401 

The relationship between the mean value of R and the sample number (SN) of coded 402 

polygons in the reference group is investigated to test the minimum number of coded 403 

polygons required for satisfactory prediction of soil loss intensity. There is a positive 404 

correlation between R and SN  (Figure 9). An overlap ratio of R ~ 80% is achieved for 405 

SN ~ 200, whereas further increase of SN does not lead to any significant gain in R. To 406 

reduce workload, SN = 200 is sufficient as a reference value. 407 

 408 

4.2. Uncertainty of Assessment 409 

Similarity between coded polygons is related to uncertainty in application of the SCS, 410 

and is quantified using the vector cosine between each pair of coding sequences 411 

derived from CCSGI. The closer to unity the cosine value, the more reliable is the 412 

matching result. Figure 10 presents a histogram illustrating the percentages of coded 413 

polygons with different similarity bands; the values of similarities range from 0.96 to 1 414 

with the majority close to 1. This distribution of similarities implies the assessment is 415 

highly reliable. SCS seems to have more advantages over discrimination analysis for 416 

assessing test groups (Ni et al., 2008) through discrimination using geographical 417 

information and reduction in uncertainty. A distance index, denoted 
0

0

| |EI EI
DI

EI

-
=  418 

where EI is the erosion index of a test polygon and EI0 is the central value of within its 419 

matched group, is now used to measure the relative distance from EI to EI0 and hence to 420 

indicate the uncertainty of the matching results. As DI approaches 0, the matching 421 



 

 

result is more accurate (and less uncertain). Figure 11 plots the cumulative percentage 422 

of the number of DI values determined using discrimination analysis. Here, DI is 423 

generally not close to 0, with more than 50% of values greater than 0.5, and 20% 424 

greater than 1. 425 

[Place Figure 10 here] 426 

[Place Figure 11 here] 427 

 428 

Information entropy is introduced to quantify the uncertainty of the assessed results 429 

derived from the DMMP and the SCS. Information entropy φ indicates the uncertainty 430 

of information Xi based on its probability distribution p(Xi) as follows (Shannon, 1948; 431 

Li and Du, 2005): 432 

 433 

 2[ ( ) log ( )]i ip X p Xj = -å  (8) 434 

 435 

Larger information entropy means greater uncertainty. The calculated information 436 

entropies of coded-polygon DIs and similarities are φ = 7.49 and φ = 1.33 for DMMP 437 

and SCS respectively, confirming the higher reliability of SCS based on coding 438 

sequences. 439 

 440 

4.3. Efficiency for Large Basins 441 

SCS reduces data redundancy and hence promotes efficiency of data processing. For 442 



 

 

example, the number of polygons in the whole Yellow River Basin is reduced by nearly 443 

90% (from 81,054 in DMMP to 9916 in SCS). For a given number N of basin polygons 444 

and a sample ratio SR, the number of matches has previously been calculated from 445 

2(1 )mN SR SR N= - . When N is reduced by 90%, mN  accounts for only 1.5% of the 446 

original number of matches required before CCSGI is implemented. Improved 447 

efficiency is to be expected as the number of polygons increases. By setting a sample 448 

ratio, the reduction in the total number of polygons also leads to a decrease in the 449 

number of polygons in reference group. For the Yellow River basin, only 200 coded 450 

polygons in the reference group are needed as matching polygons in the test group.  451 

SCS is therefore potentially useful for a cost-effective assessment of soil erosion in 452 

large basins. 453 

 454 

5. Conclusions 455 

Efficient assessment of soil loss is essential for sustainable river basin management. 456 

This paper proposes an approach based on a smart geo-coding system coupled with a 457 

rapid soil loss assessment framework. The system encodes the graded environmental 458 

factors in a generated polygon and thereby determines the soil erosion intensity in the 459 

polygon. Following the basic assumptions underpinning SCS, the soil erosion 460 

intensity values in polygons of the test group should be similar to corresponding 461 

values in polygons of the reference group, provided similar coding sequences are 462 

implemented. When SCS is applied to assessment of soil erosion intensity throughout 463 



 

 

the entire Yellow River Basin, satisfactory agreement is reached between the expected 464 

and observed results for about 86% of the total area. Sensitivity analysis indicates that 465 

the number of samples in the reference groups can be greatly reduced without loss of 466 

accuracy. Herein, reliable results are obtained using less than 200 reference samples 467 

from the 9916 coded polygons, which implies that only 2% representative polygons are 468 

required to ensure accurate assessment. SCS inherits most of the advantages of DMMP, 469 

including loose data requirement. By a simple coding-sequence matching of the 470 

polygons in reference and test groups, SCS significantly reduces computational load 471 

and uncertainty.  SCS offers an alternative method for cost-effective assessment of 472 

soil loss or conservation in large river basins. 473 
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Table 1. Classification and gradation for environmental factors 

Grade/ 

Code 

Annual 

rainoff 

(mm) 

Gully 

density 

(km/km2) 

Erosion 

base 

(m) 

Relative 

Height 

(m) 

Soil 

erodibility 

Cover 

(%) 

1 
 

<1 0 <50 
 

>90 

2 <300 1~2 1000 50~200 

black soils, 

chernozems, 

alpine/sub-alpine 

felty soils 

70~90 

3 300~600 2~3 4000 200~500 

cinnamon soils, 

brown earths, 

yellow-brown earths 

50~70 

4 600~1000 3~5 
 

500~1000 

yellow earths,  

red earths, 

latosols 

30~50 

5 1000~1500 5~7 
 

1000~1500 
loess parent  

materials 
10~30 

6 >1500 >7 
 

>1500 

sandy soils, desert  

soils, loose 

weathering materials  

<10 

  



 

 

 

 

 

 

Figure 1. Classification and Coding of Information (CCI) 
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Figure 2. Classification and Coding Schema for Geographic Information 

(CCSGI) 
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Figure 3. Hierarchical classification of factors influencing soil erosion 
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Figure 4. From Classification and Coding Schema for Geographic Information 

(CCSGI) to Smart Coding System (SCS) 

 

E-F: Environmental Factors; C-S: Coding Sequences. 
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Figure 5. Water-induced soil erosion in the Yellow River Basin (MWR, 1990s) 

  



 

 

 

Figure 6. Smart Coding System (SCS) for soil erosion assessment in the Yellow 

River Basin 
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Figure 7. Spatial distribution of soil erosion intensity in Yellow River Basin from 

Smart Coding System (SCS) 

  



 

 

 

Figure 8(a) Overlap ratio of observed and calculated areas of the same 

soil-erosion grade 

 

 

Figure 8(b) Overlap ratio of observed and calculated numbers of coded 

polygons of the same soil-erosion grade 
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Figure 9. Sensitivity of R with varying sample ratio 
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Figure 10. Percentage distribution of similarities between paired coded polygons 
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Figure 11. Percentage distribution of distance index in discrimination analysis 
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