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Conformal Geometric Algebra has been introduced into geographic information science as a mathematical theory because of
its advantages in terms of uniform multidimensional representation and computation. The traditional intersection computation
between two geometric objects of different types is not unified. In this study, we propose algorithms based onConformal Geometric
Algebra to determine the spatial relationships between geographic objects in a unified manner. The unified representation and
intersection computation can be realized for geometric objects of different dimensions. Different basic judgment rules are provided
for different simple geometries. The algorithms are designed and implemented using MapReduce to improve the efficiency of the
algorithms. From the results of several experiments we provide, the correctness and effectiveness of the algorithms can be verified.

1. Introduction

Geographic information is used widely to support digital
replicas of the real world. For decades, spatial objects and
their relationships have been represented and calculated
based on Euclidean geometry. Due to the variable require-
ments for the expression and computation of multidimen-
sional objects, researchers have aimed to improve or find
new ways to satisfy needs, including the mathematical foun-
dations employed [1]. Thus, Liu et al. proposed a general-
field model to unify continuous field and discrete object
conceptualizations [2]. Li and Qian presented a combined
dynamic binary generalization tree method to represent two-
dimensional geographic objects and for managing spatial
data based on volunteered geographic information [3]. Yang
et al. proposed amultiscale expression-oriented subdivisional
encoding method to meet the demands of geographic object
representation at different application levels, with different
details, and arbitrary scales [4].

The feature of multidimensional-unified representation
makes Geometric Algebra (GA) become a hot research in

geography. Yuan et al. proposed a multidimensional-unified
data model based on Clifford algebra and they developed
a prototype software system called Clifford algebra based
on unified spatial-temporal analysis (CAUSTA) for inves-
tigating and modeling the distribution characteristics and
dynamic processes of complex geographical phenomena [5].
GA has been employed widely as a new mathematical tool
for multidimensional-unified representation and computa-
tion [6–15]. Luo et al. developed a new data structure to
support unified organization and computation of geomet-
rical primitives, which can reduce the complexity of data
architectures and improve the processing ability of computer
graphic software, but the extra two dimensions in Conformal
Geometric Algebra could bring in low efficiency [16]. Yu et al.
implemented multidimensional representation for 3D vector
dat, and calculated intersection relations between Delaunay-
Triangulated Irregular Networks (DTINs) with meet opera-
tor.They conducted parallel computation by GPU to improve
computing efficiency [17]. In this paper, we usemeet operator
to judge intersection relation between objects of different
types and MapReduce to implement parallel computing.
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Many scholars do some researches on the triangle-to-
triangle intersection test. In [18], Möller proposed a signed
distance method to exclude some nonintersection situations
and detect intersection if two segments between one triangle
and the plane to which the other triangle belongs overlap.
In [19], based on signed distance and the intersection rela-
tionship between the two intersection line segments, Held
gave an algorithm for different kinds of geometric objects.
From the algebraic perspective, Tropp et al. made full use
of the process values during the problem resolving and the
linear relation in matrix operation to accelerate the problem
to be resolved [20]. Guigue and Devillers employed the
signed determinant and the intersection line relationship to
determine the intersection relationships of the two triangles
[21]. In [22], based on Conformal Geometric Algebra, Zong
et al. discussed the intersection computation between two
triangles and verified the algorithm by using Antarctic ice
sheet simulation data. Luo et al. resolved the intersection
relationship of two triangles based onMVTree structure, but
some optimization methods may be used to increase some
efficiency in the future [16]. In [23], Shen et al. implemented
a fast detection algorithm for 3D convex polygons based
on clamping-edge pair. Wei presented an algorithm which
absorbed the idea from Tropp reducing the intersection test
to the segment and triangle in the same planar and used
the idea of classified discussions by comparing directions of
coplanar vectors’ cross products [24]. Sugihara developed an
intersection algorithm based on Delaunay triangulation [25].
Most of them show intersect in the intersection algorithm
between two triangles and test the intersection relationship
between two polygons by decomposing them into trian-
gles.

However, the above studies mainly aimed at the inter-
section relationship judgment between two triangles. The
algorithms dealing with geometric objects of different types
are rare and not unified.

The computation of spatial relationships is the most basic
operation in spatial analysis, including topological, order, and
metric relationships. The intersection algorithm is a basic
operator for topological computation. The parallel line seg-
ment intersection strategy based on uniform grids was devel-
oped for use in a shared architecture, which can effectively
utilize computational resources in a parallel manner [26].
Wang proposed a parallel intersection algorithm for vector
polygon overlay [27]. The parallel computation strategy can
work well when coping with large volumes of data.

In the present study, we attempt to handle geometric
objects of different types in a unified fashion based on
Conformal GA (CGA) and to expand the algorithm on
the MapReduce platform to process massive amounts of
spatiotemporal data.

Themain contributions of the present study are as follows.

(1) We propose unified spatial algorithms and specific
rules for intersection relationships judgment for geo-
metric objects of different types.

(2) We design several experiments to verify the cor-
rectness of the unified intersection algorithms. And
the algorithms are implemented on the MapReduce

platform to overcome the restriction of using hard-
ware on standalone mode.

2. Methodology

2.1. CGA. GA is an algebraic language that solves geometric
problems in algebraic form. The geometric product unifies
the dimension, geometry, vector, and scalar operations [28–
30].

Suppose that we have two arbitrary multivectors, 𝐴, 𝐵;
then, the geometric product between 𝐴 and 𝐵 is

𝐴𝐵 = ( 𝑛∑
𝑠=1

⟨𝐴⟩𝑠)

𝐵 = 𝑛∑
𝑠=1

(⟨𝐴⟩𝑠 𝐵) ,
(1)

where 𝐴 denotes a linear combination of its homogeneous
grades parts, 𝑛 denotes the dimension of 𝐴, ⟨𝐴⟩𝑠 denotes
multivector part of grade 𝑠. The product can be decomposed
into basic geometric products of grade 1 vectors [31, 32].

CGA is the most common GA space. Based on the
traditional Euclidean space, two extra base vectors, 𝑒𝑜 and 𝑒∞,
are employed to represent basic geometric objects. The hier-
archical geometric structure corresponds to the hierarchical
Grassmann structure for the outer product inCGA.The inner
product in CGA can describe basic metric information such
as the distance and angle. We construct a multidimensional-
unified data model based on blade and multivector and
intersection algorithms using the basic operations in CGA.

2.2. Multidimensional-Unified Representation. A blade is the
outer product of a series of linearly independent vectors. A
bladewith grade k can be represented by k-blade.When grade
is 0, 1, 2, 3, 4, and 5, the corresponding blade is scalar, vector,
bivector, trivector, quadvector, and pseudoscalar, respectively
[29].

A multivector is the linear combination of geometric
objects with different dimensions and it is the basic mathe-
matical structure for multidimensional objects.Themultivec-
tor can be utilized to represent complex geometry objects and
it contributes to making objects with different dimensions
representation-unified.

The grade extracting operation ⟨⟩𝑖 is used to resolve the
part with grade 𝑖 in the multivector. For example, in the 5
dimensions conformal space, for example, for𝐴 = 𝑎0 +𝑎1𝑒1 +⋅ ⋅ ⋅ +𝑎12𝑒12 + ⋅ ⋅ ⋅ +𝑎123𝑒123 + ⋅ ⋅ ⋅ +𝑎1234𝑒1230 + ⋅ ⋅ ⋅ +𝑎12345𝑒1230∞,
the resolution results are as follows:

⟨𝐴⟩0 = 𝑎0 Scalar

⟨𝐴⟩1 = 𝑎1𝑒1 + ⋅ ⋅ ⋅ Vector

⟨𝐴⟩2 = 𝑎12𝑒12 + ⋅ ⋅ ⋅ Bivector

⟨𝐴⟩3 = 𝑎123𝑒123 + ⋅ ⋅ ⋅ Trivector

⟨𝐴⟩4 = 𝑎1234𝑒1234 + ⋅ ⋅ ⋅ Quadvector

⟨𝐴⟩5 = 𝑎12345𝑒1230∞ Pseudoscalar.

(2)
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Figure 1: Multidimensional-unified representation data model process based on the CGA.

For instance, given two points 𝑃1(1, 0, 0) and 𝑃2(0, 1, 0),
the representations in conformal space are𝑃1 = 𝑒1+(1/2)𝑒∞+𝑒0 and 𝑃2 = 𝑒2 +(1/2)𝑒∞ +𝑒0.The line constructed by the two
points is 𝐿𝑃

1
𝑃
2

= 𝑃1 ∧ 𝑃2 ∧ 𝑒∞. Using the outer product, the
operation is𝐿𝑃

1
𝑃
2

= 𝑒1∧𝑒2∧𝑒∞+𝑒1∧𝑒0∧𝑒∞+𝑒0∧𝑒2∧𝑒∞, which
is part of𝐴 and corresponding to ⟨𝐴⟩3 in the grade resolution.
For other basic objects, for example, the point can be resolved
using ⟨𝐴⟩1, the point pair ⟨𝐴⟩2, the line and circle ⟨𝐴⟩3, and
the plane and sphere ⟨𝐴⟩4. Thus, the multivector is capable
of representing geometry with different dimensions. In this
study, a geographic object is represented by a multivector
with boundary constraints. The data modeling process is
illustrated in Figure 1.

We can represent an arbitrary geometric object in the
following CGA format:

[𝑂𝑏𝑗𝑒𝑐𝑡𝑇𝑦𝑝𝑒, 𝑂𝑏𝑗𝑒𝑐𝑡𝐼𝐷, 𝑂𝑏𝑗𝑒𝑐𝑡𝐹𝑜𝑟𝑚𝑎𝑡, 𝐴𝑡𝑡𝑟1,
𝐴𝑡𝑡𝑟2, . . . , 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝] ⟨𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡⟩ , (3)

where ObjectType represents the type of the object, ObjectID
represents the unique identifier, ObjectFormat represents the
multivector representation, Attr1, Attr2. . . represent attribute
information for the object, Timestamp represents the time
information, and ⟨𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡⟩ is the boundary constraint.
When the ObjectType is a point, ObjectID is the point ID.
When the ObjectType is a line segment, ⟨𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡⟩ denotes
the ID of the endpoints of the line segment. When the
ObjectType is a polygon, ⟨𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡⟩ denotes the ID of the
boundary lines of the polygon.

2.3. Intersection Algorithm

2.3.1. Meet Operator. The meet operator can be utilized to
determine the intersection relationship between two objects
of different dimensions in a unified fashion. The objects that
the meet operator can deal with directly are basic geometric
objects with no boundaries.

Given two blades, A and B, the meet operator satisfies

∀𝑥 : {{{
𝑥 ∧ 𝐴 = 0
𝑥 ∧ 𝐵 = 0. (4)

The concrete computing formula is as follows:

𝑀 = 𝐴 ∩ 𝐵 = (𝐵 ⋅ 𝐼𝐴𝐵) ⋅ 𝐴 = 𝐵∗ ⋅ 𝐴, (5)

where 𝐼𝐴𝐵 denotes the pseudoscalar forming the minimal
subspace which contains A and B. 𝐵∗ is the duality operation
of B. In [16], Luo et al. employed meet operator to judge
intersection relationships.

Under certain circumstances, the objects are constrained
with their boundaries. The specific intersection relationship
judgment rules are depicted in Section 2.3.2.

2.3.2. Specific Judgment Rules. Cameron and Lasenby stated
that CGA can provide benefits for understanding multivec-
tors and improving algorithms for computer graphics and
vision.They discuss intersection ordering for from/back-face
to investigate possible advantages to show different spheres
and triangular facets in a scene. Here, we try to construct
a comprehensive inclusion relationship between basic geo-
metric objects [33]. Different intersection algorithms are
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Table 1: The meet operation results between basic objects.

Re 𝑠 = 𝑃1 ∩ 𝑃2 If Re 𝑠 = point, 𝑃1, 𝑃2 intersect P1 P2

If Re 𝑠 = MGAO, 𝑃1, 𝑃2 do not intersect P1 P2

Re 𝑠 = 𝑃 ∩ 𝐿 If Re 𝑠 = point, 𝑃, 𝐿 do not intersect L P

If Re 𝑠 = MGAO, 𝑃, 𝐿 do not intersect L P

Re 𝑠 = 𝑃 ∩ Φ If Re 𝑠 = point, 𝑃,Φ intersect P Φ

If Re 𝑠 = MGAO, 𝑃,Φ do not intersect P Φ

Re 𝑠 = 𝐿1 ∩ 𝐿2
If Re 𝑠 = point, 𝐿1, 𝐿2 intersect L2

L1

If Re 𝑠 = line, 𝐿1, 𝐿2 intersect L2L1

If Re 𝑠 = MGAO, 𝐿1, 𝐿2 do not intersect L2L1

Re 𝑠 = 𝐿 ∩ Φ
If Re 𝑠 = point, 𝐿,Φ intersect L

Φ

If Re 𝑠 = line, 𝐿,Φ intersect L Φ

If Re 𝑠 = MGAO, 𝐿,Φ do not intersect L
Φ

Re 𝑠 = Φ1 ∩ Φ2
If Re 𝑠 = point, Φ1, Φ2 intersect Φ1

Φ2

If Re 𝑠 = plane, Φ1, Φ2 intersect Φ1
Φ2

If Re 𝑠 = MGAO, Φ1, Φ2 do not intersect
Φ1

Φ2

employed for different types of geometric objects. For the
intersection judgment, the outer product, inner product, and
geometric product are employed.

First, the line segment is the basic construction unit for a
polygon.The complex geometric objects are decomposed into
several simple geometric objects to perform the intersection
operation. The meet operation results between basic objects
are as seen in Table 1. Here, we define MGAO (Meaningless
Geometric Algebra Object), which refers to the objects that
are not meaningful in GIS. If the computation result is
recorded as MGAO that means that the basic GA objects are
not intersected.

Case 1 (the intersection relationship between two points 𝑃1
and 𝑃2). Record meet operation result Re 𝑠 between the two
points 𝑃1 and 𝑃2. If Re 𝑠 is a point, 𝑃1 intersects with 𝑃2, and
If Re 𝑠 is MGAO, 𝑃1 does not intersect with 𝑃2.
Case 2 (the intersection relationship between point𝑃 and line
segment 𝐿𝐴𝐵). Line segment 𝐿𝐴𝐵 is a line with a boundary
constraint. Straight line 𝐿𝑆𝐿 is the line going through line
segment 𝐿𝐴𝐵. Record, meet operation result Re 𝑠 between
point 𝑃 and straight line 𝐿𝑆𝐿.

If Re 𝑠 is MGAO, 𝑃 and 𝐿𝐴𝐵 do not intersect. If Re 𝑠 is
a point, then, for line 𝐿𝑆𝐿 containing 𝐴 and 𝐵, the outer
product representation is 𝐿𝑆𝐿 = 𝐴 ∧ 𝐵 ∧ 𝑒∞. We need
to determine the intersection relationship between point 𝑃
and line segment 𝐿𝐴𝐵. According to the inner product, outer

product, and geometric product in GA, we can construct two
representations, as follows:

𝑡1 = (𝐴 ∧ 𝑃 ∧ 𝑒∞) 𝐿𝑆𝐿
𝑡2 = (𝑃 ∧ 𝐵 ∧ 𝑒∞) 𝐿𝑆𝐿.

(6)

If 𝑡1 = 0 ‖ 𝑡2 = 0, then point 𝑃 matches one of the
endpoints of line segment 𝐿𝐴𝐵, whichmeans that𝑃 intersects
with 𝐿𝐴𝐵.

If 𝑡1 < 0 ‖ 𝑡2 < 0, then point 𝑃 is not within line segment𝐿𝐴𝐵, which means that 𝑃 does not intersect with 𝐿𝐴𝐵.
Case 3 (the intersection relationship between point 𝑃 and
polygon 𝑀). Record the meet operator result Re 𝑠 between
point 𝑃 and polygon 𝑀. If Re 𝑠 is MGAO, 𝑃 and 𝑀 do
not intersect. If Re 𝑠 is a point, then we construct the
representation: 𝑡 = (𝑃∧𝐿) ⋅Φ, where 𝑃 is the point that needs
to be assessed,𝐿 is the boundary of the polygon,Φ is the plane
towhich𝑀 belongs,Φ = 𝐶∧𝑒∞, C is the circle that surrounds
polygon𝑀, and 𝑒∞ is infinity.

We obtain the boundary of polygon𝑀 sequentially and if
equation 𝑡 < 0 ‖ 𝑡 = 0 meets each boundary, then point 𝑃 is
within or on the boundary of polygon𝑀 (that is 𝑃 intersects
with𝑀); otherwise, point𝑃 is outside polygon𝑀 (i.e.,𝑃 does
not intersect with𝑀).

Case 4 (the intersection relationship between two line seg-
ments 𝐿𝐴

1
𝐵
1

and 𝐿𝐴
2
𝐵
2

). For line 𝐿𝑆𝐿
1

containing𝐴1 and 𝐵1,
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𝐿𝑆𝐿
1

= 𝐴1 ∧ 𝐵1 ∧ 𝑒∞, and, for the line 𝐿𝑆𝐿
2

containing 𝐴2
and 𝐵2, 𝐿𝑆𝐿

2

= 𝐴2∧𝐵2∧𝑒∞. By transferring the entities from
Euclidean space into conformal space, the following equation
can be obtained:

𝐿 = 𝐿1𝑒𝑜12 + 𝐿2𝑒𝑜13 + 𝐿3𝑒𝑜1∞ + 𝐿4𝑒𝑜23 + 𝐿5𝑒𝑜2∞
+ 𝐿6𝑒𝑜3∞ + 𝐿7𝑒123 + 𝐿8𝑒12∞ + 𝐿9𝑒13∞
+ 𝐿10𝑒23∞.

(7)

By using the meet operation, we have the following:

Meet (𝐿𝑆𝐿
1

𝐿𝑆𝐿
2

) = 𝐿𝑆𝐿
1

∩ 𝐿𝑆𝐿
2

= (𝐿𝑆𝐿
2

⋅ 𝐼) ⋅ 𝐿𝑆𝐿
1

. (8)

This operation yields the multivector, MGAO, or a point
object.

Step 1.Themeet operation is used to compute the intersection
result between two lines. If the result is MGAO, then the two
lines are parallel; otherwise, go to Step 2.

Step 2. Assess the intersection relationship between the
intersection point and the two line segments, according to the
detailed rules described in Case 2.

Step 3. If the intersection point is within or matches with one
endpoint of the two line segments, then the two line segments
intersect.

Case 5 (the intersection relationship between line segment 𝐿
and polygon 𝑀). Construct straight line 𝐿𝑆𝐿 going through
the line segment and planeΦ covers the polygon. Record the
meet operator result Re 𝑠 between 𝐿𝑆𝐿 andΦ.

If Re 𝑠 is MGAO, 𝐿𝑆𝐿 and Φ do not intersect and the line
segment 𝐿 and the polygon 𝑀 do not intersect either. If Re 𝑠
is a line, 𝐿 and𝑀 intersect. If Re 𝑠 is a point, named 𝑄, then,
according to Case 2, we obtain the intersection relationship𝐼𝑅1 between point 𝑄 and line segment 𝐿. According to
Case 3, intersection relationship 𝐼𝑅2 between point 𝑄 and
polygon 𝑀 is achieved. If 𝐼𝑅1 and 𝐼𝑅2 meet the conditions
simultaneously, 𝐿 and 𝑀 intersect; otherwise, 𝐿 and 𝑀 do
not intersect.

Case 6 (the intersection relationship between two polygons𝑀1 and𝑀2). We construct two planes using three points that
are not collinear and infinity; that is,Φ1 = 𝐴1 ∧𝐵1 ∧𝐶1 ∧ 𝑒∞
andΦ2 = 𝐴2 ∧𝐵2 ∧𝐶2 ∧ 𝑒∞. Record the meet operator result
Re 𝑠 between two planes Φ1 and Φ2.

If Re 𝑠 is a plane, it means that the two polygons are
coplanar.The intersection relationship judgment is a coplanar
problem. The detailed judgment rule is as follows.

For the two polygons, the representations are Σ1 = 𝐴1 ∧𝐵1 ∧ 𝐶1 ∧ 𝑒∞⟨𝐴1, 𝐵1, 𝐶1, . . .⟩ and Σ2 = 𝐴2 ∧ 𝐵2 ∧ 𝐶2 ∧𝑒∞⟨𝐴2, 𝐵2, 𝐶2, . . .⟩, respectively. The IDs in angle bracket
are boundary constraints. First, we assess the intersection
relationship between the vertices of one polygon and the
other polygon (see Case 3). If the intersection relationship is
not satisfied, we assess the intersection relationship between

the boundary line segments of the two polygons (see Case
4). Thus, we can summarize the assessment steps as fol-
lows.

Step 1. Assess the intersection relationship between the
vertices of these two polygons. If there is one vertex within
the other polygon, the two polygons intersect; otherwise, go
to Step 2.

Step 2. Decompose the polygon into a boundary line set.

Step 3. According to Step 1, we have taken the situation where
one object is inside the other one into consideration.Then, for
each line segment in one polygon, we obtain its intersection
relationship with each line segment in the other polygon.
If there is an intersection relationship between the two line
segments, then the two polygons intersect; otherwise, they do
not intersect with each other.

If Re 𝑠 is a straight line, named 𝐿𝑆𝐿, we have to determine
the intersection relationship between 𝐿𝑆𝐿 andΦ1,Φ2, respec-
tively.

For each line segment in polygon 𝑀1, we obtain its
intersection relationship with straight line 𝐿𝑆𝐿 (see Case 5).
Also, we obtain the intersection relationship between each
line segment of polygon 𝑀2 and straight line 𝐿𝑆𝐿. If both
of these two situations meet, the two polygons intersect;
otherwise, they do not intersect with each other.

The above assessments are specific judgment rules for
testing intersection relationships. To cope with massive
amounts of spatial data, we must implement the intersection
algorithms in parallel. However, one computer always lacks
sufficient computational resources for this purpose in terms
of its CPU andmemory, especially when the target data reach
a specific volume.Thus, it is obviously difficult for a standard
PC to run a massive data computation program and it is
also time-consuming, along with being unsuitable in certain
conditions. In many studies, parallel computing has been
performed using massively parallel processors, symmetric
multiprocessors, OpenMP, or clusters. The computational
power can be enhanced and the time required can be
decreased, but the hardware on one personal computer is still
limited. Thus, we used the open source parallel implementa-
tion of MapReduce to achieve our aim.

3. Case Study

The intersection algorithms are implemented on open source
codes GA sandbox 1.0.7. The basic operations, such as inner
product, outer product, and geometric product, and the
basic operators, like reverse, reflection, meet, join, and other
operators, are implemented. So, it is convenient for us to
accomplish our work.

The data we used in our experiments are land use data,
which are common vector data, such as shp, mdb, and gdb.
We take land use data to test parallel intersection algorithms,
the numbers of the 5 features sets are as follows: 22183,
174881, 695343, 1386987, and 5547948. In addition, the data
we referred to in parallel experiments are coplanar.
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Figure 2: Intersection relationships between geometries of different types.

3.1.TheCorrectness Verified Experiments. Point, polyline, and
polygon are three basic types of geometries with which we
often deal in spatial analysis. We are often confronted with
the intersection computing among them. As described in
Section 2.3, we can implement the intersection computing
in a unified manner. In Figure 2, intersection relationships
between geometries of different types that can be distin-
guished are depicted.

In Figure 2, using intersection algorithms, we can judge
whether two points intersect. For one point and one line
segment, we recognize the intersection relation meets when
the point locates the edge or interior of the line segment. For
one point and one polygon, as long as the point is situated in
the edge or interior of the polygon, they intersect. For two line
segments, we judge the location of intersecting point; if the
intersecting point lies in the edge or interior of both line seg-
ments, they intersect. For one line segment and one polygon,
we have to judge whether the intersecting point lies in the
edge or interior of the line segment and, one special situation,
that is, whether one edge of the line segment is inside the
polygon. For two polygons, the 7 intersection situations can
be distinguished according to the intersection algorithms.

To verify the correctness of the algorithms, we design a
series of experiments. In Figure 3, the unified intersection
algorithms are carried out. The features of different types
intersecting with the region in red color are selected. Experi-
ments show that the unified algorithms are correct.

Also, we conduct the unified intersection algorithms
using massive data; the intersection results of different types
are shown, respectively, in Figure 4.

Through several experiments, the unified algorithms pro-
posed by us prove to be correct with regard to the intersection
results. However, the time consumption is not so satisfactory.
To improve the efficiency and widen the applications of the
algorithms, we need to make further research.

Figure 3: Results resolved by unified spatial intersection algorithms.

3.2. Parallel Computing Using the Unified Intersection Algo-
rithms in MapReduce. The introduction of two extra dimen-
sions in the unified intersection algorithms brings heavy
computation work and results in low efficiency. Furthermore,
due to the explosive growth in the volume of geospatial data,
many researchers have described the processing of massive
data volumes using MapReduce. Zhang et al. implemented
parallel spatial querying with a geographical spatial semantic
network [34]. Aridhi et al. applied parallel computing to
shortest path computing in a large-scale network [35]. The
multidimensional-unified representation and computation
facilitate parallel computing. Here, we use MapReduce [36]
as the programming model to implement parallel computing
as in Figure 5.
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Figure 4: Results conducted by unified algorithms using massive data.
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Figure 5: Overall parallel computation process.

Hadoop Distributed File System is used to store data in
GA structure; we design methods to resolve data into GA
structure using open source GDAL/OGR. The attributes and
geometry information can be obtained in the method. The
intersection algorithms (see Figure 5, named ResolveInter-
sectRelation) are implemented based on GA sandbox (C++),
geometric product, and basic operators. We use JNI (Java
Native Interface, which can be used to call C++ algorithm in
Java environment) to call intersection algorithms in MapRe-
duce.The desired computation results are obtained according
to different experiment requirements. For example, we can
obtain all objects that intersect with specified objects and
sum up the area of the intersecting objects according to some
attributes and so on.

We are often confronted with the intersection computing
among them. The demand of obtaining the objects that

intersect with the specified spatial extent in land use data is
in existence. The traditional method to meet the analogous
demands is not unified. In our experiments, we implement
the intersection algorithms with the unified algorithms and
the specific judgment rules.

In the experiments, we use four computers with the
Debian operation system and Hadoop 2.6.0, in which one
computer is the namenode and the other three are datanodes.
For each computer, the CPU is an Intel� Core� i-7 4790
CPU@3.60GHz; there are also 7883MBof RAMand the hard
disk’s capacity is 1.0 TB.

Based on the vector data model described above, we
organize the geographic objects in a specific CGA format as
shown in Algorithm 1.

Finally, the intersection relationships are computed for
the four types of different experiment data in the Hadoop
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Algorithm 1: Data organization of objects.

Table 2: Time consumption in MapReduce framework.

Time Number
22183 174881 695343 1386987 5547948

Time 1 12 s 11 s 1min 23 s 4min 34 s 23min 27 s
Time 2 12 s 11 s 1min 23 s 4min 35 s 23min 28 s
Time 3 12 s 11 s 1min 22 s 4min 33 s 23min 29 s

Table 3: Time consumption in standalone mode.

Time Number
22183 174881 695343 1386987 5547948

Time 1 6 s 9 s 3min 58 s 16min 57 s No response
Time 2 5 s 9 s 4min 16 s 15min 57 s No response
Time 3 5 s 8 s 4min 23 s 15min 21 s No response

platform and standalone mode, respectively. Each experi-
ment has been done three times to reduce some accident
errors.The data in parallel experiments are land use polygons
which contain necessary attributes and geometrical informa-
tion, and the exact amounts are shown inTables 2 and 3. In the
MapReduce frameworks, the computational results obtained
are shown in Table 2.

The time consumption results in standalone mode are
shown in Table 3. From Table 3, we know that when the
number of computed objects exceeds a certain amount,
the computing becomes unavailable under specific hardware
conditions.

Experiments show that unified intersection algorithms
based on CGA can work. The results indicate that the
algorithms we present are valid compared to the traditional
method. Furthermore, parallel intersection computing using
MapReduce is efficient. There are no major advantages in
terms of efficiency for usingMapReduce or not. However, the

latter one can address the limitations of the standalone mode
in processing massive volumes of data.

4. Conclusions

CGA is a promising mathematical theory for representing
geographic objects, especially complex andmultidimensional
geographic objects. This data representation model can be
readily extended from low to high dimensions using geo-
metric product. Unified intersection algorithms and specific
rules are presented to determine intersection relationships
between two geometric objects of different types.The unified
representations and intersection algorithms lead to heavy
computation; the parallel computation becomes sensible.
The resolution of intersection relationships is important for
determining spatial relationships. In this study, we investigate
the use of an intersection algorithm based on the geometric
product. We propose the use of the minimum bounding
circle to preprocess the intersection relationship between two
objects. This process can improve the efficiency of retrieval
and computation. We employ MapReduce frameworks to
construct the computing platform for massive data. Experi-
ments show that unified spatial intersection algorithms work
well and make up for the shortcomings caused by extra com-
putation of two more dimensions. We can easily identify the
objects of different types whichmeet spatial intersection with
specified geometrical objects from massive data. In many
domains, for land resource as an example, the intersection
computation is needed; we need to compute the objects from
land use data intersectingwith other land data tomake spatial
and statistical analysis. In the future, we will extend our inter-
section algorithm to other spatial relationship algorithms
and different domains. The parallel computation strategy is
commonly used for massive data, from algorithm to data
unit. We partition the data into parallel unit to accelerate
our computation. Gaalop [29] is a more simple and efficient
GA computation engine for parallel computing, and we look
forward to using it in further research.
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clifford algebra-based unified spatio-temporal analysis,” Trans-
actions in GIS, vol. 14, no. 1, pp. 59–83, 2010.

[6] H. B. Li, “From geometric algebras to advanced invariant com-
puting,” Journal of Systems Science and Mathematical Sciences.
Xitong Kexue yu Shuxue, vol. 28, no. 8, pp. 915–929, 2008.

[7] C. Perwass,Geometric Algebra with Applications in Engineering,
vol. 4, Springer, Berlin, Germany, 2009.

[8] C. Perwass, “Teaching geometric algebrawithCLUCalc,” inPro-
ceedings of the International Symposium on Innovative Teaching
ofMathematics with Geometric Algebra, pp. 33–50, Kyoto, Japan,
2003.

[9] R. Ablamowicz and B. Fauser, “Mathematics of CLIfford: a
Maple package for CLIfford and Grass mann algebras,” Advan-
ces in Applied CLIfford Algebras, vol. 15, no. 2, pp. 157–181, 2005.

[10] D. Fontijne, “Gaigen 2: a geometric algebra implementation
generator,” in Proceedings of the 5th International Conference
onGenerative Programming andComponent Engineering (GPCE
’06), pp. 141–150, Portland, Ore, USA, October 2006.

[11] D. Hildenbrand and E. Hitzer, “Analysis of point clouds using
conformal geometric algebra,” in Proceedings of the 3rd Inter-
national Conference on Computer Graphics Theory and Applica-
tions (GRAPP ’08), pp. 99–106, Funchal, Portugal, January 2008.

[12] C. Schwinn, A. Görlitz, and D. Hildenbrand, “Geometric alge-
bra computing on the CUDA platform,” in Proceedings of the
1st International Workshop on Computer Graphics, Computer
Vision and Mathematics (GraVisMa ’09), pp. 111–117, September
2009.
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