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ABSTRACT 
A dual-way seeds indexing (DWSI) method based on R-tree and the Open 
Geospatial Consortium (OGC) simple feature model was proposed to solve the 
polygon intersection-spreading problem. The parallel polygon union algorithm 
based on the improved DWSI and the OpenMP parallel programming model was 
developed to validate the usability of the data partition method. The experimental 
results reveal that the improved DWSI method can implement a robust parallel task 
partition by overcoming the polygon intersection-spreading problem. The parallel 
union algorithm applied DWSI not only scaled up the data processing but also 
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speeded up the computation compared with the serial proposal, and it showed a 
higher computational efficiency with higher speedup benchmarks in the treatment of 
larger-scale dataset. Therefore, the improved DWSI can be a potential approach to 
parallelizing the vector data overlay algorithms based on the OGC simple data 
model at the feature layer level. 
Keywords: Dual-way Seeds Indexing Method; Polygon Intersect-spreading; 
Parallel Union; Task Partition. 
 

RESUMO 
Um método de indexação de semeamento bidireccional (dual-way seeds indexing - 
DWSI), baseado em árvore-R e no modelo simples de característica de Consórcio 
Geoespacial Aberto (Open Geospatial Consortium - OGC), foi proposto para 
solucionar o problema de alastramento de intersecção de polígonos. O algoritmo de 
união paralela de polígono baseado no método DWSI melhorado e o modelo 
paralela de programação OpenMP foi desenvolvido para validar a usabilidade do 
método de partição de dados. Os resultados experimentais revelaram que o método 
DWSI melhorado pode implementar uma partição paralela de tarefas robustas, 
superando o problema de alastramento de intersecção de polígonos. O algoritmo de 
união paralela aplicado ao DWSI não apenas levou o processamento de dados a uma 
escala maior, como também acelerou a computação em comparação com a proposta 
serial, demonstrando uma maior eficiência computacional com referências de 
aceleração mais altas no tratamento de conjuntos de dados em larga-escala. 
Portanto, o método DWSI melhorado pode ser uma abordagem potencial para a 
paralelização e otimização dos algoritmos de sobreposição de dados de vetor 
baseados no modelo de dados simples OGC no nível de camada de característica. 
Palavras-chave: Método de Indexação de Semeamento Bidireccional; Alastramento 
de Intersecção de Polígonos; União Paralela; Partição de Tarefas. 
 
 
1. INTRODUCTION 

Advances in multi-core processors can greatly improve the user experiences of 
computer systems by handling more work in parallel (GEER, 2005). However, the 
efficiency of traditional serial algorithms cannot be accelerated directly by the use 
of multicore processors because these algorithms use only one core rather than all of 
the cores on the board for each computation, which is a substantial waste. Spatial 
analysis algorithms in Geographical Information Systems (GIS) also face the same 
problems. Parallel computing is an effective approach to speeding up existing serial 
algorithms, improving the utilization rate of multi-core systems, and achieving high 
performance geo-computing in GIS (TURTON et al., 1998; CLARKE, 2003; 
SUTTER, 2005). 

Polygon overlay is a key category of spatial analysis operations in GIS, and 
polygon clipping is one of the basic problem which always can be computationally 
intensive (GOODCHILD, 1977; WANG, 1993; SHI, 2012; AGARWAL et al., 
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2012). The Weiler-Atherton algorithm (WEILER and ATHERTON, 1977), the Vatti 
algorithm (VATTI, 1992), and the Greiner-Horman algorithm (GREINER and 
HORMANN, 1998) are three acknowledged polygon clipping algorithms that can 
generate results in a limited amount of time. Although optimizations proposed by 
scientists (KIM et al., 2006; LIU et al., 2007; MARTINEZ et al., 2009) can lead to 
improvements to the extensively validated polygon clipping algorithms, the 
acceleration effects are limited (ZHAO and ZHOU, 2013), especially when handling 
large datasets. Higher computational efficiency can be obtained directly and the 
handling or maintaining of a large spatial dataset can become more efficient by the 
parallelization of serial algorithms. Data partitioning and function partitioning are 
effective parallel programming techniques for most applications; the former best 
suits applications for which loops must perform the same operations on large sets of 
data (WANG, 1993), the later best suits the developing of parallel spatial work flow. 
We chose data parallelism with the expectation that the codes could be reused 
conveniently by other polygon overlap algorithms, such as the merge algorithm and 
the symmetrical difference algorithm. 

The polygon union algorithm at the feature layer level has a wide utilization 
(WONG, 1997), such as calculating the coverage areas of two intermixed types of 
vegetation or determining the annual change in a category of land use. Because all 
the geometry parts of the polygon clipping results will be collected during the union 
operation, it’s difficult to parallelize it for the uncertainty of intersecting between 
polygons of different layers. The polygon intersection-spreading problem is the 
main factor predisposing the uncertainty and resulting in the many-to-many 
mapping relationships between polygons of the overlapping layers. Some data 
decomposition approaches, such as the regular grids and feature sequences based 
data division methods are cannot address the polygon intersection-spreading 
problem which lead to the parallelization barrier to the polygon union algorithm. 

To solve these problems, a new data partition method called dual-way seeds 
indexing method (DWSI) was designed to eliminate potential intersections between 
groups of data decomposition results and to implement the parallel polygon union 
algorithm. In the next two sections, the related work and spatial index knowledge 
base will be introduced, and then, a detailed explanation about the polygon 
intersection-spreading problem and presentation of the DWSI method is provided. 
 
2. RELATED WORK 

Classic overlay analysis in GIS is mainly used to derive new and/or implied 
spatial and attribute information required by users, and such operations are usually 
based on pre-established topological relations. Mineter proposed a parallel vector 
data overlay architecture, and a series of parallel algorithms were deployed on a 
software framework called Topology-Stitching-Output (TSO) (MINETER et al., 
1999 and 2003). In Mineter’s parallel architecture, some pre-processing steps, 
including polygon cutting and strip division, are necessary before parallel tasks 
start; the last and complex step is topology rebuilding for parallel overlay results. 
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However, polygon cutting and topological building are time-consuming, and 
topological building for a large dataset may fail. Moreover, topological relationships 
are not a concern of the final user in some overlap analysis tasks. 

There are a variety of data decomposition strategies for parallelizing the 
polygon overlay operation without topological relationships, such as data 
partitioning by regular grids (WAUGH and HOPKINS, 1992) and strips 
(MINETER et al., 1999), feature sequences (AGARWAL et al., 2012), and expected 
balanced workloads (ZHAO and ZHOU, 2013). Shi (2012) has pointed out that 
different polygon overlay operations involve different relationships between 
polygons from the base layer and overlap layer. For polygon intersection and 
difference operations, each polygon establishes a 0- or 1-to-many relationship to 
those polygon features that are within the overlay layer. However, for polygon 
union and symmetrical difference operations, there are a series of many-to-many 
relationships that caused by the polygon intersection-spreading problem must be 
determined. This problem will lead to a phenomenon that disjoint polygons in the 
subject layer could be assigned to the same group for potential intersections with the 
same polygon in the overlap layer. The regular grids based data partition method 
needs complex and time-consuming polygon cutting and result stitching processes; 
the feature sequences based method and expected balanced workloads based method 
cannot solve the polygon intersection-spreading problem.  

The union-find algorithm can provide disjoint subsets, which is always used in 
the determination of network connectivity and image processing. Elements 
partitioned into a subset are connected (overlapped for polygons) with each other 
but disjointed with elements belonging to other subsets. The union-find algorithm 
using the tree data structure elegantly which lead to an extremely low time 
complexity (TARJAN, 1975 and 1984; CORMEN et al., 2001). Considering the 
polygon intersection-spreading problem in the polygon union algorithm, it can be 
parallelized by dividing all of the polygons into disjoint subsets and perform the 
same union process on multiple CPU cores. In this research, a data division method 
called a DWSI is designed to generate disjoint subsets of polygons and the polygon 
intersection-spreading problem can be solved as a result. 

 
3. MEMORY LIMIT AND R-TREE 

One important principle for parallelizing vector data overlay algorithms was 
that the efficiency bonus derived from parallel computing should exceed the time 
and complexity costs caused by the task partitioning and the results stitching 
(MINETER, 2003). However, the memory of commercial computers is limited and, 
in some spatial analysis operations, it is impossible to load all of the features into 
memory at one time when handling massive vector datasets. Frequent read/write 
commands on data entities will become bottlenecks, and consequently, the 
algorithms and programs running on such systems cannot obtain the maximum 
concurrency performance (DEL ROSARIO, 1993). Therefore, efficient data 
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partitioning methods and economic spatial indexing data structures are necessary for 
the data parallelism to overcome the memory limits. 

The spatial division results of the grid index and the Quad-tree (FINKEL and 
BENTLEY, 1974) index do not have relevance to the distribution of the features. 
Correspondingly, the spatial divisions of BSP-tree (FUCHS et al., 1980), KD-tree 
(BENTLY, 1975), R-tree (GUTTMAN, 1984), and their variants have strong 
relevance to the distributions of the features. Although the data structure of the grid 
index is simple, for sparsely distributed features, it will bring redundant data. Once 
the structure is established by the grid index or the Quad-tree, it is difficult to be 
extended dynamically. However, the abilities of dynamic expansion, efficient spatial 
searching, a simple data structure, and polygon geometry supporting are necessary 
to a possible candidate of spatial indexing data structures for the parallel polygon 
union algorithm. R-tree implemented in memory can be extended dynamically in a 
convenient way and can support the spatial indexing of a multi-dimensional dataset. 
The search efficiency of R-tree is higher than that of the grid index and the Quad-
tree, and the complexity is lower than its variants, such as R*-tree (BECKMANN et 
al., 1990), HILBERT R-tree (KAMEL et al., 1994), and CR-tree (KIM et al., 2001).  

R-tree accepts an MBR as a spatial query filter and produces an identifier of 
qualified data objects by comparing the overlap situation of spatial extension 
between the input MBRs and the filter (GUTTMAN, 1984). Each MBR is stored in 
memory by four 8-bit double precision floating-point numbers and more than 3×107 
MBRs can be saved in 1 GB of memory. However, the time and memory cost of 
loading the same number of features into memory are definitely much higher. The 
time cost of one overlap comparison operation of MBRs in memory is very low; as 
a result, the system maintains a reasonable range of time costs for building an R-tree 
indexing structure and executing spatial query operations for millions of vector 
features. It is therefore a feasible approach to implement an immediate spatial query 
and parallel task decomposition for whole datasets based on R-tree. However, any 
spatial indexing data structure with characters of high spatial query efficiency, ease 
of maintenance and extension, and lower memory requirements can replace it.  
 
4. PARALLEL STRATEGIES IN THE UNION ALGORITHM 

Vector data overlay algorithms with the essence of Boolean operations 
between spatial features are one of the core categories of functions of spatial 
analysis in GIS. In the parallel environment of OpenMP, overlap operations should 
be treated differently and should be considered fully according to their specific 
logical characters and the distinct traits between spatial vector data and generic data. 
The logical flow of the serial polygon union algorithm is presented in Figure 1. 

Function division and computing data decomposition are two commonly used 
methods for parallelizing serial vector data analysis algorithms (GEIST et al., 1994; 
BRESHEARS, 2009). For the algebra operation properties of vector data overlay 
algorithms, their parallelization based on functional decomposition must be tightly 
coupled with detailed data structures. Parallel algorithms developed in this way 
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could address their defects on generality and portability. We therefore choose the 
data decomposition approach to parallelize the vector data overlay algorithms. 

 
Figure 1 - Logical flow of the serial union algorithm. 

 
 

The union algorithm is characterized by the dynamic building of the R-tree 
index, continual geometrical splitting and attribute joining. These intensive 
operations are executed and finished in a while loop in the serial union algorithm, 
but because of the unpredictable iteration times of the while loop, it is difficult to 
parallelize it. In a parallel computing paradigm, the minimization of the correlations 
between computing data items could provide maximum concurrent computing 
efficiency (LIN and SNYDER, 2008). The principle is applied in this study to 
implement a parallel union algorithm by starting up a new thread for each feature 
group. The features calculated by a new thread have nothing to do with features in 
other groups in the parallel stages, like the disjoint-sets in the Union-Find algorithm, 
and the while loop in the serial union algorithm is executed in each new thread. 
Figure 2 shows the logical flow of the parallel union algorithm. 

The key to the success of this approach is to develop an efficient data 
decomposition method to solve the intersection-spreading problem. The 
intersection-spreading problem refers to a phenomenon that disjoint polygons in the 
subject layer could be divided into one subset for the potential intersecting with the 
same polygon in the overlapping layer at the same time. Take polygon layers listed 
in Figure 3 as an example to illustrate the phenomenon. 

As shown in figure 3, A1 and A2 are two disjoint polygons from the same 
layer, but they should be grouped into the same subset because their MBRs intersect 
with the same polygon B1 in another layer, and B1 will be sent to the same group as 
well. The meaning of intersection is not only refers to the intersection between 
polygon entities but also their MBRs. The uncertain intersection-spreading effect 
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revealed in the parallel union algorithm is the main difficulty and makes it different 
from other parallel overlay algorithms, such as polygon intersect and difference. 
 

Figure 2 - Logical flow of the parallel union algorithm. 

 
 

 
Figure 3 - Intersect-spreading effect when two layers are overlapped. 
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5. THE DWSI METHOD 
Without loss of generality, we assume that there are no intersections between 

polygons in each input feature layer (actually, polygons have the possibility to 
intersect with each other in the same layer based on non-topological data models). 
However, for the intersection-spreading effect between the layers, the intersections 
of the polygons from different layers are unpredictable, leading to a complicated 
data decomposition process.  
 

Figure 4 - Execution process and result of DWSI. 

 
 
 

The Figure 4 shows four polygons A1-A4 in layer A and three polygons B1-B3 
in layer B. The two layers maintain the same coordinate system and have no internal 
intersections. A1, A2 and A3 do not intersect in layer A, but they intersect with 
polygon B3 in layer B at the same time when the two layers overlap. Moreover, B3 
and B2 should be grouped into the same group in order to be processed together in 
the parallel stage, because A2 intersects with them simultaneously. The DWSI 
method can achieve these goals and implement the cross-layer grouping of 
intersected features. The searching process of DWSI between overlapped polygon 
layers, as shown in figure 4-(d), is presented in figure 4-(a-e). This method is 
implemented by introducing two polygon searching queues, two R-tree indexing 
structures, and a collection container of search results. 

The method is composed of six steps: 
1) Build two R-tree index structures, RTA and RTB, for all polygons of the 

two input layers, and allocate memory for two search queues; 
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2) Insert the identifier and MBR of the first polygon A1 in layer A into 
queue QA, and make it the search seed, as shown in figure 4-(a). Execute 
a spatial search in RTB with the MBR of A1 as a spatial filter, and 
polygons B1 and B3 will be found in layer B; 

3) Add the identifiers and MBRs of B1 and B3 into QB
 as seeds and make A1 

be a non-seed state in QA. Transfer to QB if all of the seeds in QA are 
iterated; 

4) For each seed in QB, execute a spatial search in RTA iteratively, and then, 
make it be a non-seed state after searching and adding the identifiers and 
MBRs of newly found features to QA as new seeds. For example, after 
searching by B1 and B3, A2 and A3 can be found and should be added to 
QA (figure 4-b and c) and then transferred back to QA. 

5) For each new seed in QA, execute a spatial search iteratively in RTB; then, 
make it be a non-seed state after searching and adding the identifiers and 
MBRs of newly found features to QB as new seeds. Ignore the features 
that already exist in the two queues when adding a newly found feature to 
them. Repeat steps 4) and 5) in QA and QB until there are no newly found 
features and no new seeds are found. The loop process will be terminated, 
and the merged results of QA and QB are the final results of one 
independent group as described in section 3. 

6) Select the next feature in layer A, which is not grouped yet, and repeat 
steps 1) to 5) and a new group will be found. Finally, DWSI will be ended 
when all of the features in the two layers are grouped. Groups contain 
only one feature will be distinguished and excluded from the next step of 
the calculation. 

The pseudo code of the DWSI algorithm, implemented according to the six 
steps, is presented in table 1 (do not consider intersections in the same layer). 
 

Table 1 - Pseudo code of the DWSI algorithm. 
RTSpatialIdx *siRTreeA = new RTSpatialIdx(),*siRTreeB = new 
RTSpatialIdx(); 
std::vector<std::vector<int> > fid_vec; 
std::queue<int> QA, QB; 
std::vector<int> tmp_fid_vec; 
for (each FID in the two layers){ 
 if (FID is processed) continue; 
 else QA.push(FID); 
 while(QA or QB is not empty ){ 
  while(QA is not empty){ 
   siRTreeB->spatialSearch(First MBR in QA, a_search_list); 
   for (each FID in a_search_list) 
    QB.push(FID); 
   QA.pop(); 
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  } 
  while(QB is not empty){ 
   siRTreeA->spatialSearch(First MBR in QB, b_search_list); 
   for (each FID in b_search_list) 
    QA.push(FID); 
   QB.pop(); 
 }} 
 fid_vec.push_back(tmp_fid_vec); 
} 

 
Take the features in the two layers as shown in figure 4-(d), as an example; the 

execution graph and the changes in QA and QB of DWSI are described in table 2. 
 

Table 2 - Execution flow and change details in each queue of DWSI. 
QA QB 

Operations Status Operations Status 
Insert seed A1 into QA A1a  NULL 

QA search starts A1  NULL 
Spatial search in RTB by 

A1; Get B1, B3 
A1  NULL 

Insert seed B1 into QB A1  B1 
Insert seed B3 into QB A1  B1, B3 

QA search end; Transfer 
to QB 

A1 QB search starts B1, B3 

 A1 
Spatial search in RTA by 

B1; Get A1, A2, B3 
B1, B3 

A1 already exists 
Ignore A1 

A1, A2 
Insert seeds A1, A2 into 

QA and B3 into QB 
B1, B3 

 A1, A2 
B3 already exists 

Ignore B3 
B1, B3 

 A1, A2 
Spatial search in RTA by 
B3; Get A1, A2, A3, B1 

B1, B3 

 A1, A2 
Insert seeds A1, A2, A3 
into QA and B1 into QB 

B1, B3 

A1, A2 already exist 
Ignore A1, A2 

A1, A2, 
A3 

B1 already exists 
Ignore B1 

B1, B3 

QA search starts 
A1, A2, 

A3 
QB search ends 
Transfer to QA 

B1, B3 

Spatial search in RTB by 
A2; Get B1, B2, B3 

A1, A2, A3  B1, B3 

Insert seeds B1, B2, B3 
into QB 

A1, A2, A3 
B1, B3 already exist 
Ignore B1 and B3 

B1, B3, B2 
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Spatial search in RTB by 
A3; Get B3 

A1, A2, A3  B1, B3, B2 

Insert seed B3 into QB A1, A2, A3 
B3 already exists 

Ignore B3 
B1, B3, B2 

QA search ends 
Transfer to QB 

A1, A2, A3 QB search starts B1, B3, B2 

 A1, A2, A3 
Spatial search in RTA by 

B2; Get A2 
B1, B3, B2 

A2 already exists 
Ignore A2 

A1, A2, A3 Insert seed A2 into QA B1, B3, B2 

 A1, A2, A3 QB search ends B1, B3, B2 
QA and QB both search end. Merge QA and QB to one group which will contain: 

A1, A2, A3, B1, B3, B2 
Start searching for a new group, Reinitialize QA and QB 

Find the next unprocessed feature in layer A: A4 
Insert seed A4 into QA A4  NULL 

QA search starts A4  NULL 
Spatial search in RTB by A4 

 Get nothing 
A4  NULL 

Finally A4 will be ignored for it is not intersected with others in layer B. 
END 

a Bold characters represent seed features in the moment. 
 

Table 2 shows that all of the features in Layer A will be iterated as R-tree 
searching seeds, because DWSI must guarantee that all of the possible intersections 
between two overlapped layers should be detected; the number of R-tree searches 
could be less than the count of features in the two layers because there is no need to 
traverse the remaining features in Layer B after all of the features in Layer A are 
iterated. The time cost of DWSI is in positive proportion to the number of features 
in the two overlapped layers and is highly related with the intersection situations 
between them. However, the time cost of DWSI is limited by the inherent defects of 
R-tree, whose search efficiency is in a linear drop with the growing number of 
features when the MBRs of the features are overlapped seriously in the R-tree 
indexing structure (BECKMANN, 1990). Hence, DWSI will encounter a similar 
problem in addressing such problems. 

Overlapping operations based on a non-topological data model cannot 
guarantee that there are no intersections between the polygons that are in the same 
layer. If intersections between polygons in the same layer should be detected, then 
only one R-tree rather than two trees should be constructed to maintain all of the 
MBRs of the polygons in the two layers, and a simple modification of DWSI can 
meet the requirements. 
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6. EXPERIMENTS AND ANALYSIS 
Keeping the computing resources unchanged, two main factors that affect the 

computational efficiency of the parallel union algorithm were discussed in this 
study, including the quantity of polygons and the total amount of points of two 
polygons involved in an atom operation. To begin with, special tests were 
conducted to analyze the data division efficiency variation of DWSI with different 
numbers of polygons. Then, a series of experiments and statistics were performed to 
analyze the relationships between parallel computational efficiency variation and 
the quantity of features, while the number of points in each polygon was kept 
constant. Finally, the variation in the time cost of one single intersection operation 
implemented by Vatti’s algorithm (a sub-operation of the union algorithm) with the 
quantity of points was analyzed to determine the effects exerted to the polygon 
union algorithm. We use a DELL Optiplex 990 computer (i7-2600 quad-core CPU) 
to perform the experiments. The experimental polygons are regular distributed 
rectangles and each one with a hole. The detailed overlapping situation and groups 
divided by the DWSI method are presented in figure 5. 
 

Figure 5 - Regular distributed polygons used in the experiments. 

 
 

Four time costs indicators, including I/O, building and initializing of R-trees, 
data decomposition of DWSI, and the total time costs are statistically analyzed in 
each experiment, and the results are listed in table 3 and figure 6. 
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Table 3 - Fitting results of the four time costs metrics. 
Metrics Regression Functions R2 

IO y = 0.0569x - 0.0345a 0.9836 
Build R-Trees y = 0.0884x - 0.2467 0.9996 
Our Algorithm y = 0.9316x - 0.4865 1.0000 

All Time y = 1.0792x - 0.7678 0.9999 
a y: the time costs (second); x: the amount of polygons divided by 104. 

 
Figure 6 - Fitting curves of the four time costs indicators of the DWSI method. 

 
 

The calling of spatialSearch function is the key atom operation in the DWSI 
algorithm which means that only one time of calling of spatialSearch function is 
needed by one feature, so the computational complexity of the DWSI algorithm is 
O(n), n is the feature count in the two layers. As shown in figure 6, the four 
indicators all present a linear uptrend with the growing number of operated 
polygons. Linear functions and coefficients of determination in table 3 are the fitting 
results of the four time costs indicators, which are cohering with the complexity 
analysis. It can be concluded that R-tree based DWSI demonstrates a linear 
complexity when searching and performing decomposition of either a small or large 
number of polygons. The fitting curves remain an obviously linear uptrend in the 
time costs when the number of polygons reaches an order of magnitude of 106. 

DWSI was applied to the implementation of the parallel union algorithm, and 
experiments were conducted to statistically compare the time costs between the 
parallel and serial polygon union algorithms at different magnitude orders of 
polygon amounts. The speedup of the parallel union algorithm was calculated, and 
the results are presented in table 4 and figure 7. 
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Table 4 - Time costs of serial and parallel union algorithms and the speedup results. 
Polygon Amount Serial Time/s Parallel Time/s Speedup 

16 200 3.268 2.469 1.324 

64 800 34.096 26.044 1.309 

259 200 427.774 357.419 1.197 

1 036 800 6 537.462 4 545.155 1.438 

2 934 726 60 216.041 34 961.461 1.722 

2 962 656 54 150.452 32 971.671 1.642 

4 937 760 174 293.500 94 694.790 1.841 

6 485 401 266 818.100 117 830.600 2.264 
 

Figure 7 - Statistical regression results of the union algorithms. 

 
 

Compared with the serial union algorithm, the parallel version achieved 
calculation efficiency to a certain degree. As shown in figure 7, the acceleration 
effects of the data decomposition mechanism based on DWSI will become more 
significant with an increasing number of polygons. The algorithm even reached a 
speedup benchmark of 2.264 when the number of polygons was approximately 
6.5×106, which means that the calculated time costs of the parallel union algorithm 
obtained by DWSI is reduced by more than 55% than the serial union algorithm. At 
the same time, the time cost variation trends and the mathematical model with a 
varying number of polygons is not changed. Our results show that the parallel 
computational efficiency variation with the number of polygons still coincided with 
the power-law regression model, which is the same with the serial polygon union 
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algorithm. However, as shown in table 5, the exponent of the power-law function is 
1.8379 for the parallel version, which is smaller than that of the serial union 
algorithm (1.9156). 
 
Table 5 - Serial and parallel fitting results of time costs and speedup variations with 

the number of polygons. 
Metrics Fitting Function R2 

Serial Union Time y = 1.0413x1.9156 0.9987 
Parallel Union Time y = 0.9313x1.8379 0.9994 

Speed Up s = 0.0014x + 1.2623 0.9525 
y: the time costs(second); s: the speedup; x: the polygon amount divided by 104. 

 
Obviously, the time costs of the DWSI method are much lower than the time 

costs of the serial and parallel union algorithms when handling the same amount of 
polygons. Therefore, DWSI will not cause time complexity increase to the parallel 
union algorithm. The parallel union algorithm is implemented based on the Vatti 
polygon clipping algorithm whose time cost variation with the total number of 
points in two overlapped polygons is not a linear model and should be analyzed 
statistically. We therefore conducted experiments to analyze the variation of time 
cost of one single intersection operation (which is an atom operation of the union 
algorithm) with the volume of points holding by the overlap polygons. The results 
are listed in table 6 and figure 8. 

 
Figure 8 - Fitting curve of the time cost of the intersection operation implemented 

by Vatti’s polygon clipping algorithm. 
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Table 6 - Time costs fitting results of the intersection operation implemented by 
Vatti’s polygon clipping algorithm. 

Models Fitting Function R2 
QPa y = 0.0030x2 – 0.0089x + 0.1229 0.9989 

POWb y = 0.0105x1.6792 0.9869 
y: the time costs(second); x: the quantity of polygons divided by 104. 

a quadratic polynomial regression model; b Power-law regression model. 
 

The time costs variation of Vatti’s algorithm with the total number of points in 
the overlapped polygons is most consistent with the quadratic polynomial regression 
model (figure 8 and table 6). However, Vatti’s algorithm also coincides well with 
the power-law regression model (the POW model in table 6), which is small but 
close to the corresponding numbers of regression models of the serial and parallel 
polygon union algorithms. In the worst case, for a subject layer with m polygons 
and a overlapped layer with n polygons, the time complexity of Vatti’s algorithm 
can be O((p-2)2), p is the average point amount contained by two overlapping 
polygons (GREINER and HORMANN, 1998), and the time complexity of the union 
algorithm is O(m ×n×(p-2)2), meanwhile, the DWSI algorithm (with the R-tree 
construction process) is O(m+n). Therefore, the performance of Vatti’s algorithm is 
the main relevant factor that should be responsible for the computational 
efficiencies of the union algorithm, especially for the parallel one, rather than the R-
tree construction and the DWSI method. Furthermore, the performance decrease of 
the union algorithm will be much more significant when the p parameter grows than 
m or n grows. 

An extreme situation is that all of the features may be grouped into a single 
group, and the DWSI will fail on data partition when handling such datasets. This 
will occur when all or most of the MBRs intersect with each other, which is also 
caused by the intersection-spreading problem. In this case, the performance of the 
parallel polygon union algorithm will be same or even poorer than the serial version. 
We improved the DWSI algorithm to solve the problem completely by employing 
of segmentation polygons between divided groups and the restriction of expect 
group size. The results of experiments and discussion are presented in the next 
section. 
 
7. DEFICIENCIES AND IMPROVEMENTS IN THE DWSI 

One important deficiency of the DWSI algorithm is that the parallel union 
algorithm based on it will not work or lose the balance of task loads in most 
instances if all of the features in the two layers are assigned to one single group, for 
example, all of the polygons in figure 9-(a). We improved the DWSI method to 
solve this problem by recording segmentation features repeatedly. Segmentation 
features are special features that intersect with more than one feature in different 
groups, such as polygon B2 in figure 9-(b). The key to our improvements is that the 
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expected group size should be specified in advance. A new group will be established 
when the number of features reaches the specified group size, and features in the 
two queues will be recorded as segmentation features rather than be processed as 
seeds. The non-intersection parts of the segmentation features will be abandoned 
temporarily in the parallel union process; all of them will be recalculated at the end 
of the parallel union algorithm. Figure 9 is the logic flow of the parallel union 
algorithm based on the improved DWSI method. 

We conducted several experiments with residential region data of Changchun 
city to verify the parallel robustness of the union algorithm based on the improved 
DWSI method. Each of the two input geographical layers contains 3959 polygons, 
and they are listed in figure 10 and figure 13. 

The comparison results between parallel union algorithms based on the 
improved and un-improved DWSI methods using polygon layers in figure 10-(a) are 
presented in figure 11. 

It can be deduced from the results presented in figure 11 that the performance 
of the un-improved DWSI based parallel union algorithm is similar to the serial 
algorithm. The reason is that most of the features in the two layers are sent to one 
group which resulting the parallel failure. With the application of our improved 
DWSI method, both of the serial and parallel union algorithms are speeded up 
definitively. The direct reason for the low efficiency of our union algorithm based 
on the un-improved DWSI is that too many non-intersected polygons are involved 
in the iterative overlay calculating process in the while loop. Therefore, both the 
serial and parallel union algorithm can be benefited from the improved DWSI 
method. We conducted additional experiments to find out the best group size for the 
two feature layers shown in figure 10; the results are listed in figure 12. 
 

Figure 9 - Logic flow of parallel union based on the improved DWSI method. 
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Figure 10 - Real geographical data and experiment results, (a. part of residential 
areas of Changchun city and its shifted data; b. parallel union results). 

 

 
 

 
Figure 11 - Efficiency comparison between serial/parallel union algorithms based on 

un-improved and improved DWSI methods. 
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Figure 12 - Efficiency comparison between serial/parallel union algorithms based on 
improved DWSI with different group sizes. 

 
 

The experimental results show that the highest speedup reached 2.760 when 
the expected group size was specified to 90. When the group size was specified to 
50, the parallel union algorithm obtained the highest efficiency with the speedup of 
2.277, and both of the values are higher than the records in figure 7. However, the 
determination of the optimal group size for two overlapped feature layers may need 
many experiments or experiences. 

Although the improved DWSI can lead to higher efficiency than the old one 
for both of the serial and parallel union algorithms, several special cases should be 
concerned carefully. First and foremost, intersected segmentation features will lead 
to additional features with the same geometries, which will bring topological errors 
to the result layer. We use points comparing to find out the same geometries and to 
eliminate such errors from the final results. Besides, because the non-intersection 
parts of the segmentation features will be abandoned, all of the intersection parts 
between a segmentation feature and non-segmentation features should be calculated 
at one time. Last, groups that contain only one segmentation feature should be 
skipped. 

 
8. COMPARISON WITH REGULAR GRID BASED DATA DIVISION 

Regular grid or strip based data decomposition methods are classic approaches 
to reduce the relationships between data groups and to realize parallelization 
(MINETER, 1999 and 2003). We divided the feature layers in figure 10 into 64 
parts with regular grids, as shown in figure 13; features that cross more than one 
grid would be cut into multiple pieces by grid lines. After cutting, the features in the 
different grids will not intersect with each other anymore, and the parallel union 
algorithm can be implemented conveniently. 
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Figure 13 - Data division by 8*8 regular grids for the parallel union operation. 

 
 

On average, there are approximately 145 polygons in each of the 64 groups in 
figure 13. We therefore specified the expected group size to be 145 and conducted 
experiments to compare the efficiencies of the union algorithms based on the regular 
grid data division and our improved DWSI data division. The experimental results 
are listed in figure 14. 
 
Figure 14 - Efficiencies comparison between serial/parallel union algorithms based 

on the improved DWSI method and regular grid data division. 

 
 

The results reveal that both of the serial and parallel union algorithms based on 
DWSI are faster than the corresponding ones based on the regular grid data division. 
The parallel speedup of the regular grid-based union algorithm is much lower than 
1.922, which is the speedup of the DWSI-based parallel union algorithm. The 
parallel efficiency of the DWSI method based union algorithm is improved by 56% 
than the regular girds based parallel union algorithm, and the gap between serial 
algorithms is about 18%. We believe that the reason is that the uneven spatial 
distribution of the features leads to an unbalanced task partition for the regular grids, 



Junfu, F. et al. 

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 1, p.159-182, jan-mar, 2014. 

1 7 9

which also shows that the DWSI method can give more parallel adaptabilities and 
robustness to the GIS algorithms when handling datasets that have different spatial 
distributions. Furthermore, the parallel union algorithm based on DWSI avoided 
destruction of input data and sewing of the results data, which is much easier to 
implement than the regular grid-based data decomposition approach. 
 
9. CONCLUSIONS 

In this study, we proposed a data decomposition method called a DWSI to 
solve the intersection-spreading problem and implement the parallel polygon union 
algorithm at the feature layer level. The experimental results verified the usability of 
DWSI for implementing computing-intensive parallel algorithms in GIS. The results 
show that the polygon union algorithm can be parallelized and accelerated based on 
DWSI, and the efficiency improvement will be much more significant with a larger 
amount of data. The time complexity of the DWSI is much lower than the Vatti 
algorithm. As a result, the DWSI method does not increase the time costs and 
complexity of the union algorithms. 

We improved the DWSI method to completely solve the problems of parallel 
failure and load imbalance, which are caused by a situation that most features are 
divided into the same group. The experimental results show that the improvements 
that are based on a specification of the expected group size and the recording of the 
segmentation features enhanced the parallel robustness of the union algorithm. The 
improved DWSI method brings a degree of acceleration for both of the serial and 
parallel union algorithms. For the element amounts in the disjoint subsets generated 
by the improved DWSI method are under control, load balancing can be achieved 
by assigning approximately equal quantity of polygons to each thread. Compared 
with the regular grid based data partition method, the optimized DWSI algorithm 
can lead to 56% performance improvement to the parallel union algorithm and about 
18% to the serial one. 

Therefore, the improved DWSI method can solve the problem of polygon 
intersection-spreading and implement data decomposition independently in a more 
robust way compared with regular grid and feature sequence based data division 
approaches. Based on the DWSI method, some serial spatial analysis algorithms can 
be parallelized, such as the polygon merge algorithm and polygon symmetrical 
difference algorithm. This data partition algorithm has been applied successfully 
with MPI to parallel the polygon overlay operations in a cluster environment. We 
assume that the DWSI algorithm can be a potential approach to implementing data 
decomposition and thereby to parallelizing the polygon union algorithm and some 
other similar overlap algorithms in GIS at the feature layer level. 
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