Georgia State University

ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

Spring 5-10-2013

Scientific High Performance Computing (HPC)
Applications On The Azure Cloucf Platfgorm

Dinesh Agarwal

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Recommended Citation

Agarwal, Dinesh, "Scientific High Performance Computing (HPC) Applications On The Azure Cloud Platform." Dissertation,
Georgia State University, 2013.
https://scholarworks.gsu.edu/cs_diss/75

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For

more information, please contact scholarworks@gsu.edu.

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

TITLE:
SCIENTIFIC HIGH PERFORMANCE COMPUTING (HPC) APPLICATIONS ON THE
AZURE CLOUD PLATFORM

DINESH AGARWAL

Under the Direction of Dr. Sushil K. Prasad

ABSTRACT

Cloud computing is emerging as a promising platform for compute and data intensive
scientific applications. Thanks to the on-demand elastic provisioning capabilities, cloud com-
puting has instigated curiosity among researchers from a wide range of disciplines. However,
even though many vendors have rolled out their commercial cloud infrastructures, the service
offerings are usually only best-effort based without any performance guarantees. Utilization
of these resources will be questionable if it can not meet the performance expectations of

deployed applications. Additionally, the lack of the familiar development tools hamper the

productivity of eScience developers to write robust scientific high performance computing
(HPC) applications. There are no standard frameworks that are currently supported by
any large set of vendors offering cloud computing services. Consequently, the application
portability among different cloud platforms for scientific applications is hard. Among all
clouds, the emerging Azure cloud from Microsoft in particular remains a challenge for HPC
program development both due to lack of its support for traditional parallel programming
support such as Message Passing Interface (MPI) and map-reduce and due to its evolving ap-
plication programming interfaces (APIs). We have designed newer frameworks and runtime
environments to help HPC application developers by providing them with easy to use tools
similar to those known from traditional parallel and distributed computing environment set-
ting, such as MPI, for scientific application development on the Azure cloud platform. It is
challenging to create an efficient framework for any cloud platform, including the Windows
Azure platform, as they are mostly offered to users as a black-box with a set of application
programming interfaces (APIs) to access various service components. The primary con-
tributions of this Ph.D. thesis are (i) creating a generic framework for bag-of-tasks HPC
applications to serve as the basic building block for application development on the Azure
cloud platform, (ii) creating a set of APIs for HPC application development over the Azure
cloud platform, which is similar to message passing interface (MPI) from traditional parallel
and distributed setting, and (iii) implementing Crayons using the proposed APIs as the first

end-to-end parallel scientific application to parallelize the fundamental GIS operations.

INDEX WORDS: Cloud computing, GIS computations using cloud platforms, Windows
Azure cloud platform,Scientific applications over cloud platforms

TITLE: SCIENTIFIC HIGH PERFORMANCE COMPUTING (HPC) APPLICATIONS
ON THE AZURE CLOUD PLATFORM

DINESH AGARWAL

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy
in the College of Arts and Sciences
Georgia State University
2013

Copyright by
Dinesh Agarwal
2013

TITLE: SCIENTIFIC HIGH PERFORMANCE COMPUTING (HPC) APPLICATIONS
ON THE AZURE CLOUD PLATFORM

DINESH AGARWAL

Committee Chair: Dr. Sushil K. Prasad

Committee: Dr. Yi Pan
Dr. Xiaolin Hu

Dr. Shamkant Navathe

Electronic Version Approved:

Office of Graduate Studies
College of Arts and Sciences
Georgia State University
May 2013

DEDICATION

For their love and support, I dedicate this thesis to my parents.

v

ACKNOWLEDGEMENTS

I owe a great deal of gratitude to my advisors, colleagues, and friends for the guidance,
support, and motivation they have blessed me with. I wish to express my sincere thanks to
them.

I would like to thank my advisor, Prof. Sushil Prasad for his untiring support and guid-
ance throughout this work. Without his insightful research advice, constant encouragement,
generous support, and patience when research did not progress as expected, I would not
have been able to finish this degree. He was always there standing by my side guiding me
towards the right path on my pursuit of Ph.D. I cannot thank him enough for his belief in
me that kept me motivated.

I would like to thank my entire committee: Prof. Shamkant Navathe, Dr. Xiaolin Hu,
and Prof. Yi Pan for their help and guidance throughout the research. I offer them my
sincere gratitude for their invaluable feedback on my research.

I cannot thank Prof. Rajshekhar Sunderraman enough for his help and guidance on
the academic as well as administrative aspects of this Ph.D. I am also indebted to him for
introducing me to the game of Squash that has been my stress buster since a long time now.

I am grateful to Prof. Sanjay Chaudhary and Dr. Abhinay Pandya for encouraging me
to follow the path to higher education and helping me to start my career as a Ph.D. student.
If it was not for them, I would not have attained the intellectual satisfaction that I enjoy
today.

I thank my colleagues Satish Puri, Xi He, Thamer Mohsen, Rasanjalee Dissanayaka,
Chad Frederick, Nick Mancuso, John Daigle and other members of the DiMoS Lab for the
intellectual discussions we had and the camaraderie that we shared.

I have been humbled by the service and support of the staff at the Department of
Computer Science. I would like to mention Mr. Shaochieh Ou for his help with all small and

large challenges I faced working with as small as single desktop machines to large compute-

vi

clusters. I cannot forget to mention Ms. Tammie Dudley for her kind and helpful nature.

I would not have been able to come this far in life without the love, support, and
blessings of my loved ones. They deserve much credit for my accomplishments. My father,
Mr. Hanuman Prasad Agarwal has always inspired me, by example, to work hard and
persist. Starting from humble beginnings what he has accomplished in life has always kept
me motivated to think big and not to be afraid to try it. The regular video conference calls
with my mother, Mrs. Saraswati Agarwal, since I came to the United States, have kept me
motivated to achieve higher goals in my life. I also thank her for the never ending supplies
of home-made snacks at my place. I extend my gratitude to my brother, Mukesh Agarwal
for always being the understanding elder brother and a friend who always knew the right
words to say. I am equally thankful to his wife, Shalini for her love and affection that I have
been pampered with. I must mention my niece and nephew Rinkle and Moulik for taking
away my stress with their innocence and beautiful smiles.

I am thankful to Sarang Sunder for being a good friend and room mate to me. Archana
Kath and Riddhi Shah have been the best neighbors one can get and I extend my sincere
gratitude towards them. I am going to cherish the memories of our experiments in the
kitchen for the rest of my life.

Finally, I am thankful to the Molecular Basis of Disease group for their approval of my

worthiness by extending me the MBD fellowship for the last few years of my stay at GSU.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

LIST OF TABLES

LIST OF FIGURES

PART 1 INTRODUCTION

PART 2 STATE-OF-THE-ART

2.1
2.2
2.3

Cloud Computing
Programming models for the cloud platforms

Windows Azure cloud platform

PART 3 AZUREBENCH: BENCHMARKING SUITE FOR THE

3.1

3.2

3.3

3.4

AZURE CLOUD PLATFORM
Background and Literature
3.1.1 Cloud Computing for Scientific Applications
An Application Framework for Scientific Applications on Windows
Azure Cloud Platform
Benchmark Experiments and Timing Characteristics
3.3.1 Blob Storage
3.3.2 Queue Storage
3.3.3 Table Storage

Conclusion

PART 4 CRAYONS: AN AZURE CLOUD BASED PARALLEL

4.1

SYSTEM FOR GIS OVERLAY OPERATIONS .

Motivation,

Vil

xi

co = ot

10
13
13

14
16
16
21
26
29

30
35

viil

4.2 Background and Literature 37
4.2.1 Raster vs. Vector Datain GIS 37
4.2.2 Spatial Overlay Operations 38
4.2.3 Parallel Overlay Operations 39
4.2.4 Clipper Library 39

4.3 Our Parallel Azure Framework Design 40
4.3.1 Crayons’ Architecture with Centralized Dynamic Load Balancing 40
4.3.2 Crayons’ Architecture with Distributed Static Load Balancing . 44
4.3.3 Crayons’ Architecture with Distributed Dynamic Load Balancing 46

4.4 Engineering Details 0000000 48
4.4.1 Azure-specific Issues 48
4.4.2 Large Data Sets and Concurrency Control Mechanism 50
4.4.3 Clipper Library 50

4.5 Performance of Crayons System 52
4.5.1 Load Balancing and Crayons Pipeline. 52
4.5.2 Input GML Files 54
4.5.3 End-to-end Speedups over Small, Skewed Data Set 54
4.5.4 Timing Characteristics over Small Data Set 55
4.5.5 Crayons with Larger Data Set 61
4.5.6 Scalability of Azure Storage L. 62
4.5.7 Other Clipper Operations 64
4.5.8 Crayons using MPI on Linux Cluster 65

4.6 Conclusion 66

PART 5 AZUREBOT: A FRAMEWORK FOR BAG-OF-TASKS
APPLICATIONS 68
5.1 Related Worko 71
5.2 Design of AzureBOT 73

5.2.1 Implementation 73

1X

5.2.2 Limitations of AzureBOT 7
5.3 Implementing Applications using AzureBOT 78
5.3.1 Internet Data Scraper, 78
5.3.2 Master Slave Simulatoro 79
5.4 Performance and Results 80
5.4.1 Internet Data Scraper 80
5.4.2 Master Salve Simulator 0L 81
5.5 Conclusion 84
PART 6 CLOUDMPI - A FRAMEWORK FOR MPI-STYLE AP-

PLICATION DEVELOPMENT ON THE AZURE CLOUD

PLATFORM 86

6.1 Background and Literature 89
6.2 Design of cloudMPI 90
6.2.1 Design philosophy o 90
6.2.2 Implementation 91
6.2.3 Limitations of cloudMPT 95

6.3 Implementing applications using cloudMPI 95
6.3.1 Crayons using native APIs, .. 96
6.3.2 Crayons using cloudMPT 99

6.4 Performance and Results 100
6.5 Conclusion 101
PART 7 CONCLUSIONS 102

REFERENCES . 104

Table 2.1

Table 4.1

Table 6.1

LIST OF TABLES

Listing of virtual machine configurations available for web role and

worker role instances with Windows Azure
Example GIS data sets and typical file sizes

cloudMPI APIs at a glance.,

Figure 1.1

Figure 2.1

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

LIST OF FIGURES

Google search trends for cloud computing (blue line), Grid computing

(yellow line), and Virtualization technology (red line).
Typical programming artifacts of Windows Azure platform [1]

A Generic Application Framework for Scientific Applications on Win-
dows Azure Cloud Platform
Azurebench Blob storage benchmarks
Blob download using one page/block at a time
Azurebench queue benchmarks - Separate queue per worker

Azurebench queue benchmarks - Single shared queue

Table Storage

Per operation time for Table (insert, query, update, and delete) and

Queue storage (put, peek, and get) services.

Real world data organized into thematic layers. Image courtesy: FPA

Crayons’ Centralized architecture
Crayons’ architecture with distributed static load balancing
Crayons architecture with distributed dynamic load balancing . .
Load distribution plots for the data sets used for experiments

Speedup of Crayons system for small, skewed data set

x1

15

19

20

23

26

28

29

37

41

44

46

53

95

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Figure 4.17

Figure 4.18

Figure 5.1

Figure 5.2

Figure 5.3

Execution times for subprocess and end-to-end speedup over small

Centralized dynamic load balancing

Task idling time (queuing time in the task queue) for Crayons version

with centralized dynamic load balancing
Distributed static load balancing
Distributed dynamic load balancing
Comparison across different versions of Crayons system

Crayons’ version with distributed dynamic load balancing using larger

data set
Azure’s Blob and Queue Storage Mechanisms’ Scalability
Operations supported by GPC Clipper library
Average execution time taken by MPI version of Crayons
End-to-end execution timings for subprocess of MPI version of Crayons
Relative Speedup

A typical setup for a bag-of-tasks application employing AzureBOT
framework. The choice of storage service to store data is made on the

runtime based on the data size to improve efficiency.

Performance of Internet data scraper application over varying number

of Azure worker role instances.

AzureBOT performance over varying number of worker role instances;

max thinkTime = 5 seconds.

xii

26

57

57

o8

59

61

62

63

63

64

65

66

74

81

82

Figure 5.4

Figure 5.5

Figure 6.1

Figure 6.2

Figure 6.3

xiil

AzureBOT performance over varying application grain; number of

worker role instances = 16 and number of messages = 1000. . . . 83

Performance of version without AzureBOT, over varying number of

worker role instances; max thinkTime = 5 seconds. 84
Software architecture of Crayons. 96
Software architecture of Crayons using clondMPI 99
Performance of Crayons with and without clondMPI 101

PART 1

INTRODUCTION

Cloud computing provides users with a quick access to large-scale compute and storage
resources without having to worry about the setup, maintenance, or initial investment. The
utility based framework facilitates experimenting with large amount of compute power while
obviating the need to own a parallel or distributed system|3]. Scientific applications with
varying load cycles are the perfect fit for the pay-as-you-go cost model of cloud computing
as the resources in cloud platform can be allocated and deallocated on-demand based on the
application’s requirements.

Cloud computing promises scientists with a new infrastructure and paradigm for large-
scale distributed computing [4]. The emerging cloud platforms, such as Microsoft’s Azure—
with their potential for large-scale computing and storage capabilities, easy accessibility by
common users and scientists, on demand availability, easy maintenance, sustainability, and
portability—have the promise to be the platform of choice for a wide range of scientific
applications.

The term cloud computing started getting popular in 2007 and in terms of search
trends—as reported by Google search trends in Figure 1.1-—it has been consistently more
popular than grid computing since late 2008. The initial distinction between grid computing
and cloud computing was so hazy that in a report on Amazon’s cloud services, published by
Garfinkel [5], the author titles these services as grid computing. As a matter of fact, there
is no concise definition of cloud computing yet [3, 6-9].

Our review of literature points to the fact that a large section of the academic com-
munity debates if cloud computing is a new paradigm [3,8,10] or just grid computing in a
new wrapper. Buyya et al.[10] argues that the cloud computing appears to be similar to

the grid computing only at a cursory glance but a closer observation presents a different

.....r-v-'f

Figure 1.1 Google search trends for cloud computing (blue line), Grid computing (yellow
line), and Virtualization technology (red line).

case. Armburst et al.[3] support the claim of Buyya et al. adding that the cloud computing
platform uniquely provides an illusion of infinite available resources. Lee [4] advocates the
difference by employing the case of hurricane Katrina in 2005 to conclude that the only an-
swer to the scientific and operational grand challenge problem is enormous computer power.
However, it is not economically possible to dedicate the required amount of resources for
this single purpose. Therefore (i) resources must be shared but available on-demand, (ii) the
platform should be scalable on-demand, and (iii) resources should be easily accessible in a
user friendly way over the web. The grid computing platform or any other large compute
cluster cannot adapt to these guidelines.

Foster et. al[8] present a comprehensive comparison of the grid computing and the cloud
computing platforms. The authors recognize the similarity in the two platforms in terms
of the vision and challenges, but the authors also make a solid case to differentiate the two
platforms in terms of scale of operation. The authors agree that the more massive scale being
offered by the cloud computing platform can demand fundamentally different approaches to
tackle a gamut of problems.

We believe that such confusion has hampered the curious nature of researchers to explore

cloud computing. With a vague assumption that there aren’t any challenges that have not
been previously posed by various distributed computing platforms such as compute-clusters
and grid computing, many of the HPC researchers have not been motivated enough to
explore the newer research challenges and opportunities in offering computing as a utility.
Furthermore, the lack of universal development standards for cloud computing platforms
mandate the eScience developers to rewrite their respective applications from scratch for
every cloud offering.

There have been some initial work to understand the pros and cons of this new frame-
work [4,11,12] of cloud computing. Although cloud computing has many aspects closely
similar to traditional parallel and distributed computing platforms, it poses a new set of its
own challenges. Traditional large-scale computing resources were not targeted at enabling
end-users to rent compute hours with provisioning time being in minutes. On the contrary,
cloud computing facilitates anyone to experiment with an idea on a massive platform with-
out investing the capital in owning the resources first, thereby it has the potential to target
a much bigger set of users not necessarily familiar with the parallel or distributed comput-
ing aspects. Moreover, in order to enable the HPC researchers who currently work with
large distributed computing systems, but do not work with cloud computing, to bring their
expertise to cloud computing it is essential to provide them with easier means of applying
their knowledge to cloud computing. Therefore, we propose to create the frameworks and
resources where eScience developers and researchers can effectively build scientific applica-
tions without having the in-depth knowledge of a platform’s internal architecture and APIs.
These applications will also support portability from one cloud vendor to another with little
to no change in the code.

The primary goals of this Ph.D. thesis are
1. creating a generic framework for bag-of-tasks HPC applications to serve as the basic

building block for application development on the Azure cloud platform,

2. creating a set of APIs for HPC application development over cloud platforms, which

is similar to message passing interface (MPI) from traditional parallel and distributed

setting, and

3. implementing Crayons as the first ever end-to-end parallel scientific application to
parallelize the fundamental GIS operations of map overlay as a proof-of-concept to

show the efficacy of the frameworks and the APIs created as part of this thesis.

PART 2

STATE-OF-THE-ART

Although there is no consensus on the definition of cloud computing [13], it is typically
perceived as a set of shared and scalable commodity computing resources that are geograph-
ically located throughout the world and are available on-demand over the web [3]. According
to NIST [6] a cloud computing platform should have five characteristics (1) on-demand self-
service for customers as needed automatically, (2) access to the network over a broad range of
clients such as mobile phones, laptops and PCs, and PDAs, (3) resource pooling for different
types of computing resources, (4) rapid elasticity, to support rapid provisioning and release
of capabilities, and (5) Measured service to support transparent utility based (pay-as-you-go)

service.

2.1 Cloud Computing

As discussed previously, the term cloud computing started getting popular around the
year 2007 and since then its popularity has only increased. Figure 1.1 illustrates the web
search interest growth rate of cloud computing (blue line) as compared to virtualization
technology (red line) or grid computing (yellow line) according to Google search Insights
[14]. As reported in [7] cloud computing outperformed grid computing in terms of growth
rate of web search interest in mid 2008. Over the next few months cloud computing also
encapsulated virtualization and hence a decrease in the growth rate of web search interest
for virtualization was seen.

Since cloud computing offers researchers to think of research questions without wor-
rying about the scale of resources required, it has drawn wide interest from researchers,
especially those working with data and compute-intensive scientific applications [8, 15, 16].

The resources are made available to end users as various services - ‘‘Platform as a service”

(PaaS), “Infrastructure as a service” (IaaS), and “Software as a servic” (SaaS) etc. Con-
ceptually, the key idea here is to abstract the provisioning mechanism at a level where users
can avail these resources as and when needed without worrying about the scale, availability,
or maintenance. Most often, users are billed for utilization based on the time a resource was
reserved by a user.

Srirama et. al. [17] have designed a framework to transform the existing resources at
universities into private clouds to empower students and researchers to efficiently utilize these
resources. Not only academia but commercial vendors have also recognized the pervasiveness
of cloud computing in near future, many of the vendors have rolled out their cloud computing
based services. Rimal et. al., [9] have done a comprehensive comparison of various cloud
computing vendors including Amazon EC2, Microsoft Azure, Google App Engine, IBM
Blue Cloud, Nimbus, 3Tera, and Gigaspaces among others. Gaming industry has also shown
interest in porting games to cloud so that games can be streamed over the web [18]. With the
computationally intensive aspects of games moved to cloud, users can play high performance
games that require expensive high end computing resources over relatively cheaper computers
and other networked devices.

A number of scientific applications have also been ported to cloud, but yet it is far
from what has been achieved using traditional large compute-clusters. Rehr et. al [16]
studied the feasibility of porting two scientific applications - x-ray spectroscopy and electronic
structure code FEFF - on Amazon EC2. Hoffa et. al. [19] have reported the advantages and
shortcomings of using cloud computing for an application called Montage from the field of
astronomy and compared the performance of Montage over local and virtual cluster.

Researchers have identified the problem with lack of standardized tools, access mech-
anisms, and runtime environments to work with various cloud platforms. Some of the re-
search projects have worked on creating generic APIs that create an abtraction level and
connects these APIs to the APIs of the respective cloud platform. For instance, projects
such as Apache Whirr[20] and jClouds|21] offer cloud-neutral APIs that allow users to write

portable codes using their APIs. However, the biggest challenge for adoption of cloud com-

puting is the initial learning curve to get started with cloud computing, which is not solved
by these APIs. Since the users still need to understand the unique architecture and at least
one set of APIs, these projects are useful for developers who are familiar with at least one
cloud platform and now either want to move on to another cloud or want to write portable

applications.

2.2 Programming models for the cloud platforms

There have been many programming models inspired by the general principle of mes-
sage passing involving point-to-point and/or collective communication such as Chimp[22]
and PVM|23] and MPI[24]. However, after the adoption of MPI standard it became the
de-facto standard for parallel programming[25]. There have been a large number of MPIT
implementations by various organizations[26-29]. The primary reason for such popularity of
MPI standard was the ease of use and the simplicity of design.

Unfortunately, there is a dearth of programming models tailored for the cloud platforms.
While map-reduce framework [30] has shown good potential to be the platform of choice for
cloud platforms, it is not natively supported by many popular cloud platforms.

Similarly, the MPI framework has faced the performance challenge as the commodity
hardware based architecture of cloud platforms is not a good fit for traditional MPI imple-
mentations. As a matter of fact, the cloud computing paradigm is far from the adoption
that MPI implementations have received over traditional platforms. We believe the primary
reason is the steep learning curve due to lack of uniformity among various cloud platforms as
well as the unique underlying architecture. Moreover, the lack of familiar tools and runtime
environments make it difficult for an application developer to write an application for the
cloud platforms.

Furthermore, the traditional implementations of MPI frameworks are not suitable for
the cloud platforms. The high latency and low bandwidth network of the cloud architecture
does not work well with MPI and other message passing models that rely on the efficiency

of the network. Authors in [31] demonstrate that the cloud platforms such as Amazon EC2

(~Compute

N ~Storage————
‘Queues ‘
|Web role ‘ ‘ Blobs ‘
| Worker role ‘ ‘Tables ‘
~ h
Fabric

S

Figure 2.1 Typical programming artifacts of Windows Azure platform [1]

could be as much as 35X slower than the traditional platforms when it comes to network

bandwidth and latency.

2.3 Windows Azure cloud platform

The Windows Azure cloud platform is a computing and service platform hosted in
Microsoft data centers. Its programming primitives consist of two types of processes called
web role and worker role for computation, a variety of storage mechanisms, and the Windows
Azure Fabric. The typical programming artifacts of Windows Azure platform are shown in
Figure 2.1. The web role acts as a web application accessible over HTTP and HTTPs
endpoints and usually is the front end of any Azure cloud based application. Worker roles
are the processing entities representing the backend processing for the web application. A
web role is hosted in an environment with support for a subset of ASP.NET and Windows
Communication Foundation (WCF) technologies[1]. Both web role and worker role processes
can have different configurations as shown in Table ?77?.

Fabric (Windows Azure Fabric) in the Windows Azure platform is the network of in-
terconnected physical computing nodes consisting of servers, high-speed connections, and

switches. Compute and storage components are part of the Fabric.

Table 2.1 Listing of virtual machine configurations available for web role and worker role
instances with Windows Azure

VM Size CPU Cores | Memory | Storage
Extra Small Shared 768MB | 20 GB

Small 1 1.75 GB | 225 GB
Medium 2 3.5 GB | 490 GB
Large 4 7GB | 1000 GB
Extra Large 8 14 GB | 2040 GB

The storage objects are organized as services and can be accessed by both web roles and
worker roles. There are three primary types of storage services: Queues, Blobs, and Tables.
Additionally, local storage can be configured for role instances. Azure platform also provides
a caching service to temporarily hold data in memory across different servers. In this paper,
we only concentrate on the three primary storage services.

Queues are similar to the traditional queue data structure, but first-in first-out (FIFO)
functionality is not always guaranteed. Queues are prominently used for communication
among instances of web roles and worker roles. A reference to a task is usually put as a
message on the queue and a set of worker role instances are deployed to process them. The
blob storage is a persistent storage service like a traditional file; the data can be stored as
a collection of small blocks of size up to 4 MB or large pages of size up to 1 TB. Azure
tables arrange data into a structured organization and thus are useful for query-based data

management.

10

PART 3

AZUREBENCH: BENCHMARKING SUITE FOR THE AZURE CLOUD
PLATFORM

The consistent growth of Cloud computing hints that it is poised to be the platform
of choice for future generations of High Performance Computing (HPC) application devel-
opment. A large number of vendors have rolled out their commercial cloud infrastructures.
However, the service offerings are usually only best-effort based, without any performance
guarantees. Unlike traditional computing platforms where the user had access to both hard-
ware and software, cloud computing only provides resources as a service and hence the quality
of service, performance consistency, and resource sharing is soleley controlled by the cloud
vendor.

Since developers do not control the behavior of other tenants on the machine where
their applications are hosted, the verifiability of the services promised becomes a crucial
question to choose cloud computing over traditional computing platforms. Cloud computing
effectively saves the eScience developer the hassles of resource provisioning but utilization
of these resources will be questionable if it can not meet the performance expectations of
deployed applications. Furthermore, in order to make application design choices for a partic-
ular cloud offering, an eScience developer needs to understand the performance capabilities
of the underlying cloud platform. Among all clouds, the emerging Azure cloud from Mi-
crosoft remains a challenge for HPC program development both due to lack of its support
for traditional parallel programming support such as MPI and map-reduce and due to its
evolving APIs. To aid the HPC developers, we present an open-source benchmark suite,
AzureBench?!, for Windows Azure cloud platform. We report comprehensive performance

analysis of Azure cloud platform’s storage services which are its primary artifacts for inter-

IThis work is partially supported by NSF CCF 1048200 and Microsoft.

11

processor coordination and communication. We also report on how much scalability Azure
platform affords using up to 100 processors and point out various bottlenecks in parallel ac-
cess of storage services. The chapter also has pointers to overcome the steep learning curve
for HPC application development over Azure. We also provide an open-source generic ap-
plication framework that can be a starting point for application development for bag-of-task
applications over Azure.

There are several vendors offering cloud services in the market today. The service of-
ferings differ in terms of software support, platform support, and also developmental tools
support. While some vendors empower the developer to deploy his/her own virtual machine
images, some others provide their own APIs to interact with their cloud services. Moreover,
some vendors support traditional programming support such as MPI and Map-reduce while
others have different software infrastructures. Therefore, it is critical for an eScience devel-
oper to choose the cloud platform that is most suitable for his/her application based on the
availability of resources required for development and maintenance of that application.

In this chapter we present AzureBench? - a suite of benchmarks for Azure platform’s
storage services. We provide a comprehensive scalability assessment of Azure platform’s
storage services using up to 100 processors. Our work extends a preliminary study by
Hill et al. [32] in 2010 and provides additional key insights. Our assessments of Azure
platform provide updated, realistic performance measurements as we utilize the APIs released
after significant changes were made to the Azure cloud platform since 2010. Some of the
earlier restrictions of Azure platform’s storage services, such as expiration of a message in
Queue storage after 2 hours, rendered Azure platform problematic for long-running real-
world scientific applications.

AzureBench is an open-source benchmark suite hosted at Codeplex repository® available
under GPLv2. The open-source nature will motivate further research in this direction. We

have chosen not to include the assessment of operating cost and SQL-Azure functionalities

2Please visit the project page at http://www.cs.gsu.edu/dimos/content/azurebench.html for up-to-
date information including code, data, and plots.
3Source code for AzureBench can be downloaded from http://azurebench.codeplex.com/.

12

in this study. Moreover, comparison with other cloud platforms is also not studied in this
work - primarily due to the differences in architectures. We plan to address both these issues
by including it in AzureBench and provide a detailed report in near future.

The Windows Azure cloud platform provides three types of storage services: Blob stor-
age, Queue storage, and Table storage. We have done an extensive study of all three storage
mechanisms for varying load and compute instances.

In order to evaluate Windows Azure storage mechanisms, we deploy varying number
of virtual machines (VM) and these virtual machines read/write from/to Azure storage
concurrently. For the sake of fair comparison, we maintain the same amount of input and
output load throughout the benchmarking process.

Azure platform performs impressively better than what has been reported earlier [32], as
many of the previous drawbacks have been addressed by Microsoft. Nevertheless, there are
still few bottlenecks left in Azure storage mechanisms that we have discovered. We also lay
out a simplistic generic application framework for Azure cloud to give developers a starting
point to design their own applications. Finally, we provide a summary of our findings and
make recommendations for developers to efficiently leverage the maximum throughput of
storage services.

We do not analyze the local storage feature at each compute resource as it is similar to
writing to the local hard disk and thus does not add value to the study. Since we are only
interested in assessment of Azure storage in this study, the compute instances do not perform
any computationally-intensive task on the data. The data generation is limited to minimum
possible and the time spent in data generation is also ignored. We have done another study
to analyze the performance of Azure platform for both computational and I/O phases with
respect to a scientific application from Geographic Information System and Science (GIS)
domain. Motivated readers can refer to [33] to read more details about that study.

The rest of this chapter is organized as follows: Section 3.1 discusses the previous work
reported in literature. We present a generic framework for HPC applications on Windows

Azure cloud platform in Section 3.2. Our experimental results and analysis is presented is

13

Section 3.3. Section 3.4 concludes this chapter with comments on the future work.

3.1 Background and Literature

3.1.1 Cloud Computing for Scientific Applications

Cloud Computing is typically perceived as a set of shared and scalable commodity
computing resources, located all over the world and available on-demand over a network.
The resources are made available to end users as various services such as “Platform as a
service” (PaaS), “Infrastructure as a service” (laaS), and “Software as a service” (SaaS).
Conceptually, the key idea here is to abstract the provisioning mechanism at a level, where
users can avail of these resources dynamically without burdening themselves with either the
availability or the maintenance. There is yet no universally accepted definition of Cloud
computing [3].

The term cloud computing started getting popular around the year 2007, its popularity
has only increased since then. Figure 1.1 illustrates the web search interest growth rate
of cloud computing (blue line) as compared to virtualization technology (red line) or grid
computing (yellow line), according to Google search Insights [14]. Cloud computing outper-
formed grid computing in terms of growth rate of web search interest in mid 2008. Over the
next few months, cloud computing also encapsulated virtualization and hence a decrease in
the growth rate of web search interest for virtualization was seen.

Thanks to the dynamic provisioning of resources, cloud computing has drawn wide
interest from researchers, especially those working with data and compute-intensive scientific
applications [8,15,16]. Users are billed for utilization, largely based on the time a resource
was reserved by a user.

Srirama et al.[17] report how universities can utilize the existing HPC resources as their
own private clouds. Ekanayake et al. [34] have created a framework for iterative map-reduce
on Azure and have demonstrated, by way of samples, how their framework can be utilized

to port map-reduce based applications to Azure.

14

Commercial vendors, similarly, have also recognized the importance of cloud computing;
many of the vendors have already rolled out their cloud computing based services. Rimal et
al. [9] have done a comprehensive comparison of various cloud computing vendors including
Amazon EC2, Microsoft Azure, Google App Engine, IBM Blue Cloud, Nimbus, 3Tera, and
Gigaspaces among others. Gaming industry has also used cloud platform to host compute
intensive aspects of games to enable a rich gaming experience without the need of expensive
computing resources [18].

A number of HPC scientific applications have also been ported to cloud. Rehr et al.[16]
studied the feasibility of porting two scientific applications - X-ray spectroscopy and elec-
tronic structure code FEFF - on Amazon EC2. Hoffa et al.[19] have reported the advantages
and shortcomings of using cloud computing for an application called Montage from the field

of astronomy and compared the performance of Montage over local and virtual cluster.

3.2 An Application Framework for Scientific Applications on Windows Azure
Cloud Platform

Figure 3.1 shows a generic framework for application development on Windows Azure
cloud platform. Application workflow for Azure cloud based applications typically starts
with a web-interface where users have an option to specify the parameters for background
processing. Moreover, this interface should be interactive to update users with current state
of the system, especially for time consuming applications. This is typically achieved by
employing a web-role, although some applications use command line interface where this
component could be missing from the application framework.

VM configuration for web role depends on the intensity of the tasks to be handled by the
web role. For applications where web role performs computationally-intensive operations, a
fat VM configuration should be chosen. Similarly, if the web role needs to access large data
items from cloud storage, it could be a fat VM to upload/download data to/from the storage
using multiple threads.

To communicate task with worker roles, web role puts a message on a Task assignment

15

Task assi
Input Arguments ask assignment Queue Fetch Tasks

\ 4

> L

User Interface

(Web Role) € —— Storage D — Worker Roles
A A
2 2
Termination Indicator Queue Tnternal communication

Figure 3.1 A Generic Application Framework for Scientific Applications on Windows Azure
Cloud Platform

queue as shown in Figure 3.1. If there are distinct input parameter sets, there could be
multiple task assignment queues for each set of parameters.

Worker role instances keep checking this queue and as soon as they locate a message
there, they start background processing based on the content of the message in the queue.
Worker roles communicate with the storage services to acquire the data required for process-
ing.

One or more queues can be utilized to communicate among worker role instances. Since
one role instance cannot automatically query the state of other role instances in Windows
Azure, the communication depends on storage services - typically Queue storage. Azure
platform also supports TCP endpoints that can be configured to facilitate an application to
listen on an assigned TCP port for incoming requests. TCP messages can be sent/received
among Azure roles or can be used for communication with external services - these messages
are not, currently studied in this work.

For a time-consuming interactive application, it is essential to update the user interface.

16

To achieve this, a worker role instance can put a message on a queue after every phase of
processing completes. The web role can read the number of messages in this queue and
accordingly update the user interface. This queue is shown as Termination Indicator Queue
in Figure 3.1.

The effectiveness of this framework has been proven in several applications, such as our

own GIS application Crayons [33] and Twister4dAzure[34].

3.3 Benchmark Experiments and Timing Characteristics

Windows Azure storage services partition the stored data across several servers to pro-
vide enhanced scalability. The absolute limit on a storage account is 100 TB. However, there
are additional limits on scalability targets. Windows Azure storage services can handle up
to 5,000 transactions (entities/messages/blobs) per second. Moreover, there is a maximum
bandwidth support for up to 3 GB per second for a single storage account. Exceeding any
of the specified limits result in the failure of a role instance.

In this section, we detail our analysis with the performance test of all three Azure

storage services: Blob storage, Table storage, and Queue storage.

3.3.1 Blob Storage

Blob storage in Windows Azure is similar to the traditional file system. Blob storage
service, organized into a hierarchy, can be used to store large amount of unstructured data.
One storage account can have multiple blob containers, and one container can store multiple
blobs. Blobs are partitioned based on “container name + blob name” combination, i.e, each
individual blob can be stored at a different server for maximum throughput. The throughput
of a blob is up to 60 MB per second.

There are two types of blobs in Windows Azure: Block blobs and Page blobs. Block
blobs can be created in two ways - Block blobs less than 64 MB in size can be directly
uploaded to blob storage as a single entity, and Block blobs greater than 64 MB can be

uploaded as a set of multiple blocks of size up to 4 MB each. There can be a total of 50,000

Algorithm 1 Azurebench blob benchmarks

syncCount := (0
for repeat :=1 — 10 do
BlockBlob := ‘‘AzureBenchBlockBlob”
PageBlob := “AzureBenchPageBlob”
Total blocks/pages in a blob count := (
/* Page blob upload */
content := randomData(1M B)
for pageid :=1 — (:24L) do
PutPage(PageBlob, content)
end for
/* Block Blob Upload */
content := randomData(1M B)
for blockid :=1 — (2L} do
PutBlock(BlockBlob, content)
Add blockid to blockIdList
end for
PutBlockList(blockIdList)
Synchronize(+ + syncCount)
/* Downloading pages from a Page blob randomly */
for pagel D :=1 — count do
pageO f fset := randomNumber(1, count)
Page := GetPage(PageBlob, pageO f fset)
end for
/* Downloading blocks from a Block blob */
for blockID :=1 — count do
Block := GetBlock(BlockBlob, blockID)
end for
Synchronize(+ + syncCount)
/* Download entire Page Blob */
Download PageBlob using PageBlob.openRead()
/* Download entire Block blob */
Download blob using BlockBlob. DownloadText()
Synchronize(+ + syncCount)
DeletePageBlob(PageBlob)
DeleteBlockBlob(BlockBlob)

end for

100MB)
1MB

18

such blocks in a blob. Thus, the maximum size of a Block blob cannot exceed 200 GB.

The Page blob artifact was not there in the Blob storage initially; it was later introduced
to facilitate random read/write operations on blobs. A Page blob is created and initialized
with a maximum size; pages can be added at any location in the blob by specifying the offset.
The offset boundary should be divisible by 512, and the total data that can be updated in
one operation is 4 MB. A Page blob can store up to 1 TB of data. We perform both, upload
and download, tests on both types of blobs.

Algorithm 1 shows the skeleton of our benchmark code for Azure Blob storage (Azure
APIs highlighted in bold itaiics). Each worker role starts with uploading one 100 MB blob
to cloud storage in 100 chunks (blocks or pages) of 1 MB each.

To ensure that the process of downloading starts only after the process of uploading
has finished, worker roles need to synchronize. Synchronizing among worker roles in Azure
platform is an interesting process by itself. There is no API in the Azure software develop-
ment kit that provides a traditional barrier like functionality. However, a queue can be used
as a shared memory resource to implement explicit synchronization among multiple worker
role instances. Each worker can put a message on a designated queue that acts as a barrier.
When the number of messages in the queue is equal to the number of workers, it is safe to
assume that all workers have touched the barrier and hence all of them can cross it.

However, what makes it interesting is that if the workers delete the messages after
exiting the While loop, those workers that have put the message in the queue, but yet to
exit the loop, will never meet the loop termination condition. On the other hand, if the
workers do not delete the messages, the number of workers will never match the number
of messages in the queue after first synchronization cycle. Therefore, in our case, for each
synchronization phase, we pass a variable that accounts for the messages left in the queue
during previous synchronization phases. Moreover, since a large number of requests to get
the message count can throttle the queue, each worker sleeps for a second before issuing
the next request. The time reported in the experiments does not include the time spent in

synchronization. Our synchronization mechanism is illustrated in Algorithm 2.

19

Algorithm 2 Synchronization among worker role instances

Input: syncCount

syncQueue :="‘Termination_Indicator_Queue”

arrived := 0

while arrived < (workers % syncCount) do
arrived := GetMsgCount(syncQueue)

Sleep(1 second)
end while

180 1 —m=PageBlob Download
160 1 —4—BlockBlob Download
=] PageBlob Upload
| =s<=BlockBlob Upload

1 2 4 8 16 32

#worker role instances

B
(=]
o

Time Taken [Seconds]
w
(=]
=1

PageBlob Upload
== BlockBlob Upload
=i~ PageBlob Download
—4—BlockBlob Download

2 4 8 16 32 64 96

#worker role instances

(a) Throughput

(b) Time

Figure 3.2 Azurebench Blob storage benchmarks

Figure 3.2 shows the performance analysis of Azure platform’s Blob storage service. The

total uploaded data to the Blob storage is 2 GB - 1 GB for each Block and Page blob. The

downloaded data, however, is 2 GB per worker role instance. Since each worker downloads

the blobs from the Blob storage, the download time increases with increasing number of

worker role instances for both Block and Page blobs as shown in Figure 3.2(b). However,

the throughput of the Blob storage also increases with increasing number of worker role

instances, as shown in Figure 3.2(a).

The upload time reduces with the increasing number of workers, as the amount of the

data to be uploaded per worker reduces. Moreover, the increasing throughput for the process

of uploading suggests that the Blob storage scales well even when multiple clients are trying

to upload data.

The maximum throughput for blob download process was 165 MB/s, achieved for Block

20

128 1600 -
~-Random Pagewise Blob Download
64 1400 - .)
- =#=Sequential Blockwise Blob Download
.ﬁ_ 32 'g 1200 -
2 9 1000 -
= 16 L}
A £ 800
£ B8 2=
3 = 600 -
£ 4 £ 400
(= . = 7
) == Random Pagewise Blob Download =
7 200 +
=4 Sequential Blockwise Blob Download
1 T T T T T T T 1 0 T T T T T T T 1
1 2 4 8 16 32 64 96 1 2 4 8 16 32 64 96
#worker role instances #worker role instances
(a) Throughput (b) Time

Figure 3.3 Blob download using one page/block at a time

blob download using 96 workers, and the maximum throughput for blob upload process was
60 MB/s, realized for Page upload process using 96 workers. The maximum throughput for
a Block blob upload process was only a little over 21 MB/s using 96 workers; the reason
why Page blob upload process demonstrates superior upload throughput is the capability of
Page blobs to allow fast random access to read/write pages.

To evaluate the performance of random access for Page blob download process, each
worker downloads 100 random pages from the Page blob that was uploaded previously. Since
Block blobs do not support random access of blocks, we let each worker read one block at a
time sequentially.

Figure 3.3 shows the download time and throughput of Blob storage when blobs are
downloaded by accessing one block/page at a time. The pages from the Page blob are
accessed randomly, which adds the overhead of locating the page in a Page blob. The blocks
from the Block blob are accessed sequentially. The maximum throughput achieved by Page
wise blob downloading was more than 71 MB/s using 96 workers. The Block wise blob

downloading for the same amount of worker roles was more than 104 MB/s.

21

3.3.2 Queue Storage

In Windows Azure platform based applications, queues are used by both web role and
worker roles to communicate with each other or among different instances of the same role.
The distinguishing feature of an Azure Queue storage from the traditional queue data struc-
ture is its lack of ability to guarantee a FIFO operation. This lack of guarantee for FIFO
operation can cause issues if a queue is to be used to signal a special event. For instance, if
web role wants to put a message at the end of the task queue to signal the end of work, it
might not work as expected. Since FIFO is not guaranteed, the worker roles might read this
message before the actual messages for tasks and hence quit processing while there is work
in the task pool. To achieve termination signaling, it is recommended to create a dedicated
termination indicator queue where worker instances can send messages to signal an event.

A storage account can have unlimited number of uniquely named queues. Each queue
can have unlimited number of messages (limited by 100 TB limit of a storage account) and
each message has a visibility timeout period. Queues are partitioned based on queue names,
i.e. a single queue and all the messages stored in it are stored at a single server. A single
queue can only handle up to 500 messages per second. Thus, if an application only interacts
with queues, it is essential to employ multiple queues for better scalability.

The messages in a queue can be consumed by any service, but the consumer is expected
to delete the message after processing. Once a message is read, it is made invisible from the
queue for other consumers. A consumer also has the option to peek a message rather than
reading it, in which case the message stays visible in the queue for other consumers. If the
consumer does not delete the message after its consumption, it reappears in the queue after
a certain time.

Similarly, if a message is left in the queue for longer than a week (the duration was
2 hours for previous APIs), it automatically disappears. The maximum size of a message
supported by Azure cloud is 64 KB - it used to be 8 KB prior to October 2011 version of
Azure APIs. To store larger data, one can store the actual data in Blob storage and put the

blob’s name in the queue as a message. Equipped with these properties, queues can easily

22

Algorithm 3 Azurebench Queue storage benchmarks with a separate queue per worker

QueueName = “AzureBenchQueue + roleID”’
Message_Size := 4KB
Message_Count = (jf;gggs)
CreateQueue(QueueName)
for repeat := 0 — (log(ﬁfgg) = 4) do
for count := 1 — Message_Count do
Message = randomData(Message_Size)
PutMessage(QueueName, Message)
end for
for count :=1 — Message_Count do
Message := PeekMessage(QueueName)
end for
for count :=1 — Message_C'ount do
Message = GetMessage(QueueName)
DeleteMessage(Message)
end for
Message_Size = Message_Size * 2
end for

DeleteQueue(QueueName)

facilitate the behavior of a shared task pool with in-built fault tolerance mechanisms.

For our experiments, we test three operations on Azure queues: inserting a message
using PutMessage API, reading a message using GetMessage API, and reading a message
using PeekMessage API. Concurrent consumers can read a message from a queue using
PeekMessage API. However, if a consumer reads a message using GetMessage API, only
first consumer can read the message as the message becomes invisible from the queue for a
certain amount of time, defined at the time of message creation.

We have evaluated Queue storage under two scenarios, (i) each worker works with its
own dedicated queue, and (ii) all workers access the same queue. For both experiments, a
total number of 20K messages were first inserted in the queue, then read using both APIs,
and finally deleted from the queue.

Algorithm 3 represents the first scenario - each worker has its own queue. In this
experiment, we evaluate the performance of the queue storage with varying size of messages

- 4 KB, 8KB, 16 KB, 32 KB, and 64 KB. Interestingly, 48 KB (49152 Bytes to be precise) is

23

Time Taken [Seconds)

2 4 8 16
of worker role instances

256
128

32
16

Time Taken [Seconds)

ol o= S - - -

96 1 2 4 8 16

32
of worker role instances

64

96

(a) Put Message

(b) Peek Message

Time Taken [Seco

m4KB
HEKB
m16KB
m32KB
WEAKB

4 2 16 32 64 96
of worker role instances

Figure 3.4 Azurebench queue benchmarks - Separate queue per worker

(c) Get Message

the maximum usable size of an Azure queue message, rest of the message content is metadata.

The total real data uploaded (and downloaded) to (from) Queue storage in an experiment

with message size of 48 KB is around 1.2 GB.

Figure 3.4 shows how Windows Azure platform’s Queue storage scales with varying load

and varying number of worker role instances. Impressively, the Queue storage scales very

well for varying message sizes (4 KB through 64 KB) and varying number of worker role

instances for all three operations - insertion, reading using PeekMessage, and reading using

GetMessage. We also tried the same experiment with 200 messages in total and the results

were still the same. The experiments at different times also demonstrated similar behavior.

24

Windows Azure platform maintains three replicas of each storage object with strong
consistency[35]. Figure 3.4(a) shows the time to put a message on the queue. For Put Mes-
sage operation, the queue needs to be synchronized among replicated copies across different
servers. Figure 3.4(b) shows the behavior of Peek message operation. It is the fastest of all
three operations, as there is no synchronization needed on the server end. The Get Mes-
sage operation, as shown in Figure 3.4(c), is the most expensive operation as in this case,
in addition to synchronization, the message also becomes invisible from the queue for all
other worker role instances, and hence extra state needs to be maintained across all copies.
Moreover, in our case the Get Message operation also includes deletion of the respective
message.

One interesting case is of message size 16 KB. Surprisingly, the Get operation for this
sized messages took significantly more time than other message sizes (both smaller and larger
ones). We do not know the reason behind this, but this was consistently seen in all repeated
experiments.

Algorithm 4 illustrates the steps of evaluation where multiple workers concurrently
interact with a single queue. Each worker accesses the queue once and then spends a certain
amount of time before going back to the queue again. This behavior simulates a real world
application, where the application accesses the queue intermittently during the course of
execution. We varied the time taken by a worker before going back to the queue from 1
second to 5 seconds; the reported time only includes the time spent in communication with
the queue. We ensured that the total number of transactions remain same irrespective of
number of workers. Thus, workers proportionately carried out fewer transactions on the
shared queue as their number increased. The message size for this experiment was kept
constant at 32 KB. Additionally, in order to ensure that the number of transactions between
the workers and the queue never exceed the bandwidth limit of 500 messages per second,
each operation is split into multiple rounds.

Figure 3.5 shows the behavior of Queue storage when multiple workers are accessing a

queue in parallel. Parallel access of a queue increases the contention at the queue, hence the

25

Algorithm 4 Azurebench queue benchmarks with a single queue shared among multiple
workers

QueueName :=*“AzureBenchQueue”

Message_Size := 32K B

Message_Count := (&)

20.000 workers
rounds := (=0)

thinkTime := 1 second
for repeat :=1 — ((%) = 5) do
for round :=1 — rounds do
for count :=1 — Message_Count do
Message := randomData(Message_Size)
PutMessage(QueueName, Message)
end for
think(thinkTime)
for count := 1 — Message_C'ount do
Message := PeekMessage(QueueName)
end for
think(thinkTime)
for count :=1 — Message_C'ount do
Message := GetMessage(QueueName)
DeleteMessage(Message)

end for
think(thinkTime)
end for
thinkTime = thinkTime + 1 second
end for

time taken by each operation is greater than the time taken when each worker accesses its
own queue (Figure 3.4). The think time also plays a vital role in realizing the performance
of a queue. It can be seen from Figure 3.5, that the time taken by an operation reduces
as the think time increases; in some cases, the time reduces by a factor of almost two. As
the number of workers starts increasing, the time starts decreasing. This is not due to any
reduction in overall parallel access to the shared queue. This demonstrates that the queue
implementation scales very well at these access frequencies.

The first scenario, where we use separate queues for each worker role instance, each
worker can put a parallel request as the queues are partitioned based on queue names. This

is the reason why we see super-linear speedup in many cases. Consequently, we recommend

26

1024 - M Think Time = 1 Second 512 - W Think Time = 1 Second 2048 - M Think Time = 1 Second
W Think Time = 2 Second 256 B Think Time = 2 Second 1024 M Think Time = 2 Second
W Think Time = 3 Second o Think Time = 3 Second 512 -
B Think Time = 4 Second

W Think Time = 3 Second
M Think Time = 4 Second

]
&

3 Z128 - 3
s o S 6a J m Think Time = 4 Second g T
H M Think Time = 5 Second g o g 128 M Think Time = 5 Second
a &3 M Think Time = 5 Second A e |
e 32 c c
% 16 - £ 16 5 § 32 |
e e g & 16
v 8 - o ¢ g
E E 4 E
=4 = 7 [
2 - 2 - 3 |
1 4 1+ 1 4
1 2 a4 8 16 32 64 96 1 2 4 8 16 32 64 96 1 2 4 32 64 96
#worker role instances #worker role instances #worker role instances
(a) Put Message (b) Peek Message (c¢) Get Message

Figure 3.5 Azurebench queue benchmarks - Single shared queue

usage of multiple queues as and when possible to make efficient use of Queue storage.

3.3.3 Table Storage

Table storage provides semi-structured data storage in Azure cloud platform. A table is
comprised of entities of up to 1 MB in size; each entity is composed of up to 255 properties.
A table can be queried based on the default properties - Row Key and Partition Key - which
apparently also form the unique key for an entity. Unlike traditional database tables, Azure
Table storage does not have a schema. All of the properties of a table are stored as (Name,
Value) pairs, i.e. two entities in the same table can have different properties.

Tables are partitioned on the partition keys, i.e. entities of a table that belong to
the same partition are stored together on a server. A single partition can support access
to a maximum of 500 entities per second. Therefore, a good partitioning of a table can
significantly boost the performance of Table storage.

Algorithm 5 shows the structure of our benchmark tests for Table storage. Each worker
role instance inserts 500 entities in the table, all of which are stored in a separate partition
in the same table. Once the insertion completes, the worker role queries the same entities
500 times. After the querying phase ends, the worker role updates all of the 500 entities
with newer data. Finally, all of these entities are deleted. The exact experiment is repeated

5 times with varying entity sizes. We have experimented with entity sizes of 4 KB, 8 KB,

27

Algorithm 5 Azurebench table benchmarks

TableName = ‘‘AzureBenchTable”

Entity_Size = 4KB

Entity_Count = 500

for repeat :=1 — 5 do

for rowKey := 1 — Entity_Count do

Entity = randomData(Entity_Size)
Entity.partitionKey = rolel D
AddRow(TableName, Entity, rowKey)

end for
for rowKey := 1 — Entity_Count do
Entity =
Query(TableName, rolel D, rowKey)
end for

for rowKey := 1 — Entity_ Count do
newData = randomData(Entity_Size)

Update(Table Name,
rolelI D, rowKey, newData)
end for

for rowKey := 1 — Entity_ Count do
Delete(TableName, rolel D, rowKey)

Save(TableName)
end for
Entity_Size = Entity_Size * 2
end for

16 KB, 32 KB, and 64 KB.

Figure 3.6 shows the performance of Table storage service. The timings are almost
constant till 4 concurrent clients for all entity sizes across all four operations. It can be seen
from Figure 3.6(c) that updating a table is the most time consuming process. We only tested
the unconditional updates by using the wild card character * for FTag during update queries.
The least expensive process is querying a table, as shown in Figure 3.6(b). For entity sizes
32 KB and 64 KB, the time taken for all of the four operations increases drastically with
increasing number of worker role instances.

We initially started with inserting about 1000 entities each and experienced a small
number of server busy exceptions during the experiments, which is an indication of hitting

the 500 transactions per second limit. Therefore, we tried with only 500 transactions and

28

HMA4KB MB8KB m16KB M32KB m64KB W4KB MEBKE W16KB M32KB me4KB
— = 40
o -
c c
]]
o o
] Q
L2 L0 -
c c
a a
- -
E £
= =
5
1 2 4 8 16 32 64 96 1 2 4 8 16 32 Y8 96
of worker role instances # of worker role instances
(a) Insert (b) Query
WA4KE WEKB m16KB mM32KB moed4KB WA4KE WEKB mi16kKB m32KB moed4KB
7.‘-160) = 80
b} -
g g
§ 0 - g
w 2 40
c c
< 40 - =
E 20 - E 0
= =
10 10 +
1 2 4 8 16 32 64 96 1 2 4 8 16 32 64 96
of worker role instances #of worker role instances

(c) Update (d) Delete

Figure 3.6 Table Storage

everything worked without any exception.

Similar to the previous case of Blob and Queue storage, when we run into such excep-
tions, the worker sleeps for a second before retrying the same operation.

Many scientific applications require a storage service that offers query like behavior, as
well as well organized data storage than a simple file system. Azure Table storage provides
this functionality with an impressive throughput. However, a table can only handle entities
(rows) that are at most 1 MB in size and have up to 255 properties (columns); we only had
one column per row for our experiments.

The name Table storage could confuse a beginner developer to expect a SQL like func-
tionality, where the size of the table should be controlled by the limit of the storage account

size - both in terms of number of entities as well as properties. Moreover, if the fundamental

29

51.2
2
S 12.8 -
g
o
]
= 3.2
E
g
x 0.8 | —#-Update =M=Insert
=
g Delete ===Query
E 027 o Get ——Put
=f=Peek
0-05 T T T T T T T 1
1 2 4 8 16 32 64 96
#worker role instances

Figure 3.7 Per operation time for Table (insert, query, update, and delete) and Queue storage
(put, peek, and get) services

storage unit of an application can expand beyond 1 MB, than table is not the best choice
for storage - a blob should be considered. A blob can store up to 64 MB of data, or even
more by arranging data into multiple blocks or pages.

Figure 3.7 shows the per operation time for Queue and Table storage services. The
reported time is the average time taken by an operation, i.e. the division of total time taken
by all the worker roles to finish that operation, and the number of workers. It is evident
from Figure 3.7 that the Queue storage scales better than the Table storage as the number

of workers increases.

3.4 Conclusion

In this chapter we have presented AzureBench - an open source benchmark suite for
Windows Azure platform’s storage services - along with experimental details to analyze
the performance capabilities of Azure cloud platform. We have shown a comprehensive
performance evaluation of Windows Azure platform’s storage services - Table, Blob, and
Queues. We also present a generic framework along with pointers for HPC application

development on Azure.

30

PART 4

CRAYONS: AN AZURE CLOUD BASED PARALLEL SYSTEM FOR GIS
OVERLAY OPERATIONS

Efficient end-to-end parallel /distributed processing of vector-based spatial data has been
a long-standing research question in GIS community. The irregular and data intensive nature
of the underlying computation has impeded the exploratory research in this space. We have
created an open-architecture-based system named Crayons for Azure cloud platform using
state-of-the-art techniques. The design and development of Crayons system is an engineering
feat both due to (i) the emerging nature of the Azure cloud platform which lacks traditional
support for parallel processing and (ii) the tedious exploration of design space for right
techniques for parallelizing various workflow components including file I/O, partitioning,
task creation, and load balancing. Crayons is an open-source system available for both
download and online access, to foster academic activities. We believe Crayons to be the
first distributed GIS system over cloud capable of end-to-end spatial overlay analysis. We
demonstrate how Azure platform‘s storage, communication, and computation mechanisms
can support high performance application (HPC) development. Crayons scales well for
sufficiently large data sets, achieving end-to-end speedup of over 40-fold employing 100 Azure
processors. For smaller, more irregular workload, it still yields over 10-fold speedup. We
discuss spatio-temporal aspects, in particular employment of affinity groups for co-locating
data and computation.

Since the creation of the National Spatial Data Infrastructure [36] by 1994 Presidential
Executive Order 12906, the availability of digital geospatial data has increased significantly,
thanks to the NSDI initiative implemented by state-wide GIS Data Clearinghouses, federal
government agencies, and others. In addition to raw data, many geospatial data sets are now

accessible using a variety of Open Geospatial Consortium standards [37], such as Geography

31

Markup Language (GML), Web Feature Service (WFS), Web Coverage Service (WCS) [38],
GeoRSS and KML [39]. Figure 4.1 shows some example data sets with typical file sizes. De-
pending on the resolution and geographic extents, data sets can get extremely large (several

terabytes) [40].

Table 4.1 Example GIS data sets and typical file sizes

Source Example Type Description File Size

Block Centroids Block centroids for entire US 705 MB

US Census [41] Block Polygons 2000 Block polygons for the state of Georgia 108 MB
Blockgroup Polygons 2000 Blockgroup polygons for the state of Georgia 14 MB

GADoT [42] Roads Road centerlines for 5-county Atlanta metro 130 MB
USGS [43] National Hydrography Data set ~ Hydrography features for entire US 13.1 GB
National Landcover Data set Landcover for entire US 3-28 GB

JPL [44] Landsat TM pan-sharpened 15m resolution 4TB

Open Topography [45] LIDAR LIDAR point clouds 1-4 pts/sq. ft 0.1-1 TB

Hence, advanced tools for processing and analyzing huge dynamic spatial data are
needed to take advantage of this wealth of information and to meet a wide range of end-user
demands [46]. While some prior works have achieved good results on handling and modeling
large raster data sets, very few address high volume vector data [47]. In addition, micro-level
geospatial data are increasingly being used in simulation frameworks, where data structures
and communication protocols require new approaches for the efficient and dynamic process-
ing of potentially large and interacting data sets [48].

HAZUS-MH [49], a FEMA-developed application, is an example of a GIS software
system predominantly used in US for disaster-based consequence modeling. HAZUS-MH
integrates scientific and engineering disaster modeling knowledge with inventory data in a
GIS framework. The inventory data used by HAZUS-MH can potentially become very large
depending on the extent of the hazard coverage. In addition, the geographic extents and
resolution could result in high volumes of input data. Comprehensive analysis of such data
sometimes is not at all possible by employing a standard desktop system, and even if it is,
it usually takes hours to days before the application can obtain any analytical results. Even
for non-emergency response applications, where processing speed is not critical, spatial data
processing routines run for extended periods of time.

For a wide range of large scale distributed computing applications from Geosciences,

32

the demand for resources varies significantly during the course of execution. While a set
of dedicated resources for such applications could result in under-utilization most often, at
other times the system could perform better by utilizing more resources than available. The
emerging cloud platforms, such as Microsoft’s Azure - with their potential for large scale
computing and storage capabilities, easy accessibility by common users and scientists, on
demand availability, easy maintenance, sustainability, and portability - have the promise to
be the platform of choice for such GIS applications.

Some studies have been conducted to understand the extent of support that cloud
computing can or cannot facilitate for large scale distributed scientific applications [4, 11,
12]. There are only a few projects from Geosciences that have been designed specially for
cloud platform. Most relevant among these include ModisAzure project for download, re-
projection, and reduction of satellite imagery [4, 11, 50], and Smart Sensors and Data Fusion
applications project for ocean observation [51]. After an extensive review of literature on

vector data based spatial overlay processing, we have found that

1. none of the existing projects employ cloud-computing for parallel or distributed spatial

overlay analysis on vector data,

2. although parallel and distributed algorithms have been reported in literature for vector
overlay computation (primarily in 1990s), there is very little background literature by
ways of implementation projects and performance results even on traditional parallel

and distributed machines, and

3. although both commercial and open-source projects are available for vector-data based
spatial overlay processing, the state-of-the-art is desktop based computing, and none

of them employ even a threaded version of any parallel algorithm for overlay analysis.

We have engineered Crayons system over Azure cloud with a parallel, open software
architecture for traditional polygon overlay analysis. We believe Crayons to be the first

cloud-based system for end-to-end spatial overlay processing on vector data.

33

In this chapter, we document the details of Crayons system, including meta-algorithm
for carrying out the spatial overlay computation starting from two input GML files, their
parsing, employing the bounding boxes of potentially overlapping polygons to determine
the basic overlay tasks, partitioning the tasks among workers role processes, and melding
the resulting polygons to produce the output GML file. Along with the documentation of
software architecture of the Crayons system, we discuss how the distributed computing arti-
facts available in Azure cloud platform affected our design choices for Crayons. The atypical
implementation issues encountered due to (i) the idiosyncrasies of Azure environment, and
(ii) the third party clipper library for domain-specific code for solving basic spatial overlay,
are discussed to provide roadmap for follow-up work. We study the timing characteristics of
various phases of the meta-algorithm rigorously. Our thorough experiments and analysis, by
means of three different design architectures for Crayons, give insights into the Azure cloud
platform and points to the phases of the algorithm that are easily amenable to scalable
speedups and some others that are not.

We have designed three different architectures of Crayons; these versions are labeled
based on how the load is distributed among worker processors. In the first version, the
web role acts as a master processor and sends tasks to the task pool. The worker roles,
acting as traditional slave processors, fetch work from the task pool and perform the spatial
processing. This version is referred as the version with centralized load balancing among
workers. In the second and third version, we do not use a master processor that creates
tasks for everyone. Instead, all of the worker processors create tasks and thus task creation
process itself is distributed. These versions differ in the manner they share tasks among
each other. In the first distributed version, referred as distributed version with static load
balancing, the workers create and process tasks locally. There is no sharing of tasks of one
processor with other processors in this version. In the final version, the workers create tasks
and put these tasks in a shared task pool. After finishing the creation of tasks, the workers
fetch the task from the task pool and process them similar to centralized load balanced

version. This version is referred as the distributed version with dynamic load balancing.

34

Our three different architectures can be presented in an academic or commercial setting
to educate students and developers on various design issues for cloud platform, especially
when the underlying platform lacks the support for traditional distributed or parallel software
infrastructures such as MPI and map-reduce. Moreover, we have developed Crayons using
C# language in Microsoft Visual Studio environment making it further simplified for others
to experiment with Crayons using familiar tools.

Our specific technical contributions are as follows:

e Engineering an end-to-end spatial overlay system by way of designing and implement-
ing three partitioning and load balancing algorithms: (i) Centralized Dynamic Load
Balancing, (ii) Distributed Static Load Balancing, and (iii) Distributed Dynamic Load

Balancing (Section 4.3).

e Open architecture of Crayons for interoperability with any third party domain code
(clipper library) for sequential execution of primitive overlay computation over two

polygons (Section 4.2.4).

e Port of Crayons over a Linux cluster using MPI platform for (i) scenarios where the
data is too sensitive to be stored on a cloud platform, and (ii) to facilitate porting
of Crayons to systems with traditional parallel and distributed software architectures

(Section 4.5.8).

e End-to-end speedup of more than 40x using input files with comparatively uniform
load distribution, and more than 10x using input files with skewed load distribution,

using 100 Azure processors for basic overlay computation (Section 4.5).

e Making Crayons available as an open-source project to be used as a reference architec-
ture for introducing HPC and GIS application development on Azure cloud platform

(Section 4.1).

The rest of this chapter is organized as follows: Section 4.1 describes our motivation

behind the pioneering Crayons system. Section 4.2 reviews the literature and provides

35

background on GIS raster and vector data, various operations that define parallel overlay,
and the tools used to implement these operations such as Windows Azure cloud platform and
General Polygon Clipper (GPC) library. Section 4.3 describes our parallel Azure framework
and its three flavors. Several key implementation related issues are discussed in Section
4.4. Our experimental results, load balancing and other experiments, and port to MPI are

presented in Section 4.5. Section 4.6 concludes this chapter with comments on future work.

4.1 Motivation

An End-to-end GIS Solution: Currently, GIS scientists have no other alter-
native but to use desktop based sequential GIS system with typical runtimes in hours making
it almost useless for real time policy decisions. This is not for the lack of individual parallel
algorithms and associated techniques as is evident from the literature [47,52-56]. It has
been a long-standing question to effectively engineer all the pieces together due to the data
intensive and irregular computational nature of GIS applications, as we discovered. With
Crayons we have addressed these questions and engineered an effective system to fill this

void.

On-demand Cloud Computing: Lee et al.[4] demonstrate the need for effi-
cient parallel computation of GIS models with an example of operational hurricane track
forecasting models used for prediction during hurricane Katrina in 2005. There were five
different models applied for this forecasting five days in advance. With five and four days
out, there was no agreement among those models. The models only agreed with ground
truth after second and first day out. Computation of such time critical applications signifi-
cantly affects the effectiveness of emergency response operations. Authors conclude that the
only answer to this scientific and operational grand challenge problem is enormous computer
power. However, it is not economically possible to dedicate the required amount of resources
for this single purpose. Therefore 1. resources must be shared but available on-demand,

2. the platform should be scalable on-demand, and 3. resources should be easily accessible to

36

GIS scientists and policy decision makers (not necessarily computer-savvy) in a user friendly
way over the web. These guidelines are mandatory for the proliferation of such GIS systems.
Since a Grid or any large compute cluster cannot adapt to these guidelines, we chose to
architect Crayons for cloud computing as cloud computing appears to be the only feasible

platform.

Azure Cloud: HPC program development over the still-emerging Azure plat-
form and continually changing APIs is very difficult and tedious even for experienced parallel
programmers and algorithm developers. However, the importance of ”blazing this trail” is
recognized by experts as evidenced by the rare partnership between NSF and Microsoft in
funding this Azure effort. Additionally, we chose Azure cloud platform over other rather ma-
ture cloud platforms as Azure platform provided us the opportunity to think-outside-the-box
to devise an architecture for systems research for data and compute intensive scientific appli-
cations as it currently lacks support for traditional distributed computing design paradigms
such as MPI or map-reduce. On the other hand, Azure’s robust middleware APIs and ar-
tifact enable finer-grained task level fault tolerance (details in Section 4.3.1) which other

clouds with system image level control cannot.

Collocated Data and Compute Services: It is of utmost importance for
data intensive scientific applications, especially where data travels over a network, to be
able to control/hide the latency for a smoother user interaction. Azure cloud platform sup-
ports Affinity Groups where the computing resources (hosted services) and storage resources
(storage accounts) can be collocated in the same geographic location. The key idea behind
an Azure Affinity Group is that if multiple services in a cloud subscription account need to
work together - for instance, if a hosted service stores data in the Blob storage service, or
Table storage service, or relies on the Queue storage service for workflow - then the hosted
service and storage accounts can be organized within the same affinity group for optimal per-
formance. Azure Affinity Group provides a best effort based control on data and compute

collocation at regional level (US North Central, US South Central, Europe North, Europe

37

West, Asia Fast, and Asia Southeast). It is still far from the control that would be required

for a fine-grained task scheduling in a distributed platform such as Azure cloud.

Fostering Educational Activities with Crayons System: Crayons is an
open-source project with all three design architectures (see Section 4.3) hosted at an online
repositorey, available under EPL (Eclipse Public License). The web application is hosted
at Azure cloud with small sample GIS data sets for in-class demonstrations. Faculty and
students can also install Azure simulator and download Crayons locally to execute and study
Crayons’ workflow. Crayons can also be presented as an example of an architecture design
where the underlying platform does not support well-known parallel and distributed design

paradigms such as MPI and map-reduce.

4.2 Background and Literature

4.2.1 Raster vs. Vector Data in GIS

Similar to pixels in an image, raster
data represents the geographic space as an
array of equally sized cells. Each cell has

. . . . Transportation
attributes associated with it to define the

geographic features. Perceptibly, cells with : e
. t‘“")/ Census Tracts
same attribute values represent the same .ﬂ -
. - ‘f"ﬂr.;.- =
o ~ = Structures

type of geographic features. Raster data can

be stored as a matrix, where dimension of Postal Codes

matrix depends on the number of bands that ey kmagery

raster data is composed of.

Unlike raster data, vector data model

. . Figure 4.1 Real world data organized into the-
represents geographic features as points,

)) . matic layers. Image courtesy: FPA [2]
lines, and polygons. Geometric shapes in

vector data model are defined by geographic

38

coordinates in a certain type of projection upon a geodetic datum. Similar to raster data,
each geometric feature has attributes associated with it that describe the characteristics of

the feature.

4.2.2 Spatial Overlay Operations

GIS collects and stores information in the form of thematic layers as shown in Figure 4.1.
Since the data are referenced to geography, multiple layers from one location could overlay
one another. GIS connects the location to each layer such as people to addresses, hurricane
swath to rescue shelters, transportation services to road networks etc., to give a better
understanding of how these independent layers interrelate with each other.

Both raster and vector data are capable of representing the same GIS information,
although both have associated advantages and disadvantages. Moreover, the same feature
could very well be represented in multiple ways. For instance, a county can be represented
as a point feature in a small scale map, while in a larger scale map the same county can be
described as a polygon.

In order to analyze the spatial relationships between sets of geographic features, within
the same spatial scope in a map frame from the given layered spatial data set, all types of
geographic features can be overlaid.

This spatial analysis differs significantly for raster and vector data. In raster data,
overlay operation is straightforward as it involves arithmetic overlay computation, such as
addition, subtraction, division, or multiplication of raster data layer matrices. However,
spatial overlay operations over vector data are more complex. Spatial overlay operation over
vector layers involves rebuilding topological relationships in the derived data, it is therefore
normally known as topological overlay. For instance, when line segments from two thematic
layers intersect, new vertices are formed. When polygons are created by overlaying two
polygon layers, the new features may inherit the attributes of the spatially overlaid polygons.
Since new topological framework is created from two or more existing topological networks

of the input data layers, rebuilding of topological tables, such as the arc, node, polygon, can

39

be time consuming and CPU intensive.

4.2.3 Parallel Overlay Operations

Spatial vector data processing routines are widely used in geospatial analysis. There
is only a little research reported in literature on high volume vector-vector or vector-raster
overlay processing [47]. Since spatial overlay processing depends on the implementations
of suboptimal algorithms [52-54], the processing costs can vary significantly based on num-
ber, size, and geometric complexity of the features being processed [57]. There has been
extensive research in computational geometry that addressed scalability and parallel or out-
of-core computation [55,56]. Nevertheless, the application of this research in mainstream
GIS has been limited [53,54]. Some research exists for parallel implementations of vector
analysis, showing gains in performance over sequential techniques [58-60] on classic parallel

architectures and models, but none on the clouds.

4.2.4 Clipper Library

We have designed Crayons such that third party GIS libraries can be plugged in to facil-
itate reusability, interoperability, and accuracy based on user preferences. Crayons currently
employs a third party clipper library called GPC [61] to delegate primitive geometrical oper-
ations. GPC library is an implementation of polygon overlay methods described in Vatti et.
al. [62]; it can support subject and clip polygons that are convex or concave, self-intersecting,
contain holes, or are comprised of several disjoint contours. Moreover, the original algorithm
in [62] has been extended such that GPC library allows source polygons to have horizon-
tal edges. GPC library only supports four types of overlay operations namely intersection,
exclusive-or, union, and difference. The output may take the form of polygon outlines or

tristrips.

40

4.3 Our Parallel Azure Framework Design

We have spent considerable effort analyzing the still-emerging Azure platform’s nitty-
gritty to gain insights into Azure framework, parallel reading and writing from and to cloud
storage, and load balancing. In the process, we created three different architectures for
Crayons to thoroughly test the Azure platform’s design artifacts and to carve path for
future development.

Crayons contains one instance of Azure web role that serves as the user interface and
delegates work to worker role instances. For background processing of spatial overlay oper-
ations, multiple instances of Azure worker roles are employed. The number of worker role
instances was varied from 1 through 100 to test the scalability. To store GIS files in GML for-
mat persistently Crayons uses Blob storage, and to store messages needed for communication
between web role and worker roles Queue storage is employed.

Crayons’ framework has a three to four-step workflow (meta-algorithm) with multi-
stage pipelining between producers and consumers. The multi-stage pipelining can be seen
in action during task creation and task processing. The task processing starts as soon as
there is a task in the task pool and a worker waiting for task. This gives us the benefit
of not waiting for the previous phase to complete entirely before the next phase can start

processing, similar to a traditional manufacturing assembly line.

4.3.1 Crayons’ Architecture with Centralized Dynamic Load Balancing

Figure 4.2 shows the architectural diagram of Crayons with centralized load balanced
version employing an extra large virtual machine (VM) (i.e., 8 core machine, see Table ?7)
as the centralized task producer. End users have the option to upload their input files in
GML format to cloud or to operate on the existing files. Since uploading is a trivial process,
for the sake of simplicity to understand the workflow we will assume that the files are already
available in the cloud storage. The entire workflow for this architecture is divided into three

steps as defined below:

41

_Stept ___________ . put blob Task Pool Queue
‘Web role IDs W get blob IDs
= | 1] ee———— e e —_—
Partition Graph

|
|
L |
| |
- — — — 1 1 |
Create Intersection Graph | — :
| B ::
I o
! |
| |
|
|
|

|

|

|

|

|

|

|

| T
| get input Blob Container
|

|

|

|

|

|

|

put blobs

Check for work
v
Process Tasks
I
Store Output

Download and Parse Files T |L
Read User Selection

| N

flush blocks to gl file il ﬁ

Figure 4.2 Crayons’ Centralized architecture

I. The web role presents the interface with a list of data sets (GML files) available
to be processed along with the supported operations. The user selects the GML files to be
processed along with the spatial operation to be performed on these files. First of these two
selected files is treated as the base layer and the second file is treated as the overlay layer.
The web role immediately starts downloading the files from the Azure cloud storage and
translates (parses) the features (polygons) from the input GML files into C# objects.

Since spatial overlay operations are computationally expensive, it is wise to prune the
set of polygon pairs needed to be processed together. In order to create this intersection
graph, Crayons finds each overlay polygon that can potentially intersect with the given base
polygon and only performs spatial operation on these pairs. As shown in Algorithm 6 this
is achieved using the coordinates of bounding boxes generated during parsing of input files.
Intersection graph creation currently is based on sorting the polygons with Q(nlogn) cost
[60]. This phase can potentially be improved by employing R-Trees [63] in a later version.

Intersection graph defines one-to-many relationship between the set of base polygons

LA bounding box is represented using bottom-left and top-right points with X and Y coordinates.

42

Algorithm 6 Algorithm to create polygon intersection graph (similar approach to [60])
INPUT: Set of Base Layer polygon S, and Set of Overlay Layer polygon S,

OUTPUT: Intersection Graph (V,E), where V is set of polygons and E is edges among poly-
gons with intersecting bounding boxes.

Parallel Merge Sort set S, of overlay polygons based on X co-ordinates of bounding boxes!
for all base polygon B; in set S, of base polygons do
find S, C S, such that B; intersects with all elements of S, over X co-ordinate
for all overlay polygon O; in S, do
if B; intersects O; over Y co-ordinate then
Create Link between O; and B;
end if
end for
end for

and overlay polygons. To create an independent task, one polygon from base layer and all
intersecting polygons from overlay layer are merged together as a task and stored in the
cloud storage as a Blob. The web role converts the C#’s polygon objects belonging to a
task to their GML representation before the task gets stored in the Blob storage. We prefer
in-house serialization against C#’s serialization library to avoid excessive metadata required
to convert an object to string (details in Section 4.4.1).

Each task is given a unique ID, this id is communicated to the worker roles using a
message over a Queue that serves as a shared task pool (see Figure 4.2) among workers
and thus facilitates dynamic load balancing. Queue storage mechanism provided by Azure
platform comes handy here to implement task based parallelism and for fault tolerance as

discussed later in this section.

II. Worker roles continuously check the shared task pool (Queue) for new tasks.
Since this can throttle the Queue storage - with a limit to support a maximum of 500
requests per second - if there is no message in the Queue we let a worker sleep for a few
seconds before sending next request. However, if there is a task (message) in the shared task
pool, the worker reads the message and consequently hides it from other workers, downloads
the Blob with ID stored in this message, converts the content of the downloaded Blob to

get the original base and overlay polygon objects back (deserialization), and performs the

43

spatial overlay operation by passing a pair of base polygon and one overlay polygon at a
time to GPC' library for sequential processing.

GPC library returns the resultant feature as a C# polygon object that is converted to
its equivalent GML representation and appended as a block to the resultant Blob stored in
the cloud storage. Azure API PutBlock is used to achieve parallel writing to the output
Blob. This API facilitates the creation of a Blob by appending blocks to it in parallel and if
the sequence of the features is not critical, which is the case here, this API can significantly
improve the performance. After each task is processed the corresponding worker role per-
manently deletes the message related to this task from the task pool Queue. Additionally,
each worker role puts a message on the termination indicator queue to indicate successful

processing of the task.

III. The web role keeps checking the number of messages in the termination
indicator queue to update the user interface with the current progress of the operation. Log-
ically, when all of the tasks have been processed the number of messages in the termination
indicator queue will match the number of base polygons. When this happens, the web role
commits the resultant Blob and flushes it as a persistent Blob in the Blob storage. The
resultant Blob becomes available for downloading or further processing, user interface is also
updated with the URI of resultant Blob. To commit a Blob created using blocks the Azure
API PutBlockList is used. In order to use PutBlockList it is necessary to provide the list
of blocks to be committed, this list is maintained at the cloud end and can be downloaded by
the web role by using another Azure API GetBlockList. The output Blob’s URI (uniform
resource indicator) is presented to the user for downloading or further processing.

The Queue storage mechanism provided by Azure platform comes handy for fault toler-
ance during processing. After a worker role reads a message from the task pool, the message
disappears from the task pool for other worker roles and is subsequently deleted by the
worker role after the processing ends successfully. In the event of a failure, the message does

not get deleted and appears in the Queue after a stipulated amount of time.

44

get file names

E
=
2]
=]
;
1
g
&
&
-~
I
I
|
I
|
I
I
|
|
I
|
|
|
|
|
|
}

— e el e e e e e e

R =-..,
e

Blob Container

flush blocks to ginl file - ﬁ

Download and Parse Files

Create Intersection Graph

¥

|
|
|
|
|
|
|
|
|
|
- I
|
|
|
|
|
|
|
|
|
|
|

I | Process Tasks
I I
. v

| Commit Output File I append output pml =
| I 2P 2 Store Qutput —
I A I -

____________ 4
Step 3 Termination Indicator Queue

read message count q P i
| T el S S Step 2]

Figure 4.3 Crayons’ architecture with distributed static load balancing

One significant disadvantage of the centralized version of Crayons is that the subpro-
cesses of file handling, task creation, and storing tasks to Blob storage are handled by a
single virtual machine (VM). The worker roles keep waiting idly for work until the task
creation begins and the tasks IDs are available in the task pool. Moreover, regardless of the
size of the VM, with the increasing number of worker roles there will be a demand-supply
imbalance that will negatively affect the performance. Therefore, we created the distributed

versions of Crayons for superior load balancing and scalability.

4.3.2 Crayons’ Architecture with Distributed Static Load Balancing

Figure 4.3 shows one of the two distributed versions of Crayons’ parallel architecture to
parallelize the subprocesses of intersection graph construction and task creation. Here, the
web role is a small sized virtual machine, i.e., a single core machine, as all computationally
intensive tasks are handled by worker roles. The entire workflow for this version is a three-

step process as described below:

45

I. Similar to the centralized version, the web role presents the interface with a
list of data sets (GML files) available to be processed along with the supported operations.
The user selects the GML files to be processed and the spatial operation to be performed
on these files. Instead of processing the files by itself, web role writes the names of the files

along with the operation to be processed to the input queue.

II. The worker roles get the message out of the input queue and download the
corresponding input GML files from the cloud storage. Unlike the case of task pool queue in
centralized version, workers use an Azure APl PeekMessage so that the message does not
become invisible to other workers.

Although it appears to be an overkill for all workers to download the same files, it does
not affect the performance much as in the earlier case (Section 4.3.1) the worker roles kept
waiting idly on the web role to finish parsing, intersection graph creation, and pushing tasks
to input queue. However, parallel download of the same file by multiple workers does cause
a little contention at cloud storage and the parsing phase ends at different time stamps for
different workers. Details of this are discussed in Section 4.5.

In order to distribute work among worker role instances each worker is assigned work
based on its instance ID. Once the GML files are downloaded and parsed, the workers create
independent tasks only for their portion of base layer polygons. This obviates any need for
communication among worker roles.

The tasks are created and stored in the Blob storage in a fashion similar to the case
of centralized version (Section 4.3.1). In contrast to the previous version, each worker role
keeps track of only its own task IDs and stores them in local memory rather than storing it in
a shared task pool. The advantage of this technique is that it saves the time spent in reading
and writing messages from and to the Queue storage. On the other hand, if the input data
files have skewed task distribution some workers will have considerably more work compared
to others. The workers with lighter work loads will finish earlier and will wait idly resulting

in wasted CPU cycles.

46

put file names get file names

Check For Work |«

get blob IDs

r I ~ ——mmm====r - -
| | l |
[| : |
| |
| Read User Selection : — I . |
u K : Download and Parse Files |
|
flush blocks 6l Blob Container | put blobs | v I
S L C > N | Create Intersection Graph |
|
put blobs @ @ | 1 :
r L
I e = Partition Graph I
I - artition Grap L
| Commit Output File : :)-—’ :
: f J| i'___________j é | Step 2 |
(R stepa] | N b &
% | N B =
Q
£ - | °
= task let °
2 85— Store Output I =
8 g g [message 18 |
| T |
: Process task :
| i '
| |
|]
| |
|

Figure 4.4 Crayons architecture with distributed dynamic load balancing

The task processing and storing the outputs in the Blob storage is similar to the cen-
tralized version. Moreover, a message is stored on the termination indicator queue to signal

the successful processing of one task.

ITI. 'This step is also similar to that of centralized version. The web role updates
the user interface with progress based on number of messages in termination indicator queue
and finally flushes the output Blob to the Blob storage. The output Blob’s URI (uniform

resource indicator) is presented to the user for downloading or further processing.

4.3.3 Crayons’ Architecture with Distributed Dynamic Load Balancing

Although Crayons’ distributed architecture with static load balancing is superior to the
centralized version, it suffers from two significant problems. First and foremost, if a worker
role fails during execution, it needs to download and parse the files again as the task IDs

were held locally and thus were lost too. Secondly, in case of skewed task distribution in

47

input GML files it is possible that in the worst case all of the spatial overlay processing
happens at a single worker role instance while other worker role instances wait idly. This is
possible if all of the intersecting polygons from overlay layers were only intersecting with a
small subset of base layer polygons. To overcome both of these shortcomings, we created a
new version of Crayons (Figure 4.4) that employs (i) parallel execution of subprocesses of file
handling, task creation, and storing of tasks in Blob storage, similar to distributed version
(Section 4.3.2), and (ii) dynamic load balancing similar to centralized version (Section 4.3.1).

The entire workflow of this version is divided into four steps.

I. The first step is similar to that of Crayons’ architecture with distributed static
load balancing. The user selects the files to be processed and the operation to be performed.

The web role puts this information on the input queue.

II. In this step, the worker roles download the input files, parse them, create the
intersection graph to find the independent tasks. Then each worker role shares the tasks it
created among all the worker roles. Unlike the version with static load balancing, the worker
role instances here do not store the task IDs of the tasks that they create locally. Instead,

they store the task IDs in a task pool (Figure 4.4) similar to centralized version.

ITI. As the workers finish task creation, they keep fetching work from the task
pool and go on processing all the tasks. The advantage of this approach over the approach
with storing local IDs is that the worker role instances can also process the work of other

worker role instances and hence achieve improved performance even with skewed input data.

IV. This step is exactly similar to previous two versions. The web role checks
the number of messages in the termination indicator queue and when this number matches
the total number of tasks, the web role flushes out the blocks to the Blob storage and the

output file becomes available for further processing and download.

48

4.4 Engineering Details

Our primary contribution is that Crayons system is an “engineering” feat to create
an “Azure” cloud based overlay processing system with an open architecture. During the
course of engineering Crayons system we ran into multiple issues caused variously by the
development tools and platforms used. In this section we address those issues and suggest
our solutions to provide a roadmap for readers interested in development on Azure platform.

It is our strong belief that this discussion will help readers make informed design choices.

4.4.1 Azure-specific Issues

HPC program development over the still-emerging Azure platform is very difficult and
tedious even for experienced parallel programmers and algorithm developers. Following are
the issues that affected our design choices and are essential to know beforehand for the

development of large scale scientific applications on azure.

Table vs. Blob Azure Table storage provides a service to store large amount of data
that needs additional structure. Table storage can be queried to retrieve data based on the
underlying structure. This looks promising and thus was the first choice for Crayons system.
The idea was to store the GIS features (polygons and holes) in an Azure Table storage to
enable easy spatial querying and static task assignment to workers virtually arranged in a
2D grid. However, a table can only store entities that are a maximum of 1 MB in size. Since
Crayons handles and stores tasks that are usually larger than 1 M B, table storage was realized
not to be a good fit in this case. Although large tasks can be broken into multiple parts,
each less than 1 MB, that would make the code complex without any necessary performance
gain. Therefore, we chose to proceed with Blob storage that can handle Blobs of size up to

64 MB or block Blobs of size up to 200 GB.

Queues - FIFO Behavior Crayons uses Queue storage service of Azure platform

to communicate between web role and worker roles. Azure Queue storage differs from the

49

traditional Queue data structure as it lacks the ability to guarantee a FIFO operation. This
lack of guarantee for FIFO operation can create issues if a Queue is to be used to signal
a special event. For instance, if web role wants to append a message at the end of the
task queue to signal the end of work, it might not work as expected. Since FIFO is not
guaranteed, the worker roles might read this message before the actual messages for tasks
and hence quit processing while there is work in the task pool. This is the reason why we
had to create a dedicated termination indicator queue where worker roles send messages to
indicate successful completion of tasks. The web role keeps track of the number of messages

in this Queue and thus knows the current progress of the processing.

Serialization vs. GML Representation Azure Blob storage can be used to store
a polygon object from C# only after it has been represented as bytes or a long string of
text. Microsoft C#.Net provides a serialization library that can take an object and convert
it into a byte array or a string that can later be de-serialized and restored back as the
original object. Although, serialization of objects significantly simplifies the distribution of
objects among worker and web roles as objects can now be stored as Blobs, the serialization
library creates a graph tree of the objects and adds a significant amount of metadata to
ensure that the object can be created back from the serialized string and thus is a rather
time consuming process. Since Crayons deals with an enormously large number of polygons
this process costed us a lot of chargeable compute hours as well as storage hours on Azure
platform. Nevertheless, it is inevitable to serialize the objects as the polygon objects must
be distributed among worker roles through Blob storage.

To alleviate this problem we created an in-house serialization library that incorporates
the information needed to be stored and thus can convert an object to its GML representa-
tion. To convert an entire task to a string all the polygons in the task are converted to their
respective GML representations and then concatenated in such a way that the base layer is
the first polygon. With this information the polygons can be converted to strings and vice

versa.

20

Local Azure Simulator vs. Azure Cloud Environment Microsoft Azure pro-
vides a simulator that can be installed on a personal computer so that Azure based appli-
cations can be debugged locally. The development cycle for Azure cloud based applications
starts with a local desktop-based development of that application on an Azure simulator
and ends with the application deployed to the cloud. Interestingly, we found that the cloud
platform does not necessarily replicate the local Windows OS and .Net platform appropri-
ately. In our case, the issue was absence of a standard Windows dynamic link library (dll)
file named msvert100.dll on Azure cloud platform; the application started executing as ex-
pected once this dll file was manually packed inside the package that was deployed to the
Azure cloud. In order to resolve such errors the best method is to login to the remote VM

through remote desktop connection and checking the local error logs at that VM.

4.4.2 Large Data Sets and Concurrency Control Mechanism

In order to make it easier for developers, Microsoft .Net platform supports multiple
parallel directives such as Parallel.For loop and others. These mechanisms try to spawn
as many threads as possible based on the configuration of underlying system. The Azure
SDK does not keep track of how many threads can actually query the cloud system and thus
can throttle the cloud storage by sending too many requests. In our case, the application
worked fine with the small data sets but when the system was loaded with large data sets
there were unhandled exceptions being thrown that would not let the program continue. It
took us weeks of debugging to find the cause of the problem and subsequently the solution.
The solution was not to let the system decide the number of threads but to control the
concurrency by creating a thread pool with limited number of threads. Each thread would

spawn, perform the expected operation, and go back to the pool.

4.4.3 Clipper Library

General Polygon Clipper (GPC) library is a well-known library for performing spatial

overlay operations. However, applicability of GPC library as a full-fledged GIS overlay library

o1

is limited due to a few design choices. First and foremost, the GPC library only supports
four operations - intersection, exclusive-or (XOR), union, and difference, while GIS overlay
operation should be able to test the source polygons for an extensive set of relationship such
as Fquals, Crosses, Within, Contains, Disjoint, Touches, and Owverlap in addition to the
operations supported by GPC library.

Secondly, although GPC library is capable of handling polygons that contain holes, the
resulting polygon does not discriminate between a polygon contour and a hole. It is left
to the user to compute that information by some means. Murta et. al. [61] suggest that
to associate holes Hy, Hy ... H, with external contours F;, E5 ... E,, use the clipper to
compute the difference of the ith hole H; and each external contour Ej, for all j from 1 to m.
Any difference which gives an empty result indicates that hole i lies within external contour
j. This clearly adds O(mn) complexity where m and n are the number of resultant polygons
and holes.

If the GIS overlay operation is part of a multi-step process, output of current phase
might be input to other phase and thus causing erroneous results. Moreover, it does not
maintain all of the attributes of polygons, such as polygon ID and dimension information
among others. We had to store this information locally to copy it over to the resultant
polygon after the library returns the output. When the output of GPC library was compared
with that from state-of-the-art GIS solution ArcGIS, it was found that the output polygon
boundaries had a little deviation. A small number of vertices (1-2%) were missing from
the output too. However, the overall timing characteristics of the Crayons system should
hold for intersection and related operations, and our open system design would allow us to

substitute the GPC library with others.

52

4.5 Performance of Crayons System

4.5.1 Load Balancing and Crayons Pipeline

Windows Azure can be configured with various VM sizes and number of instances of
these VMs. These configurations significantly influence the amount of load balance that can

be afforded by an application.

1. VM Size: Virtual machine sizes affect the configuration of the underlying processor on
which a VM is going to run. The Azure cloud systems are typically AMD processors
running at 1.5-1.7 GHz of clock frequency. Table ?? lists the configurations