91 research outputs found

    Aspects of an open architecture robot controller and its integration with a stereo vision sensor.

    Get PDF
    The work presented in this thesis attempts to improve the performance of industrial robot systems in a flexible manufacturing environment by addressing a number of issues related to external sensory feedback and sensor integration, robot kinematic positioning accuracy, and robot dynamic control performance. To provide a powerful control algorithm environment and the support for external sensor integration, a transputer based open architecture robot controller is developed. It features high computational power, user accessibility at various robot control levels and external sensor integration capability. Additionally, an on-line trajectory adaptation scheme is devised and implemented in the open architecture robot controller, enabling a real-time trajectory alteration of robot motion to be achieved in response to external sensory feedback. An in depth discussion is presented on integrating a stereo vision sensor with the robot controller to perform external sensor guided robot operations. Key issues for such a vision based robot system are precise synchronisation between the vision system and the robot controller, and correct target position prediction to counteract the inherent time delay in image processing. These were successfully addressed in a demonstrator system based on a Puma robot. Efforts have also been made to improve the Puma robot kinematic and dynamic performance. A simple, effective, on-line algorithm is developed for solving the inverse kinematics problem of a calibrated industrial robot to improve robot positioning accuracy. On the dynamic control aspect, a robust adaptive robot tracking control algorithm is derived that has an improved performance compared to a conventional PID controller as well as exhibiting relatively modest computational complexity. Experiments have been carried out to validate the open architecture robot controller and demonstrate the performance of the inverse kinematics algorithm, the adaptive servo control algorithm, and the on-line trajectory generation. By integrating the open architecture robot controller with a stereo vision sensor system, robot visual guidance has been achieved with experimental results showing that the integrated system is capable of detecting, tracking and intercepting random objects moving in 3D trajectory at a velocity up to 40mm/s

    A review of parallel processing approaches to robot kinematics and Jacobian

    Get PDF
    Due to continuously increasing demands in the area of advanced robot control, it became necessary to speed up the computation. One way to reduce the computation time is to distribute the computation onto several processing units. In this survey we present different approaches to parallel computation of robot kinematics and Jacobian. Thereby, we discuss both the forward and the reverse problem. We introduce a classification scheme and classify the references by this scheme

    Structural dynamics branch research and accomplishments to FY 1992

    Get PDF
    This publication contains a collection of fiscal year 1992 research highlights from the Structural Dynamics Branch at NASA LeRC. Highlights from the branch's major work areas--Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods are included in the report as well as a listing of the fiscal year 1992 branch publications

    Task oriented robotics

    Get PDF

    Model-Based Robot Control and Multiprocessor Implementation

    Get PDF
    Model-based control of robot manipulators has been gaining momentum in recent years. Unfortunately there are very few experimental validations to accompany simulation results and as such majority of conclusions drawn lack the credibility associated with the real control implementation

    Preliminary Experiments in Real Time Distributed Robot Control

    Get PDF
    We investigate the computational needs of advanced real-time robot control. First, sampling rate issues in the control of nonlinear systems are discussed. Second, a representative nonlinear robot control algorithm using an explicit robot dynamical model is derived. Some typical terms of the exact equations are given for two industrial robot arms. Third, we define some performance criteria of interest in realtime control. Finally, we compare a variety of implementations of the above control algorithm on a network of INMOS Transputers

    Mechatronics of systems with undetermined configurations

    Get PDF
    This work is submitted for the award of a PhD by published works. It deals with some of the efforts of the author over the last ten years in the field of Mechatronics. Mechatronics is a new area invented by the Japanese in the late 1970's, it consists of a synthesis of computers and electronics to improve mechanical systems. To control any mechanical event three fundamental features must be brought together: the sensors used to observe the process, the control software, including the control algorithm used and thirdly the actuator that provides the stimulus to achieve the end result. Simulation, which plays such an important part in the Mechatronics process, is used in both in continuous and discrete forms. The author has spent some considerable time developing skills in all these areas. The author was certainly the first at Middlesex to appreciate the new developments in Mechatronics and their significance for manufacturing. The author was one of the first mechanical engineers to recognise the significance of the new transputer chip. This was applied to the LQG optimal control of a cinefilm copying process. A 300% improvement in operating speed was achieved, together with tension control. To make more efficient use of robots they have to be made both faster and cheaper. The author found extremely low natural frequencies of vibration, ranging from 3 to 25 Hz. This limits the speed of response of existing robots. The vibration data was some of the earliest available in this field, certainly in the UK. Several schemes have been devised to control the flexible robot and maintain the required precision. Actuator technology is one area where mechatronic systems have been the subject of intense development. At Middlesex we have improved on the Aexator pneumatic muscle actuator, enabling it to be used with a precision of about 2 mm. New control challenges have been undertaken now in the field of machine tool chatter and the prevention of slip. A variety of novel and traditional control algorithms have been investigated in order to find out the best approach to solve this problem

    Cinemática inversa de robot serial utilizando algoritmo genético basado en MCDS

    Get PDF
    Serial robotic manipulators are efficient tools to carry out repetitive and precision tasks in industry, as long as there is understanding of the involved kinematics in the positioning and orientation of the final effector. This article presents a methodology to the solution of an inverse kinematic serial robot (Melfa RV-2A) problem through genetic algorithm (GA) implementation using the Screws direct kinematic model (SDKM). In order to do this, the Screws parameters that model the main four robot joints are obtained, the related workspace is calculated and the GA is designed considering a multi objective function of position and orientation located in the final effector, with respect to a coordinate and orientation of an established target point. The GA validation is carried out according to aptitude, convergence time and number of generations used in order to reach the main objective. Therefore, the implementation of a SDKM-based AG is a promising tool that could be used to calculate the inverse kinematic of serial robots. This novel implementation allows to establishing for the first time the matrix exhibition of a direct kinematic system to obtain the inverse kinematic solution of a serial robot. In consequence, it is demonstrated that this methodology is feasible and efficient to solve the inverse kinematic of any manipulator robot.Los robots manipuladores seriales son herramientas eficaces para realizar tareas repetitivas y de precisión en la industria, siempre que se comprenda la cinemática involucrada en el posicionamiento y orientación del efector final. Este artículo presenta una metodología para resolver el problema cinemático inverso de un robot serial (Melfa RV-2A) utilizando un algoritmo genético (AG) a partir del modelo cinemático directo Screws (MCDS). Para esto, se obtienen los parámetros Screw que modelan el robot, se calcula el espacio de trabajo asociado y se diseña el AG contemplando una función multi-objetivo de alcance de posición y orientación en que se sitúa el efector final, con respecto a una coordenada y orientación de un punto objetivo establecido. La validación del AG se realiza según la aptitud, el tiempo de convergencia y la cantidad de generaciones usadas por la función para alcanzar el objetivo. Por tanto, la implementación de un AG basado en un MCDS es una herramienta prometedora que podría utilizarse para calcular la cinemática inversa de robots seriales. Esta novedosa implementación permite establecer por primera vez la exposición matricial de un sistema cinemático directo para obtener la solución cinemática inversa de un robot serial. En consecuencia, se demuestra que esta es una metodología factible y eficiente para solucionar la cinemática inversa de cualquier tipo de robot manipulador

    Plethora : a framework for the intelligent control of robotic assembly systems

    Get PDF
    Plethora : a framework for the intelligent control of robotic assembly system
    • …
    corecore