409 research outputs found

    Matheuristics: using mathematics for heuristic design

    Get PDF
    Matheuristics are heuristic algorithms based on mathematical tools such as the ones provided by mathematical programming, that are structurally general enough to be applied to different problems with little adaptations to their abstract structure. The result can be metaheuristic hybrids having components derived from the mathematical model of the problems of interest, but the mathematical techniques themselves can define general heuristic solution frameworks. In this paper, we focus our attention on mathematical programming and its contributions to developing effective heuristics. We briefly describe the mathematical tools available and then some matheuristic approaches, reporting some representative examples from the literature. We also take the opportunity to provide some ideas for possible future development

    Ant colony optimization for resource-constrained project scheduling

    Get PDF
    An ant colony optimization (ACO) approach for the resource-constrained project scheduling problem (RCPSP) is presented. Several new features that are interesting for ACO in general are proposed and evaluated. In particular, the use of a combination of two pheromone evaluation methods by the ants to find new solutions, a change of the influence of the heuristic on the decisions of the ants during the run of the algorithm, and the option that an elitist ant forgets the best-found solution are studied. We tested the ACO algorithm on a set of large benchmark problems from the Project Scheduling Library. Compared to several other heuristics for the RCPSP, including genetic algorithms, simulated annealing, tabu search, and different sampling methods, our algorithm performed best on average. For nearly one-third of all benchmark problems, which were not known to be solved optimally before, the algorithm was able to find new best solutions

    Optimization Algorithms in Project Scheduling

    Get PDF
    Scheduling, or planning in a general perspective, is the backbone of project management; thus, the successful implementation of project scheduling is a key factor to projects’ success. Due to its complexity and challenging nature, scheduling has become one of the most famous research topics within the operational research context, and it has been widely researched in practical applications within various industries, especially manufacturing, construction, and computer engineering. Accordingly, the literature is rich with many implementations of different optimization algorithms and their extensions within the project scheduling problem (PSP) analysis field. This study is intended to exhibit the general modelling of the PSP, and to survey the implementations of various optimization algorithms adopted for solving the different types of the PSP

    Online scheduling: a survey

    Get PDF
    In this article a deep search of the literature of online scheduling is conducted. This paper intends to assess the developments and solutions found for online scheduling problems. Online scheduling is a very important topic since most of the real scheduling problems have dynamic characteristics. First, it was developed a literature review about scheduling problems, dividing them in stochastic and deterministic problems as well as in online and offline problems. Then, a bibliometric analysis was performed. Finally, some case studies in the field of online scheduling were analyzed. Online Scheduling is mostly explored in industry and health areas. In some articles explored there is a rescheduling, and the sequence of task may change due to the arrival of new tasks. In other cases, the new tasks are introduced in blocks of time that do not affect the previous schedule. This last technique is limited, since, with the arrival of new tasks, the schedule is not re-evaluated. Therefore, it is thought that, in future work, within the scope of online scheduling, when new tasks or other significant changes enter the system, the system should be evaluated, allowing the necessary changes to be made to the existing schedule. The Industry 4.0 and the evolution of Internet of Things (IoT), Deep Learning and Machine Learning favours a continuous and real-time flow of information, which allows the implementation of real-time online scheduling. This is a branch that should be explored in future works.FCT - Fundação para a Ciência e a Tecnologia(UIDB/00319/2020

    Dynamic vehicle routing problems: Three decades and counting

    Get PDF
    Since the late 70s, much research activity has taken place on the class of dynamic vehicle routing problems (DVRP), with the time period after year 2000 witnessing a real explosion in related papers. Our paper sheds more light into work in this area over more than 3 decades by developing a taxonomy of DVRP papers according to 11 criteria. These are (1) type of problem, (2) logistical context, (3) transportation mode, (4) objective function, (5) fleet size, (6) time constraints, (7) vehicle capacity constraints, (8) the ability to reject customers, (9) the nature of the dynamic element, (10) the nature of the stochasticity (if any), and (11) the solution method. We comment on technological vis-à-vis methodological advances for this class of problems and suggest directions for further research. The latter include alternative objective functions, vehicle speed as decision variable, more explicit linkages of methodology to technological advances and analysis of worst case or average case performance of heuristics.© 2015 Wiley Periodicals, Inc

    Tabu Search: A Comparative Study

    Get PDF

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
    corecore