8,521 research outputs found

    Enhanced Credit Prediction Using Artificial Data

    Get PDF
    Analysing credit data using a neural network has hitherto proved to be very resilient to attempts to improve success rates in prediction. We present a technique using simulated data which results in a marginal improvement in success rate. The empirical probability distribution for each feature of the training data is determined, and random samples are drawn from those distributions. The result is termed ‘artificial’ data. It is then possible to generate equal volumes of data for each of the binary outcomes (default or not), thereby alleviating a class imbalance classification problem. The simulation method uses a copula (to preserve the correlation structure of the original data) and optimal feature weighting to give acceptable results. The results indicate that overall percentage success rates for the more common outcome only are improved, but there is a more significant improvement in the AUC metric. The significance of this result in the context of assessing credit worthiness is discussed

    Vibration Monitoring: Gearbox identification and faults detection

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Evolving Clustering Algorithms And Their Application For Condition Monitoring, Diagnostics, & Prognostics

    Get PDF
    Applications of Condition-Based Maintenance (CBM) technology requires effective yet generic data driven methods capable of carrying out diagnostics and prognostics tasks without detailed domain knowledge and human intervention. Improved system availability, operational safety, and enhanced logistics and supply chain performance could be achieved, with the widespread deployment of CBM, at a lower cost level. This dissertation focuses on the development of a Mutual Information based Recursive Gustafson-Kessel-Like (MIRGKL) clustering algorithm which operates recursively to identify underlying model structure and parameters from stream type data. Inspired by the Evolving Gustafson-Kessel-like Clustering (eGKL) algorithm, we applied the notion of mutual information to the well-known Mahalanobis distance as the governing similarity measure throughout. This is also a special case of the Kullback-Leibler (KL) Divergence where between-cluster shape information (governed by the determinant and trace of the covariance matrix) is omitted and is only applicable in the case of normally distributed data. In the cluster assignment and consolidation process, we proposed the use of the Chi-square statistic with the provision of having different probability thresholds. Due to the symmetry and boundedness property brought in by the mutual information formulation, we have shown with real-world data that the algorithm’s performance becomes less sensitive to the same range of probability thresholds which makes system tuning a simpler task in practice. As a result, improvement demonstrated by the proposed algorithm has implications in improving generic data driven methods for diagnostics, prognostics, generic function approximations and knowledge extractions for stream type of data. The work in this dissertation demonstrates MIRGKL’s effectiveness in clustering and knowledge representation and shows promising results in diagnostics and prognostics applications

    On Cognitive Preferences and the Plausibility of Rule-based Models

    Get PDF
    It is conventional wisdom in machine learning and data mining that logical models such as rule sets are more interpretable than other models, and that among such rule-based models, simpler models are more interpretable than more complex ones. In this position paper, we question this latter assumption by focusing on one particular aspect of interpretability, namely the plausibility of models. Roughly speaking, we equate the plausibility of a model with the likeliness that a user accepts it as an explanation for a prediction. In particular, we argue that, all other things being equal, longer explanations may be more convincing than shorter ones, and that the predominant bias for shorter models, which is typically necessary for learning powerful discriminative models, may not be suitable when it comes to user acceptance of the learned models. To that end, we first recapitulate evidence for and against this postulate, and then report the results of an evaluation in a crowd-sourcing study based on about 3.000 judgments. The results do not reveal a strong preference for simple rules, whereas we can observe a weak preference for longer rules in some domains. We then relate these results to well-known cognitive biases such as the conjunction fallacy, the representative heuristic, or the recogition heuristic, and investigate their relation to rule length and plausibility.Comment: V4: Another rewrite of section on interpretability to clarify focus on plausibility and relation to interpretability, comprehensibility, and justifiabilit

    Transfer Learning using Computational Intelligence: A Survey

    Get PDF
    Abstract Transfer learning aims to provide a framework to utilize previously-acquired knowledge to solve new but similar problems much more quickly and effectively. In contrast to classical machine learning methods, transfer learning methods exploit the knowledge accumulated from data in auxiliary domains to facilitate predictive modeling consisting of different data patterns in the current domain. To improve the performance of existing transfer learning methods and handle the knowledge transfer process in real-world systems, ..

    Aspects of structural health and condition monitoring of offshore wind turbines

    Get PDF
    Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector

    Kernel-based fault diagnosis of inertial sensors using analytical redundancy

    Get PDF
    Kernel methods are able to exploit high-dimensional spaces for representational advantage, while only operating implicitly in such spaces, thus incurring none of the computational cost of doing so. They appear to have the potential to advance the state of the art in control and signal processing applications and are increasingly seeing adoption across these domains. Applications of kernel methods to fault detection and isolation (FDI) have been reported, but few in aerospace research, though they offer a promising way to perform or enhance fault detection. It is mostly in process monitoring, in the chemical processing industry for example, that these techniques have found broader application. This research work explores the use of kernel-based solutions in model-based fault diagnosis for aerospace systems. Specifically, it investigates the application of these techniques to the detection and isolation of IMU/INS sensor faults – a canonical open problem in the aerospace field. Kernel PCA, a kernelised non-linear extension of the well-known principal component analysis (PCA) algorithm, is implemented to tackle IMU fault monitoring. An isolation scheme is extrapolated based on the strong duality known to exist between probably the most widely practiced method of FDI in the aerospace domain – the parity space technique – and linear principal component analysis. The algorithm, termed partial kernel PCA, benefits from the isolation properties of the parity space method as well as the non-linear approximation ability of kernel PCA. Further, a number of unscented non-linear filters for FDI are implemented, equipped with data-driven transition models based on Gaussian processes - a non-parametric Bayesian kernel method. A distributed estimation architecture is proposed, which besides fault diagnosis can contemporaneously perform sensor fusion. It also allows for decoupling faulty sensors from the navigation solution

    Financial risk management in shipping investment, a machine learning approach

    Get PDF
    There has been a plethora of research into company credit risk and financial default prediction from both academics and financial professionals alike. However, only a limited volume of the literature has focused on international shipping company financial distress prediction, with previous research concentrating largely on classic linear based modelling techniques. The gaps, identified in this research, demonstrate the need for increased effort to address the inherent nonlinear nature of shipping operations, as well as the noisy and incomplete composition of shipping company financial statement data. Furthermore, the gaps illustrate the need for a workable definition of financial distress, which to date has too often been classed only by the ultimate state of bankruptcy/insolvency. This definition prohibits the practical application of methodologies which should be aimed at the timely identification of financial distress, thereby allowing for remedial measures to be implemented to avoid ultimate financial collapse. This research contributes to the field by addressing these gaps through i) the creation of a machine learning based financial distress forecasting methodology and ii) utilising this as the foundation for the development of a software toolkit for financial distress prediction. This toolkit enables the practical application of the financial risk principles, embedded within the methodology, to be readily integrated into an enterprise/corporate risk management system. The methodology and software were tested through the application of a bulk shipping company case study utilising 5000 bulk shipping company-year accounting observations for the period 2000-2018, in combination with market and macroeconomic data. The results demonstrate that the methodology improves the capture of distress correlations, that traditional financial distress models have struggled to achieve. The methodology's capacity to adequately treat the problem of missing data in company financial statements was also validated. Finally, the results also highlight the successful application of the software toolkit for the development of a multi-model, real time system which can enhance the financial monitoring of shipping companies by acting as a practical "early warning system" for financial distress.There has been a plethora of research into company credit risk and financial default prediction from both academics and financial professionals alike. However, only a limited volume of the literature has focused on international shipping company financial distress prediction, with previous research concentrating largely on classic linear based modelling techniques. The gaps, identified in this research, demonstrate the need for increased effort to address the inherent nonlinear nature of shipping operations, as well as the noisy and incomplete composition of shipping company financial statement data. Furthermore, the gaps illustrate the need for a workable definition of financial distress, which to date has too often been classed only by the ultimate state of bankruptcy/insolvency. This definition prohibits the practical application of methodologies which should be aimed at the timely identification of financial distress, thereby allowing for remedial measures to be implemented to avoid ultimate financial collapse. This research contributes to the field by addressing these gaps through i) the creation of a machine learning based financial distress forecasting methodology and ii) utilising this as the foundation for the development of a software toolkit for financial distress prediction. This toolkit enables the practical application of the financial risk principles, embedded within the methodology, to be readily integrated into an enterprise/corporate risk management system. The methodology and software were tested through the application of a bulk shipping company case study utilising 5000 bulk shipping company-year accounting observations for the period 2000-2018, in combination with market and macroeconomic data. The results demonstrate that the methodology improves the capture of distress correlations, that traditional financial distress models have struggled to achieve. The methodology's capacity to adequately treat the problem of missing data in company financial statements was also validated. Finally, the results also highlight the successful application of the software toolkit for the development of a multi-model, real time system which can enhance the financial monitoring of shipping companies by acting as a practical "early warning system" for financial distress
    • …
    corecore