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ABSTRACT 

Kernel methods are able to exploit high-dimensional spaces for representational 

advantage, while only operating implicitly in such spaces, thus incurring none of 

the computational cost of doing so. They appear to have the potential to 

advance the state of the art in control and signal processing applications and 

are increasingly seeing adoption across these domains. 

Applications of kernel methods to fault detection and isolation (FDI) have been 

reported, but few in aerospace research, though they offer a promising way to 

perform or enhance fault detection. It is mostly in process monitoring, in the 

chemical processing industry for example, that these techniques have found 

broader application. 

This research work explores the use of kernel-based solutions in model-based 

fault diagnosis for aerospace systems. Specifically, it investigates the 

application of these techniques to the detection and isolation of IMU/INS sensor 

faults – a canonical open problem in the aerospace field. 

Kernel PCA, a kernelised non-linear extension of the well-known principal 

component analysis (PCA) algorithm, is implemented to tackle IMU fault 

monitoring. An isolation scheme is extrapolated based on the strong duality 

known to exist between probably the most widely practiced method of FDI in the 

aerospace domain – the parity space technique – and linear principal 

component analysis. The algorithm, termed partial kernel PCA, benefits from 

the isolation properties of the parity space method as well as the non-linear 

approximation ability of kernel PCA.  

Further, a number of unscented non-linear filters for FDI are implemented, 

equipped with data-driven transition models based on Gaussian processes - a 

non-parametric Bayesian kernel method. A distributed estimation architecture is 

proposed, which besides fault diagnosis can contemporaneously perform 

sensor fusion. It also allows for decoupling faulty sensors from the navigation 

solution. 
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1 INTRODUCTION 

 

1.1 Background 

Highly complex, safety critical systems such as unmanned aerial vehicles 

(UAVs) require real-time health monitoring to ensure system integrity is not 

compromised in the event of a fault. If left unchecked or undetected, faults can 

degrade the performance of an autonomous vehicle and may lead to system 

failure, resulting in loss of physical assets, aborted missions and collateral 

damage. A US defence study (Schaefer 2003) looking into sources of system 

failures in the U.S. military UAV fleet (based on 100,000 flight hours) found that 

on average 83% of incidents were caused by faults affecting sensors, actuators 

and electro-mechanical processes; the remaining 17% being down to human 

error. This is in contrast to manned aircraft, where around 85% of failures are 

accounted for by human error. Thus, the dependability of UAVs can be greatly 

enhanced by fault diagnosis provision. 

Fault diagnosis is typically part of a larger process known under various 

acronyms: FDD or fault detection and diagnosis; FDI or fault detection and 

isolation; FDIR or fault detection, identification and reconfiguration. The 

following nomenclature, initially proposed by the IFAC SAFEPROCESS 

Technical Committee, is now standard in FDIR (Marzat et al. 2012).  

A fault is an unpermitted deviation of at least one characteristic property or 

parameter of the system from acceptable, usual or standard conditions. A fault 

may lead to a failure, which is a permanent interruption of the system ability to 

perform a required function under specified operating conditions. Fault detection 

is the determination of the presence of faults in a system and of their times of 

occurrence. It is generally followed by fault isolation to determine the type and 

location of the faults. Fault identification (or estimation) tries to determine the 

size and time-varying behaviour of the faults. Fault isolation and identification 

are together said to make up fault diagnosis. A natural extension of fault 

diagnosis is to try to compensate for any existing faults by modifying the control 
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law of a flight vehicle. This is the province of fault tolerant control (FTC), or 

reconfiguration.  

1.2 UAV Navigation and Fault Monitoring  

UAVs require accurate location information for a variety of tasks. This naturally 

includes navigation, but also motion planning and control. INS-based 

localisation in UAVs is generally realised through the use of some sort of 

navigation filter. With increased autonomy, and with humans increasingly out of 

the (control) loop, the need for guidance and navigation systems that meet the 

highest standards of integrity and robustness is paramount (Construit et al. 

2009).  

Inertial navigation in three dimensions necessitates two sensor triads consisting 

of 3-axis gyroscopes and accelerometers to measure, respectively, the attitude 

angles and accelerations along the three coordinate axes. Navigation systems 

are prone to the occurrence of faults in the normal course of operation; 

something that can impact the quality of the navigation solution. This degrades 

the navigation information coming in and hinders reliable localisation of the 

vehicle in space (Groves 2008). FDI can be used to counteract this type of 

problem. In this study, we focus on model-based diagnosis as a measure to 

prevent navigation system failure or decline. 

Lately, low-cost, small-size micro-electro-mechanical system (MEMS) inertial 

sensors have been implemented in devices such as quadrotor UAVs. Aside 

from the obvious advantages of reduced size and cost, MEMS inertial sensors 

are characterised by high levels of noise and output uncertainties, such as 

biases/scale factors (Noureldin et al. 2009). Therefore, a MEMS INS incurs 

errors in position, velocity and attitude. Such errors can accumulate rapidly, 

degrading the accuracy of the navigation solution within a short time period. 

Therefore, bias modelling of low-cost inertial sensors is a prerequisite for 

improving their performance and amenability to fault detection. 

A sensor fault can be defined as an unexpected change in a sensor signal due 

to degradation or damage to a sensing instrument resulting in a corrupted 
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output. The fault detection and isolation (FDI) problem resolves to a binary 

decision at a particular time instant: either there is sufficient evidence that a 

fault is in progress or there is not. When a fault is determined to have occurred, 

the task of fault isolation is to pinpoint its location (Chow & Willsky 1984).  

Generally speaking, FDI techniques rely on the concept of redundancy: 

hardware or analytical. Hardware redundancy involves comparing replica of the 

same signal generated by various hardware components, such as two or more 

sensors measuring the same quantity. Analytical redundancy, on the other 

hand, replaces redundant hardware implementation with a mathematical model. 

The two approaches are contrasted diagrammatically in Figure 1.1. 

The analytical approach has the advantage that it is more lightweight and cost-

effective as additional hardware is not required (Hwang et al. 2010). This is an 

important consideration in UAV operation, since pilotless air vehicles are 

typically more lightweight and streamlined than piloted aircraft, and vehicle 

weight and payload should preferably be kept to a minimum. The analytical 

redundancy approach is, however, more of a challenge to implement, as it has 

to deal robustly with model inaccuracies (since no model is exact, this is 

critical), the presence of noise and unknown disturbances. Diagnosis often 

consists of generation of residuals (fault indicators based on differences 

between measurements and model-based predictions) followed by their 

evaluation within decision functions. A fault can be detected and localised when 

it causes a particular residual to increase in magnitude above a certain 

threshold. 

For aerospace systems, there exists a widening gulf between the FDIR 

solutions proposed by academic researchers and the technical solutions being 

adopted by aerospace industry end-users (Zolghadri 2011). This is arguably 

due to aerospace professionals putting a premium on fail-safe solutions that 

militate against even the slightest risk of operational failure. This conservative 

tendency leads to overreliance on multiple tiers of hardware redundancy. 

However, as mentioned in the previous paragraph, increased payload is not an 

option for small UAVs, necessitating more robust analytical solutions. 
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Figure 1-1 Analytical and hardware redundancy 

From the foregoing it is seen that a robust diagnosis procedure to address the 

fault detection and isolation problem is an essential aspect in improving the 

performance of localisation and navigation sensors. With ever-increasing levels 

of autonomy for unmanned vehicles and, by extension, humans increasingly out 

of the (control) loop, the need for guidance and navigation systems that meet 

the highest standards of integrity and robustness is paramount. To mitigate the 

adverse effects of biases and drift errors inherent to inertial sensors, fusion with 

other navigation sensors, such as a global positioning system (GPS) or a 

magnetometer, is commonly employed to provide enhanced state estimation. 

The resultant hybrid sensor system is known as an integrated navigation 

system. There are, however, environments (e.g., indoor environments) where 

outages of the coupled instruments can mean the INS operating stand-alone. 

Thus, ensuring fault-free and stable INS operation is crucial to safe and reliable 

adherence to a designated flight trajectory. 

Figures 1.2-1.4 display images of popular micro-UAV models. The advent of 

cheap and lightweight UAVs has proved invaluable in enabling in situ academic 

research into autonomous aerial platform technology, and has had the 

concomitant effect of providing a spur to the application of FDI to such systems. 
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Figure 1-2 Pelican drone 

 

 

 

 

Figure 1-3 Asctec FireFly 
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1.3 Scope and Research Aims 

From the foregoing we can define the principal research aims and scope of the 

research as follows. 

The work described in this thesis aims to achieve robust & accurate (low false 

alarm and true detection rate) fault diagnosis of UAV inertial navigation systems 

so as to ensure reliable vehicle localisation. It aims to develop novel model-

based fault diagnostic techniques exploiting analytical redundancy.  

Concerning the novelty aspect, the intent is to merge well-established classical 

methodologies within the purview of aerospace FDI, such as the parity space 

technique and diagnostic observers, with more contemporary techniques arising 

out of the fields of machine learning and pattern recognition that afford non-

linear extensions to linear systems. Techniques utilising kernels and the sigma 

point transform are felt to hold particular promise in this regard. Thus, the focus 

of the thesis is on updating well-tried concepts and methods within aerospace 

FDI via emergent paradigms in the rapidly developing data sciences. In this 

vein, there is the potential for crossover from the fields of anomaly and outlier 

detection, which are essentially application areas of machine learning and data 

mining that deal with the same fundamental problem as fault detection. 

 

Figure 1-4 Parrot drone 
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1.4 Organisation of the Thesis 

Below are listed the publications that relate to the contributions presented in this 

thesis. The particular thesis chapters they have relevance for are labelled in 

Figure 1.5, which illustrates the organisation of the thesis.  

  

• Fault detection and isolation in inertial navigation systems with SDRE 

non-linear filter (Vitanov & Aouf 2013). 

5th European Conference for Aeronautics and Space Sciences (EUCASS). 

 

• Fault diagnosis for MEMS INS using unscented Kalman filter enhanced 

by Gaussian process adaptation (I Vitanov & Aouf 2014). 

2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). 

 

• Fault detection and isolation in an inertial navigation system using a bank 

of unscented H∞ filters (Ivan Vitanov & Aouf 2014a). 

2014 UKACC International Conference on Control. 

 

• Fault diagnosis and recovery in MEMS inertial navigation system using 

information filters and Gaussian processes (Ivan Vitanov & Aouf 2014b).  

22nd Mediterranean Conference of Control and Automation (MED) 

 

• Kernel PCA applied to fault diagnosis of MEMS IMU (in preparation; 

provisional title) 

IMechE Journal of Aerospace Engineering 
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The thesis is divided into 6 chapters; the dependencies between them are 

shown in Figure 1.5. The main contributions and technical results are discussed 

in Chapters 3-5. The chapters would ideally be read chronologically to get a 

more complete understanding of the work. Chapter 3 is not a prerequisite for 

understanding later chapters, except for Section 3.4, which covers certain 

implementation details that recur in Chapters 4-5. The remainder of Chapter 3 

can be omitted without too much loss of generality. Below is an outline of the 

rest of the thesis.  

Chapter 2 overviews multi-sensor navigation systems and their properties. As 

already discussed, this is the target system which forms the test bed for the 

algorithms presented in this thesis. The chapter lays out the theoretical 

underpinnings of such systems and reviews the literature on the FDI methods 

most commonly applied to them.  

In Chapter 3 a detection and isolation algorithm is developed for IMU sensor 

faults by extending a kernel-based non-linear version of principal component 

analysis. The duality known to exist between linear PCA and the parity space 

technique widely adopted in the aerospace industry is exploited to modify the 

scope of the kernel PCA algorithm to include isolation as well as detection, 

where traditionally it has been limited to the latter. The algorithm formed from 

this conjunction, kernel partial PCA, has parity space-like isolation structures. 

Chapter 4 introduces the Bayesian non-parametric regression technique of 

Gaussian processes and its application to FDI. This technique has been 

recently combined with non-linear Kalman filters to produce highly flexible 

filtering solutions. We seek to leverage the state space formalism of Kalman-

type observers and the modelling flexibility of Gaussian process towards 

achieving improved model-based analytical redundancy. 

Chapter 5 extend the Gaussian process methods encountered in Chapter 4 to 

distributed (information) filters, which possess certain advantages, such as the 

ability to perform sensor fusion and FDI side-by-side. 

Chapter 6 concludes the thesis and proposes ideas for future work. 
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2 MULTI-SENSOR NAVIGATION SYSTEMS AND FAULT 
DIAGNOSIS 

 

2.1 Inertial Navigation Systems (INS) 

UAVs rely on motion sensors to compute a real-time state represented by 

position, velocity and orientation of the vehicle. An inertial navigation system is 

the most commonly used navigation aid, providing UAV position, velocity and 

attitude information. It can be used as a stand-alone unit providing navigation 

information or in conjunction with a control system for autonomous movement.  

In recent decades, INS development has advanced rapidly, which has led to 

this sensor modality being used more and more in military and commercial 

projects as the technology has matured. 

The core of the INS is the inertial measurement unit (IMU), where angular rates 

and accelerations are measured in the vehicle body frame. Values of position, 

velocity and attitude of the vehicle are updated in the appropriate coordinate 

frame (Woodman 2007). 

A number of reference frames exist; the following are the most common.  

First, the inertial frame is a motionless frame in terms of acceleration and 

rotation, oriented with respect to fixed stars and the earth’s centre of mass as its 

origin. The Earth-centred inertial frame (ECI) is not strictly inertial, because its 

origin is in the Earth’s revolution around the Sun; however, this frame is 

considered inertial for navigation purposes. The Earth-centred Earth-fixed frame 

(ECEF) and the north-east-down frame (NED) are other common frames. ECI, 

ECEF and NED frames are shown in Figure 2.1 (Schumacher 2006). 

The body frame is an orthogonal frame, whose axes are coincident with the 

axes of the IMU. In the gimballed INS, the body and navigation frames must be 

kept aligned, using the gyro information and external torques. In the strap-down 

arrangement, the IMU is rigidly mounted on the moving object to be positioned 

and conventionally is considered aligned with it (Noureldin et al. 2009). 
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A traditional INS consists of an accelerometer mounted on each of the three 

orthogonal axes of a stable platform. This would be aligned with the Earth local 

frame by ensuring that the acceleration due to gravity is detected by the vertical 

accelerometer and would be aligned to true north using a magnetic compass. 

The gimballed arrangement of the platform would ideally have three degrees of 

freedom, although practical systems are often limited by the manoeuvrability of 

the aircraft using the system. 

 

Figure 2-1 Inertial, navigation and earth frames 

When in motion, gyroscopes maintain the platform level with the earth. They 

also, when spinning at high resolution per minute (rpm) rates, attempt to remain 

aligned to a given point in space, and move in a plane 90 degrees from the 

direction of rotation when receiving a rotational input, known as precession. The 

gyroscopes create a force proportional to the rotation rate which is usable as 

feedback to maintain the level attitude pointing north of the platform. The 

vehicle attitude can be read using the angles subtended between the gimbals 

and the platform (Groves 2008; Chatfield 1997). This is equivalent to integrating 

the rotation rates with respect to time. However, gyroscopes are subject to drift, 

which leads to time-related errors, due to tolerances within the components. 

This is equivalent to integrating the rotation rates with respect to time. 

xb

zb

yb

x

y

z

ψ ψ
θ

θ
φ

φ



 

13 

 

 

 

 

Figure 2-2 Gimballed inertial navigation algorithm 

 

 

 

 

Figure 2-3 Strap-down inertial navigation algorithm 
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However, gyroscopes are subject to drift, which leads to time-related errors, due 

to tolerances within the components. Also the Earth’s translation and rotation 

through time need to be considered. Corrections can be applied for this drift 

through calibration and using Earth-motion algorithms (Lopes 2011). 

The outputs from the accelerometers mounted on the stable platform are 

integrated with respect to time to give vehicle velocity, and integrated again to 

give position (Groves 2008). The traditional INS process flow is depicted in 

Figure 2.4 with a 6 degree of freedom input of 3 translations and 3 rotations. 

Figures 2.2-2.3 provide more details for gimballed and strap-down INS 

(Chatfield 1997).  

 

Figure 2-4: INS architecture  
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2.1.1 Strap-down INS 

Strap-down inertial navigation enables navigation without the use of a 

mechanically stabilised platform in determining the vehicle’s location. This has 

been achieved through the development of gyros and rate sensors technology, 

and the emergence of high speed microprocessors capable of maintaining a 

stable platform using digital means rather than mechanically. The required 

inertial reference outputs are provided by an inertial reference system for the 

aircraft avionics. The principal source of error causing drift is imperfections of 

gyro bearings and mass imbalances.  

The development of an INS with fewer mechanical parts was motivated by 

greater accuracy and reliability of the device. Rotational gyros have given way 

to more sophisticated devices, such as fibre-optic and the ring laser gyros used 

in higher-end applications. The largest gain in regard to reducing complexity 

was achieved by mounting the INS components directly onto the vehicle itself, 

without a stable level platform, termed a strap-down INS. However, a 

component of acceleration due to gravity can be detected and this must be 

taken into account in the processing algorithms. 

2.1.2 MEMS INS 

The main factor in the cost of the INS is the design of the IMU. Recently, 

proliferation of micro-electro-mechanical-systems (MEMS) sensors has enabled 

the design of low-cost IMUs with a trade-off in accuracy (Jia 2004).  

In order to cover six degrees of freedom, these IMUs generally require three 

accelerometers mounted orthogonally and three gyroscopes around the same 

orthogonal axes.  

The manufacturing of these devices is based on integrated circuit technology 

with a mechanical element for sensing. Therefore, they are used where small 

size and low power are required (Tedaldi 2013). 

Figure 2.5 depicts a cross-section from a MEMS IMU. Figure 2.6 depicts a 

gimballed IMU. 
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Figure 2-5: MEMS IMU 

 

 

 

Figure 2-6:Gimballed IMU 
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2.1.3 INS analytical model 

Inertial navigation is achieved by integrating the output of a set of sensors to 

compute position, velocity and attitude. The sensors used are a set of three 

gyroscopes to measure roll, pitch and yaw rotation rates (p, q, r); as well as 

three accelerometers measuring linear accelerations (ax, ay, az) along the three 

body axes, with respect to an inertial frame. Collectively the three 

accelerometers and three gyros make up the core sensing device of the INS, 

the inertial measuring unit (IMU).  

The measurements from the IMU are processed through a series of integrations 

and transformed into an appropriate navigation frame - such as an earth-

centred earth-fixed frame (ECEF) - yielding aerial position coordinates (X, Y, Z), 

velocities (U, V, W) and attitude Euler angles (φ, θ, ψ). 

The INS can be represented in the following continuous-valued non-linear state 

space form: 

 x = f (x,u)

y = h(x,u)
 

(2-1) 

With x the state vector, and u the input vector to the INS (angular rates and 

accelerations) – alternatively this is the output vector of the IMU. That is: 

 TWVUZYXx ],,,,,,,,[ ψθϕ=  (2-2) 

 Tazayaxrqpu ],,,,,[=  (2-3) 

The navigation equations require that we define at minimum two reference 

frames. One is a vehicle coordinate frame (body or inertial); the other is a 

navigation frame. System equations of motion can then be derived through 

basic integrations and frame transformations.  

By integrating the following equation we can evaluate the Euler angles (φ, θ, ψ): 
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(2-4) 

We now have the attitude of the aircraft. Using the orientation values and the 

outputs of the accelerometers (ax, ay, az), we can then arrive at the vehicle 

accelerations in the body frame, given an IMU-positioned at the vehicle centre 

of gravity: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−+

−+−

+−+

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)cos()cos(
)sin()cos(

)sin(

ϕθ

ϕθ

θ

gVpUqaz
gWpUray
gWqVrax

W
V
U

!
!
!

 
 

(2-5) 

Here g is the acceleration due to gravity. When integrated with respect to time 

this acceleration vector gives the body velocities (U, V, W) as follows: 
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(2-6) 

The position in the body frame can next be determined by integration of the 

velocity vector. If we simultaneously transform the velocity to the navigation 

frame, we obtain the position coordinates (X, Y, Z) in the navigation frame: 

 
dt

W
V
U

C
Z
Y
X

T
bn  ),,(

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∫ ψθϕ  
 

(2-7) 

Where CT
bn is the transform matrix from the body frame to the navigation frame. 

Combining the transformation expressions in (4), (5) and (7) above into a single 

matrix gives us our transition function f(x,u). We assume the observation 

function h(x,u) to be an unit matrix. 

A difficulty with the INS is that it tends to drift as a cubic function of time due to 

accumulation of biases or errors. The greater part of the INS errors are imputed 

to the inertial sensors (instrument errors). 



 

19 

Calibration of the INS can cancel out some of the error sources, but some 

residual errors will inevitably remain behind. The effects of integration 

compound these: errors in the accelerations and angular rates lead to an 

accumulation of position and velocity errors (Groves 2008). The dominant INS 

error sources can be listed as follows: 

 

• alignment errors 

 

• accelerometer bias 

 

• non-orthogonality of gyros & accelerometers 

 

• gyro drift due to temperature change 

 

• gyro scale factor error 

 

• random noise 

 

The analytical INS model described in equations (2.1)-(2.7) has been used to 

develop a simulator of a MEMS INS/IMU system affixed atop a quadrotor UAV. 

Figure 2.7 shows a screen capture of the global model interface. Local models 

within it are responsible for various sub-systems, Figure 2.8 for example shows 

the interface of the quadrotor UAV’s dynamic model. The simulated UAV also 

has a PID controller which can generate a flight trajectory. To make the 

simulated on-board IMU realistic, realistic error terms such as those listed 

above have been injected into the idealised IMU readings, as depicted in Figure 

2.9. Extraneous factors that would impact on the dynamics of a real-life UAV 

have also been incorporated, such as wind velocity. The model described has 

been used to generate the test and training data used in validating the 

algorithms described in Chapters 3-5. 



 

20 

 

Figure 2-7 Simulink model of UAV INS 

 

 

Figure 2-8 Quadrotor dynamic model 
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Figure 2-9 Simulation of IMU biases & error terms 
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2.1.4 Global positioning systems (GPS) 

Global Positioning System (GPS) from The American Department of Defence 

and the Global Orbit Navigation Satellite System from Russia (GLONASS) are 

the two Global Navigation Satellite Systems (GNSS) currently used. Galileo is 

the third system which is launched by both the European Union and Space 

Agency, coming into use from the year 2008. The well-established GPS has the 

advantage of a broad range of relatively inexpensive receivers and more 

availability for users. The Standard Positioning Service (SPS) is open for civilian 

use while the Precise Positioning Service (PPS) is only intended to U.S. military 

users.  

A minimum of 24 satellites on six equally spaced orbits around the earth should 

be in operation, enabling the GPS to provide 3-dimentional position estimation 

and the Coordinated Universal Time (UTC), known for its high accuracy.  

There are 31 GPS satellites in orbit currently. The system transmits a Course 

Acquisition (C/A) code for civilian use one frequency, 1.57542GHz known as 

L1, and a Precision (P(Y)) code for military use, on a second L2 frequency, 

1.22760GHz. The information is transmitted using pseudo-random codes with 

Code Division Multiple Access (CDMA) with an accuracy of circa 20-27m 

without Selective Availability. Additional correction can be made using 2 

frequencies transmission of the P(Y) code acting against atmospheric effects on 

the signals for military applications. 

In order to ensure accurate timing information between GPS satellites and the 

associated ground stations, atomic clocks are embedded and they operate on 

GPS time across the entire network. User’s position is calculated using the 

Time of Arrival (TOA) of a one-way ranging technique, and then triangulation 

which requires three satellites and a fourth one to correct the clock in the user 

device with GPS time. The user’s device must correlate the pseudo-random 

codes with those from the satellites (11 satellites could be in view and available 

at any time) and when ‘locked-on’ can read the GPA message. The device finds 

the location of each satellite in view and the range to each satellite is then 

calculated through the GPS time along with the time error of its own internal 



 

23 

clock. This equidistant range from the satellite to any position is described by 

the surface of a sphere and where 2 range spheres intersect a circular 

perimeter will be evident. Adding a third sphere with errors ignored would 

resolve this plane to a point. When timing and atmospheric errors are 

considered then the calculated location becomes a 3-D triangular shape. 

Adding information from more satellites allows this error volume to be reduced 

(Nemra 2011). 

2.1.5 INS/GPS fusion 

Inertial navigation systems have small bias errors which are continuously 

increasing with time. Hence, additional aerial vehicle position information from 

an accurate navigation sensor, such as a GPS system, is required. A GPS 

sensor will help to estimate the INS bias errors using a navigation filter, which 

will then give improved UAV position. Nowadays, fusing data from different 

sensors to improve performance of the overall sensing system becomes 

necessary in various applications. For aerial navigation, fusion of GPS 

measurements with INS measurements by means of filtering techniques is vital 

to deliver the level of localisation precision required by UAV missions. 

Currently, the most used technique to fuse navigation data is the Kalman filter 

(KF) (Nemra & Aouf 2010). Although the Kalman filter is capable of providing 

real-time vehicle position updates, it is based on linear system models and it 

suffers from linearisation issues when dealing with non-linear models. In this 

case, an extended Kalman filter (EKF) is adopted, where by means of Taylor 

series expansions, the non-linear system is linearised and approximated around 

each current state estimate. A linear Kalman filter is then applied to produce the 

next state estimate. When large deviations between the estimated state 

trajectory and the nominal trajectory exist, the non-linear model is weakly 

approximated by a Taylor series expansion around the conditional mean. This 

makes higher-order terms of the Taylor series expansion necessary. 

In the EKF, these high-order terms are neglected. Other data fusion techniques 

based on probabilistic approaches are also used in the literature. One of these 

techniques is particle filter (PF). The main drawback of this filter is its 
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computational requirement, which makes it less suitable to real-time 

applications such as aerial navigation problem. 

2.2 FDI Methodology 

2.2.1 Fault modes 

Faults on individual inertial sensors are due to hardware failure and can reveal 

themselves as missing output values, null readings, replicated readings, or 

excessive errors beyond specified tolerances (Groves 2008). When a sensor 

fault is detected, further measurements from that sensor are no longer deemed 

acceptable. Without hardware redundancy, this may lead to the whole inertial 

navigation solution being compromised and no longer operable. When large 

errors manifest across all inertial sensors, this can be an indication of adverse 

environmental conditions causing the system to become unstable, or of incipient 

failure. The whole IMU or INS may also be subject to a power, software, or 

communications failure.  

The inertial system model used as the basis for the implementations presented 

in this chapter comprises three orthogonal accelerometers along the body axes 

and three gyroscopes. The state and measurement variables derived from 

these which can be monitored for faults are, respectively, the aerial position 

coordinates (x, y, z) and the attitude Euler angles (φ, θ, ψ). The time-

dependency of faults can be classified as (Isermann 1997): 

• Abrupt fault (stepwise) 

• Incipient fault (drift-like) 

• Intermittent fault (interval-wise) 

Figure 2.10 overleaf visualises these time-dependencies. 
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Figure 2-10  Time-dependency of faults 

Faults, when structured (i.e., it is known how they enter the system dynamics), 

can be incorporated to complete the state space description: 
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Where fa,k denotes an actuator fault, fc,k denotes a component (process) fault, 

fs,k denotes a sensor fault, and dk is a vector of disturbances acting on the 

system. C and E are called distribution matrices for fc,k and dk.  

In this study, we are concerned with sensor faults to the exclusion of the other 

fault types. Figure 2.11 summarises the different fault types. 

 

 

 

Figure 2-11 Fault types 
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2.2.2 FDI methods 

Many classifications of FDI are available from the literature. One popular 

classification divides FDI methods into model- and non-model-based. In this 

study, the emphasis is on model-based FDI. Such schemes can be classified 

into two primary groupings: FDI involving residuals and FDI involving fault 

estimation, as can be seen from Figure 2.12. 

Residual generators (Figure 2.13) compare signals from a quantitative model 

and hardware observations, and the filtered difference forms a residual signal; 

(Patton 2000) provides a comprehensive discussion of such schemes.  

When fault-free conditions exist, the residuals should be zero or close-to-zero, 

and non-zero otherwise. A threshold is usually applied to residuals to avoid 

false alarms or misdetection. 

State observers are discussed in (Abid 2010).These include the well-known 

Kalman filter and its derivatives amongst other techniques. 

 

 

Figure 2-12 Classification of methods in FDI 
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(Kinnaert 2003; Isermann 2006) detail parity relations and parameter 

estimation. 

Filtering techniques and fusion architectures applied to fault detection in 

navigation systems are discussed in (Marcos et al. 2005; Berdjag et al. 2010; Q. 

Cheng et al. 2008). The latter two sources also cover distributed filtering 

techniques as well. Other sources dealing specifically with distributed sensor 

fusion and FDI across multiple redundant navigation sensors include (Shim & 

Yang 2010; Waegli et al. 2008; Bancroft & Lachapelle 2011). 

There are a number of comprehensive surveys of FDI methods, for example 

(Marzat et al. 2012). 

Standard Kalman filters function as observers and can thus be used to detect 

faults by means of generating residual signals by comparing real and estimated 

outputs. 

The fundamental Kalman filter concept has undergone modifications and spun 

off a number of variants, the extended Kalman filter for non-linear systems for 

example(Li & Olson 1991) and for parameter estimation which the parameters 

to be estimated are added on to the state vector as extra states.  

The Kalman filter can also be composed into a bank of Kalman filters 

(Kobayashi & Simon 2003; Kobayashi & Simon 2004) or interacting multiple 

model Kalman filters (IMM-KF) (Rago et al. 1998; Zhang & Jiang 2001) with the 

aim of creating a residual which can be used for fault detection. The Kalman 

filter has also been hybridised with predictive control methods, which could 

potentially be applied to FDI. 

Applying the principles concerned in the design of H∞ controllers, observers 

have been designed as a tool for residual-based fault diagnosis (Marcos et al. 

2005). The key concept here is to make the residual sensitive only to faults and 

insensitive to disturbances and model errors(Marcos et al. 2005). This is done 

by selecting the observer gain (for example by using linear matrix inequalities 

(LMIs) which minimise the H∞ norm between the uncertainty and the residual 

signal. 
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Following residual generation, residual evaluation or change detection methods 

can be brought to bear, examples include: 

• mean and variance estimation (Basseville & Nikiforov 1993) 

• likelihood-ratio test (Marzat et al. 2012) 

• Bayesian decision theory (Adams & MacKay 2007) 

In the absence of a formal dynamical model, a description of the system has to 

be derived from real-time measurements, perhaps elaborated by a process 

history. Given such data, one of two strategies may be employed.  

The first of these is classification, which starts of by enumerating classes built 

from a database. This can be done either in a supervised way (i.e., by first 

labelling the data) or in semi-supervised fashion (i.e., clustering data points by 

some criterion that measures their proximity to one another and having an 

expert apply labels to the identified classes). Subsequently a classification 

algorithm can be trained to assign freshly sampled data points to classes 

representing normal or anomalous behaviour.  

A second strategy is regression, which is used to develop a statistical model 

that utilises redundancies in the process history to predict output values given 

inputs and thus generate residuals by comparing predicted against measured 

values. 

In the event that no process history can be construed, the only information 

available regarding the monitored system is empirical expert knowledge. This 

can be used to construct expert systems. These comprise a series of if-then-

else rules that endeavour to imitate human deductive reasoning by connecting 

premises to conclusions using chains of logical inference concerning events. If 

an illegitimate sequence of events is detected, this may be labelled as a fault.  

Some of the disadvantages of this approach are the inherent loss of generality 

and its incapacity to deal with scenarios that have not been hardwired into the 

structure of the knowledge base (Angeli & Chatzinikolaou 2004).  
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Qualitative trend analysis attempts to resolve an observed signal into a 

sequence of known primitives (such as ‘stable’, ‘increasing’, or ‘decreasing’). 

This resolution may be achieved through analysing the signs of a sequence of 

derivatives of signals and putting them through a rule base, or by comparing 

patterns against a database storing samples of known primitives (Maurya et al. 

2007). Both approaches involve careful formulation of heuristic rules. Faults are 

then established in the same way as in the case of expert systems. 

In situations when a process model is discernible but its accuracy and its 

predictions are in some doubt, qualitative equations are an alternative solution 

method that can be used to model the variation of the process variables. 

Qualitative physics of this sort has the same aim as the above-enumerated 

techniques; that is, to prescribe the evolution of the process so as to detect 

anomalous behaviour (Panati & Dupré 2001).  

A signed digraph (SDG) is another approach used to express causal 

relationships (Montmain & Gentil 2000). Regrettably qualitative modelling is 

rather limited in terms of its predictive ability, except in very basic cases. 

When we have a process history on hand, fault diagnosis may be formulated as 

a pattern recognition problem, where freshly sampled observations are 

classified in predefined classes. Prior knowledge is encoded in the form of a 

database built up from observations of the monitored variables, which may for 

example be state variables or data parameters. As a first step, two off-line 

operations have to be performed: the data are sorted into classes and a 

decision rule learnt from the data. Classes are hence derived and vectors in the 

database are mapped to them. 

To perform fault diagnosis, the classes adopted are: one to describe normal 

operation and the rest to cover all of the possible fault modes. An expert may 

perform the labelling, if such is available, otherwise an algorithm is used, such 

as k-means clustering (Patton et al. 1999). If the database contains only healthy 

measurements, another approach is to perform one-class classification (Shin et 

al. 2005; Mahadevan & Shah 2009; Chandola et al. 2009), though this will not 

be sufficient for fault isolation.  
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When the training data have all been labelled, a decision rule must be derived 

and adapted to classify new vectors in the appropriate classes. For this 

purpose, both parametric and non-parametric approaches are available. 

Parametric classification seeks to determine explicit boundaries between 

classes using basis functions. The simplest case is one of linear binary 

classification, it also the method adopted for most algorithms of this type (Jain 

et al. 2000). 

In the event of two classes, the aim is to discover a hyperplane that divides the 

data into two sets with respect to the predetermined labels. This boundary is 

optimally defined in accordance with some predefined cost function. A vector 

norm is chosen to calculate distance to the boundary, as well as a regularisation 

term to prevent over-fitting of the separator function.  

When no linear boundary can be proposed, i.e., when the problem is non-linear, 

more complex functions (quadratic, cubic, etc.) could be adopted, though there 

are computational costs associated with this, in the way of tuning an expanding 

set of parameters. 

An oft resorted-to solution to the problem of determining classification 

boundaries is to use neural networks. In this formulation, the difficulty of finding 

an optimal solution shifts from the choice of parameters to the selection of an 

activation function and the choice of structure of the network, i.e., the optimal 

number of layers and the quantity of neurons making up each of these.  

Minimising the quadratic distance between the output of the network and the 

label of the required class necessitates tuning of the weights of the neurons, 

typically using the back-propagation algorithm, a local gradient algorithm that is 

known to become trapped in sub-optimal local optima. These methods have 

found wide application in FDI. 
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Figure 2-13 Stages of fault detection 

Modern pattern recognition relies on two key concepts to build non-linear 

parametric boundaries: kernels and of sparsity. The kernel trick allows an 

algorithm to generalise linear methods by projecting the data into a high-

dimensional feature space, typically a Hilbert space. Sparsity is necessary as it 

would otherwise be computationally expensive to associate weights with all 

samples, when they may not all be relevant. An appropriate design of the cost 

function can be a way to ensure sparsity. 
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3 KERNEL PARTIAL PCA FOR DETECTION AND 
ISOLATION OF IMU SENSOR FAULTS 

 

Principal component analysis (PCA) is a multivariate statistical technique that 

has found wide application in fault monitoring, particularly in the processing 

industry. Its guiding principle is to extract linear structure from high-dimensional 

data. PCA ranks data systematically according to its variance. The PCA method 

is most famously a dimensionality reduction technique (Burges 2009) that can 

be used to compress information and data, retaining only the most salient 

information. In cases of systems with severe non-linearities, PCA is limited in its 

performance through its being bound to an assumption of linearity. Principal 

component analysis is by its nature a linear transformation, which naturally 

hinders its ability to handle non-linear systems. To get around this, a variety of 

non-linear extensions of PCA have been proposed, which can identify both 

linear and non-linear correlation among process variables.  

Among the most popular non-linear extensions of standard PCA is kernel 

principal component analysis (kPCA), which was originally proposed by 

(Schölkopf 2002). It improves upon previous attempts at non-linear PCA in at 

least two ways: (i) it does not require non-linear function approximation, (ii) 

neither does it require a non-linear optimisation procedure. In spite of the many 

successes kPCA-based monitoring applications have met with, there are some 

attendant issues: the monitoring model is fixed and that can generate false 

alarms if the process is a time-varying one; fault isolation is a far more 

intractable problem in non-linear PCA than in its linear counterpart. Partial 

kernel PCA, which is presented in this chapter, is an attempt to find a workable 

solution to the latter problem. It has been shown that there is a strong duality 

between PCA and the well-known parity space FDI method, and this can be 

exploited to improve the isolation effectiveness of PCA (Huang et al. 2000). 

Section 3.1 contrasts PCA and structured parity relations. Section 3.2 develops 

the partial PCA technique; Section 3.3 - partial kernel PCA. Section 3.4 

concludes this chapter validates the proposed technique on a bespoke data set. 



 

34 

3.1 Principal Component Analysis with Parity Space-like 
Isolation Structure 

3.1.1 Structured parity relations 

The parity space approach, also known as parity relations, has well-defined 

fault isolation properties (Yang & Shim 2007; Hagenblad et al. 2003). (Huang et 

al. 2000; Gertler et al. 1999) showed that there is a strong relationship between 

PCA and parity relations, a realisation which leads to the idea of ‘isolation-

enhanced PCA’. They proposed a ‘partial’ PCA method imparting the fault 

isolation properties of the structured parity relations onto PCA. (Gertler et al. 

1999) gave a strict proof of the relationship, and proposed a direct algebraic 

method of generating a set of partial PCA models from the full PCA model.  

The central idea of analytical redundancy is to compare the actual outputs to 

those predicted from the inputs by the model. Discrepancies, mathematically 

represented as residuals, point to the presence of faults. Because of noise and 

modelling errors, the residuals are not zero even in fault free situations, and, 

therefore, thresholds need to be established and the residuals tested against 

them.  

In fault detection, oftentimes simplifying assumptions are made: e.g. that faults 

are additive sensor or actuator faults, variables are mean-centred, and each 

variable and its fault conforms to a zero-mean normal distribution. This can 

mean that techniques devised to perform fault diagnosis under such idealised 

conditions can come up short in more realistic settings. This goes some way 

towards explaining some of the limitations of standard PCA. 

At time t a linear system has outputs y(t)=[y1(t),...,ym(t)]’. The outputs relate to 

the observed inputs u(t)=[u1,…,uk]’, unknown faults f(t)=[f1(t),…,fm+k]’, and noise 

and disturbances d(t) as shown in the following equation: 

𝐲 t = 𝑨𝒖 𝑡 + 𝑩𝒇 𝑡 + 𝑪𝒅 𝑡  (3-1) 

A and B are presumed known. Output and input faults are labelled as Δy(t) and 

Δu(t) respectively. Thus, we see that f(t)=[Δy(t)’ Δu(t)’]’ and B=[I -A]. Where B is 
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a block matrix consisting of sub-matrices -A and the identity matrix, I; or, 

alternatively, B is a concatenation of I and –A. 

We define a ‘primary’ residual set as 

𝐞 t = 𝒚 𝑡 − 𝑨𝒖 𝑡 = 𝑩𝒇 𝑡 + 𝑪𝒅 𝑡  (3-2) 

where e(t) is the computational form by means of which we compute the 

primary residuals and the second is the fault-effect form that captures the direct 

relationship between the residuals and the faults. To enhance the usefulness of 

the residuals and thus improve their isolation properties, they can be 

transformed as follows 

𝐫 t = 𝑾𝒆 𝑡 = 𝑾𝑩𝒇 𝑡 +𝑾𝑪𝒅(𝑡) (3-3) 

where W is the transforming matrix. The components of r(t) are structured 

residuals (Huang et al. 2000).  

Structured residuals are configured so that each residual is sensitive only to a 

specific fault or subset of faults. Therefore, each fault activates a different 

residual or subset of residuals. This pattern is known as a fault code, and 

provides a specific signature to allow for fault isolation. Taken together the fault 

codes form a scheme, whereby a set of residuals spiking uniquely locates a 

fault (Gertler et al. 1999).  

A set of fault codes are organised into a residual structure as represented by an 

incidence matrix. The matrix rows correspond to residuals and the columns to 

faults. A ‘0’ element indicates that a given residual has not been triggered by a 

particular fault, whilst a ‘1’ indicates that it has been. The columns of the 

incidence matrix represent the Boolean fault codes generated by particular 

faults. The residual structure is said to be ‘weakly isolating’ if the columns differ 

from one another and none contain all zero elements, and is said to be ‘strongly 

isolating’ if, as well as being different, no one column can be transformed into a 

copy of another by turning ‘1’’s into ’0’’s. A straightforward means of achieving 

strong isolation is by a column canonical structure, in which the same number of 

‘1’’s appear in all the columns, although in a different sequence. Such structures 
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were originally developed in coding theory (Gertler et al. 1999; Patton 2000). 

They are generally only amenable to isolation of single faults, thus precluding 

the possibility of isolating multiple simultaneous faults, though detection is still 

possible. With extended residual sets, it can be possible to design strongly 

isolating column canonical structures to handle double or triple faults.  

Certain modified residual schemes have been proposed in the literature (Frank 

1990) that fall within the framework of structured residuals. Included amongst 

these are residual sets where each residual is affected by  

(i) all but one fault,  

(ii) only one of the sensor faults,  

(iii) only one of the actuator faults.  

The first two cases correspond to the generalised observer scheme (GOS) and 

the dedicated observer scheme (DOS) respectively (Figures 3.1 & 3.2). In our 

work, since we are looking to isolate only sensor faults, the dedicated scheme is 

applicable and we adopt a structured residual set based on (ii), as laid out in 

Table 3.1, throughout this and subsequent chapters. The advantage of this 

scheme is that it enables the detection and isolation of multiple faults. 

Table 3-1 Residual scheme for detecting multi-sensor faults 

 

Table 3.1 corresponds to the values of the incidence matrix denoted in Figures 

3.5 & 3.6. The partial PCA component to the algorithm applies a transformation 

to break up the aggregate data matrix into 6 sub-matrices, each of which 

contains an output vector relating to a different sensor, while the input vectors 

bundled with each sub-matrix are identical, resulting in independent residuals. 
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Figure 3-1 Dedicated observer scheme 

 

 

 

Figure 3-2 Generalised observer scheme 
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3.2 Partial PCA 

3.2.1 Standard PCA 

As standard PCA does not differentiate between inputs and outputs, we can 

conflate y(t) and u(t) from (3.1) into a single vector 

𝐱 t = 𝒚 𝑡
𝒖 𝑡  (3-4) 

and denote the corresponding sensor and actuator faults as  

Δ𝐱 t = Δ𝒚 𝑡
Δ𝒖 𝑡  (3-5) 

By definition, y(t) and Δy(t) are m-dimensional vectors, u(t) and Δu(t) are k-

dimensional vectors, hence x(t) and Δx(t) are (m+k)-dimensional vectors. We 

can rewrite (3.2) and (3.3) in terms of  x(t) and Δx(t) 

𝐞 t = 𝑩𝒙 𝑡 = 𝑩Δ𝒙 𝑡  (3-6) 

𝐫 𝐭 = 𝑾𝒆 𝒕 = 𝑾𝑩Δ𝒙 𝑡 	 (3-7) 

Assuming we have a training data set with N observations made under fault free 

conditions X=[ x(1),…, x(n)], performing a singular value decomposition (SVD) 

on X yields 

𝐗 = 𝜆<𝒑𝒊

?@A

<BC

𝒗𝒊 
(3-8) 

and pi and vi are the eigenvectors of XX’ and X’X respectively, while λI are the 

eigenvalues of XX’. Let there be m linearly independent relationships amongst 

the variables, then m of the eigenvalues are zeros, and X can be represented 

by the first k PCs, corresponding to the non-zero eigenvalues. However, 

absolute zero eigenvalues are rarely found in reality. Thus m has to determined 

heuristically, recovering only the eigenvectors with eigenvalues having relatively 

large magnitudes. The X matrix, and consequently x(t), can be estimated by the 

first k principal components associated with the k largest eigenvalues:  



 

39 

𝐱 t ≅ 𝐱 t  (3-9) 

														= 𝒑𝒊𝒕< 𝑡
𝒌

𝒊B𝟏

	
 

																						= 𝒑𝒊

𝒎@𝒌

𝒊B𝟏

[𝒑𝒊J𝒙 𝑡 ]	
 

where 𝐭< 𝑡 = 𝒑𝒊J𝒙 𝑡 , 𝑖 = 1,…𝑘 are the principal component (PC) scores for the 

measurements at time t, and pi are the PC loadings. Using the nominal fault-

free data, we can calculate the PC loadings pi, evaluate the PC scores, ti, and 

approximate the data by (3.9). The sum of squared residuals provides a metric:  

ϵ(t) = 𝒙 𝑡 − 𝒙 𝑡  (3-10) 

This metric is known also as the squared prediction error or the Q statistic. 

Obtaining the PC loadings and the thresholds for ϵ(t) completes the modelling 

phase, and one can move on to the monitoring phase.  

In the monitoring phase, new observations can be tested against the PCA 

model, and any ϵ(t) value which surpasses its threshold implies the occurrence 

of a fault. This, however, is no indication about where the fault is located.  

3.2.2 Partial PCA for parity-like isolation 

By making use of the concepts developed for parity relations, it is possible to 

generate structured residuals using the full PCA model. This method 

determines residuals using the principal components that are not used in the 

signal representation (H. Cheng et al. 2008). Out of these, new residuals are 

created through algebraic manipulation which are engineered to be selectively 

sensitive to different fault subsets. Such a set of residuals, constructed 

according to the relevant incidence matrix, will then ensure structured isolation 

for the particular faults concerned. This approach has been reported on in some 

detail by (Gertler et al. 1999). 
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If only sensor and actuator faults are of interest, then instead of algebraically 

manipulating the residuals, an approach that relies on partial PCA models can 

be used. Partial PCA is PCA carried out on a reduced vector, 𝒙𝒍 𝑡 , such that 

some variables in 𝒙 𝑡  are absent. Thus, the residual is only responsive to faults 

related to the variables present in the reduced vector, 𝒙𝒍 𝑡 . Faults related to 

variables eliminated from the partial PCA will not cause the residuals to exceed 

their thresholds (Gertler & Cao 2005). The idea of partial PCA was first 

described by Gertler. 

The idea of partial PCA is perhaps best understood through a single 

transformed residual in (3.11)  

rT 𝐭 = 𝒘𝒍
J𝑩𝒙 𝑡  (3-11) 

																														= 𝒘𝒍
J[𝑩(𝒍)𝑩𝒍] 𝒙𝒍 𝑡

𝒙(𝒍) 𝑡
	

 

Here B and x(t) have been partitioned so that 𝒙(𝒍) 𝑡  holds the variables (faults) 

to need to be dropped from the residual. The transformation matrix rows, W, 𝒘𝒍
J, 

are devised in such a way that 

𝒘𝒍
J𝑩(𝒍) = 0 (3-12) 

rT 𝐭 = 𝒘𝒍
J𝑩𝒙 𝑡 = 𝒘𝒍

J𝑩𝒍𝒙𝒍 𝑡 	 (3-13) 

We have for the nominal data 

rT 𝐭 = 𝒘𝒍
J𝑩𝒍𝒙𝒍 𝑡 = 0 (3-14) 

Plainly, rT 𝐭  is not triggered by any fault related to 𝒙(𝒍) 𝑡 , and under certain 

conditions is only triggered by those related to 𝒙𝒍 𝑡 . To ensure that rT 𝐭  

responds to faults related to 𝒙𝒍 𝑡 , certain rank (i.e. rank of a matrix) conditions 

have to be satisfied. 

A partial PCA model denotes the PCA representation of the sub-system defined 

by (3.14). Having satisfied rank conditions, this sub-system is composed of k+1 

variables, amongst which there is one relationship. A PCA carried out on this 
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variable set will immediately establish this relationship (i.e., locate the k-

dimensional sub-space where the variables are). Any fault related to the present 

variables is going to be detected, while those on the absent variables will be 

ignored.  

The partial PCA procedure is equivalent in PCA terms to direct identification of 

sub-models in the parity space case. In relation to linear systems, it can be 

considered as an alternative to algebraic transformation for structured residual 

generation. Although, if the system happens to be non-linear, the algebraic 

transformation approach is no longer feasible (H. Cheng et al. 2008).  

When data is assessed against a well-designed partial PCA subspace, the 

residual will be only sensitised to faults relating to the variables present in the 

reduced vector 𝒙𝒍 𝑡 . Faults relating to variables absent from the partial PCA 

will not exceed the nominal subspace. Given the selectiveness of partial PCA to 

fault subsets, it is conceivable that an incidence matrix for such a set of partial 

PCAs could be devised, ending up with a structure with parity relations-like 

isolation properties.  

3.3 Kernel PCA 

3.3.1 The kernel trick 

The kernel trick is a key notion in modern pattern recognition and machine 

learning. The kernel trick enables the generalisation of linear methods by 

mapping the data from its input space into some high-dimensional feature 

space (Marzat et al. 2012). 

Working out an inner product in the feature space turns out to be the same as 

taking the inner product in the original input space and raising it to the power of 

d. This is an extremely attractive result computationally. A high number of 

dimensions is required to make the feature space sufficiently flexible to be 

useful. If calculated exhaustively, the computational cost of calculating the inner 

product in the feature space scales with the number of dimensions (Kung 2014).  

A kernel function is defined by the following formalism: 
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k 𝐱, 𝐲 ≜ 𝚽 𝐱 ,𝚽 𝐲 = 𝐱, 𝐲 Z (3-15) 

In simple terms, kernels provide an efficient way of calculating inner products in 

high-dimensional feature spaces. At the same time, they provide a convenient 

non-linear generalisation of inner products. With the use of a kernel, it can be 

relatively straightforward to build non-linear variants of simple linear algorithms 

that are based on inner products. In the machine learning literature this is 

known as the kernel trick.  

Applications of kernel methods in general and kernel PCA in particular to FDI 

have been reported but few are in aerospace (Marzat et al. 2012), though, 

according to the authors, kernel-based methods appear to be a promising way 

to enhance or carry out fault detection (Choi et al. 2005).  

(Marzat et al. 2012) go on to say: 

 “Moreover, the criteria used could be modified to perform regression. It would 

then become possible to use the same formalism to create a black-box model 

that can generate residuals by comparing its outputs and the measurements on 

the system to detect the faults. Finally, it should be pointed out that the choice 

of the kernel and cost function is crucial and far from trivial, and that adequacy 

to the data must be carefully checked.” 

3.3.2 Non-linear PCA as a kernel eigenvalue problem 

Kernel PCA (kPCA) extends standard PCA to non-linear settings. Assume a 

distribution consisting of n data points xi ∈ Rd. Before performing a PCA, these 

data points are mapped into a higher-dimensional feature space F,  

𝐱𝐢 → 𝚽 𝐱𝐢  (3-16) 

In this space, standard PCA is performed. The trick herein is that the PCA can 

be computed such that the vectors 𝚽 𝐱𝐢  appear only within scalar products . 

Thus, mapping (3.16) can be omitted. Instead, we only work with a kernel 

function k 𝐱, 𝐲 , which replaces the scalar product 𝚽 𝐱 ,𝚽 𝐲 . In kernel PCA, 
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an eigenvector V of the covariance matrix in F is a linear combination of points 

𝚽 𝐱𝐢   

𝐕 = 𝛼<𝚽 𝐱𝐢

_

<BC

 
(3-17) 

with  

𝚽 𝐱𝐢 = 𝚽 𝐱𝐢 −
1
𝑛 𝚽 𝐱𝐫

_

aBC

	 
(3-18) 

The vectors 𝚽 𝐱𝐢  are chosen such that they are centered around the origin in 

F. The 𝛼< are the components of a vector 𝜶. It turns out that this vector is an 

eigenvector of the matrix 𝐾<d = (𝚽 𝐱𝐢 ∙ 𝚽 𝐱𝐣 ). The length of 𝜶 is chosen such 

that the principal components V have unit length: 𝐕 = 1 ⟺ 	 𝜶 𝟐 = 1/𝜆, with 

𝜆 being the eigenvalue of 𝐾 corresponding to 𝜶. To compute 𝐾, we substitute 𝚽 

according to (3.18). This substitution gives 𝐾 as a function of the kernel matrix 

𝐾<d = k 𝐱𝐢, 𝐱𝐣 : 

𝐾<d = 𝐾<d −
1
𝑛 𝐾<a −

1
𝑛 𝐾ad −

1
𝑛k 𝐾al	

_

a,lBC

_

aBC

_

aBC

 
(3-19) 

Figure 3.1 illustrates the linearisation of the data in the high-dimensional feature 

space via the kernel trick, thus allowing for linear principal components to be 

applied to the transformed data. In other words, the original non-linear problem 

has been transformed into a linear one in feature space and is now tractable via 

application of standard linear PCA in this hyper-dimensional Hilbert space. This 

motivates the use of the kernel trick in the context of inertial navigation, given its 

non-linear nature, which precludes direct application of linear PCA. However, 

kernel PCA only gets us so far: a naïve implementation would only permit us to 

detect faults on a single sensor. In order to perform isolation across the INS 

sensor triads requires that we modify kernel PCA beyond its standard form. 

Section 3.3.5 outlines how to do this by kernelising the familiar partial PCA 

algorithm for linear systems, which is our main contribution in this chapter. 



 

44 

 

Figure 3-3 Linear PCA and kernel PCA; input space into feature space 

3.3.3 Kernel PCA residuals based on reconstruction error 

As novelty measure, we use the reconstruction error in feature space  

𝑝 𝚽 = 𝚽 ∙ 𝚽 − (𝑊𝚽 ∙ 𝑊𝚽) (3-20) 

With no principal components, the reconstruction error reduces to a spherical 

potential field in feature space. All we need is the center of the data in F, 𝚽𝟎 =

1/n 𝚽 𝐱𝐢𝒏
𝒊B𝟏 . The potential of a point z in the original space is the squared 

distance from the mapping 𝚽 𝐳  to the centre 𝚽𝟎, i.e., 

𝑝l 𝐳 = 𝚽 𝐳 −𝚽𝟎
𝟐 (3-21) 

The squared magnitude can be written with kernel functions using the above 

expression for 𝚽𝟎 

𝑝l 𝐳 = k 𝐳, 𝐳 −
2
𝑛 𝑘 𝐳, 𝐱𝐢 −

1
𝑛k 𝑘 𝐱𝐢, 𝐱𝐣

_

<,dBC

_

<BC

 
(3-22) 

H

Linear PCA

kernel PCA

Φ

χ
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All parts of this equation are known. The last term is constant, and can therefore 

be omitted. For RBF kernels, the first term is also constant, and the potential 

can be simplified to  

𝑝l 𝐳 = k 𝐳, 𝐳 −
2
𝑛 𝑘 𝐳, 𝐱𝐢 −

1
𝑛k 𝑘 𝐱𝐢, 𝐱𝐣

_

<,dBC

_

<BC

 
(3-23) 

Returning to the reconstruction error as defined in (3.20), 𝚽 is a vector 

originating from the centre of the distribution in feature space, 𝚽 𝐳 = 𝚽 𝐳 −

𝚽𝟎. Let q be the number of principal components. The matrix W contains the q 

row vectors Vl. The index l denotes the lth eigenvector, with l=1 for the 

eigenvector with the largest eigenvalue (Hoffmann 2007). 

We need to eliminate 𝚽 in (3.20), and write the potential as a function of a 

vector z taken from the original space. The projection fl(z) of 𝚽 onto the 

eigenvector 𝑽T = 𝛼<T𝚽 𝐱𝐢_
<BC  can be readily evaluated using the kernel 

function k,  

𝑓T 𝐳 = 𝚽 𝐳 ∙ 𝑽T

= 𝚽 𝐳 −
1
𝑛 𝚽 𝐱𝐫

_

aBC

∙ α<T𝚽 𝐱𝐢

_

<BC

−
1
𝑛 α<T𝚽 𝐱𝐫

_

<,aBC

 

(3-24) 

= α<T
_

<BC

𝑘 𝒛, 𝒙𝒊 −
1
𝑛 𝑘 𝒙𝒊, 𝒙𝒓 −

1
𝑛 𝑘 𝒛, 𝒙𝒓

_

aBC

+
1
𝑛k 𝑘 𝒙𝒓, 𝒙l

_

a,lBC

_

aBC

	
 

Here, the second equality uses Eq. (3). As a result, 𝑝 𝚽  can be expressed as  

𝑝 𝚽 = 𝚽 ∙ 𝚽 − 𝑓T 𝐳 k

𝒒

𝒍B𝟏

 
(3-25) 

The scalar product 𝚽 ∙ 𝚽  equals the spherical potential (3.23). Thus, the 

expression of the potential p(z) can be further simplified  

𝑝 𝐳 = 𝑝l 𝐳 − 𝑓T 𝐳 k

𝒒

𝒍B𝟏

 
(3-26) 
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This is the desired form of the novelty measure in Rd. 	

The above computation of fl(z) requires n evaluations of the kernel function for 

each z. Since for all l components, the same kernels can be used, the total 

number of kernel evaluations is also n (Hoffmann 2007).  

3.3.4 Kernel functions 

The Kernel principal component analysis method has been shown to be 

effective for monitoring non-linear processes. However, its performance largely 

depends on the kernel function, and there is currently no general rule for kernel 

selection. Existing methods simply choose the kernel function empirically or 

experimentally from a given set of candidates. The kernel function plays a 

significant role in kPCA, and a poor choice of kernel may lead to significantly 

lowered performance. Two of the better known kernel functions are these:  

• Polynomial kernel: 

k 𝐱𝐢, 𝐱𝐣 = 𝐱𝐢 ∙ 𝐱𝐣 + 𝟏
Z (3-27) 

• Gaussian RBF kernel: 

k 𝐱𝐢, 𝐱𝐣 = exp − 𝐱𝐢 − 𝐱𝐣
𝟐/𝟐𝝈𝟐  (3-28) 

where 2δ2 = w is the width of the Gaussian kernel.  

The above kernel functions can deliver similar results if parameters are chosen 

appropriately. The radial basis function is flexible in terms of the setting of its 

parameter: the width of the Gaussian kernel can be very small (< 1) or quite 

large (Chouaib et al. 2013).  

The RBF kernel reconstruction-error decision boundary in the feature space 

wraps more tightly around the data than most other kernels and this gives a 

better description of the data (Figure 3.4).  

For RBF kernels, k 𝐱, x  takes the same constant value for all x. Therefore, in F, 

all 𝚽 𝐱  lie on a hyper-dimensional sphere S. Figure 3.2 shows only three 

dimensions of F, but for RBF kernels, F is infinite-dimensional . However, this 
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illustration is still meaningful, since n data points 𝚽 𝐱𝐢  can span only a finite 

space U, which is maximally n-dimensional if we include the origin in F. Due to 

the rotational invariance of the Euclidean norm, also in U, the data lie on a 

sphere that is embedded in U and centered at the origin.  

In the direction of the principal subspace, also a boundary emerges since S is 

bending away from the principal subspace. This emerging boundary ensures 

that the total boundary is closed; this characteristic seems to be missing for 

polynomial kernels, where 𝚽 𝐱𝐢  is not restricted to a sphere. To conclude, 

compared to other kernel functions, for the same number of enclosed data 

points, the Gaussian RBF reconstruction-error boundary encloses a smaller 

volume in S (Hoffmann 2007). 

Figure 3.4 provides a schematic interpretation of the RBF kernel decision 

boundary in feature space. Although the data points are projected onto an 

infinite dimensional sphere, we can approximate this in three dimensions for 

visualisation purposes, as the data points in fact lie on a finite dimensional 

surface embedded in the infinite dimensional projection space. The 

dimensionality of this surface is determined by the number of the data points. 

Thus, if we project only three data points, then this sub-region would 

correspond to a three dimensional sphere like the one depicted in Figure 3.4(a).  

The cross-sectional perspective of Figure 3.4(b) shows a planar view of the 

dispersal of the data points. Points lying inside the ring boundary represent 

sensor readings that are deemed ‘normal’, whereas points lying outside it are 

considered outliers and would translate to spikes in the residual. Equally, points 

contained within the tubular boundary in Figure 3.4(a) represent the 3-D 

analogue of ‘normal’ points – those without are the outliers. 

As noted above, the adoption of different types of kernel functions in kernel 

PCA produces decision boundaries with different geometries. Thus the kernel 

selection problem effectively adds an extra parameter to be tuned in optimising 

the performance of the kPCA algorithm. There is no exact way to select the 

right kernel function and this choice varies with the specific target system being 

investigated. 
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Figure 3-4 a) Decision boundary in the feature space of RBF kernel 
reconstruction error b) Cross-section view 

 

 

 



 

49 

3.3.5  Partial kernel PCA 

To achieve a structured set of partial kernel PCA residuals, each selectively 

sensitive to a single fault to the exclusion of the rest, as per the dedicated 

observer scheme, the following routine is observed: 

1. Perform standard kernel PCA to determine the number of relations m.   

2. Construct an incidence matrix, preferably with strong isolation properties.  

3. Perform a set of partial kernel PCAs with each one implementing a row 

of the incidence matrix.   

4. Determine the thresholds beyond which abnormality is indicated.   

This routine is shown in Figure 3.5, where each partial kPCA model is 

composed of kPCA loading vectors and a threshold 𝜃< on the residual ϵ<. 

After the structured partial kPCA set is obtained, it can be used in online 

monitoring and fault isolation. New observations are evaluated against the 

structured set as follows.  

1. Run the observed data against each partial PCA subspace and compute 

the residuals.    

2. Compare the residuals to appropriate thresholds and form the fault code 

𝜂 according to:    

η< =
0
1			

𝑖𝑓	ϵ� < 	𝜃<
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

			𝑖 = 1,… , 𝐿 (3-29) 

3. Compare the fault code to columns of the incidence matrix to arrive at an 
isolation decision.    

This routine is shown in Figure 3.6. 

The complete partial kernel PCA algorithm captured in Figures 3.5-3.6 

represents a forward leap with respect to the state-of-the-art, in that it combines 

the parity space isolation transferred to partial PCA with kernel PCA, thus 

providing a new hybrid algorithm that enables both detection and isolation in 

non-linear settings. 



 

50 

 

 

 

 

 

 

 

Figure 3-5 Modelling process of partial kPCA 
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Figure 3-6 Fault isolation process of partial kPCA 
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3.4 Experimental Validation 

3.4.1 Isolation results 

Simulation experiments were conducted to assess the performance of kPCA. 

Synthetic data was generated through a Simulink model of a micro-quadrotor 

UAV incorporating an emulated MEMS IMU/INS unit. Noise processes and 

biases were simulated to make the resulting outputs as realistic as possible.  

Inputs into the kPCA algorithm are in fact inputs to the simulated quadrotor’s 

dynamic model. These input are fed through from the simulated vehicle’s PID 

controller and control the behaviour of the actuators (i.e. the spin rates of the 

four propellers). These control signals are computed to have the vehicle 

maintain a predefined trajectory. The outputs are based on the accelerations 

and angular rates representing the elements of the IMU observation vector. 

Residuals are calculated on the reconstruction error principle outlined 

previously. The outputs used in the kPCA models are baselined against a 

ground truth signal set determined through the quadrotor dynamic model; that 

is, the outputs are error terms calculated via the difference between the vector 

of IMU readings and the projected values of position and orientation from the 

dynamica model. If the theoretical projections are accurate, this differencing 

should yield only the IMU error values + noise. 

Controller inputs are not used in their raw state, but rather are converted to 

position information in the body frame and navigation frames. The inputs used 

are the tri-axis position velocities (U,V,W) – equivalent to the integrated 

accelerometer values - and the orientation Euler angles (ϕ,θ,ψ) – equivalent to 

the integrated angular velocities. The inputs are normalised before being 

introduced to the kPCA models, as are the residuals, whose absolute values 

are also used. The input set remains constant across the six partial kernel PCA 

models trained on the data, what changes is the output.  

Training and test data is drawn from a sequence of 10 data sets of a thousand 

data points each. The same fault scheme of a series of simulated incipient, 

intermittent and abrupt faults is applied to the output of each sensor in a sliding-
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window manner (additive fault placement across the suite of sensors is 

presented in Table 3-2). Thus each dataset in the sequence is subject to the 

same fault distribution. Fault magnitude is scaled at 6 signal standard 

deviations, placing the signal response at the time of a fault occurrence well 

outside the 95% confidence interval. 

Each 1000-point data set is further partitioned into 5 sub-sets or partitions of 

200 points each. Duration of all faults is 100 time steps. A partition may contain 

a single fault or none at all, but there is never more than one fault per partition. 

Two versions of kPCA are compared one using the Gaussian RBF kernel and 

another with the polynomial kernel. A summary of validation results is provided 

in Tables 3-3 & 3-4 below. Results are aggregated over 10 replications each, 

i.e. experiments are repeated ten-fold – each item with a different data set but 

constant fault distribution. 

Receiver operating characteristic (ROC) curves are used to assess isolation 

performance, as well as to serve as a basis for comparison between algorithms; 

or, in this case, instantiation with different kernel functions. Aggregate receiver 

operating characteristic curves are presented that span all data sets used in 

validating performance.  

Thresholds and detection/isolation rates are those at the ROC curve’s operating 

point, whereas ‘area under curve’ assesses global performance – the closer the 

AUC value is to 1, the better the performance. Above 0.5 is considered 

competitive; below 0.5 suggests underperformance of the algorithm. 

Table 3-2 Sequence of simulated IMU faults 
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ROC curves are useful for comparing binary classifiers and as an aid to 

visualising their performance. They are increasingly being used in machine 

learning and data mining research. ROC graphs can also be used within a 

signal detection framework also - to capture the trade-off between true positive 

and false alarm rates of detection algorithms (Fawcett 2006).  

Given an algorithm and data point, four outcomes are possible. A datum 

evaluates to positive and it is known to be positive - it is classed as a true 

positive; if it evaluates to negative, it is classed as a false negative. If the datum 

evaluates to negative and is known to be negative, it is classed as a true 

negative; if it evaluates to positive, it is counted as a false positive. Given a 

detection algorithm and test data set, a two-by-two detection matrix can be 

formed representing the different classification outcomes (Table 3.3). Figure 3.7 

depicts diagrammatically the sequence of possible outcomes based expressed 

in the detection matrix. The labels applied are an alternative set to those in 

Table 3.3. Thus ‘no fault detection’ is a true negative; ‘false alarm’ is a false 

positive; ‘miss detection’ is a false negative; ‘fault detection’ is a true positive. 

 

Figure 3-7 Fault detection and isolation outcomes 
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Table 3-3 Detection matrix 

Figure 3.7 and Table 3.3 help to explain some of the detection metrics used in 

Table 3.5 in order to evaluate isolation rates. The IMU isolation rate being the 

average detection rate across the 6 sensors. As may be observable from Table 

3.5, the true negative/false positive and the true positive/false negative rates are 

related. 

Table 3-4 Area under ROC curve and optimal threshold performance comparison 

 

As can be seen from Tables 3.4-3.5 the kPCA algorithm with the Gaussian 

kernel is rather more accurate than that employing the polynomial kernel, as 

might be expected.  

Table 3-5 False positive/negative & true positive/negative rates for RBF kPCA 

 

The choice of operating point biases the threshold setting towards minimisation 

of false positives. This is the classic trade-off between ‘specificity’ and 
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‘sensitivity’. To raise the true positive rate would incur an offsetting drop in the 

true negative rate and, thereby, increase in the false positive rate. 

3.4.2 Residuals and ROC curves 

Figures 3.10-3.15 display ROC curve comparisons for the partial kPCA 

algorithm in the cases of the kernel function being RBF or polynomial over the 

test set and across the different IMU sensors. Table 3.4 summarises the AUC 

values associated with the individual ROC curves. The closer to 1 the AUC 

value of a given curve, the better the detection performance. A high AUC value 

is reflected in the shape of a curve: an AUC value over 0.5 suggests a curve 

resides within a triangle whose sides are formed by the left-hand vertical axis, 

top-most horizontal axis and a diagonal drawn between the bottom-left and 

upper-right corners of the graph. Conversely for curves with AUV values below 

0.5. Thresholds are optimised based on the ROC curves – typically the point on 

the curve closest to the top-left corner determines the value of the threshold. 

The RBF partial kPCA residuals shown in Figure 3.8 have a notably low signal-

to-noise ratio and low thresholds, showing good approximation of the time-

varying behaviour of the various faults applied. 

A low threshold can indicate increased rate of true negatives and lower rate of 

false positives, as is indeed the case with Gaussian kernel kPCA residual. The 

threshold is optimised for all the data sets used in the validation trial, but the 

residuals shown are generated over a single data set. 

The polynomial kernel residuals in Figure 3.9 are notably indistinct and the high 

thresholds calculated from the ROC curve reflect the inferior performance of the 

RBF kernel, as borne out in the performance metrics in Table 3.5. 

The AUC curves reveal the Gaussian kernel algorithm has clearly outperformed 

the polynomial kernel one, indicating that in an IMU fault detection scenario, the 

RBF kernel should be preferred. This result neatly circles back to the theoretical 

underpinnings of the choice of kernel function: the RBF kernel provides a tighter 

decision boundary; thus it is reasonable to expect it would yield a greater 

detection rate.  
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Figure 3-8 RBF kernel residuals for a single data set 
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Figure 3-9 Polynomial kernel residuals for a single data set 

 

0 2 4 6 8 10

0

2

4

X-axis accelerometer

0 2 4 6 8 10

0

2

4

Y-axis accelerometer

0 2 4 6 8 10

0

2

4

Z-axis accelerometer

0 2 4 6 8 10

0

2

4

X-axis gyroscope

0 2 4 6 8 10

0

2

4

Y-axis gyroscope

0 2 4 6 8 10

0

2

4

Z-axis gyroscope

KPCA residuals using polynomial kernel
 



 

59 

 

Figure 3-10 X-axis accelerometer ROC comparison 

 

Figure 3-11 Y-axis accelerometer ROC comparison 
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Figure 3-12 Z-axis accelerometer ROC comparison 

 

Figure 3-13 X-axis gyro ROC comparison 
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Figure 3-14 Y-axis gyro ROC comparison 

 

Figure 3-15 Z-axis gyro ROC comparison 
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3.5 Conclusion 

This chapter has traced the development of a partial kernel PCA algorithm for 

the detection and isolation of sensor faults. It brings together elements from two 

related, established algorithms; namely, partial (linear) PCA and kernel PCA. 

The former exploits the duality known to exist between the parity space 

technique and linear PCA in order to transmit the well-established parity 

relations isolation structure onto an operationally equivalent variant of PCA. On 

the other hand, kernel PCA represents a non-linear extension of standard, 

linear PCA via the so-called kernel trick. Taken independently, neither 

technique is able to perform both isolation and detection in a non-linear setting, 

such as that posed by the IMU diagnostic scenario investigated in this thesis. 

Merging the two yields a novel solution that exhibits both non-linear modelling 

capability as well as fault isolation potential. 

The developed partial kPCA algorithm is evaluated over a run of ten data sets 

of simulated IMU data representing the output of three MEMS gyroscopes and 

an equal number of accelerometers. Superimposed onto this data are fault 

signals corresponding to incipient, intermittent and abrupt faults. The algorithm’s 

performance is evaluated using two configurations that differ in the choice of 

kernel function, i.e. RBF and polynomial kernels. The Gaussian (RBF) kernel 

configuration manages a respectable true positive rate of 0.49 (averaged across 

all IMU sensors) and a false positive rate of only 0.01, outclassing the 

polynomial kernel equivalent. An ROC graph has been used to select 

thresholds and derive performance metrics for the algorithm, where the bias in 

threshold selection has been towards minimising false positives, as these are 

deemed potentially more disruptive than a lowered rate of true positives – a 

trade-off implicit in threshold selection.   
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4 DETECTION AND ISOLATION USING GAUSSIAN 
PROCESS BAYESIAN FILTERS 

 

The state space INS model, introduced in Chapter 2, forms the basis of the 

state estimation approach to analytical redundancy, which will be examined in 

the present chapter. Estimating the system state enables residual generation by 

comparing model-predicted signals against their measured values. We extend 

well-established linear residual generators to the non-linear domain using the 

sigma point transform and GP regression. Section 4.1 relates analytical 

redundancy and state estimation. Sections 4.2 and 4.3 cover linear and non-

linear observers respectively. Section 4.4 elaborates on Gaussian process 

filtering and goes into the design details of the proposed filtering solutions. 

Section 4.5 contains simulation results and Section 4.6 concludes the chapter. 

4.1 State Estimation and Analytical Redundancy 

Model-based FDI schemes built around analytical redundancy are receiving 

increasing attention due to the reductions in size and cost that they can bring. 

The observer or filter-based FDI approach leverages explicit relations between 

system inputs and outputs. The error dynamics of the observer can then be 

treated as residual signals supplying fault signatures (Simon 2008). 

The process dynamics are in a sense neutralised by the observer: making the 

observer sensitive only to disturbances (plant/model mismatch is typically 

subsumed into the disturbances) and faults. The observer should be designed 

with robustness in mind; its sensitivity to disturbances should be attenuated, 

whilst magnifying its sensitivity to faults (Siddiqui & Jiancheng 2012). 

Filters achieve state estimation in a recursive procedure, wherein the existence 

of state and measurement noise is explicitly accounted for. Noise covariances 

are usually assumed to conform to known Gaussian probability distributions. 

When steady-state, fault-free conditions prevail, the filter innovation term is 

expected to be white noise with zero mean and known covariance. 
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4.2 The Kalman Filter 

4.2.1 Linear Kalman filter 

In this section we review the linear Kalman filter (KF) (Mehra & Peschon 1971) 

by way of establishing some common notions subsequently built upon in the 

discussion of non-linear filters. The standard Kalman filter is an effective state 

estimator, but one that is limited to linear systems. In fact, it is known to be 

optimal in a linear Gaussian setting, where it generates the smallest possible 

standard deviation of the estimation error. Put another way, the Kalman filter is 

a minimum variance estimator (Simon 2001). 

Most real-world systems, however, are non-linear (D. Simon 2006b). In such 

cases, the classical Kalman filter does not find direct application. In practice, 

non-linear filters are utilised more often than linear filters, because real-world 

systems are generally non-linear. Indeed, the first time the KF was tried out in 

practice, it was reconstituted to non-linear form for the purposes of NASA’s 

space programme in the 1960s (D. J. Simon 2006). 

The discrete linear Kalman filter seeks to estimate the state, x, of a controlled 

process (in discrete time) governed by the following state space equations: 

𝐱A@C = 𝐴𝐱A + 𝐵𝐮A + 𝐰A (4-1) 

𝐳A = 𝐻𝐱A + 𝐯A	  

The first equation is known as the state equation; the second is the called the 

observation or output equation. Between them, these two equations describe a 

discrete process of linear type. Equations (4.1) contain the following terms: A, 

B, and H are system matrices; k is the time index; x, as already mentioned, is 

the system state; u is a known input to the system (called the control signal); z 

(alternatively labelled as y) is the measured output; w and v are Gaussian noise 

terms - w is known as the process noise, and v is known as the measurement 

noise (Simon 2008). 

In the case of our target system - the INS – the x and u terms correspond to a 

9-variable state vector of and the 6-variable input vector.  
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In state estimation problems, we are interested in estimating x because it 

contains within itself all the requisite descriptive information we require of our 

system. The problem lies in that we are not in a position to measure x directly. 

Rather, we measure z, which is a measurement of x corrupted by noise v. Thus 

we use z in order to estimate x, but we do not typically take the value of z as is, 

because it is affected by noise. Matrix A maps the state at time k+1 to the state 

at the previous time k. Matrix B maps the optional control input to the state x. 

Matrix H maps the state to the observation (Kim 2011). 

As just observed, to estimate system state, we could just take zk to be our 

position estimate but for the fact that it is made imprecise by noise. The KF 

provides a more accurate estimate. This is because, aside from the 

measurement, zk, the KF also uses the information contained in the state 

equation. The KF prediction equations can be written as follows: 

 
QAAPP

BuxAx
T

kk

kkk

+=

+=
−
+

+
−
+

1

11 ˆˆ

 

(4-2) 

The update equations then are:  

 

−
++

−
++

−
+++

−
++

−−
+

−
++

−=

−+=

+=

1111

11111

1
111

)ˆ(ˆˆ
)(

kkkk

kkkkk

T
k

T
kk

HPKPP
xHzKxx
RHHPHPK

 

(4-3) 

Where 𝑥 is the estimate of x; K is the Kalman gain; P is the estimation error 

covariance matrix; Q is the covariance of the process noise, wk, and R is the 

covariance of the measurement noise, vk; I is an identity matrix. The goal of the 

KF is to find an a-posteriori state estimate as a linear combination of an a-priori 

estimate and a weighted difference between the measurement and predicted 

state. K is the gain factor that minimises the a-posteriori error covariance. The 

difference is called the innovation or residual , as expressed by the term: 

 )ˆ( 11
−
++ − kk xHz  

(4-4) 

The KF recursively follows a prediction/update cycle, with xk+1 and Pk+1 from the 

last iteration becoming xk and Pk in the next one. The iterative nature of the KF 
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thus results in a permanent prediction/correction cycle. To set the cycle going, 

we need to start with an estimate of the state at the initial time. We also need to 

start with an initial estimation error covariance, P0, which represents our 

uncertainty in our initial state estimate. The Kalman filter iterative cycle or loop 

is illustrated in Figure 4.1 below. 

 

Figure 4-1 Kalman filter loop 

The Kalman filter has been widely adopted for localisation and navigation tasks, 

particularly for INS/GPS fusion. An important issue in the application of the 

Kalman filter with inertial navigation systems in mind is the distinction between 

the direct and indirect forms, also known as the error-state form. In the total 

state (or direct) form, the measurements are INS outputs. In the error state (or 

indirect) form the errors in the vehicle pose measurement variables are either 

among or a totality or the variables being estimated. Each of the measurements 

in the error-state form comprises the difference between a particular INS 

variable and an external source (i.e. ground truth) (Roumeliotis 1999). Figures 

4.2-3 depict the structural difference between error- and total-state forms. 
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Figure 4-2 Indirect Kalman filter 

 

 

Figure 4-3 Direct Kalman filter 
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4.2.2  Kalman innovation filtering 

Equation (4.4) defines the innovation term used to generate residuals with the 

KF. In detecting faults using the KF, we record successive values of this term to 

generate a set of residuals. When its value departs significantly from the 

average beyond an acceptable confidence level (i.e., exceeding a predefined 

threshold) this may be interpreted as a sign that a fault has occurred.  

For a non-linear filter, the innovation term of (4.4) modifies to: 

 ))ˆ(( 11
−
++ − kk xhz  (4-5) 

Measurement innovations monitor the consistency between measurements and 

state estimates. Innovation filtering is particularly useful in detecting large 

discrepancies that occur instantaneously, while monitoring the entire innovation 

sequence enables smaller, more gradual discrepancies to be detected over 

time. Innovation filtering is also known as spike filtering, measurement gating, or 

pre-filtering (Groves 2008). 

We can also define normalised innovations or residuals by dividing the 

innovation value by its standard deviation. In an idealised KF, normalised 

measurement innovations possess zero-mean unit-variance Gaussian 

distributions, and successive values are practically independent (Groves 2008). 

However, correlated process or measurement noise, differences between the 

true and modelled process and measurement noise covariances, neglected 

error sources and use of non-linear filters all cause deviations from this ideal. In 

practice, the statistics of normalised innovations need to be evaluated before 

having FDI algorithms make use of them.  

Figure 4.4 provides a graphical description of the constituent signals that 

appear in the innovation term or residual as defined in (4.5). The plot is based 

on a single measurement and prediction from a dedicated GP-UKF filter 

(described in Section 4.4) associated with the X-axis accelerometer sensor of 

the MEMS-IMU. Smoothing in the form of a moving average filter is applied 

post-hoc to the raw IMU measurement in order to smooth out the residual. 
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Figure 4-4 Innovation components (with & without denoising) 
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4.3 Non-linear Filters 

4.3.1 The extended Kalman filter 

As mentioned in Section 4.1, the KF is a linear filter that is, by implication, only 

applicable to linear systems. It can no longer provide adequate estimates when 

used for a system that exhibits non-linearities, even over a small operational 

range. In such cases, we need to resort to non-linear filters.  

Non-linear filtering is not as readily tractable and well-understood as linear 

filtering, thereby making it altogether more complex to implement. Nevertheless, 

non-linear estimation techniques are widely used (D. J. Simon 2006). The most 

common of these is the extended Kalman filter, which, as the name suggests, is 

a non-linear extension of the Kalman filter. The EKF hinges on the principle that 

to linearise a non-linear system at certain points opens it up to analysis by linear 

estimation methods (such as the KF) allowing estimation of the states. In order 

to linearise a non-linear system, a Taylor series expansion is used to derive the 

Jacobian matrix. The EKF thus employs the Jacobian matrix to linearise a non-

linear system model and hence derive F (i.e., A) and H. The EKF algorithm can 

be summarised as below, where (4.6) is the non-linear form of the state-space 

model. 
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At each time step, we compute the following Jacobian matrices, evaluated at 

the current state estimate: 
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We then evaluate the following EKF equations: 
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As can be seen from the EKF filter equations above, the overall flow of the 

algorithm is essentially the same as that for the linear Kalman filter, save for the 

non-linear state transition and observation functions and the terms of (4.7). 

4.3.2  The unscented Kalman filter 

The EKF and the unscented Kalman filter (UKF) both approximate a non-linear 

state-space as a linear system. The extended Kalman filter is the most 

commonly adopted state estimator for non-linear systems, though it has its 

downsides (D. Simon 2006a). It can be problematic to tune and may produce 

unreliable estimates when non-linearities become too pronounced. This is 

because the EKF relies on linearisation using a first order Taylor series 

expansion around the most recent estimate, whilst the UKF applies a more 

accurate, stochastic approximation, also known as the unscented transform 

(Julier & Uhlmann 1997) or the sigma point transform. Thus application of the 

UKF can deliver improvements in performance over the EKF (Thrun & Fox 

2005; D. Simon 2006a; Julier & Uhlmann 1997). 

To appreciate how the unscented transform is used, consider a random vector, 

x, of dimension n distributed according to a Gaussian with mean μ and 

covariance P. The aim is to estimate a Gaussian approximation of the 

distribution over y = f(x), where f is putatively a non-linear function. The 

unscented transform enables this procedure by extracting the so-called sigma 

points, χ, from the Gaussian and propagating them through f. Typically these 

are found at the mean, μ, and symmetrically along the main axes of the 

covariance P (two per dimension). 

Figures 4.5-4.6 show schematically how the sigma transform is utilised. 

The 2n+1 sigma points ][iχ  are chosen according to the following rule: 

 µ=0X  

i
i PnX ))((: λµ +±=  

(4-9) 
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Figure 4-5 Stochastic approximation via sigma transform 

Here iPn ))(( λ+  is the i-th column of the matrix square root, and λ is a scaling 

parameter that determines how far apart from the mean the sigma points are 

placed. The sigma points are next propagated through f, giving )( ][if χ . Then 

the mean and covariance of the function y = f(x) can be computed as follows: 
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(4-10) 

Where the weights, Wi, are chosen appropriately. The UKF applies the 

unscented transform to the process model, f, and the measurement model, h. 

The steps of the UKF algorithm are given next. The inputs into the algorithm at 

each iteration are the mean and covariance of the estimate at time k-1 along 

with the most recent control input, uk, and observation, zk. 

Compute sigma points and weights: 

 ),,ˆ(),( 11
][ κχ −−← kki
i PxW . (4-11) 

Where ℜ∈κ  is a scaling factor.  

Predict next state and associated error covariance: 

Nonlinear
Transformation
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 ),),,((),ˆ( ][ QWufUTPx ik
i

kk χ=−−  (4-12) 

Predict measurement and its covariance: 

 ),),((),ˆ( ][ RWhUTPz i
i

zk χ=  (4-13) 

Evaluate Kalman gain: 
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(4-14) 

Evaluate estimate and error covariance: 
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Figure 4-6 Sampling via sigma point/unscented transform 
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4.3.3  The extended/unscented H∞ filter 

The EKF’s universality is curtailed by the imposition of certain operating 

conditions. First, the stochastic noise terms are required to be zero mean. The 

expected value of the process noise, wk, has to be zero; as does the expected 

value of the observation noise, zk. The zero mean property has to be in effect 

for the duration of the process, as well as at each and every time instant. 

Second, the standard deviation of the noise terms is presumed to be known. 

The EKF uses the matrices Q and R, i.e., the noise covariances, as design 

parameters. By implication, if we do not know Q and R, it is not feasible to 

design a suitable Kalman filter (Shaked & Berman 1995). In addition, cross-

correlations are required to be absent from the noise processes. The filter might 

diverge if these conditions are violated (Simon 2000). 

An alternative to the EKF is the H∞ filter, also called the minimax filter, or the 

EH∞ (EHF) filter when extended to non-linear systems by embedding in the 

EKF update structure. The EH∞ filter is contrasted from the EKF in that it does 

not make any assumptions about the noise and minimises the worst-case 

estimation error via the H∞ norm (Einicke & White 1999). 

The discrete-time, non-linear state space model used for the EH∞ filter is that 

discussed previously and used by the EKF and UKF (and indeed by all non-

linear filters discussed in the present document). 

The recursive form of the EHF equations is as follows: 

 ),ˆ(ˆ 1 kkk uxfx −
− =  (4-16) 

 QFPFP T
kkkk += −

−
1   (4-17) 
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Where Fk and Hk are the Jacobian matrices of the non-linear functions f and h 

computed at estimate −
kx̂ . I is an identity matrix of corresponding dimension. 

The matrix 1
,
−
keR  is given by: 

 [ ]IHP
I
H

I
R

R T
kk

k
ke

−
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⎤
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⎡
+⎥
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⎤
⎢
⎣

⎡

−
=

γ0
0

,  
(4-20) 

Where γ is a scalar parameter, with λ>0.  

The EHF is configured for non-linear systems with white noise processes. As 

the EHF takes on certain facets of the EKF, some of the disadvantages 

associated with the EKF inevitably ‘rub off’ on it. For example, the smoothness 

and mildly non-linear character of the non-linear functions that can be estimated 

and the computational errors due to the Jacobian matrices remain a challenge.  

The unscented transform is an elegant way to approximate the filtering 

distribution by a Gaussian density, instead of linearising the non-linear functions 

as does the EKF. As already mentioned above, it is known that unscented 

transform-based estimates are accurate to the second order of the Taylor series 

expansion, as opposed to the first-order accuracy for the EKF, and hence attain 

greater accuracy than the EKF. Additionally, they are of approximately the same 

order of computational complexity. In view of its success in coping with non-

linear state estimation problems, the unscented transform technique has been 

recently combined with the H∞ filter, producing the unscented H∞ (UHF) filter 

(Li & Jia 2010). On a side note, the choice of the disturbance tolerance level 

has not yet been investigated for this filter. This level cannot in general be 

predefined and should be chosen with care to ensure the existence of the H∞ 

filter, especially for different engineering applications. 

The sigma points for the UHF are implemented in the same way as for the UKF, 

as are the predicted state, predicted measurement and their respective 

covariances, as detailed in expressions (3.10)–(3.15). The consolidated 

(filtered) estimates of the state and error covariance are evaluated as follows. 
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Where: 
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It should be noted that the level γ must be set carefully to guarantee the 

existence of the UHF; this setting is typically application-dependent. The 

variable γ can be adjusted adaptively to its minimum at each iteration thus: 

 }))((max{ 111 −−−− += k
T
kkk HRHPeigαγ  (4-23) 

 Where α is a scalar larger than one. 
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4.3.4  Filter bank architecture 

A single, stand-alone filter is not really suited to the task of fault isolation in non-

linear systems, which, unlike FDI for linear systems, is an area which has not 

been very thoroughly investigated and within which there are many open 

problems remaining. A lone filter could conceivably be used in a fault detection 

task (without isolation, fault estimation, etc.), but this may be of limited use in 

some applications.  

We therefore implement all filtering methods as a bank of filters in order to be 

able to not only detect but also isolate faults, in accordance with the DOS or 

dedicated observer scheme described earlier in this work. This architecture 

dedicates a specific filter to each of the six IMU sensors (three gyroscopes and 

three accelerometers).  

This effectively breaks up the measurement vector of the stand-alone filter, 

resolving it into six scalar values: individual position accelerations (ax, ay, az) 

and angular rates (p, q, r). We can then use the dedicated filters to generate six 

decoupled residuals, each one monitoring the behaviour of one of the six 

sensors for presence of faults through the outcome of the innovation term of the 

respective filter coupled to that sensor. For non-linear filters, innovations are 

computed per expression (4.5).  

The filter bank architecture is presented in Figure 4.7 overleaf.  

Applying a residual evaluation function to each residual, consisting of suitably 

assigned thresholds, yields the binary fault vector ε = [ε1 ε2 ε3 ε4 ε5 ε6]. Here 

each εi evaluates to a ‘1’ or ‘0’, indicating the detection or non-detection 

respectively of a fault on sensor i.  

We are typically interested in the false positive/negative rate for a particular filter 

as a performance measure, as well as the accuracy (lack of divergence and 

prediction/measurement mismatch) and responsiveness to faults of the 

residuals. For the filter bank as a whole, we can average across the true/false 

positive/negative rates for the individual observers to arrive at a single measure. 
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Figure 4-7 DOS bank of filters architecture 
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4.4 Gaussian Process Filters for FDI 

4.4.1 Gaussian processes 

This section considers the use of Gaussian process (GP) models for sequential 

state estimation and on to fault detection and isolation.  

The Gaussian process is intimately linked to the normal, bell-shaped or 

Gaussian distribution (Figure 4.8) from which it takes its name. The Gaussian 

process is in basic terms a multivariate Gaussian distribution over functions – 

as opposed to a random variable or a collection of outcomes. Gaussian 

processes have received much attention in recent years as a powerful Bayesian 

non-parametric technique for regression and classification (Kocijan 2012).  

Clearly, the quality of observer-based FDI is contingent upon the quality of the 

state estimator. In particular, an IMU process model can be learnt from sample 

data using Gaussian Process (GP) regression. An enhanced-GP model can 

also be learnt that complements a parametric or analytical model when one is 

available for a particular system (Ko et al. 2007b).  

The enhancement consists in learning a stochastic component to the existing 

deterministic model and combining both to produce more accurate predictions, 

as well as to learn noise covariances from the data (which otherwise would 

need to be tuned as parameters). This enhanced model can then be embedded 

into an existing filter. 

The state estimator that best showcases the implementation of this approach is 

the unscented Kalman filter, some familiarity with which has been provided 

already.  

Our implementation is based on the work of (Ko et al. 2007b) and for GP error 

modelling of INS/GPS systems on the work of (Atia et al. 2011). Where we add 

novelty is in applying this algorithm for fault diagnosis in accordance with the 

filter bank architecture of Section 4.3.4. We also develop a GP-UHF filter which 

and apply it in the same framework (i.e. the filter bank architecture). 
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Figure 4-8 Univariate Gaussian distribution 

The hybrid GP-UKF algorithm ought to have certain advantages over the 

regular UKF, as a result for example of the fact that GPs consider both the 

noise in the system and the uncertainty in the model. Hence, the filter can 

adjust its uncertainty estimate depending on how much data it has sampled in a 

particular region of the state space. Besides providing uncertainty estimates, 

other advantages of GPs include their modelling flexibility and ability to learn 

noise and smoothness parameters from training data (Ko et al. 2007b). 

(Reece & Roberts 2010) argue that a GP can be viewed as a special case of 

the KF. Consequently, practitioners’ intuitions about the KF, often acquired after 

years of experience with KF implementations, apply in equal measure to GPs. 

4.4.2  Regression modelling with Gaussian processes 

A GP is usually said to be a ‘Gaussian distribution over functions’ (Rasmussen 

& Williams 2006). It can be regarded as an extension of a Gaussian distribution 

over a finite vector space to an infinite-dimensional space. As a Gaussian is 

fully specified by its mean and covariance matrix, so a Gaussian process is fully 

described by its mean and covariance function, K. Even though the mean and 
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covariance functions are infinite-dimensional, GPs predict function values over 

a finite set of prediction points from observed data (Ko et al. 2007b). 

In regression problems, we take a sample )},(),...,,(),,{( 2211 nn yxyxyxS =  in 

which xi denotes the ith input and yi is the corresponding output value. The 

relationship between xi and yi is formulated as: 

 .)()(1 ii xxfy ε+=  (4-24) 

That is, a function f describes the relationship of the input vector xi to the true 

output, which, being corrupted by noise ε(xi), is measured as yi. Gaussian 

Process Regression (GPR) is a non-parametric model that assumes 

 ,),0(~])(,),...(),([ 21 KNxfxfxfF T
n=  (4-25) 

where K is the covariance matrix.  

The n observations in an arbitrary data set },...,{ 1 nyyy =  can be thought of as a 

single point sampled from some multivariate (of dimension n) Gaussian 

distribution. So this data set can be represented by a GP. 

Oftentimes it is assumed that the mean of the GP is zero everywhere. In such 

instances the ‘glue’ holding together the different observations is only the 

covariance function, k(x,x’). The most common choice of covariance function is 

the so-called ‘squared exponential’, 
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(4-26) 

for which the greatest permissible covariance is given as 2
fσ  - functions that 

span a wide stretch of the y-axis should have this value high.  

If 'xx ≈ , then )',( xxk  approaches the maximum, implying f(x) is almost perfectly 

correlated with f(x’). This means that for a function to look smooth, neighbouring 

points must closely related. If, however, x is distant from x’, we would have that 
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)0)',( ≈xxk , i.e., the two points exert a negligible effect on each other. Thus 

when predicting a new value, distant ones will not be taken into account. The 

separation effect will depend on the length parameter, l, so (4.26) is quite 

flexible.  

Regression can be thought as function fitting or searching for a model to 

approximate f(x). The first step in GP regression is to compute the covariance 

function (which is a measure of the ‘closeness’ between inputs) over all the 

points as in: 
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(4-27) 
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As the main assumption in GP modelling is that the data is represented as a 

sample from a multivariate Gaussian distribution, we have that  
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(4-29) 

We want to know the conditional probability p(y*|y), i.e., given the data, how 

likely is the prediction for y*, assuming the probability is drawn from a Gaussian 

distribution? 

As we assume non-correlated noise from one sample to the next in the data, so 

the noise term only increases the values along the diagonal of K, resulting in a 

new covariance for noisy observations having the form 

 IxxKxxV 2),(),( σ+=  (4-30) 

where I is the identity matrix and 2σ  is a hyper parameter representing the 

noise variance.  
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To compute the Gaussian process posterior distribution at some new input 

value, x*, we initially consider the joint distribution of the observed data 

(consisting of x and respective values y) modified by x* and y*, 
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(4-31) 

where K(x,x*) is the column vector formed from k(x1,x*),…,k(xn,x*) and K(x*,x) 

is its transpose.  

After some rearranging, we discover that the posterior distribution over y* is 

Gaussian with mean and variance given by  
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(4-32) 

(4-33) 

This result can be extended to evaluate the Gaussian process at a different set 

of points to our inputs, x*, and to evaluate the posterior distribution of y(x*). This 

latter is easily obtained by augmenting the equations above and using known 

techniques for multivariate Gaussians. The posterior mean and variance are 

evaluated as 

 *)*,(*)( CmNyp = . (4-34) 

Where, 
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4.4.3 1-D GP learning example 

This example illustrates the use of a Gaussian process model for 1-D 

regression problems. That is, a problem where the input and output are both 

scalar. The GP inertial measurement unit process models we embed in GP 

filters are 6-D; that is, each one has 6-inputs. Therefore, it is not possible to 

visualise them, as the data occupies a 7-dimensional space (6 inputs and one 

output). However, we can do this for regression problems that are up to 2-

dimensional. 

This example is based on training data consisting of 20 points drawn from a 

Gaussian process. A plot of the points is contained in Figure 4.9 below. 

We next compute the predictions using a Gaussian process at 201 test points 

evenly distributed in the interval [-7.5, 7.5]. 

 

Figure 4-9 GP example training data 
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In this simple example, we use a covariance function whose functional form 

matches the covariance function which was used to generate the data. In this 

case, this was a squared exponential (SE) covariance term with added 

independent noise.  

The squared exponential covariance function is equivalent to the Gaussian 

kernel detailed in Chapter 3. It should be noted that a sum of two or more GP 

covariance functions is also a GP covariance. So the noise and squared 

exponential can be summed into a single covariance. 

We have now specified the functional form of the covariance function but we still 

need to specify values of the parameters of these covariance functions, also 

called hyperparameters. In this case we have 3 hyperparameters. These are: a 

characteristic length-scale for the squared exponential (SE) contribution, a 

signal magnitude for the SE contribution, and the standard deviation of the 

noise. The logarithm of these hyperparameters, θ, is specified as follows: 

log	(θ) = log
1.0
1.0
0.1

 
(4-37) 

thus specifying a unit length scale, unit magnitude and a noise variance of 0.01 

(corresponding to a standard deviation of 0.1). For numerical reasons, the 

hyperparameters are converted to their logarithmic values before being set in 

the GP model. 

We then use Gaussian process regression to make predictions for the test 

points, and we plot these by showing the predictive mean (solid line) and two 

standard error (95% confidence), noise free, point-wise error-bars as shown in 

Figure 4.10. 

Note that since we are interested in the distribution of the function values and 

not the noisy examples, we subtract the noise variance, which is stored in 

hyperparameter number 3, from the predictive variance σ2. Alternatively, the 

mean and error-bar range can be displayed in gray-scale. 
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Figure 4-10 GP predictions of test points using SE covariance 
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Figure 4-11 GP regression using new set of hyperparameters 

We next investigate changing the hyperparameters to have the values:  

log	(θ) = log
0.3
1.08
5𝑒 − 5

 
(4-38) 

The length-scale is now shorter (0.3) and the noise level is much reduced, so 

the predicted mean almost interpolates the data points. Notice that the error 

bars grow rapidly away from the data points due to the short length-scale. The 

resulting plot is shown in Figure 4.11. 

Alternatively, we can change the hyperparameters to have the values: 

log	(θ) = log
3.0
1.16
0.89

 
(4-39) 

The length-scale is now longer than initially and the noise level is higher. Thus 

the predictive mean varies more slowly than before, as seen in Figure 4.12. 
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Figure 4-12 GP regression using another set of hyperparameters 

The hyperparameters can also be learned by maximising the marginal 

likelihood. The hyperparameters are initialised to: 

log θ = −
1
1
1

 
(4-40) 

We use 100 function evaluations and end up with the following learned 

hyperparameters: 

exp	[log θ ] =
1.3659
1.5462
0.1443

 
(4-41) 

Note that the hyperparameters learned here are close, but not identical to the 

parameters [1.0, 1.0, 0.1] used when generating the data. The discrepancy is 

partially due to the small training sample size, and partially due to the fact that 

we only get information about the process in a very limited range of input 

values.  
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Figure 4-13 GP regression using learned hyperparameters 

Repeating the experiment with more training points distributed over wider range 

leads to more accurate estimates. Finally, we compute and plot the predictions 

using the learned hyperparameters (Figure 4.13), showing a reasonable fit, with 

a relatively tight confidence region. 

Note, that so far in this example we have used the same functional form of the 

covariance function as was used to generate the data. In practice things are 

seldom so simple, and one may have to try different covariance functions. Next 

we explore how a Matern form covariance function, with a shape parameter of 

3/2, does on the test data. Hyperparameters are again learned after first being 

initialised to (4.27). 

Comparing the value of the marginal likelihoods for the two models gives -15.6 

for SE and -18.0 for Matern, shows that the SE covariance function is 

approximately exp(18.0-15.6)=11 times more probable than the Matern form for 

these data.  
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Figure 4-14 GP predictions of test points using Matern form covariance 

This is in agreement with the data generating process. The predictions from the 

Matern-based model are plotted in Figure 4.14. 

It is notable that the uncertainty grows more rapidly in the vicinity of the data 

points, reflecting the property that the sample paths for the Matern class of 

functions with a shape parameter of 3/2 don't have second derivatives (and are 

thus much less smooth than the SE covariance function). 

4.4.4 Learning GP IMU process models 

GP Bayesian filters such as the GP-EKF and GP-UKF replace analytical or 

parametric process and observation models with non-linear, non-parametric 

regression models based on GPs. That is, Gaussian processes are used for 

learning such models from training data (Ko & Fox 2008).  
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The input to the IMU model is the current vehicle state according to predictions 

made by the quadrotor UAV dynamic model and the output is the IMU sensor 

error. The GP learns a mapping between these two datasets.  

The input data sets dimensions are the six states encompassing the three 

attitude Euler angles and three vehicle velocities. Only vehicle velocity and 

attitude are included in the input data set because their values are bounded, 

whereas position has no bounded range, which makes function approximation 

by GPs infeasible. 

The output data set is one dimensional and consists of the gyroscope and 

accelerometer deviations. The errors in the IMU navigation information are 

determined by taking the difference between the IMU readings and a ground 

truth provided by the quadrotor dynamic model, which provides the analytical 

redundancy. The way that these are simulated, the gyroscopes along each of 

the three axes have the same error characteristics as one another, and the 

same holds for the accelerometers. Thus there are two GP models enclosed in 

the filter process model: one that models accelerometer error and the other 

gyroscope error. We do not need to learn a GP observation model, since the 

observation model is straightforward and can be summarised as an identity or 

unit matrix. 

Our GP error modelling approach is based on (Atia et al. 2012), although they 

model a MEMS-based INS, not IMU, deviations for the purposes of bridging 

GPS outages. In terms of the GP Bayesian filters, our approach follows the 

work of (Ko et al. 2007b; Ko et al. 2007a) 

To learn either of our GP models, the procedure followed is the same. We first 

check the scaling of the input and target variables. We might be concerned if 

the standard deviation is very different for different input dimensions. In the 

event, it was, so we had to carry out rescaling.  

We use Gaussian process regression with a squared exponential covariance 

function, and allow a separate length-scale for each input dimension, as in 

(Rasmussen & Williams 2006). These length-scales (and the other 
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hyperparameters σf and σn) are adapted by maximising the marginal likelihood  

w.r.t. the hyperparameters.  

We next move on to training the GP by optimising the hyperparameters. The 

hyperparameters are first initialised to 0. 

We can plot the negative marginal likelihood as a function of the number of line-

searches of the optimisation routine. Figure 4.15 displays plots for both the gyro 

and accelerometer GP error models. 

To assess the training process, we use the following metrics: the mean squared 

error and the mean predictive log likelihood. 

For the GP error model of the accelerometers: 

• The mean squared error is 0.0012 

• and the mean predictive log likelihood is 1.9125. 

For the GP error model of the gyroscopes: 

• The mean squared error is 0.0005 

• and the mean predictive log likelihood is 2.3929. 

The training set used to build the GP models contains 200 points taken from a 

single data set of 1000 points. 
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Figure 4-15 Negative marginal likelihood as a function of no. of line-searches 
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4.4.5 GP-enhanced UKF/UHF 

The training data for each GP is a set of input-output mappings. The transition 

model relates the state and control (xk,uk) to the state transition kkk xxx −= +1δ . 

The k+1 state can be found by summing the k state with the state transition. 

The GP transition function (i.e. process model is the following 

𝐱A = GP�
� 𝐱A C, 𝐮A , D� + 𝜺A	

𝜺A = 𝒩(0, GP¤
� 𝐱A C, 𝐮A , D� ) 

(4-42) 

Where the xk expression is the mean prediction of the Gaussian process model 

and the second expression is the stochastic prediction by the GP. The only 

difference between this implementation and the standard UKF/UHF as 

described in Section 4.3 is that instead of passing the sigma points through f(x), 

they are passed through (4.29) and εk is used to generate Qk. 

The transition function training data set is defined as follows: 

D� = { 𝑋, 𝑈 , 𝑋J} (4-43) 

Where X is the matrix of ground truth states, and ],...,,[' 21 kxxxX δδδ=  is a 

matrix containing transitions made from those states after applying the controls 

stored in U (Ko & Fox 2008; Ko et al. 2007b). 

By incorporating GP regression, GP-UKFs are able to learn enhanced models, 

as well as noise processes, from training data. In addition, the noise models of 

the filter adapt automatically to the system state in relation to the density of 

training data around the current state. So that if less training data is available, 

the GP-UKF returns higher uncertainty estimates. 

By embedding a Gaussian process process model into the unscented H-infinity 

filter, we have proposed a new variant Gaussian process Bayesian filter, which 

previously did not exist, and can bring to bear some of the advantages of the H-

infinity update structure on the GP Bayesian filter formulation, such as 

robustness. 
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4.5 Experimental Validation 

4.5.1 Isolation results 

The experimental trials described in this section were carried out in the same 

way, under the same conditions and using the same data as those for the kPCA 

algorithm of Chapter 3. Using the same setup throughout should allow for a fair 

and balanced comparison between the proposed algorithms.  

As in the last chapter, results are gathered over a series of ten data sets, 

producing ten replications of the same experiment, i.e. each time applying the 

same simulated faults on a different data set. Residual plots in Figures 4.16-17 

provide just a snapshot, visualising the residuals for a single data set, typically 

the first in the sequence. 

Results tables 4.1-4.3 reveal some differences between the Bayesian filters and 

kPCA: the average isolation rate for both filters is slightly lower than Gaussian 

kPCA, even as the average AUC is around 20 points higher. It should be 

recalled that the area under an ROC curve is a performance metric that 

measures performance across the range of all possible thresholds – each point 

on the ROC curve represents a different threshold instantiation. The threshold 

applied is chosen optimal to some performance criterion – in our case 

minimising the false positive rate; this implies that we select the optimal point as 

the point on the ROC curve nearest the top-left corner of the ROC graph. Hence 

the explanation for the lopsided results between kPCA and GP-UKF/UHF: 

kPCA demonstrates superior isolation performance at its operating point (i.e. 

the threshold selected as optimal), whilst GP-UKF/UHF best it across the entire 

operating envelope. 

The UHF filter performs marginally better than the UKF. This is mirrored in both 

the average true positive rate and AUC score being higher for the GP-UHF, 

whilst the optimised thresholds are seen to be lower. Though lower thresholds 

cannot be taken as an absolute measure of isolation performance, they 

certainly are a fair indication. Thus the kPCA (RBF) average threshold is far 

lower than those for GP-UKF/UHF and this matches the isolation results.  
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Table 4-1 Area under curve and optimal thresholds 

 

 

 

Table 4-2 GP-UKF isolation rates 

 

 

 

Table 4-3 GP-UHF isolation rates 
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4.5.2 Residuals and ROC curves 

The Gaussian process filter residuals in Figures 4.16-17 are both qualitatively 

and quantitatively different from those of kPCA, the peaks are wider and less 

pronounced and there is some evidence of overshoot. Which is something 

typically associated with Kalman-type filters, because the measurement and 

prediction can get out of phase, which then causes residuals to spike after a 

lag.  

The ROC graphs (Figures 4.18-23) show the GP-UHF generally better, 

although in some regions of the plots, the GP-UKF curve overtakes the GP-

UHF in being further to the left. Clearly, the closer a curve is to the horizontal 

ceiling and vertical left side of the ROC graph, the higher the AUC is going to 

be.  

Overall the GP-UHF edges out its counterpart – the GP-UKF, which may have 

something to do with the fact that the UHF filter is more adept at dealing with 

coloured noise, which there may well be some of in the IMU error terms. 

Indeed, the UHF is specially designed for this purpose: to deal with systems 

exhibiting non-white, non-Gaussian noise. 

It is also noteworthy that the average AUC values for both filters at 0.84 and 

0.85 are extremely high, suggesting that the GP process models in the filters 

have generalised well to the test data sets and are capable of decent 

extrapolation. The GPs are trained on a 200-point subset from a single data set. 

The data set that the training set points are drawn from is by default the first in 

the sequence of ten. Thus the next nine data sets can be treated exclusively as 

test sets.  

During the practical trials, it became apparent that the Gaussian process 

models appear to possess better generalisation capability than kPCA, since 

they require fewer and less widely distributed training points than the latter, 

although this comes at the cost of a much higher computational overhead for 

Gaussian process algorithms. Indeed, the GP-UKF and GP-UHF are perhaps 

an order of magnitude slower than their non-GP equivalents. 
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Figure 4-16 GP-UKF residuals 
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Figure 4-17 GP-UHF residuals 
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Figure 4-18 X-axis accelerometer ROC curves 

 

 

Figure 4-19 Y-axis accelerometer ROC curves 
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Figure 4-20 Z-axis accelerometer ROC curves 

 

 

Figure 4-21 X-axis gyro ROC curves 
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Figure 4-22 Y-axis gyro ROC curves 

 

 

Figure 4-23 Z-axis gyro ROC curve 
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4.6 Conclusion 

This chapter has presented the use of stochastic observers in the form of 

Bayesian filters for diagnosing IMU sensor faults. First the theory behind the 

Kalman filter was developed, leading on to an exposition of non-linear Kalman 

filter extensions: the extended and unscented Kalman filters. The theory behind 

Gaussian process regression is subsequently woven into the discussion. The 

main contributions of the chapter are next developed: the adaptation of an 

unscented Kalman filter featuring a Gaussian process transition model to the 

dedicated observer scheme, or DOS, for fault diagnosis by means of banks of 

observers; and the introduction of an unscented H-infinity filter with Gaussian 

process transition model. Whereas the GP-UKF is not a new filter, its adaptation 

to perform fault diagnosis is novel. The GP-UHF, on the other hand, is an 

entirely new filter design. Even though a UHF filter has been proposed 

previously, it did not incorporate Gaussian process models, nor was it applied to 

a fault diagnosis task. 

The performance statistics and ROC curves generated from the IMU case study 

indicate that the GP-UHF has a slight edge performance-wise to the GP-UKF. 
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5 GAUSSIAN PROCESS EXTENSIONS: DISTRIBUTED 
FILTERING AND SENSOR FUSION 

 

Sensor fusion methods find use across a wide number of applications - in areas 

ranging from target tracking to vehicle navigation, image processing, and signal 

processing in general. A working definition could be stated as: how to optimally 

obtain useful information from multiple sensor streams.  

Sensor fusion is most useful in multi-sensor systems with complementary 

sensors, such as an INS/GPS system. In terms of fault detection, this opens up 

additional avenues to further layers of analytical redundancy and fault 

mitigation. 

A popular method for fusing multiple sensor signals is by application of an 

information filter – a key design framework in distributed estimation. The 

Kalman filter, and its variants presented in the previous chapter, is clearly 

amenable to the processing of multi-sensor data streams, and is often resorted 

to in practice. However, the KF can incur a high computational overhead in 

distributed settings. In contrast, information filtering, which is fundamentally a 

Kalman filter formulated using the inverse of the covariance matrix, posits some 

advantages over the standard Kalman filter. Namely, its update structure is 

computationally less demanding and complicated than that of the standard KF, 

and is more easily initialised (Lee 2008). The information form is also known as 

the inverse covariance form of the Kalman filter (Bar-Shalom et al. 2001). 

In this chapter, we extend the GP-UKF algorithm detailed in Chapter 4 to 

distributed settings by introducing two Gaussian process-enhanced unscented 

information filter (UIF) variants: the Gaussian process centralised unscented 

information filter (GP-CUIF) and the Gaussian process federated unscented 

information filter (GP-FUIF). To the best of the author’s knowledge, a filter 

design conflating Gaussian processes with information filtering does not occur 

elsewhere in the literature, and so represents a novel implementation. 
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A key difference between the centralised and federated architectures in an FDI 

setting is that it is considerably more difficult to uncouple a failed IMU sensor 

using the centralised information filter (CIF) as opposed to the federated 

Kalman filter, where the sensors are more loosely coupled. By corollary, 

centralised filter designs run a greater risk of failure because a faulty sensor 

measurement having gone undetected can straight away jeopardise the entire 

navigation solution. As with the GP Kalman filter variants from the last chapter, 

we monitor the innovation term to detect and isolate a failed sensor.  

This chapter is laid out as follows. Section 5.1 presents the presents the 

relevant multi-sensor fusion architectures which underlie the centralised and 

federated approaches. This is followed by Section 5.2, which overviews the 

classical form of the centralised and federated information filters (FIF) used, as 

well as introducing the proposed extensions utilising GPs and the unscented 

transform. Section 5.3 evaluates the performance of the proposed algorithms 

through simulation experiments. Section 5.4 concludes the chapter. 

5.1 Multi-Sensor Fusion 

5.1.1 Sensor fusion architectures 

Multi-sensor fusion deals with the extraction of information from observations 

gathered by a collection of sensors. The number of sensors involved can be two 

or greater. The object is that the integration of data from multiple sensors 

should lead to the acquisition of information that is more precise than would be 

possible otherwise.  

A number of approaches to multi-sensor fusion are available, prominent 

amongst these is the Kalman filter and its information form. The key frameworks 

for sensor fusion based on the Kalman filter are measurement fusion and state-

vector fusion. These have been the subject of numerous studies over the last 

two decades (Mosallaei & Salahshoor 2008). In measurement fusion, sensor 

measurement sets are fused directly to arrive at a weighted or integrated 

measurement set. Following this, a lone Kalman filter is used for state 

estimation - updated by the fused measurement. On the other hand, in state-
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vector fusion, a bank of local Kalman filters is utilised, providing estimates 

based on individual sensors. The individual state estimates are subsequently 

fused  to arrive at a joint state estimate. 

In general, measurement fusion is deemed to offer superior estimation 

performance overall, whereas state-vector fusion entails a lower computational 

load and lower communication cost. It mirrors the features of a parallel 

implementation and exhibits the same advantages, including fault-tolerance 

(Gan & Harris 2001). State-vector fusion approaches come with the caveat that 

their effectiveness is lessened unless used with Kalman filters that are 

consistent. In areas of application like navigation and target tracking, the 

processes concerned are typically non-linear and noisy, leading to non-linear 

Kalman filters that employ approximations, like for example the Jacobian 

linearisation found in the EKF. Linearisation may introduce modelling errors, 

causing inconsistency. Hence, measurement fusion is more commonly adopted 

over state-vector fusion by researchers in the context of KF-based multi-sensor 

fusion. Both sensor fusion architectures are classified, in a general sense, as 

centralised architectures (Mosallaei & Salahshoor 2008).  

Measurement fusion can be performed in two principal ways. One way (Method 

I) brings the multi-sensor data together en bloc, which expands the 

dimensionality of the filter’s measurement vector. A second way (Method II) 

integrates the multi-sensor data by estimating the minimum mean square error, 

which leaves the dimensionality of the measurement vector unaltered. It is 

arguable that since Method I leverages all of the raw measurement information, 

it should exceed the performance of Method II. However, it is also the case that 

Method II bears a lower computational burden. Furthermore, Method II may not 

always be inapplicable, such as in situations involving different sensors that 

have observation matrices of varying size.  
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5.1.2 Measurement fusion 

Let us consider a system whose dynamics and sensor outputs are modelled by 

the standard discrete-time state space model introduced previously. As before, 

the measurement noise is assumed to be independent and identically 

distributed.  

N sensor models can be conflated into a single model as follows:  

𝐲 k = 𝐶 𝑘 𝒙 𝑘 + 𝒘(𝑘) (5-1) 

Where 𝒘 𝑘 ∼ 𝑁(𝟎, 𝐑(k)). In the following, we describe the two measurement 

fusion methods (Gan & Harris 2001). 

• Measurement fusion method I 

Fusion Method I fuses sensor readings from various sensors by modifying the 

observation vector as follows:  

𝐲 k = 𝐲(­) k = [𝐲C k ⋯𝐲¯ k ] (5-2) 

C 𝐤 = C(𝐈) 𝐤 = [C𝟏 𝐤 ⋯C𝐍 𝐤 ]	 (5-3) 

R k = R(­) k = [RC k ⋯R¯ k ]	 (5-4) 

• Measurement fusion method II 

Fusion Method II weights the various measurement sets in order to fuse multi-

sensor data:  

𝐲 k = 𝐲(­­) k = 	 𝑅d C 𝑘
¶

dBC

 C

𝑅d C 𝑘
¶

dBC

𝐲d(𝑘) 
(5-5) 

C 𝐤 = C(𝐈𝐈) 𝐤 = 	 𝑹𝒋 𝟏 𝒌
𝑵

𝒋B𝟏

 C

𝑹𝒋 𝟏 𝒌
𝑵

𝒋B𝟏

C𝒋(𝒌)	
(5-6) 

R 𝐤 = R(𝐈𝐈) 𝐤 = 	 𝑹𝒋 𝟏 𝒌
𝑵

𝒋B𝟏

 C

	
(5-7) 



 

109 

For the state space model given in (5.1), the Kalman filter delivers an unbiased, 

optimal state estimate, i.e. it is a minimum mean-square error estimator for the 

system under consideration.  

The information filter, i.e. the Kalman filter in information form, is functionally the 

same as the Kalman filter, but brings a lower computational overhead. This is 

particularly the case in multi-sensor fusion, wherein the innovation covariance 

[C(k)P(k|k-1)CT(k) + R(k)] is typically a non-diagonal, high-dimensional matrix. 

The critical difference that sets apart the stand-alone Kalman filter from its 

distributed counterpart, the information filter, is to be found in the measurement 

update.  

The measurement update of the information filter is simplified since the gain 

matrix, K(k), in the regular Kalman filter is more elaborate than the 

corresponding term in the information filter, CT(k)R-1(k). In multi-sensor fusion 

the gain, K(k), takes the form of the matrix inverse [C(t)P(k|k-1)CT(k)+R(k)]-1, 

which becomes computationally burdensome with increasing size and 

dimensionality.  

Contrasting (5.2-5.4) and (5.5-5.7), it can be seen that the two approaches to 

measurement fusion are substantially different. Nevertheless, there does exist a 

certain duality or functional equivalence amongst the two approaches, as 

represented in the below theorem. 

THEOREM If the N sensors used for data fusion, with different and independent 

noise characteristics, have identical measurement matrices, i.e., C1(k) = C2(k) 

=…= CN(k), then the measurement fusion Method I is functionally equivalent to 

the measurement fusion Method II (Gan & Harris 2001). 

When using the Kalman filter, the functional equivalence of the respective 

measurement fusion approaches can be ascertained by simply verifying that the 

terms K(k)C(k) and K(k)y(k) of Method I are in fact functionally equivalent to 

those of Method II. Conversely, when using the information filter, the functional 

equivalence is established by comparing the terms CT(k)R-1(k)C(t) and CT(k)R-

1(k)y(k) in both cases. 
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5.2 Information Filters 

Section 5.1 introduced the principal paradigms for achieving sensor fusion as it 

relates to distributed Kalman or information filters in a centralised context. That 

is, where there is a central processing unit or fuser, which combines either 

measurements (measurement fusion) or estimated states (state-vector fusion). 

It should be noted that fully decentralised schemes for sensor fusion are also 

available (Kim & Hong 2003) that have been applied to non-linear state 

estimation as well (Bae & Kim 2010). Some authors have contended that in 

real-time multi-sensor systems the decentralised architecture can outperform 

centralised architectures (Kim & Hong 2003). In the present work, however, we 

only consider centralised fusion mechanisms. Indeed, from the architectures 

already described, measurement fusion (Method II) forms the basis of the 

centralised information filter (see Section 5.2.1) and state-vector fusion maps 

onto the federated information filter (see Section 5.2.2). 

In a distributed filtering scheme, sensors are treated individually and at least 

some data processing occurs locally, followed, in the case of centralised 

systems, by propagation of the resulting signals to a data fusion centre that 

achieves a global estimate. Decentralised algorithms essentially parallelise the 

Kalman filter equations and produce a global estimate whilst resorting only to 

local estimates, with information being exchanged in a network of dedicated 

filter nodes attached to given sensors, removing the need for any central 

processor or fusion block (Durrant-Whyte 2001).  

As previously stated, the information filter is basically a Kalman filter expressed 

in terms of information measures concerning state estimates and the 

corresponding covariances. Hence the name sometimes used for this filter: the 

inverse covariance Kalman filter. In spite of its relevance to multi-sensor 

systems, it has not been used extensively and is sparsely covered in the 

literature (Kim & Hong 2003). 

The information filter algorithm was fully derived by (Mutambara 1998) as a 

variant of the Kalman filter stated in terms of information-theoretic variables, 



 

111 

which measure the quantity of information gathered about states being 

estimated.  

Aside from the standard centralised filter architecture based on measurement 

fusion, a federated structure has also been proposed for multi-sensor data 

fusion. The motivation behind its emergence lies in the fact that a federated 

filter excels over other distributed filtering techniques in terms of simplicity and 

fault-tolerance (Kim & Hong 2003); the latter being a particularly valuable trait in 

an FDI context. Put another way, the federated filtering technique leverages 

information-sharing mechanisms and ensures close-to-globally-optimal or 

optimal estimation precision alongside a a fault-tolerant capability, stemming 

from the ease of decoupling sensors found to be faulty. The federated filter 

architecture leverages local filter nodes dedicated to individual sensors and a 

master filter to obtain a global state estimate through fusion of individual filter 

estimates. 

The federated Kalman/information filter has certain features that bring it closer 

to a decentralised filter structure and is treated by some authors as a special 

case of the decentralised Kalman/information filter (Kim & Hong 2003). Other 

authors classify the state-vector fusion architecture it is based upon as 

centralised information sharing. Effectively, it is a compromise between the 

centralised and decentralised modes of distributed state estimation, and can be 

viewed either way. In our work, we adopt what appears to be the consensus 

definition in the literature; namely, we treat it as a member of the family of 

centralised information filters. 

Though providing higher estimation quality than the EKF, the UKF and UHF 

introduced in Chapter 4 have some drawbacks, including a higher 

computational cost. The federated information filter, with its inherent fault-

tolerance capability and ability to perform fault diagnosis and global estimation 

side-by-side, offers an avenue to improved performance as compared to the 

UKF, when the sigma point transform is embedded within its update structure. 

Additional benefits accrue as a consequence of the overall information 

paradigm: i.e. simplified estimation updating and greater decentralisation. As 



 

112 

with the information filter there is no gain or innovation covariance matrix, it is 

more efficient in multi- sensor systems. 

5.2.1 Centralised information filter 

The centralised information filter is applicable to systems with multiple 

measurements that aim to estimate global states optimally. Though the 

centralised Kalman filter, as distinct from the centralised information filter – 

which features information updates, purports to deliver an optimal solution to 

the estimation problem, the multiplicity of its states often places exorbitant 

computational demands that cannot be maintained in practical real-time 

applications. What is more, by definition, the estimate is a function of all 

previous measurement updates. This makes it difficult to extract the sensor data 

of a failed sensor from the estimate. Thus, concurrent (distributed) filtering 

solutions are often regarded as delivering better FDI capability, improved 

redundancy management and lower costs of system integration.  

A solution that introduces additional degrees of decentralisation is the federated 

information filter (Lee 2003), described in Section 5.2.2. The federated 

information filter differs from the centralised information filter in that each 

measurement is processed by a local filter, and then the estimates of the 

individual filters are combined in a master filter. The local filters operate 

completely independently of each other and do not share information - in order 

to prevent contamination of solutions in case of sensor failure. A filter with a 

fault is simply ignored by the master filter.  

The chief disadvantage of the federated information filter is that it does not 

equal the centralised filter performance-wise. Further, the federated filter 

requires greater processing power to implement the local filters. It can be shown 

that with respect to information sharing, the information filter with federated 

structure is equal to the centralised information filter (Kim & Hong 2003).  

Filter accuracy depends on a-priori assumptions about system models and 

noise statistics. In practical applications, a-priori knowledge can be misleading. 

Estimation accuracy will degrade from the theoretical prediction. (Lee 2008) 
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proposes an adaptive filter to  reduce discrepancies through a feedback 

strategy. Applications to fault detection and isolation on navigation systems of 

information filters include (Magrabi & Gibbens 2000; Lee 2003)  

We apply the centralised and federated information filters to the IMU FDI 

scenario which is used throughout this thesis and will already be familiar from 

previous chapters. In place of the filter bank architecture of Chapter 4, we adopt 

the distributed structure of information filters, where the gyroscopes and 

accelerometers of the IMU are treated as separate sensor nodes, in a similar 

manner to the dedicated observer scheme’s use of filters as that architecture’s 

building blocks. Figure 5.1 provides a graphical illustration of the centralised 

filter structure specified through the equations that make up the filtering 

algorithm given in (5.8). 
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(5-8) 

Where:  

• cn
c kkx ℜ∈− )1/(ˆ  is an a-priori estimate of x(k) in CKF, 

• cc nn
cQ

×ℜ∈  is a covariance matrix of system noise in CKF, 

• cn
c kx ℜ∈)(ˆ  is an a-posteriori estimate of x(k) in CKF, 

• cc nn
c kkP ×ℜ∈− )1/(  is an a-priori covariance of estimation errors in 

CKF, 

• cc nn
c kP ×ℜ∈)( is an a-posteriori covariance of estimation errors in 

CKF. 
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Figure 5-1 Centralised information filter 

5.2.2 Federated information filter 

In contrast to the centralised information filter, the federated filter fuses not the 

measurements from the sensor nodes, but the estimates of the local filters 

attached to each of the nodes. This mirrors the differing characteristics of the 

state-vector and measurement fusion architectures (Method II) introduced in 

Section 5.1. Because of the sensor nodes being served by dedicated filters, 

fault detection and isolation can occur at the local level, allowing easy 

decoupling of any faulty sensor and allowing a global estimate to be obtained. 

The federated filter was suggested by Carlson (Waegli et al. 2008) and is 

considered a milestone in decentralised filter design. Federated filtering can be 

seen as a two-tier data processing solution, with the local filters occupying the 

lower level and the master filter above. The local filters run concurrently, 

independent from each other; their estimates are periodically fused by the 

master filter, yielding a global solution. A federated filter can detect and isolate a 

faulty local filter as soon as this filter fails. Thus, immediate reconstitution of the 

overall filter can eliminate any contamination from a faulty local filter.  
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More precisely, a federated filter in which local filters operate independently is a 

no-reset mode federated filter. This is one of a variety of design formulations 

that the federated filtering procedure can be applied to; each formulation 

reflects a different information sharing scheme or mode.  

In federated no-reset mode, information feedback does not occur: each local 

filter maintains its process information locally, hence the master filter holds none 

of the fused data and the global fused estimate has no impact on any of the 

local estimates. There are pros and cons associated with each of the resetting 

modes.  

Generally, the federated filter operated in reset mode is expected to provide 

better estimation accuracy, whilst in no-reset mode - a better tolerance of 

sensor faults.  

The equations of the federated no-reset information filter are summarised in 

(5.9-5.10) below. The no-reset mode is adopted for the unscented federated 

filter design described in the next section. 

Figure 5.2 depicts the no-reset federated information filter architecture. The 

option of adding complementary sensors in an integrated navigation system, 

such as a magnetometer and GPS is shown in the diagram, which could 

potentially provide further sources of analytical redundancy. This also illustrates 

how the federated information filter design is readily extensible; there being little 

difficulty in adding further sensors without necessitating too much disruption or 

re-design of an existing filter setup. 
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Master filter 
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Where  

• in
i kkx ℜ∈− )1/(ˆ  is an a-priori estimate of x(k) in the ith local filter, 

• ii nn
iQ

×ℜ∈  is a covariance matrix of system noise in the ith local filter, 

• in
i kx ℜ∈)(ˆ  is an a-posteriori estimate of x(k) in the ith local filter, 

• ii nn
i kkP ×ℜ∈− )1/(  is an a-priori covariance of estimation errors in in 

the ith local filter, 

• ii nn
i kP

×ℜ∈)( is an a-posteriori covariance of estimation errors in the 

ith local filter, 

• ff nn
f kP ×ℜ∈)( is a fused covariance in the master filter, 

• fn
f kx ℜ∈)(ˆ  is a fused estimate in the master filter. 
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Figure 5-2 Federated information filter 
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5.2.3 GP unscented information filters 

In this section, the centralised and federated unscented information filter 

algorithms are developed by embedding the unscented transformation into the 

linear information filter update structure outlined previously, thereby extending 

this framework to non-linear settings. The information filter definition contains 

new quantities, the Fisher information matrix, 	𝑃< 𝑘  C, and the information state 

vector,	𝑃< 𝑘  C𝑥<(𝑘). 

The UIF is developed based on the unscented transformation and information 

filtering approach. Initially, the time update of the UIF algorithm is performed to 

propagate the state estimate and covariance from one measurement time to the 

next. To propagate from time step (k-1) to k, a set of sigma points is selected 

based on the current estimate of the mean and covariance. In the state 

propagation step, the a-priori state estimate and error covariance are evaluated 

by means of the propagated sigma points. The information prediction equations 

are then determined based on the a-priori estimates. 

Next the measurement update is carried out. The update equations for the 

information matrix and the information state vector are the same as those given 

in (5.8-5.10), except the 𝐻<»𝑅< C𝑧<(𝑘) and 𝐻<»𝑅< C𝐻< terms in (5.8-5.9) are 

replaced by the information state update, ik, and its associated information 

matrix, Ik. These are defined as 

iA = 𝑃< 𝑘/𝑘 − 1  C𝑃¾¿𝑅< C𝑧<(𝑘) (5-11) 

IA = 𝑃< 𝑘/𝑘 − 1  C𝑃¾¿𝑅< C𝑧<(𝑘)𝑃¾¿
»𝑃< 𝑘/𝑘 − 1  C	 (5-12) 

Pxz and Pz are defined as per the UKF update structure and the Gaussian 

process prediction and observation models are embedded exactly as they were 

for the GP-UKF/GP-UHF and have identical properties. Thus, the additional 

terms and information measures presented in this section (associated with the 

unscented transform) coupled to GP models are used to modify the centralised 

and federated structures of (5.8-5.10). GP centralised and federated unscented 

information filters are the end product. 
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5.3 Experimental Validation 

5.3.1 Isolation results 

The same experimental setup used in Chapters 3 and 4 is replicated to obtain 

comparative results for the Gaussian process centralised unscented information 

filter and the Gaussian process federated unscented information filter. The test 

data sets used are identical to those used in the simulation trials described in 

the aforementioned chapters. Namely, the IMU fault profiles designated in Table 

3.2 overlaid onto a series of ten synthetic data sets, representing different 

segments of a spiral trajectory of an autonomous quadrotor vehicle with an on-

board MEMS IMU. As before, fault detection and isolation is performed across 

the tri-axis gyroscopes and accelerometers of the IMU unit, giving rise to six 

residuals in all, generated through the innovation terms of the GP-CUIF and 

GP-FUIF. 

From tables 5.1-5.3 it is seen that the results for the two algorithms are virtually 

identical, though these figures belie the fact that there do exist some very slight 

disparities in performance, albeit too slight to register an effect on the average 

performance values. This goes against the grain of expectations, since the CIF 

is thought to perform better than the FIF in most instances. There was also no 

noticeable difference in execution time between the two algorithms, though this 

may be due to the equalising effects of the GP models, which carry by far the 

highest computational load of all the filter update stages. To wit, the 

computational expense due to the GPs is so much greater than that due to 

other updates that they have little impact on the overall execution time. Thus the 

GP component blurs any processing time disparities between the two 

algorithms. 

The GP-FUIF being able to equal the performance of GP-CUIF is an intriguing 

prospect, since in other ways it is the more versatile filter, with greater fault 

tolerance and decoupling ability. Further trials would need to be carried out to 

verify the statistical significance of these results and to establish whether the 

two filters are on a parity across different application scenarios. One downside 

of the GP-based UIFs is their relative long processing times. 
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Table 5-1 Area under ROC curve and optimised thresholds 

 

 

 

Table 5-2 GP-centralised unscented information filter isolation rates 

 

 

 

Table 5-3 GP-federated unscented information filter isolation rates 
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5.3.2 Residuals and ROC curves 

The residuals in Figures 5.3-4 are not too dissimilar to those of the GP-UKF and 

GP-UHF. As for the latter, there is some evidence of overshooting in the 

residual, where the prediction and measurement that are differenced to obtain 

the residual are to some degree out of phase. This can cause the residual to 

spike irrespective of whether a fault has occurred or not.  

The ROC curves in Figures 5.5-10 overlap for the most part, which is why there 

appears to be only a single curve, i.e. they are overlaid. The performance of the 

GP information filters is a little lower than for the GP-UKF and GP-UHF, but this 

is more than made up for by a lighter computational burden and, in the 

federative information filter’s case, the ability to decouple faulty sensors and 

perform estimation, fusion and fault isolation at the same time.  
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Figure 5-3 GP-CUIF residuals 
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Figure 5-4 GP-FUIF residuals 
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Figure 5-5 X-axis accelerometer ROC curves 

 

 

Figure 5-6 Y-axis accelerometer ROC curves 
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Figure 5-7 Z-axis accelerometer ROC curves 

 

 

Figure 5-8 X-axis gyro ROC curves 
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Figure 5-9 Y-axis gyro ROC curves 

 

 

Figure 5-10 Z-axis gyro ROC curves 
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5.4 Conclusion 

The chapter has sought to extend the Bayesian filtering FDI paradigm to 

decentralised and distributed settings. The dominant methodology in this 

research space is a decentralised dual form of the Kalman filter known as the 

information filter. It confers certain advantages over a stand-alone Kalman filter 

in terms of lower computational cost, simpler initialisation and, in some of its 

architectural forms, the ability to perform sensor data fusion and fault diagnosis 

at the same time. Additionally, the more decentralised information filter 

architectures can have the ability to decouple faulty sensors once they have 

been diagnosed, thus avoiding contamination of the filtered solution. 

We explore and extend two forms of the information filter: the centralised and 

federated; or, more specifically, their non-linear forms, where the linearisation is 

performed based on the unscented or sigma point transform introduced in 

Chapter 4. We embed GP transition models as in Chapter 4 to develop two 

completely new information filter variants for FDI – a clear contribution to the 

state-of-the-art. 

The evaluation results on the IMU data reveal that the federated and centralised 

approaches perform on a par with each other, though the federated approach 

has the additional merit of being capable of sensor decoupling as well as sensor 

fusion coincident with FDI.  
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6 DISCUSSION AND CONCLUSION 

6.1 Summary and Discussion 

Airborne navigation sensors are critical to a flight vehicle’s ability to negotiate 

airspace. This is particularly the case with micro-rotorcraft that have limitations 

placed upon them as regards the payload they can bear, and hence come 

equipped with the cheapest and least resilient gyroscopes, accelerometers and 

magnetometers, i.e. MEMS devices, no different than those found in mobile 

telephones. Such devices are highly fault- and error-prone and require remedial 

action in the way of sensor fusion to offset imbalances and fault detection to 

prevent systemic failures. Investigating suitable algorithms to meet this need 

has been the focus of this thesis.  

The approaches that have been explored belong to the paradigm of analytical 

redundancy, and, more specifically, to the branch of it concerned with model-

based residual generators; that is, stochastic observers and parity relations – 

the most commonly used FDI techniques in the aerospace industry. It has been 

our aim to shine a new light on these techniques by coupling them with kernel-

based non-parametric Bayesian regression and dimensionality reduction, i.e. 

Gaussian processes and kernel PCA respectively. The use of non-linear 

observers based around the unscented or sigma-point transform has been 

another unifying thread that runs through this thesis. 

Thesis contributions made are contained in Chapters 3-5, which provide 

technical and theoretical coverage of the proposed algorithms. 

In Chapter 3 we developed the kernel partial PCA technique, which was shown 

to be capable of effective IMU fault detection and isolation on a bespoke 

synthetic data set. This technique resulted from combining a linear partial PCA 

algorithm with non-linear PCA (in the form of kernel PCA). We thereby arrive at 

a ‘best of both worlds’ type scenario, ending up with an algorithm that inherits 

the isolation properties of partial PCA and non-linear approximation ability of 

kernel PCA. A further contribution is the introduction of kernel PCA into the 

aerospace realm. Even though there is a strong duality between PCA and the 
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parity relations technique, the former is seldom used in the aerospace sector, 

but widely adopted in the chemical processing industry, where it has proved to 

be something of a mainstay of FDI solutions. Our experiments revealed that 

partial kPCA can work very well on the IMU detection task and is much faster 

than the observer-based approaches that we have proposed, but is sensitive to 

the choice of kernel function and to numerical instabilities. Also, it seems to 

require a larger training set than the GP models. 

In Chapters 4 & 5, we presented hybrid non-linear observers combined with 

Gaussian process models. The first of these – the GP-UKF – is a known filter, 

but to the author’s knowledge has not seen application in FDI before. We cast 

this filter in the dedicated observer scheme, making the necessary adaptations 

for it to function in a filter bank. A second contribution is the introduction of an 

entirely novel filter design: the GP-UHF. This filter slightly outperformed the GP-

UKF on the IMU diagnosis task. Two further contributions consist in combining 

the GP formalism and unscented transform with two distributed estimation 

architectures based around the Kalman filter: the federated and centralised 

information filters. While slightly below par in terms of their performance as 

compared to the GP-UKF and GP-UHF, the federated design brings ancillary 

benefits such as the ability to perform sensor fusion and fault detection at the 

same time. 

The procedures developed in Chapters 4 & 5 were markedly slower than kPCA, 

but showed more robust performance and less proneness to numerical 

instabilities, whilst performing somewhat better in terms of the area under ROC 

curve performance metric. 

6.2 Future Work 

One possible extension of the work lies in the direction of adaptive filters. The 

object of adaptive measurement fusion is automatic isolation and recovery from 

some sensor failures - a feature lacking in most regular state observers - in 

addition to core monitoring capability. Such an adaptive filter has been 

proposed by (Lee 2003). Since the GP process model already provides an 
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estimate of the process covariance, it could form the basis fo such a filter 

design.  

An adaptive filter which tunes the measurement covariance would virtually 

eliminate the need for parameter tuning and make the filter more responsive to 

fluctuations in its environment. 

A further direction of future work could be to use sparsification on the GP 

process models, in order to lighten their computational load. Another way to 

achieve the same end would be to turn to a sequential or online GP 

implementation. Multi-output GP models are another interesting new 

development, which could help improve the filters described in this work.  
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