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“As a multitude of laws often only hampers justice, so that a state is best governed when, 

with few laws, these are rigidly administered; in like manner, instead of the great number 

of precepts of which logic is composed, I believed that the four following would prove 

perfectly sufficient for me, provided I took the firm and unwavering resolution never in a 

single instance to fail in observing them. 

 
The first was never to accept anything for true which I did 

not clearly know to be such; that is to say, carefully to avoid 
precipitancy and prejudice, and to comprise nothing more in my 
judgment than what was presented to my mind so clearly and 
distinctly as to exclude all ground of doubt. 

 
The second, to divide each of the difficulties under 

examination into as many parts as possible, and as might be 
necessary for its adequate solution. 

 
The third, to conduct my thoughts in such order that, by 

commencing with objects the simplest and easiest to know, I might 
ascend by little and little, and, as it were, step by step, to the 
knowledge of the more complex; assigning in thought a certain 
order even to those objects which in their own nature do not stand 
in a relation of antecedence and sequence. 

 
And the last, in every case to make enumerations so 

complete, and reviews so general, that I might be assured that 
nothing was omitted.” 

René Descartes, A Discourse on Method, 1637 
 

~ 
 

“Pure logical thinking cannot yield us any knowledge of the 
empirical world; all knowledge of reality starts from experience and 
end in it. Propositions arrived at by purely logical means are 
completely empty as regards reality. Because Galileo saw this, and 
particularly because he drummed it into the scientific world, he is 
the father of modern physics—indeed, of modern science 
altogether.” 

Ideas and opinions by Albert Einstein, 1954 
 

~ 
 

“If you want to find the secrets of the universe, think in terms 
of energy, frequency and vibration.” 

attributed to Nikola Tesla, conversation with Ralph Bergstresser, 1942 
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Abstract 
 
 
This thesis is devoted to the application of novel techniques to the identification and 

quantification of faults in gearboxes starting from vibration signals. In general, this kind of 
abduction can be considered a form of Non-Destructive Testing (NDT), whose scope is to 
increase the reliability of complex and expensive machines switching from programmed 
maintenance to preventive maintenance regimes based on such Vibration Monitoring (VM). 
The problem is then to perform a data mining on the available datasets so as to recognize 
the patterns and extract the useful diagnostic information. 

Two parallel philosophies have been developed so as to comply with both 
intermittent and continuous monitoring of machines. The first allows the use of high-level 
signal processing techniques not only able to disclose the presence of a damage, but also 
the type, severity and location. The drawback is that the decision stage is usually not 
automated but left to a trained operator. In the second case, fast, real-time running 
statistical and machine learning algorithms can be used to trigger an alarm in case of 
detection of damage, leaving the quantification and localization of the damage for a further, 
more detailed analysis. Two methodologies are proposed by selecting from the literature 
the most suitable algorithms able to meet both the needs while ensuring model 
interpretability and satisfactory diagnostic results. These have been developed on 
theoretical modelled signals and on laboratory signals from a test rig at the DIRG lab 
(Dynamic & Identification Research Group test rig for high-speed aeronautical bearings) and 
later tested and compared on real signals from an aeronautical gearbox (SAFRAN 
aeronautical engine from the SAFRAN Contest, Conference Surveillance 8, October 20-21, 
2015, Roanne, France) and from windmill gearboxes (Italian windfarm composed by six 
multi-megawatt wind turbines). 
 
 

Keywords: Gearbox, Gear, Bearings, Vibration Monitoring, Damage Detection, 
Machine Diagnostics, Non-Destructive Testing, Data Mining, Signal Processing, Pattern 
Recognition, Machine Learning, Surveillance 8 SAFRAN aeronautical engine, Italian 
windfarm. 
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Nomenclature 
 

Acronym Full Name 

AA NN Auto-associative network 

ADC Analog-to-Digital Conversion 

ALE Adaptive Line Enhancement 

ANC Adaptive Noise Cancellation 

ANN Artificial Neural Networks 

ANT Adaptive neural tree 

AR Auto-Regressive 

ART Adaptive resonance theory network 

BPFO/I Ball Pass Frequency Outer/Inner race 

BSF Ball Spin Frequency 

BSS Blind Source Separation 

CAA Civil Aviation Authority (UK) 

CART Classification and Regression Tree 

CBM Condition-Based Maintenance 

CEEMDAN Complete EEMD with Adaptive Noise 

CLINK Complete Linkage Clustering 

CM Condition Monitoring 

CNN Convolutional Neural Network 

DAG Directed acyclic graph 

DAQ Data Acquisition System 

DBN Deep Belief Network 

DRS Discrete/Random Separation 

EA Envelope Analysis 

EASA European Aviation Safety Agency 

EEMD Ensemble EMD 

EMD Empirical Mode Decomposition 

FA False Alarms 

FAA Federal Aviation Authority (USA) 

FK Fast Kurtogram 

FT (F/DFT) (Fast/Discrete) Fourier Transform 

FTF Fundamental Train Frequency 

GAN Generative Adversarial Network 

GAPF Gear Assembly Phase Frequency 

GLM Generalized Linear Model 

GMF Gear Mesh Frequency 

GMM Gaussian Mixture Model 

HMM Hidden Markov Models 

HTF Hunting Tooth Frequency 

HUMS Health and Usage Monitoring Systems 
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IAS Instantaneous Angular Speed 

ICA Independent Component Analysis 

KDE Kernel Density Estimators 

k-NN k-Nearest Neighbours 

LDA Linear Discriminant Analysis 

LLE Local Linear Embedding 

LP Linear Prediction (often LPC) 

LSTM Long/Short-Term Memory 

MA Missed Alarms 

MA Moving Average 

MD Mahalanobis Distance 

MED Minimum Entropy Deconvolution 

ML Machine Learning 

MLP Multi-Layer Perceptron 

ND Novelty Detection 

NDT Non-Destructive Testing 

NI Novelty Index 

NN (ANN) (Artificial) Neural Network 

OT (COT) (Computed) Order Tracking 

PCA Principal Component Analysis 

QDA Quadratic Discriminant Analysis 

RBF Radial Basis Function 

RBM Restricted Boltzmann Machines 

RLS Regularized Least Squares 

RMS Root-Mean Square 

RNN Recurrent Neural Network 

SA (TSA) (Time) Synchronous Average 

SANC Self-Adaptive Noise Cancellation 

SHM Structural Health Monitoring 

SK Spectral Kurtosis 

SK* Sliding filter estimate of SK 

SLINK Single-Linkage Clustering 

SOM Self-organizing maps 

SSA Singular Spectrum Analysis 

SSD Singular Spectrum Decomposition 

STFT Short-Time Fourier Transform 

SVM Support Vector Machine 

SVR Support Vector Regression 

TBF Time Between Failures 

U/W PGMA Unweighted or Weighted Pair Group 
Method with Arithmetic Mean 

UPN Unsupervised Pretrained Network 

VM Vibration Monitoring 

WPT Wavelet Packet Transform 

WT (DWT) (Discrete) Wavelet Transform 
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Chapter 1: 

Motivation and scope 
 
The work presented in this PhD thesis focuses on the application of vibration 

monitoring techniques to gearboxes, so as to identify the health condition of such 
mechanical components, detecting the eventual engendering of damages which could lead 
to a failure. 

1. Motivation 
Gearboxes are fundamental components of most industrial machines, as they are 

meant to transfer power from a motor (power source) to a user. In general, they are made 
of a metal casing within which a train of gears is sealed, in order to provide speed and 
torque conversion from a rotating power source connected to the input shaft to another 
device. Gearboxes are then critical components at different levels: 

• Safety – whenever a power interruption may be harmful to people. For 
illustrative purposes, one can focus on the gearbox of a helicopter, or of any 
aeronautical means of transport in general. In this case, an interruption of 
the power implies an outage of the lift, which can lead to catastrophic 
results. 

• Economic costs – whenever a failure results expensive in both repair cost and 
down-time. For example, one can consider an offshore windfarm. Such 
windmills are in general difficult to reach, and any intervention will be highly 
costly. Furthermore, a faulty wind turbine is unable to produce power, so that 
the downtime can cause a big loss of profit. 

Additionally, one should consider that most of the machine faults are related to surface 
degradation which can be caused by corrosion or, primarily, by mechanical wear of the parts 
in contact (e.g. because of relative motion) such as rotating shafts, bearings and gears. 
Hence, machine faults are in the majority of cases imputable to gearboxes. 

In order to improve the reliability of a mechanical device then, a diagnostic tool 
performing condition monitoring can be mounted on the machine, so as to gain in safety 
while having at the same time an economical advantage. Indeed, switching from a 
programmed maintenance regime to a predictive maintenance regime based on monitoring 
a parameter of condition, proves to be much more effective and efficient both from the 
technical and from the economical point of view. Because of this, condition monitoring 
gained increasing importance over the years, and is nowadays becoming an integral part of 
many maintenance regimes. 

In particular, this thesis focuses on vibration monitoring (VM), a successful kind of 
condition monitoring based on accelerometric records. The high reliability of the used 
sensors (accelerometers), together with their small size and low weight, in fact, are the 
main advantages with respect to other technologies. In addition to the low impact of the 
sensors themselves, one should consider that the vibrations acquired outside a machine 
housing can convey information regarding the inner, hidden, mechanical parts, so that a 
diagnosis can be performed while the machine is in operation and without disassembling 
it. 
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2. Scope of the thesis 
Despite the growing relevance of vibration monitoring, the main issue remains the 

interpretation of the vibration signal. Indeed, the problem is to process the large volumes 
of monitored data so as to extract some knowledge about the condition of the machine. 
The most reliable methods, in fact, date back to the 20th century (e.g. Time Synchronous 
Average, a fundamental technique of vibration monitoring, dates back to the 70s), 
moreover a univocal procedure of analysis is lacking, limiting the application in the 
industrial field. 

The scope of this thesis is then to test a selection of promising and reliable methods 
on laboratory and real-life applications evaluating and comparing their performances. In 
the literature and in the scientific community one can find hundreds of methods and their 
variants. The scope is obviously not to review all of them, which would be impossible, but 
to identify some practical and representative ones and to organize them into a 
methodology which can cover the different needs of the monitoring of rotating machines, 
from the intermittent to the continuous monitoring. The main considerations used for the 
choice was the model interpretability, the degree to which the criteria for a decision can be 
understood by a human. The selected algorithms were developed according to the 
literature and, in some cases, improved so as to better match the particular needs of the 
practical real-life applications under analysis. Gearboxes, in fact, can equip many different 
machines and have then to work under very diverse conditions according to the particular 
application. In this thesis, three different applications are considered, two are related with 
aeronautical engines and one with windmills. 

The first application regards a test rig built at the Dynamic & Identification Research 
Group (DIRG) laboratory and specifically conceived to test high-speed aeronautical 
bearings. The rig was already available, but the acquisitions were incomplete, and a long 
work of reorganization was needed to get the recordings ready for processing. 

The second application refers to the accessory gearbox for the equipment (pumps, 
filters, alternators, starter etc.) of a SAFRAN civil aircraft engine with two damaged bearings. 
This dataset was part of the SAFRAN Contest of the Surveillance 8 conference held on 
October 20-21, 2015 in Roanne, France, to which the candidate participated gaining the 
second prize. 

The third application concerns multimegawatt windmill gearboxes. The candidate 
was involved in the measurement campaign by an Italian windfarm in Molise region. The 
acquisitions were coordinated by prof. Francesco Castellani of the University of Perugia and 
were later analysed by the candidate with the proposed algorithms. 

The three applications, despite being all centred on gearboxes (and in particular on 
bearing damages), are substantially different in terms of geometries, sizes, loads, rotational 
speeds, sensors kind, number and positioning and also size of tolerated damages. 

To better compare the algorithms then, a simple synthetic signal of an ideal gearbox 
showing a damaged bearing was also produced by the candidate. 

In general, the algorithms of interests are meant to extract the information hidden 
inside the accelerometric data (data mining), so as to produce a knowledge about the state 
of health of the machine. When this is done automatically by an Artificial Intelligence (a 
software running on a machine), it concerns the recognition of patterns in the available 
data. This Pattern Recognition problem is commonly solved using algorithms running on 
computers able to learn information from the data, both in the time domain and in the 
frequency domain. Therefore, researchers talk about Machine Learning.  
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The main steps of a Condition Monitoring system based on Machine Learning are:  

• Acquire data for the purpose of training: measurements on the machine 
under analysis must be acquired at least in the healthy case as a reference; 
when possible, also acquisitions in known damaged conditions should be 
recorded. 

• Pre-process the data to highlight the information:  e.g. improve the signal of 
interest with respect to the background noise (Signal Processing). 

• Extract the best features: a good feature is a quantity which summarizes the 
dataset and whose behaviour is correlated with the damage but, possibly, 
not with the operational and the environmental variables. Good features are 
then difficult to find e.g. defect frequencies, signal level, kurtosis, etc. 

• Produce knowledge about damage: e.g. detect the presence of incipient 
damage, track the damage evolution in time so as to understand its severity, 
distinguish among damage location and types, prognose the remaining 
useful life. 

In this work then, different algorithms for the different tasks will be tested to cover 
the entire analysis, establishing a methodology which can be used to extract the diagnostic 
knowledge from the data. The importance of a method, as theorized by Descartes [1], is 
central. Indeed, a methodology is an essential requirement for reaching knowledge and 
wisdom. The strength and the weakness of each method will be then objectively 
highlighted, so as to foster the development of diagnostic tools toward a maturity which 
can help vibration monitoring to keep spreading, guaranteeing for the future more accurate 
diagnosis and efficient maintenance regimes. 

 
 
 

3. Outline 
In the next chapters, the subject of vibration monitoring applied to gearbox 

identification and vibration monitoring will be treated. In particular: 
 

• In chapter 2 the vibration monitoring motivations and philosophy are investigated. 
Two different ways of thinking the monitoring targeted on intermittent or 
continuous acquisitions are identified. The scope of diagnostics is declared, and the 
damage identification problem is defined in comparison to the well-known subject 
of pattern recognition.  
 

• In chapter 3 the scientific literature is surveyed to produce a state-of-the-art review 
on vibration monitoring through signal processing and machine learning. 

 

• In chapter 4 the selected algorithms from the literature review are illustrated and 
organized in a methodology for both the Intermittent Monitoring (based on Signa 
Processing algorithms) and for the Continuous Monitoring (based on Machine 
Learning). 

 

• In chapter 5 the main signals used in this work are introduced. Firstly, the 
considerations in chapter 3 are applied to produce a synthetic simulated signal. This 
is used to make many preliminary tests on relevant algorithms. Anyway, the 
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performance assessment is mainly achieved on three experimental acquisitions. The 
first regards a test rig built at the Dynamic & Identification Research Group (DIRG) 
laboratory and specifically conceived to test high-speed aeronautical bearings. The 
other two on the contrary refers to real life applications such as a SAFRAN 
aeronautical engine and an Italian windfarm. 

 

• In chapter 6 the proposed intermittent monitoring methodology is first tested on a 
synthetic dataset generated with different noise contamination levels. A novel 
algorithm for computing estimates of the spectral kurtosis (SK*) is introduced and 
compared to the reference algorithms selected from the literature review. Then, a 
second test of the methodology on real aeronautical engine acquisitions is 
performed, using the SAFRAN Contest dataset from Conference Surveillance 8 held 
in Roanne, France on October 20&21 2015. In detail, the Synchronous Average (SA) 
is compared to prediction-based algorithms such Linear Prediction (LP) and 
Discrete/Random Separation (DRS) for separating the gears deterministic signal 
from the non-deterministic contribution (bearings + noise). Finally, to highlight the 
bearing signature, the Fast Kurtogram (FK) taken as a reference is compared to the 
proposed novel spectral kurtosis estimator SK*, to the Empirical Mode 
Decomposition (EMD) and to the Stochastic Resonance (SR). The results of these 
interchangeable, alternative algorithms are compared mainly in terms of diagnostic 
performance and computational times. 
 

• In chapter 7 Novelty Detection considerations are produced on the basis of Monte 
Carlo simulations. In particular, the thresholding operation for Mahalanobis 
Distance Novelty Detection is analysed and comparisons of the different criteria are 
made. In the 1-d case the Pierce’s criterion is compared to Monte Carlo thresholding 
and to an Extreme Values Theory-based threshold, while for multivariate analyses, 
an EVT-threshold and the Wilks’s critical values are compared against multivariate 
Monte Carlo thresholding. The curse of dimensionality is also tackled: the sample 
size for a proper MD-ND is investigated via Monte Carlo simulations, while 
considerations about the reliability of the covariance matrix estimation are made. 
Robust estimation procedures are compared on Monte Carlo repetition of signals 
from a simulated non-linear 1-D oscillator undergoing a white noise force.  

 

• In chapter 8 the proposed methodology for processing the features extracted from 
the continuous monitoring signals is applied. The chapter starts analysing the DIRG 
test rig data using univariate statistics and hypothesis testing techniques such as the 
analysis of variance (ANOVA). Then, in order to “condensate” the information 
contained in the different features enhancing the effect of damage, multivariate 
analyses are applied. In particular, Fisher’s Linear Discriminant Analysis (LDA), k-
Nearest Neighbours (k-NN) classification, Principal Component Analysis (PCA) and 
Novelty Detection (ND) are applied. The issue of confounding influences is taken 
into account, and possible solutions are considered. As first, the Kernel Density 
Estimation (KDE) and the Gaussian Mixture Models (GMM) are used to improve the 
Novelty Detection by increasing the model complexity. Then, techniques for 
compensation of these confounding influences are tested (e.g. PCA orthogonal 
regression and whitening). The same procedure is repeated on a real-life dataset 
from the Italian Windfarm in Molise region. 
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• In chapter 9, in conclusion, the two methodologies are summarized and final 
considerations about the selected algorithms are given, together with the 
perspective for future improvements. 
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Chapter 2: 

Vibration Monitoring: A Machine 
Learning Approach 

 

1. Introduction 
Vibration monitoring is a particular kind of condition monitoring in which vibration 

is used as a condition indicator. Hence, it can be considered an online Non-Destructive 
Testing (NDT) method. Vibration is a mechanical phenomenon whereby small oscillations 
about an equilibrium point occur, due to a continuous alternation between potential 
(strain) energy and kinetic energy. In general, it may be either desirable or not. This is for 
example essential for voice and music, as sound, or pressure waves, are generated by 
vibrating structures (e.g. vocal cords, etc.). On the contrary it is undesirable when it 
wastes energy creating unwanted annoying noise. It is the case of vibrating mechanical 
structures, which are usually carefully designed to minimize unwanted vibrations. In any 
case, even in good conditions, all the mechanical devices generate vibrations, but this 
unfavourable effect can be exploited to perform a monitoring of the health condition of a 
machine while the machine is in normal operation. The vibration measured on the 
housing of a machine, in fact, conveys information regarding its sources’ conditions, 
usually hidden by noise. The monitoring can be then performed while the machine is 
operating, without stopping or disassembling it. Another advantage is that the vibration 
reacts very quickly to sudden changes, so that the moment in which a damage appears 
can be recognized soon after the generation. Furthermore, the accelerometers used in the 
monitoring are usually very small and light and can be added to instrument an existing 
machine without precluding the correct operation. 

Obviously, both at an academic and at an industrial level, several different kinds of 
monitoring exist. Among all, it is important to remember: 

• Acoustic: when a machine (or a component) is showing a defect or a damage, the 
sound produced during operation or via hammer testing can be different. Through 
microphones and pressure sensors then the airborne noise can be recorded and 
investigated to identify the sound sources.  

• Acoustic Emission: it refers to solid-borne high-frequency acoustic signals 
generated by the developing of cracks or other permanent deformations. The 
damage detection in this case can be performed very soon, but the difficulty of 
application of the sensors limits its spreading.  

• Oil Debris Analysis: when a damage occurs, metal chips or particles (usually called 
debris) may detach from the part. Using filters and magnetic chip detectors, a 
systematic analysis of the debris in the circulating lubricant system can be 
performed, analysing the quantity, type, shape size, etc. of such particles. The 
main limit is that the damage cannot be highlighted at an early stage, but just 
after some metal chip breaking off. When this occurs, a peak can be found in the 
recorded signal, but then no warning will be given until the next release. 

• Performance Analysis: when the data regarding a machine functioning and 
performance are available, these can be used to monitor the health condition. For 
example, the power adsorbed by a motor in the usual work condition, or the 
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power produced by a windmill, are performance parameters which may be used 
as indicators for a possible damage. Unfortunately, such data are not always 
available. 

• Thermography:  by measuring the temperature of a part of a machine, it is 
possible to detect the presence of a damage. For example, in the last stages of life 
of a bearing, the rolling elements start to slide, leading to a substantial rise in the 
temperature due to friction. The main issue, then, is again the inability to detect 
incipient damage. 

Thus, the vibration analysis has a number of advantages with respect to other methods. 
Moreover, it also has the ability to identify the actual faulty component, as different 
damaged parts show different “signatures” in the vibration. 
In short, vibration analysis has an optimal cost/benefit ratio. Despite permanent 
transducers may have a high cost and should be built into the machine at design stage, 
the advantages outperform such weaknesses. Indeed, the minimum impact on the 
machine and the quick response to sudden faults are much more relevant to guarantee a 
reactive and reliable damage detection. The overall economic advantage, in fact, depends 
upon the possibility of improving the maintenance regime, switching from a preventive 
maintenance (i.e. time programmed) to a predictive maintenance (or Condition-Based 
Maintenance). 

Preventive maintenance is a maintenance planned at regular time intervals, 
shorter than the expected time between failures (tbf). This greatly reduces the possibility 
of catastrophic failure but has some big limitations. In particular, one should bear in mind 
that the time between failures is a statistical variable which can only be estimated from a 
population of machines. This means that the estimated tbf can show a large statistical 
variability (also depending on the machines population size). In order to guarantee a 
reliable maintenance regime, then, the tbf ensuring the absence of failure at a confidence 
of 95-99% should be used. This value can be many times larger than the expected tbf, as 
visualized in Figure 1 which refers to a practical example reported in Appendix 1. 

 

  
Figure 1: On the left, the fitted exponential PDF is compared to the empirical probability 

histogram obtained from the experimental data. On the right, the fitted CDF and the empirical CDF 
are shown, together with the reliability function. The MTBF and the 95% survival time 𝑡𝑅=95% are 

reported. 

This means that in 1-5% of the cases, catastrophic failure can still occur, but, in 
most of the cases, healthy components are replaced, even if they could last for much 
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more time. This is obviously a waste, but it is the only way to limit the risk of catastrophic 
failure.  

However, when reliable condition monitoring techniques are available, the 
potential breakdown of the machine can be predicted, and the maintenance can be 
carried out at the optimum time. This condition takes the name of preventive 
maintenance or Condition-Based Maintenance (CBM) [10] and it has become recognized 
as the best maintenance strategy in most cases, as it can strongly reduce the maintenance 
costs when appropriately implemented. 

Diagnostics and prognostics are two important aspects in a CBM program. 
Diagnostics deals with fault detection, isolation and identification (i.e. it looks for the 
damage occurrence). Prognostics deals with fault prediction before its occurrence. The 
maintenance actions will be then based on the health information obtained by data 
processing of the acquired measurements of vibration. Obviously when catastrophic 
failure risk is high, permanent vibration transducers are used, so as to immediately react 
in case of damage establishment. In other cases, an intermittent monitoring can be 
implemented. 

 

2. Permanent vs Intermittent Monitoring 
In general, two types of Vibration Monitoring are possible. The selection of one 

instead of another basically depends on the risk of catastrophic failure and on the cost of 
the equipment itself compared to the cost of the production loss due to down times. 
Whenever the risk of catastrophic failure is very high, and a failure can cause costly 
damages to the machine, a permanent condition monitoring is desirable. In fact, it can 
ensure great reactivity to the sudden changes which may indicate a damage. Obviously, 
the cost of permanently mounted sensors is very high, and their employment should be 
evaluated at design stage, so that built-in sensors could be used. Furthermore, the data 
processing should be performed on-line, and needs to be very quick. Due to this, it is 
normally based on relatively simple parameters such as RMS, peak level, etc. Hence, the 
scope is limited to diagnose impending failure to give a warning in advance. And this is 
likely to be just a matter of hours or days, as opposed to the much longer periods of time 
which can be reached by other more advanced techniques. Of course, it is possible to add 
a second-level more detailed analysis in a non-continuous way. An intermittent 
monitoring can still be carried out in parallel and updated monthly, weekly or daily 
according to the need of the particular application. 

In any case, for the vast majority of machines a permanent monitoring is not 
economically justified. The cost of the machine itself in fact can be outweighed by that of 
lost production. An intermittent monitoring is anyway desirable to update and optimize 
the maintenance plan. In this case less sensors will be used (typically one) together with a 
lighter data acquisition system usually made by a mere data logger. This simplicity will be 
then compensated by a more advanced data processing able to work out a highly detailed 
analysis giving long-term advance warning of developing faults. 

 

3. Diagnostics via Vibration Monitoring: principles and definitions 
In order to have a clear picture of a whole diagnostic system, an overall 

introduction about the motivation, the principles, the main physical components and the 
general procedure is fundamental. This paragraph is devoted to the materialization of the 
idea of vibration monitoring into a physical system performing diagnostics. 
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3.1. Damage vs fault 
First of all, a definition of the used terminology is required to avoid 

misunderstandings, in particular when referring to the terms like defect, damage or 
failure, which can be vague and relative to a context. 

From an engineering point of view, a defect is an appreciable deviation of the 
geometry of a component with respect to the theoretical design geometry. Obviously, 
imperfections exist in every structure and at any scale since all the manufacturing 
processes always show a degree of uncertainty (e.g. microscopic inclusions, roughness, 
dimensional and geometrical tolerances etc.). The term defect is then often used at a 
manufacturing level. 

On the contrary, when a geometrical alteration appears while a machine is 
operating, it is usual to classify it as a damage. Incipient fractures or cracks and any 
alteration with respect to the healthy reference condition, belong to this type. Obviously 
cracks often originates from microscopical defects, so that the concept of damage and 
defect result linked. 

In any case, nowadays, a damage tolerant design is common. To increase safety in 
fact, a component is usually engineered so as to be able to sustain defects while awaiting 
repair. Damage can be then accumulated until a critical level; the attainment of such a 
level is the so-called failure. The failure, in fact, can be considered as a damage growth (an 
increase in damage level) up to the limit for which the component can no more serve its 
intended purpose, and can potentially lead to catastrophic results.  

The scope of a CBM regime is then to prevent failure. This can be done by 
diagnosing the presence of a damage, classifying its level and trying to get an estimate of 
the remaining useful life so as to improve the scheduling of the maintenance operations. 

 

3.2.  Diagnostics: principle and logic 
The fact that damages cause changes in the dynamic characteristic of an item was 

a well-established knowledge since the first pottery was ever produced. The item struck 
by a finger or a hammer in fact, produces a sound which is different in case it is intact or in 
case it is showing a defect or a damage. The effects of a change in the dynamic 
characteristic of a component can be then measured and used for safety inspection and 
control in the very same way as a doctor can diagnose a heart malfunction by auscultating 
a patient's heartbeat. 

Diagnostics is in fact a discipline which tries to get back to the cause of a 
malfunction starting from an observation. From a mathematical logic point of view, 
according to Peirce definition [1,2], it can be considered an abductive reasoning. 
Abduction is a form of logic inference which seeks to find the most likely explanation for 
an experimental observation. Knowing the rules and results, the premise can be then 
inferred at a degree of confidence. 
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Figure 2: Estimation of the health condition from the data via abductive reasoning 

 
Important considerations follow: 

• No sensor can directly measure damage, only its effects can be detected.  

• A change of the dynamic characteristic can be induced by the establishment of a 
damage, but also by other mechanisms. 

Therefore, to minimize the remaining level of uncertainty of the inference, one should 
also exclude the other possible explanations. For example, environmental variables (e.g. 
temperature) can induce changes in the material properties, so that a different dynamic 
response is obtained. Such an effect must be considered in the diagnostic inferential 
process: either environmental variability must be excluded by controlling the 
environmental variables or, at least, it must be compensated with some particular 
method. Diagnostics is then a matter of damage identification from a measurement of a 
dynamic response. These considerations are summarized in the scheme in Figure 2. 
 

3.3. Diagnostics: objectives and categorization 
As widely described, the final objective is the optimization in terms of safety and 

cost-effectiveness of the maintenance regime of a machine (i.e. wisdom) thanks to the 
knowledge about its state of health.  This knowledge is reached through some sort of 
information extracted by the experimental measurements of the dynamic response of a 
system (i.e. data) via diagnostic abduction. 

The knowledge achieved from condition monitoring can range over different levels 
which were concretized by Rytter in 1993 [3]. His four-categories hierarchical definition of 
the damage identification problem was later modified by Worden and Dulieu-Barton in 
2004 [4] to produce the following sequence: 

• Level 1 – DETECTION:  A qualitative indication that damage is present in the 
structure (N.B. possibly, at a given confidence). 

• Level 2 – LOCALIZATION: Knowledge about the probable location of the 
damage (i.e. in which component?). 

• Level 3 – CLASSIFICATION: Knowledge about the damage type (crack, spall 
etc.). 

• Level 4 – ASSESSMENT (or Quantification): Information about the damage 
size. 

• Level 5 – CONSEQUENCE (or Prognosis): Knowledge of the actual degree of 
safety. How far is the component from failure? 
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The first four levels are usually included in the definition of diagnostics, while the last one 
belongs to prognostics, a discipline focused on predicting the time at which a system or a 
component will fail, which corresponds to its Remaining Useful Life (RUL), the final and 
most important decision-making parameter. It is relevant to highlight that success at any 
level of the hierarchy depends upon having successfully achieved all the prior levels. 

The process of reaching knowledge from the information contained in the 
experimental data follows in general two approaches, as a function of the a priori 
knowledge strength and of the amount of data available: 

• Model-based – When the preconceptual knowledge of the system (e.g. 
physical laws) is high enough, a model can be built so that the damage 
identification can be seen as an inverse problem. New data is used to update 
the model parameters, whose variation will be put in relation with the 
presence of a damage. 

• Data-based (or data-driven) – On the contrary, when the a priori knowledge 
is weak (e.g. for a complex machine like a gearbox), the damage identification 
problem will rely on the data, and it can be traced back to the field of pattern 
recognition. Basically, a data mining is performed to discover the regularities 
(i.e. the rules) which allows to classify the data into different categories. 

This work will mainly focus on the data-driven methods, which is preferable for real, 
complex machines, whose true signals are commonly too difficult to be modelled. The use 
of models will be then limited to some signal separation algorithms or to the computation 
of relevant parameters such as the characteristic frequencies of the gears or of the 
bearings, which can be used as features (paragraph 4.3 and 5). 
 

4. Damage identification as a Pattern Recognition problem 
The process of building wisdom from data, often referred to as D2D (Data to 

Decision) process, was neatly summed up by Farrar and Doebling in 1999 [5] for Structural 
Health Monitoring (SHM), which is the analogous of Condition Based Monitoring to 
structures. Notice that CBM is often used with reference to rotating machinery, while in 
SHM “structural” has usually a civil engineering connotation. 

Conceptually, even if CBM and SHM can be considered analogous, they are meant 
for different applications and have then to face different conditions and requirements. In 
particular, the size of the structures investigated by SHM (e.g. bridges, buildings, etc.) is 
usually relatively larger than the rotating machines object of CBM. Furthermore, even if 
some environmental parameters such as the temperature can affect CBM machines, these 
are often installed in controlled environments. This is not the case of SHM structures, 
which are commonly exposed to the open air and affected by seasonality. Additionally, 
unlike in SHM, failure detection and identification are usually more precise in CBM, as in 
many cases it is possible to find specific dynamic responses for specific fault classes [16]. 

In any case, the overall paradigm of SHM holds also for CBM, so that it is worth to 
start by studying it. 

The fundamental steps which can be found in the literature [4,5,17] are 
summarized in a waterfall model which will be analysed in detail. This is summarized in 
Figure 3. 
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Figure 3: SHM and CBM flow chart [4,5] 

 

4.1. Operational evaluation 
In order to optimize both the costs and the performances of the damage 

identification, system-specific condition monitoring apparatus needs to be implemented. 
In this regard, the design limitations which can affect the diagnostic equipment may range 
from the operational and the environmental conditions undergone by the system, up to 
the available volume, weight, and powering system. This information can be summarized 
to define a budget for the requirements of the sensing unit and the data transmission 
which will be selected in the next steps. Also, information regarding the expected damage 
type and location can be relevant to decide whether a local monitoring, targeted on a 
particular component, can be preferred or added to a global monitoring investigating the 
whole machine. 

 

4.2. Data acquisition and cleansing 
The definition of the data acquisition hardware is not trivial. Every different stage 

of the measurement chain illustrated in Figure 4 needs to fit the budget while fulfilling the 
requirements imposed by the subsequent analysis.  

 

 
Figure 4: Data acquisition flow chart 

4.2.1. Excitation 
In order to measure the dynamic response of the system under analysis, this must 

be excited with a forcing term. Such an input signal can be either controlled or not. In the 
first case, an actuator can be used to generate a force which follows a given time signal 
(e.g. random or deterministic, stationary or non-stationary, etc.). Obviously, different kind 
of actuators exist with different performances in terms of force and frequency ranges: 
hydraulic, electro-dynamic, piezoelectric etc. When the force is controlled and recorded, 
the dynamic response of the system can be normalized over such input signal, so as to 
find a Frequency Response Function (in frequency domain, or an Impulse Response in 
time domain) which is a system invariant independent from the excitation level (N.B. 
when the assumption of system linearity holds). Nevertheless, in many other situations 
the excitation cannot be measured so that a response-only analysis is the only choice. It is 
the case of the ambient excitation (e.g. wind, etc) or the excitation due to internal 
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phenomena. Focusing on gearboxes for example, it is common to use the shafts rotation 
as excitation source. 

 

4.2.2. Sensing and signal conditioning 
The complete definition of the sensors to be employed in terms of location, 

number and type is typically performed according to some parameters like sensors cost, 
dimensions, mass, reliability, stability and required dynamic performances (e.g. 
bandwidth, frequency resolution, dynamic range, amplitude sensitivity, etc.). 

In general, “sensors type” may refer to multiple categorizations.  The physical 
principle on which the sensor relies (e.g. piezoelectric, piezoresistive, capacitive, etc.) or 
the sensors contact versus non-contact nature (e.g. accelerometers, acoustic emission, 
strain gauges, force transducers etc. vs laser sensors, eddy current sensors etc.) for 
example. In this work anyway, sensor type is used to define the physical quantity the 
transducer is sensitive to. Many types of transducers exist for measuring all three of the 
parameters in which lateral vibration can be expressed, namely displacement, velocity and 
acceleration. However, the only practical VM transducers are: 

• Proximity probes for relative displacement: capacitive, inductive, eddy 
current sensors, magnetic, Hall effect – non-contact. 

• Optical position measurement: laser interferometer, laser triangulation, 
laser time-of-flight, chromatic confocal sensors – non-contact. 

• Velocity pickup: seismically suspended coil in the magnetic field of a 
permanent magnet attached to the housing of the sensor – contact. 

• Accelerometers: piezoelectric elements sandwiched between a mass and 
the housing base; such crystals generate an electric charge proportional to 
strain – contact. 

The signal is usually conditioned by the sensor to produce a voltage output which 
will be sent to the digital acquisition system. For example, the most common 
accelerometers exploit piezoelectric crystals to translate the acceleration information into 
a charge information. An operational amplifier-based circuit (a charge amplifier) is then 
integrated in the sensor to produce a voltage output proportional to the integrated value 
of the input current.  
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4.2.3. Data transmission 
The physical connection of the sensors to the digital acquisition system is another 

issue to be considered. Fundamentally two kind of transmission can be taken into 
account: wired vs wireless. The difference is in the transmission medium as wired 
transmissions need copper wires or optical fiber cables to carry different forms of 
electrical signals from one end to the other, while wireless communication basically relies 
on electromagnetic waves which can travel not only through air and solid materials, but 
also through vacuum. 

Traditional wired transmission is obviously more reliable and is unmatched in 
terms of speed of transmission and bandwidth of the signal. Nevertheless, the installation 
can be cumbersome and limits the mobility. In particular cases then, wireless transmission 
is the only solution, as it ensures more flexibility at lower maintenance costs (e.g. rotating 
components). Wireless transmissions are often digital, so that in most of cases the analog-
to-digital conversion (ADC) is moved upstream. 

 

4.2.4. Digital acquisition: conditioning, ADC and storage 
Digital signals show many advantages with respect to analog. Digital data in fact, 

can be stored and retrieved very easily. No bulky recording medium (e.g. magnetic tape, 
rotating drums, etc.) is needed, with the advantage of being noise immune. Indeed, data 
stored in electronic supports (e.g. Hard Disk Drives, Solid-State Drives, flash memory etc.) 
are not prone to deterioration or noise contamination. Furthermore, signal compression is 
possible to reduce the data volumes without losing information. The possibility of 
performing time multiplexing is another great advantage which allows to send many 
digital signals at the same time (just a little delayed) on the same channel. 

The Analog to Digital conversion is then the fundamental step of a digital 
acquisition system. The analog output of the sensor must be discretized in both amplitude 
and time [Appendix 3]. This operation is mainly ruled by few parameters: 

• Sampling frequency 𝑓𝑠: by means of a clock, the acquisition system is able 
to read amplitude values at equispaced time instants, so that just one 

sample every time increment Δ𝑡 =
1

𝑓𝑠
 is recorded. It is important to 

remember that, to avoid the phenomenon of aliasing, the analog signal is 
usually pre-processed with an analog anti-alias filter limiting the frequency 
content to 𝑓𝑐. Typically, setting 𝑓𝑠 = 2,56𝑓𝑐  ensures that no frequency 

component exceeding the Nyquist limit 𝑓𝑛𝑦 =
𝑓𝑠

2
 will be present to 

introduce aliases. Finally, a high 𝑓𝑠 may seem a good choice regarding at 
time resolution, but it implies heavier recordings. A limit on the duration of 
the acquisition, can lead to a coarser resolution in frequency domain 𝑑𝑓 =
1

𝑇
=

𝑓𝑠

𝑁
. 

• Amplitude range 𝐸 and number of bits 𝐵: During the process of amplitude 
quantization, the analog signal amplitude is rounded to the nearest 
discrete value. The amplitude resolution Δ𝐴, or quantization step, is 
imposed by the amplitude range and the number of bits of the DAC by the 

relation Δ𝐴 =
𝐸

2𝐵−1
. The range 𝐸 can be often selected to improve the 

amplitude resolution, while avoiding the possible overloads (signal 
amplitude exceeding the limits imposed by the range). DC vs AC coupling 
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should also be evaluated, as, when the mean value is not relevant, it can be 
filtered away (AC) at the advantage of a better use of the available range. 

The digitalized signals are finally stored.  

 
4.2.5. Data Pre-processing and acquisition system self-diagnostics 

Before any further analysis of such stored signals, it is common to pre-treat the 
data to maximize the reliability and the efficiency of the system. In particular, four steps 
are usual: 

Data cleansing 

In order to highlight possible malfunctioning of the sensors, the cables or the 
acquisition system a consistency check is highly recommended. This self-diagnostic step, 
resulting in the rejection of corrupted data, is fundamental to increase the reliability of 
the whole machine-diagnostic system. 

Data Normalization 

Different signals often show different magnitude, but this may prevent an effective 
comparison. Furthermore, some trends related to environmental or operational variability 
may mask the presence of a damage. To foster the detection, then, a normalization is 
needed.  

• Centring: Mean removal or trend removal are fundamental steps to isolate 
damage variability from certain “external” gross influences. For example, 
the vibration level can be related to the load cycle. When this effect is 
evident, it must be compensated, otherwise it will introduce a confounding 
effect to the detection. 

• Re-scaling: Signals are commonly re-scaled to a notionally common 
nondimensional scale, so that different measurements can be compared 
meaningfully. 

Data Fusion 

Typically, many sensors could be used at the same time. Integrating multiple data 
sources then, may produce more consistent, accurate, and useful information. All data can 
be brought together into a single view in which a more complete picture of the system is 
created. This can enhance the damage detectability. 

Data compression 

The amount of data to be stored can be massive. Because of this, it may be 
reasonable to encode information using fewer bits than the original, so as to reduce the 
resources required to store and transmit data, at the cost of some computational 
resources consumed in the compression and decompression processes. Compression may 
be either lossy or lossless. In the diagnostics framework the second must be preferred, as 
no information should be lost at this step. The reduction should then identify and 
eliminate only statistical redundancy.  

 
It is important to point out that the redundancy in the data which is advisable to 

remove at this stage (i.e. after the cleansing), corresponds to a redundancy in the sensors 
network which is usually added by purpose. If sensors output is correlated and consistent 
in fact, a sensor failure can be noticed, and actions can be taken (e.g. discard the data 
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from the anomalous sensor) abating the risk of missed alerts, which may have a severe 
cost and safety implications. Therefore, redundancy or diversity should be built in as an 
error detection and correction mean (self-monitoring), to increase the performance, the 
robustness and the reliability of the diagnostic system which will then feature a fail-safe 
design: the failure of a sensor causes no or minimal harm to other equipment, the 
environment or to people and does not prevent the system from working properly.  
 

4.3. Signal processing: Feature selection, extraction and metric 
The scope of the data mining, as largely understood, is to link a symptom 

appearing in the signal to the presence of a damage, and later to distinguish the damage 
type, location and severity, which corresponds to highlighting patterns in the data. 
Unfortunately, raw data is often a messy sum of different effects corrupted by noise. It is 
typical then to use a priori knowledge and engineering judgements to focus the attention 
on dominant traits which are known to be sensitive to damage. Such damage 
distinguishing characteristics are usually called features. The selection of the most 
promising features is then a critical step, which must be tackled focusing on the sensitivity 
to incipient damage while maximizing the accuracy and stability of the detection.  

If the features, for example, show a high fluctuation in the measurement from 
normal, healthy condition, it will be harder to notice a deviation due to damage, unless 
the damage is severe. There is clearly a dependency between the resolution of the 
diagnosis and the noise rejection capabilities of the algorithm. Hence, features should be 
selected to limit as far as possible the fluctuations on the normal condition data. 

It is interesting to point out that this procedure mimics what human beings and 
animals can easily do in an eye-blink. Colours, shapes, dimensions, proportions can be 
distinguished by the brain very easily and are used as features to classify every single 
entity entering the field of vision. For illustrative purposes, two Monna Lisa portraits are 
reported in Figure 5. Different features can be extracted, but only some will highlight the 
hidden patterns and enable a recognition. Hair and eyes colour for example are not 
exhaustive but focusing on proportions (e.g. head dimension with respect to the body) 
the human brain of the reader can with no doubt recognize the Leonardo da Vinci portrait 
from the Botero interpretation. 

  
Figure 5: Monna Lisa from Leonardo da Vinci and Botero perspectives. 
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Features are then fundamental to enhance the peculiarities of the different 
patterns to be recognized. But for a reliable classification, quantitative features are 
preferable. A metric to quantify the level a feature in fact, is fundamental to the 
recognition process. 

Suppose now that the raw data acquired is a time-series of accelerations from the 
outside of a gearbox casing. Most of the vibration will be directly linked to periodic events 
in the machine’s operation, such as rotating shafts, meshing gear-teeth, etc. then in the 
signal spectrum, particular spectral lines will appear, like the meshing frequency and its 
harmonics. These are known to be sensitive to damage, as the engineering experience 
highlights the high correlation and dependence. Such spectral lines can be then used as 
features. This also enable to reduce the dimension of the data discarding the parts of the 
signal which does not contain useful diagnostic information. High level features can be 
then extracted using sophisticated signal processing algorithms, which aims to highlight 
the signal of interest with respect to the noise (increase the signal to noise ratio), to 
compensate for the transmission path from the source to the sensor and to isolate the 
different sources to enhance their contribution (Blind Source Separation). These 
algorithms are generally applied for intermittent monitoring, when a deeper analysis can 
be performed. On the contrary, a permanent monitoring usually requires faster responses 
for a real time implementation, so that lower level features (e.g. the common time 
domain RMS, skewness, kurtosis etc. – Chapter 5, Section 2.1) may result more appealing. 
The extraction of high-level features through established signal processing techniques will 
be examined in section 5. 

 

4.4. Pattern processing: Statistical model development and validation 
Once the features are selected and extracted, an intelligence should be used to 

univocally put in relation the statistically significant changes in the features to the 
presence of a damage. This can be performed by an expert looking at the features, or, 
more likely, by a statistical model. The last, in fact, in addition to the high effectiveness, 
can also give a quantitative information about the confidence of the estimated state of 
health, which depends on the natural fluctuation of the healthy features, but also on the 
amount of data used to train the algorithm. Indeed, a statistical model mimics the 
cognitive function of “learning” (machine learning) and applies it to the recognition of 
data corresponding to a healthy condition from the data produced by a damaged state, so 
that it must be trained for this purpose. 

Four different kind of algorithms can be distinguished depending on the desired 
diagnosis (enriched Rytter levels, paragraph 3.3) and on the available data: 

• Classification: a discrete, multi-class supervised problem. Level 1 to 4 
diagnostic can be achieved with such algorithms if supported by the 
necessary training data (different labels for different damage types, 
locations and severities). Generally, the probability of a class membership 
can be easily retrieved from such algorithms. 

• Novelty detection: a two-class supervised (or sometimes semi-supervised) 
problem. Level 1 diagnostic can be tackled just by looking for discordancy 
of the new data with respect to the training, healthy data. After having 
removed any other external influence in fact, damage is the only 
remaining cause of inconsistency and can be detected just by comparison 
against a limit threshold. 
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• Regression: a continuous-class supervised problem. This is often used for 
Level 2 or 4, in which the variable of interest is continuous e.g. the 
cartesian coordinate of the damage location or the damage size. 
Regression can be also extended to sortable classes using logistic functions 
able to map from a continuous variable to a categorical set, possibly 
enabling Level 1 and 3. 

• Clustering: a discrete, multi-class unsupervised problem. It is an 
exploratory data mining trying to group a set of acquisitions in a way that 
the data in the same class (or cluster) are “more similar” in some sense 
(i.e. distance according to a selected metric) to each other than to those in 
other clusters. 

In particular, if the machine learning algorithm is trained on labelled data (i.e. a 
training example is a pair of input-output information: the corresponding health state is 
known) it is said to be supervised. In the other case, when the learning algorithm must 
identify commonalities in non-labelled, non-classified or non-categorized data, it is called 
unsupervised. In any case, acquisitions in a damaged condition may be dangerous, so that 
in most of cases an engineer will rely only on healthy acquisitions. The possibility of 
training an algorithm with a machine believed healthy, but actually damaged, albeit 
improbable, must always be considered, as it could strongly affect the performance of the 
algorithm. An Outlier Analysis is then always recommended before the training, so as to 
prevent this eventuality. 

Finally, an important part of the statistical model development process is the test 
stage on actual data collected in a so-defined validation set. The performance of the 
selected features in terms of effectiveness of the detection and damage sensitivity can be 
then established together with the prominent information about the so-called false alarm 
(FA) or missed alarms (MA). In particular, from a statistical point of view, Level 1 
diagnostics can be seen as a test for the null hypothesis “𝐻0: 𝑡ℎ𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖𝑠 ℎ𝑒𝑎𝑙𝑡ℎ𝑦 “. 
In this regard, as also highlighted in Figure 6, two kind of errors are possible. The 
𝑡𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟, or rejection of a true 𝐻0, corresponds to an indication of damage when 
none is present (FA) and can erode the confidence of the damage detection. The 
𝑡𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟, or failure in rejecting a false 𝐻0, on the contrary, is a missed indication of 
damage although present (MA), which can be very detrimental as can bring serious 
economic and life-safety implications. In any case, depending on the application, 
minimum amounts of FA and MA are acceptable in a reliable monitoring system. 
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Figure 6: Type I and II errors in hypothesis testing for CBM 
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4.5. Situation assessment and decision making 
The final stage of the waterfall model is to take a decision. Hence, an intelligence 

has to use the knowledge about the health state of the machine produced by the pattern 
recognition algorithm to decide whether an action needs to be taken and what that action 
should be. In case of intermittent monitoring, this intelligence can be the human brain of 
an expert engineer, which looks at the features trends and evaluate, on the basis of its 
experience, if the machine can keep on working properly or if an intervention is needed. 
Obviously, this process is critical and shows some issues related to the unambiguousness 
of the interpretation, the number of parameters which can be considered at the same 
time and their correlations, and the decision times. Because of this, an Artificial 
Intelligence (AI) can be used to substitute the human contribution in the assessment of 
the state of health of the machine. In particular, engineers’ knowledge can be captured to 
form a set of rules which emulates their experience. An “expert” system can then 
determine or recommend an action on the basis of the sensors data, at confidence and 
speed which are unmatched by the human brain. According to the European Aviation 
Safety Agency (EASA) the response of a diagnostic system is the triggering of an alert, 
namely an indication that requires further investigation or an alarm, an alert that needs a 
corrective maintenance action [6]. (N.B. note that the word “alarm” is often used in a 
figurative way, not to be confused with the alert vs alarm definition of this paragraph, 
which refers to real actions taken from the diagnostic system).  
Different alerts can be produced according to a given colour code: 

1. Red for alerts that require action prior to the next flight (Level 1 alert). 
2. Yellow or Amber for Level 2 alerts that require maintenance personnel 

awareness, but do not preclude continued operation. 
3. A third, distinct colour of the applicant’s choice (e.g. Green), for “advisory” 

conditions that may influence future maintenance. 
It is important to mention that, at the moment, the use of an AI in safety-critical 

applications is not allowed by regulatory bodies such as the EASA, the UK Civil Aviation 
Authority (CAA) or the US Federal Aviation Authority (FAA). In case of component failures 
leading to death or serious injury to people, to severe damage or disruption of equipment 
and eventually to environmental harms, in fact, operating at the margin of safety without 
inspections is not an option, even if the maximum advantage of a CBM would be in such 
cases. Regulatory bodies are anyway pushing for technological improvements to 
ameliorate the existing systems such as the Health and Usage Monitoring Systems 
(HUMS). This commercial system equips many helicopters often implementing usage 
monitoring (i.e. flight time recording and exceedance monitoring, in case some 
parameters as oil temperature and pressure or shaft torque etc. exceed the predefined 
levels), oil debris detection and vibration monitoring of the drive train (i.e. the gearbox) 
but many shortcomings remains. In particular: 

• Very few maintenance indications are produced, 

• The damage detection is sometimes below expectations, 

• No accurate indication of “Go/No go” is given. 
These drawbacks leave scope for a large number of possible improvements. 
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Chapter 3: 

Literature Survey: The state of the art 
 

1. Vibration Signals from machines  
Measured vibration signals are always combination of source effects and 

transmission path effects, so that a measurement is practically a sum of responses from the 
different sources, which can be modelled as the output of a multiple input system (MISO)  
[1,2]. 

 

 
Figure 1: Measured response 𝑥 of a MISO system due to multiple excitation sources. 

 
In the time domain, the contribution of one source to the output corresponds to 

the convolution of the force signal with the impulse response function of the transmission 
path from the source to the measurement (IRF). 

 

𝑥𝑚 = ∑ 𝑠𝑗 ∗ ℎ𝑚𝑗
𝑗

 𝑋𝑚 = ∑ 𝑆𝑗 𝐻𝑚𝑗
𝑗

 ( 1 

 
where 𝑥𝑚 is the measured signal, 𝑠𝑗 is the force signal and ℎ𝑚𝑗  is the IRF, corresponding to 

the frequency response function (FRF) 𝐻𝑚𝑗  in the frequency domain. This can be for 

example a Mobility (vibration velocity output over force input) which “distorts” the 
measured output according to its own resonance peaks. In any case, the transmission path 
resonances not always appear in the measured spectrum: in case of a strong broadband 
noise excitation, resonance peaks will be present, but for the common discrete frequency 
sources typical in many machineries, they will not be highlighted unless directly excited by 
a forcing frequency. 

In a simplified way, a pure sinusoidal forcing function generates then a sinusoidal 
component (the fundamental frequency) in the response signal together with additional 
harmonics induced by structural non-linearities. Anyway, different forcing functions can 
cause modulation effects giving rise to families of sidebands around the harmonics of the 
“carrier” frequency. The strength of the frequency analysis is then its ability to highlight 
such effects allowing a first-order visual separation of the different harmonics and enabling 
accurate measurements of the fundamental frequencies. 

Indeed, the basic problem of damage detection is finally to decide whether some 
changes in the response signal are due to a change in a source or in the system, which is in 
general a blind source separation problem (BSS).  
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1.1. General signal classification 
In order to understand which kind of source signals can be found, a general signal 

classification is schematized in Figure 2. 
 

   
Figure 2: Signal classification [1,2] 

 
In this classification, deterministic refers to a signal which can be predicted at any 

time in the future or past. On the contrary, random means that its values in time are 
unpredictable. Nevertheless, for the stationary random signals, whose statistical properties 
are not changing with time, a deterministic characterization is possible in the frequency 
domain, as their spectrum is proved to be deterministic [Appendix 3]. For example, the so-
called white noise is a random signal having equal intensity at different frequencies, giving 
it a constant power spectral density. Individual random signals may be considered as 
realizations of a “random process”, consisting of an ensemble of realizations. A random 
process is then ergodic if its time average is the same as its average over the different 
realizations. 

Among the deterministic, the harmonic are the main periodic signals of interest in 
this work. They are composed entirely of discrete frequency sinusoids whose frequency is 
an entire multiple of a fundamental frequency. When the frequencies are not entire 
multiples of the fundamental, quasi-periodic signals arises. Other aperiodic signals which 
can be found in machines are the transient. Transient signals practically exist only for a finite 
length of time (they theoretically decay to infinity, but they show measurable values just 
for a finite time) and are typically analysed as an entity. Finally, among the non-stationary, 
the most relevant are the trend-stationary signals, which can be transformed into a 
stationary signal by removing the underlying trend, and the cyclostationary signals, random 
signals which vary cyclically with time. 
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1.2. Gearbox signals 
In a gearbox, the main sources of vibration are: 

• Shaft unbalance, misalignment or cracks 

• Meshing gears 

• Rolling element bearings local damages 

• Noise 
while the transmission path often involves the structure and the casing of the machine. 
Such sources contribute, convolved with their transmission paths, to the measured 
vibration according to the MISO model introduced at the beginning of this chapter.  
 

 
Figure 3: Measured signal from the MISO perspective. 

 
To improve the diagnostic process, it is important to understand how the presence 

of a damage affects the machine vibration response. This analysis is usually done at 
constant environmental and operational conditions (speed and load), so as to isolate and 
highlight the effect of a damage. In this condition, a change in the health state of a 
component, results quite often in a change at a source. It is the case of an increase in a 
shaft unbalance, which only affects the shaft forcing function. On the other hand, some 
faults may primarily lead to a change in the structural response, like a crack in the machine 
casing. Moreover, the two effects can sometimes couple with each other, so that a change 
in the structural response gives a variation in the forcing function. For example, a tooth root 
crack affects both the force at the tooth-mesh and the local structural stiffness involved in 
the transmission path. 

In any case, the damage induces a change in the resulting vibration signal which can 
be appreciated and recognized in the vibration spectrum. The characteristic spectral lines 
forming the so called “signature” can be then used as features to distinguish among the 
different damages in the different components. The results of Randall’s analysis [2] based 
on failure models and practical tests is reported in the following paragraphs for the main 
different sources of vibration. 

 

1.2.1.  Shaft signature 
A number of faults related to the rotating shaft manifest themselves at a frequency 

corresponding to the speed of the shaft in question. In addition to such fundamental 
frequency, low harmonics and subharmonics can also be found. In particular, the signature 
is affected by 

• Rotor unbalance: When the shaft mass is not perfectly distributed around 
its centre of mass, a centrifugal force rotating at Ω and proportional to 
𝑀𝑒Ω2 is generated, where 𝑀 is the shaft mass, 𝑒 is the radial displacement 
of the centre of mass of the rotor (eccentricity) and Ω is the shaft rotational 
speed. Causes of unbalance include design defects (e.g. poor design 
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tolerances leading to eccentricities, non-compensated addition of keys and 
keyways …), manufacturing defects (e.g. blow holes or sand traps in metal 
casts …), distortions (deformations induced by temperature or high 
stresses), corrosion, wear, deposits etc. In any case, unbalance gives 
vibration responses at shaft speed (1 × Ω) and its low harmonics, mainly in 
radial direction. To quantify the degree of unbalance of a rotor, the ISO 1940 
norm for rotors balance quality requirements [3] establishes a classification 
of the balance quality requirements for typical machinery in terms of the 

balance quality grade 𝐺 = 𝑒Ω𝑀𝐴𝑋 in [𝑚𝑚 ∙ 𝑟𝑎𝑑
𝑠⁄ ]. 

• Misalignment: When two shafts are coupled, two possible alignments 
errors can occur. A radial misalignment appears when the two shafts are 
mounted parallel, but a radial offset remains; when the two shafts’ axes are 
incident on the contrary, an angular misalignment verifies. 
 

 
Figure 4: Radial and Angular misalignment 

 
Such misalignments introduce a spatially-fixed bending deflection, which is 
then rotating with respect to the shaft, and generating fluctuating moments 
and forces, typically varying twice per revolution. Hence, misalignment gives 
vibrations in the axial direction at the low harmonics of shaft speed, with 
some preference for the even harmonics, in particular the second (2 × Ω). 

• Crack: A crack in the shaft is a severe fault, involving the reduction of the 
load supporting section which can lead to failure. Unfortunately, even large 
cracks minimally affect the natural frequencies of the system, in particular 
when they are closed. In general, both the amplitude and the phase of the 
vibration at the low harmonics of the shaft speed may undergo small 
variations: sometimes the amplitude is first reduced while the crack enlarges 
because of opposing phases. Breathing cracks on the contrary often give 
greater changes at the third harmonic (3 × Ω). 

• Whirl: A number of phenomena cause the centre of the shaft to whirl 
(namely to show a precessional orbit either forwards or backwards) at a 
frequency possibly different from the rotation speed. A synchronous 
whirling motion can be naturally experienced by flexible shafts supporting 
unbalanced discs (e.g. Jeffcott rotor). The support flexibility should be also 
taken into account at design stage, so as other whirl-generating phenomena. 
Whirl, in fact, may turn unstable and become destructive (whip), so that it 
must be controlled. Other forms of whirl induced by the journal bearings can 
be either a dry friction or an oil whirl. In any case it may show up under 
certain conditions (e.g. low load on the fluid film bearing) at a frequency 
close to one-half of rotor angular speed. Subharmonics will be visible in the 
spectra (0.5 × Ω). 
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1.2.2. Gear signal 
Many different designs are possible for gears. Anyway, the simplest form is known 

as spur gear and is used to transfer power between two parallel shafts, usually running at 
different speeds. The transmission is performed through conjugate profiles designed to 
keep a constant transmission ratio 𝜏 during the whole meshing cycle: 

 

𝜏 =
𝜔𝑜

𝜔𝑖
=

𝑛𝑜

𝑛𝑖
=

𝑓𝑜

𝑓𝑖
=

𝜃𝑜

𝜃𝑖
≡

𝑟𝑖

𝑟𝑜
=

𝑧𝑖

𝑧𝑜
 ( 2 

 
where 𝜔 is the shaft speed in 𝑟𝑎𝑑/𝑠,𝑛 is the shaft speed in 𝑟𝑝𝑚, 𝑓 is the corresponding 
shaft frequency in 𝐻𝑧, 𝜃 is the rotation angle in 𝑟𝑎𝑑, 𝑟 is the radius of the wheel and 𝑧 is its 
number of teeth, as highlighted in Table 1. 
 

Table 1: Gear shafts kinematics 

Shaft Rotational speed Number of teeth 

Input 𝜔𝑖 = 2𝜋𝑓𝑖  𝑧𝑖 
Output 𝜔𝑜 = 2𝜋𝑓𝑜 𝑧𝑜 

 

 
Figure 5: Mating spur gear wheels 

 
The stability of the transmission ratio is ensured by the involute tooth profile, which 

implies a force-exchange occurring on a unique line of action identified by the tangent to 
the base circles of the two gear-wheels (the circle defining the base for the involute curve 
of teeth profile). In practice, the actual profile may show deviations from the ideal profile 
such as: 

• Tip relief modifications, introduced by design 

• Inaccuracy or systematic errors from the gear cutting machine 

• Wear of the profile 

• Tooth deflection, depending on the load 
so that a transmission error (TE) occurs. This can be defined as an angular difference [4]: 
 

𝑇𝐸𝜃 = 𝜃𝑜 − 𝜃𝑖

𝑟𝑖

𝑟𝑜
 ( 3 
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that is, the difference between the perfect kinematic transmission and the actually 
achieved one. Dynamic TE involves the stiffness at the gear-mesh and is then commonly 
used as a condition monitoring parameter. Anyway, it must be remembered that the 
number of teeth in contact is usually non-constant during a meshing cycle. Indeed, the gear-
characteristic contact ratio (CR) corresponding to the average number of teeth in contact is 
usually between 1 and 2, and the same transmitted force discharges either on one or two 
teeth, leading to a variable deflection which gives a strong parametric excitation at the so-
called gear-mesh frequency (GMF). The GMF, together with the rotational speeds of the 
two gears 𝜔𝑖 and 𝜔𝑜 are then the main spectral lines characterizing the gear signature. 
Further relevant frequencies are the Gear Assembly Phase frequency (GAPF), which 
highlight the presence of wear, and the Hunting Tooth Frequency (HTF), established when 
a damage appears on a single tooth of both wheels. 
 

Gear signature 

The main spectral lines of the spectrum of a vibration signal induced by gear are: 

• Input and output shaft frequency 
Referring to a speed reducer, rotational frequencies expressed in 𝐻𝑧 are given by: 
 

𝑓𝑖 =
 𝑛𝑖

60
=

𝜔𝑖

2𝜋
 𝑓𝑜 =

 𝑛𝑜

60
=

𝜔𝑜

2𝜋
= 𝜏𝑓𝑖 ( 4 

 

• Gear mesh frequency 
The GMF defines the rate at which gear-teeth mesh together. It is given by: 
 

𝐺𝑀𝐹 = 𝑓𝑖𝑧𝑖 = 𝑓𝑜𝑧𝑜 ( 5 

 

• Gear assembly phase frequency 
Depending on the number of teeth of a gear, different wear paths are possible, in 

accordance to the number of assembly phases. This number determines the distribution of 
wear between the teeth of the input and the output wheels. For example, considering a 
gearset of two wheels with 9 (𝑧𝑖) and 15 (𝑧𝑜) teeth, one tooth of the input wheel meshes 
with only 5 other teeth of the second wheel, leading to 3 possible paths: 1, 10, 4, 13, 7 or 
2, 11, 5, 14, 8 or 3, 12, 6, 15, 9. 

 

 
Figure 6: First wear path of the considered gear with 𝑧𝑖 = 9 and 𝑧𝑜 = 15  

 
In general, the number of wear patterns (3 in the example in Figure 6) can be 

calculated as the greatest common factor (gcf) among the number of teeth 𝑧𝑖 and 𝑧𝑜. 
When wear occurs, the particular teeth combination offers a unique vibration 

characteristic and then the Gear Assembly Phase frequency appears in the vibration 
spectrum: 

𝐺𝐴𝑃𝐹 =
𝐺𝑀𝐹 

𝑔𝑐𝑓
 ( 6 
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• Hunting tooth frequency 
It is the frequency at which a damaged couple of teeth enters in contact. 
Referring to previous example, considering the first wear path, tooth 1 of input 

wheel meshes only with teeth 1, 10, 4, 13 and 7 of the output wheel. If the first teeth of 
both wheels are considered, a contact occurs every 5 revolutions of the input shaft. 

The calculation of the Hunting Tooth Frequency (HTF) depends on the number of 
teeth of each wheel and involves their gcf: 

 

𝐻𝑇𝐹 =
𝐺𝑀𝐹 ∙ 𝑔𝑐𝑓

𝑧𝑖𝑧𝑜
= 𝑓𝑖 ∙

𝑔𝑐𝑓

𝑧𝑜
 ( 7 

 
Finally, in the overall spectrum, the gear signature can be easily highlighted. A 

qualitative spectrum as a function of orders of the input shaft is given in Figure 7. The orders 
correspond to a measure of relative frequency normalized on the input shaft frequency. 

 

 
Figure 7: Expected spectrum: gear signature 

 
As clearly depicted in Figure 7, important sidebands are always detectable also in 

the healthy condition, as even small mounting eccentricities or misalignments can lead to 
an amplitude modulation of the gear mesh signal at the rotational speed. The same but 
stronger modulation occurs in case of distributed faults (e.g. wear), enhancing the 
amplitude of the first sidebands which can be used as a damage indicator. Also, incipient 
wear causes an increase in the even GMF harmonics (in particular the second, 2 × GMF). 
Then, as wear proceeds, the involute tooth-profile deteriorates leading to an enhancement 
of all the GMF harmonics and eventually to the appearance of the GAPF. Local faults such 
as root cracks or spalls on the contrary, bring wider distributions of harmonics and 
sidebands. 

In the acquisition stage then, in order to ensure the gear signature to be well 
pictured in the spectrum (𝑓𝑛𝑦 ≈ 3 ÷ 4 𝐺𝑀𝐹), the sampling frequency must be set at least 

around 𝑓𝑠 ≅ 10 𝐺𝑀𝐹 = 10 𝑧𝑖𝑓𝑖, so that a meshing cycle will be described by a minimum 
of 10 samples. 
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1.2.3. Gear fault models 
Gear are critical components which may fail in various ways. The most common 

failure modes are: 

• Breakage – when the stresses exceed fatigue limit, cracks originate and propagate 
until failure. 

• Surface fatigue – Hertzian contact may induce surface fatigue phenomenon such as 
pitting, a progressive loss of material. When the involved stresses are high, larger 
and massive material pieces may detach, leading to spalling. 

• Wear – degradation of the contact area due to a loss of material mainly affected by 
lubrication 

Pictures of these different phenomena are reported in Figure 8. 
 

   
Crack Fatigue (pitting or spalling) Wear 

Figure 8: Gear fault modes 

 

1.2.4. Bearing signal 
Rolling contact bearings are extensively used in all types of rotating machines, and 

their failure is one of the most frequent reasons of breakdown. They consist of a number 
of balls or rollers spaced by a metal cage and rolling within an inner and outer race. 

 

 

 
Rolling element bearing components: 
 

1. Outer Ring 
2. Inner Ring 
3. Cage 
4. Packing and sealing 
5. Rolling elements (balls) 

Figure 9: Ball Bearing scheme 

 
When a fault develops on a racetrack, a series of impacts is produced by the rolling 

elements passing on it. These shocks excite high frequency resonances of the whole 
structure between the bearing and the transducer. 

The vibration signal induced by bearings presents peculiar characteristics: 

• The strength of the impacts depends on the load supported by rolling elements and 
it is modulated by the rate at which the fault is passing through the load zone, 

• Where the fault is moving with respect to the fixed position of the transducer, the 
transfer function of the transmission path varies. 
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Assuming to study an ideal bearing (ideal dimensions, no slip), it’s easy to find the 
kinematic frequencies of occurrence of these impacts, and the typical modulation pattern 
in case of unidirectional (vertical) load, as shown in Figure 10. 

 

 
Figure 10: Typical signals induced by local faults in rolling element bearings  

 
The ideal kinematic frequencies result: 

 
Ball-pass frequency, outer race 
(BPFO) 𝐵𝑃𝐹𝑂 =

𝑛𝑓𝑟

2
{1 −

𝑑

𝐷
𝑐𝑜𝑠∅} ( 8 

Ball-pass frequency, inner race 
(BPFI) 𝐵𝑃𝐹𝐼 =

𝑛𝑓𝑟

2
{1 +

𝑑

𝐷
𝑐𝑜𝑠∅} ( 9 

Fundamental train frequency 
(cage speed, FTF) 𝐹𝑇𝐹 =

𝑓𝑟

2
{1 −

𝑑

𝐷
𝑐𝑜𝑠∅} ( 10 

Ball spin frequency (BSF) 𝐵𝑆𝐹 = 𝑓𝑟

𝐷

2𝑑
{1 − (

𝑑

𝐷
𝑐𝑜𝑠∅)

2

} ( 11 

 
Where: 

• 𝑓𝑟 is the shaft speed (relative speed among inner and outer ring), 

• ∅ is the angle of the load from the radial plane 

• 𝑛 is the number of rolling elements, 

• 𝑑 is the inner ring diameter, 

• 𝐷 is the outer ring diameter. 
 
Unfortunately, in case of actual bearings, slips are likely to occur: the size of the 

rolling elements in fact is given at a tolerance degree, so that different diameters imply 
distinct speeds, which will be “uniformed” by the cage causing random slips. The actual 
bearing frequencies can show variations of the order of 1-2% both as deviation from the 
calculated value and as random variation around the mean frequency, so that the resulting 
vibration signal is no more periodic but stochastic and is usually modeled as cyclostationary. 
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Cyclostationarity  

The cyclostationarity is the property of a signal which, although not necessarily 
periodic, is produced by a hidden periodic mechanism. Most of the signals generated by 
rotating and reciprocating machines are then of this kind. Strictly speaking an 𝑛-th order 
cyclostationary signal is a signal whose 𝑛-th order statistics are periodic.  For example, a fist 
order cyclostationary signal (CS1) has a periodic mean value (e.g. realizations of a purely 
periodic signal to which a noise is added – for details about random processes refer to 
Appendix 5), while a second order cyclostationary signal (CS2) shows a periodic 
autocorrelation function (e.g. realizations of a white noise modulated by a periodic 
amplitude, featuring then a periodic variance). 

 

1.2.5. Bearings faults models 
Bearing faults can be of various kind, but the most frequent are surely the pits and 

the spalls. A pit is a surface defect caused by impurities in oil at very high pressures which 
leads to small surface cracks. A spall on the contrary is a surface defect caused by the fatigue 
stress problems related to the motion of the rolling elements. A crack below the surface is 
then generated, leading to the detachment of a skin part. 

 

 
  

a) Pit and Spall comparison b) Pitting c) Spalling (flanking) 
Figure 11: a) Typical Pit and Spall scheme with dimensions, b) Tapered rolling bearing 
pitting on outer race, c) Well developed fatigue spall on a bearing inner race. 

 
However, in order to study their effect on vibration signals, the fault models are 

generally diversified on the basis of the crack dimension, distinguishing between localized 
faults (typically smaller pits) or extended faults (typically large spalls). 

 

Localized faults 

In general, at an early stage, the most common bearing surface fault is a small crack 
(pit or spall) resulting in sharp impacts. 

Two models are available for the vibration signals generated by localized faults: 

• Pure 2nd order Cyclostationarity (CS2): In this case the period of the signal is 
modeled as 𝑇𝑖 = 𝑖𝑇 + 𝛿𝑇𝑖 , where 𝛿𝑇𝑖 is the random variable; 

• Pseudo-Cyclostationarity: The period of the signal is in this case modeled as 
a random variable ∆𝑇𝑖 = 𝑇𝑖+1 − 𝑇𝑖, so that the uncertainty of occurrence is 
increasing with the number of future periods (the system has no memory). 

Although CS2 model can give good results, and in terms of envelope spectra the 
difference is minimum, it has been proved to be incorrect, so that Pseudo-Cyclostationarity 
should be taken into account [5]. 
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Extended faults 

As time passes, the small localized cracks are enlarged but smoothed by the balls 
rolling on them. The generated impacts are no longer sharp, and their detection becomes 
harder. Luckily, when bearings are coupled with gears, it is possible to exploit their vibration 
signal to evidence the presence of these faults. Indeed, the gear-induced vibration signal 
undergoes a modulation due to the extended fault crossing the loaded zone of the bearing, 
as it is highlighted in Figure 12. 

 

 
Figure 12: Typical modulating signal from the effect of an extended inner race fault on a 

gear signal [5] 

 

1.2.6. Noise 
Generally speaking, a noise is an unwanted sound judged to be unpleasant, loud or 

disruptive to hearing. In contrast, in physics noise usually refers to the unwanted part of an 
acquisition produced by a stochastic process which disrupts the signal of interest. The 
power spectrum (PSD) of a noise is usually called “colour”. This practice started after the 
definition of the white noise as a signal whose PSD has equal power within any equal 
frequency bands (i.e. flat power spectrum). By analogy, the different colours are defined: 

• pink noise PSD decreases of 3 dB per octave (density proportional to 1/𝑓 ), 

• red/brown noise (or Brownian) PSD decreases of 6 dB per octave, 

• blue noise PSD increases of 3 dB per octave, 

• violet noise PSD increases of 6 dB per octave, 

• grey noise PSD is modulated in accordance to the psychoacoustic equal 
loudness curve so that it is perceived by human hears as equally loud. 
 

 
Figure 13:  The colors of Noise 
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2. Commonly used features 
Focusing on the D2D process, the decision is taken on the base of the knowledge of 

the state of health coming from an abductive reasoning. The core part is then the 
recognition of patterns in the dataset, in which the “symptoms” of a damage are sought. 
Such symptoms are usually abnormal variations of some selected features. According to the 
different components of a gearbox, different features can be taken into account [6]. 

 

2.1. Global Features 
Historically, the most common features are related to the signal amplitude level and 

can be computed directly from the time measurements. In stationary conditions, in fact, 
higher acceleration values are ascribable to the presence of a malfunctioning. They can be 
referred to as global meaning that they give an overall indication of damage in the gearbox, 
without identifying the particular component which is failing. 

Different time-features can be used as level indicators: 
 

Peak:  
The peak value of the signal is defined as half the difference between 
the maximum and minimum.  
 

𝑝𝑒𝑎𝑘(𝑠(𝑛)) =
1

2
[max(𝑠(𝑛)) − min(𝑠(𝑛))]  ( 12 

 
Measurement noise can largely affect this level indicator, reducing its 
reliability. 
 
Root Mean Square:  
The Root Mean Square (RMS) of the signal is the normalized second 
statistical moment of the signal (standard deviation), namely the 
square root of the mean of the squared original signal: 
 

𝑅𝑀𝑆(𝑠(𝑛)) = √𝐸[𝑠2(𝑛)] ( 13 

 
This indicator is more robust to noise, and quite reliable in stationary 
conditions. 
 
Crest Factor: 
The crest factor is defined as the ratio of the peak value to the RMS of 
the signal: 
 

𝐶𝑟𝑒𝑠𝑡 𝐹𝑎𝑐𝑡𝑜𝑟(𝑠(𝑛)) =
𝑃𝑒𝑎𝑘(𝑠(𝑛))

𝑅𝑀𝑆(𝑠(𝑛))
 ( 14 

 
In presence of significant impulsiveness, it is a very reliable indicator. 
 

Based on the time measurements, different features can be extracted also by fitting 
a Linear Time Invariant model. In general, the simple autoregressive model is widely used 
to effectively characterize a signal: 
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AR coefficients: 

A discrete time signal can be represented by an autoregressive 
model of the kind: 
 

𝑠(𝑛) = − ∑ 𝑎𝑙𝑠(𝑛 − 𝑙)

𝐿

𝑙=0

+ 𝑒(𝑛) ( 15 

 
This formula models the signal 𝑠(𝑛) up to a residual error 𝑒(𝑛) using 
the previous 𝐿 samples multiplied by corresponding 𝑎𝑙 coefficients. 
𝐿 is the model order, which should be wisely selected. High order 
AR models, in fact, have a minimum in-sample error (error at the 
samples used to evaluate the model coefficients) but are very likely 
to overfit the signal, also modelling the acquisition noise. 
 

In addition to the level indicators and LTI model coefficients, other statistical 
moments related to the shape of the sample distribution can be used as statistical features 
(see Appendix 3): 

 
Mean value:  

It represents the location of the distribution. For acceleration 
signals it is usually null. 
 

𝑀𝑒𝑎𝑛(𝑠(𝑛)) = 𝜇𝑠 = 𝐸[𝑠(𝑛)] ( 16 

 
Variance: 

It corresponds the dispersion of the distribution. When the mean 
value is null, it is the square of the RMS. 
 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑠(𝑛)) = 𝜎𝑠
2 = 𝐸[(𝑠(𝑛) − 𝜇𝑠)2] ( 17 

 
For a stationery process with null average, the variance equals the 
RMS and represents the average power of the signal. 
 

 
Figure 14: Dispersion of two different normal distributions with same mean value but 

different variance. 
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Skewness: 

It indicates the degree of symmetry of the distribution; it is null for 
a symmetric distribution, while it increases (positively or negatively) 
when the distribution moves away from symmetry (the mean 
moves right-side or left-side with reference to the mode, 
respectively). 
 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑠(𝑛)) =  𝐸 [(
𝑠(𝑛) − 𝜇𝑦

𝜎𝑦
)

3

] ( 18 

 

 
Figure 15: Skewness 

 
Excess Kurtosis: 

It is related to the tailedness of the distribution. When the 
distribution is normal, the excess kurtosis is made null (Mesokurtic) 
by removing a factor 3 from the standardized fourth order moment 
(usual definition of Kurtosis). When the tail area is larger (“fat tails”), 
with respect to the normal, the distribution is said Leptokurtic, and 
the excess kurtosis increases. On the contrary, a distribution is said 
Platykurtic when the tail area is reduced, and the excess kurtosis 
turns out to be negative. 
 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑠(𝑛)) = 𝐸 [(
𝑠(𝑛) − 𝜇𝑦

𝜎𝑦
)

4

] − 3 ( 19 

 

 
Figure 16: Platykurtic and Leptokurtic distributions 
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Frequency domain features are also widely used. They are based on the Power 
Spectral Density (PSD) of the signal, which can be easily computed through the 
Periodogram, a procedure based on Fourier transform (see Appendix 3). This gives a 

frequency domain representation characterized by a base frequency 𝑑𝑓 =
𝑓𝑠

𝑁⁄  where 𝑁 is 

the window length, and 𝑓𝑠 the sampling frequency. In principle, all the spectral lines could 
be used as features, but clearly the frequencies related to damage phenomena or 
corresponding to some structural resonance will be much more of interest for diagnostic 
purposes. In this regard, gears and bearing features (the characteristic spectral lines) can 
be easily distinguished. However, as already introduced, it is preferable to separate the two 
contributions before exploring the spectrum to avoid possible cross participations.  

Starting from the early 70’s in fact, the Time Synchronous Averaging (TSA) is used 
on stationary, synchronous measurements to extract the deterministic part, completely 
determined as functions of time, leaving a residual signal which contains all the non-
deterministic contributions, noise included. Besides TSA, different methods based on 
predictions from autoregressive models are able to isolate the deterministic component 
enabling the separation of the gear signal, periodic with respect to the shaft angle, from 
the bearing contribution, which is cyclostationary and will be contained together with noise 
in the residual signal.  

 
2.2. Gear-targeted features 

As stated in section 1.2.2, the main spectral features for gears are related to the 

spectrum amplitude at the gear mesh frequency (GMF) and its harmonics. The amplitude of 
the first order sidebands can also be used as a damage indicator. Indeed, in general, local 
faults such as root cracks or spalls entail wider distributions of harmonics and sidebands. 
Incipient wear on the contrary causes an increase in the even GMF harmonics (in particular 
the second, 2 × GMF). Then, as wear proceeds, the involute tooth-profile deteriorates 
leading to an enhancement of all the GMF harmonics and eventually to the appearance of 
the Gear Assembly Phase frequency (GAPF). When damage on a single tooth of both wheels 
occurs, the Hunting Tooth Frequency (HTF) can also be found. 

In addition to the plain spectral lines, further features can be extracted exploiting 
the discrete/random decomposition. The most common are FM0, NA4, NA4*, FM4, M6A, 
M8A, NB4 etc. [7] Below some of the most widespread are reported:  

 
FM0 

The zero-order figure of merit is a robust indicator of faults in a gear. 
It detects major changes in the meshing pattern by comparing the 
maximum peak-to-peak amplitude of the signal to the energy of the 
mesh frequency and its harmonics. Basically, it assumes that a 
damaged tooth in a gear produces a vibration signal with a 
significantly increased peak to peak value, while the overall meshing 
energy is not much affected. It is then similar to the crest factor but 
targeted on gears alone. 
 

𝐹𝑀0 =
𝑃𝑃(𝑠(𝑛))

∑ 𝑃ℎ
𝐻
ℎ=0

 ( 20 
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where 𝑃𝑃(𝑠(𝑛)) is the maximum peak-to-peak amplitude of the 
signal 𝑠(𝑛) and 𝑃ℎ is the power spectrum of the ℎ-th GMF.  
 
FM4 
Complementary to FM0 it aims to detect faults concerning a limited 
number of teeth. It measures whether the amplitude distribution of 
the difference signal is peaked or flat. It is then a computation of the 
normalized kurtosis of the difference signal 𝑑(𝑛), namely the SA 
residual signal (non-deterministic part) filtered to remove the gear 
mesh frequencies, the 1st order side bands, and the shaft revolution 
signal. Therefore, this parameter works under the assumption that 
a gearbox in good condition has a difference signal with a Gaussian 
amplitude distribution, whereas a gearbox with a defective tooth 
produces a difference signal with a series of major peaks, deforming 
the distribution. However, if too many teeth are defective, the data 
distribution turns flatter and the kurtosis value decreases, 
weakening the FM4 detection ability. 
 

𝐹𝑀4 =
𝑁 ∑ (𝑑(𝑖) − �̅� )

4𝑁
𝑖=1

(∑ (𝑑(𝑖) − �̅�)
2𝑁

𝑖=1 )
2 ( 21 

 

where �̅� is the mean value of the difference signal, and 𝑁 is the total 
number of observations. FM4 is non-dimensional and designed to 
have a nominal value of 3 if 𝑑 is purely Gaussian.  
 
NB4 
NB4 is an indicator of localized gear tooth damage. When few teeth 
are deteriorating, transient load fluctuations arise, changing the 
envelope of the signal. NB4 exploit this information using the quasi-
normalized kurtosis performed on the envelope of the SA residual 
signal, band-pass filtered about shaft and the mesh frequencies 
(differently from NA4 which uses the difference signal). The 
envelope signal is computed using the Hilbert transform (see 
Appendix 2). 

 

2.3. Rolling element bearing-targeted features 
Section 1.2.4 introduces the typical modulation pattern which can be found in ideal 

rolling element bearing signals in case of unidirectional (vertical) load. For actual bearings, 
because of possible slips occurring at the rolling elements, the real bearing characteristic 
frequencies can show variations of the order of 1-2% from the theoretical values given by 
the four ideal spectral features: 

• Ball-pass frequency, outer race (BPFO) 

• Ball-pass frequency, inner race (BPFI) 

• Fundamental train frequency (cage speed, FTF) 

• Ball spin frequency (BSF) 
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Unfortunately, these spectral features are often so weak with respect to the 
background noise, that they can rarely be detected before catastrophic failure by means of 
power spectra of raw signals from gearboxes. Also, the contribution separation performed 
by the SA, introduced in early 70’s by Weichbrodt and Smith [9] and consolidated by Braun 
in 1975 [10], is not effective in highlighting the bearing signature. Because of this, the first 
bearing diagnostic studies (actually based on acoustic emissions) conducted by Balderston 
[8] in the late sixties, were based on the demodulation of high frequency resonant 
responses (tens of kHz). This developed in the late 70’s into a number of techniques such 
as the ‘‘Shock Pulse Meter’’ (SPM) by Beercheck in 1976 [11] and later marketed for some 
time by the SKF bearing company, and the ‘‘Spike Energy’’ (SE) method marketed by IRD 
[18], where the demodulated frequency was the resonance of the transducer itself. In 
particular, the SPM used an accelerometer precisely tuned to a given frequency of 32 kHz, 
while the SE gave more tolerance for the transducer resonance, which was bounded in the 
range 5-50kHz. In both cases, the bandpass filtered signal was converted into a train of 
shock pulses with an amplitude proportional to the energy of the shocks produced by the 
damaged bearing. Particular figures of merit were finally used to detect incipient failure of 
bearings. An example is the IRD “g-SE™”, or acceleration units of spike energy™, 
corresponding to a product of impact amplitude, pulse rate and high-frequency random 
vibration energy [14].  

Starting from the mid 80’s, the focus moved on the spectrum of the envelope of a 
band-pass filtered acceleration signal, leading to the “High Frequency Resonance 
Technique” (McFadden and Smith [13]), later evolved into the well-established “Envelope 
Analysis”. Long discussions were held to choose the optimum bandwidth for the 
demodulation associated with envelope analysis. This dispute ended with the development 
of the spectral kurtosis (SK), first introduced by Dwyer in 1983 [12,15]. 

Spectral Kurtosis based algorithm such as the Fast Kurtogram [16], in fact, proved to 
be effective in many practical cases in finding the optimal frequency band for envelope 
analysis to improve the signal/noise ratio of bearing signal with respect to background 
noise, becoming the reference algorithm for bearing diagnostics. 

Alternative ways to highlight the bearing spectral features introduced at the 
beginning of this chapter can be anyway found in the literature. Minimum Entropy 
Deconvolution (MED), for example, initially proposed by Wiggins in 1978 [18] for seismic 
analysis, can be used to generate a filter that counteracts the effect of the transmission 
path under the assumption that the original excitation was impulsive, and thus having high 
kurtosis. With a similar scope, the Stochastic Resonance can be used to enhance the 
impulsive content of a vibration signal [19]. Wavelet Denoising, on the contrary, can 
enhance the bearing characteristic frequencies by reducing the background noise. 

 
A deeper insight of the here selected algorithms will be given in the next Chapters, 

also investigating their performances on the datasets presented in Chapter 4. 
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3. Signal processing: State of the art 
As extensively described in Chapter 2, the data recorded by the acquisition system 

need to be processed (and pre-processed) so as to highlight the diagnostic information, 
which is otherwise just a messy superimposition of the different contributions (i.e. many 
sources) covered by noise and distorted by the transmission path from source to sensor. 
This operation, usually called features extraction, is then fundamental to enhance the 
health information hidden inside the signals.  

 Many different algorithms are available in the literature, so that a review to select 
the more established and promising is fundamental. In first instance, such algorithms can 
be classified according to the type of data acquired [20,21]. At least two categories can be 
highlighted in case of vibration monitoring: 

• Waveform type: Time series of vibration acquisitions (typically 
accelerations). They are basically discrete functions of time. 

• Value type: Single value recorded at a specific time for a particular variable 
(e.g. temperature, pressure, humidity, etc.). Even the low-level features 
which can be extracted from time series (e.g. RMS, etc) can fit this category 
as they summarize with a single value an entire period of time. 

A second categorization may refer to the main context of application, in reference 
to the different components of a gearbox. In that case, the types will be mainly:  

• Global 

• Gear-targeted  

• Rolling element bearing-targeted 
 

3.1. Waveform data analysis 
In the vibration monitoring context, waveform data refers to the time series 

recorded from the employed acquisition system. In case of accelerometers, the waveform 
is a discrete function of time describing the signal's acceleration amplitude over the 
duration of the recording. This time-signal can be decomposed via Fourier analysis in a set 
of fundamental waveforms, the harmonic functions, which form a basis for the so-called 
frequency domain. 

The algorithms will be then further categorized according to the domain of 
reference.  

 

3.1.1. Time domain analysis 
Time domain analysis is based on the time waveform itself. Traditionally, such 

analysis is related to the extraction of so-called time-domain features which can describe 
the general condition of a machine (global). For example, it is a common knowledge that 
the overall vibration level can rapidly rise as a result of the aggravation of a damage. Indeed, 
descriptive statistics like peak amplitude, Root Mean Square (RMS) or crest factor 
(peak/RMS), in addition to higher order moments as variance, skewness and kurtosis, can 
be used to summarize the waveform with a value type data (appendix 5). These features 
are very fast to compute but are usually quite sensitive to the operational and 
environmental conditions. This give raise to necessary considerations about their clear 
dependence on damage.  

Advanced approaches apply parametric time series models to the waveform. The 
parameters resulting from the fitting will be then used as features to characterize the 
system. The popular models used in the literature are the autoregressive (AR) models or 
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the autoregressive moving average (ARMA) models. In practice, for complex systems, the 
application of AR or ARMA models is not straightforward and difficulties rise in the 
determination of the more appropriate model order. 

Model fitting can be directly applied with diagnostic purposes. It can be noticed that 
a damage can deteriorate the goodness of the time-signal prediction, so that it is possible 
to find a dependence of the variance of the residual signal (or error) from the damage. 

Taking a further step, model fitting can also be used with signal separation purposes. 
According to Wold’s theorem [22] in fact, a stationary time series can always be written as 
a unique sum of a deterministic part (singular) and a stochastic part (regular), but only the 
first can be predicted by its past values using an AR model, so that a separation is possible. 
The optimal AR coefficients for this task take the name of Wiener filter. A number of 
algorithms are available based on the AR model, like the Linear Prediction (LP), also known as 
Adaptive Line Enhancement (ALE) in acoustics, the Adaptive Noise Cancellation (ANC) and the 
Self-Adaptive Noise Cancellation (SANC) [22] but the most popular techniques remains the 
Synchronous Averaging (SA), proposed since the early 70’s in order to separate the 
deterministic content from the residual part. With this procedure in fact, the complex time-
domain vibration signal from a whole gearbox can be reduced to deterministic estimates of the 
vibration for individual shafts and their associated gears. When the signal is stationary, a simple 
Time Synchronous Averaging (TSA) [23] can be applied, but in most of applications this does 
not hold. Angular-domain data is then required. Unfortunately, commercial Data Acquisition 
Systems (DAQ) are not so efficient in sampling at constant angular increments, so that 
resampling algorithms are needed, based on the additional record of the angular position of a 
reference shaft. This procedure takes the name of Computed Order Tracking (COT). Once the 
separation is performed, the analysis usually switches to the frequency domain, to extract 
features of interest from the spectra. 

Other techniques are based on the amplitude-phase demodulation of the time signal. 
This is usually performed using the analytic signal produced via Hilbert transform, from which 
the envelope and the instantaneous angular frequency (or phase) can be extracted [Appendix 
2]. Envelope Analysis (EA) is shown to enhance both gear fatigue crack detection and, in 
particular, rolling element bearings damages [24]. The selection of the demodulation band for 
EA is usually performed via spectral kurtosis-based algorithms such as the Fast Kurtogram (FK). 

Finally, Minimum Entropy Deconvolution (MED), initially proposed by Wiggins in 1978 
for seismic analysis, can be used to generate a filter that counteracts the effect of the 
transmission path from the source to the sensor, with particular applications for bearings, 
whose impulses can be separated and highlighted [23]. 

 

3.1.2. Frequency domain analysis 
In the field of vibration monitoring, it is common to expand the time series in a sum of 

harmonic functions using the popular and efficient Fast Fourier Transform FFT. The advantage 
of analyzing the signal spectrum is that certain frequencies of interest can be easily identified 
and isolated. These form the “signature” of the machine, which is unique and highly responsive 
to fault. The main idea is then to look at the whole spectrum and to focus on certain spectral 
lines which can be used as features (see Chapter 3). The most commonly used tool for spectral 
analysis is the power spectrum, which can be estimated in two different ways: 

• Non-parametric algorithms are usually preferred as they do not need any 
assumption about the process structure. They estimate the power spectrum 
through the Fourier transform of the estimated autocorrelation of the time 
sequence [Appendix 3]. 
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• Parametric approaches on the contrary assume that the underlying stationary 
stochastic process has a simpler structure which can be represented by a 
parametric model (e.g. AR, ARMA etc.) from which the power spectrum can be 
obtained. 

Despite the lower spread, other kind of spectra can be defined. The Cepstrum for 
example, which is the inverse Fourier transform of the logarithmic power spectrum, is 
commonly used to highlight the harmonics and the sideband patterns of the gears signature 
[24]. Higher order spectra like bi-spectrum, tri-spectrum are sometimes applied [21]. 

Other frequency domain methods based on parametric modelling can substitute 
equivalent time-domain, predictive algorithms. It is the case of the Discrete/Random 
Separation (DRS) [25,26], which outperforms ANC, SANC and LP in terms of efficiency and 
stability. Once the deterministic part is separated from the residual, the spectral lines of 
interest, magnified by the separation, can be extracted as features. 

 

3.1.3. Time-Frequency analysis 
The spectral analysis is a valuable tool but is unable to reflect the time varying nature 

of the signal, whose frequency content may change in time. It is then particularly inadequate 
for processing non-stationary waveform signals, which are common in machineries. In this 
case, a two-dimensional spectrum is sought, as a function of both frequency and time. The 
simplest method is the Short Time Fourier Transform (STFT) which produces the so-called 
spectrogram (the power of the STFT). It is based on the segmentation of the original time series 
which is then cut, windowed and Fourier-transformed. This obviously limits the frequency 
resolution. Because of this, bilinear time-frequency distributions (e.g. Wigner-Ville, Choi–
Williams, etc) are sometimes used, even if they suffer the interferences due to cross terms.  

Another established 2D representation is the scalogram produced via wavelet 
transform (WT). It differs from the STFT because of the use of different base functions. An 
orthonormal basis is generated by shifting and scaling a wavelet i.e. a function centered around 
zero and featuring finite energy. The advantage of the scalogram is a non-uniform resolution: 
it has a high frequency resolution at low frequencies and a high time resolution at high 
frequency. More recent developments of WT are the Discrete WT (DWT) and the Wavelet 
Packet Transform (WPT). 

Finally, also algorithms for signal decomposition are often used to produce data-driven 
time-frequency representations. The Empirical Mode Decomposition (EMD) for example, is 
able to decompose the signal in a number of base functions which are the possibly nonlinear 
and nonstationary simple oscillatory modes. Ensemble EMD (EEMD), Complete EEMD with 
Adaptive Noise (CEEMDAN) are two evolution of EMD trying to improve the mode-mixing issue. 
When statistics and geometry elements are added to the time series analysis, further 
decompositions can be found. One simple method relies on the application of the well-known 

Principal Component Analysis and takes the name of Singular Spectrum Analysis (SSA), 
recently improved in the Singular Spectrum Decomposition (SSD). The name “singular 
spectrum” relates to the spectrum of eigenvalues, often used as a base for the 
reconstruction of the components which are believed to have a meaningful interpretation. 

 

3.2. Value type data analysis 
Value type data include both raw data from acquisition or extracted. Such kind of 

data is much simpler than waveforms, but the complexity lies in the correlation structure 
among the different variables, whose number may be large. Because of this, a multivariate 
analysis needs to be conducted. 
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One of the simplest but fundamental multivariate analysis is the Principal 
Component Analysis (PCA), which uses an eigenvalue decomposition of the covariance 
matrix estimated from the data to define a new orthogonal coordinate system. The final 
principal components are the uncorrelated linear combinations of the original variables. 
PCA is usually applied to reduce the dimensionality of large datasets, producing 2D or 3D 
projections which explain most of the data variability and can be easily visualized. 

Another linear but supervised dimensionality reduction can be obtained via Linear 
Discriminant Analysis (LDA), which aims to find the direction that best discriminate some 
data classes. It is in fact a linear classifier algorithm such as Logistic Regression or Naive 
Bayes classifier. 

When linearity proves to be a limit, Non-linear PCA, kernel PCA (k-PCA) or Local 
Linear Embedding (LLE) are commonly used, together with applications of Artificial Neural 
Networks (ANN) featuring bottleneck layers. Also, non-linear classifiers such as Support 
Vector Machine (SVM) or kernel classifiers (e.g. k-nearest neighbours k-NN) are widely used. 

In some cases, it may be useful to find a transform whose basis is composed by 
independent components, although non-orthogonal. It is the case of the Independent 
Component Analysis (ICA), which can be used to perform a blind source separation of the 
data. 

Finally, for explorative unsupervised analyses (i.e. the value type data is not labelled) 
clustering can substitute classification for discovering similarities and dividing the data-
points into groups (cluster) [27]. 

 

3.3. Large Rotorcrafts Vibration Health Monitoring: acknowledged 
indicators and signal processing techniques 

At the end of section 4.5 of Chapter 2, the Health and Usage Monitoring Systems 
(HUMS) of helicopters were considered as a commercial example of implementation of 
usage monitoring. Regulatory bodies such as the European Aviation Safety Agency already 
acknowledges such systems and also gives indications regarding the simplest but thrusted 
procedures for vibration health monitoring. Reference [28], at chapter CS 29.1465(a), 

reports the typical vibration monitoring indicators and signal processing techniques 
summarized in Table 2. 

 
Table 2: Typical Vibration Health Monitoring Indicators & Signal Processing Techniques 

[28] 

Main Gearbox 
components: 

Indicators: 

Shafts Fundamental shaft order and its harmonics. 

Gears 
Gear-mesh frequency and its harmonics, modulation of 
meshing waveform, impulse detection and energy 
measurement, non-mesh-related energy content. 

Bearings 

High frequency energy content (band-passed signal energy 
measurements), impulse detection, signal envelope 
modulation patterns and energies correlated with bearing 
defect frequencies. 

Rotor: 
Fundamental shaft order and harmonics up to blade pass 
frequency, plus multiples of this. 
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The diagnostic relevance of the vibration data processing via extraction of the 
previously introduced indicators, is particularly highlighted in the document. The typical signal 
processing techniques reported include: 

I. Asynchronous Power Spectrum, which does not require phase information or 
frequency tracking. 

II. Synchronous Spectrum, which needs phase information or frequency tracking. 
III. Band-pass filtered signal Envelope Power Spectrum Analysis (a recommended 

technique for gearbox bearings). 
IV. Synchronous Averaging for time and frequency domain signal analysis (a 

recommended technique for gearbox gears). 
V. Band-pass filtering and the measurement of filtered signal statistics, including 

crest factor (can be used for bearings not within engines or gearboxes). 

 

3.4. Vocabulary and definitions of Signal Processing 
As a final part of the state of the art, a short vocabulary is added to ensure a unique 

interpretation and definition of some relevant operations which can be performed on a 
measured time signal 𝑥(𝑡) [29].  

Detection: Deducing (or better “abducing”) the presence of an unknown but 
peculiar signal 𝑠(𝑡) in a noisy, measured waveform 𝑥(𝑡) at a pre-set confidence level. The 
damage detection is then the binary decision-making problem pertaining to the presence 
or not of a fault in the considered system. 

Identification: Deducing the presence of an unknown but peculiar 𝑠(𝑡) in a noisy, 
measured 𝑥(𝑡). In particular, damage identification is the multiple decision-making 
problem pertaining to the localization or classification of an incurred fault thorough the 
damage-characteristic signal 𝑠(𝑡). 

Estimation: Estimating the “amount” 𝑎 of a known signal 𝑠(𝑡) in a noisy, measured 
𝑥(𝑡), where 𝑥(𝑡)  =  𝑎 ∙ 𝑠(𝑡)  +  𝑛(𝑡). It is then related to the estimation of the exact 
magnitude of a detected damage (i.e. damage level). 

Filtering: Using a signal processing model and the past measurements to enhance 
the current measurement. It can be performed as an on-line analysis. 

Smoothing: Using a signal processing model and all measurements (past and future) 
to enhance each measurement. It is not suitable for on-line analysis, but only for batch (or 
at line) analysis.  

Predicting: Using a signal processing model and the past measurements to predict 
future measurements. It can be done both on-line and in batch mode. 
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4. Machine Learning State of the art 
Machine Learning is the subject of building intelligent machines able to learn 

information from the data without the intervention of human specialists. This learning 
consists of highlighting an underlying set of patterns useful to understand relationships in 
the data which can be used to generalize some sort of inference [30,31,62]. 

A taxonomy of ML models is reported in Figure 17, where two main types of learning 
are shown. In particular, the learning is said supervised when labelled input data is 
available. Furthermore, when a numeric variable has to be predicted, we talk about 
regression, while classification is used when a categorical value (e.g. a class or a group) is 
pursued.  

On the contrary, the unsupervised learning works without exploiting information 
about labels. In this case, two families of problems are commonly solved with unsupervised 
learning methods: dimensionality reduction and clustering. 

In between, when labelled data from the healthy condition alone is used, we speak 
about semi-supervised learning. This can be tackled as a one-class classification problem 
which takes the name of novelty detection. 

 

 
Figure 17: Taxonomy of the most common Machine Learning algorithms.  

 

4.1. Regression 
Regression is the statistical processes of estimating relationships among variables 

so as to predict numerical values of the dependent variable from one or more independent 
variables in a data set.  

Regression can be either parametric or not.  Non-parametric methods are 
commonly performing smoothing using a kernel function. Kernel regression estimates the 
continuous dependent variable from a limited set of data points by convolving the 
observations with a kernel function, a window that specifies how to "blur" the influence of 
the data points so that their values can be used to predict the value for nearby locations. 
Also, decision tree learning algorithms such as the Classification And Regression Tree (CART) 
[32] can be applied for predicting a dependent variable.  

Regarding parametric regression on the contrary, the simplest model is the linear. In 
linear regression, the relationships are modelled with linear predictor functions whose 
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unknown parameters are usually estimated from the data by Ordinary Least Squares, which 
minimizes the sum of the squares if the differences between the observed dependent 
variable and the its predicted value from the linear function.  

Linear regression is good for regressing data that follows a linear pattern and adhere 
to certain assumptions such as normally distributed error for the dependent variable. 

If also the independent variables are affected by errors then, other error-in-variable 
models should be preferred, such as Orthogonal Regression (or Principal Component 
Regression). 

On the contrary, when the limit is the linearity of the pattern, a simple way to 
improve the linear model is with a Generalized Linear Model (GLM) able to generalize linear 
regression to allow for fitting nonlinear models using a link function that transforms the 
data appropriately. For example, when the dependent variable is restricted to binary, a 
sigmoid function can be used to take any real input to a value bounded between zero and 
one that can be interpreted as a probability. In this case we speak about Logistic Regression. 

The advantage of linear regression lies in its simplicity and easy interpretability. 
Nevertheless, Machine Learning can offer way more sophisticated extensions of GLMs 
based on Neural Networks which are more flexible as they can automatically select any 
nonlinearity and apply it locally to model very complex functions. In this sense NNs are very 
flexible and effective, so that the only drawback remains the model interpretability. 
Understanding the “logic” behind, in fact, can be critical in some applications as in 
diagnostics, where a human is often required to confirm or not the diagnosis. 

In any case, nowadays trading-off ease of interpretability for predictive power is 
commonly accepted at scientific level, so that the use of models with high level of 
abstraction led to the development of an entire branch of ML called Deep Learning. 

Deep Learning methods evolved from the Neural Network, which is inspired by the 
structure and function of biological neurons. The parameters to be optimized are now 
weights on the Neural Network connections. 

The success of NNs in all the fields of science is strongly related to their supervised 
training called backpropagation, which uses gradient descent with respect to the weights 
to minimize output error.  

The behaviour of a NN is dependent on its architecture: number of neurons, number 
of layers and their connections.  Choosing the right architecture depending on the problem 
to model is obviously fundamental [33]. Ongoing research are producing every day novel 
architectures, so that is would be impossible to consider all of them. In any case, the most 
important ones are here reported. 

The first basic feed-forward architecture is the Multi-Layer Perceptron (MLP [34]), 
made of at least three layers of nodes, an output layer, at least a hidden layer and an input 
layer. Except the input nodes, each node is a neuron that uses a nonlinear activation 
function. 

Another well-known architecture is that of Recurrent Neural Networks (RNNs [35]) 
which is used to model time series as a recurrent function of sequential data where an 
output at time 𝑡 depends on the input at time 𝑡 and on the previous output at time 𝑡 − 1.  

The RNN is then a special feed-forward Neural Network that can send information 
over time-steps by creating loops in the network that feed forward to the same neuron at 
the next time step. This works similarly to Markov models but is superior for very large data 
sets because the RNN can capture long-range time dependencies. 

The architecture of a Long/Short-Term Memory (LSTM [36]) network was designed 
explicitly to overcome the problems of long-range time dependencies by using three gates: 
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• a forget gate to propagate information preserved from the 
previous time step, 

• an input gate to introduce new information at the time step, and 

• an update gate that determines what will be preserved from the time 
step. 

In this way, the gates can carry information efficiently across any number of time 
steps. The gates weights are finally optimized using another application of backpropagation 
through time steps. 

Another well-known architecture is that of Convolutional Neural Networks (CNN), 
representing the mathematical convolution operation on the inputs [63,64]. A CNN consists 
of a number of hidden layers where convolution filters of various shape and size are 
implemented as sliding windows. CNNs are organized so as to learn filters to produce strong 
activation to spatially local input patterns as well as globally [33]. 

Weights in a CNN are optimized again with backpropagation, however, to limit the 
possible overfitting, the optimization is performed using regularized methods such as the 
Dropout, which randomly drop units (along with their connections) from the Neural 
Network during training to prevent co-adaptation and overfitting. 

In general, regularized regression methods add information penalizing large 
regression coefficients and avoid then overfitting. Ridge and Lasso regression are two 
examples of regularized least squares (RLS). 

Regression methods predicting a dependent variable (i.e. the label) from one or 
more independent variables (i.e. the features) are sometimes used for classification. For 
example, setting a threshold on the probability outcome of a Logistic regression, it easy to 
turn the regression output (practically a soft classification information) into a hard 
classification information (e.g. binary, 0 or 1). 

On the contrary, classification algorithms such as Support Vector Machines (SVM) 
can be modified to perform regression (Support Vector Regression, SVR [37]). Instead of 
generating safety boundaries from a hyperplane which separate two classes, the 
optimization seeks to find a hyperplane as close as possible to the observations. The SVR is 
a non-parametric regression tool which can exploit a non-linear kernel to finally end up with 
a non-linear regression. 

 

4.2. Classification 
Classification corresponds to the problem of identifying the right category (class or 

group) to which a new observation belongs, on the basis of a training set of data containing 
labelled observations whose category membership is known. Labels can be either 
numerical or categorical. Classification is then the prediction of a label value. At its simplest, 
classification produces a binary output with labels of two classes: 0 and 1 (hard binary 
classification). Some models such as decision trees, directly create a binary output. Other 
models calculate a probability (value between 0 and 1) and separate the values according 
to a threshold value with a discriminant function (soft classification).  

The first works on classification dates back to Fisher [38], who introduced Fisher's 
linear discriminant function assuming a multivariate normal distribution for each of the two 
groups. Improvements able to give group membership probabilities are based on Bayesian 
approaches which are considered more informative than simply attributing a single group-
label to each new observation. 
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In general, a large number of algorithms for classification are based on a linear 
function that assigns a score to each possible category by combining the feature vector of 
a new observation with a vector of weights, using a dot product. The predicted category is 
the one with the highest score. This type of score function is known as a linear predictor 
function, and is comprehensive of Logistic regression, Support Vector Machines (SVM) and 
also the single Perceptron (building block of the Multi-Layer Perceptron) falls under this 
category. 

Despite being a linear classifier, SVM can exploit the kernel trick to implicitly map 
the inputs into high-dimensional observation spaces in which the categories are separable 
by a clear gap. SVMs then can efficiently perform a non-linear classification. 

A non-linear classification can be obtained also by adding multiple layers of 
Perceptrons with non-linear activation functions, which leads to a feed-forward artificial 
neural network called Multi-Layer Perceptron (MLP). 

Quadratic classifiers are also possible, such as the Quadratic Discriminant Analysis 
(QDA), which allows for conic sections separating the classes (e.g. a line, a circle or ellipse, 
a parabola or a hyperbola). 

Moving to non-parametric methods, the simplest method is probably the k-nearest 
neighbours (k-NN). In this case, an observation is simply classified by a plurality vote of its 
neighbours. The observation is assigned to the class most common among its 𝑘 nearest 
neighbours. 

Other non-parametric classifiers are based on decision trees. A decision tree is a 
flowchart-like structure in which each internal node represents a "test" on an attribute, 
each branch represents the outcome of the test, and each leaf node represents a class label. 
The paths from root to leaf form the classification rules. Decision threes are commonly 
based on algorithms able to optimize the choice at each node, but this does not ensure to 
get to the global optimum configuration. Furthermore, particularly deep trees are prone to 
overfitting the dataset, so that trees are commonly implemented in Random Forests, an 
efficient type of Ensemble Learning. Random Forest models in fact, implement a level of 
differentiation by splitting the different features and using just some of them in different 
threes, whose results are later aggregated. 

A different Ensemble Method is the so called BAGGing, or Bootstrap AGGregation. 
In this case, given a dataset, multiple bootstrapped subsamples are drawn. A Decision tree 
is then formed on each of the subsamples and the results are later aggregated. Decision 
trees are anyway proved to lead to better results. 

In general, anyway, an objective comparison of the different classifiers’ performance 
is difficult to set up. A classifier performance in fact is strongly related to the dataset under 
analysis, so that, as stated by the “no-free-lunch theorem”, a single classifier that works 
best on all given problems does not exists. 

 
Classification is considered an instance of supervised learning. The corresponding 

unsupervised procedure is known as clustering and involves grouping data into categories 
based on some measure of distance or similarity. 
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4.3. Clustering 
Clustering is the general task of exploratory data mining whose target is the 

grouping a set of observations in such a way that the observations in the same group (which 
takes the name of cluster) are more similar to each other than to those in other groups. 

 Similarity can be evaluated in terms of distances between cluster members, density 
areas of the data-space or intervals. 

Clustering is then a multi-objective optimization that involves trial and error. The 
iterative process seeks to find the best variable settings including the number of expected 
clusters, the thresholds or the intervals, which are the main parameters as well as the 
distance metric to use, which is usually selected previously. 

The most famous clustering algorithm is the k-means, which belongs to the family 
of centroid-based algorithms. In brief, clusters are based on the distance of the 
observations from a number 𝑘 of pre-determined centroids whose positions are iteratively 
optimized. 

Different approaches are categorized as Hierarchical clustering. They agglomerate 
or divide observations in clusters on the basis of a measure of similarity, commonly 
distance. For example, agglomerative algorithms then “connect” near observations to form 
clusters. The most established algorithm of this kind, also known as Connectivity-based 
clustering, are single-linkage clustering (SLINK [39]), complete linkage clustering (CLINK 
[40]), and average linkage clustering such as UPGMA or WPGMA [41] (Unweighted or 
Weighted Pair Group Method with Arithmetic Mean).  

Distribution-based clustering can also be found. Clusters in fact can be interpreted 
as observations belonging to the same distribution. Fitting for example a Gaussian mixture 
model (GMM) optimized by the expectation-maximization algorithm both hard clustering 
(binary information about observations belonging or not to a cluster) and soft clustering 
(also known as fuzzy clustering, it outputs the likelihood of belonging to a cluster) are 
possible. 

Finally, also density-based clustering, can be found in the literature. In this case, 
clusters are defined as areas of higher density with respect to the remainder of the data 
set. The most popular method is DBSCAN [42] which connects points within certain 
distance thresholds only when they satisfy a density criterion. A generalization of this 
method takes the name of OPTICS [43], which removes the selection of the threshold and 
produces a hierarchical result related to that of linkage clustering. 

 

4.4. Dimensionality reduction 
Dimensionality Reduction is the process of reducing the number of variables under 

consideration. Approaches can be divided into feature selection and feature extraction 
methods. Feature extraction creates new features as functions of the original features, 
whereas feature selection returns a subset of the features. The main idea when using a 
feature selection technique is that the data contains some features that are either 
redundant or irrelevant and can thus be removed without incurring much loss of 
information. Subset selection algorithms can be broken up into wrappers, filters, and 
embedded methods. In general, anyway, they are based on a search algorithm which 
optimizes the scoring metric grading the selected subset of features and comparing it to all 
the other scorses from each possible subset. 

The purpose of feature extraction dimensionality reduction on the contrary is to 
increase data efficiency by saving on computational expense while strengthening the signal-
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to-noise ratio by eliminating dimensions high in noise or low in variance in data. 
Furthermore, the first principal features can be used to effectively visualize the dataset. 

Some of the established linear dimensionality reduction methods are Principal 
component analysis (PCA), Singular value decomposition (SVD), Linear discriminant analysis 
(LDA), Factor analysis (FA) and Independent component analysis (ICA). Nevertheless, 
nonlinear mappings can be found by introducing a Support Vector Machine formulation to 
the problem of PCA, leading to the so-called Kernel PCA. 

Other prominent nonlinear techniques which can falls under the name of Graph-
based kernel PCA include manifold learning techniques such as Isomap, Locally Linear 
Embedding (LLE [44]), Hessian LLE, Laplacian eigenmaps, and methods based on tangent 
space analysis [45]. These techniques construct a low-dimensional data representation 
using a cost function that retains local properties of the data and can be viewed as defining 
a graph-based kernel for Kernel PCA. 

The SVM kernel trick can be used also for extending LDA to a Generalized 
discriminant analysis (GDA) which provides a mapping of the input vectors into high-
dimensional feature space to finally reduce the dimensionality by maximizing the ratio of 
between-class scatter to within-class scatter. 

Finally, Neural Networks can also be used to learn non-linear dimension reduction 
functions. In particular, Unsupervised Pretrained Networks (UPNs) are very good at 
reproducing input data or generating outputs that share a likeness with inputs. Three main 
architectures can be found in the literature, Autoencoders, Deep Belief Networks (DBNs) 
and Generative Adversarial Networks (GANs). 

Autoencoders are used as powerful dimensionality-reducers. In their simplest form 
they are made of a single layer of perceptrons (as in MLP) where the output layer has the 
same number of nodes as the input layer, but the hidden layer is restricted in a way that 
forces the autoencoder to reconstruct the input only approximately, prioritizing the most 
relevant aspects of the input data. This allows an autoencoder to construct a compressed 
representation of the input [56] 

DBNs consist of layers of Restricted Boltzmann Machines (RBMs), a generative 
stochastic artificial neural network that can learn a probability distribution over its set of 
inputs [33]. An RBM approximates the input using a series of stepped sigmoid units, or 
binary layers of equal weight but progressively stronger negative bias [46]. Layering RBMs 
allows a DBN to progressively learn more complex features automatically and, with 
adequately deep layering, generate convincing reproductions of inputs. 

GANs are systems of two neural networks competing in a zero-sum (i.e. balanced 
gain or loss) game and consists of a generative model (typically a deconvolutional neural 
network) that estimates data distribution of a training set and a discriminative model (a 
convolutional neural network) that estimates the probability that a sample came from the 
training set rather than the generative model [47]. The generative network's training 
objective is to increase the error rate of the discriminative network (i.e. to "fool" the 
discriminator by producing novel candidates so similar to the input that the discriminator 
is not able to distinguish them). They are mainly used for image-to-image translation but 
can also be used for denoising or dimensionality reduction. 
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4.5. Novelty Detection 
 
Novelty detection is the task of classifying test data that differ in some respect from 

the data that are available during training. This may be seen as “one-class classification”, in 
which a model is constructed to describe “normal” training data.  

The simplest approach to ND derives directly from statistics. Based on the 
probability distribution of the training data in fact, appropriate thresholds on probability or 
distance can be found. 

If a statistical model is used to fit the training data, we speak about statistical, 
parametric approaches. The most common distribution model is the multivariate normal, 
so that when the assumption of normality holds, it is easy to find the iso-probability 
ellipsoid (multivariate extension of an interval of critical values) that contains a given 
amount of data (e.g. the 97% of the dataset). This can be done by fixing a threshold on the 
Mahalanobis distance, a metric which accounts for the covariance structure of the normal 
dataset. The selection of a proper threshold is not an easy task also in this simple case 
because of the effect of high dimensional spaces and small training sets. In this cases 
Extreme Value Theory (EVT) can be used to optimize the threshold. 

When the assumption of normality is too restrictive, it is possible to increase the 
complexity of the model by considering a 𝑘-components Gaussian Mixture Model (GMM). 
A GMM is a is a linear combination of 𝑘-Gaussian probability density functions and models 
more generic distributions estimating the density by using fewer gaussian kernels than 
number of patterns in the data. 

In general, the problem of ND can be tackled by statistical tests such as the simple 
two-Sample t-Test for Equal Means. If t-test shows significant difference between the two 
sets of measurements (normal profile and test profile), then second set is considered to 
contain novel patterns. This can be extended for testing multiple-samples tests using for 
example the Analysis of Variance (ANOVA), and for multivariate multiple-samples tests with 
the Multivariate ANOVA (MANOVA). 

Hidden Markov Models (HMM) are also suitable for ND. HMMs are used to model 
sequential data as a number of states together with probability of moving between pairs of 
states (transition probabilities). Novelty is assessed if the probability of observing a 
sequence to be tested is below a threshold.  

Parametric approaches often need extensive a prior knowledge of the problem to 
be effective. Hence, when no assumption about the statistical distribution of the data can 
be verified, non-parametric approach can be more suitable. 

Among them, the simplest are the Histograms, a graphical display of tabulated 
frequencies. If the histogram of the data to be tested is dissimilar from the training one, the 
test data is considered novel. The Kullback–Leibler divergence can be used as a similarity 
metric in this case. 

Histograms are very sensitive to bin size, which is the free parameter. A more stable 
alternative is to sum rectangular windows of the same size as the bin centred on each 
sample. This leads to a family of methods called Kernel Density Estimators (KDE), or also 
Parzen density estimation, whose free parameters are the window shape (which must not 
be necessarily rectangular) and the bandwidth (the size of the window). 

Histograms can be extended also to multivariate datasets, but for dimensions higher 
than two they usually become unfeasible. KDEs also have problems due to the curse of 
dimensionality as in high dimensional spaces all the samples become approximately equally 
far away from each other, so that KDEs lead to almost uniform results. 
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The idea of density is always related to that of distance; hence ND methods are 
available, based on the assumption that normal points have close neighbours while outliers 
lies far away. In k-Nearest Neighbours (kNN) method, for example, an observation is 
classified by a majority vote of its neighbours. Finally, to evaluate novelty, it is possible to 
use either distance (e.g. observation is novel if distance to the k-nearest neighbours exceeds 
a threshold) or density (e.g. using a local outlier factor LOF). [49,50,51] 

 
Ultimately, as Novelty Detection is practically a one-class classification, most of the 

classification algorithms seen in the previous section can work or can be adapted to work 
in this framework [52]. 

For example, traditional Support Vector Machines can be used assuming existence 
of labelled data [53,54]. When this is not possible, SVM can be modified considering that 
normal points belong a to high density data regions which can be encompassed by an 
hypersphere. Separation of non-spherical distributed data is done in a high dimensional 
space into which observations are mapped using non-linear mapping (kernel). 

Most of the recent developments are anyway related to Neural Networks, which can 
effectively detect novelty by analysing the response of the trained neural network (trained 
on the normal data) to a test input. The great generalization ability of NNs in fact can lead 
to very accurate results. The main architectures are reported hereinafter. 

 Multilayer Perceptron (MLP), a feedforward artificial neural network whose weights 
can be efficiently optimized by backpropagation to output values close to a target when the 
input is normal. 

Auto-associative networks (AA NNs) consisting of an input, an output and at least a 
middle bottleneck compression layer are commonly used in dimensionality reduction as a 
variant of Principal Component Analysis (PCA). Similarly to the already introduced 
Autoencoders, these can be used for ND by computing the error in the reconstruction made 
by a network trained on normal data. If this exceeds a threshold data can be considered 
novel. 

Auto-associative networks perform a functional mapping and should not be 
confused with associative memories (e.g. Hopfield network) which are classifiers, recalling 
a stored exemplar that most closely resembles a partial or corrupted input pattern [55]. 

Hopfield network is composed of binary threshold units with recurrent connections 
between them. These nets have a scalar value associated with each state of the network, 
referred to as the network energy; when a normal observation is given to a trained network 
energy remains close to a minimum, while it increases when novel observations are sent as 
input. 

Other artificial neural network producing a dimensionality reduction are the Self-
organizing maps (SOMs). SOMs produce a low-dimensional (typically two-dimensional), 
discretized representation of the input space called a map. This map can be used for ND as 
after the training, only some part of the map activates when normal data is presented. If 
regions of the map further than the normal activates, novelty is detected [56]. 

In a similar fashion, Radial Basis Functions (RBF) networks create a real net in the 
original feature space. Neurons are centred in this space and activates if an observation falls 
into their range of action. This way, an RBF network outputs an approximation of the density 
of the training set, as Gaussian Mixture Models (GMMs) do. Observations in low density 
regions are then considered novel. 

The previously introduced decision trees, which can learn hierarchies over pre-
specified features with data-driven architecture, can be merged to neural networks to form 
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neural trees. In their simplest form, a neural tree is a set of perceptrons functionally 
organized in a binary tree which leads to a hierarchical quantization of the training data into 
equiprobable regions. A tree built on training data can be compared to a tree computed on 
novel data by Kullbach-Leibler Divergence, which can be used to discover novelty. [57] 

Adaptive neural trees (ANTs) are also emerging, to adaptively grows the architecture 
from primitive modules as an improvement to the original binary tree. [58] 

Other tree-shaped networks are the Bayesian. A Bayesian network is a probabilistic 
graphical model that represents a set of variables and their conditional dependencies via a 
directed acyclic graph (DAG). Each node is associated with a probability function that takes, 
as input, a particular set of values for the node's parent variables and outputs the 
probability of the variable represented by the node. In other words, it reconstructs the 
probability of every possible event as defined by the combination of the values of all the 
variables (i.e. the joint probability distribution). By aggregating results with a single root 
node, novelty detection can be performed. Similar ideas may be applied to undirected, and 
possibly cyclic, graphs such as Markov networks. 

Combining classical network models with real-life inspired characteristics, different 
approaches to Neural Networks Novelty Detection can be found in the literature. 

For example, Habituation based networks are based on “habituation”, a decrement 
in the response of a repeated stimulus. This way a network can be trained to non-respond 
to normal inputs but only to novel [49,51]. 

Oscillatory networks also combine a classical network with dynamics. Oscillating 
networks are stable systems trained to quickly reach their equilibrium point after when 
normal data are given as input. When novel observations are shown to the network then, 
longer times are necessary to the net to get back to equilibrium, so that novelty can be 
assessed [51,59]. 

Adaptive resonance theory (ART) networks on the contrary are inspired to the brain 
information processing and implement lateral inhibition, the ability of an excited neuron to 
reduce the activity of its neighbours. In the net then, an input is taken from the comparison 
field and transferred it to its best match in the recognition field, which is the only neuron 
whose set of weights most closely matches the input vector. This feature of the net can be 
easily used for classification purposes [60]. 

 
Finally, information theory-based methods can be also used in novelty detection 

[49,50,51]. The basic idea is that outliers significantly alter the information content in a 
dataset, so that the measure of information contained in novel data will differ from the 
information level evaluated in the training. Measures of information are the Kolomogorov 
complexity, the entropy and other diversity indices such as the Shannon index, the Rényi 
entropy, the Simpson index, the Gini–Simpson index, etc. 
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Chapter 4: 

The selected algorithms 
 

1. Introduction 
According to chapter 2, the gearbox identification through vibration monitoring 

can be considered a data to decision (D2D) process. Indeed, the vibration measurements 
collected in datasets are analysed in order to produce a decision about the possibility of 
triggering an alert to communicate the need of an eventual corrective maintenance 
action. In this regard, according to costs and safety considerations, two monitoring 
philosophies are possible, leading to two different kinds of methodologies. In case of very 
expensive machines, for example, the cost of a permanent, continuous monitoring system 
is easily justifiable. Very quick and human-independent algorithms are then required to 
work on-line. These algorithms rely on simple features and their scope is bounded to 
diagnose impending failure and trigger an alert with some limited advance. Unfortunately, 
it is far more common in the industrial field to find relatively cheap machines with 
important down-time costs. In such cases an intermittent monitoring is preferable, so that 
less sensors (typically one) are used, connected to a light data acquisition system. In this 
case a more advanced data processing is preferable to produce a detailed diagnostic with 
long-term advance warning of developing faults. In this work, a selection of the algorithms 
found in the literature review both for Signal Processing and from Machine Learning 
environments are described and organized in the procedural scheme reported in Figure 1 
so as to create two methodologies suitable for either a permanent or an intermittent 
monitoring. The selection is obviously just a small subset with respect to what can be 
found in the state of the art (Chapter 3). The main criteria used for the choice was the 
model interpretability, the degree to which the criteria for a decision can be understood 
by a human [67]. The algorithms effectiveness and efficiency were then assessed, and the 
complexity gradually increased to reach optimal diagnostics results at the minimum cost.  

 

 
Figure 1: Proposed procedural scheme for Condition Based Monitoring  



Chapter 4: The selected algorithms 

 

60 
 

In particular, on the left half of the scheme (Figure 1), the methodology for a 
permanent, continuous monitoring derived from Machine Learning is given. In order to 
cope with the need of a quick, on-line data processing, it is designed using data-based 
techniques applied on simple features extracted directly from the raw time signals. These 
features can be treated independently, with multiple univariate analyses, or altogether, 
considering the complex correlation structure in a so-called multivariate analysis. 
Depending on the desired diagnostic level (enriched Rytter levels, chapter 2), different 
algorithms are proposed. In any case, the target of the analysis is mainly to detect the 
presence of a damage (Level 1 - Detection), triggering an alarm in case of danger. 

On the contrary, on the right side of Figure 1, the methodology for an intermittent 
monitoring derived from Signal Processing can be found. This is based on the evaluation 
of frequency domain features for the different sources (basically gears and bearings). The 
raw, asynchronously sampled (i.e. with a constant sampling frequency in Hertz) signal is 
resampled at constant angular increments of a reference shaft and the different 
contributions are then separated so as to produce synchronous spectra, from which the 
damage-characteristic frequencies are identifiable (see chapter 3 for gearbox signatures). 
An additional tachometer is required for the Computed Order Tracking [14] to transform 
the measured signal from time domain to angular (or order) domain. The separation on 
the contrary is performed exploiting the different characteristics of gears and bearings 
signals. According to Wold’s theorem [16] in fact, a stationary time series can always be 
written as a unique sum of a deterministic part (singular) and a stochastic part (regular). 
This enables to separate the gear signal, which is periodic with respect to the shaft angle (and 
then deterministic), from the bearing contribution, which is cyclostationary, as introduced in 
chapter 3. Several different algorithms can be used to perform the separation. One of the 
most reliable is the Synchronous Average (SA), extension of the Time Synchronous Averaging 

to angular domain signals [2]. A number of algorithms based on prediction is also available. 
Linear Prediction (LP), Adaptive Noise Cancellation (ANC), Self-Adaptive Noise Cancellation 
(SANC) or Discrete/Random Separation (DRS) belong to this category [16,17]. 

Despite the separation, the spectrum of the residual signal (the raw signal minus 
the deterministic signal) often contains little diagnostic information about bearing faults, 
whose characteristic signal is typically covered by stronger background noise. Anyway, 
over many years, Envelope Analysis established as the benchmark method for highlighting 
the bearing diagnostic information [15]. First, the signal is bandpass filtered in a high 
frequency band corresponding to some structural resonance, that can be excited by the 
bearing fault impulsivities. Then, it is amplitude demodulated by extracting its envelope, 
whose spectrum contains the desired diagnostic features. 
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2. Selected Signal Processing techniques for Intermittent 
monitoring 

With a particular focus on bearing damages, whose detection is known to be very 
hard, the following methodology is proposed to perform an intermittent monitoring. As 
stated in chapter 2, intermittent monitoring usually has to rely on few sensors (typically 
one) and light data acquisition systems but at the same time, incipient damages need to 
be detected because long time can pass between successive acquisitions. In these 
regards, very advanced and complex data processing techniques are needed to work out a 
highly detailed analysis giving long-term advance warning of developing faults. 

The proposed methodology is summarized in the procedural scheme reported in 
Figure 2. 

 

 
Figure 2: The proposed intermittent monitoring methodology. 

 
The first issue to be faced when monitoring gearboxes is related to the fact that 

industrial machines usually work at variable speed. Despite a simple algorithm such as the 
Short Time Fourier Transform can highlight such speed variations (this is described in 
subsection 2.1 of this chapter), when a tachometer is available it is always wise to switch 
from the time domain to the angular domain. By resampling a time series at constant 
angular increments in fact, it is possible to “rephase” asynchronously sampled signals, so 
that the non-stationarity due to the variable speed can be compensated. This subject is 
tackled in subsection 2.2, describing the Computed Order Tracking algorithm, together 
with the Synchronous Average, a simple but effective algorithm able to extract the gear 
deterministic signal by averaging the resampled signal over time for the different angular 
positions. 

Alternative algorithms for deterministic/non-deterministic separation based on 
prediction are treated in subsection 2.3. In particular Linear Prediction, Self-Adaptive 
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Noise Cancellation (known in acoustics as Adaptive Line Enhancer) and Discrete-Random 
Separation are considered. Once the residual containing the bearing signal and noise is 
obtained, Envelope Analysis can be used to demodulate the high frequency noise which 
becomes a carrier for the bearing diagnostic information. The reference method for 
selecting the optimal demodulation band is the Fast Kurtogram, described in subsection 
2.4. Nevertheless, an alternative algorithm, the Empirical Mode Decomposition is 
proposed in subsection 2.5. Finally, in subsection 2.6 Stochastic Resonance is used to 
increase the signal to noise ratio of the residual to highlight the otherwise hidden bearing 
characteristic spectral lines in the spectrum. 

 

2.1. Time-frequency STFT and asynchronous sampling issues 
Rotating machines signals are known to be synchronous with the main shaft and 

(mechanically) phase-locked to the operating speed. When the rotational speed is 
perfectly constant, then, the usual sampling at uniform time increments results very 
effective in producing spectra in which the machine signature is clear (synchronous 
spectrum).  Indeed, the signal power is concentrated at the frequencies corresponding to 
the relevant orders, namely multiples of the shaft frequency. Unfortunately, common 
machines are far from being operated at constant speed. In this case, the constant 
sampling rate leads to asynchronously sampled signals (with respect to the shaft 
frequency) which produces spectra featuring a spread of the signal power in a range 
dictated by the speed variability (asynchronous spectrum). The machine signature is no 
longer sharp, and the related diagnostic features becomes meaningless. This can be easily 
understood with a simple simulated signal featuring a single wave (e.g. the shaft 
rotational signal) with a variable frequency. A time-frequency analysis is suggested to 
visualize the problem. In particular, the Short Time Fourier Spectrum (STFT) is used in this 
case.  

The STFT algorithm is here summarized: 

• A long time-signal is divided into 𝐾 shorter segments of length 𝑁 samples. 
An overlap of 𝑂 samples is usually considered in the division. 

• Each realization 𝑘 of length 𝑁 samples is then windowed, and the Fourier 
transform is computed separately on each short segment. The 𝑘-th 

spectrum is then associated with time instant 𝑡𝑘 = 1
𝑓𝑠

⁄ [𝑁
2⁄ +

(𝑘 − 1)(𝑁 − 𝑂)], implying a time discretization ∆𝑡 =
𝑁−𝑂

𝑓𝑠
. 

• The spectrum evolution with time can be obtained by placing the 𝐾 spectra 
side by side. The 3-D surface so obtained takes the name of Waterfall (or 
Cascade) Plot. The same information can be summarized in a 2-D plot of 
frequency vs time, where the amplitude information is associated to a 
given color-map. This is the so-called Spectrogram. 

The division in shorter chunks is ruled by the latent hypothesis that the speed can be 
considered quasi-constant in a limited time period 𝑇 = 𝑁𝑓𝑠, leading to quasi-synchronous 
spectra. If this holds, the use of the STFT can give good results in picturing the 
phenomenon of the speed variation, at the expense of a reduced frequency resolution 

∆𝑓 =
𝑓𝑠

𝑁
. 

The simple simulation reported in Figure 3 shows two waterfall plots. The first is 
referred to a signal featuring a speed fluctuation, very common in usual machines. This is 
modelled as a sinusoidal frequency variation in time. The second is a simulation of a 
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machine start up, with a linear speed increment up to the stable working condition. 
Comparing the Fourier spectra of the two overall signals to the ideal, constant speed case, 
it can be easily noticed how the power spreads over a range of frequencies (Figure 4). The 
main asynchronous spectra issue is then highlighted with respect to the synchronous 
spectrum case. 

To overcome this issue, traditional analog DAQs were adapted to feature a 
sampling triggered by a square wave generated by a tachometer sensing angular 
references on the main shaft, instead of the usual electronic oscillator circuit giving a 
constant triggering frequency [1]. But some limits remain. First, a variable sampling 
frequency implies a non-optimized anti-aliasing filter, which can lead to a poorer 
acquisition. Moreover, the high cost and complexity of the equipment make it less 
desirable. Nowadays it is far more common to rely on usual (constant 𝑓𝑠) DAQs, adding to 
the acquisition a channel reserved for recording the signal from a tachometer mounted on 
the main shaft (keyphasor). The vibration signals are only later resampled at constant 
angular increments through a procedure called Computed Order Tracking. 

 
 

  
  

 
 

  
Figure 3: Waterfall plots for two frequency modulated harmonic waves. In the first case the 

frequency oscillates in time, while in the second there a linear dependence is considered. 

 

time 

time 
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Figure 4: Amplitude spectrum for the two frequency-modulated harmonic waves (Figure 3) 

compared to the expected spectrum in absence of modulation (in blue). 

 

2.2. Computed Order Tracking (COT) and Synchronous Average (SA) 
As established, the COT is an algorithm meant to resample the asynchronous 

acceleration signal, originally sampled at a constant frequency 𝑓𝑠, to obtain a new discrete 
representation of the underlying continuous signal given at constant angular increments 
of the main shaft Δ𝜗. The COT algorithm, proposed by Fyfe & Munck in 1996 [1], does this 
in two steps. 

• The signal from the tachometer is processed to extract the exact keyphase 
information: a vector 𝑡𝑘𝑝 (keyphasor) containing all the times at which a 

reference on the shaft (also key, or trigger) passes in front of the sensor is 
produced. The pulses induced in the tachometer signal must be then 
detected. At this purpose, a rising edge detector can be used to locate the 
passage times (e.g. the zero crossings), as shown in Figure 5. 
 

 

 
Figure 5: Zero crossing detection on the left side; rising edge detector (thresholds at ±2,5) on the 

right side. 
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• The new time axis for the angular resampling is built via interpolation. At 

first, the signal 𝜗(𝑡𝑘𝑝) = 𝑛𝑘𝑝 ∆∅ is reconstructed on the basis of the 

physical angle among two following keys ∆∅. Then, assuming a quadratic 
law of motion ϑ(t) = b0 + b1t + b2t2, corresponding to a constant angular 
acceleration, the 3-points parabolic interpolating function can be inverted. 
Given a desired number of samples per rotation of the reference shaft 
(Samples Per Cycle, SPC), the sampling times corresponding to a uniform 

angular sampling 𝜃(𝑘) = 𝑘
2𝜋

𝑆𝑃𝐶
= 𝑘 𝑑𝜃 can be found, as better explained 

visually in Figure 6. 
 

  
Figure 6: COT visually explained. 

 
In particular, the coefficients 𝑏𝑖 can be found solving the system of 3 
equations: 
 

{
0

∆∅
2∆∅

} = [

1 𝑡1 𝑡1
2

1 𝑡2 𝑡2
2

1 𝑡3 𝑡3
2

] {

𝑏0

𝑏1

𝑏2

} ( 1 

 
Then, by inverting the law of motion, the new time axis can be expressed 

by 
 
 

𝑡(𝜃) =
1

2𝑏2
[√4𝑏2(𝜃 − 𝑏0) + 𝑏1

2 − 𝑏1] ( 2 

 
 

• Finally, the new time axis can be used for resampling via 
interpolation of the original vibration signal, as shown in Figure 7 (spline 
interpolation). It is important to remember that the parameter SPC is the 
number of samples per order of the shaft speed and is then the analogous 
of the sampling frequency in the orders domain. 
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Figure 7: COT of a frequency sweep: in blue the original sweep sampled at constant time 

increments, in red the spline resampling at constant angular increments 

 
The COT allows then to switch from an asynchronous spectrum in the frequency 

domain, to a synchronous spectrum in the domain of the orders of the main reference 
shaft. The power related to a given order is then concentrated again on a single order line, 
and not spread over wide ranges of frequency, as shown in Figure 8, where the order 
spectrogram for both the simulations introduced in subsection 2.1  of this chapter is 
reported. 

 
Figure 8: The effect of COT on the two frequency-modulated harmonic waves (Figure 3). 

 
The advantage of having a signal sampled at constant angular increments can be 

also exploited to separate the deterministic component from the non-deterministic 
contribution. In particular, this can be done with the so-called Synchronous Average (SA) 
algorithm. SA means averaging the vibration signal acquired at the same angular position. 
This corresponds to a statistical aggregation allowing to discard all the contributions which 
are not periodic with the reference shaft, as it is possible to prove that they feature a 
zero-mean distribution [2]. The periodic component is then generated by replicating the 
base period for all the length of the original dataset, while the residual corresponds to the 
subtraction of the periodic part from the original signal. The procedural scheme of SA is 
graphically explained in Figure 9, where a simple mathematical formulation for 
aggregating the samples at angle 𝜃𝑘  (in red in the image) over the 𝑁 cycles is also 
reported. 
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Figure 9: Synchronous Average explained visually. 

 
In the frequency domain SA can be proved to be a comb filter [1] leaving 

unaffected the signal synchronous with the shaft and its multiples, while annihilating all 
other contributions (even the submultiples of the reference shaft speed). The orders 
representation of the corresponding filter is given by the equation 

 

𝐻(𝑓) =
𝑌𝑝𝑒𝑟(𝑓)

𝑌(𝑓)
=

1

𝑁

sin (𝑁𝜋𝑇𝑓)

sin (𝜋𝑇𝑓)
 

( 3 

 
where 𝑁 is the number of averaged cycles, and a graphical representation can be found in 
Figure 10. 

 
Figure 10: Order tracking filter frequency response (Randall & Antoni, 2011 [1]) 

 
The combination of COT and SA is a very powerful tool in diagnostics. Focusing on 

the periodic part for example, all the gears GMF harmonics and sidebands can be 
extracted at once, being entire multiples of the shaft speed. In the residual term, on the 
contrary, the bearing signals is left with minimum disruption. Therefore, its effectiveness 
in the separation is impressive, but its efficiency is limited by the fact that the whole 
procedure must be repeated for each shaft present in a machine, so that the 
computational burden may become huge in case of complex gearboxes.  



Chapter 4: The selected algorithms 

 

68 
 

2.3. Prediction based separation 
The issue of decomposing a signal into a deterministic and a non-deterministic 

component is recurrent in signal processing. This task can be accomplished exploiting the 
signal properties introduced in Appendix 3. In particular, the definition of deterministic 
signals implies a complete specification, with no uncertainty at any time instant. On the 
contrary, random signals cannot be defined unless a probabilistic approach is used, as it is 
not possible to precisely define their value at a specific instant of time. Namely, periodic 
signals are predictable from any past values, arbitrarily far back in the past with zero 
prediction error, while predictability vanishes for random or chaotic signals. Non-
deterministic signals are usually in between, and prediction from past values becomes less 
and less accurate as data become older (their correlation decays towards zero with 
increasing time-lags). Furthermore, focusing on stationary time series, Wold’s work [4] 
demonstrates that it is always possible to write them as a unique sum of a deterministic 
part (singular) and a stochastic part (regular). This enables to separate the gear signal, 
which is periodic with respect to the shaft angle, and then deterministic in a synchronously 
sampled signal, from all other contributions (bearings plus noise). 

 

2.3.1. Prediction theory: one step ahead prediction 
The scope of prediction is to forecast the signal 𝑦(𝑛) from 𝑁 past values, usually 

collected in a regressor vector 𝑤𝑛̅̅ ̅̅ = [𝑦(𝑛 − 1), 𝑦(𝑛 − 2), … , 𝑦(𝑛 − 𝑖), … , 𝑦(𝑛 − 𝑁) ]𝑡. It 
is possible to prove that this problem can be optimally solved considering a linear 
autoregressive form of such as 

 

𝑦𝑝(𝑛) = ℎ̅𝑡 ∙ 𝑤𝑛̅̅ ̅̅  ( 4 

 

In this framework, the prediction coefficients vector ℎ̅ = [ℎ1, ℎ2, … , ℎ𝑖, … , ℎ𝑁]𝑡 minimizing 
the mean square prediction error (the cost function of the optimization) can be proved to 
be the Wiener filter. 
 

 
Figure 11: One step ahead prediction – example of  AR(8) Wiener filter 

 
Considering the cost function: 
 

𝑀𝑆𝐸 = 𝜎𝑒𝑟𝑟
2 = 𝐸[𝑆𝐸(𝑛)] = 𝐸[|𝑒𝑟𝑟(𝑛)|2] = 𝐸 [|𝑦(𝑛) − 𝑦𝑝(𝑛)|

2
] ( 5 
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the optimal FIR filter ℎ = argmin 𝜎𝑒𝑟𝑟
2  (exactly the Wiener filter) has then a closed form 

solution resulting from the so-called Wiener-Hopf system of equations 
 

∑ 𝑅𝑦𝑦(𝑖 − 𝑚)ℎ𝑖 = 𝑅𝑦𝑦(𝑚)    𝑓𝑜𝑟  𝑚 = 1, … , 𝑁

𝑁

𝑖=1

 ( 6 

 
Where 𝑅𝑦𝑦(𝑘) is the autocorrelation function 𝐸[𝑦(𝑛)𝑦(𝑛 − 𝑘)] of the sequence 𝑦(𝑛) for 

a lag 𝑘, estimated as 𝑅𝑦𝑦(𝑘) =
1

𝑁−𝑘
∑ 𝑦(𝑙)𝑦∗(𝑙 − 𝑘)𝑁

𝑙=1 . Solving the least squares 

problem via the normal equations, the Yule-Walker system of equations is obtained, so 

that the vector of the coefficients ℎ̅ can be computed from �̿�ℎ̅ = �̅�. 
 

[

𝑅𝑦𝑦(0) 𝑅𝑦𝑦(−1) … 𝑅𝑦𝑦(1 − 𝑁)

𝑅𝑦𝑦(1) 𝑅𝑦𝑦(0) … 𝑅𝑦𝑦(2 − 𝑁)
⋮

𝑅𝑦𝑦(𝑁 − 1)
⋮

𝑅𝑦𝑦(𝑁 − 2)
⋱
…

           ⋮           
𝑅𝑦𝑦(0)

] [

ℎ1

ℎ2

⋮
ℎ𝑁 

] = [

𝑅𝑦𝑦(1)
𝑅𝑦𝑦(2)

⋮
𝑅𝑦𝑦(𝑁)

] ( 7 

 
The algorithm summarizing these operations is named Linear Prediction (LP), often called 
Linear Predictive Coding (LPC). It is important to note that to improve the 
deterministic/non-deterministic separation, the algorithm can be modified for performing 
a Δ steps ahead prediction, so as to exploit the difference in the autocorrelation of the 
two components. 

In practice, however, the filter length 𝑁 can be very large (hundreds or thousands 
of samples) so that the Yule-Walker system cannot be solved directly. In this case, the 
optimization problem can be tackled considering an adaptive process in which the 
coefficients of the FIR filter are adjusted from iteration to iteration using a gradient 
descent algorithm such as the Least Mean Square. The simple LMS adaptation rule turns 
out to be 

 

ℎ𝑖
𝑛+1 = ℎ𝑖

𝑛 − 𝜇 𝛻𝑆𝐸(𝑛) 
ℎ𝑖

𝑛+1 = ℎ𝑖
𝑛 − 𝜇  𝑒𝑟𝑟(𝑛) 𝑦(𝑛 − 𝑖) 

( 8 

 
with a strictly positive convergence coefficient 𝜇, also called forgetting factor. To overcome 
the sensitivity to the input signal scale, the Normalized LMS (NLMS) is often used 
 

ℎ𝑛+1̅̅ ̅̅ ̅̅ = ℎ𝑛̅̅ ̅ +
𝜇  𝑒𝑟𝑟(𝑛) 𝑤𝑛̅̅ ̅̅

𝜖 +  𝑤𝑛̅̅ ̅̅  𝑤𝑛̅̅ ̅̅ 𝑡  
 ( 9 

 
 
adding a scale parameter 𝜖 preventing the ratio from diverging. 
The LMS-based recursive algorithm takes the name of Self-Adaptive Noise Cancellation 
(SANC) in the acoustic community, while in the signal processing community the name 
Adaptive Line Enhancer (ALE) prevails [4]. 

It can be useful to face the problem of finding the optimal Wiener filter also from a 
frequency domain point of view. In this case, the convolution of the FIR to the signal 
simplifies to the product 
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The scope is then to estimate the transfer function among a delayed version of the 
original signal 𝑌𝑑(𝑓) and the only deterministic part of the signal 𝐷(𝑓).  
 

 
This is performed by the Discrete-Random Separation (DRS) algorithm [5], which exploits 
an estimator of the transfer function 𝐻(𝑓) based on the average power spectral density of 
chunks of the signal.  
 

𝐻(𝑓) =
∑ 𝑌𝑘

𝑑(𝑓)∗𝑌𝑘(𝑓)𝐾
𝑘=1

∑ 𝑌𝑘
𝑑(𝑓)∗𝑌𝑘

𝑑(𝑓)∗𝐾
𝑘=1

 ( 12 

 
The scheme in Figure 12 better describes the procedure, identifying the main steps, and 
highlighting the N-long sliding windows (e.g. Parzen window in this case), producing the 
M-long filter, with 𝑀 ≥ 𝑁. 

 

 
Figure 12: DRS explained visually. 

 

2.4. Envelope Analysis and Spectral Kurtosis 
The diagnostics of rolling element bearings is founded on Envelope Analysis. 

Localized faults in a bearing, in fact, generate impacts which excite the structural resonant 
frequencies and induce a modulation phenomenon in the acquired acceleration signals. In 
particular, faulty bearings are believed to cause an amplitude modulation to the high 
frequency noise, which becomes a carrier for the diagnostic information. Demodulation of 
the original signal via analysis of the envelope is then the natural processing (Appendix 2) 
to recover the bearing-characteristic spectral lines, which are usually so weak with respect 
to the background noise, they can rarely be detected in the row signals spectra. To 
enhance the signal-to-noise ratio of a bearing signal, a band-pass filter is usually set 
around the desired resonance frequency band before the demodulation. However, the 

𝑦𝑝(𝑛) = ℎ(𝑛)⊗𝑦(𝑛) → ℱ → 𝑌𝑝(𝑓) = 𝐻(𝑓)*𝑌(𝑓) ( 10 

𝑌𝑝(𝑓) = 𝐻(𝑓)*𝑌(𝑓) → 𝐷(𝑓) = 𝐻(𝑓)*𝑌𝑑(𝑓) ( 11 



71 
 

selection of the most appropriate band for demodulation raised a heated debate over the 
years. In accordance with the believed modulation process, in the past, a hammer tap 
testing was used to find beating housing resonances [7]. In any case, the band-selection 
problem has now largely been solved using the Spectral Kurtosis (SK) and in particular the 
Kurtogram to find the most impulsive band of the residual signal (i.e. after the removal of 
the deterministic part of the signal). 

The use of kurtosis is justified by the fact that the CS2 impulse response train 
signal typical of a damaged bearing shows a distribution which is not normal and with 
heavy tails, as highlighted by the simple simulation with a synthetic signal (refer to 
chapter 4) reported in Figure 13. It is important to point out that for such a simulated 
signal, the value of the excess kurtosis shoots up to a value of 72 and is then the ideal 
feature highlighting the impacts produced by a damaged bearing. In fact, Kurtosis 
corresponds to the expected value of the standardized data raised to the fourth power. All 
the values within the range ±1 (the 68% in case of a normal distribution) contribute 
almost nothing to kurtosis (raising a number smaller than 1 to the fourth power makes it 
closer to zero). On the contrary, the farther values show larger and larger contributions as 
their distance from the mean increases. Hence, the only interpretation of kurtosis is in 
terms of tail extremity i.e. outliers and must not be mistaken for a measure of the 
“peakedness” of the distribution itself [22,23]. In this regard, Figure 13 helps in visualizing 
the heavy tails which are related to such a high value of kurtosis. 

 
 

2.4.1. The Spectral Kurtosis 
The Spectral Kurtosis (SK) was first defined by Dwyer [9] as the normalized fourth 

order moment of the real part of the STFT of a signal. Later Pagan and Ottonello [10] 
proposed to move to the fourth order moment of the magnitude of the STFT. Traditionally, 
SK is based on the STFT, introduced in subsection 2.1 of this chapter. To summarize, the 
standard Fourier analysis, which gives no time information, is improved by transforming 
windowed sections of the data. Time resolution is then obtained by centring the window 
function on the epoch of interest and by sliding the window along the time axis. The 
drawback is that STFT is not able to give simultaneously high time and frequency 
resolutions. In any case, starting from a spectrogram, the time frequency representation 
𝑋(𝑡, 𝑓) can be seen as the complex envelope of the signal band-pass filtered around the 
frequency 𝑓 (ideal, infinitely narrow band filter), and its squared magnitude then indicates 

  
Figure 13: CS2 impulse train histogram vs normal distribution (in red) 
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the way energy is flowing in that frequency with respect to time [2]. If the frequency band 
happens to carry pulses, bursts of energy will appear, and this can be detected by 
computing the excess, normalized fourth order moment of the complex envelope: 

 

𝑆𝐾(𝑓) =
〈|𝑋(𝑡, 𝑓)|4〉

〈|𝑋(𝑡, 𝑓)|2〉2
− 2 ( 13 

 
where the -2 is used to enforce 𝑆𝐾(𝑓) = 0 in case of a complex Gaussian 𝑋(𝑡, 𝑓). 
 From a practical point of view, STFT gives a finite frequency discretization Δ𝑓 which 
is function of the time window length. Then, the complex envelope becomes a function of 
this additional parameter: 𝑋(𝑡, 𝑓, ∆𝑓). Computing the spectral kurtosis for different 
frequency discretizations (𝑆𝐾(𝑓, Δ𝑓)) and summarizing it as a colormap in the [𝑓, ∆𝑓] 
plane, the Kurtogram is built. As already introduced, the main weakness of this procedure 
is the difficulty of STFT in obtaining a good discretization in both frequency and time 
domain, so that a different approach was developed by Antoni [8]. In order to find the 
kurtosis in all the required frequency bands, the signal is processed by a quasi-analytic FIR 
filter bank producing a division of the [𝑓, ∆𝑓] plane (paving). This paving was originally 
dyadic but was later improved to a 1/3 binary tree division, which can better cover the 
frequency axis. The procedure finally obtained takes the name of Fast Kurtogram (FK). 
 

 

 
Figure 14: binary vs 1/3 binary tree paving for FK [8]. 

 
Several improvements have been proposed over the years, but no one proved to 

be as reliable and computationally efficient as the FK. 
A simple but effective novel implementation is presented in Chapter 6. 

  



73 
 

2.5. Empirical Mode Decomposition (EMD) 
In order to broaden the perspective on bearing diagnostics, a different approach to 

Envelope Analysis is reported. It is based on the Empirical Mode Decomposition (EMD), a 
relatively novel technique proposed by Huang in the mid 90’s [12] and later successfully 
applied in many fields, from acoustics to biology (e.g. oceans, earthquakes, climate, etc.), 
and then also extended to fault diagnostics. EMD is a powerful self-adaptive and data 
driven method to decompose a multi-component signal into a sum of possibly non-linear, 
non-stationary empirical modes. In contrast with Fourier transform, which decomposes a 
signal into a sum of simple harmonic waves, EMD is able to produce a sum of amplitude 
and frequency modulated components called Intrinsic Mode Functions (IMFs) in an 
empirical way. Despite EMD is often referred to as Hilbert-Huang’s Transform (improperly, 
as EMD is just a part of HHT), it is not a true transform, but an empirical approach to 
produce an unpredictable but finite number of elementary components which admit a 
Hilbert transform. Hence, a signal 𝑠(𝑡) can be modelled as multimodal entity and can be 
summarized as 

 

𝑠(𝑡) = ∑ 𝑎𝑗(𝑡) cos ( 𝜑𝑗(𝑡))

𝑀

𝑗=1

 ( 14 

 
In simple words, EMD considers the signal 𝑠(𝑡) as a fast mode on top of slower 
oscillations. Hence, with a procedure called “sifting”, it identifies locally the fastest 
oscillation (first IMF), subtracts it from the signal and iterates on the residual to find in the 
same way the remaining IMFs. 
An IMF must feature two main properties: 

• the number of local maxima (typically positive) and minima (negative) and 
the number of zeros of the function must be equal or differ at most by one 

• at any instant, the mean value calculated averaging the maximum and the 
minimum envelopes must be null. 

In light of these requirements, the sifting algorithm can be derived. It consists of few 
fundamental iterative steps: 

1. Identification of local maxima and minima and interpolation (e.g. cubic splines) to 
generate the lower and the upper envelopes 𝑒𝑙(𝑡),  𝑒𝑢(𝑡). 

2. Compute the mean envelope 𝑚1 = 0,5 (𝑒𝑙(𝑡) + 𝑒𝑢(𝑡)) and subtract it from the 
signal to obtain the presumed IMF ℎ1(𝑡) = 𝑠(𝑡) − 𝑚1(𝑡) 

3. Check whether ℎ1(𝑡) shows the main IMF properties. If this is false, iterate the 
procedure on ℎ1(𝑡) until the first IMF is found. 

4. Compute the residual 𝑟1(𝑡) =  𝑠(𝑡) − 𝐼𝑀𝐹1 and start again the procedure on this 
residual.  

5. The procedure is stopped when 𝑟𝑛(𝑡) becomes a monotonic function or a 
constant. 

The procedure leads then to an automatic split of the original signal in a non-predictable 
number of IMFs, characterized by progressively lower frequencies. 

The great advantage is that EMD can automatically adapt to any signal, even with 
wide frequency contents, and does not require a priori knowledge on the signal nor 
control parameters. 
Unfortunately, some weaknesses cannot be underestimated. First of all, the algorithm 
uses interpolation, and can eventually introduce aliasing. Then, the separation, even for a 
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dummy sum of two harmonic modes, is possible only under some restrictions: amplitude 
ratio 𝑎 = 𝑎2/𝑎1 < 0.5 and frequency ratio 𝑓 = 𝑓2/𝑓1 < 1/𝑎 [13], as shown in Figure 15. 
 

  
Figure 15: Separation index: a value of 0 indicates a perfect separation.  [13] 

 
In case of more complex amplitude and frequency modulated components, the problem 
of mode-mixing arises, so that EMD is no more able to distinguish the components and 
the resulting IMFs jump intermittently over time from one mode to another. This 
phenomenon is highlighted in Figure 16, where two frequency modulated modes are 
synthesized according to  
 

𝑐(𝑡) = 𝑎 sin (𝜔𝑐𝑡 + ∫ 𝜔𝑚(𝑡)𝑑𝑡) ( 15 

 
In the first case, the two carriers are featuring respectively 200 and 1600 Hz, while in the 
second case they are brought to 300 and 1000 Hz. The modulation is generated to 
increase the resulting frequency up to a maximum and then get back to the original value. 
The overall frequency as a function of time is shaped then as a raised cosine, so that at 
𝑡 = 10𝑠 both the modes are at the maximum frequency. In this condition, the low carrier 
frequency (mode 2) is incremented of 300 Hz while the high frequency (mode 1) is 
incremented of 150 Hz.  As it is easy to notice in Figure 16, aliases are present in both 
cases, but in the second one mode-mixing occurs. In practice, focusing on the frequency 
domain, EMD behaves as a series of overlapping auto-tuned band pass filters 
characterized by progressively lower centre frequencies. This is also confirmed by 
Flandrin [15] in which EMD is recognized to be equivalent to a dyadic filter bank (a 
wavelet-like filter bank) when it was applied to fractional Gaussian noise. 

In general, in the presence of noise, the performance of EMD improves. The 
addition of Gaussian noise for example is at the base of the Ensemble Empirical Mode 
Decomposition (EEMD), a variation of EMD able to mitigate the mode mixing problem. 
Indeed, EEMD defines the true IMF components as the mean of an ensemble of trials, 
each consisting of the signal plus a white noise of finite amplitude [14]. 
Hence, in actual vibration signals, where the noise level is usually very high, EMD 
approaches the behaviour of a filter bank, and acts in almost the same way as the 
kurtogram. That is why it can be used to assess the most suitable band for Envelope 
Analysis [16, 17]. Comparing the IMFs on the basis of their kurtosis, for example, the IMF 
with the highest impulsiveness content can be found. This IMF can be considered as a 
filtered version of the original signal, at a given band and centre frequency which are 
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automatically selected by EMD in an adaptive way. Envelope analysis can be then 
conducted on such a signal in the very same way as seen in paragraph 5. 
 

  
Figure 16: EMD applied on two different synthetic signals composed by a sum of 2 frequency 

modulated modes. On the left: 𝜔𝑐,1 = 1600𝐻𝑧 and  𝜔𝑐,2 = 200𝐻𝑧. On the right: 𝜔𝑐,1 =

1000𝐻𝑧 and  𝜔𝑐,2 = 300𝐻𝑧. In both cases 𝛥𝜔𝑚𝑎𝑥,1 = 150𝐻𝑧, 𝛥𝜔𝑚𝑎𝑥,2 = 300𝐻𝑧, 

 

2.6. Stochastic resonance (SR) 
The scope of Envelope Analysis, as clarified in previous chapters, is to highlight the 

bearing-characteristic signature, which is in practical cases always very weak with respect 
to the gears signal and the background noise. In any case, Envelope Analysis is not the 
only technique capable of increasing the signal to noise ratio selectively for the bearing 
spectral features. Among others, the Stochastic Resonance stands out [24,25,26,27,28].  

Stochastic Resonance was first introduced in 1981 by Benzi et al. in a study about 
the evolution of the Earth's climate to explain the phenomenon of glacial cycles, 
substantial variations of the average Earth’s temperature of about 10K every 100.000 
years [18]. In electronics, SR found many applications, in particular as a sort of random 
amplifier for the faint signals, far below the resolution of the available acquisition board 
[19]. In simple words, a bi-stable system such as the Schmidt trigger can be used to detect 
a weak deterministic signal to which a white noise is added. 

The Schmidt trigger is a comparator circuit with hysteresis, implemented by 
applying a positive feedback to the noninverting input of a differential amplifier (Figure 
17-up). It can be proved that adding a white noise to a weak input (smaller than the 
thresholds of the bi-stable device) can produce as output a square wave whose frequency 
content reproduces the spectrum of the undetectable original signal. The critical issue is 
the selection of the noise intensity. In fact, in both cases when the noise level is too low or 
too high, no detection is possible. This form of “resonance” only occurs at the optimal 
noise level. Hence the name Stochastic Resonance. An example of the stochastic 
resonance phenomenon is highlighted in Figure 17, where one can appreciate how the 
output square wave (blue) can roughly reproduce the frequency content of the 
deterministic but faint signal (magenta) thanks to the addition of Gaussian noise. 
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Figure 17: Schmidt trigger op-amp circuit (up) and detection of a signal (red) composed by the sum 

of a deterministic part (violet) and noise via symmetric thresholds (green). The output in blue 
proves to roughly follow the deterministic part. 

 
SR also found many applications in the field of physics, in particular to study the Brownian 
motion of particles suspended in a fluid, resulting from their collision with the fast-
moving atoms or molecules of the gas or liquid. This is ruled by the Langevin equation: 
 

𝑚�̈�(𝑡) + 𝜆�̇�(𝑡) = −𝑈′(𝑥) + √𝐷 𝜉(𝑡) ( 16 

 

where 𝑚 is the particle mass, 𝜆 is a friction coefficient, √𝐷 𝜉 is the stochastic force of 
intensity 𝐷 and 𝑈(𝑥) is the potential function. A bi-stable potential featuring two wells 
can be given by the equation: 
 

𝑈(𝑥) = −
𝑎

2
𝑥2 +

𝑏

4
 𝑥4 ( 17 

 
 Figure 18: The double-well potential. 

 

This differential equation is used as a reference also for the machine diagnostics field, 

which in most of cases uses a simplification for the overdamped motion (negligible 

inertia) of a Brownian particle in the bi-stable potential.  
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The differential reduces to 

�̇�(𝑡) = 𝑎 𝑥(𝑡) − 𝑏 𝑥3(𝑡) +  𝑠𝑖𝑔 (𝑡) ( 18 

 
where 𝑠𝑖𝑔 (𝑡) is the input signal, which for diagnostics applications is a sum of a 

deterministic, a non-deterministic and a noise term. It is obvious that in order to apply SR, 
the parameters characterizing the potential 𝑎 and 𝑏 must be optimized in some way, and 
a numerical integration scheme is needed to solve the differential equation. 

The simpler explicit method for the integration of ordinary differential equations is 
the Forward Euler method. Based on truncated Taylor series expansion, it approximates 
the derivative of a signal as the difference of two following samples divided by the time 
step: 

 

𝑦(𝑡 + ℎ) = 𝑦(𝑡) + ℎ�̇�(𝑡) +  1
2⁄  ℎ2 𝑦′′(𝑡) + 𝑂(ℎ3) 

𝑦(𝑡 + ℎ) = 𝑦(𝑡) + ℎ�̇�(𝑡) 

�̇�(𝑡) =
𝑦(𝑡 + ℎ) − 𝑦(𝑡) 

ℎ
 

 

( 19 

This formulation accepts then an estimation error of order 𝑂(ℎ2). A generalization for 
improving the accuracy of the estimation of the derivative is possible using a weighted 
average of 𝐾 increments 𝑘𝑖  of the function inside a single interval. This takes than name 
of Runge-Kutta order 𝐾: 
 

𝑦(𝑡0 + ℎ) = 𝑦(𝑡0) + ℎ ∑ 𝑏𝑖𝑘𝑖

𝑖∈[1:𝐾]

 ( 20 

 
where 𝑏𝑖 are the non-negative weights which must sum up to one. 
Runge-Kutta 4 is probably the most widespread, usually implemented as the Runge–
Kutta–Fehlberg 4(5) method, which is of order 4 with an error estimator of order 𝑂(ℎ5). 
Quantifying this error at each step and using it to control the step-size adaptively, finally 
brings to the ODE45 Matlab® algorithm. Focusing on bearing diagnostics, it is common to 
have acquisitions at very high sampling rates, which aims to represent also the high 
frequency resonances useful in the demodulation process. When the sampling frequency 
is very high then the error is restrained to acceptably low values, so that also the simple 
Euler solver, corresponding to a Runge-Kutta 1, can lead to good results. A comparison of 
the main solvers on a chunk of experimental signal is shown in Figure 19.  
Using RK1, the differential equation can be brought to a finite difference form 
 

𝑦(𝑡 + ℎ) = (1 − ℎ(𝑏 𝑦2(𝑡) − 𝑎)) 𝑦(𝑡) + ℎ 𝑠𝑖𝑔 (𝑡) ( 21 

 
which can be compared to the one for a first order low pass filter with time constant 𝜏 =
1/𝜔𝑐𝑢𝑡𝑜𝑓𝑓 : 

 

𝑦(𝑡 + ℎ) = (1 −
ℎ

𝜏 + ℎ
) 𝑦(𝑡) +

ℎ

𝜏 + ℎ
𝑥(𝑡) ( 22 
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Figure 19: Different integrators applied to the same input (raw, in blue).  

 
Relevant considerations arise from the SR interpretation as a sort of non-linear low pass 
filter. First of all, the non-linearity term 𝑏 𝑦2(𝑡) − 𝑎 does not only depend on the squared 
signal, but also on the potential parameters 𝑎 and 𝑏. This explains why the signal 
magnitude should match the double well potential size (given by 𝑎 and 𝑏) and is often 
rescaled to a given rms value 𝒔.  
 

�̃�(𝑡) = 𝒔
𝑦(𝑡)

𝑟𝑚𝑠(𝑦(𝑡))
 ( 23 

 
Furthermore, in case of 𝑏 𝑦2(𝑡) − 𝑎 ≈ 1 SR reduces to a perfect low pass filter with a 
given, nearly unitary cut-off (𝜔𝑐𝑢𝑡𝑜𝑓𝑓 ≈ 1/(1 − ℎ)). This clarifies the need of an 

additional parameter 𝑅 deforming the time axis to tune the band of action of the SR.  
 

ℎ̃ = 𝑹ℎ ( 24 

 
These last considerations are obviously very qualitative and cannot be used to select the 
best values of the SR parameters. Summarizing, four parameters must be finally selected: 
𝑎, 𝑏, 𝑅 and 𝑠. A performance evaluation criterion is then fundamental for such 
optimization. As introduced at the beginning of paragraph 5, the maximization of the 
kurtosis is a very good criterion for detecting a train of impulse responses. In practical 
cases, however, when multiple impact signals are present with different amplitudes and 
frequencies, the reliability of kurtosis may be affected i.e. gear impacts and strong noise 
may mask the damaged bearing signal. 

A more robust parameter proposed in [20] involves the Parson correlation 

coefficient |𝜌𝑦,𝑠𝑖𝑔| ≤ 1 

 

𝜌𝑦,𝑠𝑖𝑔 =
𝑐𝑜𝑣(𝑦(𝑡), 𝑠𝑖𝑔(𝑡))

𝜎𝑦𝜎𝑠𝑖𝑔
 ( 25 

 
to produce a weighted kurtosis indicator such as 
 

𝑤𝑘 = |𝜌𝑦,𝑠𝑖𝑔| 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑦) ( 26 
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The motivation is related to the fact that the correlation coefficient between 𝑦 and the 
bearing signal to be detected is maximum when 𝑦 is exactly that signal. Obviously, the 
true bearing signal is never known, so that it is substituted with the input signal 𝑠𝑖𝑔(𝑡) 
which contains it.  

When a particular spectral line is sought, a signal to noise ratio computed in the 
spectrum can be used as an optimization parameter for enhancing that particular spectral 
line or a group of them with respect to the other spectral lines [21]. 

 

𝑠𝑛𝑟 =
𝐴(𝑛𝑏)

∑ 𝐴(𝑖)𝑖
 ( 27 

 
where 𝐴(𝑖) is the amplitude of the 𝑖-th spectral line and 𝑖 ∈ [𝑛𝑏 − 𝑚, 𝑛𝑏)  ∪ (𝑛𝑏 , 𝑛𝑏 + 𝑚] 
is the range of frequencies in the vicinity of the frequency 𝑛𝑏 of interest. 

Finally, the four parameters can be optimized to find the best combination of 
values which produces an enhancement of the bearing characteristic spectral lines with 
respect to the background noise. The Genetic Algorithm proposed for example in [21] is 
just one of the many optimization algorithms available but thanks to its simplicity and 
proper balance between exploitation and exploration of the solution space (Appendix 5) it 
is a very convenient alternative. 
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3. Selected Machine Learning techniques for Continuous 
monitoring  

As already introduced in Chapter 2, whenever the risk of catastrophic failure is 
very high, and a failure can cause costly damages to the machine, a permanent condition 
monitoring is desirable. In order to continuously performing such a monitoring, sensors 
should be integrated in the machinery and an autonomous, quick, on-line data processing 
is needed. Because of this, continuous monitoring is normally based on relatively simple 
parameters and its scope is limited to diagnose impending failure to give a warning in a 
short advance. Obviously, before integrating expensive sensors in an industrial machine, 
the system should be accurately designed and tested. In such design or research stage, 
short acquisitions are usually available. Nevertheless, if the training acquisition is long 
enough to represent the whole variability of the machine (both operational and 
environmental) the algorithms can be accurately calibrated and tested to generalize 
beyond the examples in the training set. In general, two kind of analysis are possible. The 
features in fact can be treated independently, with multiple univariate analyses, or 
altogether, considering the complex correlation structure with multivariate analyses. In 
any case, the analysis will be based on pattern recognition: an intelligence should be used 
to univocally put in relation the statistically-significant changes in the features to the 
presence of a damage, excluding possible confounding effects induced by operational or 
environmental variations. 

Coherently with the idea of starting from simple but easily interpretable models, 
statistical learning is first tackled, to increase the complexity as going through the chapter 
and cross the frontier of machine leaning. 

 

 
Figure 20: The proposed continuous monitoring methodology. 

 
The statistical pattern recognition is tackled starting from the hypothesis testing 

philosophy, which can be interpreted from a binary (i.e. two-classes) unsupervised 
classification, healthy vs damaged. Hence, the univariate Analysis Of Variance (ANOVA) 
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together with the usual post hoc, multi-comparison tests is proposed to infer from the 
data the omnibus (i.e. variance based) null hypothesis of a detectable effect distinguishing 
the different groups, that is, for diagnostics purposes, the presence of damage (level 1 
diagnostics).  

Furthermore, in order to “condensate” the information contained in the different 
features, enhancing then the effect of damage, a multivariate analysis is preferable. In any 
case, this analysis is generally based on the selection of a subspace (often a 1-D 
projection) of the high dimensional dataset able to foster the damage detection. In 
particular, extending the idea of effect size to measure the distance of two distributions, a 
projection maximizing this measure can be found. This is the Fisher’s Linear Discriminant 
Analysis (LDA) principle. On this 1-D projection, the univariate considerations about 
damage detection via hypothesis testing and classification can be applied. 

Another way of analysing a multivariate dataset, typically for visualization 
purposes is the Principal Component Analysis. In this case, the original reference frame is 
rotated to match the directions explaining most of the variance. Then, the first can be 
selected to visualize the dataset on 2-D or 3-D plots. The dataset projected on the first 
component (explaining most of the variance) can also be used for classification. In any 
case, the use of a single component from PCA or LDA can be regarded as a lossy 
dimensionality reduction, as some portion of the dataset variability is neglected. In 
general, nothing ensures that the damage information is contained in the first 
component. On the contrary, in many cases, the first components can be proved to 
represent strong latent effects such as operational (e.g. speed, load, …) and 
environmental (e.g. temperature, humidity, …) variations. A lossless non-linear 1-D 
dimensionality reduction can be anyway found through Novelty Detection via 
Mahalanobis distance. In this regard, the information about novelty (i.e. deviation from 
normality) is additive on the feature space dimensions, so that the whole variability is 
preserved. Furthermore, it automatically accounts for a compensation of linear or quasi-
linear hidden confounding effects. 

Finally, the problems related to high dimensionality 𝑑 (i.e. the curse of 
dimensionality) and to the selection of the sample size 𝑛 are not secondary and must be 
tackled as well. In this respect, relevant considerations are proposed in Chapter 7. 

 

3.1. The selected features 
In Chapter 2, it was stated that the acquired data-set made of raw acceleration 

signals may contain relevant diagnostics information which is unfortunately ‘‘hidden”. In 
order to explore the data and foster the learning, some derived quantities called features 
are usually extracted, as they summarize the signal, allowing for a simplified and better 
interpretation. In general, many different features are commonly used in diagnostics, but 
these can be classified in two main categories: time-domain and frequency domain 
features. The frequency-domain features are known to be more stable with respect to 
changes in the overall machine configuration (e.g. speed, load, . . .), but have the 
drawback of being less general, requiring a deeper prior knowledge of the machine under 
analysis (geometry, dimensions, effective running speed. . .). 

In the present methodology then, the most common time-series features are 
selected, coping with the need of speed and automation of the analysis. Root mean 
square, skewness, kurtosis, peak value and crest factor (peak/RMS) are then computed on 
chunks of the original acquisitions generating statistically significant samples of 𝑛 
observations for each of the channel-feature combination defining the whole feature 
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space. This numerousness 𝑛 should be chosen in accordance to the considerations about 
the curse of dimensionality found in Chapter 7. 

 

3.2. Statistics and probability: an introduction to hypothesis testing  
Statistics is a branch of mathematics dealing with data collection, organization, 

analysis, interpretation and presentation. The word, first introduced in English by Sir John 
Sinclair in 1829 and meaning “numerical data collected and classified”, comes from the 
German Statistik introduced by Gottfried Achenwall (1749) to originally designate the 
analysis of data about the state (from the Italian statista, “statesman, politician” 
descending from the Latin status “position, place; condition” or  figuratively “public 
order”). 

In particular, the word statistics can be interpreted as the “investigation of large 
numbers” or “theory of frequencies” [29]. This links statistics to probability theory 
according to von Mises’s definition of the term. Indeed, despite in common language the 
word probability refers to the measure of the likelihood that an event will occur, from 0 
i.e. impossible to 1 i.e. certain, the frequentist definition is much stricter: 
“The probability is the limiting value of the relative frequency of a given attribute within a 
considered collective. The probabilities of all the attributes within the collective form its 
distribution.” 

The starting point of the probability theory is the concept of a collective (or 
population), an infinite sequence of observations, each consisting in the recording of a 
certain attribute. Then, the fundamental frequentist axiom follows. Selecting just 𝑛 
recordings (N.B. a new finite collective is formed by selection of a sample from the 
population), the relative frequency of an attribute, 𝑛1/𝑛, will approach a constant limiting 
value when 𝑛 is increasing indefinitely. From this axiom, the Law of Large Numbers (LLN) 
can be derived. Actually, the LLN can be approached by alternative point of views, such as 
the Bernoulli-Poisson or the Bayes’s. In any case, the idea of the strong law of large 

number is that the sample average 𝑥𝑛̅̅ ̅ =
1

𝑛
∑ 𝑥𝑖  converges to a constant limiting value, i.e. 

the expected value 𝜇, for an increasing 𝑛 → ∞. This can be further generalized to any 
statistical function (e.g. the median, the variance, etc), namely a function depending on 
the true frequency distribution but not on the order of the observations or their total 
number. 

Focusing on the LLN applied to the mean, it is easy to get a proof involving the 
known, true statistical functions 𝐸[𝑥𝑖] = 𝜇, 𝑣𝑎𝑟[𝑥𝑖] = 𝜎2 and simple properties of 
expectation and variance: 

 

𝐸[𝑥𝑛̅̅ ̅] =
1

𝑛
𝐸 [∑ 𝑥𝑖] =

1

𝑛
∑ 𝐸[𝑥𝑖] =

𝑛𝜇

𝑛
= 𝜇 

𝑣𝑎𝑟[𝑥𝑛̅̅ ̅] =
1

𝑛2
𝑣𝑎𝑟 [∑ 𝑥𝑖] =

1

𝑛2
∑ 𝑣𝑎𝑟[𝑥𝑖] =

𝑛𝜎2

𝑛2
=

𝜎2

𝑛
 

 

( 28 

So that, for 𝑛 → ∞, 𝑣𝑎𝑟[𝑥𝑛̅̅ ̅] → 0, implying 𝑥𝑛̅̅ ̅ → 𝜇. 
And this is not all. It can be also proved that, for any generic sample distribution 

featuring finite statistical functions 𝐸[𝑥𝑖] = 𝜇 and 𝑣𝑎𝑟[𝑥𝑖] = 𝜎2, as 𝑛 approaches infinity, 

the variable 𝑥𝑛̅̅ ̅ asymptotically converges in distribution to a normal distribution 𝑁 (𝜇,
𝜎2

𝑛
). 

This corresponds the so-called Central Limit Theorem (CLT), name given in 1920 by the 
mathematician Polya to the Gauss’s theory of errors derived by Laplace’s exponential law. 
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That is, the overall error induced by the sum of many small elementary errors follows an 
exponential distribution, which takes the name of Gaussian “bell” curve.  

Because of the nature of frequentist probability as a limiting value for 𝑛 → ∞, in 
practical cases, the true probability distribution and related statistical functions are not 
known a-priori but can be inferred from a sample i.e. extrapolated from the sample to the 
population, that is, considering for example the mean value, 𝑥𝑛̅̅ ̅ can be used as an 
estimator of 𝜇 = 𝑥∞̅̅ ̅̅  at a given confidence or significance (i.e. the result is convincing up 
to some degree of trust). 

Consider CLT. Taking 𝑥𝑛̅̅ ̅ as estimator, the dispersion of its normally distributed 

values is given by 𝑣𝑎𝑟[𝑥𝑛̅̅ ̅] =
𝜎2

𝑛
. Then, the true expected value 𝜇 falls in an interval 

(𝑥𝑛̅̅ ̅ −
𝜎

√𝑛
, 𝑥𝑛̅̅ ̅ +

𝜎

√𝑛
) at a confidence 1 − 𝛼 = 68% or significance 𝛼 = 32%. Standardizing 

the estimator distribution to get 𝑧𝑛 =
𝑥𝑛̅̅ ̅̅ −𝜇

𝜎/√𝑛
, it is possible to derive the results in Table 1, 

which holds for any Gaussian distribution [30]. 
 

Table 1: Confidence level and corresponding interval [30] 

 

Standard interval Inside to outside ratio Confidence 1 − 𝛼 

±0.6745 1 𝑡𝑜 1 50% 
±1 2,15 𝑡𝑜 1 68,3% 
±2 21 𝑡𝑜 1 95,5% 
±3 369 𝑡𝑜 1 99,7% 

 
Generalizing, a critical value for the given confidence can always be found to form a 
confidence interval such that: 
 

−𝑁
(0,1),

𝛼
2

≤ 𝑧𝑛 ≤ 𝑁
(0,1),

𝛼
2

 

𝑥𝑛̅̅ ̅ −
𝜎

√𝑛
𝑁

(0,1),
𝛼
2

≤ 𝜇 ≤ 𝑥𝑛̅̅ ̅ +
𝜎

√𝑛
𝑁

(0,1),
𝛼
2

 

 

( 29 

Some definitions are needed. A confidence interval (CI) is a type of interval estimate 
giving a range of values in which the true, unknown population parameter will fall at 
chosen probability rate (the confidence, 1 − 𝛼). The critical values which limit the interval 

are the values exceeded only 100
𝛼

2
 times in a hundred and are given by 𝑁(0,1),

𝛼

2
. 

Unfortunately, also the population variance 𝜎2 in most of cases is unknown. When 
𝑛 is large enough anyway, the variance can be estimated from the sample as well as for 
the mean. 
The maximum-likelihood (ML) estimate of the sample variance is given by 
 

𝑠𝑛,𝑀𝐿
2 =

1

𝑛
∑(𝑥𝑖 − 𝑥𝑛̅̅ ̅)2 =

1

𝑛
𝑆𝑛

2 ( 30 

 
Focusing on the LLN applied to 𝑠𝑛,𝑀𝐿

2 , it is easy to get a proof of 

 

𝐸[𝑠𝑛,𝑀𝐿
2 ] =

𝑛 − 1

𝑛
𝜎2 ( 31 
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The 𝑠𝑛,𝑀𝐿
2  is then a biased estimator of the population variance. Hence, it is usually 

corrected to its unbiased form: 
 

𝑠𝑛
2 =

1

𝑛 − 1
𝑆𝑛

2 ( 32 

 
Furthermore, under the hypothesis of Gaussianity (𝑥𝑖~𝑁(0,1)), Cochran's theorem shows 

that 
 

𝑆𝑛
2

𝜎2
=

(𝑛 − 1)𝑠𝑛
2

𝜎2
~𝜒𝑛−1

2  ( 33 

 
where 𝜒𝑛−1

2  is a Chi-square distribution with 𝑛 − 1 degrees of freedom. This leads to 
 

𝐸[𝑠𝑛
2] = 𝐸 [

𝜎2

𝑛 − 1
𝜒𝑛−1

2 ] =
𝜎2

𝑛 − 1
𝐸[𝜒𝑛−1

2 ] = 𝜎2 

𝑣𝑎𝑟[𝑠𝑛
2] = 𝑣𝑎𝑟 [

𝜎2

𝑛 − 1
𝜒𝑛−1

2 ] =
𝜎4

(𝑛 − 1)2
𝑣𝑎𝑟[𝜒𝑛−1

2 ] =
2𝜎4

𝑛 − 1
 

 

( 34 

Hence, asymmetric confidence intervals can be built 
 

(𝑛 − 1)𝑠𝑛
2

𝜒
(𝑛−1),

𝛼
2

2 ≤ 𝜎2 ≤
(𝑛 − 1)𝑠𝑛

2

𝜒
(𝑛−1),1−

𝛼
2

2  ( 35 

 
If the sample variance is used in place of the true variance, the formula given for the 
confidence interval of the mean holds just for large 𝑛.  
 

𝑥𝑛̅̅ ̅ −
𝑠𝑛

√𝑛
𝑁

(0,1),
𝛼
2

≤ 𝜇 ≤ 𝑥𝑛̅̅ ̅ +
𝑠𝑛

√𝑛
𝑁

(0,1),
𝛼
2

 ( 36 

 
Otherwise, if the sample size is small, the estimates cannot be considered independent 
from the observations and it can be proved that 
 

𝑧𝑛
∗ =

𝑥𝑛̅̅ ̅ − 𝜇

𝑠𝑛/√𝑛
~𝑡(𝑛−1) ( 37 

 
where 𝑡𝑛−1 is a Student’s t distribution with 𝑛 − 1 degrees of freedom. Hence, a 
correction of the confidence interval for the mean follows: 
 

𝑥𝑛̅̅ ̅ −
𝑠𝑛

√𝑛
𝑡

(𝑛−1),
𝛼
2

≤ 𝜇 ≤ 𝑥𝑛̅̅ ̅ +
𝑠𝑛

√𝑛
𝑡

(𝑛−1),
𝛼
2

 ( 38 

 
Notice that, as shown in Figure 21, for 𝑛 → ∞,  𝑡𝑛−1 → 𝑁(0,1) and 𝑠𝑛 → 𝜎, so that this CI 

tends to the formula for 𝜎 known as 𝑛 increases. N.B. The critical values are found 
inverting the CDF, that is reading the abscissa for a given probability (ordinate). Hence, 
even if the curves seem very near in Figure 21, at the tails the difference becomes much 
more important, leading to very different critical values, in particular for small dof-s. 
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Figure 21: Student’s t distribution for increasing degrees of freedom. Notice the heavier tails than 

a normal, which is the limiting distribution for 𝑑𝑜𝑓 → ∞. 

 
This demonstrates how inferential statistics can extrapolate information of the 

population from a sample at a confidence depending on the size of the sample. Anyway, 
the estimation theory is not the only subject of inferential statistics. Hypothesis testing is 
also a fundamental.  

A statistical hypothesis test is a method of statistical inference that is meant to 
compare two statistical samples, or a sample against a model. A hypothesis is proposed 
for the statistical relationship among the two and this is compared to an alternative 
hypothesis. Originally, the hypothesis to be tested was that of no relationship, taking then 
the name of null hypothesis. The comparison is deemed statistically significant if the 
observed relationship can be proved to be an unlikely realization of the null hypothesis 
according to a threshold probability (i.e. the confidence). This is strictly related to the idea 
of confidence interval. The formula derived in this section, for example, can be used to 
test a single population mean. Also, outlier detection can be performed following the 
same logic. 

 

3.2.1. Hypothesis testing of a single population mean 
A null hypothesis about a population mean such as 𝐻0: 𝜇 = 𝜇0 can be tested 

against an alternative hypothesis 𝐻𝑎: 𝜇 ≠ 𝜇0. Statistical summaries can be found when 
the sample comes from given distributions: 

 
Distribution of the population: Statistical summary 𝑘 from the sample:  

• A normal distribution with a given 
variance or a generic distribution 
(also non-normal) assuming 𝑛 > 30, 
thanks to CLT 

𝑘 = 𝑧 =
𝑥𝑛̅̅ ̅ − 𝜇0

𝜎/√𝑛
~𝑁(0,1) ( 39 

• A normal distribution with unknown 
variance 

𝑘 = 𝑡 =
𝑥𝑛̅̅ ̅ − 𝜇0

𝑠𝑛/√𝑛
~𝑡(𝑛−1) ( 40 

 
Despite the hypothesis testing can be tackled through confidence intervals via the 

computation of a critical value, just as performed in the previous section, it is far more 
common to compute the so-called p-value. The p-value (i.e. probability value or 
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asymptotic significance) is the probability that, given 𝐻0, the statistical summary would be 
more extreme than the actual observed results. Hence, if this p-value is less than or equal 
to a selected significance level 𝛼, the hypothesis is rejected in favour of the 𝐻𝑎 implying 
no relationship. Depending on the point of view, “more extreme than” can take different 
meanings: 

 
Tails: p-value:  

• For a right tail event, it can 
be stated as 

Pr (𝐾 ≥ 𝑘|𝐻0) ( 41 

• For a left tail event, it is Pr (𝐾 ≤ 𝑘|𝐻0) ( 42 

• For a double tail event (on a 
symmetric distribution), it 
becomes 

2 min(Pr(𝐾 ≥ 𝑘|𝐻0) , Pr (𝐾 ≤ 𝑘|𝐻0)) ( 43 

 

 
  

One tail Two tails 
Figure 22: One or two tail hypothesis testing principle: 𝛼 critical values and confidence intervals. 

 

3.2.2. Hypothesis testing of outliers 
In experimental statistics, samples from a population are usually drawn through 

measurements. While performing such an operation, discordant values can often be 
recorded. These inconsistent values are usually called outliers and they may indicate 
either measurement error or that the population has a distribution different from the 
believed one (e.g. heavier tails). The judgement of discordancy can be seen then as a 
hypothesis test on the single suspected of being an outlier. 

Consider for example the Chauvenet’s criterion. The idea behind this method of 
assessing outliers is to find a confidence interval that should reasonably contain all 𝑛 
values of a sample. Hence, under the assumption of a normal population 𝑥~𝑁(𝜇, 𝜎), it 

follows that a believed outlier 𝑥𝑜 shows a statistical summary 𝑧 =
𝑥𝑜−𝜇

𝜎
  which can be 

compared to a corresponding critical value  𝑁(0,1),
𝛼

2
 for a significance 𝛼 =

1

𝑛
. In other 

words, the value which is exceeded just once every 𝑛 values is used as critical, so that: 
 

𝜇 − 𝜎 𝑁
(0,1),

1
2𝑛

≤ 𝑥𝑜 ≤ 𝜇 + 𝜎 𝑁
(0,1),

1
2𝑛

 

 
( 44 
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The other way around, comparing 2 min(Pr(𝑍 ≥ 𝑧|𝐻0) , Pr (𝑍 ≤ 𝑧|𝐻0)), namely 

the p-value of the summary 𝑧 =
𝑥𝑜−𝜇

𝜎
 , to the significance 𝛼 =

1

𝑛
, an equivalent test for the 

hypothesis 𝐻0: 𝑥𝑜 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 can be found. If the p-value is less than or equal to 
the significance, 𝐻0 is rejected. Obviously, substituting 𝜇 and 𝜎 with their sample 
estimates, the same formula can be used under the assumption of large 𝑛. Unfortunately, 
in many cases, this assumption does not hold, so that a compensation is needed.  

Consider the squared Mahalanobis distance (𝑥 − 𝜇)′Σ−1(𝑥 − 𝜇) (see chapter 6 for 

further considerations). For a dimension 1 it degenerates to 
(𝑥−𝜇)2

𝜎2 = 𝑍2, which is exactly 

the square of the original statistical summary. In the ideal case of 𝜇 and 𝜎 known, in can 
be proved that this distance is distributed as a 𝜒2 [33], so that  𝑍2~𝜒1

2. The probability of 
exceeding |𝑧| or 𝑧2 in any case must be equal. Hence, Pr(𝑍2 ≥ 𝑧2) = Pr(|𝑍| ≥ |𝑧|) must 
hold, giving an equivalent single tail criterion for hypothesis testing. The p-value 

 
2 min(Pr(𝑍 ≥ 𝑧|𝐻0) , Pr (𝑍 ≤ 𝑧|𝐻0)) ≡ Pr(𝑍2 ≥ 𝑧2|𝐻0) ( 45 

 

can be compared to the significance 𝛼 =
1

𝑛
. Analogously, a bounding critical value for the 

statistical summary can be found: 
 

𝑧2 ≤  𝜒
(1),

1
𝑛

2  ( 46 

 
Thanks to [33], it is easy to correct this formulation for the use of the sample estimates 𝑥𝑛̅̅ ̅ 
and 𝑠𝑛 which are not independent from the observations for 𝑛 small. Hence, the so-called 
Wilks’s critical value is given 
 

𝑧2 =
(𝑥 − 𝑥𝑛̅̅ ̅)2

𝑠𝑛
2

≤  

(𝑛 − 1)2𝐹
(1,𝑛−2),

1
𝑛2

𝑛 (𝑛 − 2 + 𝐹
(1,𝑛−2),

1
𝑛2

)

 ( 47 

 
where 𝐹(1,𝑛−2) is the Fisher–Snedecor distribution with degrees of freedom 1 and 𝑛 − 2. 

Note that 𝐹
(1,𝑛−2),

1

𝑛2
= (𝑡

(𝑛−2),√
1

𝑛2

)

2

≈ (𝑁
(0,1),√

1

𝑛2

)

2

 for 𝑛 large. 

 
The relevant consideration is that, given the multivariate nature of the 

Mahalanobis distance, this can be used for testing the presence of one outlier also in a 
multivariate normal distribution of dimension 𝑑. The corresponding bounding critical 
value for the squared Mahalanobis distance is given by: 

 

(𝑥𝑜 − �̅�)′𝑆−1(𝑥𝑜 − �̅�)  ≤  
𝑑(𝑛 − 1)2𝐹

(𝑑,𝑛−𝑑−1),
𝛼
𝑛

𝑛 (𝑛 − 𝑑 − 1 + 𝑑 𝐹
(𝑑,𝑛−𝑑−1),

𝛼
𝑛

)
 ( 48 
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3.2.3. Hypothesis testing of the difference between two population 
means 

A two-sample location test of the null hypothesis such that the means of two 
populations are equal, namely  𝐻0: 𝜇1 = 𝜇2, can be tested against an alternative 
hypothesis 𝐻𝑎: 𝜇1 ≠ 𝜇2 when it can be assumed that the two distributions have the same 
variance (i.e. homoscedasticity) and the samples come from: 

 
Distribution of the population: Statistical summary 𝑘 from the sample:  

• Normal distributions with given 
variance or Generic distributions 
(also non-normal) assuming 𝑛 >
30, thanks to CLT 

𝑘 = 𝑧 =
𝐸[𝑥1] − 𝐸[𝑥2]

√𝜎1
2/𝑛1 + 𝜎2

2/𝑛2

~𝑁(0,1) ( 49 

• Normal distributions with 
unknown variance 

𝑘 = 𝑡 =
𝐸[𝑥1] − 𝐸[𝑥2]

√𝑠𝑝
2/𝑛1 + 𝑠𝑝

2/𝑛2

~𝑡(𝑛1+𝑛2−2) ( 50 

 
where 𝑠𝑝 is a pooled estimate of the unknown variance of the two samples (𝑖 = 1,2): 

 
Biased estimate Unbiased estimate  

𝑠𝑝,𝐵
2 =

∑ (𝑛𝑖 − 1)𝑠𝑖
2

𝑖

∑ 𝑛𝑖𝑖
 𝑠𝑝

2 =
∑ (𝑛𝑖 − 1)𝑠𝑖

2
𝑖

∑ (𝑛𝑖 − 1)𝑖
 ( 51 

 
The analysis of the differences among multiple group means take the name of ANalysis Of 
VAriance (ANOVA), and is the subject of the following Section 3.3. 
 

 
Figure 23: Hypothesis testing of the difference between two population means – graphical 

representation and critical values highlighted. 
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3.2.4. Diagnostics, hypothesis testing and errors 
So far, hypothesis testing was tackled just from an abstract mathematical 

perspective. Two kind of null hypotheses were formulated. The first regards the 
comparison of two population means. The second compares a single data point to a 
reference population. Both these general points of views can be used in the field of 
diagnostics. Adopting the null hypothesis 𝐻0: 𝑡ℎ𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖𝑠 ℎ𝑒𝑎𝑙𝑡ℎ𝑦 both the tests can 
be considered. In the first case, a new sample from the machine under investigation is 
compared to a reference healthy sample acquired in a calibration stage (known as 
healthy), implying then 𝐻0: 𝜇𝑛𝑒𝑤 = 𝜇𝑟𝑒𝑓. In the second, 𝐻0: 𝑥𝑜 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 is used 

to test if a discordant measure can be considered “novel”, implying that it is believed to be 
generated by an alternate mechanism such as a damage (when all other possible 
influences are excluded). These two approaches can be both linked to statistical 
classification and are then fundamental to perform Level 1 diagnostics.  

Classification refers to the problem of identifying to which category (in the 
considered case just two options, healthy vs non-healthy) a new observation (i.e. a point 
in the feature space) belongs, based on a training data set taken as reference. This set is 
“labelled”, as the data points are known (or at least believed) to come from a given health 
condition. Classification is always a two-step procedure: 

a) In the training phase, the labelled samples are used to build a classifier, 
namely a function which divides the feature (variable) space in groups. 
This separation is then found in terms of distributions. When a single 
feature is used to investigate the machine, the classifiers correspond to the 
selection of a threshold. It is relevant to point out that this feature-space 
partitioning can also be obtained in an unsupervised way (i.e. without 
exploiting the labels). This takes the name of clustering.  

b) Just in a second phase the new observations are assigned to the 
corresponding class (i.e. classified) according to the classifier function. 
Each new unlabelled data point is now treated individually. 

Typically, a validation phase is added among these two to assess the performances of the 
classifier function “out of sample”, namely on data points different from the ones used for 
the training. 
According to these considerations, hypothesis testing is closely linked to classification. 
Nevertheless, classification implies the knowledge (or at least the belief) that the different 
samples are NOT coming from the same distribution, so that the alternative hypothesis 
takes much more relevance.  
Furthermore, an additional step is needed to fully understand hypothesis testing. Imagine 
the case in which a difference among the means is present (i.e. 𝐻𝑎 is true). If 𝐻0 is 
rejected, it means that the two population averages are discriminable. Obviously, if the 
difference is small, a huge sample size 𝑛 is needed to detect the difference at a 
significance 𝛼. In fact, for an increasing 𝑛, the “resolution” of the test (i.e. the minimum 
significant distance between two means according to which 𝐻0 is rejected) can be 
reduced at will. Consider the confidence interval for testing 𝐻0 in case of equal sample 
sizes: 
 

|𝑡 − 𝑡0
∗| = |

𝐸[𝑥1] − 𝐸[𝑥2] − (𝜇1 − 𝜇2)0

√2𝑠𝑝
2/𝑛

| ≤ 𝑡
(2𝑛−2),

𝛼
2

= 𝑡𝑐𝑟

𝛼
2  ( 52 
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|𝑑 − 𝑑0
∗| = |𝑡 − 𝑡0

∗|√
2

𝑛
= |

𝐸[𝑥1] − 𝐸[𝑥2] − (𝜇1 − 𝜇2)0

𝑠𝑝
| ≤ √

2

𝑛
𝑡

(2𝑛−2),
𝛼
2

= 𝑑𝑐𝑟

𝛼
2

,𝑛
 ( 53 

|𝐷 − 𝐷0
∗| = |𝐸[𝑥1] − 𝐸[𝑥2] − (𝜇1 − 𝜇2)0| ≤ 𝑠𝑝√

2

𝑛
𝑡

(2𝑛−2),
𝛼
2

= 𝐷𝑐𝑟

𝛼
2

,𝑛,𝑠𝑝
 ( 54 

 
where the distance  (𝜇1 − 𝜇2)0 is null under the null hypothesis. 

Testing 𝐻0 when 𝐻𝑎 is actually true then can lead to: 
 

𝐻0 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 |
𝐸[𝑥1] − 𝐸[𝑥2]

√2𝑠𝑝
2/𝑛

| = |𝑡|𝐻𝑎
| ≤ 𝑡𝑐𝑟

𝛼
2  Probability: 

𝛽 
( 55 

𝐻0 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 |
𝐸[𝑥1] − 𝐸[𝑥2]

√2𝑠𝑝
2/𝑛

| = |𝑡|𝐻𝑎
| > 𝑡𝑐𝑟

𝛼
2  

Probability: 
1 − 𝛽 

 

Focusing on the distribution of 𝑡|𝐻𝑎
, this will be centred on 𝑡∗ =

𝜇1−𝜇2

√2𝜎2/𝑛 
, from which it is 

easy to get the value of 𝑑∗ =
𝜇1−𝜇2

𝜎
=

𝐷∗

𝜎
= 𝑡∗√2/𝑛 , the so-called effect size, while 1 − 𝛽 

is commonly identified as the power of the test. 

In any case, the test does not consider at all whether 𝐷𝑐𝑟

𝛼

2
,𝑛,𝜎

, namely the minimum 

resolved distance, is physically meaningful or not, as this consideration also depends on 
the original populations’ variance and on the numerousness of the sample size. 
Furthermore, no information about the probability of resolving a given 𝑑∗ (i.e. the power) 
is taken into account by the test itself. Such considerations should come prior to the test, 
at a Design of Experiment (DOE) stage.  

The power of a two population means test is visualized in Figure 24-above for a 
particular 𝑡∗, and generalized for any 𝑡∗ in Figure 24-below. This second curve can be 
obtained by shifting the Cumulative Distribution Function (CDF) of the 𝑡(2𝑛−2). For 𝑛 > 30 

the Student’s t distribution is practically equal to a standard normal, whose CDF is used in 
this case to obtain the graph of Figure 24-below (which holds even for smaller 𝑛 if the 
known variance 𝜎 substitutes 𝑠𝑝). 

Considering that 𝛼 = 5% is probably the most common value and is rarely 
changed, this graph can be used at a stage of design of the experiment to evaluate the 
optimal 𝑛 able to resolve an expected effect size at a probability 1 − 𝛽 larger than a 
selected value (e.g. 0.8). This 𝑑∗ can be approximated from prior research as 𝑑 =

|
𝐸[𝑥𝑑𝑎𝑚]−𝐸[𝑥𝑟𝑒𝑓]

𝑠𝑝
|, or through conventions such as the one proposed by Cohen [31,32] and 

here reported: 
 

Effect size 𝑑 
Small 0,2 
Medium 0,5 
Large 0,8 
 

For example, for a power 1 − 𝛽 = 0,8, the graph in Figure 24-below gives 𝑡∗ =

|
(𝜇1−𝜇2)𝑎

√2𝜎2/𝑛
| = 2,8 which implies at least 𝑛 = 2 (

2,8

𝑑
)

2

. For detecting a large effect size then, 
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𝑛 ≅ 25 is enough, but the required 𝑛 increases to 63 for a medium and to 392 for a small 
effect size. As 𝑛 is obviously limited by physical constraints, a trade-off between 
confidence 1 − 𝛼 and power 1 − 𝛽 is then necessary to control both the 𝑡𝑦𝑝𝑒 𝐼 and 𝐼𝐼 
error rates. 

 

 
Figure 24: The power of a two population means test – above, a visualization of the significance 𝛼 
and of the power 1 − 𝛽 for a particular case – below, the power (under assumption of normality) 

as a function of 𝑡∗ which depends on the effect size 
𝜇1−𝜇2

𝜎
= 𝑑 and the sample size 𝑛. 

 
From a diagnostics point of view, in fact, the confidence associated to the test 

implies a 𝑡𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 equivalent to the significance 𝛼, which corresponds to the 
probability of rejecting a true 𝐻0. This must be as small as possible as a too high number 
of triggered False Alarms (FA) can erode the confidence of the damage detection. At the 
same time, also the 𝑡𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 should be kept under control. This is the 
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probability of failing to reject a false 𝐻0, usually referred to as 𝛽, the complementary of 
the power of the test. This value corresponds to a missed indication of damage although 
present (Missed Alarm MA) and is very detrimental as can bring serious economic and 
life-safety implications. These error rates are usually collected in “confusion matrices”, 
tables such as: 

  True Health Condition: 
  Healthy (𝐻0) Damaged 

C
B

M
 

A
ct

io
n

s accept 𝐻0: 
Healthy 

No Alarm 
Missed Alarm 
type II error 

reject 𝐻0: 
Damaged 

False Alarm 
type I error 

Alarm 
 

 
Figure 25: Type I and II errors in hypothesis testing for CBM: confusion matrix 

 

 

 
Figure 26: Receiver Operating Characteristic (ROC) function of the threshold (Gaussian 

distributions).Above- graphical summary of the table of type I and type II errors given in 
Figure 25. Below- ROC for binary classification with different effect sizes 𝑑∗ and the position of 

the 95% critical value (black dotted). For 𝑑 = 0,2 the performance is very poor as the ROC is 
near the 1st-3rd quadrant bisector (random classifier). 
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On the contrary, in the field of Operational Research (OR), a discipline that deals 
with the application of analytical methods for making better decisions, the Receiver 
Operating Characteristic (ROC) is usually preferred for assessing the diagnostic ability of a 
binary classifier as its discrimination threshold is varied. 

Interpreting the critical value as a threshold allows to understand how this can be 
varied to find the best compromise between 𝛼 and 𝛽 and to assess the overall 
performance of the test or of the classification. Figure 6(b) summarizes the true damaged 
rate (the power 1 − 𝛽) as a function of the false alarm rate (the significance 𝛼) for some 
relevant effect sizes while the threshold takes all the possible values. The threshold 
corresponding to the 𝛼 = 5% critical value is highlighted. In general, anyway, the farthest 
is the ROC curve from the 1st – 3rd quadrant bisector, the better the classification, which 
obviously improves as the effect size is enlarged. 

Summarizing, in the light of these considerations, classification comes from 
hypothesis testing, so that classifiers “inspired” by corresponding tests of hypothesis can 
be found. It is the case of the Fisher’s LDA, which comes from the test for two population 
means and from its extension to multiple populations, the Analysis Of Variance (ANOVA). 
These will be treated in the next sections, together with the Novelty Detection, a form of 
two-groups classification trained only on the reference condition data (i.e. healthy) but 
not on the damaged, which can be put in relation to the hypothesis testing of outliers 
(paragraph 2.2). Indeed, remembering that a univariate classifier function degenerates to 
a constant (i.e. a threshold), this can be again derived as a critical value. 

In conclusion, the classification which is widely used in diagnostics is basically a 
form of hypothesis testing, so that it is subject to the same general rules: 

• A classifier (i.e. a threshold in the 1-D case) must be trained so as to find 
the best compromise between type I and type II errors. In the design of 
the diagnostic system, a study for selecting the optimal numerousness of 
the samples is fundamental.  

• In any case, the performances are not only depending on the classifier 
itself, but also on the populations’ distributions under investigation. The 
effect size, that is the normalized distance of the two populations, changes 
when different variables are considered, so that a wise feature selection is 
fundamental. 

3.3. The univariate Analysis of Variance: one-way ANOVA 
The one-way (i.e. univariate) ANOVA is a very common hypothesis testing method 

in experimental statistics. In its typical formulation, ANOVA is meant to test the omnibus 
(i.e. variance based) null hypothesis that all the 𝐺 groups are random samples from the 
same population. As it is easy to notice, 𝐻0: 𝜇𝑗 = 𝜇 ∀𝑗 ∈ 1: 𝐺 is then a generalization of 

the test for two population means introduced in chapter 2.3.  
Mathematically, ANOVA assumes a linear model: 

𝑦𝑖𝑗 = 𝜇𝑗 + 𝜀𝑖𝑗 𝜀𝑖𝑗 ~ 𝑁𝑗(0, 𝜎) ( 56 

 
according to which, an observation of the 𝑗-th group is a random draw from a normal 
distribution 𝑁(𝜇𝑗, 𝜎), where the variance 𝜎2 is assumed the same for all the groups. 

Three hypotheses are made: 

• Normality 

• Homoscedasticity (homogeneity of variances) 

• Independence of observations 
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If these assumptions hold, the overall sum of squares 𝑆𝑆𝑡 can be decomposed into a 
within groups part 𝑆𝑆𝑤𝑔 , and a between groups parts 𝑆𝑆𝑏𝑔. These sums are related to 

two different estimates of the common population variance 𝜎2:  

• the within groups variance 𝑠𝑤𝑔
2 , which is an average of the estimated 𝑠𝑗

2 weighted 

according to the numerousness 𝑛𝑗  of each group, 

• the between groups variance 𝑠𝑏𝑔
2 , which comes from the average squared 

deviation of the groups means 𝜇𝑗 from the overall mean 𝑦. The variance of the 

means, as introduced in previous chapters, actually corresponds to an estimate of 
𝜎2/𝑛. 

In any case, the sums of squares are known to be distributed as 𝜒2. The ratio of the two 
sums of squares over their degrees of freedom is then distributed as a Fisher–Snedecor 𝐹 
and can be used as a statistical summary for verifying the hypothesis. Hence, for an equal 
numerousness of the groups 𝑛𝑗 = 𝑛 ∀𝑗 = 1: 𝐺 and 𝑁 = 𝑛𝐺: 

 

𝑆𝑆𝑏𝑔 = 𝑛 ∑(𝜇𝑗 − 𝜇)
2

𝐺

𝑗=1

 𝑆𝑆𝑏𝑔~  𝜒(𝐺−1)
2  𝑓 =

𝑆𝑆𝑏𝑔
𝐺 − 1

⁄

𝑆𝑆𝑤𝑔
𝑁 − 𝐺

⁄
=

𝑀𝑆𝑏𝑔

𝑀𝑆𝑤𝑔

=
𝑛 𝑠𝑏𝑔

2

𝑠𝑤𝑔
2

 ~ 𝐹(𝐺−1,𝑁−𝐺) 

( 57 

𝑆𝑆𝑤𝑔 = ∑ ∑(𝑦𝑖𝑗 − 𝜇𝑗)
2

𝑛

𝑖=1

𝐺

𝑗=1

  𝑆𝑆𝑤𝑔 ~ 𝜒(𝑁−𝐺)
2  

 
where 𝜇𝑗 is the average of the elements in each group 𝑗 while 𝜇 is the total mean. 

The summary 𝑓 can be finally compared to the critical value 𝐹(𝐺−1,𝑁−𝐺),𝛼. If 𝑓 is more 

extreme, the null hypothesis is rejected, highlighting a difference in the group means. 
This can be tackled also in terms of p-values, so that, if Pr(𝐹 ≥ 𝑓|𝐻0) is lower than the 
significance 𝛼 (typically 5%), 𝐻0 is rejected. This is summarized in Figure 27. 

Unfortunately, in case of 𝐻0 rejection, ANOVA is not able to provide additional 
information about which population average differs the most and from which one of the 
others. Multiple two-sample tests (ANOVA reduces to the Student’s t-test of paragraph 
2.3 in this case) could be performed. In this regard, the Fisher’s LSD multi-comparison and 
the Bonferroni correction are proposed in the next paragraph.  

 

 
Figure 27: Fisher-Snedecor’s 𝐹(𝐺−1,𝑁−𝐺) critical value (≈ 2.1) for a p-value of 5% - one sided 

test. 
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3.4. Multi-comparison post-hoc test: Fisher’s Least Significant Difference 
(LSD) and Bonferroni correction 

The Fisher’s Least Significant Difference (LSD) is basically a generalization of the 
Student’s t-test of Section 3.2.1. The two are also related from the fact that the Fisher’s F 
CDF reduces to the Student’s t CDF when only two groups at a time are compared. 
Multiple two means tests can be then conducted following the procedure in Section 2.3. 
According to the formula, considering equal samples size 𝑛, it is easy to get: 
 

𝑡 =
𝐸[𝑥1] − 𝐸[𝑥2]

√2 𝑠𝑝
2/𝑛

~𝑡(2𝑛−2) ( 58 

 
from which a confidence interval based on a significance 𝛼 can be found. The so-called 
LSD is defined: 
 

𝐿𝑆𝐷 = |𝐸[𝑥1] − 𝐸[𝑥2]| ≤ 𝑡
(2𝑛−2),

𝛼
2

√
2 𝑠𝑤𝑔

2

𝑛
 ( 59 

 
When multiple hypotheses are tested anyway, the chance of a rare event increases and 
the type-I error rate rises as well. To compensate for this, Bonferroni proposed to correct 

the formula by decreasing the significance from 𝛼 to 𝛼/𝑚, where 𝑚 =
𝐺(𝐺−1)

2
 is the 

number of possible pairwise combinations of 𝐺 groups. In any case, a confidence interval 

± 𝐿𝑆𝐷
2⁄  can be built around the healthy distribution mean: intersecating groups will be 

considered not significantly distant, meaning that it will be hard to recognize them with 
enough confidence. 
 

3.5. Multivariate data classification: Fisher’s Linear Discriminant Analysis 
As introduced in Section 3.2.4, the parameter which characterizes the distance 

between two distributions is the effect size 𝑑∗ =
𝜇1−𝜇2

𝜎
, which can be estimated from the 

samples as 𝑑 =
𝐸[𝑥𝑑𝑎𝑚]−𝐸[𝑥𝑟𝑒𝑓]

𝑠𝑝
. Fisher found a simple way to use this distance squared as 

a measure of separation also in case of multivariate problems, creating the Liner 
Discriminant Analysis (LDA). In short, collecting the multivariate features in the rows of a 
matrix 𝑋, LDA searches for optimal linear dimensionality reduction 𝑦 = 𝑤′𝑋, namely the 
direction 𝑤 which maximizes the difference between the projected class-means distance, 
normalized by a measure of the within-class variance (also called “scatter”) along the 
same direction. The measure of separation is then the squared effect size, also resulting 
as the ratio  𝑠𝑏𝑔

2 /𝑠𝑤𝑔
2 . The formulation for the separation measure 𝐽(𝑤) in a multivariate 

feature space for 2 groups under homoscedasticity assumption is given by: 
 

Between class scatter matrix: 

𝑆𝑏 = (𝜇2 − 𝜇1)′(𝜇2 − 𝜇1) 
𝐽(𝑤) =

𝑤′𝑆𝑏𝑤

𝑤′𝑆𝑤𝑤
 

( 
 

(60 Within class scatter matrix: 

𝑆𝑤 = ∑ (𝑦ℎ − 𝜇1)′(𝑦ℎ − 𝜇1)

ℎ∈𝐶1

+ ∑ (𝑦𝑘 − 𝜇2)′(𝑦𝑘 − 𝜇2)

𝑘∈𝐶1

 
arg max

𝑤
 𝐽(𝑤): 

𝑤 ∝ 𝑆𝑤
−1(𝜇2 − 𝜇1)′ 
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Extending it to multiple classes, it’s possible to prove that, when 𝑤 is an eigenvector of  
𝑆𝑤

−1𝑆𝑏 , the corresponding eigenvalue 𝜆 can be interpreted as a measure of the separation 
of the classes. The eigenvalue 𝑤 corresponding to the largest 𝜆, usually referred to as the 
first principal component of the matrix 𝑆𝑤

−1𝑆𝑏, is then the direction of maximum 
separation [34]. 
 

 
Figure 28: Visualization of the LDA idea for a 2D, 2 groups case. 

 
Once this maximum separation direction 𝑤 is found, a projection of the observations on 
this direction (i.e. a linear combination of the features) is performed, and the classification 
decision can be taken using as a threshold the average position of the projection of the 
two means on this single dimension. This is equivalent of finding a hyperplane able to 
separate the different groups in the multivariate feature space. 

This algorithm, although very interesting from a theoretical point of view, is not 
commonly used in most of practical cases, as it expects a linear separation among the 
classes, and this does not happen often. More refined algorithms based on complex 
separation surfaces can be found in the literature. A very simple non-parametric one 
which deserves to be considered is the k-nearest-neighbours algorithm (k-NN). In this 
case, a new observation is classified taking the 𝑘 closest observations (usually according 
to Eulerian distance) in its neighbourhood and searching for the class appearing most 
frequently. Obviously, the value of the free parameter 𝑘 must be optimized on the 
particular application. With a similar reasoning, also unsupervised classification (i.e. 
clustering) can be performed. Randomly selecting 𝑘 centroids and separating the dataset 
according to the distance of each point from these mean values, clusters can be found. 
This grouping can be refined by repeating the classification using as centroids the means 
of the clusters found in previous iteration. This is the so-called k-means clustering. 

Anyway, when condition monitoring is chosen in real-life industrial applications, a 
training phase can be easily programmed, so that it is very unlikely that clustering will be 
needed. On the contrary, it is never advisable to let expensive machines run in damaged 
conditions, not even in a training phase. A training based on healthy acquisitions alone is 
then the most likely in industrial condition monitoring. Because of this, Novelty Detection 
will be then introduced in next Section 3.7. 
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3.6. Multivariate dimensionality reduction for data visualization: Principal 
Component Analysis 

 
The PCA is a technique that uses an orthogonal space transformation to convert a 

set of correlated quantities into uncorrelated variables called principal components. This 
transformation is basically a rotation of the feature space in such a way that the first 
principal component will explain the largest possible variance, while each succeeding 
component will show the highest possible variance under the constraint of orthogonality 
with the preceding ones. This is usually accomplished by eigenvalue decomposition of the 
data covariance matrix or singular value decomposition of the data matrix after mean 
centring [35]. PCA is sensitive to the relative scaling of the original variables, so a data 
normalization is often advisable. Alternatively, the data correlation matrix can be used. 

In general, the main application of PCA is for reducing a complex data set to a 
lower dimension using the first few components that explain the majority of the variation. 
The dimensionality reduction is then commonly used to obtain easily visualizable 2D or 3D 
projections of multivariate datasets. This can also reveal sometimes hidden, simplified 
dynamics. 

Anyway, although very useful for data visualization, the application of PCA to 
diagnostics is usually risky as some condition-information can be neglected together with 
the lower variance components, making the detection more challenging. 

Mathematically, given a 𝑑-dimensional centred dataset of 𝑛 observations 𝑋 ∈
𝑅𝑑×𝑛, an unbiased estimator for the covariance can be used to obtain 

 

𝑆 =
1

𝑛 − 1
𝑋𝑋′ ( 61 

 
PCA corresponds to the solution of the eigenproblem  
 

𝑆 𝑉 = 𝑉Λ ( 62 

 
where 𝑉 is the orthogonal matrix whose columns are the 𝑑 eigenvectors 𝑣𝑗  while Λ is the 

diagonal matrix of the 𝑑 eigenvalues 𝜆𝑗 (usually sorted in descending magnitude) of the 

matrix 𝑆. 
The matrix 𝑉 can be used then to decorrelate the dataset 𝑋, that is, to rotate the 
reference frame to the one identified by the eigenvectors (i.e. the principal components, 
PCs) of matrix 𝑆: 
 

𝑍 = 𝑉′𝑋 ( 63 

 
If the eigenvectors in 𝑉 are normalized to have unit length (𝑣𝑗

′𝑣𝑗 = 1), the transform is a 

pure rotation, and it can be proved that 𝜎𝑗
2 = 𝑣𝑎𝑟(𝑧𝑗) = 𝜆𝑗. Namely, the diagonal Λ is the 

covariance matrix of 𝑍. Different normalizations are obviously possible. Another quite 

common one consists in normalizing for 𝑣𝑗
′𝑣𝑗 = 𝜆𝑗. In this case 𝑣𝑎𝑟(𝑧𝑗) = 1 so that the 

covariance matrix of 𝑍 is the identity matrix 𝐼. In this case, on top of the rotation, a 
rescaling on the principal component occurs. 𝑉 is then commonly called a “whitening 
matrix”. 
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It is important to point out that through PCA the overall dataset variability is 
decomposed into a sum of decreasing contributions, while also the whole covariance 
matrix 𝑆 can undergo a so-called spectral decomposition: 𝑆 = 𝑉Λ𝑉′ = ∑ 𝜆𝑗𝑣𝑗𝑗 𝑣𝑗

′ = ∑ 𝑆𝑗𝑗 . 

The geometric interpretation of PCA is related to the fact that an ellipsoid centred 
in the origin can be associated to any positive definite matrix such as the covariance 𝑆. Its 
equation can be proved to be: 

 
𝑋′𝑆−1𝑋 = 1 ( 64 

 
The eigenvectors of 𝑆−1 define then the principal axes of the ellipsoid while the 
eigenvalues of 𝑆−1 are the reciprocals of the squares of the semi-axes. This can be verified 
remembering that the eigenvectors of 𝑆−1 are the same as the eigenvectors of 𝑆 and the 
eigenvalues of 𝑆−1 are the reciprocal of those of 𝑆. Indeed, using the inverse 
transformation 𝑋 = 𝑉𝑍, one can get: 
 

𝑋′𝑆−1𝑋 = 𝑍′𝑉′𝑆−1𝑉𝑍 = 𝑍′Λ−1𝑍 = ∑
𝑧𝑗

2

𝜆𝑗𝑗
= 1 ( 65 

 

which is clearly the equation of an ellipsoid whose half principal axes are √𝜆𝑗 = 𝜎𝑗 long. 

If the whitening matrix is used, a spheroid is obtained in place of the ellipsoid. To visualize 
the whole geometrical interpretation, Figure 29 is added. 

After these considerations, a dimensionality reduction can be easily obtained 
considering the projection of the original 𝑋 on the first PC explaining most of the dataset 
variability. In fact, 

 

𝑧1 = 𝑣1
′ 𝑋 = 𝑣11𝑥1 + 𝑣12𝑥2 + ⋯ + 𝑣1𝑑𝑥𝑑 = ∑ 𝑣1𝑘𝑥𝑘

𝑑

𝑘=1

 ( 66 

 
is basically a linear combination of the 𝑑 features according to the weights given by the 
first eigenvector and features the greatest variance 𝜎1

2 = 𝑣𝑎𝑟(𝑧1) = λ1. 
In general, the set of eigenvalues λ, commonly defined as the spectrum 𝜎(𝑆) of the matrix 
𝑆, are collected in a graph which highlights their magnitude as a function of their index 𝑗. 
From such graphs, the subset of eigenvalues which explains most of the variability of the 
dataset can be easily selected, even though, for data visualization, just the first 2 or 3 can 
be used.  
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Figure 29: Visualization of the PCA principle – geometric interpretation. 

 

3.7. Multivariate dimensionality reduction for diagnostics: Novelty Detection 
In this chapter, the hypothesis testing of outliers was introduced. An outlier is a 

measure discordant from all the others and is then believed to be generated by an 
alternate mechanism.  When it is possible to exclude all other possible influences (e.g. 
errors, latent factors like load, speed, temperature...) this inconsistency can be attributed 
to the presence of damage. In this respect, the detection of novelty can be successfully 
used to perform Level 1 diagnostics. The judgment on discordancy usually depends on a 
measure of distance from a reference distribution, which takes the name of Novelty Index 
(NI).  

The Mahalanobis Distance (MD) is the optimal candidate for evaluating 
discordancy in a multi-dimensional space, because it is unitless and scale-invariant, and 
takes into account the correlations of the data set. For a mean centred dataset 𝑋 the 
Mahalanobis distance is defined as 

 

𝑀𝐷(𝑋) = √𝑋′𝑆−1𝑋 = √𝑍′𝑉′𝑆−1𝑉𝑍 = √𝑍′Λ−1𝑍 = √∑
𝑧𝑗

2

𝜆𝑗𝑗
≡ 𝑁𝐼 ( 67 

 
Remembering the geometrical interpretation of PCA (derived in previous section), it is 
easy to understand that the Mahalanobis distance is equivalent to a Euclidean distance on 
the whitened space (i.e. undergoing a rotation to PCs and a standardization). This is 
visualized in Figure 30 where the Mahalanobis distance is decomposed into a series of 
simple steps. 

The Novelty Indices computed with Mahalanobis distance are then a 1-D lossless 
compression of the multivariate dataset and can be compared against some objective 
criterion (i.e. a threshold) to judge whether the corresponding data comes from the 
healthy distribution; furthermore, even for graphical purposes, these NI are the optimal 
univariate dimensionality reduction tool to display possible outliers of a multivariate 
dataset.  
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Data centred on healthy 

condition 
Rotated according to PCs Standardized  

   
Squared components: non-linear space transform Distance from centre (origin) 

  
Figure 30: Mahalanobis equivalent procedure on a 2D simplified plane, for 2 simulated normal 

classes (blue: healthy, red: damaged). Notice that the Centring and Standardization of the space is 
unique and based on the healthy reference. All the damaged acquisitions will be projected in this 

plane. 

 
Unfortunately, the procedure to generate a suitable threshold is not trivial, as the 

distribution of the healthy data may be in general non-normal. In this respect, probability 
theory and hypothesis testing, can offer some good hints.  

 

3.8. Thresholding 
In order to find a significant threshold for the NI, several considerations should be 

kept in mind. Considering that the Mahalanobis distance was proved to be equal to an 
Euclidean distance from the spheroid centre on the standardized principal components, a 
simplification can be helpful. If a 𝑑-dimensional Gaussian distribution is assumed, in fact, 
after centring, the squared Eulerian distance corresponds to the sum of the squared 
components. It is then asymptotically distributed (i.e. 𝑛 large) as a 𝜒𝑑

2 distribution. A 
correction for small samples 𝑛 with estimated mean and covariance matrix was also given 
in Section 3.2.2. In any case, this means that if the assumption of normality holds, the 
distribution of the 𝑁𝐼2 is known and can be used to derive a threshold. Obviously, this 
assumption can result quite restrictive in the majority of the real applications, so that 
alternatives and improvements are needed. 

 

Chebyshev’s inequality 

Chebyshev’s inequality guarantees that, for a wide class of probability 
distributions, no more than a certain fraction of values can be more than a certain 
distance from the mean. In particular, it can be stated as “nearly all values are close to the 
mean — no more than a fraction of 1/𝑘2 of the distribution's values can be more than 𝑘 
standard deviations away from the mean” [61]. This hypothesis in many cases 

ZOOM 
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overestimates the tails of a distribution (for example for an ideal gaussian, the tails decay 
more rapidly than that), but it may be very helpful to obtain first-guess values. [19]  

Mathematically, it is easy to understand that, if the second order moment of a 
distribution (the variance) can be written as the equality 

 

𝜎2 = ∫ 𝑥2𝑝(𝑥)𝑑𝑥
∞

−∞

 ( 68 

 
then, also the inequality obtained by removing a small area in the vicinity of the average 
holds: 
 

𝜎2 ≥ ∫ 𝑥2𝑝(𝑥)𝑑𝑥
|𝑥|≥𝜖

 ( 69 

 
This inequality can only be strengthened if the variable 𝑥2 is substituted with its smaller 
considered value 𝜖2. 
 

𝜎2 ≥ 𝜖2 ∫ 𝑝(𝑥)𝑑𝑥
|𝑥|≥𝜖

 ( 70 

 

Hence, it is proved that the probability of exceeding a given 𝜖 is bounded by the ratio  
𝜎2

𝜖2  

 

𝜎2 ≥ 𝜖2 Pr(|𝑋| ≥ 𝜖) Pr(|𝑋| ≥ 𝜖) ≤
𝜎2

𝜖2
 ( 71 

 
If the Chauvenet’s criterion introduced in Section 2.2 is recalled, a rule of thumb for the 
thresholding can be found. Indeed, the critical value for assessing outliers in a sample of 𝑛 
observations can be obtained as the value which is exceeded just once every 𝑛 values, so 
that 
 

Pr(|𝑋| ≥ 𝜖) =
1

𝑛
 ( 72 

 
Then, it is clear that 
 

1

𝑛
≤

𝜎2

𝜖2
 𝜖 > 𝜎√𝑛 ( 73 

  
Or in other words, no matter what the NI distribution is, in general, no more than 1 every 

𝑛 values can exceed √𝑛 standard deviations from the mean. 
This rule of thumb can be practically quite useful, but it strongly overestimates the 
threshold, in particular for large 𝑛. Too many missed alarms (type II errors) would be then 
produced. A more refined threshold focusing with a higher accuracy on the extrema is 
needed and can be found again from Chauvenet’s criterion. 

Consider again the probability 1/𝑛 of being more extreme than a given threshold. 
This means that repeating 𝑚 times a draw of a random sample of size 𝑛 and selecting the 
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maximum absolute value in each repetition, the value occurring more frequently among 
the 𝑚 maxima turns out to be exactly the given threshold. On this intuition the so-called 
Extreme Value Theory is built [36]. It will be the subject of Chapter 7, Section 1.3. 
 

Monte carlo thresholding 

A robust threshold is fundamental when large dimensional spaces are considered. 
This can be found through several repeated Monte Carlo (MC) simulations of a 𝑝-
dimensional Gaussian distribution. Drawing 𝑛 observations in 𝑝 variables and computing 
the NIs, the maximum operator could be used to generate a robust threshold, for example 
taking the 99th percentile of the maxima distribution [37]. It will be the subject of Chapter 
7, Section 1.1. 
 

3.9. Mahalanobis distance and confounding influences  
Hereinbefore, it was stated that the distance from a population centroid can be 

used as a measure of discordancy and can be used to discover the presence damage. This 
very simple idea can be exploited for Damage Detection when the healthy vibration signal 
can be modelled as a stationary stochastic process, meaning that the joint probability 
distribution function is invariant under time translation, so that damage is left as the only 
possible cause of discordancy (Figure 31).  

 

 
Unfortunately, hidden latent (non-measured) factors like measurement errors, 

operational conditions (e.g. speed, load, …) and environmental conditions (e.g. 
temperature, humidity, …) will always affect the measurements. When their effect is 
important, non-stationarities will arise, leading to misinterpretations of the novelty (and 
then damage), so that they are often referred to as confounders (Figure 32). 

 

 
Figure 32: Non-stationary stochastic process and the effect of confounders 

 
When measurement errors enter the game, robust statistics should be used to 

remove these events from the training dataset. Examples can be found in the literature, 
such as in [42,43,44], where the main methods for robust covariance estimation are 
compared. In particular, it is clear how the Minimum Covariance Determinant (MCD) is 

 
Figure 31: Stationary stochastic process and the biconditional relationship of novelty and damage. 
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more performing than Minimum Volume Enclosing Ellipsoid (MVEE), but computationally 
less efficient. So that the FAST-MCD is probably the most advisable and most widely 
applied. 

On the contrary, when the operational and environmental influence is present and 
a wise feature selection is not enough for reducing the effect of the confounders, 
algorithms for compensating such effects become essential. 

Generally speaking, when the confounding influence is strong, it can be proved to 
be a main source of variability in the dataset, so that it will be pictured by PCA in one of 
the first (or most probably the first) principal component [38, 39]. Assuming any generic 
influence on the selected features that can lead to a strong linear or at least a quasi-linear 
relationship among the features, this will be captured by a principal component, the 
removal of which can result helpful in highlighting the damage influence.  

Actually, the Mahalanobis distance Novelty Detection already accounts for a 
compensation which reduces the effect of the first components. Remembering the 
geometrical interpretation of PCA and Mahalanobis distance seen in Section 3.7, it results: 

 

𝑁𝐼 = √∑
𝑧𝑗

2

𝜆𝑗𝑗
 ( 74 

 
it is obvious, then, how the influence of the components with larger variance (i.e. the first 
components and then also the confounding factors) is mitigated by their normalization on 
the corresponding eigenvalue. This means that the Mahalanobis Distance-based Novelty 
Indices implicitly compensate for quasi-linear confounding effects [40, 41].  

Nevertheless, even if a lossless analysis which does not neglect any information is 
more conservative (and safer), in some cases a pre-processing to remove the confounding 
influences (e.g. the removal of first PCs) is fundamental to improve the performance of 
the otherwise not very effective MD ND. 

When non-linear confounding influences occurs, on the contrary this kind of pre-
processing can result ineffective, and MD ND is usually unable to face the problem. In any 
case, more complex methods can be used to generalize the Novelty detection. 

In the next sections these ideas will be briefly developed. 
 

3.10. Confounding influences compensation via pre-processing 
To clarify the effect of confounding influences, the second part of the DIRG dataset 

which will be introduced in next Chapter is used for a concrete example. In particular, 
acquisitions at controlled temperature and constant load but variable speed are available. 
The measurement involves an uncontrolled braking of the machine from full speed (470 
Hz) to a stop. The features from the first channel of the first accelerometer with null load 
are reported in Figure 33, where the strong influence of the variable speed on the RMS 
and peak value of the acceleration signal is highlighted. 

Stationarity is noticeably violated as a trend is clearly visible in Figure 33. In the 
literature [45] two simple models for such violations can be found. These are tested in 
Figure 34. 
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Figure 33: The five selected features from the first channel of the first accelerometer – 0N. 

Stationarity is noticeably violated as a trend is clearly visible in Figure 5. In the literature [45] two 
simple models for such violations can be found. These are tested in Figure 6. 

 
The first model involves a deterministic trend, so that the resulting signal takes the 

name of trend stationary. A polynomial fitting can be used in this case to find and 
subtract the trend, leading to a stationary residual which is said to be “white” as the 
resulting frequency spectrum turns out to be flat (i.e. the residual is a white noise) or 
“decorrelated” as its autocorrelation is null for any lag different from 0. 

 
𝑦𝑡 = 𝛽𝑡 + 𝜀𝑡 𝜀𝑡~𝑁(0, 𝜎2) ( 75 

 
A second model on the contrary involves a stochastic trend. In the simplest case, 

this means that the increment in the signal from time to time (innovation) is defined as a 
stochastic process 𝜀 such that 

 
𝑦𝑡 − 𝑦𝑡−1 = 𝜀𝑡 ( 76 

 
In this case the signal 𝑦 is the result of the integration of the considered stochastic 

process 𝜀 and is then called integrated of order 1 or 𝐼(1). This process which corresponds 
to a random walk is difference stationary as its first difference is stationary. Again, it is 
possible to get a stationary signal which can be considered white. 
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Figure 34: The raw RMS from 10 to 40s and its autocorrelation function (ACF). Below, on the left 

the residual from removing the linear regression and its ACF, on the right, the differencing 
(equivalent to the residual after an AR(1) fit) and its ACF. 

 
In general, the random walk can be considered as a particular case of an 

autoregressive AR(1) model with a unitary coefficient. That explains why it is very 
common in the literature to whiten data by fitting an AR(1) to the series and focusing on 
the residual, as done in [46] to highlight the damaged bearing signature. 

These concepts can be extended to multivariate spaces. In fact, when the features 
are affected by the same confounder, they turn out to be strongly correlated (in simple 
terms, they vary in sympathy).  

Under the first assumption (trend stationarity) then, a multivariate regression can 
be used. In this case, considering that both the variables are affected by measurement 
errors and that it is not easy to find a dependent and an independent quantity, the 
orthogonal regression [47] based on PCA is proposed. 
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(1) 

 

(2)  
 

 

(3) 

 

(4) 

 
Figure 35: (1) The bivariate scatterplot with time evolution (from blue – 10s to red – 40s) 

(2) PCA rotation (3) Rotated PC2 corresponding to the OR residual and its ACF 
 (4) sum of squares of the OR residual compared to the raw Euclidean squared distance 
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Orthogonal regression is fundamentally a reconstruction of the dataset in a 
subspace obtained by neglecting the first principal component. This methodology can be 
merged to the PCA whitening, to directly obtain a white, unitary covariance residual. PCA 
orthogonal regression and whitening are mathematically tackled in next subsection 
3.10.1. 

The results of a simple bivariate analysis on the RMS and the Peak value of the first 
channel are reported in Figure 35 to show the ability of the two methods on a real 
acquisition. In case of real measurements in fact, as confirmed by this simple analysis, it 
may be difficult to confidently identify the underlying model as both may work in a quite 
proper way. 

Nevertheless, focusing on the final scope of detecting novelty (and damage), a 
relevant consideration can be made about novelty indices (NI). Novelty detection in fact, 
is commonly based on the Mahalanobis distance [37,50] which is known to be equivalent 
to a Euclidean distance on a features space rotated to match the principal components 
and normalized to obtain unitary variance PCs. 

Hence, the squared Mahalanobis distance equals the sum of the squared whitened 
principal components. Obviously, it involves also the first PC which pictures the 
confounding factor, so that it is not stationary, as shown in Figure 36. A good idea then is 
to use as novelty index the sum of the squared principal components rejecting the first or, 
at most, a few of them.  

 
 

 

 

Figure 36: Standardized principal components (whitening) and sum of squares of the two PCs (in 
red) and of the second alone (blue, mid graph) compared to the squared Euclidean distance (raw)  
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3.10.1. PCA orthogonal regression and whitening 
Orthogonal regression is an extension of traditional regression for datasets in 

which the independent variable is not assumed to be perfectly known but admits errors. 
Indeed, in statistical literature this is known as “errors-in-variables” model, or also, “total 
least squares”. A simple but effective way to perform this task is based on Principal 
component analysis PCA [35,51]. 

Mathematically, given a 𝑑-dimensional centred dataset of 𝑛 observations 𝑋 ∈
𝑅𝑑×𝑛, an unbiased estimator for the covariance can be used to obtain: 

 

𝑆 =
1

𝑛 − 1
𝑋𝑋′ ( 77 

 
PCA corresponds to the solution of the eigenproblem: 
 

𝑆 𝑉 = 𝑉Λ    ( 78 

 
where 𝑉 is the orthogonal matrix whose columns are the 𝑑 eigenvectors 𝑣𝑗  while Λ 

is the diagonal matrix of the 𝑑 eigenvalues 𝜆𝑗 (usually sorted in descending magnitude) of 

the matrix 𝑆. 
The matrix 𝑉 can be used then to decorrelate the dataset 𝑋, that is, to rotate the 

reference frame to the one identified by the eigenvectors (i.e. the principal components, 
PCs) of matrix 𝑆: 

 
𝑍 = 𝑉′𝑋 ( 79 

 
If the eigenvectors in 𝑉 are normalized to have unit length (𝑣𝑗

′𝑣𝑗 = 1), the 

transform is a pure rotation, and it can be proved that 𝜎𝑗
2 = 𝑣𝑎𝑟(𝑧𝑗) = 𝜆𝑗. Namely, the 

diagonal matrix Λ is the covariance of 𝑍.  
Focusing on linear orthogonal regression, the direction given by the first 

eigenvalue corresponds to the regression line, so that the residuals 𝑋𝐿 can be simply 
found as a projection on the subspace generated by the 𝐿 = 𝑑 − 1 components other 
than the first: 

 

𝑧j = 𝑣j
′𝑋 = 𝑣j1𝑥1 + 𝑣j2𝑥2 + ⋯ + 𝑣j𝑑𝑥𝑑 = ∑ 𝑣j𝑘𝑥𝑘

𝑑

𝑘=1

 

 
𝑍𝐿 = 𝑉𝐿

′𝑋 
 

𝑋𝐿 = 𝑉𝐿𝑍𝐿 = 𝑉𝐿𝑉𝐿
′𝑋 

 

( 80 

 
The orthogonal regression is visualized in Figure 37. 
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Figure 37: Visualization of the PCA orthogonal regression – the residuals corresponding to PC2 are 

highlighted. 

 
Different normalizations for the eigenvectors are obviously possible. Another quite 

common one consists in normalizing for 𝑣𝑗
′𝑣𝑗 = 𝜆𝑗. In this case 𝑣𝑎𝑟(𝑧𝑗) = 1 so that the 

covariance matrix of 𝑍 is the identity matrix 𝐼. In this case, on top of the rotation, a 
rescaling on the principal component occurs. 𝑉 is then commonly called a “whitening 
matrix” 𝑊 or also sphering matrix as it transforms the data covariance ellipsoid to a 
spheroid [47]. 

 

𝑍𝑊 = 𝑊′𝑋 = Λ−1/2𝑉′𝑋 = Λ−1/2𝑍 ( 81 

 
 
Finally, the squared Mahalanobis distance can be then written as  
 

𝑆𝑀𝐷 = 𝑋′𝑆−1𝑋 = 𝑍′𝑉′𝑆−1𝑉𝑍 = 𝑍′Λ−1𝑍 = ∑
𝑧𝑗

2

𝜆𝑗𝑗
 = 𝑍𝑊

′ 𝑍𝑊 = ∑ 𝑧𝑊𝑗
2

𝑗
 ( 82 

 
This proves that the squared Mahalanobis distance corresponds to the sum of 

squares of the whitened features. Hence, removing the first whitened component(s) from 
the sum corresponds to merging orthogonal regression and PCA-whitening: the so found 
distance is therefore robust to confounders. This makes it a good candidate to substitute 
the Mahalanobis distance as NI in the presence of non-stationary operational or 
environmental conditions. 
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3.11. Confounding influences compensation via improved Novelty Detection 
Mahalanobis distance Novelty Detection is suitable when the distribution of the 

dataset in the feature space is normal or quasi-normal. Hence, when strong confounder 
influences enter the game, MD ND performance starts to decrease. Nevertheless, the 
same approach can be used by switching from distance to probability. 

Given the assumption of normality in fact, it is easy to derive a bijective relation 
among distance and probability density. In polar coordinates, when the radius 𝑟 
corresponds to the Euclidean distance from the centroid (the mean), the probability 
density function of a 𝑑-dimensional Gaussian (null mean vector and identity covariance) 
can be written as 

 

𝑓(𝑟|𝑑) =
1

(2𝜋)𝑑/2𝜎𝑑
𝑒

−
𝑟2

2𝜎2  𝑟2 = ∑ 𝑥𝑖
2

𝑖

 ( 83 

 
A visualization of the bijective relation of distance 𝑟 and probability density 𝑓 is 

reported in Figure 38 for a 𝑑-dimensional Gaussian with an increasing space 
dimensionality. 

 

 
Figure 38: Probability density function in polar coordinates as a function of the distance 𝑟 for an 

increasing space dimension 𝑑. 

 
Then, it is possible to univocally translate the Mahalanobis NIs to probability 

density NIs on which an equivalent threshold can be found. Changing the perspective in 
this way, the problem of Novelty Detection can be extended to any generic distribution, as 
far as it is possible to estimate its probability density function. Two methods are 
introduced hereinafter at this purpose. 

 

3.11.1. Kernel Density Estimation 
Kernel Density Estimation (KDE), also known as Parzen–Rosenblatt window 

method, is a non-parametric way to estimate the pdf of a variable. In its 1D original 
framework it corresponds to a data smoothing problem where inferences about the 
population are made, based on a finite data sample [52,53]. The idea comes directly from 
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that of Histograms [54], that is, chosen a bin width ℎ, to count the number of samples 𝑛𝑖  
out of the total 𝑛 that falls inside the 𝑖-th bin. Mathematically 

 

𝑓(𝑥) =
1

𝑛
  

𝑛𝑖

ℎ𝑖
 

( 84 

 
This discrete estimate can be smoothed just by defining a range of influence for 

the samples (a bandwidth ℎ). A rectangular window of width ℎ and height 1/𝑛ℎ is then 
placed on each observation and the pdf is retrieved by summing up the contributions on a 
discretization which can go beyond the window size ℎ. Furthermore, just by changing the 
window shape, which takes the name of kernel function, different smoothing can be 
obtained. Common kernel functions are the uniform (or rectangular), the triangular, the 
Epanechnikov, the normal, and others. Nevertheless, given its convenient mathematical 
formulation and good performance, the normal kernel is often used [55]. 

For a generic kernel function 𝐾(𝑥), the KDE can be formulated as: 
 

∫ 𝐾(𝑥)𝑑𝑥
∞

−∞

= 1 𝑓(𝑥) =
1

𝑛ℎ
∑ 𝐾 (

𝑥 − 𝑋𝑖

ℎ
)

𝑛

𝑖=1
 ( 85 

 
This can be turned into a multidimensional KDE by 
 

𝑓(𝑥|𝑑, ℎ) =
1

𝑛ℎ𝑑
∑ 𝐾 (

‖𝑥 − 𝑋𝑖‖

ℎ
)

𝑛

𝑖=1
 ( 86 

 
which, using a Multivariate Gaussian Kernel (in polar coordinates), corresponds to: 
 

𝑓(𝑟|𝑑, ℎ) =
1

𝑛
∑

1

(2𝜋)𝑑/2ℎ𝑑
𝑒

−
(‖𝑟−𝑅𝑖‖)2

2ℎ2
𝑛

𝑖=1
 ( 87 

 
As it is easy to notice, KDE is a non-parametric estimator (it does not make 

assumptions about the parameters and their distributions), but it relies on the external 
variable ℎ, which should be optimized. Handpicking of bandwidth ℎ can lead to either too 
much bias or variance in the estimate, so that cross-validation is usually applied. 

Nevertheless, when the space dimension 𝑑 is high, problems related to the curse 
arise. In particular, it is known that point to point distance tends to get uniform increasing 
𝑑, so that the estimated kernel density tends to flatness.  

In these cases, then, it is not really advisable to use KDE. Furthermore, it must be 
considered that all the training point information must be stored to compute the density 
of new points. This can become a big drawback in case of continuous acquisitions. 

However, treating the generic multimodal distribution as a mixture of a proper 
number of unimodal models, it can be enough to improve the novelty detection. In the 
next section, Gaussian Mixture Models will be then considered. 
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3.11.2. Finite Gaussian Mixture Models 
A Gaussian Mixture Model (GMM) assumes that the underlying distribution can be 

modelled as a weighted sum of simple Gaussians [63,66], such as, given 𝑚 mixture 
components: 

 

𝑓(𝑥|𝑑, 𝑚) = ∑ 𝜙𝑖  𝑁(𝜇𝑖, Σ𝑖)
𝑚

𝑖=1
= ∑ 𝜙𝑖

exp (−
1
2

(𝑥 − 𝜇𝑖)
′Σ𝑖

−1(𝑥 − 𝜇𝑖))

√(2𝜋)𝑑|Σ𝑖|
 

𝑚

𝑖=1
 ( 88 

 
Where weights 𝜙𝑖  and the component parameters 𝜇𝑖 Σ𝑖 should be estimated. This 

estimation is simplified if the variance matrices can be assumed to be equal (the 
homoscedastic case), and further simplified in case of Σ𝑖 = 𝜎2𝐼 (with 𝐼 the identity 
matrix). In any case, the number of mixtures should always be much lower than the 
number of samples (𝑚 ≪ 𝑛) for getting decent estimates. 

The common estimation process for GMM is the Expectation maximization (EM). 
Given the number of mixtures 𝑚, EM is a particular way of implementing maximum 
likelihood estimation via iterative optimization [56,57]. EM is usually initialized by a 
clustering algorithm (e.g. k-means) [58]. 

On the other hand, the number of components 𝑚 can be optimized by focusing on 
the Negative Log Likelihood (NLL). The likelihood expresses how probable the given set of 
observations is for different values of the statistical parameter 𝑚  

 

𝐿 = ∏ 𝐿(𝑥𝑖|𝑚)
𝑖

= ∏ 𝑓𝑚(𝑥𝑖)
𝑖

 𝑁𝐿𝐿 = −ln (𝐿) ( 89 

 
In information theory, other similar criteria can be found, such: 

• Akaike information criterion (AIC) [65]:  
Let 𝑘 be the number of estimated parameters in the model. Let 𝐿 be the maximum 
value of the likelihood function for the model. Then the AIC value of the model can 
be computed as 
 

𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿) ( 90 

 

• Bayesian information criterion (BIC) [64]:  
BIC also accounts for the sample size 𝑛 and can be formulated as 
 

𝐵𝐼𝐶 = ln(𝑛) 𝑘 − 2ln (𝐿) ( 91 

 
 
Alternative methods for parameter estimation, such as the Bayesian approach 

based on a Markov-chain Monte Carlo algorithm can be found [62]. 
The GMM formulation, can be interpreted also in terms of Neural Networks. A 

brief introduction to Radial Basis Functions Neural Networks is given in the following 
section. 
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3.11.3. Gaussian Radial Basis Functions Neural Network 
In general, a radial basis function (RBF) is a real-valued function whose value 

depends only on the distance between the input and some fixed point, either the origin, 
or a centre 𝑐𝑖. Hence, any function 𝜑(𝑥) that satisfies the property 𝜑(𝑥) = 𝜑(|𝑥|) is a 
radial function. The distance metric is usually the Euclidean, although other metrics can 
be used. Anyway, one of the most common RBF is the Gaussian RBF, thanks to its compact 
formulation: 

 

𝜑(𝑥) = 𝑒−( 𝜖 |𝑥−𝑐𝑖|)2
 ( 92 

 
where the shape parameter 𝜖 is obviously related to the variance. 

In general, RBF can be interpreted as a simple kind of neural network, which was 
the context in which they were originally applied to machine learning [59]. Radial basis 
functions are meant to build up an approximation of a function 𝑦(𝑥) as a sum of 𝑁 RBFs, 
each associated with a different center 𝑐𝑖 and weighted by an appropriate coefficient 𝑤𝑖 

 

𝑦(𝑥) = ∑ 𝑤𝑖𝜑(|𝑥 − 𝑐𝑖|)
𝑁

𝑖=1
 ( 93 

 
This sum anyway corresponds to a simple single-layer type of artificial neural 

network called a radial basis function network, with the RBFs used as activation functions 
of the network. It can be proved that this formulation is able to interpolate with arbitrary 
accuracy any continuous function on a compact interval if a sufficiently large number of 
RBFs is used. This approximating function is linear in the weights, so that they can be 
estimated with the matrix methods of linear least squares or using any of the standard 
iterative methods for neural networks [60]. Anyway, in contrast to training an MLP 
network, learning in an RBF network is usually done in two stages: 

• Adjustment of the parameters of the RBF (i.e. number of RBFs 𝑁, centres 𝑐𝑖 and 
scaling parameter 𝜖) using unsupervised procedures such as clustering, 

• Training of the output weights. 
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Chapter 5: 

The signals of interest: simulations 
and experimental datasets 

 

1. Introduction 
This thesis is devoted to the individuation of the most promising techniques for 

the detection, identification and quantification of faults in gearboxes starting from raw 
acceleration signals, in accordance with the vibration monitoring philosophy. In order to 
develop and optimize the proposed diagnostic algorithms, theoretical signals were 
synthesized in agreement with the considerations found in the literature review in 
Chapter 3. Experimental signals acquired on a test-rig at the Dynamics and Identification 
Group (DIRG) laboratory were also used, together with real-life signals from aeronautic 
and windmills gearboxes. Such acquisitions are described hereinafter. 

 

2. Simulated signal 
As first, using the knowledge collected in the state of the art of Chapter 3, a 

theoretical signal simulating a typical gearbox signature is synthesized. It is a sum of a 
deterministic signal coming from the gear, a cyclostationary train of impulses generated 
by the bearings and a random noise, all convolved by a transfer function corresponding to 
the transmission path. An additional measurement noise is also added. The procedure is 
described in the following paragraphs, to produce a simplified simulation of the finally 
measured signal. 

 

 
Figure 1: Acquisition modelled as a MISO system (see Chapter 3). 

 

2.1. General information and acquisition settings 
The generated signal is meant to simulate an acquisition at 𝑓𝑠 = 22528 𝐻𝑧 for a 

time-duration of 1 𝑠. The measurement regards a shaft rotating at a speed 𝑓𝑟 = 53 𝐻𝑧 on 
which a mating gear-wheel with 𝑧 = 23 teeth is mounted.  The shaft is supported by 
common rolling element bearings. The SKF 6006-Z is selected as a reference, so that 11 
balls with diameter 6 𝑚𝑚 are considered to run between an inner ring with diameter 
30 𝑚𝑚 and an outer ring of 55 𝑚𝑚. An inner-race fault is considered. The bearing 
characteristic frequencies relative to the shaft frequency are reported in Table 1. 

 
Table 1: SKF 6006-Z Characteristic frequencies normalized on the shaft frequency 

FTF BSF BPFI BPFO 

0,43 3,47 4,72 6,28 
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2.2. Shaft and Gear deterministic signal 
The shaft contribution 𝑓𝑟 is modelled as a sinewave at the rotational speed. Its first 

harmonics are also added with a linearly decreasing amplitude. In addition, the gear-mesh 
frequency 𝑓𝐺𝑀 = 𝑧𝑓𝑟 for the 23 teeth gear-wheel and its harmonics are also considered, 
amplitude modulated by the shaft frequency and its first harmonic. 

 

𝑦𝑑𝑒𝑡(𝑡) = (1 + ∑ A𝑘 sin(2𝜋 𝑘𝑓𝑟 𝑡)
𝑘

) ∙ ∑ A𝐺𝑀,𝑘 sin(2𝜋 𝑘𝑓𝐺𝑀 𝑡)
𝑘

+ ∑ A𝑆,𝑘 sin(2𝜋 𝑘𝑓𝑟 𝑡)
𝑘

 
( 1 

 

2.3. Non-deterministic component: Bearing cyclostationary signal and noise 
The bearing signal is modelled as a Pseudo-Cyclostationarity (CS2) impulse train, as 

introduced in Chapter 3, Section 6. The generic period ∆𝑇𝑖 = 𝑇𝑖+1 − 𝑇𝑖  is then generated 
as random draw from a normal distribution. In case of rolling element faults or inner ring 
faults, an additional amplitude modulation is introduced at the cage frequency (FTF) or at 
the shaft frequency respectively. Amplitude modulation references are given in Appendix 
2. The case of an inner race defect is depicted in Figure 2. In red, the additive white 
gaussian noise is also highlighted. 

 

 
Figure 2: Sum of the deterministic and non-deterministic components due to gears and bearings + 

noise. 

 

2.4. Transmission path 
In order to simulate the transmission path to the sensor, a simple LTI system 

modelling a Transmissibility transfer function (TF) is implemented. Supposing a given 
resonance frequency for the whole structure (5600 𝐻𝑧) and a damping factor (5%), a 
simple 1-DOF TF is determined in accordance to Appendix 8 to simulate the time response 
of the modelled dynamic systems to the input signal, which corresponds to the sum of the 
previously generated deterministic and non-deterministic parts. 
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Figure 3: 1-DOF Transmissibility as introduced in Appendix 8. 

 

2.5. Measured signal 
The measured signal, further corrupted with some measurement noise (additive 

white gaussian noise), is finally obtained, as shown in Figure 4. It can be noticed that, in 
accordance with the given transmissibility, the gear-mesh harmonics undergo some 
amplitude deformation. This is particularly strong in the resonance region, while at higher 
frequencies the signal is filtered out. 
 

 
Figure 4: Effect of the simple transmission path and of the measurement noise. 

 

3. Experimental acquisitions 
The diagnostic algorithms proposed in this work were validated also on laboratory 

and real-life machines. The measurement setups for the 3 different acquisitions are 
reported hereinafter, to describe the obtained signals. In particular, the focus will be on 

• Dynamic & Identification Research Group (DIRG) test rig for high speed bearings,  

• SAFRAN aeronautical engine from the SAFRAN Contest, Conference Surveillance 8, 
October 20-21, 2015, Roanne, France, 

• Italian windfarm composed by six multi-megawatt wind turbines located near the 
Adriatic Sea in Molise region. 
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3.1. DIRG test rig for high speed bearings – part 1 
At the DIRG laboratory, acquisitions were performed over a rig specifically 

conceived to test high speed aeronautical bearings [1]. The considered test rig consists of 
a direct drive rotating shaft supported by two bearings, one of which (the farthest from 
the motor) exhibits different damage levels, as reported in Table 2. A third central bearing 
is used to load the shaft with an increasing force of 0, 1000, 1400 and 1800 N, while the 
speed is set at four different values of about 90, 180, 280, 370, 470 Hz for a total number 
of 17 combinations of load and speed (Table 3). The structure is equipped with four tri-
axial accelerometers (positioned as reported in Figure 5) sampled at a frequency fs = 
51200 Hz for a duration of T = 10 s.  

The test rig is instrumented to acquire the accelerations of the two most 
significant points of the structure, A1 and A2 in Fig. 1b, located respectively on the 
support of the damaged bearing under test B1 and the support of the larger bearing 
dedicated to the application of the external load B2. The accelerometers are of the tri-
axial IEPE type, with frequency range 1-12000 Hz (amplitude ±5%, phase ±10°), nominal 

resonant frequency 55 kHz and nominal sensitivity 1 
𝑚𝑉

𝑚/𝑠2. The radial force on the central 

bearing is measured by a static load cell whose sensitivity (0.499 
𝑚𝑉

𝑁
) was measured by 

repeated load cycles, showing almost null hysteresis. A K-type thermocouple and a 
dedicated digital thermometer with 0.1 °C resolution are also placed as near as possible to 
the external ring of the damaged bearing, mainly to check that the different acquisitions 
are comparable in terms of temperature. 

The digital data acquisition is achieved by an OR38 signal analyser, produced by 
OROS, whose accuracy on the input channels is: phase ± 0.02°, amplitude ± 0.02 dB, 
frequency ± 0.005%. 

The analogue-to-digital transformation is performed by a 24 bits delta-sigma 
converter and is synchronous on all channels (no multiplexing); the range of every channel 
can be independently set between a minimum (±17mV) and a maximum (±40V) so as to 
avoid saturation of the channels while reaching the optimal amplitude resolution. 

 

  

 

 
Figure 5: The test rig, the orientation of the triaxial accelerometers and the 4A damaged roller. 

 
Table 2: Bearing codification according to damage type (Inner Ring or Rolling Element) and size. 

 

Code 0A 1A 2A 3A 4A 5A 6A 

Damage type none I.R. I.R. I.R. R.E. R.E. R.E. 

Damage size [µm] - 450 250 150 450 250 150 
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Table 3: The operational conditions 

Label 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

𝑓 dHz 9 9 9 9 18 18 18 18 28 28 28 28 37 37 37 47 47 

𝐹 kN 0 1 1,4 1,8 0 1 1,4 1,8 0 1 1,4 1,8 0 1 1,4 0 1 

 
Five features per each acquisition channel (six, given the 2 triaxial accelerometers) 

were then computed. Channels 1 and 4 measure x acceleration, channels 2 and 5 are 
recordings of y acceleration while channels 3 and 6 acquire acceleration along z direction. 

 Root mean square, skewness, kurtosis, peak value and crest factor (peak/RMS) 
have extracted on 0,1s chunks of the original 10s acquisitions generating 100 data points 
for each of the 17 acquisitions. The data-set is then composed by 7 differently damaged 
conditions, from 0A (healthy), to 6A, containing 1700 measurements in a 30-dimensional 
space (6 channels, 5 features). Focusing on condition 12 (Table 3), the 7 health conditions 
are pictured per each feature and channel combination, to help visualize the dataset. 

 

 
Figure 6: Condition 12 pictured by all the feature/channel combinations in all the health 

conditions, from 0A to 6A (100 samples each). 

 
The described dataset was made available as an open access resource at the link 

that can be found in the journal paper [1], The Politecnico di Torino rolling bearing test rig: 
Description and analysis of open access data. 

 

3.2. DIRG test rig for high speed bearings – part 2 
The second dataset obtained from the DIRG test rig regards run-down acquisitions 

from the maximum speed (470 Hz) to a full stop (0 Hz) while B2 is withstanding a discrete 
increasing force of 0, 1000, 1400 and 1800 N, which characterizes 4 different operational 
conditions (as highlighted in Table 4). The same two tri-axial accelerometers located 
respectively on the B1 bearing support (accelerometer A1, as reported in Figure 5) and on 
the loading sledge (accelerometer A2). The acquisitions last about T = 50 s at a sampling 
frequency fs = 102400 Hz. In order to perform a significant analysis, the five selected 
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features root mean square, skewness, kurtosis, peak value and crest factor are extracted 
on one hundred independent chunks (about 0,5 s each) for each of the 6 channels of the 4 
original acquisitions in all the 7 health conditions (from 0A, healthy, to 6A).  

Finally, 100 observations in a 30-dimensional space (6 channels, 5 features) per 
each operational condition are obtained. A part of the dataset is visually summarized in 
Figure 7.  

 
Table 4: The operational conditions: the different loads while the speed is decreasing from 470 to 0 

Hz (run-down acquisitions). 

 

Label 1 2 3 4 
𝐹 [kN] 0 1 1,4 1,8 

 

 
Figure 7: The considered dataset after features extraction for load condition 1 (0 N) while the 

speed is decreasing until a stop starting from 470 Hz. The black dotted lines divide the different 
damage conditions (0A to 6A). For each, 100 observations are plotted sequentially. 

  

3.3. SAFRAN civil aircraft engine with two damaged bearings 
The Safran contest data from Surveillance 8 conference were also used to test 

some of the algorithms. The data provided for the contest are vibration and tachometer 
signals acquired during a ground test campaign on a civil aircraft engine with two 
damaged bearings.  

The engine has two main shafts and an accessory gearbox for the equipment such 
as pumps, filters, alternators and starter. The accessory gearbox is linked to the high-
pressure shaft HP by a radial drive shaft RDS and a horizontal drive shaft HDS. The general 
layout of the engine is given in Figure 8, where the damaged bearings and the sensors 
locations are also highlighted.  
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Figure 8: SAFRAN aeronautical engine and gearbox scheme. Courtesy of SAFRAN company, 

SAFRAN Contest, Conference Surveillance 8, October 20-21, 2015, Roanne, France. 

 
The two damaged bearings are the BL1, supporting the radial drive shaft L1 and 

the BL5 on shaft L5. The first (BL1) is a ball bearing located at an intermediate position on 
the radial drive shaft. The damage is a heavy scratch on the outer race with a depth of 
about 0.3 mm and a width of about 1 mm. An unbalance was also installed on shaft L1 in 
order to load the bearing and therefore to be representative of a what a nearly-failed 
bearing would develop. The damage of the roller bearing on shaft L5 is a wide spalled 
area on the outer race, in a sector of 32o along all the functional line of the race, with a 
depth of approximately 0.1 mm. It is purposely located at the position where the static 
force between the outer race and the rolling elements is at maximum, thus where it has 
the highest probability to develop. All equipments of the accessory gearbox were 
operating in normal conditions, hence torque applied on the shafts and resulting static 
load applied on the bearing outer race were representative of usual operating conditions. 
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Three sensors are mounted. Two accelerometers 𝑎𝑐𝑐1 and 𝑎𝑐𝑐2 are located 
respectively on the intermediate case near the radial drive shaft and on the flange of the 
accessory gearbox in the vicinity of shaft L5. Additionally, a tachometer featuring a 
resolution of 44 pulses per revolution is mounted on shaft L4. 

Two acquisitions are performed. The first one, involving only 𝑎𝑐𝑐1 corresponds to 
a 200 s waveform sampled at 50 kHz during a steady state at full power followed by a slow 
deceleration down to idle. In the second acquisition all the three available sensors are 
recorded for the same duration and at the same rate (200 s @ 50 kHz) during a slow 
acceleration from idle to full power. 

The raw acceleration data can be downloaded as supplementary material on the 
online version of [2], Feedback on the Surveillance 8 challenge: Vibration-based diagnosis 
of a Safran aircraft engine. 

 

3.4. Italian windfarm 
The final experimental setup considered in this work [3] regards on-site 

accelerometric measurements from the Italian windfarm in Molise region composed by 
six multi-megawatt wind turbines installed as depicted in Figure 9. 

 

  
 

Figure 9: Italian windfarm plant and accelerometers sensing directions according to the wind 
direction. 

 
The wind-mills gearboxes in this plant are monitored with an oil particle counting 

system which identified a damage on WTG06 turbine. An additional vibration monitoring 
system is then added to assess whether it is able to produce concordant diagnosis. 
Windmills WTG06, WTG03 and WTG01 are sensored with four mono-axial accelerometers, 
two on the superior level 7 m above ground and two at the inferior level 2 m above 
ground. Each couple is aligned so as to measure respectively the longitudinal (x-axis) and 
transversal (y-axis) vibrations. 

Two acquisitions in different operational conditions are considered, both 
performed at a sampling rate of 12.8 kHz for 2 minutes. In the first case, identified as 
acquisition 17.20, only the healthy WTG03 and WTG01 are recorded. Acquisition 15.00 on 
the contrary, is involving the damaged windmill WTG06 and the healthy WTG03 (see Table 
5). During the experimental campaign all the turbines were operating at rated power, in 
reasonably similar operating conditions. This was cross-checked thanks to the acquisition 
of the operational data provided by the wind turbine manufacturer in real time at a 
sampling rate of about 1 Hz, as shown in Figure 10. 

wind 

x y 
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Again, to ensure the statistical significance, each acquisition is divided in 100 sub-
parts on which the five selected time features are computed. The result of this operation 
is graphically summarized in Figure 11.  

  

  
Figure 10: Wind and Operational data at a sampling rate of about 1 Hz. 

 
Table 5: Summary of the four acquisitions and identification of the training and validation sets. 

 

1 WTG01 @ 17.20 

HEALTHY 
Reference →Calibration: Training 

2 WTG03 @ 17.20 

3 WTG03 @ 15.00 
Validation 

4 WTG06 @ 15.00 DAMAGED 

 

 
Figure 11: The extracted features. The samples 0-100 are referred to the machine WTG01 @17.20, 

101-200 to WTG03 @ at 17.20, 201-300 to WTG03 @ 15.00 and samples 301-400 are from 
WTG06 (the damaged wind turbine) @ 15.00. The first 2 sets are used for calibration and are 

separated from the last 2, left for validation, by the black dotted line. 
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Chapter 6: 

Signal Processing for Intermittent 
Monitoring: Spectral Kurtosis, a novel 

estimate 
 

1. Time-frequency representation of signals: from Parseval to 
Wigner-Ville 

 
Time-frequency analysis is one of the most important areas of signal processing. The 

standard Fourier analysis, although very useful in identifying individual frequency 
components of a signal, has no time resolution. 

The simplest solution is the short-time Fourier transform (i.e. the spectrogram), in 
which one transforms windowed section of the data to the frequency domain. Time 
resolution is obtained by centring the window function on the time range of interest and 
then sliding the window along the time axis. 

The drawback is that it fails to provide high time and frequency resolution 
simultaneously. To localize some frequency component in time one must choose a very 
short window, which will inevitably lead to poor frequency resolution upon Fourier 
transformation. Conversely, to increase the frequency resolution one must Fourier-
transform long sections of the data, which adversely affects the localization in time. 

Time-varying spectra were studied in the classical works of Gabor, Ville, Page, and 
Wigner [1,2]. Their work was not devoted to make improvements on the spectrogram, but 
to construct a joint time and frequency distribution of the energy of a waveform based on 
general mathematical principles. 

Consider an infinite duration waveform 𝑠(𝑡). The instantaneous energy of the signal 
per unit time (power) at time t is given by |𝑠(𝑡)|2. The intensity per unit frequency (energy 
spectral density) is given by |𝑆(𝑓)|2, where 

 

𝑆(𝑓) = ℱ[𝑠(𝑡)] = ∫ 𝑠(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
∞

−∞

 ( 1 

 
 

is the standard Fourier transform relationship. Parseval's theorem then states that the total 
energy 𝐸 can be computed in the time or the frequency domain; thus, 
 

𝐸 = ∫ 𝐸(𝑡) 𝑑𝑡
∞

−∞

= ∫ |𝑠(𝑡)|2𝑑𝑡
∞

−∞

≡ ∫ |𝑆(𝑓)|2𝑑𝑓
∞

−∞

= ∫ 𝐸(𝑓) 𝑑𝑓
∞

−∞

 ( 2 

 
The fundamental goal is then to find a joint function of time and frequency that 

represents the energy or intensity of a waveform per unit time and per unit frequency. This 
joint function, dented as 𝐸(𝑡, 𝑓), is then a distribution of energy (energy density) satisfying 
the marginals: 
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Total energy spectral density 𝐸(𝑓) = |𝑆(𝑓)|2 = ∫ 𝐸(𝑡, 𝑓) 𝑑𝑡
∞

−∞

 
( 3 

Total energy density in time (total 
power envelope) 

𝐸(𝑡) = |𝑠(𝑡)|2 = ∫ 𝐸(𝑡, 𝑓) 𝑑𝑓
∞

−∞

 
( 4 

 
Focusing on “slices” of the 𝐸(𝑡, 𝑓), the conditional distributions can be found: 
 

Power spectral density at time 𝑡 𝑡𝑃𝑆𝐷(𝑓) = 𝐸(𝑡, 𝑓|𝑡) ( 5 

Power for a given frequency 𝑓 (power 
envelope) 

𝑓𝑃𝐸(𝑡) = 𝐸(𝑡, 𝑓|𝑓) ( 6 

 
So, exploiting the conditionals, two equivalent point of views can be adopted.  

Starting from the expression of energy density at a given time 𝑡⏞ and frequency 𝑓: 
 

𝐸(𝑡⏞ , 𝑓) = 𝑡⏞ 𝑃𝑆𝐷(𝑓) = 𝑓𝑃𝐸(𝑡⏞) ( 7 

 
Two relations hold: 
 

𝐸(𝑓) = ∑ 𝑡𝑃𝑆𝐷(𝑓)

∞

𝑡=−∞

= ∫ 𝑓𝑃𝐸(𝑡) 𝑑𝑡
∞

−∞

 

𝐸(𝑡⏞) = ∑ 𝑓𝑃𝐸(𝑡⏞)

∞

𝑓=−∞

= ∫ 𝑡⏞ 𝑃𝑆𝐷(𝑓) 𝑑𝑓
∞

−∞

 

 

( 8 

 
Figure 1: Wigner Energy Density function with indication of its marginals and conditional 

distributions 

 
This means that the energy spectral density 𝐸(𝑓) is the sum of all the power spectral 

densities 𝑡𝑃𝑆𝐷(𝑓) over all the time instants 𝑡 (in rigorous terms, an integration with respect 
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to time). But pointwise, per each frequency 𝑓, it is the integral over the time axis of the 
power envelope 𝑓𝑃𝐸(𝑡) for the corresponding frequency. 

 

𝐸(𝑓) = ∑ 𝑡𝑃𝑆𝐷(𝑓)

∞

𝑡=−∞

≡ ∫ 𝑡𝑃𝑆𝐷(𝑓) 𝑑𝑡
∞

−∞

= ∫ 𝐸(𝑡, 𝑓|𝑓) 𝑑𝑡
∞

−∞

= ∫ 𝑓𝑃𝐸(𝑡) 𝑑𝑡
∞

−∞

 ( 9 

 
The energy density in time 𝐸(𝑡) (the total power envelope) is the sum of all the 

power envelopes 𝑓𝑃𝐸(𝑡) along all the frequencies 𝑓. But pointwise, per each time 𝑡, it is 
the integral over the frequency axis of the power spectral density 𝑡𝑃𝑆𝐷(𝑓) for the 
corresponding time instant. 

 

𝐸(𝑡⏞) = ∑ 𝑓𝑃𝐸(𝑡⏞)

∞

𝑓=−∞

≡ ∫ 𝑓𝑃𝐸(𝑡⏞) 𝑑𝑓
∞

−∞

= ∫ 𝐸(𝑡, 𝑓| 𝑡⏞) 𝑑𝑓
∞

−∞

= ∫ 𝑡⏞ 𝑃𝑆𝐷(𝑓) 𝑑𝑓
∞

−∞

 ( 10 

 
Important convergence considerations can be deduced. For any continuous-time 

finite-valued signal, the total power envelope 𝐸(𝑡) = |𝑠(𝑡)|2 is a finite function. All the 
single  𝑡𝑃𝑆𝐷𝑠 must feature a finite power as well: 

 

𝐸(𝑡⏞) = ∫ 𝑡⏞ 𝑃𝑆𝐷(𝑓) 𝑑𝑓
∞

−∞ 

= 𝑓𝑖𝑛𝑖𝑡𝑒, ∀ 𝑡⏞ ( 11 

 
Each power spectral density, which is positive by definition, must then converge to 

0 at the limits for 𝑓 → ±∞. 
On the contrary, the power envelope for a given frequency does not have, in general, 

a bounded integral. 
The energy spectrum, then, exists finite only for transient or finite duration signals 
 

𝐸(𝑓) = ∫ 𝑓𝑃𝐸(𝑡) 𝑑𝑡
∞

−∞

, ∀𝑓 ( 12 

 
Nevertheless, the power spectrum (average PSD) exists finite as the 𝑡𝑃𝑆𝐷(𝑓) are 

finite: 
 

𝑃𝑆𝐷(𝑓) = 〈𝑡𝑃𝑆𝐷(𝑓)〉𝑡 = lim
𝑇→∞

1

𝑇
∫ 𝐸(𝑡, 𝑓) 𝑑𝑡

𝑇

0

 ( 13 

 
Then, we can get back to Parseval’s theorem in a circular way: 

 

∫ 𝑃𝑆𝐷(𝑓) 𝑑𝑓
∞

−∞ 

=  lim
𝑇→∞

1

𝑇
∫ 𝐸(𝑡) 𝑑𝑡

𝑇

0

= lim
𝑇→∞

1

𝑇
∫ |𝑠(𝑡)|2 𝑑𝑡

𝑇

0

= 〈|𝑠(𝑡)|2〉𝑡 = 𝑟𝑚𝑠2(𝑠(𝑡)) 

 ( 14 
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1.1. Averages of the conditionals: PSD estimation 
Once the conditionals are established, the first order moments of these conditionals 

can be found as: 

Estimate via average of following functions 
Pointwise est. via 
integration 

 

𝑃𝑆𝐷(𝑓) = 〈𝑡𝑃𝑆𝐷(𝑓)〉𝑡 = lim
𝑇→∞

1

𝑇
∫ 𝐸(𝑡, 𝑓) 𝑑𝑡

𝑇

0

= lim
𝑇→∞

𝐸(𝑓)

𝑇
 

≡ lim
𝑇→∞

1

𝑇
∫ 𝑓𝑃𝐸(𝑡) 𝑑𝑡

𝑇

0

 (average) 
PSD 

( 15 

𝐴𝑃𝐸(𝑡) = 〈𝑓𝑃𝐸(𝑡)〉𝑓 = lim
𝐹→∞

1

𝐹
∫ 𝐸(𝑡, 𝑓) 𝑑𝑓

𝐹

0

= lim
𝐹→∞

𝐸(𝑡)

𝐹
 

≡ lim
𝐹→∞

1

𝐹
∫ 𝑡𝑃𝑆𝐷(𝑓) 𝑑𝑓

𝐹

0

 (inst. avg.) 
𝐴𝑃𝐸 

( 16 

 
The 𝑃𝑆𝐷 is defined as the integral average along the time axis of all the following 

𝑡𝑃𝑆𝐷(𝑓) functions, but it can also be interpreted pointwise, per each frequency 𝑓, as the 
integral average over time of the power envelope 𝑓𝑃𝐸(𝑡) for the corresponding frequency. 

Indeed, pointwise, per each frequency 𝑓: 
 

𝑃𝑆𝐷(𝑓) = 〈𝑡𝑃𝑆𝐷(𝑓)〉𝑡 = 〈𝑓𝑃𝐸(𝑡)〉𝑡 ( 17 

 
This has no practical application as the true time-frequency energy distribution 

𝐸(𝑡, 𝑓) is never known a priori. But it can be used to analyse the PSD estimation process. 

In fact, the first part 〈𝑡𝑃𝑆𝐷(𝑓) 〉𝑡 can be seen as the ideal Welch’s estimate of the 

PSD. Considering an infinitely short sliding window in time (window centre-time 𝑡), the 
corresponding power spectra are averaged. But exploiting the here introduced 

considerations, the PSD can also be derived pointwise as 〈𝑓𝑃𝐸(𝑡)〉𝑡. Considering an 

infinitely sharp band-pass filter at centre-frequency 𝑓, the corresponding power envelope 
can be averaged to find the same power density. 

Note that the ideal filtering operation, would allow to find a time signal containing 
a single harmonic contribution 𝑠𝑓(𝑡) whose power envelope corresponds to 𝑓𝑃𝐸(𝑡) =

|𝑠𝑓(𝑡)|
2
. 

Then 
 

𝑃𝑆𝐷(𝑓) = 〈𝑓𝑃𝐸(𝑡)〉𝑡 = lim
𝑇→∞

1

𝑇
∫ |𝑠�̂�(𝑡)|

2
 𝑑𝑡

𝑇

0

= 〈|𝑠�̂�(𝑡)|
2

〉𝑡 = 𝑚𝑠 (𝑠�̂�(𝑡)) ( 18 

 
where 𝑚𝑠 stands for mean square. 

So, regardless of the true 𝐸(𝑡, 𝑓), the ideal filtering opens to an alternative PSD 
estimation process.  

From a practical point of view, a finite length 𝑇 sliding window in time is necessary 
to perform a Fourier transform. The power spectrum can be computed (squaring the 
Fourier coefficients) at a finite frequency resolution Δ𝑓 = 1/𝑇. The other way around, an 
equivalent result can be obtained using an ideal filter-bank with a band 𝐵 = 2Δ𝑓, as found 
in the literature [3]. 
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This approach leads to a histogram-like approximation such as: 
 

𝑃𝑆𝐷(𝑓 | Δ𝑓)  ≅
1

𝐵
〈|𝑠[𝑓−Δ𝑓  𝑓+Δ𝑓](𝑡)|

2
〉𝑡 ( 19 

 

 
Figure 2: Procedure for filter bank power spectral density estimation [3] 

 
 

1.2. Hilbert envelope and energy considerations 
As introduced, the instantaneous energy of the signal per unit time (the power) as 

a function of time is given by |𝑠(𝑡)|2, and at every time instant must be equal to the integral 
of the corresponding instantaneous power spectrum 𝑡𝑃𝑆𝐷(𝑓).  

Because of the nature of the Fourier spectrum, this definition of the power leads to 
a variable marginal 𝑓𝑃𝐸(𝑡) even when the amplitude of the 𝑠𝑓(𝑡) is constant. 

For example, given a constant amplitude cosine 
 

𝑠𝑓(𝑡) = 𝐴 cos(𝜔𝑡) ( 20 

 
the related power results variable in time 
 

𝑓𝑃𝐸(𝑡) = |𝑠𝑓(𝑡)|
2

=  𝐴2 cos2(𝜔𝑡) ( 21 

 
This can be tedious for amplitude modulate signals, so that, to enhance the modulation 
function, it can be worth to use a smoothing involving mean square values, able to keep 
constant the overall energy content: 
 

𝑚𝑠 (𝑠𝑓(𝑡)) = 〈|𝑠𝑓(𝑡)|
2

〉𝑡 =
𝐴2

2
 ( 22 

 
Hilbert transform and analytic signals turn out to be very useful for this purpose. 

In fact, considering the corollary of the Euler’s formula, it can be written that  
 

𝑠𝑓(𝑡) = 𝐴
1

2
(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡) ( 23 

 
From which the analytic signal can be retrieved by discarding the negative frequency 
component, and doubling the positive frequency component: 

 

𝑠𝑓,𝐴(𝑡) = 2 𝐴
1

2
𝑒𝑖𝜔𝑡 = 𝐴𝑒𝑖𝜔𝑡 ( 24 
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This analytic signal turns out to be very useful to smooth the power envelope 𝑓𝑃𝐸(𝑡) so as 
to highlight the possible amplitude modulation. Using half of the squared absolute value of 
the analytic signal in fact, or the squared Hilbert envelope, a smoothed power envelope is 
found: 
 

𝑓𝑃𝐸𝑠(𝑡) = 𝑠𝑚𝑜𝑜𝑡ℎ(𝑓𝑃𝐸(𝑡)) =
1

2
 𝑎𝑏𝑠2 (𝑠𝑓,𝐴(𝑡)) =

1

2
𝑠𝑓,𝑒𝑛𝑣

2 (𝑡) ( 25 

 
This smoothing is particularly effective as it keeps the energy balance: 
 

〈𝑓𝑃𝐸(𝑡)〉𝑡 = 〈|𝑠�̂�(𝑡)|
2

〉𝑡 ≡
𝐴2

2
≡ 〈

1

2
𝑠𝑓,𝑒𝑛𝑣

2 (𝑡)〉𝑡 = 〈𝑓𝑃𝐸𝑠(𝑡)〉𝑡 ( 26 

 
In fact, energy is also conserved under Hilbert transformation [4]. Furthermore, also for 

non-ideally filtered signals (i.e. when 𝑠𝑓(𝑡) is composed by a band of frequencies around 

𝑓) these considerations still hold, as the power of a sum of harmonics is the sum of the 

powers: 

𝑠(𝑡) = ∑ 𝐴𝑖cos (𝜔𝑖𝑡) 

〈𝑓𝑃𝐸(𝑡)〉𝑡 = 〈|𝑠(𝑡)|2〉𝑡 = lim
𝑇→∞

1

𝑇
∫ ∑ 𝐴𝑖

2 cos2(𝜔𝑖𝑡)  + ∑ 𝑐𝑟𝑜𝑠𝑠𝑡𝑒𝑟𝑚𝑠 𝑑𝑡 =
1

2
∑ 𝐴𝑖

2 

 ( 27 

𝑠𝐴(𝑡) = ∑ 𝐴𝑖e𝑖𝜔𝑖𝑡 

〈𝑓𝑃𝐸𝑠(𝑡)〉𝑡 = 〈
1

2
 𝑎𝑏𝑠2(𝑠𝐴(𝑡))〉𝑡 =

1

2
( lim

𝑇→∞

1

𝑇
∫ ∑ 𝐴𝑖

2 + ∑ 𝑐𝑟𝑜𝑠𝑠𝑡𝑒𝑟𝑚𝑠  𝑑𝑡) =
1

2
∑ 𝐴𝑖

2 

 ( 28 

So 

𝑃𝑆𝐷(𝑓) = 〈𝑓𝑃𝐸(𝑡)〉𝑡 = 〈𝑓𝑃𝐸𝑠(𝑡)〉𝑡  ( 29 

 

1.3. Variance of the conditionals: Spectral kurtosis estimation 
Second order moment (variance) of the conditionals can also be found. For example, 

𝑃𝑆𝐷𝑣𝑎𝑟, the dispersion of 𝑓𝑃𝐸(𝑡) = |𝑠�̂�(𝑡)|
2
around its expectation, can be seen as  

 

𝑃𝑆𝐷𝑣𝑎𝑟(𝑓) = 𝑣𝑎𝑟 (𝑓𝑃𝐸(𝑡)) = 〈|𝑓𝑃𝐸(𝑡) − 〈𝑓𝑃𝐸(𝑡)〉|
2

〉𝑡 = 〈|𝑓𝑃𝐸(𝑡) − 𝑃𝑆𝐷(𝑓)|
2

〉𝑡 

= 〈|𝑓𝑃𝐸(𝑡)|
2

〉𝑡 − |〈𝑓𝑃𝐸(𝑡)〉𝑡|
2

= 〈|𝑓𝑃𝐸(𝑡)|
2

〉𝑡 − |𝑃𝑆𝐷(𝑓)|
2

 
( 30 

 
or 
 

𝑣𝑎𝑟 (|𝑠�̂�(𝑡)|
2

) = 〈||𝑠�̂�(𝑡)|
2

− 〈|𝑠�̂�(𝑡)|
2

〉𝑡|
2

〉𝑡 = 〈||𝑠�̂�(𝑡)|
2

|
2

〉𝑡 − |〈|𝑠�̂�(𝑡)|
2

〉𝑡|
2

= 〈|𝑠�̂�(𝑡)|
4

〉𝑡 − |〈|𝑠�̂�(𝑡)|
2

〉𝑡|
2

= 〈|𝑠�̂�(𝑡)|
4

〉𝑡 − |𝑃𝑆𝐷(𝑓)|
2
 

( 31 
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Normalizing on the squared PSD, Moors' interpretation of the kurtosis as a measure of the 
dispersion of the squared filtered signal (squared envelope) around its expectation can be 
found: 
 

𝑃𝑆𝐷𝑣𝑎𝑟(𝑓)

|𝑃𝑆𝐷(𝑓)|
2 =

〈|𝑠�̂�(𝑡)|
4

〉

|𝑃𝑆𝐷(𝑓)|
2 − 1 =

〈|𝑠�̂�(𝑡)|
4

〉

|〈|𝑠�̂�(𝑡)|
2

〉|
2 − 1 = 𝐾(𝑓) ( 32 

 
If 𝑠�̂�(𝑡) is substituted with its envelope 𝑠𝑓,𝑒𝑛𝑣, then, the normalized variance of the 

squared envelope 𝑣𝑎𝑟(𝑠𝑓,𝑒𝑛𝑣
2 ) at a given frequency corresponds to the kurtosis of the signal 

envelope around that frequency, that leads to the common definition of spectral kurtosis 
via time-frequency representation (e.g. spectrogram). 

In brief, the spectrogram of a signal can be seen as the complex envelope of the 
signal band-pass filtered around the frequency 𝑓 (ideal, infinitely narrow band filter), and 
its squared magnitude then indicates the way energy is flowing in that frequency with 
respect to time. If the frequency band happens to carry pulses, bursts of energy will appear, 
and this can be detected by computing the excess, normalized fourth order moment of the 
complex envelope: 

 
𝑆(𝑡, 𝑓) = 𝑆𝑇𝐹𝑇(𝑠(𝑡)) 

 

𝐾(𝑓) =
〈|𝑆(𝑡, 𝑓)|4〉

〈|𝑆(𝑡, 𝑓)|2〉2
− 2 

 

( 33 

 
where the -2 is used to enforce 𝐾(𝑓) = 0 in case of a complex Gaussian 𝑋(𝑡, 𝑓). 
 From a practical point of view, STFT gives a finite frequency discretization Δ𝑓 which 
is function of the time window length. Then, the complex envelope becomes a function of 
this additional parameter: 𝑆(𝑡, 𝑓, ∆𝑓). Computing the spectral kurtosis for different 
frequency discretizations (𝐾(𝑓, Δ𝑓)) and summarizing it as a colormap in the [𝑓, ∆𝑓] plane, 
the Kurtogram is built. As already introduced, the main weakness of this procedure is the 
difficulty of STFT in obtaining a good discretization in both frequency and time domain, so 
that a different approach was developed by Antoni [8]. In order to find the kurtosis in all 
the required frequency bands, the signal is processed by a quasi-analytic FIR filter bank 
producing a division of the [𝑓, ∆𝑓] plane (paving). This paving was originally dyadic but was 
later improved to a 1/3 binary tree division, which can better cover the frequency axis. The 
procedure finally obtained takes the name of Fast Kurtogram (FK). 
 

Several improvements have been proposed over the years, but no one proved to be 
as reliable and computationally efficient as the FK. 
An alternative is proposed in next section, derived from the considerations here introduced. 
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2. Spectral kurtosis as a sliding filter 
Despite its efficient implementation, the Fast Kurtogram has the limit of computing 

the spectral kurtosis only on the discrete grid generated by the dyadic or 1/3 binary tree 
paving. 

Nevertheless, the considerations here introduced allows to make a parallel of this 
methodology with the one introduced for filter-bank estimation of the PSD. In each region 
of the frequency domain defined as a frequency band 𝐵𝑓 = [𝑓 − Δ𝑓  𝑓 + Δ𝑓], the PSD and 

the Spectral Kurtosis can be estimated as 
 

𝑃𝑆𝐷(𝐵𝑓)  ≅
1

𝐵𝑓

〈|𝑠𝐵𝑓
(𝑡)|

2
〉𝑡  ( 34 

 

𝐾(𝐵𝑓)  ≅
〈|𝑠𝐵𝑓,𝑒𝑛𝑣(𝑡)|

4
〉

|〈|𝑠𝐵𝑓,𝑒𝑛𝑣(𝑡)|
2

〉|
2 ( 35 

 
The main issue with this methodology is that, as Δ𝑓 increases, the variance in the 

PSD estimation is lowered, but frequency resolution decreases, leading to a trade-off 
between statistical accuracy and resolution. 

Furthermore, it is necessary a complex optimization for designing the best filter 
which passes the desired frequency (band) the more undistorted as possible in order not 
to compromise the estimate. For the PSD estimation, the Slepian baseband filters and the 
Capon method can be found in the literature [3]. 

To overcome these limits, breaking the accuracy resolution trade-off, a sliding filter 
can be used. 

Substituting the discrete paving with a sliding filter in fact, smoothed versions of the 
true PSD and true SK can be found, as the result of the application of a symmetric kernel 
average smoother (e.g. a symmetric moving average filter is a kernel smoothers that use a 
rectangular kernel) defined by the shape of the used filter in the frequency domain. 

Selecting a FIR band-pass filter of bandwidth 𝐵𝑓 and center frequency  𝑓 and sliding 

this filter along the frequency axis, in fact, an approximation of the PSD and SK trends can 
be found. Additionally, decreasing the bandwidth 𝐵𝑓, a series of more detailed 

approximations of SK can be produced. Finally, arg max 𝑆𝐾(𝑓, 𝐵𝑓)  defines in the same way 

the best filter, but more freedom is left to the centre-frequency, at a reasonable additional 
computational cost. The order of the FIR filter used in FK is not extremely high [5], so that 
in the proposed SK* order 16 was used. 
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3. Comparison over synthetic data 
Synthetic data was used at first to assess the performance of the proposed 

estimator against a selection of opponent algorithms introduced in Chapter 4 for the 
enhancement of bearing signature and reported in Figure 3. 

 

 
Figure 3: Signal Processing procedure 

 
The comparison was performed on 4 different synthetic signals generated using the 

model described in Chapter 5 for increasing noise levels, as shown in the following Table 1. 
In particular, both the input noise (upstream of the transfer path) and the 

measurement noise were varied, to simulate different masking of the bearing signature. 
In this particular case, the simulated bearing damage regards the inner race of a SKF 

6006-Z as previously described, rotating at a constant speed of 𝑓𝑟 = 40 𝐻𝑧, which leads to 
a theoretical damage frequency (BPFI) of 𝑓𝐵𝑃𝐹𝐼 = 251,4 𝐻𝑧. 

 
Table 1: Noise levels for the simulated signals from the model described in Chapter 5. 

 

Signal id # Input Noise Measurement noise 

1 5 1 

2 10 10 

3 5 5 

4 5 3 

 
In order to characterize and compare the performance of the different algorithms 

in enhancing the bearing signature, some evaluation parameter is needed. At this scope, 
two performance indicators in the frequency domain are introduced. 
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The first is the amplitude of the normalized power spectrum 𝑃 corresponding to the 
damage frequency (BPFI), or 

 
𝑁𝐴𝐵𝑃𝐹𝐼 = 𝑃𝐵𝑃𝐹𝐼/max (𝑃) 

 
( 36 

 
Figure 4: Performance parameter – Normalized power spectrum 

 
The second is the signal to Noise Ratio of the damaged spectral line with respect to 

the surrounding noise level calculated as the 97th percentile of the distribution of 
surrounding spectral lines in a range of ±5 𝐻𝑧: 

 
𝑆𝑁𝑅𝐵𝑃𝐹𝐼 = 𝑃𝐵𝑃𝐹𝐼/𝑃97% ( 37 

 

 
Figure 5: Performance parameter – Signal to Noise Ratio from the power spectrum 

 
The selected algorithms have been tested on the overall raw signal, as well as on 

the residual signal after LPC and after TSA. 
The optimal order selected for LPC was 20, while angular resampling was also 

performed to obtain an exact number of samples per cycle. The original sampling frequency 
was in fact 𝑓𝑠 = 22528 𝐻𝑧. Since the rotational speed was set to 𝑓𝑟, this leads to a non-
entire number of samples of 

 
 

𝑓𝑠

𝑓𝑟
= 563,2 ( 38 
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An entire number of samples per cycle of 𝑆𝑃𝐶 = 550 was then selected, and the 
original signal was resampled in the angular domain (i.e. at constant angular increments). 
In this particular case featuring a constant speed 𝑓𝑟 anyway, this corresponds to a 
resampling at a given, reduced, sampling frequency 𝑓𝑠1 = 𝑆𝑃𝐶 ∗ 𝑓𝑟 = 22000 𝐻𝑧. 

The result of this Computed Order Tracking pre-processing followed by the 
Synchronous Average (OT+SA) is a systematic improvement of the bearing signature as both 
the performance indicators (SNR and NA) always increase. This means that the isolation of 
the non-deterministic components by removal of the periodic contribution obtained via SA 
is already enhancing the bearing damage signature. This is not the same for LPC which 
cannot ensure the same improvement with respect to the raw signal (i.e. no OT). This result 
is highlighted in Table 2. 
 

Table 2: 

 

Signal # and parameter RAW LPC OT+SA 

1 
𝑆𝑁𝑅𝐵𝑃𝐹𝐼 3,4 3,2 4 

𝑁𝐴𝐵𝑃𝐹𝐼  0,0033 0,0029 0,15 

4 
𝑆𝑁𝑅𝐵𝑃𝐹𝐼 2,5 2,8 4,7 

𝑁𝐴𝐵𝑃𝐹𝐼  0,0035 0,0028 0,16 

3 
𝑆𝑁𝑅𝐵𝑃𝐹𝐼 2,7 3 3,5 

𝑁𝐴𝐵𝑃𝐹𝐼  0,0028 0,0028 0,17 

2 
𝑆𝑁𝑅𝐵𝑃𝐹𝐼 2 2 2 

𝑁𝐴𝐵𝑃𝐹𝐼  0,004 0,0022 0,18 

 
The scope of this analysis was anyway to compare the performance of the selected 

algorithms (the Fast Kurtogram FK, the Empirical Mode Decomposition EMD, the Stochastic 
Resonance SR and the Improved Spectral Kurtosis estimator SK*) on the synthetic dataset. 

The results of the application of the different selected algorithms on the raw signal 
and downstream of LPC and of OT+SA are reported in the following Table 3 in terms of the 
declared performance indicators SNR and NA. 

It can be seen from Table 3 that when the raw signal is used, the proposed SR* 
algorithm is the only able to enhance the bearing signature. In particular, the NA is always 
improved, while the SNR is in general improved omitting the Signal 2 for which the original 
SNR of 2 is slightly decreased. 

Considering the LPC pre-processing, no algorithm is able to output acceptable 
results from Signal 2, while FK outperforms the others for Signal 1 (which however features 
the lowest noise level), SR is the best for Signal 4, but only SK* ensures stable results on all 
the three Signals 1, 4 and 3. In  particular, Signal 3 shows stronger noise contamination, and 
in this case SK* turns out to be the best. 
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Table 3: 

 

 RAW LPC OT+SA 

 𝑆𝑁𝑅𝐵𝑃𝐹𝐼  𝑁𝐴𝐵𝑃𝐹𝐼  𝑆𝑁𝑅𝐵𝑃𝐹𝐼  𝑁𝐴𝐵𝑃𝐹𝐼  𝑆𝑁𝑅𝐵𝑃𝐹𝐼 𝑁𝐴𝐵𝑃𝐹𝐼  

Signal 1:       

FK 1 - 6 1 8,2 0,95 

SK* 5,4 1 4,85 0,98 3,7 0,75 

EMD 1 - 4,5 0,93 4,5 1 

SR 2,5 0,0007 4,2 0,16 3,75 0,97 

Signal 4: 

FK 1,2 - 1 - 6 0,6 

SK* 3,2 0,7 2,9 0,62 3,6 0,75 

EMD 1,4 - 3,2 0,69 2,9 0,6 

SR 1,2 - 3,3 0,067 4,4 0,6 

Signal 3: 

FK 2 0,006 3,1 0,8 1,5 - 

SK* 3,75 0,87 3,8 0,81 4,4 0,76 

EMD 1,2 - 2,4 0,8 2,2 0,7 

SR 1,6 - 3 0,04 3,2 0,6 

Signal 2: 

FK 1 - 1 - 1 - 

SK* 1,65 0,8 1 - 1 - 

EMD 1 - 1 - 1,7 0,7 

SR 1,7 0,001 1,4 0,018 1,9 1 

 
When OT+SA pre-processing is taken into account, similar considerations can be 

made. In particular, neglecting Signal 2 which is considered separately, SK* proves to 
produce acceptable results on all the three Signals 1, 4 and 3, even if on Signal 1 it is 
outperformed by FK and on Signal 2 both FK and SK lead to better results. When OT+SA is 
performed on Signal 2 on the contrary, only EMD and SR give good results. 

To conclude, FK is proved to be more effective and efficient than SR and EMD for 
finding the best demodulation band for envelope analysis to highlight the bearing damage 
signature. Furthermore, the FK improvement via sliding filter ensures 

SK* ensures consistent performance improvements of the bearing signal and can be 
considered more effective than FK in finding the best demodulation band as the 
discretization of the filter centre frequency can be arbitrarily small in the frequency domain. 

To further prove the success of SK*, in the next section a further comparison is 
reported on a real-life data from an aeronautical gearbox. Both the algorithms for 
deterministic/random separation and the ones for signature sharpening will be tested. 
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4. Application and comparison of the algorithms on real-life data: 
SAFRAN civil aircraft engine gearbox from Surveillance 8 contest 

The Safran contest data from Surveillance 8 conference was used to test the 
algorithms. The provided data consists of vibration and tachometer signals acquired during 
a ground test campaign on a civil aircraft engine with two damaged bearings.  

As described in Chapter 5, the engine has two main shafts and an accessory gearbox 
for the equipment. The diagnostic problem of the contest was to assess the presence of 
possible damages on the bearings given accelerometric acquisitions at variable speed. The 
procedure introduced in this work and reported in Figure 3 is then followed, so that a 
comparison between EMD, SR, FK and SK* is possible. 

 

4.1. Computed Order Tracking and Synchronous Average  
A practical implementation adopted for the Surveillance 8 Contest can be found in 

[7] where the acquisition relative to the SAFRAN engine (Chapter 5) is the object of bearing 
diagnostics. Five shafts (HP and L1 to L4 in Figure 8) need to be taken into account in this 
case.  At first, STFT is applied on the signal to verify that the speed is not constant in time. 

A quite accurate speed profile can be recovered by tracking the harmonics visible in 
the spectrogram. Obviously, at low frequency (e.g. shaft frequency, about 250 Hz) the 
relative estimation error due to the frequency discretization can be huge. It is then 
preferable to track the sharpest high frequency peaks. For example, the 38th and the 75th 
harmonics of the shaft, highlighted in Figure 6 can be proved to produce very accurate 
reconstructions of the instantaneous angular speed (IAS) for the machine shut down 
(decreasing speed).  In any case a tachometer is available, then, despite the possible 
geometric errors, the IAS can be recovered from the time difference between two following 
trigger passage times. The recovered speed for a machine start-up (increasing speed) is 
shown in Figure 7. 

When the speed is variable, as in this case, the issues of an asynchronously sampled 
vibration signal should be faced. A computed order tracking is then required and 
implemented thanks to the tachometer signal. A first deterministic/non-deterministic 
separation is obtained by Synchronous Average. COT+SA is then applied in cascade for each 
shaft to remove all the periodic components, isolating the very last residual containing the 
bearing contribution which, as in most of cases, cannot be seen directly in the residual 
spectrum, but requires Envelope Analysis. 

The cascade of COT+SA for each of the 5 shafts taken into account is reported in 
Figure 8. Focusing on the residuals, it is easy to see how most of the main spectral lines 
related to gear characteristic orders are gradually removed. 
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Figure 6: Spectrogram of the given vibration signal and zoom in the low frequency region. The 
main shaft frequency is pointed by the yellow arrow, while the 38th and the 75th harmonics of 

the main shaft are in red.  – Window length: 49152, Step: 8192. 

 

 
Figure 7: IAS recovered from the tacho trigger passage times. Knowing the transmission ratio, 

the speed of the main shaft (HP) can be easily computed from the tacho shaft speed. 

 
 

 
Figure 8: Part of the scheme of the Surveillance 8 SAFRAN contest gearbox. 
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Figure 9: Cascade COT and SA for the 5 considered shafts. Shafts 1 to 5 corresponds to shafts L4,  

L5,  L2-3 , L1,  HP.  
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4.2. Deterministic/non-deterministic separation 
The same deterministic/non-deterministic separation performed via OT+SA can also 

be performed using the predictive algorithms presented in Chapter 4. A comparison of the 
effect of the different filters on the time domain signal is shown in Figure 10. Taking the SA 
signal as a reference, the Mean Square Difference from SA 𝑀𝑆𝐷𝑆𝐴 = 𝐸[|𝑑𝑆𝐴(𝑛) −
𝑑𝑃(𝑛)|2 ] is computed for the LPC with order 1000, for a SANC of analogous order and 
forgetting factor 𝜇 = 10−3, and for a DRS using a Parzen window of length 𝑁 = 1024 and 
equivalent delay, step and filter length 𝑀. The computational times are also recorded. 

 
Figure 10: Comparison of the different predictive algorithms and SA.  In particular LPC refers to 

an AR(1000), SANC has order 1000 and forgetting factor 𝜇 = 10−3, DRS uses 
N=M=D=Step=1024.  

 
An accurate parameters optimization for the different algorithms is out of the scope 

of this work. Conversely, similar parameters were set, so as to ensure the comparability of 
the results in terms of MSD and relative computational time. According to these two 
assessment variables summarized in Table 4, in this particular application, the LPC results 
the best both in terms of prediction error and computational effort. When the filter order 
is not too large in fact, LPC provides a closed form solution corresponding to the optimal 
Wiener filter. Furthermore, no additional parameters are needed, unlike the other 
predictive algorithms. 

 
Table 4: Mean Squared Difference from SA and relative computational times for the different 

predictive algorithms 

 LPC SANC DRS 

𝑴𝑺𝑫𝑺𝑨 0,009 0,013 0,022 

𝒕/𝒕𝑶𝑻+𝑺𝑨 0,25 0,5 0,25 

 
Switching to the frequency domain, further comments can be made about LPC and 

SA. SA, in fact, ensures the minimum disruption of the residual signal but requires a 
repetition for each shaft in cascade. In this particular example, only the main shafts 
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contributions were removed (the accelerometers were known to be near to shafts 1 to 5) 
but the whole gearbox consisted of more than 12 shafts (chapter 4, paragraph 3.2, Figure 
7), so that only the major deterministic contributions are identified, while the minor ones 
are likely to be missed. This is reflected by the amplitude spectrum reported in Figure 11. 
Indeed, as it is easy to notice, LP recognizes as deterministic additional spectral lines with 
respect to SA, despite not extracting all the deterministic frequencies identified by SA. This 
highlights why predictive algorithms are preferable in case of complex gearboxes. 

 

  
Figure 11: Amplitude spectrum of the predictive algorithms applied to the first 10 seconds of 

Acc2 signal (at constant speed - see Figure 7). 

 
 

4.3. Kurtogram, sliding window spectral kurtosis SK* and a novel envelope 
analysis visualization via Envelope Spectrogram 

The SAFRAN contest core requirement was to check whether one or more of the 
bearings supporting shafts L1, L4 and L5 were damaged. The difficulty was related to the 
complexity of the gearbox, featuring many shafts and supports, and running at a variable 
speed. To highlight the bearing signal then, COT and deterministic part removal (e.g with 
LPC) are fundamental to produce a residual signal. The residual contains only the bearing 
vibration covered with noise and resampled at constant angular increments of a reference 
shaft (e.g. the L5 shaft in this case). For diagnostic purposes, then, the bearing defect 
frequencies should be computed taking as a reference the L5 shaft frequency. Table 5 
summarizes the so obtained features in the order domain (adimensionalized frequencies). 

 
Table 5: Bearing characteristic frequencies for 3 bearings. The identifying colour code is also 

defined. 

Bearings: FTF BSF BPFO BPFI colour 

L1 (main) 0.407 2.584 4.066 5.934 Green 

L4 (tacho) 0.409 2.515 4.087 6.054 Red 

L5 0.430 3.548 7.741 10.22 Blue 
 
Thereafter, envelope analysis can take place. It is always worth to try EA on the raw 

residual signal, as in many cases the damage features are already emphasized. 
Unfortunately, this is not the case. Focusing on Figure 14 both the raw residual spectrum 
and the envelope spectrum of the raw residual (first 10 seconds at constant speed – see 
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Figure 7) are reported. As it is easy to notice, none of the possible defect frequencies are 
rising from the background noise. 

The STFT-based kurtogram and the Fast Kurtogram should be then implemented, to 
find the most suitable band for envelope demodulation. Figure 12 shows the kurtogram of 
the signal and the selected band in bright yellow (about 0-11 orders). In order to better 
visualize the kurtosis as a function of frequency, the spectral kurtosis can be also computed 
with both the STFT algorithm and the sliding filter algorithm previously introduced. Despite 
the different levels, the two trends are comparable, proving the effectiveness of the 
proposed simplification. In terms of computational times, the Fast Kurtogram results 3 
times faster than the traditional STFT-based kurtogram. The sliding filter SK* computational 
burden is also reduced with respect to STFT-based spectral kurtosis, as highlighted in Table 
6. 

 

 

Figure 12: Kurtogram of the LPC residual. 

 

  

Figure 13: Spectral kurtosis – results from STFT-based algorithm (left -L=24) vs sliding-filter-

based algorithms (right – 
1

2
 , 

1

4
 , 

1

32
  of Nyquist frequency). 
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Table 6: Comparison of STFT-SK, STFT-FK, FK and SK* in terms of computational times. 

 

 STFT based kurtogram Fast Kurtogram 

Computational time [s] 0.97 0.30 

 STFT Spectral Kurtosis Sliding filter SK* 

Computational time [s] 4.0 3.2 

 

  

Figure 14: Normalized spectra of the LPC residual and of EA in orders of main shaft, for a 
window of Acc2 from 0s to 10s. In green L1, in red L4, in blue L5 bearing frequencies ( 

Table 6). The L5 BPFO is highlighted. The result of EA on the signal band filtered according to the 
FK-selected band is reported in the third graph. 
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4.3.1. Novel envelope analysis visualization: Envelope Spectrogram 
Considering that the overall signal is very long but the speed is changing over time 

(see Figure 7) it is wise to divide the signal in several shorter chunks and perform the 
envelope demodulation on each, fixing a constant band of interest 𝐵 on the basis of prior 
knowledge (e.g. possible resonances) or on tests with FK or SK* on some chunks of the 
signal. The envelope spectra computed on all the chunks generated by a sliding time 
window can later be “packed” one after the other to form a surface in a spectrogram like 
manner.  

 

 
Figure 15:  Envelope spectrogram block scheme 

 
In SAFRAN dataset two accelerometers are available, so that two envelope 

spectrograms can be obtained. In any case, as it is possible to notice in Figure 16, Acc1 signal 
mainly contains the harmonics of the shaft. Furthermore, its overall amplitude is 
significantly lower than Acc2 channel, so that it is better to focus the analysis on this second 
signal, whose sensor is proved to be located nearer to the damage position. In Acc2 
envelope spectrogram, despite a slight difference attributable to the common 
phenomenon of rolling elements slip, two bearings features are highlighted: 0.43 and 7.7, 
and the second is compatible with the L5 BPFO order (7.741 - Table 6). Hence, this feature 
denotes the presence of a damage on the outer race of shaft L5 support bearing. 

Additionally, these envelope spectrograms prove to be very useful to put in relation 
the damage detectability with the operational speed of the engine. Indeed, Figure 16 shows 
that the L5-BPFO amplitude increases in time, while the speed is increasing. 
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Figure 16: Envelope spectrograms of Acc1 (up) and Acc2 (down) signals – Window length: 
512000, Step: 256000. [7] 
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4.4. EMD and envelope analysis 
The envelope demodulation can be repeated using EMD for selecting the more 

appropriate band. The residual signal from OT and deterministic/random separation, can 
be then decomposed into several IMFs featuring different kurtosis levels. The first six IMFs 
obtained by treating with traditional EMD the OT+LPC residual signal are reported in Figure 
17. As it can be easily noticed, the second IMF is the one featuring the highest excess 
kurtosis (around 1,83). Focusing on its spectrum, one can notice IMF-2 is almost equivalent 
to the signal band-pass filtered in the range 25-50 orders, far away from the band 
highlighted by the kurtogram (about 0-11 orders). In any case, the Envelope Analysis 
performed on IMF-2 proves to be very effective in highlighting the L5 BPFO order (7.71). 
Figure 18, in fact, shows that the SNR of such a bearing feature is much higher than that 
produced by EA in the kurtogram-selected band (Figure 14). 

 
Table 7: EMD computational time in seconds 

 

 EMD 

Computational time [s] 0.30 

 

 
Figure 17: IMFs from EMD of the LPC residual of Acc2 from 0s to 10s. The kurtosis of each IMF is 

also reported. 
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Figure 18: Normalized spectra of the LPC residual and of EA in orders of main shaft, for a 

window of Acc2 from 0s to 10s. In green L1, in red L4, in blue L5 bearing frequencies ( 
Table 6). The L5 BPFO is highlighted. The result of EA on the EMD computed IMF2 is reported in 

the third graph. 

 

 

4.5. Stochastic Resonance 
The analysis diagnostic analysis is repeated switching from EA-based algorithms to 

stochastic resonance. The residual signal from OT and deterministic/random separation 
(OT+LPC) is then used as input to the SR non-linear differential equation, whose parameters 
𝑎, 𝑏, 𝑅 and 𝑠 are selected via optimization with a Genetic Algorithm (Appendix 5) using the 
𝑠𝑛𝑟 optimization criterion. The result is reported in Figure 20. With the parameters 𝑎 = 89, 
𝑏 = 235, 𝑅 = 575 and 𝑠 = 5 the SR can really highlight the L5 BPFO order (7.71) with 
respect to the background level, even if its amplitude is just the 5% of the highest spectral 
line which is not depicted as occurring at order 61. It is relevant to consider that the GA, 
despite being very effective, has a limited computational efficiency as it must recall the SR 
function for a number of times determined by the population size by the number of 
generations needed to carry out the optimization. 
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Figure 19: GA generations summary for the optimization of the four SR parameters on the snr 

criterion. 

 

 
Figure 20: Normalized spectra of the LPC residual and of EA in orders of main shaft, for a 

window of Acc2 from 0s to 10s. In green L1, in red L4, in blue L5 bearing frequencies ( 
Table 6). The L5 BPFO is highlighted. The result from SR given R=575, a=89, b=235, s=5 is 

reported in the third graph. Notice the different y-axis scale. 

 

Table 8: SR+GA computational times in s. 

 

 SR GA 

Computational time [s] 0.15 380 
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5. Conclusions 
In this chapter the proposed intermittent monitoring methodology was first tested 

on a synthetic dataset generated with different noise contamination levels. The novel SK* 
algorithm was then compared to the reference algorithms individuated in the state of the 
art. Then, a second test of the methodology was conducted on the SAFRAN Contest data 
from Conference Surveillance 8 held in Roanne, France on October 20&21 2015. 

In both cases, two evaluation parameters were used to assess and compare the 
performance of the bearing signature sharpening: the normalized amplitude of the spectral 
line corresponding to the bearing damage frequency and the signal to noise ratio of the 
same spectral line. 

According to these parameters, the SK* proved to combine the advantages of the 
Fast Kurtogram in terms of time efficiency and effectiveness in the damage identification, 
removing the drawback of a poor spectral discretization (the paving of the fast-kurtogram). 
The analysis showed that the results found using the SK* were more stable, as in almost all 
the noise condition, the algorithm was able to find good results. It was not the same for FK, 
whose performances were sometimes outmatched by SR or EMD. 

The SAFRAN data about an aeronautical engine gearbox opened to the possibility of 
testing the methodology on a real-life application of interest. In accordance with the contest 
requirement, the focus was primarily on bearings, so that after the first stage of COT and 
contribution separation, the analysis prosecuted on the residual signal. 

In the first stage, the traditional synchronous average algorithm was compared to 
the most common prediction-based algorithms. The analysis confirmed the ability of SA in 
extracting the deterministic component with minimum disruption of the residual signal but 
underlined at the same time the deeper amount of geometric information needed to 
perform the analysis and the longer computational times required in case of complex 
gearboxes (just as the SAFRAN gearbox).  

In the second stage, envelope analysis was performed on selected bands of the 
residual obtained via linear predictive coding (LPC). Both SK*, FK and EMD bands selected 
on the basis of the excess kurtosis index proved to highlight the damage, even if in this 
particular case, despite the lack of physical motivation, EMD demonstrated to be an 
effective alternative. Finally, SR was also implemented to denoise the low frequency region, 
highlighting the bearing signature. Exploiting the knowledge of the characteristic 
frequencies of interest, the 𝑠𝑛𝑟-based cost function was selected to optimize the SR 
parameters via genetic algorithm. The result is again the same. In all the three cases in fact 
the algorithms are able to highlight the presence of the outer race damage (BPFO 
frequency) of the bearing supporting the L5 shaft. 

In general, despite the objective comparison of the different algorithms on the 
synthetic dataset, it is impossible to be sure that an algorithm will outperform the other in 
the different conditions and applications. SK*, for example, proved to be the most 
consistent in producing a good sharpening of the bearing signature, but in some cases other 
algorithms outperformed it. In any case this is not necessarily an issue. Using all these 
algorithms in parallel in fact, can enhance the robustness of the damage detection, 
increasing the reliability of the results. 

A final remark regards the here considered spectral features (i.e. the characteristic 
spectral lines). For the simple detection of damage, in fact, the assessment of the presence 
of such characteristic spectral lines in the signal’s PSD (even by eye) is enough to perform 
level 1 diagnostics. Nevertheless, such features can also be processed by the more refined 
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pattern recognition algorithms that will be taken into account in Chapter 8, enabling 
eventually also level 2, 3 and 4 diagnostics.  

For the sake of computational speed and quickness of the detection anyway, next 
chapter is devoted to the application of the pattern recognition algorithms on way simpler 
features which better adapt to the needs of continuous monitoring. 
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Chapter 7: 

Novelty Detection: statistical 
considerations via Monte Carlo 
simulations 

 

1. Novelty Detection as Outlier Detection 
In a data set, a discordant measure is usually defined “outlier”, when, being 

inconsistent with the others, it is believed to be generated by an alternate mechanism. The 
judgment on discordancy will depend on a measure of distance from the reference 
distribution, often called Novelty Index (NI), on which a threshold can be defined [1]. 

Outliers may occur by chance in any distribution, but they often indicate either that 
the population has a heavy-tailed distribution or the presence of an anomaly such as a 
measurement error or a damaged condition. The identification of a damaged condition is 
the scope of data-based diagnostic systems, so that a deep knowledge of the outliers is 
needed to foster their robustness and reliability. 

Unfortunately, there is no rigid mathematical definition of what constitutes an 
outlier, therefore, in many cases, determining whether an observation is an outlier or not 
is ultimately a subjective exercise: according to some algorithms an expert could detect 
doubtful measurements and take some decisions on them. 

In order to improve the ability of distinguishing outliers, a study of the behaviour of 
extreme values coming from a reference normal distribution is proposed in this chapter, 
based on Monte Carlo repetitions. The essence of the Monte Carlo method (MC) is the 
invention of games of chance whose behaviour and outcome can be used to study some 
phenomenon of interest [10, 11] (outliers in this case). Carrying out games of chance or 
random sampling in fact, can not only result in sharp estimates of numerical quantities (for 
a high enough number of repetitions), but, given the statistical nature of the MC estimation, 
it enables also the determination of the degree of accuracy of the obtained estimates.  

In this chapter, the MC simulations are based on the Normal Distribution whose 
mathematical formulation is reported hereinafter. 

The Normal Probability Density Function (PDF) for a normally distributed variable 𝑥 
is: 

𝑥~𝑁(𝜇, 𝜎2) 

𝑓(𝑥|𝜇, 𝜎2) =
1

√2𝜋𝜎2
𝑒
− 
(𝑥−𝜇)2

2𝜎2   

 

( 1 

which can be standardized to get what is usually called z-score: 
 

𝑧 =
𝑥 − 𝜇

𝜎
  

𝑧~𝑁(0,1) ≡ 𝑍(0,1) 

𝑓(𝑧) =
1

√2𝜋 
𝑒− 

𝑧2

2   

 

( 2 
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A corresponding Cumulative Distribution Function (CDF) can be computed as: 

𝜙(�̂�) = 𝑃(𝑧 ≤ �̂�) =
1

√2𝜋 
∫ 𝑒− 

𝑡2

2

�̂�

− ∞ 

𝑑𝑡 ( 3 

Often the Complementary CDF (CCDF), or survival function, is used, as it corresponds to the 
tail area. 

𝜙(�̂�)̅̅ ̅̅ ̅̅ = 𝑃(𝑧 > �̂�) =
1

√2𝜋 
∫ 𝑒− 

𝑡2

2

∞

�̂� 

𝑑𝑡 = 1 − 𝜙(�̂�) ( 4 

 
 

 
Figure 1: Standard Normal PDF, CDF, CCDF 

 

1.1. Extrema empirical distribution via Monte Carlo 
The analysis of outliers is related to the knowledge of the tails of the distribution, 

which experimentally are typically difficult to study because of the limited length of the 
commonly available samples. In this regard, MC offers a powerful advantage as it is possible 
to perform also vary long samplings, form which the extrema can be selected. This is the 
approach described in [1], whose algorithm is briefly summarized: 

• Construct a vector of 𝑛 observations randomly generated from a standard normal 
distribution, 

• Compute the deviation of each observation (its absolute value), 

• Save the maximum deviation and repeat the draw (back to point 1) for 𝑑 times. 

• A statistic on the maxima distribution could be performed. 
In [1] this is used to find a threshold against which compare possible outliers. 

The result of such approach for a univariate standard normal is reported in Figure 2, 
where the distribution of the extrema (in this case the maximum absolute values) from 𝑑 =
1000 MC samples of size 𝑛 = 100 is reported. The critical value for a confidence of 95% 
(the 5% significance critical value) is also highlighted. This implies that, given a sample of 
size 𝑛 = 100, a value can exceed the ±3,4 confidence interval only 5 times over 100. This 
consideration can be then built to find a robust threshold for outliers’ detection. 

Similar considerations, resulting from the fundamental principles of the Calculus of 
Probabilities, could be seen in Peirce [2] and Gould [3]. A brief analysis of their proposed 
method and conclusions is reported in the following chapter. 
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Figure 2: Maxima Distribution Histogram and 5% critical value (one tailed) for a sample 

of 𝑛 = 100 MC observations repeated 𝑑 = 1000 times. 

 

1.2. Peirce’s criterion 
According to Peirce [2], in order to determine the limit of error in a series of 𝑛 

observations, it is possible to rely on a comparison between the probability of the system 
of errors obtained by retaining the abnormal observations and the probability of the system 
of errors obtained by their rejection multiplied by the probability of making so many and 
no more abnormal observations. 

This may seem complex to compute, but the considerations in [2] and [3] have been 
translated by Ross [4] in a simpler table of 𝑅 values, representing the maximum allowable 
deviation of a measured value from the mean 𝜇, normalized on the standard deviation 𝜎, 
for different numbers of doubtful observations (𝑚). 

The procedure simplifies to choosing a value of 𝑅 (𝑛,𝑚), computing the threshold 
value for deviation: 

 

|𝑥 − 𝜇|𝑚𝑎𝑥 = 𝑅 ∗ 𝜎 ( 5 

 
and finally comparing it to the deviation of the abnormal observations. 
 

Table 1: R values, Ross [4] 

Total #:  Number of doubtful observations 
𝒏 1 2 3 4 5 6 

3 1.196 -     
4 1.383 1.078 -    
5 1.509 1.200 -    
6 1.610 1.299 1.099 -   
7 1.693 1.382 1.187 1.022 -  
8 1.763 1.453 1.261 1.109 -  
9 1.824 1.515 1.324 1.178 1.045 - 
10 1.878 1.570 1.380 1.237 1.114 - 
11 1.925 1.619 1.430 1.289 1.172 1.059 
…       
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These results are anyway related to the Maxima distribution previously introduced, 
deeply analyzed in the Extreme Value Theory. 

 

1.3. Extreme Value Theory 
The Extreme Value Theory (EVT) is a branch of statistics dealing with the extreme 

deviations from the mean. It seeks to assess the probability of events that are more extreme 
than a selected reference, from a sample of size 𝑛 of a given random variable. In this section, 
we will focus on the distribution of the maxima drawn from a standard normal. 
According to EVT, in the limit for the number 𝑚 of sampled vectors tending to infinity, the 
induced distribution on the maxima of the samples (e.g. see Figure 2) can only take 3 forms: 
Gumbel, Weibull or Frechet (those last two can be easily transformed into a Gumbel [5]) 
which can be combined into a single family of Generalized Extreme Value CDFs: 
 

𝐺(𝑧) =

{
 
 

 
 𝑒𝑥𝑝 {− [1 + 𝜉 (

𝑧 − 𝜇𝑔

𝜎𝑔
)

−1/𝜉

]} 𝜉 ≠ 0

𝑒𝑥𝑝 {−𝑒𝑥𝑝 [−(
𝑧 − 𝜇𝑔

𝜎𝑔
)]} 𝜉 = 0

 ( 6 

 
where 𝜇𝑔 is the location parameter, 𝜎𝑔 is the scale (or dispersion) parameter, while 𝜉 is the 

shape parameter (0 for Gumbel- type I distribution) [6]. 
Analysing the behaviour of the maxima from a standard normal via Monte Carlo 

repetitions (see the next section of this chapter), in accordance to EVT, they can be proved 
to follow a Gumbel distribution, whose peak (the mode) is (asymptotically) placed in a point 
where the probability of exceedance for the original, generating distribution is 1/𝑛 (1 
maximum in each sample of size 𝑛). The location parameter of the maxima distribution then 
tends to the inverse of the standard normal CDF for a probability of 1 − 1/𝑛 [7], [8]. 

Focusing on the Gumbel distribution for the maxima, its CDF and PDF can be 
mathematically expressed as: 

 

𝐺(𝑧|𝜇𝑔, 𝜎𝑔) = 𝑒−𝑒
− 
𝑧−𝜇𝑔
𝜎𝑔   

 

𝑔(𝑧|𝜇𝑔, 𝜎𝑔) =
1

𝜎𝑔
𝑒
−(

(𝑧−𝜇𝑔)

𝜎𝑔
+𝑒

− 
(𝑧−𝜇𝑔)

𝜎𝑔
 
)

 

 

𝐺(𝑝)−1 = 𝜇𝑔 − 𝜎𝑔 𝑙𝑛(−𝑙𝑛(𝑝)) 
 

( 7 

 
Figure 3 shows the shape of the PDF and CDF of the Standard Gumbel distribution 

together with the formulation of some relevant distribution features given as a function of 
the location and scale parameters 𝜇𝑔 and 𝜎𝑔.  
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Figure 3: Standard Gumbel 𝐺(𝑧|0,1) PDF and CDF for the maxima (𝜇𝑔 = 0, 𝜎𝑔 = 1) 

 
As can be even deduced from the MC simulations shown in following chapter, the 

standard normal belongs to the domain of attraction of the Gumbel distribution (the 
maxima distribution will tend to a type-1), and the characteristic parameters 𝜇𝑔, 𝜎𝑔 for 

which 
(𝑧−𝜇𝑔)

𝜎𝑔
 shows the standard Gumbel distribution 𝐺(𝑧|0,1) = exp (−𝑒−𝑧) can be 

related to the 𝜇, 𝜎 parameters of the original normal 𝑁(𝑥|𝜇 , 𝜎). 
This could be performed starting from von Mises’s theorem [8]: 
 
Theorem.  Let 𝐹 be a distribution CDF. Suppose: 

• 𝐹(𝑥) < 1  ∀ 𝑓𝑖𝑛𝑖𝑡𝑒 𝑥  (𝑖. 𝑒.  𝐹 ℎ𝑎𝑠 𝑎𝑛 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡)  

• 𝐹(𝑥) 𝑖𝑠 𝑡𝑤𝑖𝑐𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒, 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑓𝑜𝑟 𝑥 > 𝑥𝑙𝑖𝑚 (𝑡𝑎𝑖𝑙) 

• lim
𝑥→∞

𝑑

𝑑𝑥
[
1−𝐹(𝑥) 

𝐹′(𝑥)
] = 0 

Then 
 

lim
𝑛→∞

𝐹𝑛( 𝜎𝑔(𝑛) 𝑥 + 𝜇𝑔(𝑛)) = 𝐺(𝑧|0,1) 

 
holds uniformly ∀𝑥 ∈ 𝑅, where 
 

𝜇𝑔(𝑛) = inf {𝑥: 1 − 𝐹(𝑥) ≥ 1/𝑛} 

𝜎𝑔(𝑛) = 1/𝑛 𝐹′(𝜇𝑔)                ∎ 
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So, the location parameter 𝜇𝑔 of the Gumbel can be computed from the inverse normal cdf 

of 1/𝑛: 
 

𝜇𝑔(𝑛) = 𝑚𝑜𝑑𝑒 = argmax
𝑧

(𝑔(𝑧)) =  𝑧𝑛 ≡ 𝑥𝑛 

𝜙(𝑥𝑛)̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑛
 

 

( 8 

And it can be proved that, asimptotically, for 𝑛 large enough: 
 

𝜇𝑔(𝑛) = 𝜇 + 𝜎 [(2 ln 𝑛)1/2 −
(ln ln 𝑛 + ln 4𝜋)

2(2 ln 𝑛)1/2
] ( 9 

 
While the dispersion parameter 𝜎𝑔 will correrspond to 

 

𝜎𝑔(𝑛) =
𝜙 (𝜇𝑔(𝑛))

𝑓 (𝜇𝑔(𝑛))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

=
1

𝑛

1

𝑓(𝜇𝑔)
=
1

𝑛

1

𝐹′(𝜇𝑔)
 ( 10 

 
And asimptotically: 
 

𝜎𝑔(𝑛) = 𝜎(2 ln 𝑛)
−1/2 ( 11 

 

 
Figure 4: Standard Normal and Induced Gumbel (𝑛 = 100) 

 
It is interesting to note that 
 

𝜎𝑔 =
𝜙(𝜇𝑔)

𝑓(𝜇𝑔)

̅̅ ̅̅ ̅̅ ̅̅
=

1

ℎ(𝜇𝑔)
 

 

( 12 
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which corresponds to the inverse of what is often called intensity or hazard function ℎ . This 
basically comes from the probability of observing a particular value 𝑥, conditional on the 
fact that the observation will at least exceed 𝑥.  
 

𝐴: 𝑥 𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐵: 𝑋 ≥ 𝑥 𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

Pr(𝐴|𝐵) =
Pr(𝐴 ∩ 𝐵)

Pr (𝐵)
=
∫ 𝑓(𝑡)𝑑𝑡
𝑥+𝑑𝑥

𝑥

∫ 𝑓(𝑡)𝑑𝑡
+∞

𝑥

=
𝑓(𝑥)𝑑𝑥

1 − 𝜙(𝑥)
 

ℎ(𝑥) = lim
𝑑𝑥→0

∫ 𝑓(𝑡)𝑑𝑡
𝑥+𝑑𝑥

𝑥

∫ 𝑓(𝑡)𝑑𝑡
+∞

𝑥

=
𝑓(𝑥)

1 − 𝜙(𝑥)
=
𝑓(𝑥)

𝜙(𝑥)̅̅ ̅̅ ̅̅ ̅
 

 

( 13 

 
Note that the hazard function is not a conditional probability, but rahter a sort of 

“conditional probability density”, corresponding to the expected number of events per unit 
of 𝑥. 

 
Another asymptotical interpretation can be achieved remembering the de l’Hôpital’s rule: 
 

lim
𝑥→∞

𝑓(𝑥)

1 − 𝜙(𝑥)
= −

𝑓′(𝑥)

𝑓(𝑥)
= − 

𝑑 ln 𝑓(𝑥) 

𝑑𝑥
 ( 14 

 

where the resulting ratio computed by Logarithmic derivative [  
𝑓′

𝑓⁄ = (ln(f))
′
 ] is usually 

identified as semi-elasticity: the percentage change in the function  corresponding to an 
absolute change in 𝑥.  

Notice that, being 𝑓(𝑥) the standard normal PDF, ℎ(𝑥) will asymptotically tend to 
the first-third quadrant bisector. 

 

ℎ(𝑥) ≈ −
∆𝑓(𝑥)/𝑓(𝑥)

∆𝑥
≈ − 

𝑑 ln 𝑓(𝑥) 

𝑑𝑥
= 𝑥 ( 15 

 
Therefore, the inverse ratio of ℎ(𝑥) is an absolute change in 𝑥; this is obviously related to 
the dispersion of the induced maxima distribution and approaches 1/𝑥 for 𝑥 sufficiently 
large (namely for 𝑛 large enough, as 𝑥 ≡ 𝜇𝑔(𝑛)). 

 

1.3.1. Monte Carlo Simulation 
Similar to what described in section 1.1 of this chapter, 𝑑 = 103 Monte Carlo 

Repetitions for different sample sizes (𝑛) are performed to study the evolution of the 
maxima distribution as a function of 𝑛. The result is graphically summarized in Figure 5, 
where each empirical distribution is fitted with a corresponding Gumbel, whose paramters 
are also reported. 

As expected, the Normal distribution shows a type-1 (Gumbel) domain of attraction 
of class E1: the extreme distributions become more and more peaked as the numerousness 
𝑛 increases, while at the same time, the spacing between them decreases. These two 
trends are almost linear ln(𝑛). 
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Figure 5: Several different Induced Gumbel distributions starting from the standard 

normal, as a function of 𝑛, for 𝑑 = 103 Monte Carlo Repetitions. 

 
Anyway, the dispersion and location parameters (reported in Table 2) could be quite 

easily foreseen using the formulas reported in previous section. 
From Table 2, which summarizes the theoretical and estimated location and 

dispersion parameters, it is easy to understand that the error made by using the 
asymptotical formulation is sufficiently low for 𝑛 large enough (e.g. 𝑛 > 102). 

 
Table 2: Comparison among theoretical, asymptotical and estimated location and 

dispersion parameters 𝜇𝑔 and 𝜎𝑔. 

 
𝒏 𝝁𝒈 𝝁𝒈 𝒂𝒔. 𝑴𝑪 𝒆𝒔𝒕. 𝝁𝒈 𝝈𝒈 𝝈𝒈 𝒂𝒔. 𝑴𝑪 𝒆𝒔𝒕. 𝝈𝒈 

𝟏𝟎 1.28 1.36 1.23 0.57 0.47 0.53 

𝟏𝟎𝟐 2.33 2.37 2.31 0.38 0.33 0.38 

𝟏𝟎𝟑 3.09 3.12 3.08 0.30 0.27 0.29 

𝟏𝟎𝟒 3.72 3.74 3.70 0.25 0.23 0.25 

𝟏𝟎𝟓 4.26 4.28 4.26 0.22 0.21 0.21 

𝟏𝟎𝟔 4.75 4.77 4.75 0.20 0.19 0.19 

 
 

1.3.2. EVT vs Peirce’s criterion 
In section 1.2, in accordance to Ross work [4], the quantity 𝑅 was introduced as the 

ratio of the maximum allowable deviation from the data mean to the standard deviation. 
 

𝑅 =
|𝑥 − 𝜇|𝑚𝑎𝑥

𝜎
 ( 16 
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Referring to a standard normal, 𝑅 can be then considered as the threshold that limits the 
one outlier region for the absolute value of 𝑥.  

According to this consideration, a threshold similar to 𝑅 could be computed with 
EVT starting from the absolute value of a draw from a standard normal. For a more rigorous 
formulation we will try to recover the first column of Table 1 (1 doubtfoul observation → 1 
outlier) applying EVT to the square of a standard normal draw, corresponding to a draw 
from a 𝜒2(𝑦|1)  (chi-square, one degree of freedom) distribution. 
In fact, it holds: 
 

𝑥~𝑁(𝜇, 𝜎2) 
𝑦 = 𝑥2   →   𝑦~𝜒2(𝑦|𝑘)   𝑤𝑖𝑡ℎ 𝑘 = 1 𝑑𝑜𝑓 

𝜒2𝑝𝑑𝑓(𝑦|1)    =
1

√2𝜋𝑦
𝑒− 

𝑦
2   

𝜒2𝑐𝑑𝑓(�̂�|1) = 𝑃(𝑦 ≤ �̂�) = ∫
1

√2𝜋𝑡 
𝑒− 

𝑡
2

�̂�

− ∞ 

𝑑𝑡

≡ 2∫
1

√2𝜋 
𝑒− 

𝑡2

2

√�̂�

− ∞ 

𝑑𝑡 − 1 = 2 ∗ 𝜙(�̂�) − 1 

 

( 17 

 

 
Figure 6: 𝜒2(1)  PDF and CDF. 

 
A Monte Carlo simulation, similar to the one proposed in the previous section, was 

then repeated, and the results are reported in Figure 7. 
The picture shows a type-1 (Gumbel) domain of attraction similar to class E2: the extreme 
distributions has a “stable behaviour” preserving the dispersion (actually it shows a slight 
change, but at a very low rate), while the PDF is basically just shifted as the number 𝑛 
increases.  

It is interesting to note that the square root of the Gumbel location parameter 

computed starting from the 𝜒2(𝑦|1) distribution, √𝜇𝑔, which can be used as a threshold 

for absolute deviation outlier detection, can be also calculated starting from the standard 
normal distribution in the following way (it is sufficient to focus on the relation between 
the 𝜒2𝑐𝑑𝑓 and the standard normal CDF reported above): 
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√𝜇𝑔 = [𝜒
2𝑐𝑑𝑓−1 (1 −

1

𝑛
)]
1/2

= √�̂� ≡ �̂�

= 𝜙−1 (1 −
1

2𝑛
) 

( 18 

 
The MC results proposed in Figure 7, are summarized, in terms of thresholds, in 

Figure 8, where a comparison against Pierce’s R values was also performed.  
 

 
Figure 7: Several different Induced Gumbel distributions starting from the 𝜒2(1), as a 

function of 𝑛, for 𝑚 = 103 Monte Carlo Repetitions. 

 

 
Figure 8: Peirce’s R (𝑚 = 1) vs EVT threshold 
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In this image, it’s possible to notice that the square root of the location parameter 

computed from the 𝜒2(𝑦|1) (√𝜇𝑔 – which corresponds to the square root of the mode) 

underestimates R, although the trend is quite similar.  
A better approximation of the 𝑅 = 𝑓(𝑛) function can be obtained focusing on the square 

root of the expected value of the EV distribution (namely the mean:  �̅� =  ∫ 𝑦 𝑓(𝑦)𝑑𝑦
+∞

−∞
 ). 

2. Multivariate Extension 
If the assumption of multivariate Normality holds for the original multivariate 

distribution, the sum of squares 𝑁𝐼2 is distributed as a perfect 𝜒𝑑
2. That is 

 

𝑁𝐼2 =∑
𝑧𝑗
2

𝜆𝑗𝑗
~𝜒(𝑑)

2  ( 19 

 
Then the ideal location and dispersion asymptotical parameters for 𝑁𝐼 can be obtained as 
a function of the dimension 𝑑 of the feature space and the size 𝑛 of the samples. For 
example, it can be written that: 
 

𝜇𝑔(𝑛) = √𝜒(𝑑),1
𝑛

2  ( 20 

 
As introduced in Chapter 4, when the Mahalanobis distance is computed with sample 
estimates of mean and covariance matrix coming from small samples 𝑛, Wilks’s correction 
should be used: 
 

𝜇𝑔(𝑛) =  √

𝑑(𝑛 − 1)2𝐹
(𝑑,𝑛−𝑑−1),

1
𝑛2

𝑛 (𝑛 − 𝑑 − 1 + 𝑑 𝐹
(𝑑,𝑛−𝑑−1),

1
𝑛2
)

 ( 21 

 
These considerations can be easily proved through Monte Carlo repetitions on a 

multivariate Gaussian distribution, as suggested by Worden [1]: 
1. Draw a sample of 𝑛 observations randomly generated from a 𝑑-dimensional 

standard normal distribution, 
2. Compute the deviation of each observation in terms of distance from the centroid 

i.e. the 𝑁𝐼, 
3. Save the maximum deviation and repeat the draw for 𝑚 times. 

 
The result of such operation is a collective from which several considerations can be 

obtained. In particular, in Figure 9, the NI probability distribution (histogram) from 𝑚 =
100 repetitions with increasingly larger 𝑛 drawn from a bivariate Gaussian is shown, 
together with a fitting of a Gumbel per each 𝑛. It is easy to appreciate the goodness of such 
fit, in accordance with the EVT theory. Furthermore, the so estimated �̂�𝑔 are stored and 

reported in Table 3 together with the values found for 𝑑 = 5 and 10. There, the squared �̂�𝑔
2  

are compared to their expected asymptotical value 𝜒
(𝑑),

1

𝑛

2 . As inferable from the EVT theory, 

the two values are matching very well. Finally, these asymptotical values are graphed as a 
function of the dimension 𝑑 in Figure 11. 
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In order to verify Wilks’s intuition, a second Monte Carlo repetition is proposed, 
where the observations come from a multivariate normal with randomly generated 
covariance and mean. The results of the simulation for 𝑑 = 5 is summarized in Figure 11, 

where it is compared to the Wilks’s 𝜇𝑔
2  and to the 𝜒

(𝑑),
1

𝑛

2 .  

To account both for small and large 𝑛 a final summarizing formula can be given: 

 

𝜇𝑔(𝑛) = min

(

  
 
√𝜒(𝑑),1

𝑛

2      , √

𝑑(𝑛 − 1)2𝐹
(𝑑,𝑛−𝑑−1),

1
𝑛2

𝑛 (𝑛 − 𝑑 − 1 + 𝑑 𝐹
(𝑑,𝑛−𝑑−1),

1
𝑛2
)
)

  
 

 ( 22 

 

 
Figure 9: Several different Induced Gumbel distributions for the maxima arising from a 

bivariate standard normal, as a function of 𝑛, for 𝑚 = 100 Monte Carlo Repetitions. 

 

Table 3: Monte Carlo sampling of increasing 𝑛 observations from Multivariate Standard 
Normals (d=2,5,10). The �̂�𝑔 values obtained from fitting a Gumbel are compared to the theoretical 

𝜒(𝑑),1/𝑛
2  critical values. 

 

m=100 d=2 d=5 d=10 

n �̂�𝑔
2  𝜒

(𝑑),
1
𝑛

2  �̂�𝑔
2  𝜒

(𝑑),
1
𝑛

2  �̂�𝑔
2  𝜒

(𝑑),
1
𝑛

2  

10 4,72 4,61 9,12 9,23 16,12 15,99 

100 8,85 9,21 14,37 15,01 22,57 23,21 

1000 13,73 13,82 20,73 20,51 29,42 29,59 

10000 18,29 18,42 25,90 25,75 35,83 35,56 
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Figure 10: Expected asymptotical value 𝜒

(𝑑),
1

𝑛

2   for MC sampling (d=2,5,10) as a function 

of 𝑛. 

 

 
Figure 11: Monte Carlo sampling from a 5-dimensional Multivariate Normal with 

random mean and covariance matrix. The �̂�𝑔
2  values obtained from fitting a Gumbel (green 

dots) are compared to the theoretical 𝜇𝑔
2(𝑛) critical values form 𝜒2 and Wilks’s criteria. 

In any case, the relevant result is that a threshold for the 𝑁𝐼 can be found using 
statistical hypothesis testing considerations. In this respect, the theoretical 𝜇𝑔 turns out to 

be a very good candidate, even if, due to the asymmetric shape of the Gumbel, it can be 
good to increase it (e.g. of 𝜎𝑔) to increment the significance 𝛼 of the test, possibly at the 

expense of the power (see the considerations about confidence-power trade-off in Section 
2.4).  Figure 11 shows that a region in which the theoretical 𝜇𝑔 overestimates the location 

parameter �̂�𝑔 is always present. This area changes with the dimension 𝑑, so that in many 

cases it can be more conservative to use a MC simulation to find a robust threshold.  
Furthermore, considerations about the so-called curse of dimensionality can be 

derived from such an analysis.   
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3. The curse of dimensionality 
When the space dimensionality increases, the volume of the space becomes larger 

so fast that the available data are usually not enough to “fill” it and the data cloud turns out 
to be “sparse”, so that the confidence on statistical estimates is eroded. Moreover, 
comparing the volume of a hypercube to the volume of the inscribed hypersphere it is 
possible to derive that the ratio 𝑉ℎ−𝑠𝑝ℎ𝑒𝑟𝑒/ 𝑉ℎ−𝑐𝑢𝑏𝑒 tends to 0 as 𝑑 → ∞, while the distance 

between the centre and the corners increases without any bound with 𝑑. The high-
dimensional unit hypercube then can be said to consist almost entirely of the "corners" with 
almost no "middle". This space density deformation is highlighted also by the 𝜒2 
distribution shape. As illustrated in Figure 12, in fact, most of the 𝑑-cube volume 

concentrates near the surface of a sphere of radius √𝑑. Indeed, the limiting distribution of 
the 𝜒2 for an increasing 𝑑 (i.e. 𝑑 > 50) can be proved to be the normal 𝑁(𝑑,√2𝑑). 

 
Figure 12: Three 𝜒2 distributions for an increasing number of dofs. The 𝜒100

2  is 
compared to the asymptotical tendency distribution 𝑁(100,√200). The asymptotical means are 

highlighted as black dotted lines. Notice that increasing the dofs, the distribution concentrates 
around the asymptotical mean.  

 

4. Multivariate issues: Robust covariance estimation 
The main issue brought by the so-called curse of dimensionality is related to the 

sparsity of the high dimensional datasets. In fact, the amount of data needed to “fill the 
space” grows exponentially with the dimensionality, so that it is usually practically 
impossible to have 𝑛 large enough. Furthermore, in these sparse datasets, possible outliers 
can truly kill the reliability of statistical estimates such as the mean value and the covariance 
matrix. These estimates are fundamental for hypothesis testing, classification and novelty 
quantification, so that the problem of robustness to outliers and samples numerousness 
cannot be neglected. 

Focusing on the estimation of the covariance matrix 𝛴, similar considerations to the 
one introduced in Chapter 4 can be derived. In particular, the maximum likelihood estimate 
result biased 

 

𝑆𝑛,𝑀𝐿 =
1

𝑛
𝑋𝑡𝑋 𝐸[𝑆𝑛,𝑀𝐿] ≠ 𝛴 ( 23 
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so that, the unbiased estimator should be preferred. 
 

𝑆𝑛 =
𝑛

𝑛 − 1
𝑆𝑀𝐿 ( 24 

 
Notice that, for a dimension 𝑑, the estimation of 𝑆𝑛 involves the computation of 

𝑑2−𝑑

2
 covariances and 𝑑 variances, or overall 

𝑑2+𝑑

2
 parameters. In this regard, the overall 

mean square estimation error can be decomposed as 
 

𝑀𝑆𝐸(𝑆) = 𝑏𝑖𝑎𝑠(𝑆)2 + 𝑣𝑎𝑟(𝑆) 
 

𝐸[||𝛴 − 𝑆||𝑓𝑟𝑜
2 ] =∑ 𝐸2[𝜎𝑖 − 𝑠𝑖] + 𝑣𝑎𝑟(𝑠𝑖) 

𝑖
 

 

( 25 

where ||∙||𝑓𝑟𝑜
2  , the so-called Frobenius norm accounting for elementwise errors, can be 

written as the sum of a bias and a variance error term. The problem of bias – variance 

trade-off is a common one in estimation theory. In particular, when 𝑛~
𝑑2+𝑑

2
, the variance 

model used is too complex for the available data, so that the risk of overfitting is very high.  
That is, the estimation is good on the particular sample, but out of sample, the 

variability can be very high as the model is not properly generalizing the hidden patterns 
but is picturing also the noise in the training sample. On the contrary, using the unbiased 
estimator, the problem of underfit (𝑛 too large) will not arise. 
 

   
Figure 13: Total error vs model complexity and the corresponding conditions of underfit 

and overfit as a function of accuracy (low bias) and precision (low variance). 

 
In order to improve the reliability of the covariance estimation, statistics offers a 

number of options: 

• Cross validation and leave one out cross validation 

• Bootstrap aggregation (“bagging”) 

• Covariance concentration 

• Shrinkage 
 
The first three are mainly useful to produce a covariance estimate robust to invclusive 
outliers, while the last one faces the problem of small 𝑛.  
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4.1. Robust covariance estimators 
In this section, the main approaches to the subject of robust covariance estimates 

is faced. The algorithms are first introduced using the simple dataset of reference [12]. This 
dataset collects the values of 13 constituents found in three types of Italian wines. For the 
sake of simplicity, as in [12], just the first group of wines is considered, and the number of 
features is limited to two (i.e. “malic acid” and “proline”). As it is easy to note in Figure 14, 
the dataset features many outliers which affect the estimate of the covariance matrix, 
whose corresponding ellipse (for confidence 97,5%) is highlighted. In general, the measure 
of the volume of an ellipsoid is proportional to the determinant of the covariance matrix, 
so that this measure can be used to quantify the ellipsoid dimension. (Precisely, it is the 
determinant times the volume of the unit spheroid). Being this a bi-dimensional case, the 
volume shrinks down to an area, whose value is reported in figure. 

 

 
Figure 14: Dataset of Italian wines in terms of their constituents [14]. A family of wines 

is plotted as a function of two features: “malic acid” and “proline”. The ellipsoid corresponding 
to the estimated covariance delimiting the 97,5% confidence region results affected by the 

presence of many outliers. In red the only detected outliers at a confidence 97,5%. 

 
Then, a non-linear mechanical system was simulated, and the so generated dataset 

was used for comparing the different algorithms. 
The system selected for this analysis is the simple 1-DOF damped harmonic 

oscillator, with an asymmetric nonlinearity introduced by a bilinear stiffness which 
simulates the presence of clearance. When the positive displacement exceeds the 
clearance, the mass comes into contact with a hard stop that restricts the motion of the 
body. This is simulated by an instantaneous increase in the stiffness from 𝑘 to 𝑘1, which 
accounts for the parallel of the two stiffnesses (i.e. the spring 𝑘 and the hard stop 𝑘0 
stiffnesses), as shown in Figure 15. Outputs of the model for different values of the 
clearance 𝑦0 were then computed. An example of the standard normal input and the output 
in terms of position and acceleration are reported in Figure 16 for 𝑦0 = 1 𝜇𝑚. The signals 
consisting of 10000 samples at a frequency of 100 𝐻𝑧 were then brought to the frequency 
domain (i.e. Welch Periodogram) and a limited number of spectral lines around the natural 

frequency of the system (𝑓𝑛 =
1

2𝜋
√𝑘/𝑚 = 7,2 𝐻𝑧) were selected as features. 
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Parameters: 

𝑚 1  𝑘𝑔 
𝑐 10  𝑁𝑠/𝑚 
𝑘 2000  𝑁/𝑚 
𝑘1 10000  𝑁/𝑚 
𝐹 𝑁𝜇=0,𝜎=1  𝑁 

𝑦0 5 ÷ 50 10−4  𝑚 
 

  
Figure 15: The modelled system and the block scheme of the corresponding differential 

equation 

 

 
Figure 16: An example of the standard normal input and the output in terms of 

position and acceleration for 𝑦0 = 1 𝜇𝑚. 

 

4.1.1. Cross validation and leave one out cross validation 
Cross validation is a common procedure in model validation for assessing how the 

results of a statistical analysis will generalize to an independent data set. In particular, the 
leave-𝑝-out cross-validation involves using 𝑝 observations as the validation set and the 
remaining observations as the training set. This procedure for 𝑝 = 1 (i.e. leave one out) is 
adopted by [13] to make the mean value and covariance estimates independent from the 
dataset. The so called Jackknifed estimates turn out to be: 

 
𝑥�̅� = 𝐸[𝑥]𝑗≠𝑖 

 

𝑆𝑖 = 𝐸 [(𝑥 − 𝐸[𝑥]𝑗≠𝑖)(𝑥 − 𝐸[𝑥]𝑗≠𝑖)
𝑡
]
𝑗≠𝑖

 

 

( 26 
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This way it is possible to obtain an independent measure of the Mahalanobis 
distance for the 𝑖-th observation 

 

𝐷𝑖
2 = (𝑥𝑖 − 𝑥�̅�)

′𝑆𝑖
−1(𝑥𝑖 − 𝑥�̅�) ( 27 

 

In the first instance, a threshold 𝜒(2),2.5%
2 can be easily built at a confidence 1 − 𝛼 = 97,5% 

to detect and remove outliers. The result is shown in Figure 17, where a substantial 
reduction in the volume is obtained. In any case this is an approximation, as the correct 

critical value according to [13] should be 
𝑛𝑑(𝑛−2)

(𝑛−1)(𝑛−𝑑−1)
𝐹(𝑑,𝑛−𝑑−1),𝛼/𝑛. 

 

 
Figure 17: Jackknifed Mahalanobis distance and the 97.5% confidence threshold on the 

left. On the right the farther excluded points are highlighted in red, while the covariance 
ellipsoid of the remaining points is drawn. 

 

4.1.2. Bootstrap aggregation (“bagging”) 
The bootstrap aggregation (or bagging) is a procedure which relies on random 

sampling with replacement. A way of using this procedure for making the covariance 
consists of 

• Estimating the multivariate pdf from the data to assign importance weight 
to the observations (i.e. weights proportional to the probability). In the 
example a gaussian kernel is used (this is suitable for low space dimensions). 
As it easy to notice in Figure 18, despite the bias in the PDF, the importance 
weights can be correctly estimated. In the simplest case, the importance 
weight can be set all equal, so that this step can be simplified (random 
bootstrap), 

• Resampling with replacement according to importance weights and 
computing the determinant, 

• Repeating and selecting the minimum determinant until a stopping criterion 
is met (e.g. max iterations or minimum error). 

 
The result of two iterations is shown in Figure 18, where the corresponding sampled 

values are highlighted in green. 
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Figure 18: Bivariate Gaussian kernel PDF and corresponding importance weights in red. 

 

 
Figure 19: Two different importance samplings (the points drawn are highlighted in 

green) and the corresponding covariance ellipsoids. In red the outliers. 

 

4.1.3. Minimum Covariance Determinant (MCD) 
A very established technique for producing robust covariance estimates is the so-

called Minimum Covariance Determinant (MCD) [12] also used for Structural Health 
Monitoring [23,24]. It is based on concentration steps which are exploiting both the 
bootstrap and the cross-validation idea. The procedure is based on: 
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• Random selection of a sub-sample of 𝑛𝑠 observation, from which a 

covariance 𝑆𝑗  is estimated. N.B. 
𝑛

2
≤ 𝑛𝑠 ≤ 𝑛 and 𝑗 identifies the iteration. 

• Use 𝑆𝑗 to compute the Mahalanobis distance of the entire sample and select 

the smallest 𝑛𝑠 observations. 

• Compute a new covariance 𝑆𝑗+1 with these values and compare its 

determinant to 𝑆𝑗 determinant: if smaller iterate the procedure, otherwise 

if the determinant is the same or 0 stop and repeat for a different initial 
random sub-sample. 

The result of this algorithm to the wine data, as produced in [12], is shown in Figure 20. 
 

 
Figure 20: MCD 97,5% covariance ellipsoid and the detected outliers in red. 

 

4.1.4. Comparison of the robust covariance estimators over the 
simulated signals from the non-linear mechanical system for Novelty 
Detection 

As introduced at the beginning of the chapter, outliers are of great interest in 
statistics. In machine diagnostics they are fundamental for the damage detection. 
Mahalanobis Distance Novelty Detection for example, assumes that the healthy data from 
a machine can be modelled as a multivariate normal cloud, so that outliers can be used to 
assess the presence of novelty, which denotes damage in absence of confounding 
influences. Nevertheless, if the healthy training dataset is corrupted by outliers (in this case 
extraordinary events which may have affected the measurements), the estimate of the 
normal distribution parameters (i.e. mean vector and covariance matrix) can be biased by 
such outliers.  

The performance of ND in case of outliers' inclusive trainings can be strongly 
reduced because of biased parameters estimation. In these cases, then, it is fundamental 
to remove such outliers. Robust ND can be implemented with the three methods 
introduced above, so that it is relevant to test their performance. In order to make an 
objective comparison, the simulated data from the non-linear 1DOF oscillator are used, and 
the performance in terms of robustness is assessed via the Kullback-Leibler divergence of 
the estimated distribution (in terms of mean vector and covariance matrix) with respect to 
the theoretical distribution in the feature space.  In particular, up to 20 spectral lines around 
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the natural frequency of the system in the linear range are used as features for a 
multivariate analysis. The smoothed spectral density was estimated with the Welch’s 
Periodogram methodology with a Hamming window of length 1000 samples, 90% overlap 
and 110 spectral lines of frequency discretization. 

The system was simulated changing the values of the clearance to produce different 
responses to the Gaussian random input. In particular, the theoretical distribution 
parameters are estimated from a simulation with a very large value of  𝑦0 = 5 𝜇𝑚. 

This dataset was later corrupted with observations from the same system when the 
clearance is first reduced to 𝑦0 = 1 𝜇𝑚 (soft non-linearity effect) and then decreased again 
up to 𝑦0 = 0,5 𝜇𝑚 (strong non-linearity effect). From a visual inspection of the spectra, in 
the first case (Figure 21-a) the natural frequency is starting a slight shift to higher 
frequencies, which is evident in Figure 21-b (compared to the spectra obtained in case of 
𝑦0 = 5 𝜇𝑚, for which the system is linear, which are reported in the first half of the 
pictures). 

 

  
a) 𝑦0 = 1 𝜇𝑚 b) 𝑦0 = 0,5 𝜇𝑚 

Figure 21: Cascade of spectra from several MC repetitions of the model compared to the 
same reference obtained with 𝑦0 = 5 𝜇𝑚 (linear system), reported in the first half of the 

pictures; a) comparison with results from  𝑦0 = 1 𝜇𝑚 (soft non-linearity effect); b) comparison 
with results from  𝑦0 = 1 𝜇𝑚 (strong non-linearity effect). 

 
Different levels of contamination were accounted for an overall samples 

numerousness of 200 in Figure 22 and 23 and a reduced numerousness of 60 in Figure 24. 
In all the pictures, the Kullback-Leibler Divergence under the assumption of normality was 
computed. The aggregated results for all the MC repetitions are shown. 

Note that the KL divergence was computed under the assumption of normality of 
the estimated 𝑑-dimensional pdf 𝑞~𝑁(𝜇2, Σ2) from a normal reference pdf 𝑝~𝑁(𝜇1, Σ1) 
as [22]: 

𝐷𝐾𝐿(𝑝||𝑞) = ∫𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥 = 

=
1

2
[log

|Σ2|

|Σ1|
−𝑑 + tr(Σ2

−1Σ1) + (𝜇2 − 𝜇1)
′Σ2
−1 (𝜇2 − 𝜇1)]  

 

( 28 

Several considerations can be deduced by looking at the MC aggregated results 
(mean value and ± standard deviation region) in Figures 22, 23 and 24, where the 
traditional inclusive (non-robust) estimators for mean and covariance are compared to 
exclusive estimates, where the removed outliers are spotted by Mahalanobis Distance 
(MD), Jacknife Mahalanobis Distance (JKN) and Minimum Entropy Deconvolution (MCD) or 
via Random Bootstrap (RB). The algorithms are implemented assuming that no prior 
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knowledge about the true number of outliers is known, so that no parameters optimization 
is performed.  

The RB was selected in place of the importance bootstrap as the analysis was 
interested in estimating the performance of the methods for a feature space dimensionality 
up to 20. In this case the use of KDE for the multivariate pdf is not advisable, so that the 
importance bootstrap was dropped. The concentration effect of 50 repeated draws of 
samples of 75% the size of the original is not substantial. Just when the number of samples 
is big enough and the space dimensionality is large, RB proves to slightly reduce the 
estimation error. When a simple 𝜒2 critical value with significance 𝛼 = 1/𝑛 is used to detect 
outliers from MD, the estimation error is reduced only when the contamination is below 
10%. In this case, the sample size is also relevant, as for small samples (e.g. Figure 24) the 
so estimated threshold results inappropriate. In this case, if the number of included outliers 
is not big, the performance can be improved using a Jacknifed estimate of the Mahalanobis 
distance with an appropriate threshold, as the one based on Fisher’s 𝐹 introduced in 
previous section. Finally, if the number of included outliers is large, the FAST MCD with a 
𝑛𝑠 = 0,5 𝑛  proves to be the best in reducing the estimation error. This robust estimator is 
in fact an effective mix of Bootstrap ad MD outlier detection, which can outperform all the 
other algorithms if the outlier fraction is optimized according to the expected inclusiveness 
value. For example, reducing the fraction to 25% (𝑛𝑠 = 0,25 𝑛), the first two graphs in 
Figure 23 can be improved as seen in Figure 24. 

 

  

  
Figure 22: Robustness assessed in terms of KL divergence of the estimated multivariate 

psd (model with  𝑦0 = 1 𝜇𝑚) from the theoretical psd (with  𝑦0 = 5 𝜇𝑚) when an outlier 
inclusive set with declared contamination proportion is used.  
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Figure 23: Robustness assessed in terms of KL divergence of the estimated multivariate 

psd (model with  𝑦0 = 0,5 𝜇𝑚) from the theoretical psd (with  𝑦0 = 5 𝜇𝑚) when an outlier 
inclusive set with declared contamination proportion is used. 
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Figure 24: Robustness assessed in terms of KL divergence of the estimated multivariate 

psd (model with  𝑦0 = 0,5 𝜇𝑚) from the theoretical psd (with  𝑦0 = 5 𝜇𝑚) when an outlier 
inclusive set with declared contamination proportion is used. MCD outliers fraction reduced to 

25%. 

 

4.2. Shrinkage (regularization) 
As repeated at the beginning of Section 4, the unbiased covariance estimator 

virtually reaches by definition no bias when 𝑛 → ∞. Actually, in practical cases 𝑛 is always 
finite, and often small compared to the dimension 𝑑, implying a very large variance term 
(overfit). An idea appeared in [14,15,16] to face very small sample sizes is then to accept a 
limited amount of introduced bias provided that the variance will reduce more. This 
procedure is commonly called shrinkage:  

 
𝑅𝛼 = (1 − 𝛾) 𝑆 + 𝛾 𝑇 

 
( 29 

the overfitted estimate 𝑆 is combined to a predefined underfit target 𝑇 through a shrinkage 
coefficient 𝛾. Common options for the underfit target 𝑇 are covariances with simplified 
structures such as 
 

diagonal, unit variance diagonal, common variance diagonal, unequal variance 

𝑇 ≡ 𝐼 
𝑇 = 𝑡2 𝐼 

𝑡2 = 𝑡𝑟(𝑆)/𝑑 
𝑡𝑖𝑗 {

𝑠𝑖𝑗  𝑖 = 𝑗

0 𝑖 ≠ 𝑗
 

 
Obviously, the selection of a particular structure in place of another is up to the 

experience and expectation of a researcher. A quite neutral selection anyway can be the 
diagonal, unequal variance matrix 𝑇, which basically keeps the marginals of the estimate 𝑆 
but removes the information of the correlation. Whatever the selected 𝑇 anyway, the 
shrinkage parameter 𝛾 can be optimized by minimizing a loss function. Taken as expected 
loss the mean square error and recalling the bias variance decomposition, it can be proved 
that 

 
𝑀𝑆𝐸(𝑅) = 𝑏𝑖𝑎𝑠(𝑅)2 + 𝑣𝑎𝑟(𝑅) 

𝐸[||𝑅 − 𝛴||𝑓𝑟𝑜
2 ] =  ∑𝐸2[𝑟𝑖 − 𝜎𝑖] + 𝑣𝑎𝑟(𝑟𝑖) = 

=∑(𝐸[𝛼𝑡𝑖 + (1 − 𝛼)𝑠𝑖 − 𝜎𝑖])
2 + 𝑣𝑎𝑟(𝛼𝑡𝑖 + (1 − 𝛼)𝑠𝑖)  

 

( 30 
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𝛼∗ =
∑  𝑣𝑎𝑟(𝑠𝑖) - 𝑐𝑜𝑣(𝑡𝑖, 𝑠𝑖) − 𝑏𝑖𝑎𝑠(𝑠𝑖)𝐸[𝑡𝑖 − 𝑠𝑖] 

𝐸[(𝑡𝑖 − 𝑠𝑖)2] 
 ( 31 

 
And for the particular case of 𝑇 diagonal, unequal variance, the optimal value of 𝛼 can be 
proved: 
 

𝛼∗ =
∑ 𝑣𝑎𝑟(𝑠𝑖𝑗)𝑖≠𝑗

∑ 𝑠𝑖𝑗
2

𝑖≠𝑗

 ( 32 

 
where the unbiased empirical variance of the individual entries of 𝑆 equals 
 

𝑣𝑎𝑟(𝑠𝑖𝑗) =
𝑛

(𝑛 − 1)3
∑ (𝑤𝑘𝑖𝑗 − �̅�𝑖𝑗)

2

𝑘
 ( 33 

 
With 

𝑤𝑘𝑖𝑗 = (𝑥𝑘𝑖 − 𝑥�̅�)(𝑥𝑘𝑗 − 𝑥�̅�) 
�̅�𝑖𝑗 =

1

𝑛
∑ 𝑤𝑘𝑖𝑗

𝑘
 

 
( 34 

A synthetic example can be found in Figure 25, where two random samples of 4 
observations in a dimension 𝑑 = 2 are drawn from a bivariate normal having the 97.5% 
confidence ellipse shown in black. Having just 4 samples, the probability of correctly picture 
the covariance matrix are very low. In most of cases, the points are either grouped near the 
sample average (in green) and featuring then a low correlation, or almost aligned, with a 
high correlation (Parsons’s 𝜌). In the first case the shrinkage is not improving the situation, 
but is quite conservative, as the sample covariance (i.e. the red ellipse) is much affected. In 
the second case on the contrary, the shrinkage improves the covariance estimate (i.e. the 
green ellipse). As it is easy to notice, the marginals obtained by the sample covariance are 
left unaffected as the diagonal, unequal variance 𝑇 only modifies the off-diagonal elements 
of 𝑆. The 97.5% shrunk ellipse (in green) is anyway much nearer to the true ellipse (in black). 

 

 
Figure 25: Two samples (size 𝑛 = 4) from the distribution featuring the black 97.5% 

ellipsoid. The estimated mean (green dot) and covariance (red 97,5% ellipsoid) are shown. In the 
first case, a small correlation is found, so that the optimal shrinkage 𝛼 = 0,3 is not much 

effective. In the second case, the very high correlation is reduced by the shrinkage (𝛼 = 0,15) to 
a more probable value. 
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In any case, when there is the freedom of selecting a proper 𝑛, this must always be 
done in a design of experiment phase (DOE). In the next section, the selection of a proper 
sample size 𝑛 is tackled. 

 

5. Proper sample size 𝑛: how large is large enough? 
In the design of experiment phase a fundamental step is the selection of the sample 

size 𝑛 to ensure a proper confidence in the estimation of the covariance matrix. In [17] a 
nice derivation of the minimum appropriate 𝑛 based on probability distributions and 
confidence intervals is given. 

The derivation for the 1-D variance is quite straightforward. The confidence interval 
is given by 

 

Pr [|
𝑠𝑛
𝜎
− 1| < 𝜖] = 1 − 𝛼 ( 35 

 
Given that for large 𝑛 it holds: 
 

(𝑛 − 1)𝑠𝑛
2

𝜎2
~𝜒(𝑛−1)

2  𝑍 = √
2(𝑛 − 1)𝑠𝑛2

𝜎2
−√2(𝑛 − 1) − 1~𝑁(0,1) ( 36 

 
it can be derived: 
 

𝑛 ≅ 1 +
1

2
(
𝑍𝛼/2

𝜖
 )
2

 ( 37 

 
where 𝑛 can be computed as a function of the significance 𝛼 and the acceptable relative 
error on the variance estimate 𝜖. The table summarizing relevant values of 𝛼 and 𝜖 is given 
in Table 4. 
 

Table 4: Minimum number of observations 𝑛 as a function of the significance 𝛼 for having 
a maximum relative error on the estimated variance 𝜖 (1D case). 

 

Significance 
𝛼 

Variance Relative Error - 𝜖 

0,01 0,02 0,03 0,04 0,05 0,06 0,08 0,09 0,10 

0,01 33180 8295 3588 2075 1329 933 679 411 333 

0,05 19210 4804 2136 1202 770 535 394 239 194 

0,10 13530 3384 1505 847 543 377 278 169 197 

 
For the multivariate case, similar considerations under the assumption of simplified a 
diagonal Σ lead to  
 

𝛽 =
1

2
[1 − (1 − 𝛼)1/𝑑] 𝑛 = 1 + 2(

𝑍𝛽

𝜖
)
2

 ( 38 

 
so that a similar table involving also the space dimension 𝑑 can be found. It is relevant to 
point out that, in accordance with the curse of dimensionality, a sharp increase in 𝑛 is found 
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as 𝑑 increases, so that with large 𝑑 it is very likely that 𝑛 will be too big to be matched. A 
generalization for any covariance Σ shape can be derived, but the 𝑛 will depend on the 
particular covariance, so that it is not really helpful.  

Another method based on Monte Carlo repetitions is proposed in this thesis. 
 

5.1. Proper sample size: A novel methodology via Monte Carlo simulations 
In general, some rule of thumb can be found in the literature for bounding the 

minimum number of samples for training a classification algorithm. As a general guideline, 
references [18,19,20,21] suggest that having at least 5 to 10 times as many training samples 
per class as the number of features is a good practice to follow in classifier design, and that 
the minimum acceptable ratio is 2. Hence, the rule is: 

 
𝑛

𝑑
 >  5 ÷ 10 ( 39 

 
Anyway, based on the considerations about the geometric interpretation of the 

Mahalanobis distance highlighted in Chapter 4 (section 3.7), a simple methodology for 
assessing the appropriateness of a sample size 𝑛 with a particular focus on Novelty 
Detection is here derived. In particular, the MD was proved to be equivalent to a Euclidean 
distance on the standardized principal component space. In this respect then, repeating 
𝑚 = 1000 draws of size 𝑛 from a multivariate Gaussian of dimension 𝑑 the Euclidean 
distance can be compared to the Mahalanobis distance obtained by estimating the sample 
mean (whose expected value is the null vector) and the sample covariance matrix (whose 
expected value is the identity matrix). Hence, the Mahalanobis distance is expected to be 
equal to the Euclidean, but because of the mean and covariance estimation errors, the two 
values will start deviating when 𝑛 is not large enough to fill the 𝑑-dimensional space. Fixing 
some relevant 𝑛 values and letting 𝑑 increase, it is possible to compute some statistics on 
the 𝑚 values produced by each MC repetition. In particular, the mean value of the two 
distances and the ±𝜎 confidence interval are given in Figure 26. 

Focusing on 𝑑 = 30 (of interest for example in the DIRG dataset analysis), it can be 
noticed that the MD and ED confidence intervals for 𝑛 = 100 are still intersecting, pointing 
out that the MD computation is already reliable from a statistical point of view. A 𝑛 = 50 
on the contrary would produce untrustworthy results. This confirm the rule of thumb which 
suggests for 𝑑 = 30 a numerousness 𝑛 = 150 ÷ 300 and a minimum 𝑛𝑚𝑖𝑛 = 60. 
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Figure 26: Averages of the Mahalanobis distances (red) and Euclidean distances (blue) 

for the Maxima with respect of the space dimension d, in 4 sets with growing number of 
samples n, considering 1000 Monte Carlo repetitions; ±σ confidence intervals of the estimations 

are also given in cyan (Euclidean) and magenta (Mahalanobis). 

 

 

6. Conclusions 
Throughout all this chapter, Monte Carlo simulations were used to analyse the main 

issues related to Novelty Detection based on outliers’ detection. 
First, considerations were made about the optimal threshold to identify outliers 

from the Mahalanobis distance given a known normal distribution. Extreme Values Theory 
is also used to confirm the considerations in [13]. A criterion summarizing both the 𝜒2 and 
the Wilks’s was proposed. Then, the process of estimating the mean and the variance from 
a training set was accounted and the issues related to finite sample sizes in high-
dimensional feature spaces are considered. 

The problem of estimating mean and the variance from outliers’ inclusive training 
datasets was also faced introducing and comparing some robust methods for such inclusive 
outliers’ removal. The comparison was done using Monte Carlo Repetitions of a simulated 
model of a 1DOF oscillator with a clearance, whose response to a white noise excitation 
was brought to frequency domain in order to find a multidimensional feature space. 

 The Minimum Covariance Determinant in its FAST implementation proved to be the 
best method in terms of robustness. 

Finally, the evaluation of the minimum number of samples to ensure a meaningful 
Mahalanobis Distance Novelty Detection was finally performed using an original intuition 
which exploits the Mahalanobis distance geometric interpretation.  
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Chapter 8: 

Machine Learning for Continuous 
Monitoring: Comparison of the selected 

algorithms over real life applications 
 

1. Introduction 
The Machine Learning algorithms selected in Chapter 4 were first experimented on 

the dataset collected from the DIRG test rig, conceived to test high speed aeronautical 
bearings. In second instance, the real-life acquisitions from the Italian windfarm were used 
to assess the suitability of the considered methodology, summarized in the block scheme 
introduced in chapter 4 and here reported in Figure 1. 

 

 
Figure 1: The proposed continuous monitoring methodology. 

 
The analysis started with an explorative univariate analysis of variance (ANOVA), to 

verify the presence of diagnostic information in the dataset. Then, in order to “condensate” 
the information contained in the different features enhancing the effect of damage, 
multivariate analyses were considered. In particular, Fisher’s Linear Discriminant Analysis 
(LDA), k-Nearest Neighbours (k-NN) classification, Principal Component Analysis (PCA) and 
Novelty Detection (ND). 
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2. DIRG test rig data analysis – part 1 
Root mean square, skewness, kurtosis, peak value and crest factor (peak/RMS) were 

computed on 0,1 s chunks of the original 10 s acquisitions generating 100 data points for 
each of the 17 acquisitions described in Chapter 4. Figure 2 from the same chapter is then 
reported for completeness, to show the dataset, composed by 7 differently damaged 
conditions, from 0A (healthy), to 6A, containing 1700 measurements in a 30-dimensional 
space made by the 5 features extracted from the 6 channels (2 sensor positions and 3 
possible directions in the space). The sample size 𝑛 = 100 is chosen in accordance to the 
reflections in Chapter 7 about the curse of dimensionality. 

 

 
Figure 2: Condition 12 pictured by all the feature/channel combinations in all the health 

conditions, from 0A to 6A (100 samples each). 

 

2.1. ANOVA and post-hoc for diagnostics of high-speed bearings  
In order to assess the diagnostic-ability of each channel (corresponding to a sensor 

measurement direction and positioning) and feature combination, the ANOVA is performed 
for each channel and feature to assess the diagnostics-ability of each combination. 
Although the assumptions of normality and homoscedasticity (Appendix 4) are not 
completely met, ANOVA is generally considered robust to these violations, in particular for 
the case in which all the groups under analysis show equal numerousness, so that the 
method can be applied quite confidently. 

In all the 30 tests, the ANOVA p-values result almost negligible, meaning that the 
omnibus null hypothesis 𝐻0 is rejected at a very high confidence. A significant difference is 
detectable among the groups mean values. Obviously, this does not tell much about the 
real effect size, furthermore, ANOVA is not able to add anything about which groups are the 
farthest and with respect to which other group, so that a more informative multi-
comparison post-hoc test can be very helpful. LSD limits can be then computed. A graph 
summarizing the confidence interval around the healthy sample is given in Figure 3. There, 
it is easy to notice that kurtosis and crest are probably the best features, able to discriminate 
the most damaged 1A and 4A conditions in all the channels. They also seem to be quite 



189 
 

consistent with the damage level. For example, focusing on channel 4, it’s easy to notice a 
linear relationship between the distance from the healthy reference and the damage level. 

 
 

Figure 3: ANOVA post-hoc, Multicomparison result. For different channels and features, all the 6 
damage conditions (from 0A to 6A, respectively: blue, orange, yellow, violet, green, light blue, 

red) are compared to the healthy reference (0A) through LSD limits. 

 
In any case, ANOVA and the post-hoc test prove that the damage effect is detectable 

on all the considered features-channels combinations with the given sample size. It is wise 
then to condensate all this information into a single, unique analysis via multivariate 
statistics. 

This could be performed through the multivariate analysis of variance (MANOVA). 
Unfortunately, this hypothesis test shows the same limitations of ANOVA. Hence, instead 
of focusing on p-values of non-immediate interpretation, a multivariate classification is 
preferred. As already introduced in fact, classification is just another point of view on the 
same subject. Furthermore, extending the hypothesis testing considerations about effect 
size, the Fisher’s Linear Discriminant Analysis (LDA) can be easily derived. 

 

2.2. LDA and k-NN classification 
The Fisher’s LDA classifier here introduced is tested on the DIRG test rig data and 

compared to the k-NN classifier. The dataset features 1700 points (i.e. 100 measurements 
per each of the 17 different combinations of load and speed) in a 30-dimensional space (6 
channels, 5 features). In agreement with the classification philosophy, the samples of size 
𝑛 = 100 are divided in two subsamples 𝑛𝑡𝑟 = 60 and 𝑛𝑣𝑎𝑙 = 40 for training (i.e. in sample) 
and out of sample validation respectively. Unequal sample sizes are selected because with 
a feature space dimensionality 𝑑 = 30 it would be meaningless to train algorithms using 
less than 𝑛𝑡𝑟 = 60 (refer to Chapter 6 for considerations about the minimum sample size). 

Seven differently damaged conditions, from 0A (healthy), to 6A are present in the 
dataset, so that the error table (meant for maximum two classes) becomes more complex 
and takes the name of confusion matrix. In order to assess the classifier performance both 
in and out of sample, two of such confusion matrices are produced, collecting the (rounded) 
percentages of the classified samples for the different expected classes.  

Ch1 

RMS SKEWNESS KURTOSIS CREST PEAK 

Ch2 

Ch3 

Ch4 

Ch5 

Ch6 
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Table 1 highlights that LDA, despite being very sensitive to 1A and 4A damages, 
which are correctly classified in more than 90% of cases, shows some troubles in 
distinguishing the other damages and in particular the healthy condition, which is correctly 
classified only in less than 40% of cases.  

 
Table 1: LDA confusion matrices in rounded percentages by columns, computed on the training set 

(in sample) and on the validation set (out of sample) 

  in sample  out of sample 

LDA 
Target Class  Target Class 

0A 1A 2A 3A 4A 5A 6A  0A 1A 2A 3A 4A 5A 6A 

O
u

tp
u

t 
cl

as
s 

0A 38 0 11 13 0 9 17  37 0 11 15 0 10 16 

1A 9 93 1 5 2 6 0  10 92 1 4 2 5 0 

2A 11 0 60 15 0 4 8  13 0 57 17 0 5 9 

3A 18 0 12 47 0 10 8  17 0 13 43 0 12 8 

4A 1 5 1 0 97 9 0  1 6 0 1 97 10 0 

5A 13 1 7 6 0 55 6  12 2 9 9 1 51 5 

6A 10 0 9 14 0 7 61  11 0 9 12 0 6 63 

 
As expected, the linear classifier limits arise. In this respect, k-NN classifier is tested 

to understand whether the difficulties in the classification are related to the separability of 
the dataset or to the LDA algorithm. Table 2 highlights that with k-NN the misclassifications 
are very limited both in sample than out of sample. Only 0A and 3A (the weakest damage 
on the inner race) are sometimes confounded, so that the validation of the classifier 
confirms the separability of the different damaged conditions in the multidimensional 
feature space, given the selected features. 

 
Table 2: k-NN confusion matrices in rounded percentages by columns 

  in sample  out of sample 

k-NN 
Target Class 

 
Target Class 

0A 1A 2A 3A 4A 5A 6A  0A 1A 2A 3A 4A 5A 6A 

O
u

tp
u

t 
cl

as
s 

0A 88 0 1 8 0 2 1  83 0 1 8 0 2 2 

1A 0 96 0 0 1 0 2  0 93 0 0 2 0 2 

2A 1 0 95 2 0 1 1  1 0 94 2 0 1 1 

3A 12 0 2 83 0 2 2  11 0 2 83 0 2 2 

4A 0 4 0 1 94 0 0  0 4 0 1 98 0 0 

5A 3 2 1 3 0 90 2  2 2 1 3 0 92 2 

6A 3 2 2 3 0 2 89  2 2 2 3 0 2 92 

 
In conclusion, a very good classification is possible as the groups are parted very 

well in the 30-dimensional feature space, even if a linear separation is not the optimal. All 
the different damages are far enough not to be confounded, but they are also quite far from 
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the healthy condition. Indeed, focusing on a binary classification without distinguishing 
among the different damage levels (i.e. level 1 diagnostics, healthy vs damaged), the 
confusion matrix simplifies to the reported  error table (Table 3). In this case it is easy to 
find the corresponding type I error rate (the significance 𝛼) of about 20-30% for LDA and 
10-15% for k-NN and the type II error rate (𝛽) of 13% for LDA and 2% for k-NN. 

 
Table 3: LDA and k-NN confusion matrices in rounded percentages by columns for a two-class case 

  in   out    in  out 
  Target  Target    Target  Target 

LDA H D  H D  k-NN H D  H D 

 H 77 13  71 13   H 89 2  85 2 

 D 23 87  29 87   D 11 98  15 98 

 
Despite a separation is with no doubt present between the healthy and the 

damaged conditions, such distance cannot be visualized because of the feature space being 
multivariate. At an exploratory stage the visualization can be very useful. At this scope, the 
Principal Component Analysis is introduced in next chapter. 

 

2.3. PCA visualization of DIRG test rig data 
In order to visualize the 30-dimensional dataset (6 channels, 5 features) 

corresponding to the DIRG acquisition, it was summarized by a 2D representation through 
PCA. In particular, the 17 healthy acquisitions (different combinations of load and speed) of 
100 samples each were used (after mean centring) to produce a reference covariance 
matrix. Its decomposition via PCA produces, after selection of the first two principal 
components, the graph reported in Figure 4-above.  

From the picture, neglecting the zero-load condition (1,5,9,13 labels), which is 
anyway not very meaningful, the data could be clustered in equal speed subgroups, almost 
regardless from the load (2-3-4, 6-7-8, 10-11-12 and 14-15 clusters). Just the highest load 
acquisitions (16 and 17) proves to remain out of this scheme. 

In order to visualize the variability related to the damage, an analogous procedure 
can be followed. Focusing on acquisition 12 (280 Hz, 1800 N) for example, its corresponding 
healthy sample (0A) can be used to “train” PCA, that is, to find the rotation matrix to PCs. 
Applying the same transform to all the other samples of acquisition 12, Figure 4-below can 
be produced. 

In this case the diagnostic information is very effectively pictured, as the most 
damaged conditions (1A and 4A) result to be the furthest from the healthy cluster. 
Remembering that this dimensional reduction is just a simplified projection which is 
neglecting a lot of information, this underlines once more the separability of the difference 
health conditions. Moreover, the influence of the work condition on the data distribution 
can be appreciated, highlighting the necessity of some strategy to compensate for such 
confounding factor. 
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Figure 4: Above- Healthy data for the 17 speed and load combinations. Below- Healthy data 
compared to damaged acquisitions, centred on the same reference (work condition 12) 

 

2.4. Multivariate Novelty Detection 
The novelty detection procedure was first implemented and tested on the DIRG test 

rig data. Differently from the classification proposed in section 2.2, the healthy condition 
(0A) alone is taken as reference for computing the training covariance matrix. In a first trial 
stage, all the 17 different speed and load conditions are considered as a whole in the 
training phase, where a threshold is also produced using the 99th percentile (significance 
𝛼 = 1%) of the maxima distribution from 1000 Monte Carlo repetitions. The 𝑁𝐼s computed 
for the entire dataset, are reported in Figure 5. 
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Figure 5: Mahalanobis distance referred to the entire availablet training dataset, without 
discerning the different operational conditions; in red the threshold: the 99th percentile of the 

maxima distribution from 1000 Monte Carlo repetitions. 

 
Table 4: Missed and False Alarms of MD-ND 

 

 0A 1A 2A 3A 4A 5A 6A 

Alarms 2,9% 15,3% 56,9% 73,4% 0,0% 40,0% 33,7% 

 
In the picture, the effect of the strong variations of the speed and load is already 

evident in the healthy (training) data. Although all the conditions are used in the training, 
the too large range of variation of speed and load causes a high rate of False Alarms (FA). 
Furthermore, only the biggest damages can be recognized effectively, while many Missed 
Alarms (MA) are present in all the other damaged conditions (Table 4). 

An independent analysis for each of the 17 measured operational conditions can be 
then performed, reporting the results in terms of FA and MA in Table 5. These results are 
graphically summarized in Figure 6 for just a couple of interesting conditions (work 
conditions 3 and 12). In this case the results are really improved, as the alarm rates are very 
low for almost all the conditions, while just at low speed, for conditions 3 and 4 it seems 
difficult to detect the 3A damage. Furthermore, a consistency between 𝑁𝐼s and the damage 
is evident, as they vary almost monotonically with the defect severity. This could be used 
to extract further information about the size of the damage. Additionally, in most of cases 
(as in Figure 6 - condition 12) all the damaged conditions show a wide distance from the 
healthy state, so that the threshold may be increased to reduce the FA rate without 
worsening the MA rate (i.e. to increase the power leaving unaffected the confidence).  

The ability of the Mahalanobis distance of compensating for linear or quasi-linear 
variations of the operational conditions, in accordance to what introduced in the previous 
section, can be easily tested on this experimental data. For this purpose, a test at a constant 
speed of 300 Hz while the load changes from 0 to its maximum value is performed, 
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agglomerating acquisitions 9 to 12. Indeed, training the algorithm on a variable-load 
healthy set, it is possible to filter out quite well the effect of load variation. This is 
highlighted in Figure 7, where a table summarizing the False and the Missed Alarms is also 
reported. 

 

  
Work condition 12  Work condition 3 
Figure 6: Mahalanobis distance for two different operational conditions. 

 

 
Table 5: False and Missed Alarms in % for the 17 operational conditions, considered 

independently and compared to their own reference healthy acquisitions (see 
Figure 6); the 99th percentile of the maxima distribution from 1000 Monte 

Carlo repetitions, used as a threshold, is reported as well. 

 FA MA MC 99% 
threshold  0A 1A 2A 3A 4A 5A 6A 

1 2 0 0 0 0 0 0 7,42 

2 2 0 0 0 0 0 0 7,37 

3 3 0 0 21 0 2 0 7,38 

4 4 0 0 7 0 0 0 7,46 

5 3 0 0 0 0 0 0 7,42 

6 1 0 0 0 0 0 0 7,43 

7 1 0 0 0 0 0 0 7,37 

8 3 0 0 0 0 0 0 7,41 

9 3 0 0 0 0 0 0 7,44 

10 1 0 0 0 0 0 0 7,37 

11 4 0 0 0 0 0 0 7,41 

12 2 0 0 0 0 0 0 7,39 

13 4 0 0 0 0 0 0 7,43 

14 2 0 0 0 0 0 0 7,49 

15 4 0 0 0 0 0 0 7,42 

16 1 0 0 0 0 0 0 7,40 

17 0 0 0 0 0 0 0 7,38 

average threshold: 7,41 
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Alarms:  
0A 3 % 

1A 0 % 

2A 0 % 

3A 0,5% 

4A 0 % 

5A 0 % 

6A 0 % 

MC 99% 
threshold: 

8,2 

Figure 7: Mahalanobis distance for operational conditions 9-12 (constant speed 300 Hz). 

 

2.5. Kernel Density Novelty Detection 
In order to improve the novelty detection, it is possible to switch from distance to 

probability density so that a non-parametric density estimator can be used to infer a generic 
multivariate pdf on which a threshold can be fixed. Given the space dimensionality (𝑑 =
30) KDE is not really advisable, but it is anyway tested so as to prove the validity of the 
change of paradigm in Novelty Detection. If a 30-dimensional Gaussian Kernel function with 
a bandwidth ℎ = 1,2 is used to estimate the pdf from the healthy reference dataset, the 
estimation can be easily extended to the damaged acquisitions, whose probability density 
values are reported in the graph in Figure 8. Table 6 summarizes the performance in terms 
of missed alarms when a threshold ensuring no false alarms is used. 

 
 

 
Figure 8: Probability density Novelty Indices from KDE trained without discerning the different 

operational conditions; in magenta the best separation threshold. 
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Table 6: Missed and False Alarms of KDE-ND 

 

 0A 1A 2A 3A 4A 5A 6A 

Alarms 0,0% 47,1% 60,8% 84,1% 46,8% 68,2% 60,9% 

 
Comparing Table 6 to Table 4, it is easy to notice that the classification performance 

is decreased. In general, it would be possible to improve KDE-NE by the selection of an 
optimal bandwidth, but given the drawbacks of KDE related to the curse of dimensionality 
(i.e. the pdf tends to flatness as the features space dimension increases) it is not worth to 
spend time in this optimization. Furthermore, to perform the classification, all the training 
points must be kept stored, leading to possible storage issues. It is much more advisable to 
switch back to parametric models but of a more complex nature, such as the Gaussian 
Mixture Models, as proposed in the next section.  

 
 

2.6. Gaussian Mixture Novelty Detection 
A Gaussian Mixture Model (GMM) is a parametric probability density function 

represented as a weighted sum of Gaussian component densities. The weights and the 
Gaussians parameters can be estimated from training data using the iterative Expectation-
Maximization (EM) algorithm, but in this case the number of mixtures 𝑚 must be selected 
by the user on the basis of the particular dataset. 

In this regard, a prior analysis is run on the training data with several values of 𝑚 (in 
the range 1 ÷ 20). The likelihood of the data to be drawn by such 20 GMMs is then 
evaluated so that the Negative Log Likelihood (NLL), the Akaike information criterion (AIC) 
and the Bayesian information criterion (BIC) can be compared to assess the relative quality 
of the 20 statistical models for the given training set. The best number of mixtures, 
according to the result reported in Figure 9, is 𝑚 = 8, so that this value was used for the 
following Novelty Detection. 

 

 
𝑚 

Figure 9: Relative quality of the 20 GMMs on the basis of Negative Log Likelihood, AIC and BIC 
criteria. 

 
The novelty detection in terms of probability density is summarized by Figure 10, 

while in Table 7 is reported the result in terms of false and missed alarms using a threshold 
which ensures no false alarms. 
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Figure 10: Probability density Novelty Indices from GMM trained  without discerning the 

different operational conditions; in magenta the best separation threshold. 
 

 
Table 7: Missed and False Alarms of GMM-ND 

 

 0A 1A 2A 3A 4A 5A 6A 

Alarms 0,0% 5,7% 16,1% 29,4% 0,0% 21,5% 26,3% 

 
Comparing Table 7 to Table 4 it is easy to notice that when a training which does not 

discern the different operational conditions is used, GMM-ND outperforms the traditional 
MD-ND. The increase in the model complexity is then justified in this case. 

 

2.7. Note about probability density values in Matlab® 
The estimated psd values are very small, as wall as the ANOVA p-values obtained by 

Matlab® environment, so that one could ask if these values are “logic” and the computation 
makes sense. 

In general, the so called “machine precision” is considered the smallest number 
(usually called eps) such that the difference between 1 and 1 + eps is nonzero, representing 
then the smallest difference between two numbers that the computer recognizes. A 32-bit 
computer with IEEE® double precision has then an eps of 2−52 (or 2,22 10−16). 

Nevertheless, that precision does not represent the smallest number that can be 
stored in a computer and is not the same for the whole range of values. 

The smallest positive normalized floating-point number in IEEE® double precision is 
equal to 2−1022 (or 2,22 10−308), while the maximum is 1,8 10+308 (namely realmin and 
realmax in Matlab®).  In this range, the machine precision varies in a deterministic way so 
as to be always orders of magnitude smaller than the represented value. For example, 
𝑒𝑝𝑠(𝑟𝑒𝑎𝑙𝑚𝑖𝑛) = 4.9−324 and 𝑒𝑝𝑠(𝑟𝑒𝑎𝑙𝑚𝑎𝑥) = 2 10+292. In between the trend can be 
visualized with a graph, such as the one reported in Figure 11. 
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Figure 11: Machine precision eps in the representable range with IEEE® double precision 

 

3. DIRG test rig data analysis – part 2: confounders compensation 
The second DIRG dataset involves run down acquisitions while the speed is reducing 

from 470 to 0 Hz and the load is set to 0, 1000, 1400 and 1800 N (respectively condition 
1,2,3 and 4). The acquisitions last about T = 50 s at a sampling frequency fs = 102400 Hz, so 
that the features extracted on independent chunks of 0,5s lead to 100 samples per each of 
the 6 signals (6 channels from 2 tri-axial accelerometers) in the 7 health conditions (from 
0A to 6A) at the 4 different loading conditions. The dataset for null load is shown in Figure 
12. 

 

 
Figure 12: The considered dataset after features extraction for 1st load condition (0 N) while the 
speed is decreasing until a stop starting from 470 Hz. The black dotted lines divide the different 

damage conditions (0A to 6A). For each, 100 observations are plotted sequentially. 

 
The dataset collecting 5 simple time features per each of the 6 channels (i.e., 30 

features) is analysed separately for the 4 different load conditions. The confounding effect 
of the reducing speed (from 470 Hz to 0 Hz) will be compensated during the healthy training 
with 3 different approaches which will be compared: 
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• Plain Euclidean distance (raw) 

• Mahalanobis distance, 

• PCA orthogonal regression and whitening, 
 
The novelty indices for the healthy reference and for the damaged conditions are 

reported in Figure 13 for condition 4 (load 1800N, with decreasing speed). This graph 
highlights relevant considerations previously introduced. 

 

  
Figure 13: The Novelty Detection with the different NIs at maximum load. 0-100 samples are the 
healthy reference, 100-200 corresponds to 1A damage, and so on until 600-700 coming from 6A 

damage. 

  
In particular, Raw Euclidean NIs (samples 0-100) are strongly non-stationary as a 

trend is clearly visible by eye. The Mahalanobis NIs are non-stationary too, but a slight 
improvement is obtained by neglecting the first 20 whitened principal components and 
focusing on the subspace individuated by the last 10 (PCA orthogonal regression). An 
additional note should be added to explain that the behaviour of the NIs at the end of all 
the run-down is ascribable to the fact that the record is not stopped exactly when the 
machine stops, so that the last points are practically acquiring just noise as the machine is 
already at rest. 

Despite the NIs curve already gives a qualitative impression of good detectability of 
almost all the different damages (from 1A to 6A), a quantitative comparison of the 
performances of the different methods is necessary. At this scope, Figure 14 reports the 
ROC curves for all the 4 different load conditions (overall for all the damaged conditions). 

All the 4 graphs lead to a similar result: in this particular application of damage 
detection in case of non-stationary rotational speed, Mahalanobis novelty detection proves 
to perform well. Nevertheless, removing the first 20 principal whitened components from 
the NIs computation (PCA-Ortogonal Regression & whitening), the ND results are further 
improved.  
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(1) (2) 

  
(3) (4) 

Figure 14: The ROC for Novelty Detection in the 4 loading conditions, respectively 1800, 1400, 
1000, 0N. The 5% FPR point is highlighted. 
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4. Italian windfarm data analysis 
The same methodology was tested also on the real-life application concerning 

multimegawatt windmill gearboxes from the Italian windfarm in Molise region. 4 
acquisitions from 3 gearboxes were considered. The first two were acquired from WTG01 
and WTG03 at the same time and were used as calibration (training). The second two area 
from WTG03 and WTG06 (the damaged one) and were recorded in a second moment but 
in similar environmental and operational conditions, so that confounding influences can be 
neglected. The dataset is reported in the following Figure 15. 

 

 
Figure 15: The Italian windfarm dataset. Samples 0-100 are from WTG01 @17.20, 101-200 from 

WTG03 @ at 17.20, 201-300 from WTG03 @ 15.00 and 301-400 from WTG06 (the damaged 
wind turbine) @ 15.00. The first 2 sets are used for calibration and are separated by the black 

dotted line from the last 2, left for validation. X is the wind direction; Y is the orthogonal. Inf is a 
position on the tower 2m from the ground, Sup is 7m from the ground (N.B. the Nacelle is 

located about 100m from the ground). 

 

4.1. Hypothesis testing of two means 
The hypothesis testing of two population means, which is a particular case of 

ANOVA for 2 groups only, is performed on the here considered data regarding the Italian 
windfarm. The dataset is divided in 2 groups: the healthy one contains the first 300 
observations from the healthy windmills (WTG01 and WTG03), while the last 100 
observations, coming from the damaged WTG06, are labelled as damaged. The assumption 
of normality can be considered verified with enough confidence. The same does not hold 
for the homoscedasticity, but the ANOVA is commonly considered robust to such violations, 
so that the trustworthiness of the results will not be affected. It is relevant to remember 
that the ANOVA is a univariate technique, so it will be repeated per each channel and 
feature combination (25 times). This enables to make some considerations about the more 
relevant channels and features for diagnosing a damage. The results are reported in Table 
8.  
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Focusing on this table, it is easy to notice that the p-values are in general very small, 
implying the rejection of 𝐻0. The damage is then proved to be detectable also using the 
simple time-domain features proposed. This is true in particular for channel Yinf, which 
shows the smallest p-values. On the contrary, channel Mic, channel Ysup and channel Xinf 
are less performing in detecting the damage using Skewness, Kurtosis and Crest factor.  

Because of this, considering also the different nature of the Mic acquisition, the fifth 
channel will not be considered in further analyses, which will try to aggregate the diagnostic 
information of all the 5 features from the 4 accelerometers, using a multivariate approach.  

 
Table 8: ANOVA p-values for the different channel-feature combinations – Italian windfarm 

dataset. 

 

Feature \ Channel Xinf Xsup Yinf Ysup Mic 

RMS 2.33 e-48 5.24 e-220 0 2.71 e-05 1.15 e-08 

Skewness 2.74 e-06 0.033 1.51 e-34 1.42 e-54 6.14 e-03 

Kurtosis 0.330 4.02 e-62 2.66 e-222 0.019 0.023 

Crest factor 0.661 8.26 e-50 1.81 e-117 0.646 1.53 e-4 

Peak 1.81 e-40 3.54 e-160 9.22 e-260 2.06 e-05 2.92 e-18 

 

4.2. PCA visualization 
The result of the PCA applied to the centred, healthy reference set (WTG01 and 03 

at 17.20) in the 20-dimensional space (4 channels, 5 features) is reported in Figure 16, 
where the validation set is also projected according to the same mapping. 

In Figure 16 one can easily notice that 2 clusters arise. The damaged acquisitions (in 
red) can be clearly separated by all the other healthy points (both from the calibration and 
the validation sets). The first component is then enough to perform the damage detection. 
In order to compare the weights of the features involved in the linear combination 
producing the first principal component, a PCA is repeated on the standardized features 
(centred and normalized on their standard deviation). The absolute value of the weights for 
the first principal component are reported in Table 9. As it is easy to notice, the features 
kurtosis and crest shows the highest absolute weights, proving to be the most influent in 
the computation. Furthermore, the higher weights are used with Yinf, which confirms to be 
the most informative channel (N.B. note from Figure 10 of Chapter 4 that the selected 
features do not vary in the same range of values, so that the PCA on the standardized 
features is needed to meaningfully compare the weights involved in PC1). 
 
Table 9: PC1 absolute weights for the standardized features (centred and normalized on their 
standard deviation) 

 
 Xinf Xsup Yinf Ysup 

rms 0,0008 0,0006 0,0001 0,0011 

skew 0,0035 0,0009 0,0014 0,0115 

kurt 0,0237 0,0153 0,0338 0,0240 

crest 0,0295 0,0212 0,0963 0,0516 

peak 0,0035 0,0028 0,0022 0,0055 
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Figure 16: Above- PCA of the referenced set - the validation set is added later (green), projected 

on the same space. Below- Zoom of the space generated by the first 2 principal components 
(above), highlighting the healthy reference set (BLUE), the healthy validation set (yellow) and 

the damaged set (red). 

 
For the sake of inquisitiveness, LDA is used after PCA in the reduced-dimensionality 

space created by P1 and P2 but also on the one generated by P2 and P3. 
As it is easy to notice in Figure 17, on the P1-2 plane the separation is almost perfect. 

This is also highlighted by the confusion matrix and by the ROC curve, which is far from the 
bisector which represents the performance of a random classifier. The ROC curve 
summarizes an entire set of confusion matrices generated moving the threshold from a 
minimum to a maximum. The farthest point from the bisector gives the optimal threshold. 
On the contrary, on the P2-3 plane (Figure 18) the two clouds are almost indistinguishable. 
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 Target 

 H D 

H 100 0 

D 0 100 
 

Figure 17: P1-P2 visualization of the multivariate dataset. The LDA direction is showed (black) 
and on this 1D projection the empirical PDFs are shown. The error table and the corresponding 

ROC curve are also reported. 

 
The relevant consideration is that the dimensionality reduction found via PCA is 

basically a “lossy compression” of the original dataset. Then, there is no guarantee that the 
diagnostic information will be highlighted instead of being rejected. In this respect, a 
“lossless” algorithm reducing the dimensionality while concentrating the information 
would be much more appreciated. The Mahalanobis-Distance-based Novelty Detection is 
then applied in next section. 
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 Target 

 H D 

H 44 56 

D 69 31 
 

Figure 18: P2-P3 visualization of the multivariate dataset. The LDA direction is showed (black) 
and on this 1D projection the empirical PDFs are shown. The error table and the corresponding 

ROC curve are also reported. 

    

4.3. Multivariate Novelty Detection 
In order to assess whether the here proposed novelty detection on simple time 

domain features, already tested on experimental data, can be generalized for industrial 
machineries, the procedure is repeated on real windmills instrumented with a multichannel 
vibration monitoring system. The result is reported in Figure 19. There, the 𝑁𝐼s of the 
damaged set are all very large and can be easily distinguished from the healthy 𝑁𝐼s, 
allowing a perfect damage detection with no missed alarms. Unfortunately, the calibration 
set (observations 1-200) is not very big and is then non-representative of the entire 
variability in the different operational and environmental conditions. This explains why the 
proposed MC threshold is crossed many times in the healthy validation set (observations 
201-300), implying a way too high false alarm rate. The considerable distance of the 
damaged 𝑁𝐼s (observations 301-400) anyway, provides a wide margin to improve the 
threshold without increasing the missed alarms, that is, increasing the confidence without 
affecting the power, obtaining then a perfect detection. 
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Figure 19: Mahalanobis Distance from the Calibration set (observations 1-200) – observations 

201-300 form the healthy validation set, while observations 301-400 correspond to the 
damaged condition. 

 

5. Conclusions 
This chapter is devoted to the implementation and comparison of the selected 

techniques to perform machine diagnostics on three different applications using features 
extracted from vibration accelerometric measurements.  

The selected techniques were organized to form a methodology. First, this 
methodology is meant to assess the goodness of the selected time features in performing 
diagnostics through ANOVA. 

Subsequently, multivariate methods were applied. These are ultimately based on a 
dimensionality reduction of high-dimensional datasets to a 1-D case, on which a threshold 
can be set to separate (or at least try to separate) a healthy condition from a damaged one. 

At this scope, PCA, the most famous dimensionality reduction algorithm was 
implemented. PCA is commonly used to produce 2-D or 3-D projections which enable the 
visualization of multivariate datasets. The scope is that of summarizing most of the dataset 
variability in the first components. Obviously, discarding components means pieces of 
information, which, despite being usually small, might be detrimental for diagnostic. This 
procedure is defined a “lossy compression”.  

In this regard, a particular algorithm meant to find the 1-D projection that best 
separates healthy acquisitions from damaged exists. Fisher’s LDA in fact is able to maximize 
the distance of the two distributions (i.e. to find the direction with maximum “effect size”). 
LDA can be easily extended to multiple groups becoming a classifier algorithm. This possibly 
enables also level 2 and 3 detection. Unfortunately, the LDA is again lossy, as it is blind to 
variability in directions orthogonal to that of the 1-D reduction. 

To face this issue, the k-NN classifier was first taken into account. The main 
advantage of k-NN is that it potentially involves all training data into the decision-making 
procedure. This is also its disadvantage, as it becomes computationally costly in case of long 
and heavy training sets (which must be stored entirely). A good lossless alternative is then 
the Novelty Detection. In fact, the use of the Mahalanobis distance as a measure of novelty, 
is a lossless (i.e. the distance from the centroid is based on the whole features set and 
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normalized according to the direction), non-linear (i.e. it is a sum of squares), 
dimensionality reduction (1-D Novelty Indices) which allows to substitute the training 
dataset with a centre and a covariance matrix. This is admissible when the training set 
distribution is normal or nearly normal, which is the optimal case for MD-ND. 

MD-ND proved to be robust to quasilinear confounding influences such as varying 
operational conditions (e.g. speed, load, …), as it performs a PCA whitening of the data: 
eigenvectors of the data covariance matrix are normalized so as to have unitary eigenvalues 
(sphering transform), so that the contribution of the first PCs to the NIs is very limited. 
When the quasilinear confounding influence is very strong then, a residual found by 
removing the first principal component(s) (i.e. the Orthogonal Regression Residual) can be 
used to compute robust NIs.  

The issue of confounders should be treated also for a more general case of strongly 
non-linear influences. In this case, the hypothesis of a normal healthy distribution does not 
hold at all, so that the novelty detection should be improved. 

Switching the novelty information from distance to probability density, a generic 
multivariate pdf can be estimated. 

In this regard, two different algorithms were tested. First a kernel density estimation 
was used for the pdf. Unfortunately, this shows the same limits as the k-NN classifier, as the 
whole training set must be stored to compute the probability density. To get a reliable 
estimate, the bandwidth parameter optimization becomes fundamental to find the best 
estimate in terms of bias-variance trade-off. Nevertheless, issues arise when high-
dimensional feature spaces are involved. In general, then, it is wiser to switch again to 
parametric models, and find estimates of the non-normal pdf as a mixture of known pdf 
models. Gaussian Mixture Models were then taken into account.  

The successful application of the here-proposed methodology to the laboratory 
research about the high-speed aeronautical bearings of the DIRG test rig was confirmed by 
the impressive results in the industrial application to the windmill gearboxes of the Italian 
windfarm. These results are very interesting also in terms of quickness, simplicity and full 
independence from human interaction, making the methodology suitable for real time 
implementation. 
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Chapter 9: 

Summary, Conclusions and further 
work 

1. Summary and Conclusions 
The main focus of this thesis was to test a selection of promising and reliable 

methods on laboratory and real-life applications evaluating and comparing their 
performances. In order to foster the potential benefits of Vibration Monitoring in industrial 
maintenance regimes the algorithms were summarized into two methodologies able to 
meet the needs of both continuous and intermittent monitoring of Gearboxes. In this 
regard, the state of the art was explored. The selection was primarily made according to 
model interpretability to select practical and representative algorithms able to diagnose the 
presence of incipient damage (damage detection, lev. 1 diagnostics) and possibly identify, 
locate and quantify the damage. This is primarily a matter of pattern recognition performed 
on some selected features in both time and frequency domain. The raw data in fact is 
“mined” so as to monitor the health condition of the gearbox. This information is then used 
to take judgements about the eventuality of triggering red alarms and stop the machine in 
case of impending failure or to neatly schedule maintenance interventions, in a data-to-
decision framework. 

The selected algorithms were tested not only on synthetic simulated signals, but 
also on three experimental acquisitions. The first laboratory measurement regards a test 
rig built at the Dynamic & Identification Research Group (DIRG) laboratory and specifically 
conceived to test high-speed aeronautical bearings. The other two on the contrary refers to 
real life applications such as a SAFRAN aeronautical engine (SAFRAN Contest data from 
Conference Surveillance 8 held in Roanne, France on October 20&21 2015) and an Italian 
windfarm composed by six multi-megawatt wind turbines installed in Molise region. 

In Chapter 4 and 5 the proposed methodology and the datasets were illustrated in 
detail.  

In Chapter 6 the Signal Processing algorithms for Intermittent Monitoring were first 
compared over synthetic data with different noise contamination, and later tested on the 
SAFRAN dataset. In this practical application, the Short Time Fourier Transform (STFT) was 
used to highlight the non-stationarity induced by the variable speed. The signal was then 
“re-phased” using Computed Order Tracking (COT) so that the signal was resampled on the 
basis of the tachometer key-phase signal. Once a synchronously sampled signal was 
obtained, algorithms for deterministic/non-deterministic contribution separation were 
tested. The Synchronous Average (SA) was compared to prediction-based algorithms such 
Linear Prediction (LP) and Discrete/Random Separation (DRS). The analysis highlighted the 
ability of SA in extracting the deterministic component with minimum disruption of the 
residual signal but underlined at the same time the deeper amount of geometric 
information needed to perform the analysis and the longer computational times required 
in case of complex gearboxes. Finally, to highlight the bearing signature, the Fast Kurtogram 
(FK) was compared to the Empirical Mode Decomposition (EMD), to the Stochastic 
Resonance (SR) but also on the improved algorithm here proposed for Spectral Kurtosis 
estimation (SK*). Both SK*, FK and EMD bands, selected on the basis of the excess kurtosis 
index, demonstrated to highlight the damage, even if in this particular case, despite the lack 
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of physical motivation, EMD demonstrated to be at least as effective as FK and SK*. SR was 
also effective in highlighting the bearing signature through denoising of the low frequency 
region, even if a long optimization of the parameters was needed, exploiting the prior 
knowledge of the characteristic frequencies of interest. These frequencies can be 
considered spectral features and are commonly used to assess the presence of damage. 
Despite this is usually performed by eye by a trained operator, more refined pattern 
recognition algorithms can be used.  

This Machine Learning perspective is tested in Chapter 8. For the sake of 
computational speed and quickness, the analysis focused on the simpler, time-domain 
features which better adapt to the needs of continuous monitoring. In this case, the 
damage detection was tackled through statistical modelling. The analysis started 
introducing the philosophy of hypothesis testing, which was used to establish the problem 
and to get important considerations. At first, ANOVA was used to assess the goodness of 
the selected time features for diagnostic purposes. Then, in order to “condensate” the 
information contained in the different features enhancing the effect of damage, 
multivariate analyses were considered. In particular, most of the proposed algorithms 
(apart from k-NN classification) were binary classifiers based on dimensionality reduction 
of the multi-dimensional dataset. In this regard, the Principal Component Analysis, the most 
famous dimensionality reduction algorithm, was described. PCA summarizes the majority 
of a dataset variability in the first components, so that the last can be neglected. This is very 
useful for visualization (2D or 3D projections can be easily obtained), but not for diagnostics, 
in which the discard of components corresponds to a possible loss of information, leading 
to a “lossy” compression. Even the Fisher’s Linear Discriminant Analysis, which maximizes 
the distance of the healthy and damaged distributions, was considered, but it shares the 
same problem of not exploiting all the available information. A “lossless” classification was 
obtained through k-NN, potentially involving all the training data into the decision-making 
strategy, but this leads to long and heavy calibration stages which can become costly. A 
good lossless solution is the Novelty Detection based on the Mahalanobis distance, which 
was finally considered. In this case the Novelty Index is based on the whole features set, 
and only the direction information is neglected. The whole methodology was applied to the 
laboratory research about high speed aeronautical bearings from the DIRG test rig, and 
then extended to the industrial application about windmill gearboxes damage detection 
from the Italian windfarm. The goodness of such results both in terms of Missed and False 
alarms than in terms of quickness, simplicity and full independence from human 
interaction, encouraged the further development of these algorithms also for the case of 
confounding influences (e.g. variable environmental conditions or operational conditions 
such as load or rotational speed producing non-stationary accelerometric signals). Even if 
the Mahalanobis Distance Novelty Detection is robust to weak quasi-linear confounding 
influences, some methods for facing stronger influences were tested. In particular, as first, 
the underlying model of MDND was sophisticated using Kernel Density Estimation and 
Gaussian Mixture Models. Then, also the removal of the confounding influences through 
PCA orthogonal regression and whitening was tested.  

To complete the picture of the multivariate analyses, the curse of dimensionality 
was covered in Chapter 7 through Monte Carlo simulations. In particular, the selection of 
an optimal threshold, the minimum sample size ensuring statistical confidence, and the 
robust estimation of the covariance matrix against inclusive outliers were analysed. 
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2. Further work 
This thesis presented two methodologies based on reliable algorithms which can be 

used for diagnostics of gearboxes. From a practical point of view, the part related to 
intermittent monitoring is usually performed off-line, but the continuous monitoring is 
meant for on-line applications. In this regard, the implementation of the algorithms in a 
true real-time environment is lacking and can then be the subject of further work. 

Concerning signal processing algorithms, the novel estimator for the Spectral 
Kurtosis (SK*) introduced in Chapter 6 of this thesis deserves further attention. Despite it 
proved to work in a very effective way also on real life cases, additional tests are worth. A 
stronger mathematical analysis about the estimation error in terms of bias and variance 
could, for example, strengthen the motivations of the methodology. Furthermore, an 
optimization of the computational times could be performed. In its first implementation in 
fact, a large time is lost in recomputing the filter coefficients for each bandpass filtering 
operation (as the fir filter is meant to slide over the frequency axis). Nevertheless, it could 
be possible to exploit the shift theorem of the Discrete Fourier Transform to shift the signal 
spectrum while keeping the filter constant. 

Focusing on the machine learning approach, the features and algorithms here 
considered proved to work very well in case of stationary conditions, and possibly with 
quasi-linear confounding influences, but in general, the effect of variable operational 
conditions (e.g. speed, load, …) or environmental conditions (e.g. temperature, humidity, 
…) should be tackled with a much deeper analysis, also considering more complex 
correlations and possibly cointegration.  

Cointegration for example, is able to produce stationary signals from two or more 
non-stationary time series, compensating then for latent, unmeasured factors inducing the 
non-stationarities. Latent factors can be also accounted with Independent Component 
Analysis, Factor Analysis or also with Canonical Correlation Analysis. Non-linear 
dimensionality reduction methods like kernel-PCA, Locally-Linear Embedding or other 
Manifold algorithms should also be considered. Non-linear classification on the contrary 
can be addressed by Support Vector Machines through the kernel trick. 

Differently, another way to address the problem of non-stationarities can be that of 
selecting features robust to the latent factors. Feature selection algorithms based on 
regression are already present in the literature such as Lasso or Ridge regression, so that 
they could possibly be adapted to objectively automate the choice. 

Finally, in order to optimize the decision stage of the condition-based maintenance, 
the evaluation of the remaining useful life is fundamental. This is commonly addressed by 
prognostics, which requires deeper studies about the failure models and massive amounts 
of endurance (run-to-failure) acquisitions on which to tune them. These are not always easy 
to be obtained, especially for applications for which safety issues arise, but are fundamental 
to understand the failure modes, the early signs of wear and ageing and the system 
parameters that are to be monitored. The discipline that links the failure mechanisms to 
the maintenance management is often referred to as Prognostics and Health Management 
(PHM), and is based on two kinds of approaches [1,2]: 

• Data-driven prognostics, which uses pattern recognition and machine learning 
techniques to detect changes in system states.  

• Model-based prognostics, which tries to use physical models for estimating the 
remaining useful life (RUL) 
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Model-based approaches are usually preferred, but when the system is complex, 
the development of accurate models is often too expensive. Hence, data driven approaches 
are considerably more common. The RUL in this case can be learnt directly from data or by 
using models of cumulative damage on which a threshold is extrapolated [1]. 

This will give a strong push to the effectiveness of the data-to-decision process, 
fostering the reliability and then the spread of preventive maintenance regimes based on 
vibration monitoring. 
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Appendix 1: 

Failure rate and reliability 
 

1. Introduction 
Nowadays machines are increasingly complex, so that the problem of reliability 

becomes more and more important. The reliability of a system is defined as the probability 
of proper operation under specified operational and environmental conditions for a defined 
period of time. It is then clear that increased levels of complexity imply increased risk of 
systems becoming prone to failure. 

Reliability obviously involves economic considerations. In particular, a failure implies 
an external action such as repair which is usually very expensive also in terms of down times 
and production losses. Hence, external maintenance actions are commonly planned to 
avoid failure. In case of low reliability, maintenance costs may be very high. On the other 
side, increasing the reliability means improve the overall product quality, so that the 
product price becomes higher. A trade-off between the two aspects usually lead to the 
optimal reliability level which minimizes the overall costs (i.e. purchase price + repair and 
maintenance costs). Obviously, in case of risks for the human health and safety, maximum 
reliability is sought regardless of the costs. 

 

 
Figure 1: The cost of reliability: trade-off of purchase price and repair and maintenance 

costs. 

 
 

2. Reliability measures 
In order to quantify the reliability of a system, parameters describing the time 

between failures (or TBF i.e. the lifetime) distributions can be derived. In particular, the 
distribution is commonly specified by either one of the three possible functions here 
reported: 

• A failure probability density function (PDF) 𝑓(𝑡), specifying the probability 
of failing within the time interval [𝑡, 𝑡 + Δ𝑡] in the limit for Δ𝑡 → 0.  
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• A failure cumulative distribution function (CDF) 𝐹(𝑡), giving the probability 
of failing before time 𝑡. 

• A survival cumulative distribution function, often identified as reliability 
function 𝑅(𝑡), which is the probability of surviving up to time 𝑡 and 
corresponds then to the complementary of the CDF (𝑅 = 1 − 𝐶𝐷𝐹). 

In general, the probability of death is commonly studied using Weibull family of 
distributions which features 
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Where 𝜇 is the “scale parameter” and 𝛽 is the “slope parameter” or Weibull gradient 
defining the shape. Indeed, the Weibull distribution interpolates between the exponential 
distribution (𝛽 =  1) and the Rayleigh distribution (𝛽 =  2) while for 𝛽 ≅ 3,57 it 
approaches the Normal.  
The shape of the Weibull 𝛽 strongly influences the final parameter of interest of reliability 
engineering: the failure rate 𝜆(𝑡). The failure rate can be looked from two perspectives.  

• Focusing on a population of 𝑀 equal machines it gives the relative number of units 
(𝑛) failing on average in a unit of time.  
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𝑛
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• Focusing on a single machine, it corresponds to the probability (density) of failure 
in the interval [𝑡, 𝑡 + Δ𝑡] given that no failure is yet occurred. 
 

𝜆(𝑡) =
1

Δ𝑡

𝑅(𝑡) − 𝑅( 𝑡 + Δ𝑡)

𝑅(𝑡)
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 which, brought to the limit for Δ𝑡 → 0, gives 
 

𝜆(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
= −

𝑅′(𝑡)

𝑅(𝑡)
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often called hazard function ℎ(𝑡) which is NOT a conditional probability, but rahter 
a “conditional probability density” and therefore possibly greater than 1. 
 

The influence of the shape parameter 𝛽 on the failure rate can be easily obtained: 

• A value of 𝛽 < 1 indicates that the failure rate 𝜆(𝑡) decreases over time. This 
condition usually holds at the beginning of the life of a product, when a significant 
"infant mortality" is due to design and manufacturing defects which are late 
recognized. Anyway, such issues are solved quickly, so as to find the ultimate optimal 
design. 

• A value of 𝛽 > 1 indicates that the failure rate 𝜆(𝑡) increases with time. This 
happens if there is an "aging" process due to wear and is typical at the end of the 
service life of a product. 
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• A value of 𝛽 = 1 indicates that the failure rate is constant over time. This suggests 
that failure (or mortality) is caused by a superimposition of random independent 
factors. The Weibull distribution in this case reduces to an exponential. 
 

 
Figure 2: Weibull distribution of the time between failures – PDF, Reliability and Failure 

Rate are shown for different values of  𝛽. 

 
Considering the evolution of the failure rate through the whole life of a product then, three 
regions can be distinguished, producing the well-known bathtub curve. 

 

 
Figure 3: Failure rate evolution over the overall life of a product – The bathtub curve. 

 
In any case, the most interesting region for scheduling maintenance interventions 

(i.e. Programmed Maintenance Regime) is the central region in which the statistical 
superimposition of a number of independent factors leads to random failures featuring an 
exponential distribution: 
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In this particular case, an important parameter characterizing the distribution becomes the 
average time between failures (or “mean lifetime”) which can be computed via expected 
value. Exploiting the property: 
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0
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 ( 6 

 
and remembering that the time axis is defined only for positive values of 𝑡, the formula 
simplifies to: 
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The scale parameter can be then directly obtained as the average lifetime, usually 

called Mean Time To Failure (MTTF) for non-repairable products or Mean Time Between 
Failures (MTBF) in case of repairable machines. Having available a record of the TBFs 𝑡𝑖 with 
𝑖 = 1: 𝑟 where 𝑟 is the total number of failures, the MTBF can be simply estimated as: 
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Furthermore, the reciprocal of this time period corresponds to the constant failure 

rate 𝜆, as: 
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It is relevant to point out that, despite being the fundamental parameter on which 

basing reliability predictions for maintenance scheduling, the MTBF corresponds to the 
critical value for a confidence (i.e. reliability) of about 37% only, meaning that just the 37% 
of the machines will survive up to the MTBF. 

 

3. Practical example 
For the sake of exemplification, the dataset collecting the operation and 

maintenance data described in [1] is considered. This consists of field tracing records for 
𝑁 = 24 machining centres over a period of one year, with a particular focus on machine 
No. 1, which failed for 𝑟 = 27 times in a period 𝑇𝑜 = 3744,4 ℎ. 

The analysis of the TBFs is conducted by fitting an exponential distribution, whose 
characteristic parameter 𝜇 can be estimated as: 

 

𝜇 =
𝑇𝑜

𝑟
= 138,7 ℎ 𝜆 =

1

𝜇
= 7,2 10−3   𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠/ℎ 

 
In Figure 4 the so fitted exponential PDF is superimposed to the empirical PDF (i.e. 

the probability histogram). The goodness of the fit is remarkable. The corresponding CDF is 
also pictured together with the reliability function. As it is easy to notice, the MTBF features 
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a reliability of just 37%. It is obviously possible to look for a stricter critical value. For 
example, the time for which the 95% of the machines are surviving 𝑡𝑅=95% is computed and 
proved to corresponds to about 10 ℎ, as highlighted in the picture.  

 

  
Figure 4: On the left, the fitted exponential PDF is compared to the empirical probability 

histogram obtained from the experimental data of machine No. 1 from [1]. On the right, the 
fitted CDF and the empirical CDF are shown, together with the reliability function. The MTBF 

and the 95% survival time 𝑡𝑅=95% are reported. 

 

The goodness of the fit is also assessed comparing the theoretical constant failure rate 

coming after the assumption of exponential distribution, to the actual empirical failure 

rate obtained from the ratio of the empirical PDF and the reciprocal of the empirical CDF 

(the reliability R). The comparison using 8 bins is shown in Figure 5, computed as 

 

𝜆(𝑏𝑖𝑛) =
𝑓(𝑏𝑖𝑛)

𝑅(𝑏𝑖𝑛)
 ( 10 

 

 
Figure 5: 8 bins empirical failure rate vs theoretical failure rate from the fitted 

exponential distribution. 
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Appendix 2: 

Hilbert Transform and the analytic 
signal 

 

1. The Hilbert Transform 
The so-called Hilbert transform is a linear operator produced by the convolution of 

a generic function of time 𝑓(𝑡) by the function −1/(𝜋𝑡) . This produces the usual definition 

𝑓(𝑡) =
1

𝜋
∫

𝑓(𝜏)

𝑡 − 𝜏

∞

−∞

𝑑𝜏 ( 1 

which can be translated in the frequency domain by Fourier Transform: 

�̃�(𝜔) = 𝐹(𝜔) (−𝑖 𝑠𝑔𝑛(𝜔)) ( 2 

The Hilbert transform imparts then a phase shift of 𝜋/2, positively or negatively depending 
on the sign of 𝜔 while leaving unaltered the amplitudes of the spectral components. 
Obviously, applying two Hilbert transforms in succession reverses the phases of all 
components, while applying four will restore the original function.  

For example, the Hilbert transform of 𝑐𝑜𝑠(𝜔𝑡) , where 𝜔 >  0, is 𝑐𝑜𝑠 (𝜔𝑡 −
𝜋

2
) =

𝑠𝑖𝑛(𝜔𝑡) , as it can be easily understandable from Figure 1. 
 

 

 ∗
−1

𝜋𝑡
          ↓ ↓         ∙  𝑖 𝑠𝑔𝑛(𝜔)  

 

 ∗
−1

𝜋𝑡
          ↓ ↓         ∙  𝑖 𝑠𝑔𝑛(𝜔)  

 
Figure 1: Two successive Hilbert transforms of a cosine wave. 
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It is relevant to point out that the Hilbert transform can be said to be the relationship 
between the real and imaginary parts of the FT of a one-sided function of time. In fact, 
given a causal function 𝑓(𝑡) (𝑓(𝑡) = 0 𝑓𝑜𝑟 𝑡 < 0), finite at 𝑡 = 0, its Fourier transform 
𝐹(𝜔) will be a complex quantity 𝐹(𝜔) = 𝑋(𝜔) + 𝑖𝑌(𝜔) for which the real and the 

imaginary parts are related by the Hilbert transform, so that  𝑌(𝜔) = �̃�(𝜔). This can be 
highlighted by considering that a causal function is made up of even and odd components 
which are identical for positive time, and thus cancel for negative time. Since the even part 
of a time function transforms to the real part of its FT, and the odd part to the imaginary 
part, it easy to notice that: 

 
𝑓(𝑡) = 𝑓𝑜(𝑡) + 𝑓𝑒(𝑡) = 𝑓𝑜(𝑡) + 𝑓𝑜(𝑡) 𝑠𝑔𝑛(𝑡) 

𝐹(𝜔) = ℱ[𝑓𝑜(𝑡)] +  ℱ[𝑓𝑒(𝑡)] = 𝑅𝑒[𝐹(𝜔)] + 𝐼𝑚[𝐹(𝜔)] = 𝐹𝑜(𝜔) + 𝐹0(𝜔) ∗
1

𝑖𝜋𝜔
 

( 3 

 

where 𝐹0(𝜔) ∗
1

𝜋𝜔
= 𝐹0̃(𝜔) defines the Hilbert transform, so that 𝐹𝑜(𝜔) = 𝑋(𝜔) and 

𝑌(𝜔) = 𝐹0̃(𝜔) = �̃�(𝜔).  
In the same way, a one-sided frequency spectrum, which is causal in the frequency 

domain and has no negative frequency components, undergoing IFT will generate a 
complex time signal whose real and imaginary parts will be related by the Hilbert transform.  
This is usually known as analytic signal.  

 

2. The analytic signal 
In mathematics and signal processing, an analytic signal 𝑓𝐴(𝑡) is a complex-valued 

time function built not to have negative frequency components, namely to be causal in the 
frequency domain.  

 Therefore, in continuous time, every analytic signal can be generated via IFT of a 
one-sided spectrum: 

 

𝑓𝐴(𝑡) =
1

2𝜋
∫ 𝐹(Ω)𝑒𝑖Ω𝑡𝑑Ω

∞

0

 ( 4 

 
This analytic signal 𝑓𝐴(𝑡) can be proved to be: 
 

𝑓𝐴(𝑡) = 𝑓(𝑡) − 𝑖 ℋ(𝑓(𝑡)) = 𝑓(𝑡) − 𝑖𝑓(𝑡) ( 5 

 

where 𝑓(𝑡) is the original real-valued function of time and 𝑓(𝑡) is its Hilbert transform, 
often called quadrature signal. This is basically an expansion of the idea of phasors coming 
from Euler’s equation 
 

𝑒𝑖(𝜙) = 𝑐𝑜𝑠(𝜙) + 𝑖 𝑠𝑖𝑛(𝜙) ( 6 

 
according to which, any real harmonic 𝑐𝑜𝑠(𝜙) can be converted into a positive-frequency 

complex harmonic 𝑒𝑖(𝜙) by adding as imaginary part the phase-quadrature component 
𝑠𝑖𝑛(𝜙) obtained by a simple quarter-cycle time shift. 
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Generalizing for an Amplitude and Frequency Modulated signal (AM-FM), its 
corresponding analytic form can be written as: 

 

𝑓𝐴(𝑡) = 𝐴(𝑡) 𝑒𝑖(𝜙(𝑡)) ( 7 

 
𝐴(𝑡) represents the amplitude modulating function, and 𝜙(𝑡) represents the phase 
modulating function in radians. From this analytic signal then, it is possible to recover both 
the instantaneous amplitude |𝐴(𝑡)|, usually referred to as envelope, and the instantaneous 
angular frequency, corresponding to the time rate of change of the phase of the analytic 
signal 𝑑𝜙(𝑡)/𝑑𝑡. 
 

3. AM signals and Amplitude Demodulation 
The term Amplitude Modulation (AM), is traditionally used in connection with radio 

transmission. An AM signal encodes information into a carrier wave by modulating its 
amplitude in accordance with the signal to be sent (i.e. the baseband). A radio receiver must 
then demodulate the transmitted signal to recover the information. This can be done with 
a simple circuit called “envelope detector”, able to produce the envelope of the modulates 
signal, which can be proved to correspond to be equivalent to the baseband signal. In 
common AM radio broadcasts, the carrier frequency ranges from 550kHz to 1600kHz while 
the audio signal to be transmitted (the modulating) covers the human hearing range from 
20Hz to 20kHz. 

One can consider, for the sake of exemplification, a 𝑓𝑐 = 600 𝑘𝐻𝑧 carrier modulated 
by a 𝑓𝑚 = 98 𝐻𝑧 sound (i.e. a pure G2 musical note frequency) with some additional 
Gaussian noise: 

 
𝑚𝑜𝑑(𝑡) = 𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡) 

𝑐𝑎𝑟𝑟(𝑡) = 𝐴 𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡) 
𝑛(𝑡)~𝑁(0,1) 

𝑠(𝑡) = (1 +
𝑚𝑜𝑑(𝑡)

𝐴
) 𝑐𝑎𝑟𝑟(𝑡) + 𝑛(𝑡); ( 8 

 
In Figure 2, both the time and frequency representation of the synthesized signal 

for 𝐴 = 1 can be found. The expected first order sidebands 𝑓𝑐 ± 𝑓𝑚 arise. A demodulation 
via Hilbert transform can be implemented directly on the raw signal. To improve the 
effectiveness of the demodulation in terms of signal to noise ratio (SNR), the raw signal can 
be band filtered around the carrier frequency, so as to remove most of the background 
noise. Figure 2 clearly highlight these considerations.  
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Figure 2: Synthesized AM signal in the typical radio transmission framework 

(600𝑘𝐻𝑧 𝑐𝑎𝑟𝑟𝑖𝑒𝑟). In the first row the spectrum of the AM signal is given. In the second row the 
envelope of the overall signal is reproduced to highlight the presence of the 98𝐻𝑧 modulating. 
In time domain, the envelope (orange) is compared to the AM signal (blue) and the modulating 

signal (black dotted). In the third row the effect of filtering around the carrier is highlighted. 

   

3.1. Bearings Envelope Analysis 
The rolling element bearing, is a fundamental component of most of mechanical 

systems. Bearing faults are commonly believed to cause an amplitude modulation to the 
high frequency noise [2], which becomes then a carrier for the diagnostic information. 
Hence, envelope demodulation is the natural signal processing to recover the bearing-
characteristic spectral lines. In the example, a synthetic signal generated in accordance to 
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Chapter 4, Section 2 is given. In particular, the sampling frequency is set to 𝑓𝑠 = 22528 𝐻𝑧, 
the shaft to 𝑓𝑟 = 53 𝐻𝑧 , the structural resonance to 𝑓𝑛 = 5600 𝐻𝑧. Five harmonics of 
shaft and five of the gear-mesh are considered for gear-wheel with 𝑧 = 23. The SKF 6006-
Z bearing is modelled, featuring an inner ring fault (𝐵𝑃𝐹𝐼 = 251 𝐻𝑧). 

 

  

  

  
Figure 3: Synthesized signal from a bearing with an inner race damage (BPFI). In the 

first row the spectrum of the bearing signal is given, also in log-scale. The transfer function of a 
band-pass filter selecting the resonance band is reported in red-dotted line. In the second row 

the envelope of the overall signal is reproduced. The expected BPFI spectral line (blue-dashed) is 
not present in the spectrum. No detection occurs. In the third row, the band-filtered signal 

envelope is analyzed. In the spectrum the BPFI frequency is clearly highlighted. 
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Appendix 3: 

Stochastic processes, probability 
theory and spectra 

1. Introduction 
A stochastic process is the ensemble of all the possible realizations of a random 

variable over time. The properties of such a process can be then derived from the 
properties of the realizations (acquired signals). Random basically stands for 
unpredictable, as the opposite of deterministic. A deterministic signal is a completely 
specified function of time whose behaviour can be determined with certainty at every 
time instant. An example of a deterministic signal can be a periodic signal (e.g. a harmonic 
𝑥(𝑡) = 𝐴 cos(𝜔𝑡)), but also aperiodic signals like transients and quasi-periodic signals 
(sum of more sinusoids whose frequencies are not entire multiple of the fundamental) 
belong to this category. Unfortunately, in the real world, no measured signal will be 
perfectly deterministic, because different realizations will always show some differences, 
albeit small. Although it is not possible to make perfect predictions, a probabilistic 
approach can still be used to deal with such an uncertainty. At each time 𝑡 a stochastic 
process 𝑦(𝑡) can be then defined in terms of a probability distribution. 

 

 

 

Figure 1: Three realizations of a stochastic process on the left. The classification of signals 
from chapter 3 on the right. 

 

2. The probabilistic approach 
Probability is a measure of the likelihood that an event will occur. Consider the 

discrete variable 𝑦(𝑡), whose discrete realization 𝑦(𝑘𝑇𝑠) = 𝑦(𝑘) has been measured. This 
measure can be easily compared to a threshold 𝑦: the likelihood of 𝑦(𝑘) being less or 
equal than the threshold, takes the name of Cumulative Distribution Function (𝑐𝑑𝑓): 

 

𝑃(𝑦) = 𝑝𝑟𝑜𝑏[𝑦(𝑘) < 𝑦] ( 1 

 
Assuming a continuous 𝑐𝑑𝑓, the Probability Density Function (𝑝𝑑𝑓) of such a variable is 
defined as: 
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𝑝(𝑦) = lim
Δ𝑦→0

(
𝑝𝑟𝑜𝑏[𝑦 < 𝑦(𝑘) ≤ 𝑦 + Δ𝑦]

Δ𝑦
) = lim

Δ𝑦→0
(

𝑃(𝑦 + Δ𝑦) − 𝑃(𝑦)

Δ𝑦
) =

𝑑𝑃

𝑑𝑦
 ( 2 

 
with the following properties: 
 

𝑝(𝑦) ≥ 0 𝑃(𝑦) = ∫ 𝑝(𝛾)𝑑𝛾
𝑦

−∞

 ∫ 𝑝(𝑦)𝑑𝑦
+∞

−∞

= 1 ( 3 

 
In mathematics, in particular in statistics, specific quantitative measures of the 

shape of a function can be computed. These statistical functions are said to summarize 
the distribution. In statistics, a relevant summary is the measure of the centre, or location 
of the distribution, which can be given by: 

• the mode: the most frequent value, corresponding to a peak in the 𝑝𝑑𝑓 (N.B. if the 
distribution is not unimodal, more local peaks can be found) 

• the median: the value separating the higher half from the lower half of the data 
(the value which divides the 𝑝𝑑𝑓 in two parts of equal areas) 

• the mean: the expected value of the process 𝐸[𝑦], the value at which the 
arithmetic average tends at the limit for large number of repetitions. 

In general, the main statistical functions which describe the shape of the 𝑝𝑑𝑓 are called 
moments, and are defined as 
 

∫ (𝑥 − 𝑐)𝑛𝑓(𝑥)𝑑𝑥
+∞

−∞

 ( 4 

 
where 𝑛 is the moment order, while 𝑐 is a constant equal to 0 for the raw moments and to 
the mean value for centred moments. When also a normalization is performed, the 
moment is said to be standardized. The most relevant moments are: 
 

Order 1 – raw moment: 
Location                 ( 5 

mean 𝜇𝑦 = 𝐸[𝑦(𝑘)] = ∫ 𝑦 𝑝(𝑦)𝑑𝑦
+∞

−∞

 

Order 2 – central 
moment: 

Dispersion              ( 6 
variance 𝜎𝑦

2 = 𝐸 [(𝑦(𝑘) − 𝜇𝑦)
2

] = ∫ (𝑦 − 𝜇𝑦)
2

 𝑝(𝑦)𝑑𝑦
+∞

−∞

 

Order 3 – standardized 
moment 

Shape: symmetry  ( 7 
skewness 

𝜇3

𝜎𝑦
3 = 𝐸 [(

𝑦(𝑘) − 𝜇𝑦

𝜎𝑦
)

3

] 

Order 4 – standardized 
moment 

Shape: tailedness  ( 8 
kurtosis 

𝜇4

𝜎𝑦
4

= 𝐸 [(
𝑦(𝑘) − 𝜇𝑦

𝜎𝑦
)

4

] 

 
It is important to highlight that the idea of expected value of a generic variable 𝑞 

intrinsically implies that the average value of repeated realizations of 𝑞 will converge, at 
least on the long run (𝑁 → ∞) to a finite value 𝐸(𝑞). This is basically the Law of Large 
Numbers (LLN), which is a fundamental principle as it guarantees stable long-term results 
for the averages of random processes. Furthermore, in probability theory, a second 
fundamental principle is the Central Limit Theorem (CLT). It establishes that when 
independent random variables are added, their sum tends to the well-known Gauss bell 
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distribution (which takes the name of Normal or Gaussian) independently from the 
distributions of the original variables. 

 

3. Gaussian distribution and Gaussian processes 
One of the most relevant distributions is then the Normal (or Gaussian) 

distribution, which is the limiting probability distribution of complicated sums, according 

to the CLT.  A Gaussian process 𝑦(𝑡)~𝑁(𝜇(𝑡), 𝜎2(𝑡)), is then a stochastic process 

described by the bell-shaped Gaussian probability density function (𝑝𝑑𝑓) 
 

𝑁(𝜇, 𝜎2):   𝑝(𝑦) =
1

√2𝜋𝜎2 
𝑒

−
|𝑦−𝜇|2

2𝜎2  ( 9 

 
This pdf, which holds for the time instant 𝑡, is completely defined by the first two 
moments: 
 

𝜇(𝑡) = 𝐸[𝑦(𝑡)] The mean (expected value)      ( 10 

𝜎2(𝑡) = 𝑉𝑎𝑟(𝑦(𝑡)) = 𝐸 [(𝑦(𝑡) − 𝜇(𝑡))
2

] The variance      ( 11 

 
But this is not enough to describe the Gaussian process over time. Let us consider 

two time-instants 𝑡1 and 𝑡2. The two distributions 𝑦(𝑡1)~𝑁(𝜇(𝑡1), 𝜎2(𝑡1)) and 
𝑦(𝑡2)~𝑁(𝜇(𝑡2), 𝜎2(𝑡2)) can be considered as marginal distributions, but in the general 
case, considering that 𝑦(𝑡1) and𝑦(𝑡2) may not be independent, a joint pdf is necessary to 
completely depict the process. Indeed, a correlation among two following instants is 
possible, related to a memory effect which characterizes the dynamic of every system. In 
this case a bivariate normal should be considered. This can be defined as: 

 

𝑝(𝑦(𝑡1), 𝑦(𝑡2)) =
1

2𝜋𝜎1𝜎2√1 − 𝜌2
𝑒

−
𝑧

2(1−𝜌2) ( 12 

 
where: 

𝑧 =
(𝑦1 − 𝜇1)2

𝜎1
2 +

(𝑦2 − 𝜇2)2

𝜎2
2 −

2𝜌(𝑦1 − 𝜇1)(𝑦2 − 𝜇2)

𝜎1𝜎2
 Normalized radius ( 13 

𝛾 = 𝐸[(𝑦(𝑡1) − 𝜇1)(𝑦(𝑡2) − 𝜇2)] = 𝑐𝑜𝑣(𝑦(𝑡1), 𝑦(𝑡2)) Auto-Covariance ( 14 

𝑅 = 𝐸[𝑦(𝑡1)𝑦(𝑡2)] = 𝑐𝑜𝑟𝑟(𝑦(𝑡1), 𝑦(𝑡2)) Auto-Correlation ( 15 

𝜌 =
𝛾

𝜎1𝜎2
= 𝑐𝑜𝑟𝑟(𝑦(𝑡1), 𝑦(𝑡2))  Correlation coefficient ( 16 

 

 

 
It is relevant to notice that −1 ≤ 𝜌 ≤ 1 and 𝜌 = 0 implies uncorrelation between the two 
time-instants (N.B. independence implies uncorrelation, but the opposite does not hold). 
Finally, in order to completely define a Gaussian process, at least the mean and the auto-
covariance function 𝛾 (ACF) are needed. Conversely, in the case of null mean value, which 
is common for accelerometric measures, the auto-covariance simplifies to the auto-
correlation 𝛾 = 𝑅 = 𝐸[𝑦(𝑡1)𝑦(𝑡2)], which becomes the only characterizing parameter. 
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Figure 2: Bivariate Normal joint distribution with the two marginal distributions 

highlighted. 

 

4. Correlation and Spectral densities 
It is important to remember that, when the properties of a process are not known a priori, 
one will have to rely on estimates, always affected by uncertainty. According to the LLN, in 
fact, given a finite number of realizations, the estimate is computed at a given confidence 
level. 

The main estimates characterizing a stochastic process of 𝑁 realizations 𝑖 of 
duration 𝑇 are: 

 
Through the different realizations: Through the different time-instants:  

𝜇(𝑡) = lim
𝑁→∞

(
1

𝑁
∑ 𝑦𝑖(𝑡)

𝑁

𝑖=1
) 𝜇(𝑖) = lim

𝑇→∞
(

1

𝑇
∫ 𝑦𝑖(𝑡)𝑑𝑡

𝑇

0

) ( 17 

𝑅𝑦𝑦(𝑡, 𝜏) = lim
𝑁→∞

(
1

𝑁
∑ 𝑦𝑖(𝑡)𝑦𝑖(𝑡 + 𝜏)

𝑁

𝑖=1
) 𝑅𝑦𝑦(𝜏, 𝑖) = lim

𝑇→∞

1

𝑇
∫ 𝑦𝑖(𝑡)𝑦𝑖(𝑡

𝑇

0

+ 𝜏) 𝑑𝑡 

( 18 

 
If the mean 𝜇(𝑡) and the auto-correlation 𝑅𝑦𝑦(𝑡, 𝜏) are variable with time, the 

process is said to be non-stationary. On the contrary, if at least such quantities are 
constant in time, the process is at least weakly stationary: 𝜇(𝑡) = 𝜇 and 𝑅𝑦𝑦(𝑡, 𝜏) =

𝑅𝑦𝑦(𝜏). Furthermore, a stationary process is said ergodic if these quantities does not 

change with the realizations. 
Focusing on stationary processes, the characterization can be moved to the 

frequency domain and, exploiting the Wiener-Khinchine theorem, it is possible to define 
the power spectral density (𝑃𝑆𝐷) as 

 

𝑆𝑦𝑦(Ω) = ℱ[𝑅𝑦𝑦(𝜏)] = ∫ 𝑅𝑦𝑦(𝜏)𝑒−𝑖Ω𝜏𝑑𝜏
+∞

−∞

 ( 19 
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This real and even quantity, periodic with period 2𝜋/𝑇𝑠, is often called two-sided auto-
spectral density function, but in the engineering field, the one-sided is usually preferred, 
so that: 
 

𝐺𝑦𝑦(Ω) = 2𝑆𝑦𝑦(Ω), Ω ≥ 0 ( 20 

 
It is wise to notice that integrating the spectral density, the average power of the signal 
(the second order moment) is obtained: 
 

𝑅𝑦𝑦(0) = 𝐸[𝑦(𝑡)2] = ∫ 𝑆𝑦𝑦(Ω)𝑑Ω =
+∞

−∞

∫ 𝐺𝑦𝑦(Ω)𝑑Ω
+∞

0

 ( 21 

 
These considerations are fundamental from the theoretical point of view, but in 

practice, the estimate of the spectral density of a stationary stochastic process is usually 
obtained through a procedure based on Fourier transform called Periodogram. 
Basically, following the Welch method, a long acquisition is divided into 𝐾 shorter 
overlapping parts which corresponds to different realizations. Each realization 𝑘 of length 
𝑇 is then windowed and brought to the frequency domain. The 𝑘-th auto spectral density 
can be written as: 
 

�̂�𝑦𝑦(Ω, 𝑇, 𝑘) =
1

𝑇
𝑌𝑘

∗(Ω, 𝑇)𝑌𝑘(Ω, 𝑇) ( 22 

 
where ∙∗ means the complex conjugate. 
The results will be finally aggregated to find the estimate: 
 

�̂�𝑦𝑦(Ω, 𝑇) = 𝐸[�̂�𝑦𝑦(Ω, 𝑇, 𝑘)] ( 23 

 
Obviously, this procedure reduces the variability in the estimated spectral density (thanks 
to aggregation of the results) in exchange for reducing the frequency resolution (the 
chunks are shorter than the overall signal), but it can be proved that the estimator is 
unbiased, so that: 
 

𝑆𝑦𝑦(Ω) = lim
𝑇→∞

𝐸[�̂�𝑦𝑦(Ω, 𝑇, 𝑘)] ( 24 

 
In the discrete domain, considering 𝐾 chunks, the following results can be proved: 
 

�̂�𝑦𝑦(Ω) =
1

𝐾
∑ 𝑌𝑘

∗(Ω)𝑌𝑘(Ω)
𝐾

𝑘=1
 

2𝐾�̂�𝑦𝑦(Ω)

𝑆𝑦𝑦(Ω)
~𝜒2(2𝐾) 

2𝐾�̂�𝑦𝑦(Ω)

𝜒1−𝛼/2
2 ≤ 𝑆𝑦𝑦(Ω) ≤

2𝐾�̂�𝑦𝑦(Ω)

𝜒𝛼/2
2  

( 25 
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The 𝜒2 distribution with 2𝐾 degrees of freedom can be then used in order to find the 
range within which the true 𝑝𝑠𝑑 is supposed to fall at a confidence 𝛼. A simple bi-
harmonic signal (sum of two harmonics at 100 and 150 Hz) sampled at 1 𝑘𝐻𝑧 and 
corrupted by random white noise is used to show the idea of range of confidence. The 
synthesized time signal and the corresponding PSD estimated via Welch method are 
reported in Figure 3. 
 

  
Figure 3: Modelled time signal (red) corrupted by noise on the left and the corresponding 

Welch periodogram with 95% confidence interval on the right. The 50% overlap used is 
highlighted by the reported Hamming windows on the left plot (in black). 

 

5. LTI systems and stochastic signals 
According to the Wold theorem, every covariance-stationary time series can be 

decomposed into a unique deterministic and stochastic part. Then, focusing on a generic 
stationary random signal 𝑦(𝑡), this can be obtained as the response of a linear system 
characterized by the impulse response ℎ(𝑡) when excited by a white noise 
𝑤(𝑡)~𝑁(0, 𝜎𝑤

2 ). 
In the time domain this can be written as the convolution: 
 

𝑦(𝑡) = ℎ(𝑡) ∗ 𝑤(𝑡) = ∑ ℎ(𝑡 − 𝜏) ∙ 𝑤(𝜏)
𝑡

𝜏=−∞
= ∑ ℎ(𝑡) ∙ 𝑤(𝑡 − 𝜏)

+∞

𝜏=0
 ( 26 

 
The ACF of the output signal can be then found to convey, to a scale factor, the impulse 
response ℎ(𝑡), so that: 
 

𝑅(𝜏) = ℎ(𝜏) ∗ ℎ(−𝜏) ∙ 𝜎𝑤
2 = ∑ ℎ(𝑡) ∙ ℎ(𝑡 + 𝜏) ∙ 𝜎𝑤

2
∞

𝑡=0
 ( 27 

 
And in the frequency domain: 
 

𝑆(Ω)   = ℱ[𝛾(𝜏)] = |ℱ[ℎ(𝜏)]|2 ∙ 𝜎𝑤
2 = |𝐻(Ω)|2 ∙ 𝜎𝑤

2  ( 28 

 
The usefulness of the Wold Theorem is inherent to the description of the dynamic 

evolution of a system through a causal linear model. Two considerations are particularly 
relevant: 
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• Causality implies predictability from past values. The linear model allows then to 
specify any generic stationary stochastic signal as it represents the relation of an 
observed value to its past values. In discrete time domain, this means that the 
moving average model is the only possible representation of such a relationship: 
 

𝑦(𝑛Δ𝑡) = ∑ 𝑏𝑘𝜀𝑛−𝑘

∞

𝑘=0
 ( 29 

 
where 𝜀 is a white noise signal usually called innovation, while 𝑏 are the (possibly 
infinite) weights of a linear moving average filter. 

 

• Furthermore, even if the innovation is random, the MA parameters 𝑏 are 
determined. The ACF of a generic stochastic signal is then a periodic function and 
therefore deterministic. The PSD of such a generic stochastic signal is deterministic 
as well. 
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Appendix 4: 

Hypothesis tests for Normality and 
Homoscedasticity 

 

1. Normality tests 
In statistics, normality tests are used to find if a dataset can be fitted well by a 

normal distribution.  
Normality tests can be classified in three categories: 

• Visual tests, 

• Moment tests, 

• Empirical distribution tests. 
 
Among the visual, the most used are the Q-Q plots, which are plots of the sorted 

values from the data set against the expected values of the corresponding quantiles from 
the standard normal distribution. If the two distributions being compared are similar, the 
points in the Q–Q plot will approximately lie on the I-III quadrant bisector (y = x). 

This test is easily extended to multivariate analysis with the name of Mahalanobis 
Q-Q plot. It can be proved in fact that Mahalanobis distance of the P-dimensional data set 
from the mean (𝑑𝑀

2 ) has a 𝜒𝑃
2 distribution. 

 

𝑑𝑀
2 = (𝑥 − �̅�)𝑡 𝐶𝑆𝑥(𝑥 − �̅�) ~ 𝜒(𝑃)

2  ( 1 

 
where 𝑆𝑥 is the covariance matrix composed by: 
 

𝑠𝑖𝑗 =
1

𝐾
∑(𝑥𝑘𝑖 − �̅�𝑖)

𝐾

𝑘=1

(𝑥𝑘𝑗 − �̅�𝑗) ( 2 

 
This means that, for example, considering a 2-dimensional data set, it’s possible to write 
with a confidence level of 99,7% that 
 

𝑑𝑀
2 ≤  𝜒(2),0,3%

2 ≅ 11,6 ( 3 

 
 

where 𝜒(𝑃),𝛼
2  is called critical value for the corresponding p-value of 0.997. 

This is shown graphically in Figure 1, where the  𝜒(2)
2  Cumulative Distribution Function is 

reported, together with the 99,7% confidence critical value, featuring a significance 𝛼 =
0,3%. 
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Figure 1: Cumulative probability density function (CDF) of 𝜒(2)

2 ; The critical value  𝜒(2),0.003
2  is 

shown in green. 
 
Considering moment test, one of the most used results to be the Jarque-Bera test, 

which is based on descriptors of the shape of a probability density function (PDF) such as 
skewness (𝑠), a measure of the asymmetry, and kurtosis (𝑘), that measures the "tailedness" 
of the PDF. 
The method is based on the fact that the statistical test 𝐽𝐵 will be asymptotically distributed 
as a 𝜒2

2. 
So, the 𝐻0 hypothesis of normality will be verified if  
 

𝐽𝐵 =
𝑛

6
(𝑠2 +

(𝑘 − 3)2

4
)  ≤  𝜒(2),𝛼

2  ( 4 

 

where n is the number of observations in the data set and 𝜒(2),𝛼
2  is the upper-tail critical 

value for the χ2
2 distribution. 

Empirical distribution tests like Lilliefors can even be carried out, comparing the 
empirical cumulative distribution function (CDF) of the sample data, with the CDF of the 
normal distribution with estimated parameters equal to the sample parameters. 

 

2. Homoscedasticity tests 
 
In order to test if univariate data sets have homogeneous variances, a lot of tests 

are available, starting from Fisher-Snedecor F-test, limited to comparison among 2 groups, 
and switching to Bartlett's test to compare multiple variances at the same time. 

 

2.1. Fisher-Snedecor F-test 
Fisher-Snedecor F-test, is simply based on the fact that, given two normally 

distributed sets x ~ N and y ~ N, their squared deviations from the mean will be distributed 
as 𝜒𝑥

2(𝑛𝑥) and 𝜒𝑦
2(𝑛𝑦), where nx and ny are the dimensions of the 2 sets, while their ratio 

will show a particular distribution called Fisher-Snedecor F. 
So, the 𝐻0 hypothesis of homoscedasticity will be verified if  
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𝐹 =
𝑆𝑥

2

𝑆𝑦
2

 ≤  𝐹(𝑛𝑥−1,𝑛𝑦−1),𝛼 ( 5 

 

Where 𝑆𝑥
2 =

1

𝑛𝑥−1
∑ (𝑥𝑖 − �̅�)𝑖  and similarly for 𝑆𝑦

2, are the non-distorted estimators for 

sample variance. 
 

2.2. Bartlett's test 
Bartlett's test on the contrary uses Bratlett’s 𝜒𝐵

2  statistic to be compared with a 𝜒𝑘−1
2  

distribution. If there are G samples (groups) of size 𝑛𝑖  and sample variances  𝑆𝑖
2: 

 

𝜒𝐵
2 =

(𝑁 − 𝐺)𝑙𝑛(𝑆𝑝
2) − ∑ (𝑛𝑖 − 1)𝑘

𝑖=1 𝑙𝑛(𝑆𝑖
2)

1 +
1

3(𝐺 − 1)
(∑ (

1
𝑛𝑖 − 1

) −
1

𝑁 − 𝐺
𝑘
𝑖=1 )

  ≤  𝜒(𝐺−1),𝛼
2  ( 6 

 

where 𝑁 = ∑ 𝑛𝑖
𝐺
𝑖=1  and 𝑆𝑝

2 =
1

𝑁−𝐺
∑ (𝑛𝑖 − 1)𝑆𝑖

2
𝑖  is the pooled estimate for the 

variance. 
Bartlett’s test can be extended to multivariate cases, taking the name of Box’s M test. 
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Appendix 5: 

The Genetic Algorithm: evolutionary 
optimization 

 

1. Evolutionary optimization and the Genetic Algorithm 
Optimization is the selection of a best element from a set of available alternatives 

according to some criteria. In a more formal way, given an objective function 𝑓: 𝐷 → ℝ 
which links the search space of feasible solutions to the corresponding utility or cost, the 
optimization process seeks to find the element 𝑥𝑜 ∈ 𝐷 such that 𝑓(𝑥𝑜) ≤ 𝑓(𝑥) ∀ 𝑥 ∈ 𝐷 
(minimization) or such that 𝑓(𝑥𝑜) ≥ 𝑓(𝑥) ∀ 𝑥 ∈ 𝐷 (maximization). Fixing a target for 
convenience, in the simplest case, an optimization problem consists of a minimization of a 
cost function over a search space obtained by constraining the overall Euclidean space. Or, 
argmin

𝑥∈𝐷
𝑓(𝑥). From a mathematical point of view, the minimization of a function typically 

involves derivatives. Then, the more a function is complex (e.g. defined on a wide 
multidimensional support,  non continuous, or with non continuous derivatives, featuring 
many lcoal minima etc. ), the harder is the computation of such derivatives, so that the 
optimization may become very tricky in practical cases. Furthermore, the optimization is 
very likely to get stuck into local minima in the vicinity of an initial guess value for the 
optimum location (local optimization), with no guarantees (unless particular properties of 
the cost function i. e. convexity) that the result corresponds to the actual global minimum 
(global minimization). 
In general, the assessment of the performance of an optimizer can be expressed in terms 
of  

• Exploration: the optimizer discovers a wide region of the search space, 

• Exploitation: the optimizer “pounds the pavement“ on a limited but 
promizing region, 

• Reliability: repeatability of the fund solution. 
It is important to highlihgt that exploration and exploitation are competing 

properties. Local optimizers show very good exploitation at the expense of a very poor 
exploration. On the contrary, a good global optimizer should sacrifice exploitation to gain 
in exploration and speed. This is usualy obtained taking advantage of heuristic or meta-
heuristic techniques implementing some form of stochastic optimization. 

An important category of global population-based metaheuristic optimization 
algorithms is the Evolutionary. An evolutionary algorithm (EA) uses mechanisms inspired by 
biological evolution, such as reproduction, mutation, recombination, and selection. 
Candidate solutions to the optimization problem play the role of individuals in a population, 
and the cost function determines the quality of a solution. A “direct search” is performed 
to find the best individuals within the population according to their quality. These best 
individuals are then selected to determine the offspring, namely the new trial solutions, 
which will substitute lower quality individuals. 

The most famous EA is the Genetic Algorithm, developed by John Holland 
introduced genetic algorithms in 1960 based on the concept of Darwin’s theory of 
evolution. The GA evolutionary cycle starts initiating a population randomly and evaluating 
the quality of each individual on the basis of his genotype. The best individuals are then 
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selected to produce via modification the new offspring, while the worst are discarded. 
Modifications are stochastically triggered operators such as the crossover (the offspring is 
a random mix of the genotypes of their parents) or the mutation (the offspring features 
new genes which were not present in the parents). The first is important to ensure 
exploitation, while the second guarantees exploration of the search pace of all possible 
genotypes. Finally, a new population is ready for starting again the cycle until some stopping 
criteria is met. The cycle is outlined in Figure 1.    

 

 
Figure 1: The evolutionary cycle 

 
GA usual parameters in Matlab® environment are: 

• Population Size: 𝑁𝑝 = 200 or reduced to 50 if the problem dimension 𝐷 (number 

of variables) is lower than 5. 

• Elite Count: 5%. It defines the number of best individuals selected as a percentage 
of 𝑁𝑝.  

• Crossover Fraction: 80%. It defines the offspring quantity at next generation as a 
percentage of 𝑁𝑝. 

• Default mutation: Shrinking Gaussian. Each newborn features a degree of random 

mutation which decreases in time according to the linear law: 𝜎𝑔 = 𝜎𝑔−1 (1 − 𝑠 
𝑔

𝐺
). 

𝜎0 = 1, s= 1. 

• The maximum number of generations 𝐺 is by default 100 times the problem 
dimension 𝐷. 

• As the total Np is fixed, the percentage of discarded individuals equals the crossover 
fraction. 

• Additional to 𝐺 another stopping criterion is the maximum number of stall 
generations. The algorithm stops if the average relative change in the best objective 
function value is less than a function tolerance of 10−6 for 50 generations. 
 

2. GA examples 
In order to assess the performance of GA algorithm, benchmark functions are 

commonly used. These functions are typically generalized on a D-dimensional domain and 
are ruled by some parameters. Furthermore, they are built to have a unique and well-
known global minimum in the origin, featuring a null cost. The performances of the 
algorithm are assessed in terms of  

• Effectiveness: The optimization ensures to reach the right global minimum. This 
involves all the three properties introduced in previous chapter.  
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➢ The exploration, to find the area in which the global minimum is without 
getting stuck into local minima.  

➢ The exploitation, to descend at the very bottom of the minimum and reach 
the value of null cost. 

➢ The repeatability, so that even running the algorithm multiple time, the first 
two properties holds for each run. 

• Efficiency: The time or number of generations in which the minimization is carried 
out. 

while the number of generations 𝐺 is fixed to 200 and is selected as the only stopping 
criterion. 
To highlight the repeatability, each test is run 5 times. In the following examples, for 
convenience, the search space is bounded to the region −5 ≤ 𝑥𝑖 ≤ 5, 𝑖 = 1: 𝐷. 

 
2.1. The Sphere Function 

The first and simplest function tested is the Sphere Function, basically the Eulerian 
distance from the origin of a point in a D dimensional space. 

𝑓(𝑥) = ∑ 𝑥𝑖
2 

𝐷

𝑖=1
 ( 1 

This function is convex, and has then a single minimum in the origin, which is obviously 
global. Its representation for 𝐷 = 2 can be found in Figure 2.  
 

  

  
Figure 2: Sphere Function convex GA optimization performance in term of costs over 

generations (iterations) for different space dimensions 𝐷 given a population size 𝑁𝑝 = 10. 
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As it is easy to notice in Figure 2, even with a small population of only 10 individuals 
GA is very effective in minimizing the sphere function for a not too large dimensionality. 
When 𝐷 increases larger 𝑁𝑝 are needed to ensure a reliable minimization in acceptable 

numbers of iterations. Indeed, the search space volume increases as a power of 𝐷. 
 

2.2. The Rastrigin Function 
The second tested function is the Rastrigin, which features several local minima. It 

is non-convex and highly multimodal, but locations of the minima are regularly distributed. 
Its formulation, as a function of parameter 𝑎 is given by: 

 

𝑓(𝑥) = 𝑎 𝐷 + ∑ [𝑥𝑖
2 − 𝑎 cos (2𝜋𝑥𝑖)]

𝐷

𝑖=1
 ( 2 

 
The recommended value of 𝑎 is 10 and its two-dimensional form is shown in Figure 3. 
In the same figure the GA minimum cost at each generation is given for a constant 
dimension 𝐷 = 5 while the population number 𝑁𝑝 is increasing from 10 to 40. Despite the 

performances are obviously improving as 𝑁𝑝 gets larger, it is also evident that an 

exploration issue may arise. GA often get stuck into local minima and even for 𝑁𝑝 = 40 just 

3 times out of 5 the algorithm is able to really find the global minimum. Larger population 
sizes and possibly stronger mutations would surely increase the reliability.  
 

  

  
Figure 3: Rastrigin Function non-convex GA optimization performance in term of costs 

over generations (iterations) for a given space dimensions 𝐷 = 5  increasing the population size 
𝑁𝑝. 
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2.3. The Ackley Function 
The last function proposed in this performance assessment is the Ackley function, 

shown in its two-dimensional form in Figure 4. As evident in the plot, it is characterized by 
a nearly flat outer region, and a large hole at the centre, while the surface features many 
local minima. Its general formulation is given by: 

 

𝑓(𝑥) = 𝑎 + exp (1) − 𝑎 exp (−𝑏√
1

𝐷
∑ 𝑥𝑖

2
𝐷

𝑖=1
) − exp (

1

𝐷
∑ cos(𝑐𝑥𝑖)

𝐷

𝑖=1
) ( 3 

 
Recommended variable values are: 𝑎 =  20, 𝑏 =  0,2 and 𝑐 =  2𝜋. 

The Ackley function is again non-convex and shares the same criticalities of the 
Rastrigin function. The optimizer in fact, can get stuck in one of the many local minima and 
never reach the global optimum. In any case, with the same parameters, GA seems to 
perform much better than with the Rastrigin as already with 𝑁𝑝 = 20 just in 1 case out of 

5 it fails to find the global optimum, while for the other 4 it is reached in less than 100 
generations.  

 

  

  
Figure 4: Ackley Function non-convex GA optimization performance in term of costs over 

generations (iterations) for a given space dimensions 𝐷 = 5  increasing the population size 𝑁𝑝. 
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