516 research outputs found

    Building efficient wireless infrastructures for pervasive computing environments

    Get PDF
    Pervasive computing is an emerging concept that thoroughly brings computing devices and the consequent technology into people\u27s daily life and activities. Most of these computing devices are very small, sometimes even invisible , and often embedded into the objects surrounding people. In addition, these devices usually are not isolated, but networked with each other through wireless channels so that people can easily control and access them. In the architecture of pervasive computing systems, these small and networked computing devices form a wireless infrastructure layer to support various functionalities in the upper application layer.;In practical applications, the wireless infrastructure often plays a role of data provider in a query/reply model, i.e., applications issue a query requesting certain data and the underlying wireless infrastructure is responsible for replying to the query. This dissertation has focused on the most critical issue of efficiency in designing such a wireless infrastructure. In particular, our problem resides in two domains depending on different definitions of efficiency. The first definition is time efficiency, i.e., how quickly a query can be replied. Many applications, especially real-time applications, require prompt response to a query as the consequent operations may be affected by the prior delay. The second definition is energy efficiency which is extremely important for the pervasive computing devices powered by batteries. Above all, our design goal is to reply to a query from applications quickly and with low energy cost.;This dissertation has investigated two representative wireless infrastructures, sensor networks and RFID systems, both of which can serve applications with useful information about the environments. We have comprehensively explored various important and representative problems from both algorithmic and experimental perspectives including efficient network architecture design and efficient protocols for basic queries and complicated data mining queries. The major design challenges of achieving efficiency are the massive amount of data involved in a query and the extremely limited resources and capability each small device possesses. We have proposed novel and efficient solutions with intensive evaluation. Compared to the prior work, this dissertation has identified a few important new problems and the proposed solutions significantly improve the performance in terms of time efficiency and energy efficiency. Our work also provides referrable insights and appropriate methodology to other similar problems in the research community

    Towards Secure and Scalable Tag Search approaches for Current and Next Generation RFID Systems

    Get PDF
    The technology behind Radio Frequency Identification (RFID) has been around for a while, but dropping tag prices and standardization efforts are finally facilitating the expansion of RFID systems. The massive adoption of this technology is taking us closer to the well known ubiquitous computing scenarios. However, the widespread deployment of RFID technology also gives rise to significant user security issues. One possible solution to these challenges is the use of secure authentication protocols to protect RFID communications. A natural extension of RFID authentication is RFID tag searching, where a reader needs to search for a particular RFID tag out of a large collection of tags. As the number of tags of the system increases, the ability to search for the tags is invaluable when the reader requires data from a few tags rather than all the tags of the system. Authenticating each tag one at a time until the desired tag is found is a time consuming process. Surprisingly, RFID search has not been widely addressed in the literature despite the availability of search capabilities in typical RFID tags. In this thesis, we examine the challenges of extending security and scalability issues to RFID tag search and suggest several solutions. This thesis aims to design RFID tag search protocols that ensure security and scalability using lightweight cryptographic primitives. We identify the security and performance requirements for RFID systems. We also point out and explain the major attacks that are typically launched against an RFID system. This thesis makes four main contributions. First, we propose a serverless (without a central server) and untraceable search protocol that is secure against major attacks we identified earlier. The unique feature of this protocol is that it provides security protection and searching capacity same as an RFID system with a central server. In addition, this approach is no more vulnerable to a single point-of-failure. Second, we propose a scalable tag search protocol that provides most of the identified security and performance features. The highly scalable feature of this protocol allows it to be deployed in large scale RFID systems. Third, we propose a hexagonal cell based distributed architecture for efficient RFID tag searching in an emergency evacuation system. Finally, we introduce tag monitoring as a new dimension of tag searching and propose a Slotted Aloha based scalable tag monitoring protocol for next generation WISP (Wireless Identification and Sensing Platform) tags

    The Challenges and Issues Facing the Deployment of RFID Technology

    Get PDF
    Griffith Sciences, School of Information and Communication TechnologyFull Tex

    Ensuring Application Specific Security, Privacy and Performance Goals in RFID Systems

    Get PDF
    Radio Frequency IDentification (RFID) is an automatic identification technology that uses radio frequency to identify objects. Securing RFID systems and providing privacy in RFID applications has been the focus of much academic work lately. To ensure universal acceptance of RFID technology, security and privacy issued must be addressed into the design of any RFID application. Due to the constraints on memory, power, storage capacity, and amount of logic on RFID devices, traditional public key based strong security mechanisms are unsuitable for them. Usually, low cost general authentication protocols are used to secure RFID systems. However, the generic authentication protocols provide relatively low performance for different types of RFID applications. We identified that each RFID application has unique research challenges and different performance bottlenecks based on the characteristics of the system. One strategy is to devise security protocols such that application specific goals are met and system specific performance requirements are maximized. This dissertation aims to address the problem of devising application specific security protocols for current and next generation RFID systems so that in each application area maximum performance can be achieved and system specific goals are met. In this dissertation, we propose four different authentication techniques for RFID technologies, providing solutions to the following research issues: 1) detecting counterfeit as well as ensuring low response time in large scale RFID systems, 2) preserving privacy and maintaining scalability in RFID based healthcare systems, 3) ensuring security and survivability of Computational RFID (CRFID) networks, and 4) detecting missing WISP tags efficiently to ensure reliability of CRFID based system\u27s decision. The techniques presented in this dissertation achieve good levels of privacy, provide security, scale to large systems, and can be implemented on resource-constrained RFID devices

    Energy efficiency in short and wide-area IoT technologies—A survey

    Get PDF
    In the last years, the Internet of Things (IoT) has emerged as a key application context in the design and evolution of technologies in the transition toward a 5G ecosystem. More and more IoT technologies have entered the market and represent important enablers in the deployment of networks of interconnected devices. As network and spatial device densities grow, energy efficiency and consumption are becoming an important aspect in analyzing the performance and suitability of different technologies. In this framework, this survey presents an extensive review of IoT technologies, including both Low-Power Short-Area Networks (LPSANs) and Low-Power Wide-Area Networks (LPWANs), from the perspective of energy efficiency and power consumption. Existing consumption models and energy efficiency mechanisms are categorized, analyzed and discussed, in order to highlight the main trends proposed in literature and standards toward achieving energy-efficient IoT networks. Current limitations and open challenges are also discussed, aiming at highlighting new possible research directions

    SLEC: A Novel Serverless RFID Authentication Protocol Based on Elliptic Curve Cryptography

    Get PDF
    Radio Frequency Identification (RFID) is one of the leading technologies in the Internet of Things (IoT) to create an efficient and reliable system to securely identify objects in many environments such as business, health, and manufacturing areas. Since the RFID server, reader, and tag communicate via insecure channels, mutual authentication between the reader and the tag is necessary for secure communication. The central database server supports the authentication of the reader and the tag by storing and managing the network data. Recent lightweight RFID authentication protocols have been proposed to satisfy the security features of RFID communication. A serverless RFID system is a new promising solution to alternate the central database for mobile RFID models. In this model, the reader and the tag perform the mutual authentication without the support of the central database server. However, many security challenges arise from implementing the lightweight RFID authentication protocols in the serverless RFID network. We propose a new robust serverless RFID authentication protocol based on the Elliptic Curve Cryptography (ECC) to prevent the security attacks on the network and maintain the confidentiality and the privacy of the authentication messages and tag information and location. While most of the current protocols assume a secure channel in the setup phase to transmit the communication data, we consider in our protocol an insecure setup phase between the server, reader, and tag to ensure that the data can be renewed from any checkpoint server along with the route of the mobile RFID network. Thus, we implemented the elliptic curve cryptography in the setup phase (renewal phase) to transmit and store the data and the public key of the server to any reader or tag so that the latter can perform the mutual authentication successfully. The proposed model is compared under the classification of the serverless model in term of computation cost and security resistance

    FRAMEWORK FOR IMPROVING PERFORMANCE OF PROTOCOLS FOR READING RADIO FREQUENCY IDENTIFICATION TAGS

    Get PDF
    Radio-frequency Identification (RFID) is a highly sought-after wireless technology used to track and manage inventory in the supply chain industry. It has varied applications ranging from automated toll collection and security access management to supply chain logistics. Miniaturization and low tag costs of RFID tags have lead to item-level tagging, where not just the pallet holding products is tagged but each product inside has a tag attached to it. Item-level tagging of goods improves the accuracy of the supply chain but it significantly increases the number of tags that an RFID reader must identify and track. Faster identification is crucial to cutting cost and improving efficiency. Existing RFID protocols were designed to primarily handle static scenarios with both RFID tags and readers not being in motion. This research addresses the problem of inventory tracking within a warehouse in multitude of scenarios that involves mobile tags, multiple readers and high density environments. Mobility models are presented and frameworks are developed for the following scenarios: a) mobile tags on a conveyor belt with multiple fixed readers; b) mobile reader in a warehouse with stationary tags in shelves; and c) high density tag population with Near-Field (NF) communication. The proposed frameworks use information sharing among readers to facilitate protocol state handoff and segregation of tags into virtual zones to improve tag reading rates in mobile tag and mobile reader scenarios respectively. Further, a tag’s ability to listen to its Near-Field neighboring tags transmissions is exploited to assist the reader in resolving collisions and hence enhancing throughput. The frameworks discussed in this research are mathematically modeled with a probabilistic analysis of protocols employed in conjunction with framework. With an increased number of tags to be identified, mathematically understanding the performance of the protocol in these large-scale RFID systems becomes essential. Typically, this analysis is performed using Markov-chain models. However, these analyses suffer from the common state-space explosion problem. Hence, it is essential to come up with a scalable analysis, whose computation model is insensitive to the number of tags. The following research analyzes the performance of tag identification protocols in highly dense tag scenarios, and proposes an empirical formula to estimate the approximate time required to read all the tags in a readers range without requiring protocol execution

    Anti-collision techniques for RFID systems.

    Get PDF
    Chiang Kong Wa.Thesis (M.Phil.)--Chinese University of Hong Kong, 2006.Includes bibliographical references (leaves 74-79).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 2 --- Technology Overview --- p.4Chapter 2.1 --- Components of RFID Systems --- p.5Chapter 2.1.1 --- Tag --- p.6Chapter 2.1.2 --- Reader --- p.9Chapter 2.1.3 --- Software systems --- p.10Chapter 2.1.4 --- Communication infrastructure --- p.11Chapter 2.2 --- Frequency Regulations and Standards --- p.11Chapter 2.2.1 --- RFID frequency bands --- p.11Chapter 2.2.2 --- Standards --- p.12Chapter 2.3 --- Advantages and Limitations of RFID Technology --- p.14Chapter 2.4 --- Applications --- p.17Chapter 3 --- Background of Research --- p.20Chapter 3.1 --- Anti-collision methods for RFID systems --- p.22Chapter 3.1.1 --- Stochastic Anti-collision Protocols --- p.25Chapter 3.1.2 --- Deterministic Anti-collision Protocols --- p.27Chapter 4 --- Even-Odd Binary Tree Protocol --- p.30Chapter 4.1 --- Protocol Description --- p.31Chapter 4.2 --- Time Complexity Analysis --- p.34Chapter 4.3 --- Performance Evaluation --- p.37Chapter 4.4 --- Summary --- p.41Chapter 5 --- Prefix-Randomized Query-Tree Protocol --- p.44Chapter 5.1 --- Tag Identification - Known Tag Set Size --- p.45Chapter 5.1.1 --- Protocol Description --- p.45Chapter 5.1.2 --- Time Complexity Analysis --- p.47Chapter 5.1.3 --- Optimal Initial Prefix Length --- p.50Chapter 5.1.4 --- Optimal Number of Level-1 Nodes --- p.52Chapter 5.2 --- Tag Identification - Unknown Tag Set Size --- p.53Chapter 5.2.1 --- Initial Prefix Length Adaptation Algorithm --- p.54Chapter 5.2.2 --- Computing r*Δ(l) --- p.55Chapter 5.2.3 --- Optimal Choice of Step Size Δ --- p.56Chapter 5.3 --- Performance Evaluation --- p.59Chapter 5.4 --- Summary --- p.64Chapter 6 --- Conclusion and Future Work --- p.68Chapter 6.1 --- Conclusion --- p.68Chapter 6.2 --- Future Work --- p.70Bibliography --- p.7

    Integrated ZigBee RFID sensor networks for resource tracking and monitoring in logistics management

    Get PDF
    The Radio Frequency Identification (RFID), which includes passive and active systems and is the hottest Auto-ID technology nowadays, and the wireless sensor network (WSN), which is one of the focusing topics on monitoring and control, are two fast-growing technologies that have shown great potential in future logistics management applications. However, an information system for logistics applications is always expected to answer four questions: Who, What, When and Where (4Ws), and neither of the two technologies is able to provide complete information for all of them. WSN aims to provide environment monitoring and control regarded as When and What , while RFID focuses on automatic identification of various objects and provides Who (ID). Most people usually think RFID can provide Where at all the time. But what normal passive RFID does is to tell us where an object was the last time it went through a reader, and normal active RFID only tells whether an object is presenting on site. This could sometimes be insufficient for certain applications that require more accurate location awareness, for which a system with real-time localization (RTLS), which is an extended concept of RFID, will be necessary to answer Where constantly. As WSN and various RFID technologies provide information for different but complementary parts of the 4Ws, a hybrid system that gives a complete answer by combining all of them could be promising in future logistics management applications. Unfortunately, in the last decade those technologies have been emerging and developing independently, with little research been done in how they could be integrated. This thesis aims to develop a framework for the network level architecture design of such hybrid system for on-site resource management applications in logistics centres. The various architectures proposed in this thesis are designed to address different levels of requirements in the hierarchy of needs, from single integration to hybrid system with real-time localization. The contribution of this thesis consists of six parts. Firstly, two new concepts, Reader as a sensor and Tag as a sensor , which lead to RAS and TAS architectures respectively, for single integrations of RFID and WSN in various scenarios with existing systems; Secondly, a integrated ZigBee RFID Sensor Network Architecture for hybrid integration; Thirdly, a connectionless inventory tracking architecture (CITA) and its battery consumption model adding location awareness for inventory tracking in Hybrid ZigBee RFID Sensor Networks; Fourthly, a connectionless stochastic reference beacon architecture (COSBA) adding location awareness for high mobility target tracking in Hybrid ZigBee RFID Sensor Networks; Fifthly, improving connectionless stochastic beacon transmission performance with two proposed beacon transmission models, the Fully Stochastic Reference Beacon (FSRB) model and the Time Slot Based Stochastic Reference Beacon (TSSRB) model; Sixthly, case study of the proposed frameworks in Humanitarian Logistics Centres (HLCs). The research in this thesis is based on ZigBee/IEEE802.15.4, which is currently the most widely used WSN technology. The proposed architectures are demonstrated through hardware implementation and lab tests, as well as mathematic derivation and Matlab simulations for their corresponding performance models. All the tests and simulations of my designs have verified feasibility and features of our designs compared with the traditional systems
    • …
    corecore