
SLEC: A NOVEL SERVERLESS RFID

AUTHENTICATION PROTOCOL BASED ON

ELLIPTIC CURVE CRYPTOGRAPHY

Rania Baashirah

Under the Supervision of Dr. Abdelshakour Abuzneid

DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

AND ENGINEERING

THE SCHOOL OF ENGINEERING

UNIVERSITY OF BRIDGEPORT

CONNECTICUT

April, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UB ScholarWorks

https://core.ac.uk/display/222785891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

iii

SLEC: A NOVEL SERVERLESS RFID AUTHENTICATION

PROTOCOL BASED ON ELLIPTIC CURVE

CRYPTOGRAPHY

© Copyright by Rania Baashirah 2019

iv

SLEC: A NOVEL SERVERLESS RFID AUTHENTICATION

PROTOCOL BASED ON ELLIPTIC CURVE

CRYPTOGRAPHY

ABSTRACT

Radio Frequency Identification (RFID) is one of the leading technologies in the

Internet of Things (IoT) to create an efficient and reliable system to securely identify

objects in many environments such as business, health, and manufacturing areas. Since

the RFID server, reader, and tag communicate via insecure channels, mutual

authentication between the reader and the tag is necessary for secure communication.

The central database server supports the authentication of the reader and the tag by

storing and managing the network data. Recent lightweight RFID authentication

protocols have been proposed to satisfy the security features of RFID communication.

A serverless RFID system is a new promising solution to alternate the central database

for mobile RFID models. In this model, the reader and the tag perform the mutual

authentication without the support of the central database server. However, many

security challenges arise from implementing the lightweight RFID authentication

protocols in the serverless RFID network. We propose a new robust serverless RFID

authentication protocol based on the Elliptic Curve Cryptography (ECC) to prevent the

v

security attacks on the network and maintain the confidentiality and the privacy of the

authentication messages and tag information and location. While most of the current

protocols assume a secure channel in the setup phase to transmit the communication

data, we consider in our protocol an insecure setup phase between the server, reader,

and tag to ensure that the data can be renewed from any checkpoint server along with

the route of the mobile RFID network. Thus, we implemented the elliptic curve

cryptography in the setup phase (renewal phase) to transmit and store the data and the

public key of the server to any reader or tag so that the latter can perform the mutual

authentication successfully. The proposed model is compared under the classification of

the serverless model in term of computation cost and security resistance.

vi

ACKNOWLEDGEMENTS

My thanks are wholly devoted to God, who has helped me all the way to

complete this work successfully. It is all his grace, mercy, and blessings that make this

work possible.

I am honored that my work has been supervised by Dr. Abdelshakour Abuzneid

for his patient guidance, motivation, and advice he has provided throughout my

research. I have been fortunate to have a supervisor who cares and believes in my work,

and who responded to my questions and concerns so promptly. I also would like to

thank all my professors, friends, and colleagues at the University of Bridgeport, who

helped me to accomplish this work.

I owe a debt of gratitude to my parents for their love and encouragement to

pursue my studies in the first place, and my sisters for their immense support.

I finally dedicate this work to my loving and caring daughters; Yara and Maria

for their tolerance about being apart from them all this time. My words cannot express

how grateful I am to have them both in my life.

vii

TABLE OF CONTENTS

ABSTRACT .. iv

ACKNOWLEDGEMENTS ... vi

TABLE OF CONTENTS ... vii

LIST OF TABLES ... ix

LIST OF FIGURES .. x

CHAPTER 1: INRTODUCTION ... 13

1.1 Research Problem and Scope.. 15

1.2 Motivation behind the Research ... 16

1.3 Potential Contributions of the Proposed Research ... 17

CHAPTER 2: RELATED WORK ... 19

2.1 Recent RFID Authentication Protocols .. 19

2.1.1 Heavyweight Protocols .. 19

2.1.2 Simple Weight Protocols ... 24

2.1.3 Lightweight Protocols .. 28

2.1.4 Ultra-Lightweight Protocols .. 46

2.2 Analysis and Security Evaluation ... 52

2.2.1 Comparison of Computation Cost ... 52

2.2.2 Comparison of Security Threats .. 52

2.2.3 Comparison of Security Requirements .. 54

CHAPTER 3: PROPOSED SERVERLESS RFID AUTHENTICATION MODEL 58

viii

3.1 Network Model ... 58

3.2 Serverless Model .. 59

3.3 Communication Model ... 60

3.3.1 Setup Phase .. 61

3.3.2 Authentication Phase ... 63

3.3.3 Recovery Phase .. 65

CHAPTER 4: METHODOLOGY .. 66

4.1 Experiment Design ... 66

4.2 Serverless Authentication Based on Elliptic curve Algorithm ... 66

CHAPTER 5: RESULTS AND ANALYSIS ... 68

5.1 Analysis of System Requirements .. 68

5.2 Analysis of Security Requirements .. 70

5.3 Analysis of Computation Cost .. 75

CHAPTER 6: FORMAL VERIFICATION ... 77

6.1 Adversary Model .. 77

6.2 Reachability and Secrecy .. 78

6.3 Correspondence Assertion .. 83

CHAPTER 7: CONCLUSION ... 88

REFERENCES ... 90

ix

LIST OF TABLES

Table 2.2.1 Comparison of the Computation Cost on Tag 53

Table 2.2.2 Comparison of Various Security Requirements 55

Table 2.2.3 Comparison of the Security Requirements 56

Table 3.1 Protocol Notations 61

Table 5.1 Comparison of the System Requirements 71

Table 5.2 Comparison of the Security Threats Resistance 75

Table 5.3 Comparison of the Computation Cost on the Tag 76

x

LIST OF FIGURES

Figure 1.1 Basic radio frequency identification (RFID) model 14

Figure 2.1 Session-based authentication protocol (SB-A) by Wang and

Sarma

21

Figure 2.2 Session-based authentication protocol (SB-B) by Wang and

Sarma

21

Figure 2.3 Elliptic curve cryptography-based untraceable authentication

protocol (ECU) by Ryu

22

Figure 2.4 The reviving-under-denial of service authentication protocol

(RUND) by Yao

24

Figure 2.5 Mutual authentication-based on elliptic curve cryptography

(IECC) by Farash

25

Figure 2.6 Role-based access control protocol (RBAC) by B.Chen 27

Figure 2.7 Mutual authentication protocol for networked RFID systems

(NRS++) by X. Chen

29

Figure 2.8 Anti-counting security protocol (ACSP++) by X. Chen 30

Figure 2.9 Lightweight authentication protocol (LAP) by Chien 32

Figure 2.10 Flyweight mutual authentication protocol by Burmeter 33

xi

Figure 2.11 Lightweight protocol based on synchronized secret (MASS)

by S. Lee

34

Figure 2.12 Efficient passively-untraceable authentication protocol (EP-

UAP) by K. Lee

35

Figure 2.13 Desynch attack-resistant robust authentication protocol

(DRAP) by Rahman and Ahamad

36

Figure 2.14 Grouping proofs-based authentication protocol (GUPA) by

Liu for a single-reader—single-tag case

37

Figure 2.15 Batch authentication protocol based on frame slotted aloha

(FTest) by Rahman and Ahamad

39

Figure 2.16 Anti-collision security protocol (ACS) by Keqiang 40

Figure 2.17 Hash-based mutual authentication (HBA+) protocol by

Chang

41

Figure 2.18 Variable linear shift-based authentication protocol (VLP) by

Z.Liu

42

Figure 2.19 Passive tag ownership authentication protocol (OMP)

Protocol by Niu

43

Figure 2.20 Efficient authentication protocol (SEAS) by Dass and Om 44

Figure 2.21 Serverless security authentication protocol (SAP) by Mtita 45

Figure 2.22 Ultra-lightweight serverless authentication protocol (STS)

by Sundaresan

47

xii

Figure 2.23 Improved authentication protocol (CWH+) by Aggarwal and

Dass

48

Figure 2.24 Ultra-lightweight mutual authentication protocol (MACC)

by Huang and Jiang

49

Figure 2.25 Mutual authentication protocol (MACD) by Huang and

Jiang

50

Figure 2.26 A variant of HB protocol based on permutation function

(HBPER) by Ouaskou

51

Figure 6.1 Verification results of reachability and secrecy 78

Figure 6.2 Verification results of correspondence assertions 84

13

CHAPTER 1: INRTODUCTION

The wireless sensor network (WSN) has expanded recently to employ new

technologies in the Internet of Things (IoT). The purpose of this evolution is to create a

low-cost, reliable, and secure communication network for current and future applications

using radio waves most conveniently. Radio Frequency Identification (RFID) is a

technology where the detection of the electromagnetic signals in the wireless sensor

network identifies objects or people. Hundreds and thousands of RFID applications have

been used to improve business efficiency and productivity in a variety of business

operations, including supply chain management, access control limitation, product

tracking, merchandise allocation, toll collection, and so on. It is also considered an

integral part of daily life where its applications not only are limited to business activities,

but also everyday life activities that are integrated into cell phones, household,

automobile, etc.

The primary system of RFID includes a receiver (reader), transponder (tag), and

back-end database (server) to store and manage data. The RFID tag is a label that is

placed into the object to be identified and located among hundreds and thousands of

objects. It consists of a small antenna attached to a microchip with a small memory to

store the object’s identity and data [1]. The RFID reader is a scanner placed in a fixed

location to interrogate the tag whenever the tag exists in the scanning environment. The

14

Request

Respond

Database RFID Reader RFID Tags

back-end database server operates as a data processor that manages, controls, and stores

the data from the tag and reader. An RFID system is depicted in Figure 1.1 [2]. Since the

communication channel between the reader and tag is assumed to be insecure, messages

in RFID communication are transmitted in clear, and thus are vulnerable to security

attacks such as replay attack, impersonation, traceability, man-in-the-middle,

desynchronization, denial of service, cloning, and disclosure attack. A secure RFID

system must be able to resist different types of attacks through maintaining system

requirements of mutual authentication, confidentiality, integrity, availability, privacy,

forward and backward secrecy.

Figure 1.1: Basic radio frequency identification (RFID) model [2]

Since the RFID passive tag has limited resources to compute complex operations

[3], the heavyweight protocols are not feasible for practical implementation [4]. On the

other hand, lightweight and ultra-lightweight protocols use only simple operations within

the tag computation limits and show the lowest tag computation overhead level, so they

are mostly used in the current applications. Many RFID protocols are proposed to defend

against different attacks. However, several vulnerabilities are detected in the lightweight

protocols because it is easy to break out the security of their simple operations.

15

1.1 Research Problem and Scope

The advanced development of RFID system leads to introducing the concept of

serverless RFID where the communication between the RFID reader and tag does not

involve a central database. This innovative scheme arises major security issues in the

RFID system because both the reader and tags should form an autonomous

communication. Multiple serverless RFID protocols are proposed using lightweight

operations such as pseudo-random number generator and exclusive-OR operations [5].

Even though these protocols conform to the RFID passive tags limited resources, they are

still exposed to security breach due to the lightweight operations used mainly in the

reader and tag authentication.

Elliptic curve cryptography (ECC) is a public key scheme for low constrained

devices that meet the requirements of the RFID tags. It can provide a security level that is

similar to RSA with a smaller key size since their functions are easy to be calculated but

hard to be factored back to the original values [6]. ECC is considered in the proposed

SLEC protocol because it is feasible on the passive tag and provides higher security than

other lightweight schemes.

The basic idea behind the SLEC protocol is as follows. In the mobile RFID

system, a reader and a tag start communicating by authenticating each other without a

central database to perform the necessary calculations to establish a secure

communication channel. In the authentication session, the reader and tag transmit

16

challenging messages that can only be computed and verified by a legitimate entity. The

transmitted messages should be confidential, and they require encryption and decryption

using secure and low-cost operations within the ability of the passive tag to process. The

privacy of the tag is also needed to protect the tag secret information and location from

being exposed to adversaries. Since the secure algorithms require extensive

computations, it is essential to minimize the communication signals in the network,

especially when the number of tags is high. We developed a secure and appropriate

authentication algorithm that maintain the security of the system and privacy of the tags

while minimizing the communication signals in the network to reduce the computation

overhead on both the reader and the tag. The proposed protocol is compared with

extensive simulations to demonstrate a secure mutual authentication over the currently

available protocols. Also, analysis models are developed to validate the proposed

solution.

1.2 Motivation behind the Research

Identifying products, humans, or information and authenticate their validity is a

crucial matter, especially in mobile RFID systems where the readers and tags exit in a

location away from the location of the central database server. In events such as the car

dealership industry, a large number of cars needs to be identified and located off the

dealership facilities and during the trips between departure and arrival destinations.

Identifying asset starts by authenticating the real asset from a fake one along the

transportation route. This is done using a secure authentication technique that can be done

successfully by a legitimate and registered car. Tracking a car can use the owner’s

17

information to manage transportation securely to avoid stealing cars or losing routes to

inventory locations. Authorized facilities must control access to the car's information by

allowing only authorized personnel or users to access the car's information. The privacy

of the owners is important, so any adversary should not be able to obtain any valuable

information to the vehicles or their location. Privacy can be achieved by confusing the

adversary by sending noise signals from different locations to avoid capturing the real

information or positions of the assets and prevent tracing back the original signal by

analyzing the network traffic.

1.3 Potential Contributions of the Proposed Research

Many of the current RFID authentication protocols are proposed to assume a

secure setup between the server, the reader, and the tags attached to the cars, which is not

realistic in most cases. In our work, we provide a secure setup phase that works as

checkpoints through the transportation routes that the cars pass with along their routes to

the destination. The setup phase updates the protocol with new values to perform the

authentication of the assets. We mislead the adversary about the location of the asset,

which will lead subsequently to the location of the source tag. The proposed SLEC

protocol can handle a group of real and fake signals that are sent from a group of tags at

the time to avoid tracing the actual signal. We also secure the asset information using

keys that are known only to the reader and tag. The elliptic curve cryptography (ECC) is

used in both setup and authentication phases to secure the data forming a noval serverless

system. For the fairness of our comparison, we compare the authentication phase of the

proposed model with other serverless protocols and ECC-based protocols to validate the

18

results of our work. Different analysis models are developed to prove the novelty of

proposed work.

19

CHAPTER 2: RELATED WORK

In this chapter, we present the existing authentication protocols in the literature,

which mainly rely on the mutual authentication between the reader and tag in the RFID

systems. A classification of these protocols and their analysis in term of security,

computation, and communication cost is conducted.

Since a passive tag is a tiny chip with scarce resources, it can do only low

computations. Hence, RFID protocols are classified in this literature into four categories

based on the complexity of the algorithm that is used to compute the tag responses:

heavyweight, simple weight, lightweight, and ultra-lightweight [7]. Heavyweight

algorithms use symmetric and public key cryptography that is beyond the scale of the

passive tag ability to process. Simple-weight algorithms use hash functions that are also

not feasible for passive tag resources. Lightweight algorithms use simple one-way hash

functions, cyclic redundancy checks, and pseudo-random number generators [8]. Finally,

ultra-lightweight algorithms use bitwise operations, which can be performed at low cost.

2.1 Recent RFID Authentication Protocols

2.1.1 Heavyweight Protocols

Wang and Sarma [9] proposed two session-based authentication protocols, SB-A

and SB-B, for reader–tag authentication based on symmetric key encryption to ensure

20

privacy and access control using two types of passive tags. The protocols are based on

symmetric cryptography algorithm to provide low-cost authentication such as the

Advanced Encryption Standard (AES) and Data Encryption Standard (DES). Protocol

SB-A in Figure 2.1 includes two processes. The first phase involves mutual authentication

between server and tag according to the three-pass mutual authentication protocol

according to the International Organization of Standardization and the International

Electrotechnical Commission - ISO/IEC 9798-2 [10]. The second phase is for generating

a session key between the reader and tag according to the Otway–Rees protocol and

updating the pseudo-tag identity (PID). Protocol SB-B in Figure 2.2 uses tags with no

memory or ID so that all of the tag’s information is stored in the server. A physical tag

operation is mapped with the virtual digital tag in the server that can do all of the tag’s

executions. The protocol uses tag nonce and counter control for synchronization, and not

the server, because of the limited power of the tag. The protocols proved to be secure

against major types of attacks; however, the protocols are considered to be heavyweight,

since DES and AES are expensive operations that require a lot of computational

overhead.

For traceability issues in RFID, Ryu et al. [11] proposed elliptic curve

cryptography-based untraceable authentication protocol (ECU) using the Schnorr

signature scheme. The elliptic curve cryptography is considered to be public key

cryptography for RFID systems with low constrained tags. It is used to solve the issues of

three recent elliptic curve-based untraceable RFID authentication protocols: Strong

Privacy-preserving Authentication protocol (SPA) [12], Efficient Mutual Authentication

21

Server S Reader R Tag T

Step 4: Use PID to search the tag KTS

Step 5:

- Update PIDn to PIDn+1

- Send EKTS(NT, NS, PIDn+1) to R →

Step 9:

- Verify reader authorization for OPR

Step 10:

- If OPR = read, send the message

- If OPR = kill:

• Send EKTS (NT, PIDn+1, RID) to R

→

• Kill Vtag

Step 1: Send RID, OPR to T →

Step 3: Send PIDn, NT to S ←

Step 6: Send EKTS(NS, NT, PIDn+1) to T →

Step 8:

- Send EKTS (NS, NT, RID, OPR), PIDn to S ←

- Send RID, OPR, NR to S ←

Step 11: Send EKTS (NT, PIDn+1, RID) to T →

Step 2: Send PIDn and nonce NT to R ←

Step 7:

- Verify NT to authenticate S

- Send EKTS (NS, NT, RID, OPR), PIDn to R

←

- If OPR is not (kill), update PIDn to PIDn+1

- Retrieve NT, PIDn+1, RID

- Verify RID = RID in step1
- Check on-tag counter with time limit

- Perform physical kill operation

KRS: server/reader shared key; KTS: server/tag shared key; KRT: reader/tag shared key; NT: nonce generated by tag; NR: nonce generated

by reader; NS: nonce generated by server; RID: reader ID; OPR: operation of reader; PIDn: pseudo-ID of tag in current session; EK(M):

message encrypted by key K; Vtag: virtual tag in the server.

Figure 2.2: Session-based authentication protocol (SB-B) by Wang and Sarma

Server S Reader R Tag T

Step 4: Use PID to search the tag KTS

Step 5: Send EKTS (NT, NS, PIDn) to R →

Step 9:

- Verify OPR

- Generate KRT

- Update PIDn to PIDn+1

Step 10:

Send to R

- EKRS (NR, PIDn, RID, OPR, KRT) →

- EKTS (NT, PIDn+1, RID, OPR, KRT) →

Step 1: Send RID, OPR to T →

Step 3: Send PIDn, NT to server ←

Step 6: Send EKTS (NT, NS, PIDn) to T →

Step 8: Send to server ←

- EKTS (NS, NT), PIDn

- RID, OPR, NR

Step 11:

- Retrieve KRT

- Send EKTS (NT, PIDn+1, RID, OPR, KRT) →

- If OPR is (write), encrypt info with KRT and

send it to T →

Step 2: Send PIDn and nonce NT to R ←

Step 7:

- Verify NT to authenticate S

- Send EKTS (NS, NT), PIDn to R ←

Step 12:

- Retrieve KRT, PIDn+1, RID, OPR

- Verify OPR = OPR in Step1

- Check the on-tag counter
- Decode OPR and execute it

- Update PIDn to PIDn+1

- If OPR is (read), encrypt info with KRT

and send it to reader ←

KRS: server/reader shared key; KTS: server/tag shared key; KRT: reader/tag shared key; NT: nonce generated by

tag; NR: nonce generated by reader; NS: nonce generated by server; RID: reader ID; OPR: operation of reader;

PIDn: pseudo-ID of tag in current session; EK(M): message encrypted by key K.

Figure 2.1: Session-based authentication protocol (SB-A) by Wang and Sarma

22

protocol EMA [6], and ECC-based authentication protocol PII [13]. Ryu’s protocol

generates a digital signature with an appendix on the binary message of arbitrary length,

and requires a cryptographic hash function, as shown in Figure 2.3. The sender’s session

key is combined with the receiver’s public key to provide privacy, in which the message

can be verified by only the receiver’s private key. Ryu’s protocol is secure against replay

attacks, impersonate attacks, traceability attacks, and it maintains forward security. It

requires two scalar multiplications, two hash functions, a message total size of 544 bits,

and two communications between tag and reader. Even though this protocol requires

complex computations associated with scalar multiplications and a hash function, it does

not authenticate the reader.

Server S Reader R Tag T

Setup Phase:

- Generate elliptic group G of prime

order q.

- Choose generator P of group G.

- Server private/public keys (y, Y = yP)

- Store tag verifier X = xP (public key)

Authentication Phase:

Step 1: Send random c to T →

Step 3: To authenticate tag

- Compute R’ = y−1 Z

- Derive X’ = eid ⊕ H (R’, s)

- Check X’ = X registered verifier

- Compute v’ = H (R’, c)

- Authenticate the tag as H(sP − v’ X, c) = v’

Store x, X, Y (server public key)

Step 2:

- Pick r as session secret

- R = rP

- v = H (R, c)

- schnorr sign Z = rY, s = r + x * v

- Encrypted verifier eid = X ⊕ H (R,s)

- Send (eid, Z, s) to R ←

G: Cyclic additive group; P: Generator of group G; q: Order of group G; xi: Tag’s private key; ⊕ XOR; Xi: Tag’s public key; y:

Server’s private; Y: Server’s public; H: Hash function.

Figure 2.3: Elliptic curve cryptography-based untraceable authentication protocol (ECU) by Ryu

23

To reduce the tag’s overhead in heavyweight protocols, Yao et al. [14] introduced

The Reviving-UNder-DoS (RUND) authentication protocol to defend against denial of

service (DoS) and preserve user privacy by powering up the tag to do complex computing

for symmetric and public key cryptography. It leverages the power in DoS scans to

enable the tag to respond in two ways: either using simple encryption when low signals

from a reader activate the tag, or using public key encryption (higher security) when the

backscattered signals are high in an insecure environment. The more signals there are in

communication, the more power charges the tag. The option of using public key

encryption in RUND protocol is to overcome the problem of breaking up the

synchronization state between the reader and tag in symmetric key encryption. The

protocol is secure because secret information is not sent in the clear, so no useful

information can be gained if any message is compromised. Moreover, the parameters

used in communication are changed and updated in every session, as shown in Figure 2.4,

to prevent replay attacks, maintain forward security, and resist tracking. Even though the

overall efficiency of RUND is O(1), it is still not compliant with the Electronic Product

Code Class1 Generation2 (EPC C1 G2) standard [3], which is defined by EPCGlobal Inc.

for RFID data communication.

24

Server: S Reader R: PUR, PRR, shared Ki Tag T: PUR, shared Ki, ID

Initialization Phase:

Mutual Authentication

Phase:

Updating Phase:

Step 1: Precompute and store in S: f(Ki, c, pad1) ←

Where pad is padding length for f()

Step 2: Send power waves last for Tpw with energy Ec.

Send PRN r1 in l length to tag →

Step 5: If response with symmetric:

- Check counter c and search database for f(K’, c’, pad1) ←

- Check r1 for replayed msg.

- If matches: tag is authenticated.

If response with public key:

- Check and search database for (ID, K) pair ←

- Check r1, r2 for replayed msg.

- If matches: tag is authenticated

Step 6: Generate r3 and compute I3 = r3||f(K, r3||I1, pad1)

- Send I3, r3 to tag →

- Update K = f(K, r3, pad1)

- Update precomputed f(Ki, c, pad1) with updated key.

- Preserve old key of tag.

- Counter c is set to 0.

Step3: Compute:

If Ec energy:

- I1 = f(K, c, pad1)

- I2 = r1||f(K, r1||I1, pad1)

- I = I1||I2

- Update c = c + 1

- Energy consumed Esk

If Epk energy:

- E(PUR, K, r1||r2, ID, c) in l length

- Energy consumed Epk

Step4: Send I to reader ←

Step 7: Check I3 using r3 by computing

I’3

- If matches: reader is authenticated.

- Update K = f(K, r3, pad1)

- C = 0

PUR: Public key of reader; ID: Tag’s ID; Ki: Shared symmetric key; c: Counter for current key lifecycle; PRR: Private key of

reader; padi: Padding for f(); Ec: The initial power the tag is charged; TPW: Time for the power waves to last; ESK: Energy

consumption for hash function; EPK: Energy consumption for public key.

Figure 2.4: The reviving-under-denial of service authentication protocol (RUND) by Yao

2.1.2 Simple Weight Protocols

To better improve the performance of RFID protocols and reduce the power that

is needed for complex operations in ECC-based protocols, Farash [15] proposed a mutual

authentication protocol (IECC) based on the elliptic curve. The protocol enhances Chou’s

authentication protocol (EMA) [6], which does not fulfill the security requirement of

25

forward security, mutual authentication, tag privacy, and security against location

tracking, impersonating attacks, and tag cloning attack for an RFID system. The main

idea behind the protocol is to use the server’s public key to create the authentication

message to avoid breaking the system privacy, as depicted in Figure 2.5. The IECC

protocol is secure against major attacks, even though the computation cost is the same as

in Chou’s protocol that needs to be reduced for practical implementation.

Server S: {Xi, yP, P} Reader R Tag T: {Xi, Y, P}

Setup phase:

- Generate an elliptic group G of prime order q

- Choose generator P of group G

- Choose random no. y as a private key

- Public key Y = yP

- Choose random X from G as tag identifier

- Store Xi, Y, P in each tag.

Authentication phase:

Step 1:

- Choose a prime random no. r

- Compute C0 = rP

- Send C0 to tags →

Step 3:

- Obtain K’ = y−1C1

- Obtain Xi’ = C2 – h(C0, C1, K’)

- Find a match for Xi’ in DB

- If found: C3 = h(Xi’, K’) and tag authenticated

- Send C3 to tag →

Step 2:

- Choose a prime random no. k

- K = kP

- C1 = kY

- C2 = Xi + h(C0, C1, K)

- Send C1, C2 to server →

Step 4:

- Validate C3 = (Xi, K)

- Server is authenticated

G: A additive group of prime order q; P: Generator of group G; h: One-way hash function; y: Server’s private; Y: Server’s public;

Xi: Identifier of ith tag which is a random point in G.

Figure 2.5: Mutual authentication-based on elliptic curve cryptography (IECC) by Farash

Zhang and Qi [16] also proposed another protocol (EECC) to withstand the

security weaknesses of Chou’s protocol, EMA [6]. EECC protocol enhances patient

26

medication safety by also using elliptic curve cryptography. In comparison to the EMA

protocol, EECC protocol resulted in better performance and security resistance to

impersonate and forward security attacks. However, Baashirah et al. [17] found that

Zhang and Qi protocol is vulnerable to forward traceability and reader impersonate attack

since an adversary can compromise the private key of the reader by obtaining the tag’s

secret identifier.

Baashirah et al. improved Zhang and Qi protocol and proposed HBEC protocol

that is based on securing the tag’s secret identifier using a one-way hash function. HBEC

protocol overcomes the security flaws in EECC protocol to provide high security even

though the extra hash function adds more overhead to the computation, which should be

addressed for the network scalability.

B.Chen [18] proposed a role-based access control (RBAC) protocol for mobile

RFID to enable user privacy, role, and access control through the back-end server based

on a certification mechanism. RBAC assigns role classes as keys to control the

information and the number of times each reader can read a tag. RBAC authorizes

readers, assigns role classes to control the reader’s authority to request tag information,

and updates timestamps using random numbers and different shared keys between the

database server and reader and tag ad, as depicted in Figure 2.6. Traceability and replay

attacks are prevented using updated random numbers in every session; access control is

provided using shared keys to prevent unauthorized readers from requesting or reading

any tag’s information, and integrity is ensured using timestamps. However, RBAC uses

one encryption mechanism that is excessive for low-cost passive tags.

27

The dispersion spectrum of the conventional single-mode silica fiber has a

minimum at 1300 nm region. An increase in the signal attenuation and dispersion will

cause a decrease in the fiber length. So at some points in an optical fiber communication

link, the optical signal will be regenerated.

Server: kx, ky keys Reader: ky keys Tag: kx keys

1- Reader Authorization and role class:

- Request role-class command, read tag

command, TID, and RID from RBAC

- RBAC sends role-class.

- M3 = Eky(RID, r1, TS1, CertR, role-class)

- M4 = Ekx(TID, r2, TS1, role-class)

- Send M3, M4 to reader →

2- Assign No. of reads and update

timestamps:

Step 7: Retrieve CertR, r2 from M7

- If CertR is verified, retrieve TS2, TCn−1

from M6.

- M8 = Eky(TS2, TCn−1, r2)

- Send M8 to reader →

Step 1: Reader sends Hello to tag →

- Create random no. r2.

- M2 = Eky (M1, r2, RID, Command)

Step 3: Send M2 to server ←

Step 4:

- Retrieve r1, TS1, CertR, role-class

from M3.

- M5 = H(TS1 ⊕ r2)

- Send M4, M5 to tag →

Step 6:

- Receive M6

- M7 = Eky(CertR, r2, M6)

- Send M7 to database server ←

Step 8:

- Retrieve TS2, TCn−1, r2 from M8

- Verify r2

- Create random no. r1

- M1 = Ekx (TID, TS, r1)

Step 2: Sends M1 to reader ←

Step 5: Verify M5 using TS1 from M4

and its r1 to authenticate reader

- Calculate number of reads

TCn−1 = TCn – 1

- if TS1 is verified, it’s updated to TS2

- M6 = Ekx(TS2, TCn−1)

- Send M6 to reader ←

TID: Tag ID; Ky: Server/Reader shared key; r: random number; TCn: number of times a reader request information; Kx: Server/Tag

shared key; TS: Timestamp; CertR: Reader security certificate; RBAC: role-based access control.

Figure 2.6: Role-based access control protocol (RBAC) by B.Chen

28

2.1.3 Lightweight Protocols

Successful businesses demand an efficient RFID system that is mainly based on a

low computation at a low cost. Many recent RFID protocols use low-cost operations that

are handled by low-cost passive tags for practical implementations.

Fernando and Abawajy [19] proposed a mutual authentication protocol for

Networked RFID Systems NRS, which is a lightweight mutual authentication scheme for

an RFID system using low operations such as exclusive OR operation (XOR) and one-

way hash functions. However, Alagheband and Aref [8] reported NRS to be vulnerable to

major attacks and specifically a full disclosure attack that compromises the whole RFID

system. Alagheband and Aref improved NRS protocol and proposed NRS+ by adding

three more hash functions to the authentication message to increase the system security.

X. Chen et al. [20] noted that the NRS+ protocol is exposed to desynchronization and

traceability attacks by using one random number for the tag and reader. Thus, X. Chen

proposed NRS++ to improve the security flaws in the previous versions of NRS by

generating two different random numbers, r1 and r2, for the tag and reader using a

pseudo-random number generator (PRNG) to defend against replay attack. In Figure 2.7,

the authentication message M3 is encrypted using the tag’s random number r1 and

reader’s random number r2 to provide message integrity, so the tag cannot verify any

modified message. NRS++ uses fewer hash functions, which resulted in less computation

overhead and storage space than the other versions, with more security power.

29

Server S Reader R Tag T

- Update secrets in Database

IDnew = ID ⊕ (r2right||K1left)

K1new = H[(K1right||r1left) ⊕ r2]

Step 1:

- Generate random no. r

- Calculate M1 = H(EPC ⊕ K1||r)

M2 = r ⊕ K1

- Send to tag M1||M2 →

Step 3:

- Extract r1 = N ⊕ K1

- Compute C2 = H(EPC ⊕ K1||r||r1)

- Verify C2 = M3

If equal:

Generate random no. r2

M4 = r2 ⊕ K1

M5 = H(EPC ⊕ K1||r1||r2)

If not equal: terminate

- Send M4||M5 →

Step 2:

- Extract r as r = M2 ⊕ K1

- Compute C1 = H(EPC ⊕ K1||r)

If C1 = M1, generate r1

N = r1 ⊕ K1

M3 = H(EPC ⊕ K1|| r||r1)

Else termination

- ← Send M3||N to reader

Step 4:

- Extract r2 as r2 = M4 ⊕ K1

- Compute C3 = H(EPC ⊕ K1||r1||r2)

- Verify C3 = M5

If equal: Update the secrets.

If not equal: terminate

ID, EPC: Tag identifier; H(): one-way hash function; K1: Server/Tag shared key; r, r1, r2: random No; ⊕/||: XOR and concatenation

operation.

Figure 2.7: Mutual authentication protocol for networked RFID systems (NRS++) by X. Chen

C. Chen [21] proposed Anti-Counting Security Protocol (ACSP) as another

lightweight protocol for RFID systems to defend from a counter attack, which is defined

as the attacker’s ability to count the number of objects in a system. Safkhani et al. [22]

reported ACSP to be vulnerable to major attacks, including the forward/backward

traceability attack. Safkhani further proposed ACSP+ to improve Chen’s protocol. Later,

X. Chen [20] pointed out that ACSP protocol is not secure and proposed ACSP++ to

withstand DoS and forward/backward traceability attacks. ACSP++ enhances the session

identifier (SID) update, which is used to verify the current session, and tag identification

30

phases that suffer from different attacks in ACSP and ACSP+ versions. In ACSP++ as

depicted in Figure 2.8, a tag identifier (TID) is added to the identification message as (

, R4, R5, TID) instead of (, R4, R5), and the authentication message ((

, R4, R5, TID) is replaced with (, R5, TID) to overcome DoS attack

and to modify the TID in the identification phase. The update phase of every key is

associated with two separate nonce values to avoid forward and backward traceability.

Reader R Tag T

(SID Update Phase) Step 1:

- Generate nonce R1

- Send the following to tag:

, R1⊕SID, H(, R1, SID) →

Step 3:

- Extract R2 and verify H(, R2, R1, SID)

- Update SID as SIDnew = H(SID||R2||R1)

Step 2:

- Extract R1 to verify H(, R1, SID)

- Generate R2

- Update SID

SIDnew = H(SID||R2||R1)

SIDold = SIDcur

- ← Send to reader confirmation:

, R2 ⊕ SID, H(, R2, R1, SID)

(Tag Identification Phase) Step1:

- Generate R3, R4

- Send the following messages to tag →

a) , SID1⊕ R3, H(, R3, SID))

b) , SID ⊕ TID ⊕ R4, H(, R4, SID, TID))

Step 4:

- Authenticate tag

- Extract R5’ to verify H(, R4, R5, TID)

- If not verified: stop the session and send →

- If verified: update TID as TIDnew = H(TID||R4||R5)

TIDold = TID

- Send (, H(, R5, TID) →

Step 2:

- Extract R3’ to verify H(, R3, SID)

If not verified: wait until next run.

If verified: respond with step3.

Step 3:

- Extract R4’ to verify H(, R4, SID, TID)

- Generate R5

- ← Send (, TID ⊕ R5, H(, R4, R5, TID)

Step 5:

- Calculate and verify H(, R5, TID)

- If not verified: stop the session.

- If verified: update the tag identifier as TIDnew = H(TID||R4||R5)

R1, R2, R3, R4, R5: nonce; : Select/ query commands; SIDcur/ SIDnew: Current/ New session identifier;

: SID update/ Update knowledge message; TIDcur/TIDnew: Current/ New unique identifier; :

Identification/ authentication messages.

Figure 2.8: Anti-counting security protocol (ACSP++) by X. Chen

31

Even though the protocol improved the security weaknesses of all of the ACSP

versions, it did not lower the computation overhead nor the storage space.

Chien and Huang [23] presented LAP, which is a lightweight authentication

protocol to solve the vulnerabilities in the authentication protocol of Li et al. [24] and

enhance the computational cost from O(n) to O(1) in identifying tags in RFID systems.

The security of LAP protocol is based on a synchronized PRNG between the reader and

tag using a secret key, secret ID, and index pseudonym. In Figure 2.9, LAP protocol uses

the rotate operator on the message and left/right operator for the divided rotation during

the messages that were exchanged to form a secure permutation. Random numbers are

used to shift the secret values of the tag to be used safely in communication. Then, the

random number is XORed with the shifted secret value to retrieve a tag by the server

securely. The server uses the index pseudonym (IDS) to quickly identify the tag in the

database instead of computing PIDL ⊕ PIDR for every tag to make the computation

O(1).

LAP protocol is resistant to replay attack, DoS, and forward security. It can be

employed easily by different standards such as EPC Gen2 and ISO 15693 [25] for

practical implementation. However, the protocol was noted as being partially secure

against traceability and synchronization attacks, since a tag can be traced between two

successful sessions if the tag could not update its IDS.

Burmester and Munilla [26] proposed a lightweight mutual authentication

protocol called Flyweight that is based on exchanging messages using only PRNG. Their

32

protocol is based on a shared PRNG algorithm between the tags and back-end server that

takes the same seed to produce the same output. The concept of the protocol is to use

three consecutive numbers—RN1, RN2, and RN3—generated by the same PRNG in the

server, and the tags of five numbers if an active adversary is presented, such as in Figure

2.10. Furthermore, RFID tags precompute the values to the server challenging the

response so that an adversary can be detected based on the response time from the tag.

The protocol can provide mutual authentication, integrity, confidentiality, and forward

Server S: flag, Xold, Xnew, IDSold, IDSnew, SID Reader R Tag T: {SID, IDS, X}

Step 2:

- Search IDSi

- If IDS == IDSold: flag = 0, X = Xold

- If IDS == IDSnew: flag = 1, X = Xnew

- g’ = g(R1||R2||X)

- SID’ = rotate(SID, g’)

- Verify R’ as R’ = left(SID’ ⊕ g’)

- Compute R’’ = right(SID’ ⊕ g’)

- If flag = 1

• IDSold = IDSnew

• Xold = Xnew

- Else

• IDSnew = g(IDS||SID’)

• Xnew = g(X||g’)

- Send R’’ to reader →

Step 4:

- When OK is received, send SID to R →

Step 1:

- Generate R1.

- Send Query||R1 to T →

- Forward R1||R2||R’||IDS to S ←

- Forward R’’ to T →

- Forward ACK to S ←

- Generate R2

- Compute g’ = g(R1||R2||X)

- SID’ = rotate(SID, g’)

- R’ = left(SID’ ⊕ g’)

- Send R2||R’||IDS to R ←

Step 3:

- Verify R’’ right(SID’ ⊕ g’)

- Update:

• IDS = g(IDS||SID’)

• X = Xnew = g(X||g’)

- Send ACK to R ←

SID: Secure ID; PID: Partial ID; IDS: Index pseudonym; g(): Random No. generator; X: l-bit secret key; R1, R2: Random

numbers; Rotate(): Rotation function; Left(s): Left half of s; Right(s): Right half of s; ACK: Acknowledgement.

Figure 2.9: Lightweight authentication protocol (LAP) by Chien

33

and backward security. Besides, it provides robust synchronization, since the server keeps

a record for the current and next response value of the tag.

Server S Reader R Tag T

- Check if RN1 = RN1cur

• cnt = 1

• Generate RN2, send RN2 to R →

- If RN1 = RN1next

• cnt = 0

• Update values in DB

• Send updated RN2 to R →

Step 4:

- If RN = RN3, and cnt = 0

• Tag is authenticated

- If RN = RN4

• Send RN3, store RN5

• Update values

• Send RN3 to R

Step 6:

- If RN5 is correct

• Authenticate T

• Update values

- Else terminate

Step 1:.

- Send Query to T →

Step 2:

- Forward RN1 to S ←

- Forward RN2 to T →

- Forward RN4 to S ←

- Forward RN3 to T →

- Forward RN5 to S ←

- RN1 = gtag (state)

- Set alarm cnt = 1

- Send RN1 to R ←

Step 3:

- If RN2 is correct to authenticate S

• Generate RN3, RN4, RN5

• Cnt = 0

- If cnt = 0, send RN3 to R ←

- If cnt = 1, send RN4 to R ←

Step 5:

- If RN3 is correct and cnt = 1

• Send RN5 to R ←

- Else terminate

RN: Random numbers output of the same generator function cnt: l-bit flag

Figure 2.10: Flyweight mutual authentication protocol by Burmeter and Munilla

S. Lee et al. [27] proposed a lightweight protocol (MASS) for RFID systems

using XOR and a one-way hash function to conform to the scarce resources of RFID tags.

The concept of the MASS protocol is to challenge the tag with a fresh random string

34

every session, and the tag responds using the reader’s value and its own random key to

authenticate the reader ad, as depicted in Figure 2.11. The secret key is shared between

entities, and all of the messages are encrypted during transmission. However, Zuo [28]

conducted a survivability experiment on the authentication protocol proposed by S. Lee

et al. and defined the vulnerability of the protocol to replay, desynchronize, and

impersonate attacks. Zuo concluded from his experiment that the system could employ

two different values for the keys (old, new) to recognize the tag and overcome the

desynchronization problem.

Server S Reader R Tag T

Step 1:

- Generate l-bit string str

- Send str to tag →

Step 3:

- Search database to match key Ki

- If found proceed to update key

- Retrieve rB from rC

- Ki = h(Ki)

- r’C = h(rB ⊕ Ki ⊕ str)

- Send r’C to tag →

Step 2:

- Generate l-bit string rA

- rB = h(rA ⊕ Ki ⊕ str)

- rC = h(rB ⊕ Ki ⊕ str)

- Send rB, rC to reader ←

Step 4:

- Verify r’C = rC

- If verified, update key

Ki: Tag/server shared secret key; h(): One-way hash function

Figure 2.11: Lightweight protocol based on synchronized secret (MASS) by S. Lee

To reduce the communication time during the authentication session, K. Lee et al.

[29] proposed Efficient Passively-Untraceable Authentication Protocol (EP-UAP). The

concept of EP-UAP is that the system precomputes all of the necessary computations

before the system initialization, so only low computation overhead is required on the tag

side during the process phase. The protocol is based on Randomized Hash-Lock protocol,

35

which uses a static identifier, and its strong security against traceability depends mainly

on PRNG to randomize the responses, as explained in Figure 2.12. Since precomputing

all of the possible random numbers and responses requires a storage memory for all of

the precomputed data in the database, EP-UAP is preferred for small to medium

networks, as the storage memory increases when the number of tags increases. The

protocol shows considerable improvement over the randomized hash lock protocol in

terms of computation time, in that only requires 40 ms for authentication; this is similar

to LRMAP, which is the most efficient one in stateful protocols. However, it requires 100

MB of database storage memory. The protocol provides integrity due to the two

randomly generated nonce values that are used from both tag and reader and is secure

against passive attacks and traceability due to the random responses. However, the EP-

UAP protocol seems to be vulnerable to active attacks such as impersonate and replay

attacks, since the random responses depend on the database/reader. It also requires high

storage capacity in the database side.

Reader Tag

Step 1:

- Generate RR

- Send Query, RR to tag →

Step 3:

- Search for IDi
1R

- Verify H(IDi
1R||RR) = mTR to authenticate the tag.

- Compute mRT = H(IDi
2R||RT)

- Send mRT to tag→

Step 2:

- Generate RT

- Compute mTR = H(ID1T||RR)

- Send mRT, RT to reader ←

Pre-compute cT = H(ID2T||RT)

Step 4:

- If mRT = cT, reader is authenticated.

H: One-way hash function; ID: Tag identifier; RR, RT: nonce generated by reader/tag; m: Authentication challenge; c:

Authentication challenge response.

Figure 2.12: Efficient passively-untraceable authentication protocol (EP-UAP) by K. Lee

36

To defend against a desynchronization attack, Rahman and Ahamad [30]

proposed a Desynchronization attack-resistant Robust Authentication Protocol (DRAP) in

the wireless identification and sensing platforms (WISP), where RFID technology is

combined with sensor nodes. Their protocol mechanism is to decrease the tag collision

that leads to DoS attack, as shown in Figure 2.13. The technique is to reduce the collision

rate at the link layer and maintain the system’s efficiency. The protocol also detects the

DoS attack and recovers the synchronization state of the system. It has higher resources

than passive tags, which allow higher security implementation. Yet, it has a short distance

limitation, where tags can only function less than 1–2 m away from readers.

Server S Reader R: IDi: Kiprev, Ki, Diprev Tag T: Ki, IDi, Δ

Step 1:

- Generate random nr.

- Send nr to tag →

Step 3:

- Generate P(Ki ⊕ nr||ni) for all tags to verify αi.

If there is a match:

- Decrypt αi and βi

- Retrieve D

- If Dnewi is not equal to Dnew then update:

Kiprev = Ki

X = h(Ki)

αj = P(X ⊕ nr||ni)

Ki = h(x)

Dipev = Dinew

- Else ignore the message and αj = rand

If there is no match:

- Generate P(Kiprev ⊕ nr||ni) for all tags to verify αi

- If correct:

- Decrypt αi and βi

- If Dnewi is not equal to Doldi then update:

αj = P(h(Kiprev) ⊕ nr||ni)

Diprev = Dinew

- Else ignore the message and αj = rand

Else ignore the message and αj = rand

- Send αj to tag →

Step 2:

If (Δ ≤ Dnew – Dold)

- Generate random ni

- αi = P(Ki ⊕ nr||ni)

- βi = EKwti(h(IDi) ⊕ Dnew)

- Send αi, βi, ni to reader ←

Step 4:

- Y = h(Ki)

- Generate P(Y ⊕ nr||ni) to verify αj

- if correct: Ki = h(Y)

P(): Pseudorandom No. generator; Δ: Activity threshold; D: Sensor value; Ki: Secret number; ID: Tag identifier; h(): One-way hash

function.

Figure 2.13: Desynch attack-resistant robust authentication protocol (DRAP) by Rahman

37

Authentication in most RFID protocols is executed between one reader and one

tag at a time. Liu et al. [31] proposed a grouping proofs-based authentication protocol

(GUPA) to enable authenticating multiple tags and multiple readers simultaneously, such

that multiple readers can authenticate a single tag, and a single reader can authenticate

multiple tags in large-scale RFID. GUPA protocol is based on hierarchical identification

between independent subgroups in a distributed RFID system, and the use of an

asymmetric denial mechanism to resist denial-of-proof attack (DoP). For the anonymous

authentication of a new entity, GUPA deploys a ring signature using lightweight

cryptography (elliptic curve). It also uses lightweight bitwise operations for readers and

tags secret information updates, PRNGs, one-way hash functions, timestamps for session

freshness, and access lists for each legal reader/tag during system initialization as identity

flags to prevent forgery and tracking attack, as fully explained in Figure 2.14. Since the

flags are chosen randomly from the pseudonym index, queries and responses are

independent for each session to resist DoP attack; hence, illegal proofs are eliminated

during authentication.

Database: DB Reader: Rj Tag: Ta

Initialization Phase:

1- Generate PRN rDB
2- Send rDB to tag →

6- Verify H1 in database for match

7- H1 = (ΔRj||LR||rTy)

8- PRNG (ΔRj)
9- Send H1||PRNG (ΔRj) to tag →

Authentication Phase:

3- Generate rTy

4- H1(LR||rDB)

5- Send rTy||H1(LR||rDB) to DB ←

10- PRNG−1(ΔRj) to obtain ΔRj

11- H1 = (ΔRj||LR||rTy) to authenticate DB

12- Add ΔRj to LR

LR: Local access list; ΔRj: Reader’s information; H(): One-way hash function.

Figure 2.14: Grouping proofs-based authentication protocol (GUPA) by Liu for a
single-reader—single-tag case

38

Since tag collision is a major problem in the large-scale networks, Rahman and

Ahamad [32] proposed two probabilistic batch authentication protocols to determine the

valid tags efficiently and accurately in large-scale systems. FTest is a protocol based on

Frame Slotted Aloha algorithm that is used to reduce the probability of collision slots.

The other protocol is GTest, which is a protocol based on group batch authentication that

is used to reduce the cost of detecting counterfeit tags. Their protocols use simple

lightweight operations such as XOR and cyclic redundancy checks (CRC) with a shared

key for each group of tags. The theory in both protocols is not to send the tag ID when

responding, but rather accept or reject a tag by estimating the number of fake tags. In the

FTest protocol that is depicted in Figure 2.15, a counterfeit threshold parameter is used in

the system to reduce the number of rounds in the detection process and response time of

the protocol, so that the entire tag responses do not need to be checked. Instead, the

detection will stop if the percentage of counterfeit tags exceeds the counterfeit threshold.

In GTest, the reader randomly selects a population of tags to authenticate. If one

counterfeit tag is detected, the batch of tags will be considered invalid. The reader needs

to read a large amount of data to identify the validity of a batch in GTest, so the reader

still consumes time through the computation overhead from the tag search. Both FTest

and GTest protocols are proved to be secure against tracking and privacy attacks since

tags responses are based on dynamic frame size, random numbers, and ID that is not

transmitted during communication. However, the FTest shows less execution time and

better performance over GTest.

39

Server S Reader R Tag T: Shared group key ki

Group Identification Phase:

Authentication Initialization Phase:

Counterfeit Detection Phase:

4- Reconstruct RVS as only valid tags can

compute correct h()

5- Accept valid tags if RVS = RV

1- Send nonce nr to tag→

3- Find a group key to decrypt the message.

4- Identify the group of tags based on the group key.

1- Send to server “Start authentication” ←

2- Receive (f, r) from server

3- Broadcast frame size and random no.

6- Generate RV based on responses 0, 1, coll.

7- Turn collision slot into singleton by removing one

tag (removed tags remain silent until next phase)

8- Send RV to server for verification.

1- Send random nr from server to rem tags →

3- Forward RV to server ←

2- Respond by h(ki||nr) ←

4- Each tag compute its slot position

SP = h(id, r) mod f = 0 or 1

5- Send SP to reader with random bits ←

2- Respond h(id||nr)

n: Nonce value; ki: Shared group key; h(): One-way hash function; SP: Slot position within frame; id: Tag ID; f: Frame size; r: Random N;

RV: Response vector generated by reader; RVs: Response vector generated by server; rem: Set of tags removed to reduce collision slot.

Figure 2.15: Batch authentication protocol based on Frame Slotted Aloha (FTest) by Rahman

Another anti-collision security protocol (ACS) is proposed by Keqiang et al. [33]

for a high-efficiency RFID system combining the chaotic sequence generator with the

dynamic frame-slotted ALOHA algorithm for fast tag identification. The protocol scheme

is based on a logistic mapping structure with XOR operation and spreading operation to

generate real-time keys in a chaotic sequence that are used in authentication messages.

Keys are updated in each response from tag to reader and reader to tag during the same

session using iteration equations that are known only to the server and tag, such as in

Figure 2.16. The protocol is effective against counterfeits and impersonates attacks, as

the authentication scheme not only depends on the iterated key but also on spreading

40

code and random numbers, so faking at least one of them will result in a wrong response.

The protocol requires only four message exchanges, low hardware cost, and low

computation cost on the tag side. It also has lower energy consumption than other heavy

and simple weight protocols because XOR uses less energy than symmetric encryption

and hash functions.

Server S: K0 Reader R Tag T: K’0

- K0 = Master key, x0 = K0 to compute xi

- Verify ChaosSpec using xi:

• If there is collision, go to step5.

• If no collision, proceed.

- Perform one-time iteration to get

xi+1 = Ki+1

- Extract R’0 from H’(R0) and verify

R’0 = R0

- Tag is authenticated.

- Extract ID from H’(ID)

- Perform R1 iteration to get xj,

j = (r+R1+R0)

- Kj = xj

- H(R1) = R1 ⨁ Kj

- Send to reader (H(R1)) ⊗ ChaosSpec →

Step 1:

- Generate and send a frame size R0

to tag →

Step 3:

- Send (H’(R0)||H’(ID)||R1) ⊗

ChaosSpec, and R0 to S ←

- Send (H(R1)) ⊗ ChaosSpec →

Step 5: Collision case

- Increase tag’s slot counter by 1

- Restart identification process in

Step2

Step 6: No authentication occurs

- Issue AdjustQuery command

- Adjust R0 to decide a new frame

size

- Send search signal to rest of tags

→

Step 2:

- Receive R0.

- Choose slot index with the value in [1, R0]

- Reset time slot counter = slot-index

- r = 20, i = (r+R0), x’0 = K’0

- x’k+1 = rx’k (1-x’k) iteration = x’i

- x’i = ChaosSpec

- Perform one-time iteration to get

K’i+1 = x’i+1

- H’(R0) = R0 ⨁ K’i+1

- H’(ID) = K’i+1 ⨁ ID

- Generate random R1

- Send (H’(R0)||H’(ID)||R1) ⊗ ChaosSpec ←

Step 4:

- Perform the equations to get K’j = x’j

- Calculate R’1 = H(R1) ⨁ K’j

- If R’1 = R1, then K’j = Kj

- R is authenticated

R0: Frame size; i: Number of iterations; K’0: Tag key; K0: Server master key; K’i+1: Real-time key; H(), H’(): One-way hash

functions; ChaosSpec: Spreading code; ID: Tag’s ID; R1: Random number generated by tag; r: Constant value to put the equation in

chaotic state.

Figure 2.16: Anti-collision security protocol (ACS) by Keqiang

41

Cho et al. [34] proposed a hash-based mutual authentication protocol (HBA) to

defend against the brute force attack. This protocol was reported by Chang et al. [35] to

be vulnerable to denial of service (DoS) and replay attacks. Later, Chang et al. proposed

an improved (HBA+) protocol to avoid DoS and replay attacks using a shared PRNG

algorithm between the server and tag to produce the same output that is used in updating

the protocol values, as in Figure 2.17. Also, the confidentiality in the protocol is based on

protecting the secret value datai using reader ID (Rid), which is only known to a

legitimate reader and server. The improved protocol of Chang is considered to be

efficient and secure against DoS attack, traceability, and forward secrecy.

Server S Reader R Tag T

Step 4:

Search the database using I:

- Found:
I = Inew {EPCi, Auknew, Acknew, datai}

I = Iold {EPCi, Aukold, Ackold, datai}

M1’ = Auknew ⨁ Inew ⨁ PRNG(EPCk ⨁

Acknew ⨁ Rt ⨁ Rr) to authenticate T.

- Not Found: termination.

- B = datai ⨁ Ridk

- M2 = PRNG(Auknew ⨁ Rt) ⨁ Acknew

- C = H(datai ⨁ Rr)
- Update database values and keys:

Aukold = Auknew

Auknew = PRNG(Auknew)

Ackold = Acknew

Acknew = PRNG(Acknew)
Iold = Inew

Inew = PRNG(Acknew ⨁ Inew)

- send {B, C, M2} →

Step 1:

- Generate random No. Rr →

Step 3:

- A = H(Rid ⨁ Rr)

- ← {M1, Rt, I, A, Rr}

Step 5:

- Obtain datai from B

- C’ = H(datai ⨁ Rr)

- send M2 →

Step 2:

- Generate random No. Rt

- M1 = Auk ⨁ I ⨁ PRNG (EPC ⨁ Ack ⨁

Rr ⨁ Rt)

- ← {M1, Rt, I}

Step 6:

- Compute M2’ = PRNG(Auk ⨁ Rt) ⨁
Ack

- Update tag values and keys

Rr, Rt: Random No. of reader/tag; Auk: Authentication key of tags shared with server; Rid: Reader ID; EPC: Electronic product

code of tag; Ack: Access key of tags shared with server; I: Index value of tag; H(): One-way hash function; datai: Secret

information of the tag’s object.

Figure 2.17: Hash-based mutual authentication protocol (HBA+) by Chang

42

Z.Liu et al. [36] proposed variable linear shift-based authentication protocol

(VLP) to support the implementation of RFID for the new EPC Gen2v2 standard, satisfy

its security features of untraceability and access control, and reduce a tag’s read range. In

Figure 2.18, the protocol is based on a lightweight encryption function called Variable

Linear Feedback Shift Register (VLFSR), which is implemented at the application-

specific integrated circuit (ASIC) level. In every session, mutual authentication involves

different random numbers from the tag and reader combined with the new secret value

SID stored in the database to provide resistance against active attacks.

Server S Reader R Tag T

Step 5: Authenticate and Update

1- Find an SIDj match in database based on UID

2- Extract Rt1, Rt2

3- (Rt2||Rt1) ⨁ SIDj

4- Find mj from Mj table based on SIDj

5- Bb = VLFSR (Rt1||Rr, mj)

6- If Bb = Bt, proceed to update

• mj+1 = (Rt2||Rt1) ⨁ mj

• SIDj+1 = VLFSR (Rt1||Rt2, mj)

• Store new values in Mj and keep the old in

Mj−1 tables.

7- If Bb ≠ Bt, find mj and SIDj from Mj−1 table

and do step3

8- If no match is found, protocol will stop.

Step 6:

- Send to reader VLFSR (Rt1||Rr, SIDj) →

Step 1:

- Generate random Rr

- Send Rr to tag →

Step 4:

- Send to server Rr, Bt, (Rt2||Rt1) ⨁ SIDj and

UID ←

Step 7:

- Send to reader VLFSR (Rt1||Rr, SIDj) →

Step 2:

- Generate random Rt1, Rt2

- Secret value = mj

- Bt = VLFSR (Rt1||Rr, mj)

Step 3:

- Send to reader Bt, (Rt2||Rt1) ⨁ SIDj ←

Step 8: Authenticate R and S

- Authentication via received msg.

- mj+1 = Rt2||Rt1) ⨁ mj

- SIDj+1 = VLFSR (Rt1||Rt2, mj)

SID: Session secure ID of tag; UID: Unique ID of tag; Rr: Reader random No.; Rt1, Rt2: Random No. generated by tag; mj: Secret value used

in a session; VLFSR(): Variable LFSR function.

Figure 2.18: Variable linear shift-based authentication protocol (VLP) by Z.Liu

43

Another protocol (OMP) is proposed by Niu et al. [37] mainly for passive tag

ownership transfer using a lightweight authentication mechanism to support EPC Gen2

standard. Since the ownership transfer is based on transferring the keys, the OMP

protocol aims to prove the possession of the shared secret key to a tag and reader without

disclosing it using ultra-lightweight permutation operation (Per), as in Figure 2.19. Yet,

the protocol has no mechanism to check the freshness of the message that is sent by a

legitimate reader.

Server S Reader R: K, KM, EPC, RID1 Tag T: K, KM, EPC, RID, IDS

Mutual

Authentication:

1- Generate random rnd1, rnd2 of 96 bits

2- Ai = rnd1i ⨁ PRNG(Ki ⨁ RID1i) ⨁ PRNG(Ki ⨁

RID2i)

3- Bi = rnd2i ⨁ PRNG(rnd1i ⨁ Ki)

4- Ci PRNG(rnd1i ⨁ RID1i) ⨁ PRNG(rnd2i ⨁ RID2i)

5- Send Ai, Bi, Ci to tag →

9- Verify D:

- D’i = PRNG(Ki+1 ⨁ IDSi+1), where i = 1 to 6

- If D is verified, tag is authenticated

6- Extract rnd1, rnd2

- rnd1i = Ai ⨁ PRNG(Ki ⨁ RID1i) ⨁ PRNG(Ki ⨁
RID2i)

- rnd2i = Bi ⨁PRNG(rnd1i ⨁ Ki)

- C’i = PRNG(rnd1i ⨁ RID1i) ⨁ PRNG(rnd2i ⨁ RID2i)

7- If C = C’, reader authenticated

- Ki+1 = Per(rnd1i, Ki) ⨁ K(i+1 mod 6)

- IDSi+1 = Per(rnd2i, Ki) ⨁ Ki

- Di = PRNG(Ki+1 ⨁ IDSi+1), where i = 1 to 6

8- Send D to reader←

K: Secret shared key for owners; KM: Master key to modify K. EPC: Static ID of a tag. RID: ID of reader owning tag. IDS: Pointer to

tag database.

Figure 2.19: Passive tag ownership authentication protocol (OMP) by Niu

Dass and Om [38] also proposed an efficient authentication protocol (SEAS) that

uses lightweight operations and a pseudo-random number generator (PRNG) for a low

computational cost. Their scheme is based on a secure channel between the back-end

44

server and reader, prestored tags’ secret (SIDs) in the side of the tag, a one-way hash

function of the tag ID in the server side, and rewritable memory with a flag indicator in

the server side to update the secret values. Any change to the messages transmitted leads

to terminate the communication during the verification to resist security attacks, as shown

in Figure 2.20.

Server S Reader R Tag T

Step 4:

Search the database using h(ID):

- Not Found: termination

- Found: verify V

V’ = PRNG(Snew ⨁ NR ⨁ NT)

Send Snew to reader →

Flag = 0

V” = PRNG(Sold ⨁ NR ⨁ NT)

Send Sold to reader →

Flag = 1

Step 6:

- Flag = 0 → S = Snew

U = h (Snew||M)

Sold = Snew

Snew = Snew ⨁ U

- Flag = 1 → S = Sold

U = h (Sold||M)

Sold = Sold

Snew = Sold ⨁ U

Step 1:

- Generate random No. NR →

Step 3:

- ← {V,H, NR, NT}

Step 5:

- Reader takes Snew or Sold

- M = PRNG(Snew, old, NR)

- N = PRNG(M)

- Send N to tag →

- ← send M to server

Step 2:

- Generate random No. NT

- V = PRNG (S ⨁ NR ⨁ NT)

- H = h (ID)

- ← {V, H, NT}

Step 6:

- To authenticate reader:

Calculate M’ = PRNG(S, NR)

Calculate N’ = PRNG(M’)

Verify N’ = N

- If equal calculate U = h (S||M’)

- Update S = S ⨁ U

h(): One-way hash function; NR, NT: Random No. generated by reader/tag; S: Secret value of tag; ID: ID pseudonym of tag;

Snew, Sold: Current and old session secrets of tag.

Figure 2.20: Efficient authentication protocol (SEAS) by Dass and Om

45

An alternative solution to replace the central database in the RFID system is to

use a serverless model in which the database server does not maintain a connection with

the readers and tags during the communication. Regarding this challenge, Mtita et al. [39]

proposed (SAP), a serverless security protocol used for the mass authentication of RFID

tags in the presence of untrusted readers. In SAP protocol, the reader and tag do not

communicate with the back-end server; instead, they authenticate each other using only

ephemeral of the tag’s secrets that expire within a given time, as shown in Figure 2.21.

Verification and authentication between the reader and tag are done during the

authentication phase to exchange the data and generate the session key locally in both tag

and reader for their next communication. The protocol has also been proved using the

CryptoVerif tool [40], which was shown to have low computation overhead and

resources.

Server: S Reader: Rj Tag: Ti

Initialization Phase:

2- Generate Kij, tempij, ARij (access right) for

each tag derived from time window and start

date
Kij = HMACidi(Wsj||ARij)

3- Build lists of authenticated tags Lj for Rj

Lj − {(temp1j, K1j), (temp2j, K2j),.., (tempij,

Kij)}

4- Send Lj, ARij, Wsj to Rj →

Mutual Authentication Phase:

1- Request permission from server S.

1- Generate rj

2- Send to tag A= WSj, ARij, rj →

6- Verify H’ij = HMACKij (ri||rj)

If equal: Ti is authenticated
If not equal: Kij is not in the list and tag is

not authorized

7- Generate timestamp tj and calculate

Vij = HMACKij (ri||tj)

9- Send to tag C = ti, Vij →

12- Generate session key

KS = HMACKij (tj||ri WSj)

- Ti has Timestamp TSYS and idi

3- Generate ri

4- Hij = HMACKij (ri||rj)

5- Send to reader B = Hij, ri ←

10- Verify V’ij = HMACKij (ri||tj)
If equal: Rj is authenticated

11- Update TSYS = tj

13- Generate session key

KS = HMACK’ij (tj||ri WSj)

TSYS: Tag static timestamp; tj: Reader timestamp; idi: Tag ID; Kij: Tag’s key; tempij: Temporary tag ID; ARij: Access rights; Wsj:

Time window; Ks: Session key; Lj: List of authorized tags; ri, rj: Reader/Tag random No.

Figure 2.21: Serverless security authentication protocol (SAP) by Mtita

46

2.1.4 Ultra-Lightweight Protocols

As mentioned earlier in this paper, passive tags are small chips with scarce

resources that can only support low-cost operations. The goal of ultra-lightweight

protocols is to reduce the cost of RFID systems at a minimum and provide strong security

for promising future use. In this regard, Sundaresan et al. [5] introduced an ultra-

lightweight serverless protocol (STS) using only simple XOR and 128-bit PRNG

operations that require less than 2000 gates, three random number generation on the tag,

and two message exchanges. In Figure 2.22, the STS protocol mechanism is to use a

blind factor to hide the pseudo-random numbers that are used in communication between

readers and tags to overcome impersonation attacks. An RFID tag is also able to preserve

its location privacy by responding as a noise tag. Moreover, the protocol does not employ

a one-way hash function nor any encryption conforming to EPC C1 G2 Standards.

Aggarwal and Das [41] proposed the CHW+ protocol, which is based on a

previous version introduced by Y. Chen, Wang, and Hwang (CWH) [42]. In Figure 2.23,

the protocol CHW+ solves the problem of full disclosure attack due to the simple XOR

operation that is used in the authentication message, which uses the bit rotation and

shifting operation on the message before transmission to increase the protocol

complexity. CWH+ protocol is resistant to replay attack, forge attack, and DoS with a

very efficient computation.

Huang and Li [43] proposed and implemented two improved protocols of RFID

mutual authentication based on generating PadGen function in the ISO 18000-6C [44]

47

Server: ts Reader R Tag T

Setup Phase:

- Stores access list (AL) of all n tags:

h(TID1, ts1) = id1, rts1, ctr1, ctrmax1

h(TIDn, tsn) = idn, rtsn, ctrn, ctrmaxn

- Establish shared rts between a reader and

each tag to be searched.

Search Phase:

- Server is offline.

- Precompute and store id =

h(TID, ts)

Step 1:

1- Check that ctr <= ctrmax

2- Generate PRN rr

3- B = rtsj ⨁ idi

4- M1 = idi ⨁ PRNG (rtsj ⨁ rr)

5- M2 = rr ⨁ B

6- Broadcast M1, M2 to all tags

→

Step 3:

1- Extract tr from M4

2- Verify rtsj = M3 ⨁ PRNG

(idj ⨁ tr)

3- If verified, tag is

authenticated

4- Update rtsj = M3 ⨁ PRNG

(idj ⨁ tr)

ctr = ctr + 1

- Stores id = h(TID, ts).

- Stores for each reader:

rts1, rts1
−1, ctr1, ctrmax1, rr1

−1

rtsm, rtsm
−1, ctrm, ctrmaxm, rrm

−1

- ctr = 0.

Step 2:

1- B = rts ⨁ id

2- Extract rr from M2 = B ⨁ rr

3- Check rr:

- If rr = rr
−1, a replayed msg, exit.

- If rr ≠ rr
−1, proceed

4- Verify id = M1 ⨁ PRNG (rts ⨁ rr):

- If equal, reader is authenticated

- If not equal, repeat using rts−1.

- If not equal, respond with λ and exit.

5- If id is verified, check if ctr < ctrmax:

- Generate PRN tr

- M3 = rts ⨁ PRNG (id ⨁ tr)

- M4 = tr ⨁ B

6- Update rr
−1 = rr

7- If id is verified using rts:

- Update rts−1 = rts

- rts = PRNG (rts)

- ctr = ctr + 1

8- Send M3, M4 to reader ←

AL: Access list for the reader; ts: Secret key of tag; rts, rts−1: Shared secrets between reader/tag; B: Blind factor to hide PRN; ctr:

Counter value; ctrmax: Number of times a reader is pre-authorized to search; TID: Tag ID; id: hashed value of TID; rr: Random No. of

reader in current session.

Figure 2.22: Ultra-lightweight serverless authentication protocol (STS) by Sundaresan

protocol to protect the memory with a 32-bit access password. The concept of their

protocols is to cover up the tag’s access password (Apwd) before transmitting the data

using a set of 16-bit random numbers such as RTx and RMx. One of the improved

schemes, PadGen with XOR (PGX), implements XOR operation between the random

48

number sets and the PadGen function; the other protocol, PadGen with Mod (PGM),

implements a Modulo operation (MOD9) in the eight-bit half of the 16-bit random

number set (RTx, RMx) to be used in the PadGen function. Both improved schemes

conform to the EPC C1 G2 standard, do not require any hash function or key exchange,

do not involve synchronization for hash or key values, and also show better efficiency

during implementation. The security level of the MOD scheme is higher due to the low-

cost implementation but requires a higher computation cost in PadGen than XOR.

Server S Reader R Tag T

- n = weight(r)

- r’ = Rot(r,n)

- r’prev = Rot(rprev, n)

- Retrieve and verify TID to authenticate

tag.

- r’’ = Rot(r’, n)

- r’’prev = Rot(r’prev, n)

- t2 = (TID + r’’prev) ⋀ r’’

- Update rold = rprev, rprev = r’

- Send t2 to tag →

Step 1:

- Generate random r.

- s = RID ⨁ r

- n1 = weight(RID), n1 = no. of bit value 1 of

RID

- s’ = Rot(s, n1)

- Send s’ to tag →

Step 3:

- Forward t1, r to server ←

Step 2:

- s = Rot’(s’, n1)

- Retrieve r = RID ⨁ s

- n1 = weight(r)

- r’ = Rot(r, n1)

- r’prev = Rot(rprev, n1)

- t1 = (TID ⨁ r’prev) + (r’ ⋀ r’prev)

- Send t1 to reader ←

Step 4:

- Compute r’’, r’’prev as the

server

- t’2 = (TID + r’’prev) ⋀ r’’

- Verify t’2 = t2

- Update rprev = r’

RID: Reader ID; Rot(): Rotation function; TID: Tag ID; Weight(r): number of 1’s in the binary string shifts r to the left for n bits.

Figure 2.23: Improved authentication protocol (CWH+) by Aggarwal and Dass

49

Huang and Jiang [45] proposed an ultra-lightweight reader–tag mutual

authentication protocol (MACC) based on Chien and Chen’s protocol [46] to overcome

forge attacks, DoS, and forward security attacks. Although the improved scheme uses

only lightweight operations such as RNG, PRNG, and XOR, it involves an exhaustive

search in the database for tag pseudo-IDs in every session that leads to computational

overhead, as shown in Figure 2.24. It also fails to resist tracking attacks.

Server S Reader R Tag T

Step 4:

- Verify VR using reader ID and r1

- Search database for tag PIDi

- Verify M1 as: r2 = M1 ⨁ Ni
old OR r2 = M1 ⨁ Ni

new

- Verify M2 as: M2 = P(EPCi||r1||r2||Ki
old or Ki

new)

- M3 = P(EPCi||r2||Ni
x||Ki

x) x = old or new

- Send M3 to reader →

- If x = new, proceed to update

Ni
old = Ni

new, Ni
new = P(Ni

new ⨁ r2)

Ki
old = Ki

new, Ki
new = P(Ki

new ⨁ r2)

PIDi
old = PIDi

new, PIDi
new = P(PIDi

new ⨁ r2)

Step 1:

- Generate r1

- VR = h(RIDj ⨁ r1)

- Send to tag r1 →

Step 3:

- Send to server (M1, M2, PIDi, r1, VR)

Step 5:

- Forward M3 to tag →

Step 2:

- Generate r2

- M1 = Ni ⨁ r2

- M2 = P(EPCi||r1||r2||Ki)

- Send to reader (M1, M2, PIDi) ←

Step 6:

- Verify M3 = P(EPCi||r2||Ni||Ki)

- Ni = P(Ni ⨁ r2)

- Ki = P(Ki ⨁ r2)

- PIDi = P(PIDi ⨁ r2)

P: Access key with reader; PID: Pseudonym ID of tag; Ni: Nonce; EPC: Electronic product code for the tag; Ki: Authentication key.

Figure 2.24: Ultra-lightweight mutual authentication protocol (MACC) by Huang and Jiang

Huang and Jiang [45] proposed another mutual authentication protocol (MACD)

based on Chen and Deng’s scheme [47] to overcome forge attacks, DoS, replay attacks,

and mainly the tag identification time. It is shown in Figure 2.25 that the MACD protocol

uses ultra-lightweight operations and achieves a lower communication cost between tag

and reader than the other improved scheme, MACC.

50

Server S Reader R Tag T

Step 4:

- Search database for EPCi match

- r2 = B ⨁ (Pi
old||r1) OR B ⨁ (Pi

new||r1)

- A’ = r1 ⨁ r2 ⨁ Pi
old or Pi

new

- Verify M1 = CRC(EPCi||A’|| B|| Ki
old or Ki

new)

- M2 = CRC (EPCi||r2||Pi
x||Ki

x) x = old, new

- Send M2 to reader →

- If x = new, proceed to update

Pi
old = Pi

new, Pi
new = P(Pi

new ⨁ r2)

Ki
old = Ki

new, Ki
new = P(Ki

new ⨁ r2)

Step 1:

- Generate r1

- Send r1 to tag →

Step 3:

- Send to server (M1, B, r1)

Step 5:

- Send M2 to tag →

Step 2:

- Generate r2

- A = r1 ⨁ r2 ⨁ Pi

- B = P(Pi||r1) ⨁ r2

- M1 = CRC(EPCi||A||B||Ki)

- Send to reader (M1, B) ←

Step 6:

- Verify M2 = CRC (EPCi||r2||Pi||Ki)

- Pi = P(Pi ⨁ r2)

- Ki = P(Ki ⨁ r2)

P: Access key with reader; Ki: Authentication key; Ni: Nonce; EPC: Electronic product code for the tag; CRC(): Cyclic

redundancy check function.

Figure 2.25: Mutual authentication protocol (MACD) by Huang and Jiang

Considering the complexity of the authentication protocol, Hopper and Blum

proposed the first HB protocol to identify unaided humans to computers [48]. Many

authors adopted the idea of HB protocol to identify tags in RFID networks. HB family

protocols are based on the hard problems of Learning Parity with Noise (LPN), which

involves the calculation of inner products of binary vectors and Bernoulli noise bit

generation [49]. In this regard, Lin and Song [50] proposed HBROT, which is one of the

latest HB protocols that produce the key in each authentication round using the rotation

function. The protocol is considered to be secure against most of the RFID attacks.

51

Another improvement of the HB protocol is proposed by Juels and Weis [51] as

(HB+) to overcome the weaknesses of the original HB. The HB+ protocol involves two

secret keys, x, and y, which are used with shared blind vectors between the reader and

tag. The reader and tag verify the values that are computed to perform mutual

authentication. Later, the protocol is reported by Gilbert et al. [52] to be vulnerable to the

man-in-the-middle attack (MIM). Hence, Ouaskou et al. [53] proposed a variant of HB

protocol based on Permutation function (HBPER). The protocol performs a permutation

of the keys x,y during each round of the protocol to update the value of the keys, as

shown in Figure 2.26. This method secures the protocol against the MIM attack that is

reported in the HB+ protocol, although both protocols HB+ and HBPER almost have the

same complexity.

Reader R Tag T

x = xk−1, …, x1, x0

y = yk−1, …, y1, y0

Step 1:

- Generate random challenge (a)

- Send (a) to T →

Step 3:

- Compute y = Per(y,a)

- Compute x = Per(x,a)

- Verify z = a . x

x = xk−1, …, x1, x0

y = yk−1, …, y1, y0

Step 2:

- Compute y = Per(y,a)

- Compute x = Per(x,a)

- Compute z = a . x ⨁ v

(v = noise bit; v = 1 with probability of)

- Send z to R ←

x: Shared key by tag and reader of k-bit; k: Length of secret keys; y: Shared key by tag and reader of k-bit; η = noise level ∈]0,1/2[).

Figure 2.26: A variant of hb protocol based on permutation function (HBPER) by Ouaskou

52

2.2 Analysis and Security Evaluation

In this section, we compare the different protocols in terms of computation,

security requirements, and attacks resistance. Table 2.2.1 demonstrates the different

operations computed by the tag in each protocol and the communication overhead based

on the number of transmitted messages between tag and reader.

2.2.1 Comparison of Computation Cost

We denote TENC, TDEC, TPRNG, TRNG, TSMUL, TXOR, TCH, TH, TCRC, TROT, TSHIFT,

TITER, TBIT, TSPR, TPER, TMOD, TVLFSR as the computation cost for encryption, decryption,

pseudo-random number generator, random number generator, scalar multiplication, XOR,

cryptographic hash, one-way hash function, cyclic redundancy check, rotation, shifting,

iteration, bitwise operation, spreading, permutation, modulo, variable linear shift register

function, respectively. Tag overhead is classified based on the cryptographic level of

operations used in the protocol: high for symmetric key cryptography and scalar

multiplication, medium for a one-way hash function, and low for other bitwise operations

and random number generators. The passes are designated for the number of messages

sent by a reader or a tag.

2.2.2 Comparison of Security Threats

Protocols resistance to different RFID threats is presented in Table 2.2, where we

denote ST1 for a replay attack, ST2 for a man-in-the-middle attack (MITM), ST3 for

eavesdropping, ST4 for an impersonating attack, ST5 for traceability, ST6 for

desynchronization , ST7 for denial of service (DoS), and ST8 for other types of attack.

53

Table 2.2.1 Comparison of the Computation Cost on Tag

Protocol Operations
Tag

Passes

Reader

Passes
Tag Overhead

SB-A [9] 1 TENC + 2 TDEC + 2 TPRNG 2 3 High

SB-B [9] 2 TENC + 2 TDEC + 2 TPRNG 2 3 High

EMA [6] 2 TSMUL + 2 TCH 2 1 High

ECU [11] 2 TSMUL + 2 TCH 1 1 High

SPA [12] 4 TSMUL + 1 TCH 1 1 High

PII [13] 4 TSMUL + 3 TCH 1 1 High

RUND [14] 2 TH OR 1 TENC + 1 TPRNG 1 2 High

IECC [15] 2 TSMUL + 2 TH 1 2 High

EECC [16] 2 TSMUL + 2 TH 1 2 High

RBAC [18] 2 TENC + 2 TDEC + 1 TPRNG 2 2 High

DRAP [30] 1 TENC + 3 TXOR + 3 TH + 1 TRNG + 2 TPRNG 1 2 High

NRS [19] 10 TXOR + 3 TH 4 5 Medium

NRS+ [8] 10 TXOR + 6 TH 4 5 Medium

NRS++ [20] 8 TXOR + 4 TH 1 2 Medium

ACSP [21] 3 TXOR + 7 TH + 4 TCRC 1 4 Medium

ACSP+ [22] 4 TXOR + 8 TH 2 4 Medium

ACSP++ [20] 6 TXOR + 8 TH 1 2 Medium

MASS [28] 4 TXOR + 2 TH + 1 TRNG 1 2 Medium

EP-UAP [29] 2 TH + 1 TRNG 1 2 Medium

GUPA [31] 2 TH + 3 TPRNG + 19 TBIT 3 3 Medium

HBA [34] 6 TXOR + 2 TH + 1 TRNG + 4 TMOD 1 2 Medium

VLP [36] 2 TXOR + 2 TRNG + 3 TBIT + 2 TVLFSR 1 2 Medium

SEAS [38] 1 TXOR + 2 TH + 1 TRNG + 3 TPRNG + 1 TBIT 1 2 Medium

SAP [39] 2 TH + 2 TRNG 1 2 Medium

LAP [23] 2 TXOR + 1 TRNG + 2 TPRNG + 1 TROT + 1 TSHIFT 2 2 Low

Flyweight [26] 5 TPRNG 3 3 Low

FTest [32] 1 TXOR + 3 TCRC 3 2 Low

ACS [33] 3 TXOR + 2 TITER + 1 TSPR 1 2 Low

HBA+ [35] 7 TXOR + 1 TRNG + 5 TPRNG 1 2 Low

OMP [37] 12 TXOR + 6 TPRNG + 2 TPER 1 1 Low

STS [5] 7 TXOR + 3 TPRNG 1 1 Low

CWH+ [41] 2 TXOR + 5 TROT + 1 TSHIFT + TBIT 1 1 Low

PGX [43] 8 TXOR + 2 TRNG 2 2 Low

PGM [43] 4 TXOR + 2 TRNG + 32 TMOD 2 2 Low

MACC [45] 6 TXOR + 5 TPRNG 1 2 Low

MACD [45] 5 TXOR + 3 TPRNG + 1 TCRC 1 2 Low

HBROT [50] 1 TRNG + 2 TROT + 1 TXOR + 1 TBIT 1 1 Low

HBPER [53] 1 TRNG + 2 TPER + 1 TXOR + 1 TBIT 1 1 Low

TENC: encryption, TDEC: decryption, TPRNG: pseudo-random number generator, TRNG: random number generator, TSMUL:

scalar multiplication, TXOR: XOR, TCH: cryptographic hash, TH: one-way hash function, TCRC: cyclic redundancy check,

TROT: rotation, TSHIFT: shifting, TITER: iteration, TBIT: bitwise operation, TSPR: spreading, TPER: permutation, TMOD: modulo,

TVLFSR: variable linear shift register function.

54

We found that most of the recently proposed protocols do not pay close enough attention

to DoS, MITM, and eavesdropping attacks, while most of the protocols consider the

system security against replay, impersonate, traceability, and desynchronization attacks.

Certainly, protocols [35],[15],[16],[20],[31],[50, 53] are strongly resistant to all of the

major attacks.

2.2.3 Comparison of Security Requirements

Security requirements for an RFID system should be satisfied with the system to

defend against the attacks mentioned in this paper. Table 2.2.3 compares the security

requirements in each protocol, which includes mutual authentication (SR1),

confidentiality (SR2), message integrity (SR3), privacy (SR4), forward secrecy (SR5),

backward secrecy (SR6), tag anonymity (SR7), and conforming to EPC standards (SR8).

We found that most of the protocols fully considered mutual authentication, privacy, and

data protection, while backward secrecy is given the least attention, and should be more

considered in future work. However, Niu et al. [37] and X. Chen [20] completely

satisfied all of the security requirements in their protocol.

Since the RFID passive tag has limited resources to compute complex

operations, the heavyweight and simple-weight protocols are not feasible for practical

implementation. However, lightweight and ultra-lightweight protocols use only simple

operations within the tag computation limits and show the lowest tag overhead level.

Lightweight and ultra-lightweight protocols are considered the most suitable for the

current applications. Another vital aspect when considering the appropriate RFID

protocol is the security resistance to the attacks. We found out that Chang et al. [35],

55

Table 2.2.2: Comparison of Various System Requirements

ST1: replay attack, ST2: man-in-the-middle, ST3: eavesdropping, ST4: impersonate attack, ST5:

traceability, ST6: desynchronization, ST7: DoS, ST8: other types of attack, Y: satisfied, N: not satisfied. *:

not applicable

 ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8

SB-A [9] Y Y Y Y Y Y * Cloning

SB-B [9] Y Y Y Y Y Y * Cloning

ECU [11] Y Y * Y Y * * *

SPA [12] N * * N Y * * *

EMA [6] Y * * N N * * *

PII [13] Y * * Y Y * * *

RUND [14] Y * * Y Y Y Y *

IECC [15] Y Y Y Y Y Y Y Cloning

EECC [16] Y Y Y Y Y Y Y Spoofing

RBAC [18] Y * * Y Y * Y *

NRS [19] N Y N N N N N *

NRS+ [8] N Y Y N N N N *

NRS++ [20] Y Y Y Y Y Y Y *

ACSP [21] N N N N N N N Counting

ACSP+ [22] N * * N Y Y N Counting

ACSP++ [20] Y Y Y Y Y Y Y Counting

LAP [23] Y * * N N N Y *

Flyweight[26] Y Y Y Y Y Y * *

MASS [28] N N N N Y N * *

EP-UAP [29] N Y Y N Y * * *

DRAP [30] Y * * Y Y Y Y Y

GUPA [31] Y Y Y Y Y Y Y DoP

FTest [32] Y Y Y Y Y * * Counterfeit +Collision

ACS [33] Y Y Y Y Y * * Counterfeit +Collision

HBA [34] N Y Y Y Y Y N Brute + Counterfeit

HBA+ [35] Y Y Y Y Y Y Y Brute for

VLP [36] Y Y Y * Y Y * *

OMP [37] N * * Y Y Y Y *

SEAS [38] Y Y * Y Y Y Y *

SAP [39] Y * Y Y Y * * *

STS [5] Y * * Y Y Y Y *

CWH+ [41] Y * Y Y * Y * Disclosure

PGX [43] Y Y Y Y N Y * Cloning

PGM [43] Y Y Y Y N Y * Cloning

MACC [45] Y Y * Y N Y Y *

MACD [45] Y Y * Y Y Y Y *

HBROT [50] Y Y Y Y Y Y Y *

HBPER [53] Y Y Y Y Y Y Y *

56

Table 2.2.3: Comparison of the Security Requirements

 SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8

SB-A [9] Y Y Y Y Y * Y N

SB-B [9] Y Y Y Y Y * Y N

ECU [11] N Y Y Y Y * Y N

SPA [12] * * * * N * * *

EMA [6] * * * * N * * *

PII [13] * * * * N * * *

RUND [14] Y Y Y Y Y * Y N

IECC [15] Y Y Y Y Y Y Y N

EECC [16] Y Y Y Y Y Y Y N

RBAC [18] Y Y Y Y * * Y N

NRS [19] N Y N N N N N Y

NRS+ [8] N Y Y N N N N Y

NRS++ [20] Y Y Y Y Y Y Y Y

ACSP [21] Y N N N N N N Y

ACSP+ [22] Y Y Y * N Y * Y

ACSP++ [20] Y Y Y Y Y Y * Y

LAP [23] Y Y Y N Y * N Y

Flyweight [26] Y Y Y Y Y Y Y Y

MASS [28] Y Y N * Y * * Y

EP-UAP [29] N Y Y Y * * Y Y

DRAP [30] Y * * Y * * Y Y

GUPA [31] Y Y Y Y Y * Y Y

FTest [32] N Y Y Y Y * Y Y

ACS [33] Y * * Y * * Y Y

HBA [34] Y Y Y Y Y * Y Y

HBA+ [35] Y Y Y Y Y * Y Y

VLP [36] Y Y Y Y Y * Y Y

OMP [37] Y Y Y Y Y Y Y Y

SEAS [38] Y Y Y Y Y * Y Y

SAP [39] Y Y Y * * * * Y

STS [5] Y Y Y Y Y * Y Y

CWH+ [41] Y Y Y * Y * * Y

PGX [43] Y * * N * * N Y

PGM [43] Y * * N * * N Y

MACC [45] Y Y Y N Y * N Y

MACD [45] Y Y Y Y Y * Y Y

HBROT [50] Y Y Y Y Y * * Y

HBPER [53] Y Y Y Y Y * * Y

SR1: mutual authentication, SR2: confidentiality, SR3: message integrity, SR4: privacy, SR5: forward secrecy, SR6:

backward secrecy, SR7: tag anonymity, SR8: conforming to EPC standard, Y: satisfied, N: not satisfied, *: not

applicable.

Farash [15], Zhang and Qi [16], X. Chen et al. [20], Liu et al. [31], Lin and Song [50],

and Ouaskou et al. [53] protocols successfully resist all of the major attacks. Although

the other protocols could not resist all of the attacks, they could perform better than the

fully secure protocols in term of computation cost; examples include the protocols

presented in Farash [15], Zhang and Qi [16], X. Chen et al. [20], and Liu et al. [31],

57

which have high computation overhead on the tag side. We encourage researchers to pay

attention to the forward and backward security since most protocols do not reflect on

these two types of attacks. Finally, maintaining the basic security requirements for an

RFID system is required to achieve protection against the mentioned attacks in this

literature. We assess that only the protocols of Niu et al. [37] and X. Chen et al. [20]

satisfy all of the security requirements to maintain the system in a stable and available

state. Even though this review shows security variation among the reviewed protocols,

each one could still be a preference over others, depending on the requirements of the

application in hand.

58

CHAPTER 3: PROPOSED SERVERLESS RFID

AUTHENTICATION MODEL

3.1 Network Model

RFID passive tags are distributed in an area of interest and attached to mobile

objects, i.e. cars. All the tags have the same resources and computational capabilities. The

passive tag has no power source and gets activated based on the electromagnetic waves

that are sent from the reader at the beginning of the communication. The RFID reader is a

scanning device that is either in a fixed position or mobile handheld. It has more

resources and computational capability than the passive tag. It collects the tag

information such as the Electronic Product Code (EPC) [3] that is a 96-bit string of data

contains the tag identity, organization, protocol, product type, and owner. The reader

reports the scanned information to the database server. The Server is a centralized

database device with a computer program that delivers, stores and manages all the

information of the reader and tag. The reader interrogates the tag in the range by sending

a challenging request signal to start the communication. The tag, on the other hand,

responds to the reader’s request based on the approved protocol to verify its legitimate

identity. The reader forwards the tag’s response to the server to search for the correct

information of the tag in the database. The server supports the reader to authenticate the

59

tag to start a secure channel between the reader and the tag for their further

communication. In addition, the tag also uses the approved protocol to verify the reader’s

identity to avoid compromising the secret information or location of the tag.

3.2 Serverless Model

The server role is eliminated in the proposed serverless model of RFID. The

backend server is not available during the communication between the reader and the tag.

The reader and tag should be able to verify each other and process the authentication

messages successfully while the server is offline. Since the passive tag is considered a

low constraint device with scarce resources, the transmitted message between the reader

and the tag should carry simple operations within the capability of the tag to perform.

Therefore, we consider the elliptic curve cryptography that can be operated by the passive

tag to exchange the secret keys. We employed the elliptic curve key agreement based on

the discrete log problem in Diffie-Hellman algorithm [54] that allows the reader and the

tag to establish a shared key from their public and private keys through an insecure

channel to encrypt the transmitted messages. The elliptic curve is a plane curve over a

finite field that contains points satisfying the following equation:

𝒚𝟐 = 𝒙𝟑 + 𝒂𝒙 + 𝒃
(

(1)

The protocol uses the multiplicative group of integers modulo P, and G as a

primitive root modulo P, where P is prime. The reader and the tag choose random

integers a, b respectively as their private keys and compute their public keys as the

following:

60

𝑨 = 𝑮𝒂 𝒎𝒐𝒅 𝑷 (2)

𝑩 = 𝑮𝒃 𝒎𝒐𝒅 𝑷 (3)

The values of A and B are exchanged between the reader and the tag. Then, the

reader computes the shared secret s using the receiver B, and G, P as the following:

𝒔 = 𝑩𝒂 𝒎𝒐𝒅 𝑷 (4)

The tag also computes the shared secret s using the received A, and G, P as the

following:

𝒔 = 𝑨𝒃 𝒎𝒐𝒅 𝑷 (5)

As a result, both the reader and the tag end up calculating the same value as their

shared secret keys because the modulo rules satisfy the following:

𝑨𝒃 𝒎𝒐𝒅 𝑷 = 𝑮𝒂𝒃 𝒎𝒐𝒅 𝑷 = 𝑮𝒃𝒂 𝒎𝒐𝒅 𝑷 = 𝑩𝒂 𝒎𝒐𝒅 𝑷 (6)

which also means:

(𝑮𝒂 𝒎𝒐𝒅 𝑷)𝒃 𝒎𝒐𝒅 𝑷 = (𝑮𝒃 𝒎𝒐𝒅 𝑷)𝒂 𝒎𝒐𝒅 𝑷 (7)

Based on the points P and G, the resulted shared secret can take any value

between 1 and P-1 that satisfies the following condition:

𝟏 ≤ 𝒔 ≤ 𝑷 − 𝟏

The security of the elliptic curve algorithm lies in the complexity of computing

the original values of public and private keys to obtain the secret key.

3.3 Communication Model

In this section, we present the communication model between the RFID entities.

61

3.3.1 Setup Phase

This phase handles transferring the necessary data and values from the database

server to the reader and the tag. The server, the reader, and the tag share by manufacturer:

the elliptic curve point generator and the server public key. The tag by default stores its

random identifier that is updated every session to protect the real identity of the tag. The

setup phase is also considered a renewal phase such that the reader and the tag request

new values to start a new communication session. The renewal phase is necessary when

the timestamp expires, or any secret value is compromised to an unauthorized party.

Table 3.3.1: Protocol Notations

P Point generator of G

G An additive group of prime order q on an elliptic curve

yprv, rprv , tprv Private keys of server, reader, tag

Ypub, Rpub , Tpub Public keys of server, reader, tag

Xi Tag identifier

Tagi tag ID, group ID, Timestamp

Gkj , Gkj
old Current and old values for Group ID

Listk List of tags share the same group ID

Unlike the currently available RFID protocols, the setup phase in SLEC protocol

is assumed to be insecure and functions as the following steps:

1) The reader and the tag generate random numbers 𝑟𝑝𝑟𝑣1, 𝑡𝑝𝑟𝑣1 respectively, where

𝑟, 𝑡 𝜖𝑍𝑞 , then compute their public key using the private keys and the point

generator as:

𝑹𝒑𝒖𝒃𝟏 = 𝒓𝒑𝒓𝒗𝟏 ∗ 𝑷 (8)

𝑻𝒑𝒖𝒃𝟏 = 𝒕𝒑𝒓𝒗𝟏 ∗ 𝑷 (9)

62

2) The reader and the tag compute the server secret message of M1, M2 respectively

using their private keys 𝑟𝑝𝑟𝑣1, 𝑡𝑝𝑟𝑣1 and the stored public key of the server Y as

the following:

𝑴𝟏 = 𝒓𝒑𝒓𝒗𝟏 ∗ 𝒀 (10)

𝑴𝟐 = 𝒕𝒑𝒓𝒗𝟏 ∗ 𝒀 (11)

3) The reader and tag send the computed server shared secret M1, M2 to the server,

then the server obtains the public keys of both reader and tag as:

𝑹′𝒑𝒖𝒃𝟏 = 𝒚−𝟏 ∗ 𝑴𝟏 (12)

𝑻′𝒑𝒖𝒃𝟏 = 𝒚−𝟏 ∗ 𝑴𝟐 (13)

4) The server, in turn, computes the shared secret for each reader and tag for further

communication with the reader and the tag as the following:

𝑴′𝟏 = 𝒚𝒑𝒓𝒗 ∗ 𝑹 == 𝒓𝒑𝒓𝒗𝟏 ∗ 𝒀 = 𝑴𝟏 (14)

𝑴′𝟐 = 𝒚𝒑𝒓𝒗 ∗ 𝑻 == 𝒕𝒑𝒓𝒗𝟏 ∗ 𝒀 = 𝑴𝟐 (15)

5) The server generates and stores the following information for each tag:

• Random Xi as tag identifier.

• Timestamp Ts.

• Group ID Gk.

such that Tagi = {Xi, GK, Ts}

6) The server then generates a list of tags for each reader contains a group of tags that

share the same group ID.

63

7) Further, the server sends the reader the tag list as M3, and sends the tag its

information as M4:

𝑴𝟑 = 𝑳𝒊𝒔𝒕𝒌 + 𝒉(𝑹′
𝒑𝒖𝒃𝟏, 𝑴′

𝟏) (16)

𝑴𝟒 = 𝑻𝒂𝒈𝒊 + +𝒉(𝑻′
𝒑𝒖𝒃𝟏, 𝑴′

𝟐) (17)

8) The reader computes and verifies the hash value to obtain the list of tags. The

tag also validates the hash value to receive the tag information. The server current public

key is not shared during the communication, so only the legitimate reader and tag that

have the real server public key will be able to compute and verify the hash value to obtain

the messages sent by the server

3.3.2 Authentication Phase

When the setup phase is completed successfully, each reader will have a list of

tags that have: tag ID, group ID, a timestamp for each tag, and the tag will have: tag ID,

group ID, and timestamp. The communication starts with mutual authentication between

the reader and the tag as the following steps:

1) The reader generates a random number 𝑟𝑝𝑟𝑣2, where 𝑟 𝜖 𝑍𝑞 then computes its

public key using the private keys and the point generator as:

𝑹𝒑𝒖𝒃𝟐 = 𝒓𝒑𝒓𝒗𝟐 ∗ 𝑷 (18)

2) The reader computes the M1, and M2 as the following:

𝑴𝟏 = 𝒉(𝑮𝒌𝒋) (19)

𝑴𝟐 = 𝑹𝒑𝒖𝒃𝟐⨁ 𝑻𝒔 (20)

Then, the reader sends M1, and M2 to the tag.

64

3) The tag will process four steps:

- Validate 𝑀1 = ℎ(𝐺𝑘𝑗) to verify the intended group using the current or the

old value of Gk. Based on the group verification, the tag generates a random

number 𝑡𝑝𝑟𝑣2, where 𝑡 𝜖 𝑍𝑞 and computes its public key as:

𝑻𝒑𝒖𝒃𝟐 = 𝒕𝒑𝒓𝒗𝟐 ∗ 𝑷 (21)

- Obtain the reader public key from M2

𝑹𝒑𝒖𝒃𝟐 = (𝑴𝟐 ⨁ 𝑻𝒔) − 𝒀 (22)

- Compute the secret share key with the reader using the reader obtained public

key

𝑴𝟑 = 𝒕𝒑𝒓𝒗𝟐 ∗ 𝑹𝒑𝒖𝒃𝟐 (23)

- Compute the authentication message M4 and sends it to the reader

𝑴𝟒 = 𝒉(𝑿𝒊, 𝑹𝒑𝒖𝒃𝟐 , 𝑻𝒑𝒖𝒃𝟐 , 𝑮𝒌𝒋) (24)

- Update the values of the tag ID, Gkj
old, and Gkj

𝑿𝒊 = 𝑷𝑹𝑵𝑮(𝑿𝒊) (25)

𝑮𝒌𝒋
𝒐𝒍𝒅 = 𝑮𝒌𝒋 (26)

𝑮𝒌𝒋 = 𝑷𝑹𝑵𝑮(𝑮𝒌𝒋) (27)

4) The reader extracts 𝑇′𝑝𝑢𝑏2 from the received message and verifies the hash value

of M4 to authenticate the tag

𝑻′𝒑𝒖𝒃𝟐 = 𝒓𝒑𝒓𝒗𝟐
−𝟏 ∗ 𝑴𝟑 (28)

5) The reader computes M5 and sends it to the tag; then, updates the values of the tag

ID, Gkj,

𝑴𝟓 = 𝒉(𝑿𝒊, 𝑹𝒑𝒖𝒃𝟐 , 𝑻′𝒑𝒖𝒃𝟐) (29)

65

𝑿𝒊 = 𝑷𝑹𝑵𝑮(𝑿𝒊) (25)

𝑮𝒌𝒋 = 𝑷𝑹𝑵𝑮(𝑮𝒌𝒋) (27)

6) The tag verifies M5 to authenticate the reader

3.3.3 Recovery Phase

In an event where any value of the communication is compromised, the tag or the

reader can renew the communication values from any server checkpoint during the

transportation route. The recovery phase is similar to the security setup phase presented

in this chapter. The tag and reader will exchange their newly generated public keys using

the server’s public key stored in their memory. This will allow the reader and tag to be

retrieved back into the network with new values.

66

CHAPTER 4: METHODOLOGY

 4.1 Experiment Design

In our SLEC protocol, we created an RFID network with a dynamic size that the

number of readers and tags can be increased or decreased. We included one server, five

readers, and twenty tags that are placed in objects such as cars. The distance range

between the tags and readers is initially assumed to be a few meters based on the reading

range of Electronic Product Code Class1 generation 2 of RFID passive tags [3]. The

server initializes a database table to store all the readers and tags unique IDs. The readers

are placed in fixed positions such as poles along the route of the mobile tags. Before the

car departs the dealership inventory, the setup phase is executed, and all the values are

stored in the tag and readers. During the tag movement, the reader can scan the tag in the

car to perform the mutual authentication and thus, obtain the required information of the

tag.

4.2 Serverless Authentication Based on Elliptic curve Algorithm

The proposed protocol is implemented based on the following algorithm:

67

Algorithm 1 SLEC
Input parameters: minimum value for server_public_key (Y), point generator (P)

 tag random identifier (Xi) in server
Server: Reader: Tag:

Setup:

Step2:

- extract 𝑅𝑝𝑢𝑏1 , 𝑇𝑝𝑢𝑏1 from 𝑀1 , 𝑀2

𝑅′𝑝𝑢𝑏1 = 𝑦−1 ∗ 𝑀1

𝑇′𝑝𝑢𝑏1 = 𝑦−1 ∗ 𝑀2

- generate 𝑇𝑎𝑔𝑖 : [𝑋𝑖 , 𝑇𝑠, 𝐺𝑘𝑗]

- create 𝑇𝑎𝑔𝐿𝑖𝑠𝑡𝑘 : [𝑇𝑎𝑔𝑖, . . , 𝑇𝑎𝑔𝑛

 𝑀3 = 𝑇𝑎𝑔𝐿𝑖𝑠𝑡𝑖 +
ℎ(𝑅′

𝑝𝑢𝑏1, 𝑀1)

 𝑀4 = 𝑇𝑎𝑔𝑖 + ℎ(𝑇′
𝑝𝑢𝑏1, 𝑀2)

- send 𝑀3 to reader →

- send 𝑀4 to tag →

Step1:

- select random 𝑟𝑝𝑟𝑣1 𝜖𝑍𝑞

- 𝑅𝑝𝑢𝑏1 = 𝑟𝑝𝑟𝑣1 ∗ 𝑃

- 𝑀1 = 𝑟𝑝𝑟𝑣1 ∗ 𝑌

- Forward 𝑀1 , 𝑀2 to server

Step3:

- verify the hash value and extract

𝑇𝑎𝑔𝐿𝑖𝑠𝑡𝑖 = 𝑀3 − ℎ(𝑅′
𝑝𝑢𝑏1, 𝑀1)

- select random 𝑡𝑝𝑟𝑣1 𝜖𝑍𝑞

- 𝑇𝑝𝑢𝑏1 = 𝑡𝑝𝑟𝑣1 ∗ 𝑃

- 𝑀2 = 𝑡𝑝𝑟𝑣1 ∗ 𝑌

- Send 𝑀2 to reader

¶

- verify the hash value and extract

𝑇𝑎𝑔𝑖 = 𝑀4 − ℎ(𝑇′
𝑝𝑢𝑏1, 𝑀2)

Authentication Phase:

Step1:

- select random 𝑟𝑝𝑟𝑣2 𝜖𝑍𝑞

- 𝑅𝑝𝑢𝑏2 = 𝑟𝑝𝑟𝑣2 ∗ 𝑃

- 𝑀1 = ℎ(𝐺𝑘𝑗)

- 𝑀2 = 𝑅𝑝𝑢𝑏2 ⨁ 𝑇𝑠

- send 𝑀1 , 𝑀2 to tag

Step3:

- Extract 𝑇′𝑝𝑢𝑏2 = 𝑟𝑝𝑟𝑣2
−1 ∗ 𝑀3

- Validate 𝑀4 to authenticate tag

- 𝑀5 = ℎ(𝑋𝑖 , 𝑅𝑝𝑢𝑏2 , 𝑇′𝑝𝑢𝑏2)

- Send 𝑀5 to tag →

- Update:

𝑋𝑖 = 𝑃𝑅𝑁𝐺(𝑋𝑖)

𝐺𝑘𝑗 = 𝑃𝑅𝑁𝐺(𝐺𝑘𝑗)

Step2:

- Validate 𝑀1 to verify the group

- select random 𝑡𝑝𝑟𝑣2 𝜖𝑍𝑞

- 𝑇𝑝𝑢𝑏2 = 𝑡𝑝𝑟𝑣2 ∗ 𝑃

- extract 𝑅′
𝑝𝑢𝑏2 = 𝑀2⨁ 𝑇𝑠

- 𝑀3 = 𝑡𝑝𝑟𝑣2 ∗ 𝑅′
𝑝𝑢𝑏2

- 𝑀4 = ℎ(𝑋𝑖 , 𝑅′
𝑝𝑢𝑏2 , 𝑇𝑝𝑢𝑏2 , 𝐺𝑘𝑗)

- Send 𝑀3 ,𝑀4 to reader

- Update:

 𝑋𝑖 = 𝑃𝑅𝑁𝐺(𝑋𝑖)

 𝐺𝑘𝑗
𝑜𝑙𝑑 = 𝐺𝑘𝑗

 𝐺𝑘𝑗 = 𝑃𝑅𝑁𝐺(𝐺𝑘𝑗)

Step4:

- Validate 𝑀5 to authenticate reader

68

CHAPTER 5: RESULTS AND ANALYSIS

 In this section, we present the system performance and security analysis of the

protocol SLEC. We also compare the SLEC protocol to other serverless protocols. The

security of SLEC mainly depends on the public key of the main server, which is securely

disseminated to all readers and tags. Further, the setup and authentication phases can then

be executed through an insecure network to maintain the system requirements and defend

the security threats.

5.1 Analysis of System Requirements

The SLEC protocol maintains the system requirements that are necessary to create

a secure and reliable RFID system such as mutual authentication, confidentiality,

integrity, privacy, forward secrecy, anonymity, and availability.

1) Mutual Authentication

The protocol allows both the reader and the tag to perform a mutual

authentication since only the legitimate tag can extract the public key of the reader from

the message M2. Besides, only the legitimate reader can calculate the hash value in the

message M5 to prove its identity to the tag. As a result, mutual authentication is satisfied.

69

2) Privacy and Confidentiality

The transmitted message is confidential because the authentication messages are

secured by a hash value that can only be computed by an authorized entity using their

secret keys. The privacy of the tag is satisfied as the secret information is protected and

not transmitted in the clear.

3) Message Integrity

The message integrity factor is also satisfied because the messages are combined

with a digital signature of the sender.

4) Forward and Backward Secrecy

The reader and the tag generate new secret values in every authentication session

to avoid tracking or obtaining any secret values from any successful authentication

session. Thus, an adversary cannot perform a successful authentication from any previous

or expired sessions or anticipate the following authentication messages.

5) Anonymity

The EPC of the tag is not used in the protocol, but only the tag random identifier

that is updated every session. As a result, the private information stored in the tag is kept

secret.

6) Availability

The protocol provides a recovery mechanism to maintain system availability. In

an event where any tag or any secret value of the communication is compromised, the

70

system can recover the tag by sending new values to the tag during the recovery phase to

perform a new authentication session as long as the public key of the server remains

secret. Otherwise, a new setup phase is required to feed the tag with a new public key for

the server.

7) Scalability

We introduce the concept of tag grouping in SLEC. We combine a number of tags

into a group that shares the same group ID with all the tags, but each tag in the group has

a unique tag ID. This mechanism allows the system to reduce the communication signals

that are transmitted in the network since only the tags with the same group ID will

respond to the reader’s request. Moreover, the grouping mechanism reduces the

computation overhead on the reader side when identifying a tag from a large number of

tags. As a result, the protocol is scalable by maintaining a consistent operation overhead

on both sides of the reader and the tag.

Table 5.1 demonstrates the comparison of the system requirements that are

satisfied in our SLEC protocol, SAP protocol proposed by Mtita et al. [39], and STS

protocol proposed by Sundaresan et al. [5].

5.2 Analysis of Security Requirements

The protocol is based on the Diffie-Hellman digital signature algorithm using a

256-bit key, which is equivalent to the RSA algorithm with a 3072-bit key that is longer

than the commonly used key of 2048 [55]. This gives a higher level of security to SLEC

71

algorithm. Therefore, the protocol is secure against different security attacks that most of

the RFID protocols can experience.

Table 5.1. Comparison of the System Requirements

System Requirement SAP STS SLEC

Mutual Authentication Y Y Y

Privacy and Confidentiality N Y Y

Message Integrity Y Y Y

Forward and Backward Secrecy N N Y

Anonymity * Y Y

Availability N N Y

Scalability N N Y
Y: satisfied N: not satisfied *: Not applicable

1) Replay Attach Resistance

The proposed SLEC protocol is secure against replay attack since the

authentication session involves timestamps and freshly generated random values as

private keys for both reader and tag. If an adversary eavesdrops on the communication

channel to replay the tag response, he will not be able to extract any message from the

reader or the tag, and the timestamp will not match the current session.

Lemma: SLEC is secure against replay attack

Proof:

Adversary replays old session1 to the reader:

 𝑀3 = 𝑡𝑝𝑟𝑣1 × (𝑟𝑝𝑟𝑣1 × 𝑃)

 𝑀4 = ℎ(𝑋1 + (𝑟𝑝𝑟𝑣1 × 𝑃) + (𝑡𝑝𝑟𝑣1 × 𝑃) + 𝐺𝑘1)

 Reader verifies in session2:

 𝑇′𝑝𝑢𝑏2 = 𝑟𝑝𝑟𝑣2
−1 × [𝑡𝑝𝑟𝑣1 × (𝑟𝑝𝑟𝑣1 × 𝑃)]

72

𝑀′4 = ℎ(𝑋2 + (𝑟𝑝𝑟𝑣2 × 𝑃) + [𝑟𝑝𝑟𝑣2
−1 × 𝑡𝑝𝑟𝑣1 × (𝑟𝑝𝑟𝑣1 × 𝑃)] + 𝐺𝑘2)

 Verification fails since 𝑀′4 ≠ 𝑀4. Unauthorized tag is not authenticated.

2) Man-In-The-Middle Attack Resistance

If an adversary interrupts the message transmitted by a reader or a tag, modifies it

and sends it back as a real message, the message will not be extracted by any entity.

Therefore, the communication will be terminated if no response is sent because all the

messages transmitted in the authentication session involve validating the values before

extracting any data from them. Therefore, SLEC protocol is resistant to MIM attack.

Lemma: SLEC is secure against modification

Proof:

Adversary A intercept message 3 and 4 and modifies the tag information by A:

 𝑀3 = 𝑎𝑝𝑟𝑣1 × (𝑟𝑝𝑟𝑣1 × 𝑃)

 𝑀4 = ℎ(𝑋𝑎 + (𝑟𝑝𝑟𝑣1 × 𝑃) + (𝑎𝑝𝑟𝑣1 × 𝑃) + 𝐺𝑘𝑎)

 Reader verifies in session2:

 𝐴′𝑝𝑢𝑏1 = 𝑟𝑝𝑟𝑣1
−1 × [𝑎𝑝𝑟𝑣1 × (𝑟𝑝𝑟𝑣1 × 𝑃)]

𝑀′4 = ℎ(𝑋1 + (𝑟𝑝𝑟𝑣1 × 𝑃) + [𝑟𝑝𝑟𝑣1
−1 × 𝑡𝑝𝑟𝑣1 × (𝑟𝑝𝑟𝑣1 × 𝑃)] + 𝐺𝑘1)

 Verification fails since 𝑀′4 ≠ 𝑀4 because the tag ID and group key used

in the message sent by A are not the same in the reader list for the requested tag.

Unauthorized tag is not authenticated.

73

3) Traceability Attack Resistance

An adversary can trace the signals sent by a specific tag to identify the tag

location. However, the reader in SLEC protocol broadcasts the message signals to a group

of tags that respond to the reader for the same message request. This results in sending

different signals from different locations to confuse the adversary from tracking a certain

tag to obtain its location. Accordingly, the protocol is resistant to tracing.

Lemma: SLEC is secure against the tracing attack

Proof:

To distinguish the difference between two tags T1 and T2, an adversary has to

construct the correct hash value with correct tag id (X), timestamp (Ts), and a group key

(Gk) which are only transmitted during the setup phase:

 𝑀4 = 𝑇𝑎𝑔𝑖 + ℎ[(𝑡𝑝𝑟𝑣1 × 𝑃) + (𝑡𝑝𝑟𝑣1 × (𝑦 × 𝑃))]

 𝑇𝑎𝑔𝑖 = 𝑀4 − ℎ[(𝑡𝑝𝑟𝑣1 × 𝑃) + (𝑡𝑝𝑟𝑣1 × (𝑦 × 𝑃))]

The adversary has to solve the correct elliptic curve discrete logarithm problem

(ECDLP) to obtain the secret values in Tagi that are used in the communication.

4) Impersonate Attack Resistance

It is unlikely for any adversary to impersonate the reader or the tag in our protocol

since they used a shared point generator algorithm P that is only known to the legitimate

server, reader, and tag. So, it is impossible for the adversary to compute the required

messages to pass the authentication.

Lemma: SLEC is secure against impersonation

74

Proof:

Reader: 𝑀1 = ℎ(𝐺𝑘)

 𝑀2 = (𝑟𝑝𝑟𝑣 × 𝑃)⨁ 𝑇𝑠

 Adversary: 𝑎𝑝𝑟𝑣 , 𝐴𝑝𝑢𝑏 = 𝑎𝑝𝑟𝑣 × 𝑃

 𝑀3𝑎 = 𝑎𝑝𝑟𝑣 × (𝑟𝑎𝑝𝑟𝑣 × 𝑃)

 𝑀4𝑎 = ℎ(𝑋𝑎 + (𝑟𝑎𝑝𝑟𝑣 × 𝑃) + 𝐴𝑝𝑢𝑏 + 𝐺𝑘𝑎)

 Reader: 𝐴′𝑝𝑢𝑏 = 𝑟𝑝𝑟𝑣
−1 × [𝑎𝑝𝑟𝑣 × 𝑟𝑎𝑝𝑟𝑣 × 𝑃)]

 𝑀4 = ℎ(𝑋 + 𝑅′
𝑝𝑢𝑏 + 𝐴𝑝𝑢𝑏 + 𝐺𝑘)

 Validation fails since 𝑀4 ≠ 𝑀4𝑎

 Therefore, the unauthorized tag is not authenticated.

5) Desynchronization Attack Resistance

The tag in SLEC protocol stores the new and previous values of the group

identifier that is used at the beginning of the authentication phase. This allows the tag to

authenticate the reader if the previous session was interrupted by an adversary to break

the synchronization. The communication values are also updated after every successful

authentication session using the same algorithm and inputs to maintain the

synchronization state between the network entities.

6) Denial of Service Attack Resistance

In our SLEC protocol, the reader and the tag generate their keys separately using

the same key generation algorithm, so there is no synchronous update of the keys

between the server and the tag for the attack to occur.

75

Table 5.2 demonstrates the comparison of the security attacks resistance between

our SLEC protocol, SAP protocol proposed by Mtita et al. [39], and STS protocol

proposed by Sundaresan et al. [5].

Table 5.2 Comparison of the Security Threats Resistance

Attacks SAP STS SLEC

Replay Attack Y Y Y

Man-in-the-Middle * * Y

Eavesdropping Y * Y

Impersonate Attack Y Y Y

Traceability Attack Y Y Y

Desynchronization * Y Y

Denial of Service * Y Y
 Y: Satisfied N: Not satisfied *: Not applicable

5.3 Analysis of Computation Cost

Since the passive tag used in the RFID system has limited capabilities and

resources, it is essential to consider the computation and security features for the

appropriate application. Even though the elliptic curve has higher computation overhead

on both the reader and the tag, we provide a higher security level in our SLEC protocol

that satisfies the resistance to all the security attacks. Moreover, we compare our protocol

with additional server-based elliptic curve protocols such as IECC protocol proposed by

Farash [15] and EECC protocol proposed by Zhang and Qi [16] to illustrate a well-

defined measurement for the computation complexity. The comparison shows that there

is no major additional cost between the previously proposed ECC-based protocols and

our SLEC protocol, although our protocol is completely serverless in the authentication

76

phase. Table 5.3 demonstrates the operations computed by the tag and the number of

transmitted messages from the reader and the tag during the authentication phase.

Table 5.3 Comparison of the Computation Cost on the Tag

Protocol Operation Tag Reader

SAP [39] 2TH + 2TRNG 1 2

STS [5] 7TXOR + 3TPRNG 1 1

IECC [15] 2TSMUL + 2TH 1 2

EECC [16] 2TSMUL + TSAD + 2TH 1 2

SLEC 2TSMUL + 3TH 1 2
TSMUL: scalar multiplication, TSAD: scalar addition, TH: one-way hash, TXOR: XOR, TPRNG: pseudo-

random number generation

.

77

CHAPTER 6: FORMAL VERIFICATION

 The formal verification of the protocol is done to prove the correctness of the algorithms

used in the protocol in terms of security and authentication. ProVerif tool [56] is one of the

powerful tools to analyze the security of cryptographic protocols. It is an automatic cryptographic

protocol verifier that is developed by Bruno Blanchet to validate the security and authentication

properties of the cryptographic algorithms in formal models.

In this section, we use the ProVerif tool to validate reachability and secrecy (security),

and correspondence assertion (authentication) of SLEC protocol. The results of the verification

process are also presented.

6.1 Adversary Model

The ProVerif tool is based on a model where the adversary can intercept, alter,

and inject the messages into an insecure network. In SLEC protocol, the adversary has

initial knowledge of the finite set of parameters that increase during the protocol

execution in parallel with the adversary. No matter how the adversary interacts with the

protocol, ProVerif verifies the secrecy of the messages and values transmitted between

the server, the reader, and the tag. Therefore, the secret messages will never be a part of

the adversary knowledge to run the protocol successfully. The results of the ProVerif

verification in this section show that the protocol preserves the secrecy of the messages

and values that intercepting or altering the message will lead to the protocol termination.

78

6.2 Reachability and Secrecy

Reachability and secrecy in ProVerif analyze the security properties of the

protocol against any attacker. We investigate the reachability of a term x by an adversary

A, so we assess the secrecy of x concerning the modeled protocol. In SLEC protocol, we

use ProVerif to test whether the secret messages in the setup phase “Ms”, and the secret

messages in the authentication phase “Ma” are not available to an adversary A. We

represent the messages transmitted in the setup phase from the server, the reader, and the

tag as “Mss”, “Msr” and “Mst” respectively. Moreover, we represent the messages

transmitted in the authentication phase from the reader and the tag as “Mar” and “Mat”

respectively. The complete verification process is demonstrated in Figure 6.2. The results

of the verification process conclude, “RESULT, not attacker(Mst1[]) is true” which

means the setup phase message M1 from the tag is unreachable, and an attack cannot be

conducted against the protocol successfully. Similarly, “RESULT not attacker(Mar1[]) is

true” means the authentication phase message M1 from the reader is unreachable and

secure against the attacks. All setup phase and authentication phase messages are tested

and resulted in true reachability and secrecy proof.

Reachability and Secrecy

Process:

{1}new p: P;

{2}new y_22: Y;

{3}new tprv1: pu_pr_key;

79

{4}new rprv1: pu_pr_key;

{5}new xi: TagID;

{6}new Gxi: GK;

(

 {7}!

 {8}let Tpub1: pu_pr_key = find_R_and_Tpubs(p,tprv1) in

 {9}let Mst1_23: pu_pr_key = setPhase_encrypt(tprv1,y_22) in

 {10}out(ch, Mst1_23);

 {11}in(ch, Mss4': Tag_and_Hash);

 {12}let tag': Tag = verify_tag(Mss4',h(Tpub1,Mst1_23)) in

 {13}in(ch, ms1: xored_key);

 {14}let Ms1': GK = validate_Ms1(ms1) in

 {15}new ggkk: GK;

 {16}if (Ms1' = ggkk) then

 {17}new tprv2: pu_pr_key;

 {18}let Tpub2: pu_pr_key = find_R_and_Tpubs(p,tprv2) in

 {19}in(ch, ms2: pu_pr_key);

 {20}new ts2': timeStampes;

 {21}let Rpub2': pu_pr_key = xor(ms2,ts2') in

 [29]let Mat3_24: pu_pr_key = authen_phase_encrypt(tprv2,Rpub2') in

 {23}out(ch, Mat3_24);

 {24}new xi_25: TagID;

80

 {25}let Mat4_26: Hashing = h_ph2_2(xi_25,Rpub2',Tpub1,Ms1') in

 {26}out(ch, Mat4_26);

 {27}let xxi: TagID = PRNG(xi_25) in

 {28}let GKi: GK = PRNG_Group(ggkk) in

 {29}in(ch, Mar5': Hashing);

 {30}let Mar55: Hashing = h_ph2_3(xi_25,Tpub2,Rpub2') in

 {31}if (Mar55 = Mar5') then

 0

) | (

 {32}!

 {33}let Rpub1: pu_pr_key = find_R_and_Tpubs(p,rprv1) in

 {34}let Msr2_27: pu_pr_key = setPhase_encrypt(rprv1,y_22) in

 {35}out(ch, Msr2_27);

 {36}in(ch, Mss3': TagList_and_Hash);

 {37}let taglisht': TageList = verify_tagList(Mss3',h(Rpub1,Msr2_27)) in

 {38}new rprv2: pu_pr_key;

 {39}let Rpub2: pu_pr_key = find_R_and_Tpubs(p,rprv2) in

 {40}new GKii: GK;

 {41}let Mar1_28: hash_GK = h_ph2_(GKii) in

 {42}out(ch, Mar1_28);

 {43}new ts2: timeStampes;

 {44}let Mar2_29: pu_pr_key = xor(Rpub2,ts2) in

81

 {45}out(ch, Mar2_29);

 {46}in(ch, Mat3': pu_pr_key);

 {47}let Tpub2': pu_pr_key = authen_phase_dencrypt(Mat3',re_pu_pr_key(rprv2)) in

 {48}in(ch, Mat4': Hashing);

 {49}new xii': TagID;

 {50}let Mar5: Hashing = h_ph2_3(xii',Rpub2,Tpub2') in

 {51}out(ch, Mar5)

) | (

 {52}!

 {53}in(ch, (Mst1': pu_pr_key,Msr1': pu_pr_key));

 {54}let Tprv1': pu_pr_key = setPhase_decrypt(Mst1',getYinv(y_22)) in

 {55}let Rprv1': pu_pr_key = setPhase_decrypt(Msr1',getYinv(y_22)) in

 {56}new ts: timeStampes;

 {57}let tagi: Tag = create_tag(xi,ts,Gxi) in

 {58}let tagListi: TageList = create_taglist(tagi) in

 {59}let Mss3_30: TagList_and_Hash = prepare_tagList(tagListi,h(Rprv1',Msr1')) in

 {60}out(ch, Mss3_30);

 {61}let Mss4_31: Tag_and_Hash = prepare_tag(tagi,h(Tprv1',Mst1')) in

 {62}out(ch, Mss4_31)

)

-- Query not attacker(Mst1[])

Completing...

82

Starting query not attacker(Mst1[])

RESULT not attacker(Mst1[]) is true.

-- Query not attacker(Msr2[])

Completing...

Starting query not attacker(Msr2[])

RESULT not attacker(Msr2[]) is true.

-- Query not attacker(Mss3[])

Completing...

Starting query not attacker(Mss3[])

RESULT not attacker(Mss3[]) is true.

-- Query not attacker(Mss4[])

Completing...

Starting query not attacker(Mss4[])

RESULT not attacker(Mss4[]) is true.

-- Query not attacker(Mar1[])

Completing...

Starting query not attacker(Mar1[])

RESULT not attacker(Mar1[]) is true.

-- Query not attacker(Mar2[])

Completing...

Starting query not attacker(Mar2[])

RESULT not attacker(Mar2[]) is true.

83

-- Query not attacker(Mat3[])

Completing...

Starting query not attacker(Mat3[])

RESULT not attacker(Mat3[]) is true.

-- Query not attacker(Mat4[])

Completing...

Starting query not attacker(Mat4[])

RESULT not attacker(Mat4[]) is true.

Figure 6.2: Verification results of reachability and secrecy

6.3 Correspondence Assertion

The correspondence assertion in ProVerif is to model the authentication of the

protocol using a sequence of events. We apply a sequence of events to verify the

authentication of the reader to the tag and the authentication of the tag to the reader

through the encrypted messages individually. The complete verification process of

authentication is presented in Figure 6.2. The results of the correspondence assertion

verification show “RESULT inj-event(termReader(x)) ==> inj-event(acceptsReader(x))

is true” which means the reader is authenticated by the tag, and “RESULT inj-

event(termTag(x_24)) ==> inj-event(acceptsTag(x_24)) is true” which means the tag is

authenticated by the reader. The verification results confirm that SLEC protocol achieves

a successful mutual authentication between the reader and the tag.

84

Correspondence Assertion

Process:

{1}new p: P;

{2}new y_22: Y;

{3}new tprv1: pu_pr_key;

{4}new rprv1: pu_pr_key;

{5}new xi: TagID;

{6}new Gxi: GK;

(

 {7}!

 {8}let Tpub1: pu_pr_key = find_R_and_Tpubs(p,tprv1) in

 {9}let Mst1: pu_pr_key = setPhase_encrypt(tprv1,y_22) in

 {10}out(ch, Mst1);

 {11}in(ch, Mss4': Tag_and_Hash);

 {12}let tag': Tag = verify_tag(Mss4',h(Tpub1,Mst1)) in

 {13}in(ch, ms1: xored_key);

 {14}let Ms1': GK = validate_Ms1(ms1) in

 {15}new ggkk: GK;

 {16}if (Ms1' = ggkk) then

 {17}new tprv2: pu_pr_key;

 {18}let Tpub2: pu_pr_key = find_R_and_Tpubs(p,tprv2) in

 {19}in(ch, ms2: pu_pr_key);

85

 {20}new ts2': timeStampes;

 {21}let Rpub2': pu_pr_key = xor(ms2,ts2') in

 {22}let Mat3: pu_pr_key = authen_phase_encrypt(tprv2,Rpub2') in

 {23}out(ch, Mat3);

 {24}new xi_23: TagID;

 [29]let Mat4: Hashing = h_ph2_2(xi_23,Rpub2',Tpub1,Ms1') in

 {26}out(ch, Mat4);

 {27}let xxi: TagID = PRNG(xi_23) in

 {28}let GKi: GK = PRNG_Group(ggkk) in

 {29}in(ch, Mar5': Hashing);

 {30}let Mar55: Hashing = h_ph2_3(xi_23,Tpub2,Rpub2') in

 {31}if (Mar55 = Mar5') then

 {32}event acceptsReader(Mar55);

 {33}event termReader(Mar55)

) | (

 {34}!

 {35}let Rpub1: pu_pr_key = find_R_and_Tpubs(p,rprv1) in

 {36}let Msr2: pu_pr_key = setPhase_encrypt(rprv1,y_22) in

 {37}out(ch, Msr2);

 {38}in(ch, Mss3': TagList_and_Hash);

 {39}let taglisht': TageList = verify_tagList(Mss3',h(Rpub1,Msr2)) in

 {40}new rprv2: pu_pr_key;

86

 {41}let Rpub2: pu_pr_key = find_R_and_Tpubs(p,rprv2) in

 {42}new GKii: GK;

 {43}let Mar1: hash_GK = h_ph2_(GKii) in

 {44}out(ch, Mar1);

 {45}new ts2: timeStampes;

 {46}let Mar2: pu_pr_key = xor(Rpub2,ts2) in

 {47}out(ch, Mar2);

 {48}in(ch, Mat3': pu_pr_key);

 {49}let Tpub2': pu_pr_key = authen_phase_dencrypt(Mat3',re_pu_pr_key(rprv2)) in

 {50}in(ch, Mat4': Hashing);

 {51}new xii': TagID;

 {52}let Mar5: Hashing = h_ph2_3(xii',Rpub2,Tpub2') in

 {53}event acceptsTag(Mar5);

 {54}out(ch, Mar5);

 {55}event termTag(Mar5)

) | (

 {56}!

 {57}in(ch, (Mst1': pu_pr_key,Msr1': pu_pr_key));

 {58}let Tprv1': pu_pr_key = setPhase_decrypt(Mst1',getYinv(y_22)) in

 {59}let Rprv1': pu_pr_key = setPhase_decrypt(Msr1',getYinv(y_22)) in

 {60}new ts: timeStampes;

 {61}let tagi: Tag = create_tag(xi,ts,Gxi) in

87

 {62}let tagListi: TageList = create_taglist(tagi) in

 {63}let Mss3: TagList_and_Hash = prepare_tagList(tagListi,h(Rprv1',Msr1')) in

 {64}out(ch, Mss3);

 {65}let Mss4: Tag_and_Hash = prepare_tag(tagi,h(Tprv1',Mst1')) in

 {66}out(ch, Mss4)

)

-- Query inj-event(termReader(x)) ==> inj-event(acceptsReader(x))

Completing...

Starting query inj-event(termReader(x)) ==> inj-event(acceptsReader(x))

RESULT inj-event(termReader(x)) ==> inj-event(acceptsReader(x)) is true.

-- Query inj-event(termTag(x_24)) ==> inj-event(acceptsTag(x_24))

Completing...

Starting query inj-event(termTag(x_24)) ==> inj-event(acceptsTag(x_24))

RESULT inj-event(termTag(x_24)) ==> inj-event(acceptsTag(x_24)) is true.

Figure 6.3: Verification results of correspondence assertions

88

CHAPTER 7: CONCLUSION

RFID is the new alternative to physical barcoding, which is being widely used in the

fields of product authentication and database storage. Serverless RFID protocols are being

developed to provide a dynamic network that the mobile tags can be searched and identified in

different locations away from the server. As RFID network carries along with sensitive

information, and passive tags have limited resources, many security algorithms have been

deduced and implemented at a minimal cost using simple operations that are still vulnerable to

security attacks. We propose a secure serverless RFID protocol (SLEC) that uses the elliptic curve

cryptography based on the Diffie-Hellman algorithm. The algorithm used is classified as a public

key algorithm that can be handled by low constraint devices such as RFID passive tags. SLEC

protocol is considered to be secure against different security attacks that simple protocols suffer

from. The reader in SLEC protocol is completely capable of identifying and authenticating mobile

tags under an offline server. We also introduced the tag grouping mechanism to reduce the

computation overhead on the reader side that is elevated from the scalar operations in the elliptic

curve computation when identifying a tag in a large-scale network, and also to create a scalable

system that is not affected by the tag population size. Also, SLEC protocol has a recovery

mechanism that any compromised values can soon be renewed by any server in the network to

retrieve the tag and protocol privacy. The protocol is tested using ProVerif cryptographic

verification tool to prove that SLEC achieves successful security and authentication. We believe

that the widespread implementation of serverless RFID systems will improve the efficiency of all

89

businesses and processes. This will take RFID technology into the upper level by driving the

world to go smart.

90

REFERENCES

[1] L. Xie, Y. Yin, A. V. Vasilakos, and S. Lu, "Managing RFID Data: Challenges,

Opportunities and Solutions," IEEE Communications Surveys & Tutorials, vol.

16, no. 3, pp. 1294-1311, 2014.

[2] J. Pagán Alexander, R. Baashirah, and A. Abuzneid, "Comparison and Feasibility

of Various RFID Authentication Methods Using ECC," Sensors, vol. 18, no. 9, p.

2902, 2018.

[3] EPCglobal. Inc., " EPCTM Radio-Frequency Identity Protocols Generation-2

UHF RFID," in Specification for RFID Air Interface Protocol for

Communications at 860 MHz – 960 MHz Version 2.0.1 Ratified, ed.

Lawrenceville, NJ, USA: EPCglobal Inc., 2015.

[4] R. Baashirah and A. Abuzneid, "Survey on Prominent RFID Authentication

Protocols for Passive Tags," Sensors, vol. 18, no. 10, 2018.

[5] S. Sundaresan, R. Doss, S. Piramuthu, and W. Zhou, "Secure Tag Search in RFID

Systems Using Mobile Readers," IEEE Transactions on Dependable and Secure

Computing, vol. 12, no. 2, pp. 230-242, 2015.

91

[6] J. S. Chou, "An efficient mutual authentication RFID scheme based on elliptic

curve cryptography," The Journal of Supercomputing, vol. 70, no. 1, pp. 75-94,

2014.

[7] L. Zheng, Y. Xue, L. Zhang, and R. Zhang, "Mutual Authentication Protocol for

RFID Based on ECC," in 2017 IEEE International Conference on Computational

Science and Engineering (CSE) and IEEE International Conference on Embedded

and Ubiquitous Computing (EUC), vol. 2, pp. 320-323, 2017.

[8] M. R. Alagheband and M. R. Aref, "Simulation-Based Traceability Analysis of

RFID Authentication Protocols," Wireless Personal Communications, vol. 77, no.

2, pp. 1019-1038, 2014.

[9] J. Wang, C. Floerkemeier, and S. E. Sarma, "Session-based security enhancement

of RFID systems for emerging open-loop applications," Personal and Ubiquitous

Computing, vol. 18, no. 8, pp. 1881-1891, 2014.

[10] International Organization for Standardization, "ISO/IEC DIS 9798-2," in

Information technology - Security techniques - Entity authentication - Part 2:

Mechanisms using authenticated encryption, ed. Switzerland: International

Organization for Standardization, 2017.

[11] E. K. Ryu, D. S. Kim, and K. Y. Yoo, "On Elliptic Curve Based Untraceable

RFID Authentication Protocols," presented at the Proceedings of the 3rd ACM

92

Workshop on Information Hiding and Multimedia Security, Portland, Oregon,

USA, 2015.

[12] R. Songhela and M. L. Das, "Yet Another Strong Privacy-Preserving RFID

Mutual Authentication Protocol," Cham, 2014, pp. 171-182: Springer

International Publishing.

[13] Y. Chen and J. S. Chou, "ECC-based untraceable authentication for large-scale

active-tag RFID systems," Electronic Commerce Research, journal article vol. 15,

no. 1, pp. 97-120, 2015.

[14] Q. Yao, J. Ma, S. Cong, X. Li, and J. Li, "Attack gives me power: DoS-defending

constant-time privacy-preserving authentication of low-cost devices such as

backscattering RFID tags," presented at the Proceedings of the 3rd ACM

Workshop on Mobile Sensing, Computing and Communication, Paderborn,

Germany, 2016.

[15] M. S. Farash, "Cryptanalysis and improvement of an efficient mutual

authentication RFID scheme based on elliptic curve cryptography," The Journal

of Supercomputing, vol. 70, no. 2, pp. 987-1001, 2014.

[16] Z. Zhang and Q. Qi, "An Efficient RFID Authentication Protocol to Enhance

Patient Medication Safety Using Elliptic Curve Cryptography," Journal of

Medical Systems, vol. 38, no. 5, p. 47, 2014.

93

[17] R. Baashirah, A. Abuzneid, A. Tammineedi, M. Mathew, N. Bandaru, and P.

Delair, "Improve Healthcare Safety Using Hash-Based Authentication Protocol

for RFID Systems," presented at the The 9th IEEE Annual Ubiquitous

Computing, Electronics and Mobile Communication Conference, UEMCON,

New York, NY, 2018.

[18] B. C. Chen, C. T. Yang, H. T. Yeh, and C. C. Lin, "Mutual Authentication

Protocol for Role-Based Access Control Using Mobile RFID," Applied Sciences,

vol. 6, no. 8, p. 215, 2016.

[19] H. Fernando and J. Abawajy, "Mutual Authentication Protocol for Networked

RFID Systems," in 2011IEEE 10th International Conference on Trust, Security

and Privacy in Computing and Communications, pp. 417-424, 2011.

[20] X. Chen, T. Cao, and J. Zhai, "Untraceability Analysis of Two RFID

Authentication Protocols," Chinese Journal of Electronics, vol. 25, no. 5, pp. 912-

920, 2016.

[21] C. Chen, Z. Qian, I. You, J. Hong, and S. Lu, "ACSP: A Novel Security Protocol

against Counting Attack for UHF RFID Systems," in 2011 Fifth International

Conference on Innovative Mobile and Internet Services in Ubiquitous Computing,

pp. 100-105, 2011.

94

[22] M. Safkhani, N. Bagheri, and A. Mahani, "On the security of RFID anti-counting

security protocol (ACSP)," Journal of Computational and Applied Mathematics,

vol. 259, pp. 512-521, 2014.

[23] H.-Y. Chien and C.-W. Huang, "A Lightweight Authentication Protocol for Low-

Cost RFID," Journal of Signal Processing Systems, journal article vol. 59, no. 1,

pp. 95-102, 2010.

[24] Y. z. Li, Y. b. Cho, N. k. Um, and S. h. Lee, "Security and Privacy on

Authentication Protocol for Low-cost RFID," in 2006 International Conference

on Computational Intelligence and Security, vol. 2, pp. 1101-1104, 2006.

[25] International Organization for Standardization, "ISO/IEC 15693-2:2006," in

Identification cards - Contactless integrated circuit cards - Vicinity cards - Part

2: Air interface and initialization, ed. Switzerland: International Organization for

Standardization, 2006.

[26] M. Burmester and J. Munilla, "Lightweight RFID authentication with forward and

backward security," ACM Trans. Inf. Syst. Secur., vol. 14, no. 1, pp. 1-26, 2011.

[27] S. Lee, T. Asano, and K. Kim, "RFID Mutual Authentication Scheme based on

Synchronized Secret Information," in Symposium on Cryptography and

Information Security, Hiroshima, Japan, 2006.

95

[28] Y. Zuo, "Survivability Experiment and Attack Characterization for RFID," IEEE

Transactions on Dependable and Secure Computing, vol. 9, no. 2, pp. 289-302,

2012.

[29] K. Lee, J. M. Gonz, #225, l. Nieto, and C. Boyd, "Improving the efficiency of

RFID authentication with pre-computation," presented at the Proceedings of the

Tenth Australasian Information Security Conference - Volume 125, Melbourne,

Australia, 2012.

[30] F. Rahman and S. I. Ahamed, "DRAP: a Robust Authentication protocol to ensure

survivability of computational RFID networks," presented at the Proceedings of

the 27th Annual ACM Symposium on Applied Computing, Trento, Italy, 2012.

[31] H. Liu, H. Ning, Y. Zhang, D. He, Q. Xiong, and L. T. Yang, "Grouping-Proofs-

Based Authentication Protocol for Distributed RFID Systems," IEEE

Transactions on Parallel and Distributed Systems, vol. 24, no. 7, pp. 1321-1330,

2013.

[32] F. Rahman and S. I. Ahamed, "Efficient detection of counterfeit products in large-

scale RFID systems using batch authentication protocols," Personal and

Ubiquitous Computing, journal article vol. 18, no. 1, pp. 177-188, 2014.

[33] Y. Keqiang, S. Lingling, Q. Xing, and Z. Zhonghua, "Design of anti-collision

integrated security mechanism based on chaotic sequence in UHF RFID system,"

China Communications, vol. 11, no. 3, pp. 137-147, 2014.

96

[34] J.-S. Cho, Y.-S. Jeong, and S. O. Park, "Consideration on the brute-force attack

cost and retrieval cost: A hash-based radio-frequency identification (RFID) tag

mutual authentication protocol," Computers & Mathematics with Applications,

vol. 69, no. 1, pp. 58-65, 2015.

[35] C. C. Chang, W. Y. Chen, and T. F. Cheng, "A Secure RFID Mutual

Authentication Protocol Conforming to EPC Class 1 Generation 2 Standard," in

2014 Tenth International Conference on Intelligent Information Hiding and

Multimedia Signal Processing, 2014, pp. 642-645.

[36] Z. Liu, D. Liu, L. Li, H. Lin, and Z. Yong, "Implementation of a New RFID

Authentication Protocol for EPC Gen2 Standard," IEEE Sensors Journal, vol. 15,

no. 2, pp. 1003-1011, 2015.

[37] H. Niu, E. Taqieddin, and S. Jagannathan, "EPC Gen2v2 RFID Standard

Authentication and Ownership Management Protocol," IEEE Transactions on

Mobile Computing, vol. 15, no. 1, pp. 137-149, 2016.

[38] P. Dass and H. Om, "A Secure Authentication Scheme for RFID Systems,"

Procedia Computer Science, vol. 78, pp. 100-106, 2016.

[39] C. Mtita, M. Laurent, and J. Delort, "Efficient serverless radio-frequency

identification mutual authentication and secure tag search protocols with

untrusted readers," IET Information Security, vol. 10, no. 5, pp. 262-271, 2016.

97

[40] B. Blanchet, "Composition Theorems for CryptoVerif and Application to TLS

1.3," presented at the IEEE 31st Computer Security Foundations Symposium

(CSF), Oxford, UK, 2010. Available:

http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/

[41] R. Aggarwal and M. L. Das, "RFID security in the context of "internet of

things"," presented at the Proceedings of the First International Conference on

Security of Internet of Things, Kollam, India, 2012.

[42] Y. C. Chen, W. L. Wang, and M. S. Hwang, "RFID Authentication Protocol for

Anti-Counterfeiting and Privacy Protection," in The 9th International Conference

on Advanced Communication Technology, vol. 1, pp. 255-259, 2007.

[43] Y. J. Huang, W. C. Lin, and H. L. Li, "Efficient Implementation of RFID Mutual

Authentication Protocol," IEEE Transactions on Industrial Electronics, vol. 59,

no. 12, pp. 4784-4791, 2012.

[44] International Organization for Standardization, "ISO/IEC 18000-6:2013," in

Information technology - Radio frequency identification for item management -

Part 6: Parameters for air interface communications at 860 MHz to 960 MHz

General, ed. Switzerland: International Organization for Standardization, 2013.

[45] Y. C. Huang and J. R. Jiang, "Ultralightweight RFID Reader-Tag Mutual

Authentication," in 2015 IEEE 39th Annual Computer Software and Applications

Conference, vol. 3, pp. 613-616, 2015.

http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/

98

[46] H.-Y. Chien and C.-H. Chen, "Mutual authentication protocol for RFID

conforming to EPC Class 1 Generation 2 standards," Computer Standards &

Interfaces, vol. 29, no. 2, pp. 254-259, 2007.

[47] C.-L. Chen and Y.-Y. Deng, "Conformation of EPC Class 1 Generation 2

standards RFID system with mutual authentication and privacy protection,"

Engineering Applications of Artificial Intelligence, vol. 22, no. 8, pp. 1284-1291,

2009.

[48] N. J. Hopper and M. Blum, "Secure Human Identification Protocols," presented at

the Proceedings of the 7th International Conference on the Theory and

Application of Cryptology and Information Security: Advances in Cryptology,

2001.

[49] S. Piramuthu, "HB and Related Lightweight Authentication Protocols for Secure

RFID Tag/Reader Authentication," in CollECTeR Europe Conference, 2006.

[50] Z. Lin and J. S. Song, "An Improvement in HB-Family Lightweight

Authentication Protocols for Practical Use of RFID System," Journal of Advances

in Computer Networks, vol. 1, no. 1, 2013.

[51] A. Juels and S. A. Weis, "Authenticating Pervasive Devices with Human

Protocols," Berlin, Heidelberg, 2005, pp. 293-308: Springer Berlin Heidelberg.

99

[52] H. Gilbert, M. Robshaw, and H. Sibert, "Active attack against HB/sup +/: a

provably secure lightweight authentication protocol," Electronics Letters, vol. 41,

no. 21, pp. 1169-1170, 2005.

[53] M. Ouaskou, M. Lahmer, and M. Belkasmi, "A variant of HB protocols based on

permutation for low-cost RFID," in 2015 International Conference on Wireless

Networks and Mobile Communications (WINCOM), pp. 1-4, 2015.

[54] W. Diffie and M. Hellman, "New directions in cryptography," IEEE Transactions

on Information Theory, vol. 22, no. 6, pp. 644-654, 1976.

[55] A. Kumar et al., "Elliptic Curve Cryptography (ECC) Certificates Performance

Analysis," Symantec, United States2013, Available:

https://www.websecurity.symantec.com/content/dam/websitesecurity/digitalassets

/desktop/pdfs/whitepaper/Elliptic_Curve_Cryptography_ECC_WP_en_us.pdf.

[56] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre. ProVerif: Automatic

Cryptographic Protocol Verier, User Manual and Tutorial [Online]. Available:

https://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf

https://www.websecurity.symantec.com/content/dam/websitesecurity/digitalassets/desktop/pdfs/whitepaper/Elliptic_Curve_Cryptography_ECC_WP_en_us.pdf
https://www.websecurity.symantec.com/content/dam/websitesecurity/digitalassets/desktop/pdfs/whitepaper/Elliptic_Curve_Cryptography_ECC_WP_en_us.pdf
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1: Inrtoduction
	1.1 Research Problem and Scope
	1.2 Motivation behind the Research
	1.3 Potential Contributions of the Proposed Research

	Chapter 2: related work
	2.1 Recent RFID Authentication Protocols
	2.1.1 Heavyweight Protocols
	2.1.2 Simple Weight Protocols
	2.1.3 Lightweight Protocols
	2.1.4 Ultra-Lightweight Protocols

	2.2 Analysis and Security Evaluation
	2.2.1 Comparison of Computation Cost
	2.2.2 Comparison of Security Threats
	2.2.3 Comparison of Security Requirements

	Chapter 3: Proposed serverless rfid authentication model
	3.1 Network Model
	3.2 Serverless Model
	3.3 Communication Model
	3.3.1 Setup Phase
	3.3.2 Authentication Phase
	3.3.3 Recovery Phase

	Chapter 4: Methodology
	4.1 Experiment Design
	4.2 Serverless Authentication Based on Elliptic curve Algorithm

	Chapter 5: Results and analysis
	5.1 Analysis of System Requirements
	5.2 Analysis of Security Requirements
	5.3 Analysis of Computation Cost

	Chapter 6: Formal Verification
	6.1 Adversary Model
	6.2 Reachability and Secrecy
	6.3 Correspondence Assertion

	Chapter 7: Conclusion
	References

