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ABSTRACT 

Radio Frequency Identification (RFID) is one of the leading technologies in the 

Internet of Things (IoT) to create an efficient and reliable system to securely identify 

objects in many environments such as business, health, and manufacturing areas. Since 

the RFID server, reader, and tag communicate via insecure channels, mutual 

authentication between the reader and the tag is necessary for secure communication. 

The central database server supports the authentication of the reader and the tag by 

storing and managing the network data. Recent lightweight RFID authentication 

protocols have been proposed to satisfy the security features of RFID communication. 

A serverless RFID system is a new promising solution to alternate the central database 

for mobile RFID models. In this model, the reader and the tag perform the mutual 

authentication without the support of the central database server. However, many 

security challenges arise from implementing the lightweight RFID authentication 

protocols in the serverless RFID network. We propose a new robust serverless RFID 

authentication protocol based on the Elliptic Curve Cryptography (ECC) to prevent the 
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security attacks on the network and maintain the confidentiality and the privacy of the 

authentication messages and tag information and location. While most of the current 

protocols assume a secure channel in the setup phase to transmit the communication 

data, we consider in our protocol an insecure setup phase between the server, reader, 

and tag to ensure that the data can be renewed from any checkpoint server along with 

the route of the mobile RFID network. Thus, we implemented the elliptic curve 

cryptography in the setup phase (renewal phase) to transmit and store the data and the 

public key of the server to any reader or tag so that the latter can perform the mutual 

authentication successfully. The proposed model is compared under the classification of 

the serverless model in term of computation cost and security resistance. 
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CHAPTER 1: INRTODUCTION 

The wireless sensor network (WSN) has expanded recently to employ new 

technologies in the Internet of Things (IoT). The purpose of this evolution is to create a 

low-cost, reliable, and secure communication network for current and future applications 

using radio waves most conveniently. Radio Frequency Identification (RFID) is a 

technology where the detection of the electromagnetic signals in the wireless sensor 

network identifies objects or people. Hundreds and thousands of RFID applications have 

been used to improve business efficiency and productivity in a variety of business 

operations, including supply chain management, access control limitation, product 

tracking, merchandise allocation, toll collection, and so on. It is also considered an 

integral part of daily life where its applications not only are limited to business activities, 

but also everyday life activities that are integrated into cell phones, household, 

automobile, etc. 

The primary system of RFID includes a receiver (reader), transponder (tag), and 

back-end database (server) to store and manage data. The RFID tag is a label that is 

placed into the object to be identified and located among hundreds and thousands of 

objects. It consists of a small antenna attached to a microchip with a small memory to 

store the object’s identity and data [1]. The RFID reader is a scanner placed in a fixed 

location to interrogate the tag whenever the tag exists in the scanning environment. The 
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Request 

Respond 

Database RFID Reader RFID Tags 

back-end database server operates as a data processor that manages, controls, and stores 

the data from the tag and reader. An RFID system is depicted in Figure 1.1 [2]. Since the 

communication channel between the reader and tag is assumed to be insecure, messages 

in RFID communication are transmitted in clear, and thus are vulnerable to security 

attacks such as replay attack, impersonation, traceability, man-in-the-middle, 

desynchronization, denial of service, cloning, and disclosure attack. A secure RFID 

system must be able to resist different types of attacks through maintaining system 

requirements of mutual authentication, confidentiality, integrity, availability, privacy, 

forward and backward secrecy. 

 

 

 

 

Figure 1.1: Basic radio frequency identification (RFID) model [2] 

Since the RFID passive tag has limited resources to compute complex operations 

[3], the heavyweight protocols are not feasible for practical implementation [4]. On the 

other hand, lightweight and ultra-lightweight protocols use only simple operations within 

the tag computation limits and show the lowest tag computation overhead level, so they 

are mostly used in the current applications. Many RFID protocols are proposed to defend 

against different attacks. However, several vulnerabilities are detected in the lightweight 

protocols because it is easy to break out the security of their simple operations. 



 
 

15 

 

1.1 Research Problem and Scope 

The advanced development of RFID system leads to introducing the concept of 

serverless RFID where the communication between the RFID reader and tag does not 

involve a central database. This innovative scheme arises major security issues in the 

RFID system because both the reader and tags should form an autonomous 

communication. Multiple serverless RFID protocols are proposed using lightweight 

operations such as pseudo-random number generator and exclusive-OR operations [5]. 

Even though these protocols conform to the RFID passive tags limited resources, they are 

still exposed to security breach due to the lightweight operations used mainly in the 

reader and tag authentication. 

Elliptic curve cryptography (ECC) is a public key scheme for low constrained 

devices that meet the requirements of the RFID tags. It can provide a security level that is 

similar to RSA with a smaller key size since their functions are easy to be calculated but 

hard to be factored back to the original values [6]. ECC is considered in the proposed 

SLEC protocol because it is feasible on the passive tag and provides higher security than 

other lightweight schemes. 

The basic idea behind the SLEC protocol is as follows. In the mobile RFID 

system, a reader and a tag start communicating by authenticating each other without a 

central database to perform the necessary calculations to establish a secure 

communication channel. In the authentication session, the reader and tag transmit 
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challenging messages that can only be computed and verified by a legitimate entity. The 

transmitted messages should be confidential, and they require encryption and decryption 

using secure and low-cost operations within the ability of the passive tag to process. The 

privacy of the tag is also needed to protect the tag secret information and location from 

being exposed to adversaries. Since the secure algorithms require extensive 

computations, it is essential to minimize the communication signals in the network, 

especially when the number of tags is high. We developed a secure and appropriate 

authentication algorithm that maintain the security of the system and privacy of the tags 

while minimizing the communication signals in the network to reduce the computation 

overhead on both the reader and the tag. The proposed protocol is compared with 

extensive simulations to demonstrate a secure mutual authentication over the currently 

available protocols. Also, analysis models are developed to validate the proposed 

solution. 

1.2 Motivation behind the Research  

Identifying products, humans, or information and authenticate their validity is a 

crucial matter, especially in mobile RFID systems where the readers and tags exit in a 

location away from the location of the central database server. In events such as the car 

dealership industry, a large number of cars needs to be identified and located off the 

dealership facilities and during the trips between departure and arrival destinations. 

Identifying asset starts by authenticating the real asset from a fake one along the 

transportation route. This is done using a secure authentication technique that can be done 

successfully by a legitimate and registered car. Tracking a car can use the owner’s 
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information to manage transportation securely to avoid stealing cars or losing routes to 

inventory locations. Authorized facilities must control access to the car's information by 

allowing only authorized personnel or users to access the car's information. The privacy 

of the owners is important, so any adversary should not be able to obtain any valuable 

information to the vehicles or their location. Privacy can be achieved by confusing the 

adversary by sending noise signals from different locations to avoid capturing the real 

information or positions of the assets and prevent tracing back the original signal by 

analyzing the network traffic. 

1.3 Potential Contributions of the Proposed Research 

Many of the current RFID authentication protocols are proposed to assume a 

secure setup between the server, the reader, and the tags attached to the cars, which is not 

realistic in most cases. In our work, we provide a secure setup phase that works as 

checkpoints through the transportation routes that the cars pass with along their routes to 

the destination. The setup phase updates the protocol with new values to perform the 

authentication of the assets. We mislead the adversary about the location of the asset, 

which will lead subsequently to the location of the source tag. The proposed SLEC 

protocol can handle a group of real and fake signals that are sent from a group of tags at 

the time to avoid tracing the actual signal. We also secure the asset information using 

keys that are known only to the reader and tag. The elliptic curve cryptography (ECC) is 

used in both setup and authentication phases to secure the data forming a noval serverless 

system.  For the fairness of our comparison, we compare the authentication phase of the 

proposed model with other serverless protocols and ECC-based protocols to validate the 
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results of our work. Different analysis models are developed to prove the novelty of 

proposed work.  
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CHAPTER 2: RELATED WORK 

In this chapter, we present the existing authentication protocols in the literature, 

which mainly rely on the mutual authentication between the reader and tag in the RFID 

systems. A classification of these protocols and their analysis in term of security, 

computation, and communication cost is conducted. 

Since a passive tag is a tiny chip with scarce resources, it can do only low 

computations. Hence, RFID protocols are classified in this literature into four categories 

based on the complexity of the algorithm that is used to compute the tag responses: 

heavyweight, simple weight, lightweight, and ultra-lightweight [7]. Heavyweight 

algorithms use symmetric and public key cryptography that is beyond the scale of the 

passive tag ability to process. Simple-weight algorithms use hash functions that are also 

not feasible for passive tag resources. Lightweight algorithms use simple one-way hash 

functions, cyclic redundancy checks, and pseudo-random number generators [8]. Finally, 

ultra-lightweight algorithms use bitwise operations, which can be performed at low cost. 

2.1 Recent RFID Authentication Protocols 

2.1.1 Heavyweight Protocols 

Wang and Sarma [9] proposed two session-based authentication protocols, SB-A 

and SB-B, for reader–tag authentication based on symmetric key encryption to ensure 
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privacy and access control using two types of passive tags. The protocols are based on 

symmetric cryptography algorithm to provide low-cost authentication such as the 

Advanced Encryption Standard (AES) and Data Encryption Standard (DES). Protocol 

SB-A in Figure 2.1 includes two processes. The first phase involves mutual authentication 

between server and tag according to the three-pass mutual authentication protocol 

according to the International Organization of Standardization and the International 

Electrotechnical Commission - ISO/IEC 9798-2 [10]. The second phase is for generating 

a session key between the reader and tag according to the Otway–Rees protocol and 

updating the pseudo-tag identity (PID). Protocol SB-B in Figure 2.2 uses tags with no 

memory or ID so that all of the tag’s information is stored in the server. A physical tag 

operation is mapped with the virtual digital tag in the server that can do all of the tag’s 

executions. The protocol uses tag nonce and counter control for synchronization, and not 

the server, because of the limited power of the tag. The protocols proved to be secure 

against major types of attacks; however, the protocols are considered to be heavyweight, 

since DES and AES are expensive operations that require a lot of computational 

overhead. 

For traceability issues in RFID, Ryu et al. [11] proposed elliptic curve 

cryptography-based untraceable authentication protocol (ECU) using the Schnorr 

signature scheme. The elliptic curve cryptography is considered to be public key 

cryptography for RFID systems with low constrained tags. It is used to solve the issues of 

three recent elliptic curve-based untraceable RFID authentication protocols: Strong 

Privacy-preserving Authentication protocol (SPA) [12], Efficient Mutual Authentication 
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Server S Reader R Tag T 

 

 

Step 4: Use PID to search the tag KTS 

 

Step 5:  

- Update PIDn to PIDn+1 

- Send EKTS(NT, NS, PIDn+1) to R → 

 

 

 

 

Step 9:  

- Verify reader authorization for OPR 

 

Step 10: 

- If OPR = read, send the message 

- If OPR = kill: 

• Send EKTS (NT, PIDn+1, RID) to R 

→ 

• Kill Vtag 

Step 1: Send RID, OPR to T → 

 

Step 3: Send PIDn, NT to S ← 

 

 

 

Step 6: Send EKTS(NS, NT, PIDn+1) to T → 

 

 

 

Step 8:  

- Send EKTS (NS, NT, RID, OPR), PIDn to S ← 

- Send RID, OPR, NR to S ← 

 

 

 

 

 

 

Step 11: Send EKTS (NT, PIDn+1, RID) to T → 

 
Step 2: Send PIDn and nonce NT to R ← 

 

 

 

 
Step 7:  

- Verify NT to authenticate S 

- Send EKTS (NS, NT, RID, OPR), PIDn to R 

← 

- If OPR is not (kill), update PIDn to PIDn+1 

 

 

 

 

 
 

 

 

- Retrieve NT, PIDn+1, RID 

- Verify RID = RID in step1 
- Check on-tag counter with time limit 

- Perform physical kill operation 

KRS: server/reader shared key; KTS: server/tag shared key; KRT: reader/tag shared key; NT: nonce generated by tag; NR: nonce generated 

by reader; NS: nonce generated by server; RID: reader ID; OPR: operation of reader; PIDn: pseudo-ID of tag in current session; EK(M): 

message encrypted by key K; Vtag: virtual tag in the server. 

Figure 2.2: Session-based authentication protocol (SB-B) by Wang and Sarma 

Server S Reader R Tag T 

 

 

 

Step 4: Use PID to search the tag KTS 

Step 5: Send EKTS (NT, NS, PIDn) to R → 

 

 

 

 

Step 9:  

- Verify OPR 

- Generate KRT  

- Update PIDn to PIDn+1 

Step 10:  

Send to R 

- EKRS (NR, PIDn, RID, OPR, KRT) → 

- EKTS (NT, PIDn+1, RID, OPR, KRT) → 

Step 1: Send RID, OPR to T → 

 

Step 3: Send PIDn, NT to server ← 

 

 

Step 6: Send EKTS (NT, NS, PIDn) to T → 

 

Step 8: Send to server ← 

- EKTS (NS, NT), PIDn 

- RID, OPR, NR 

 

 

Step 11:  

- Retrieve KRT 

- Send EKTS (NT, PIDn+1, RID, OPR, KRT) → 

- If OPR is (write), encrypt info with KRT and 

send it to T → 

Step 2: Send PIDn and nonce NT to R ← 

 

 

 

 
Step 7:  

- Verify NT to authenticate S 

- Send EKTS (NS, NT), PIDn to R ← 

 
 

Step 12: 

- Retrieve KRT, PIDn+1, RID, OPR 

- Verify OPR = OPR in Step1 

- Check the on-tag counter 
- Decode OPR and execute it 

- Update PIDn to PIDn+1 

- If OPR is (read), encrypt info with KRT 

and send it to reader ← 

KRS: server/reader shared key; KTS: server/tag shared key; KRT: reader/tag shared key; NT: nonce generated by 

tag; NR: nonce generated by reader; NS: nonce generated by server; RID: reader ID; OPR: operation of reader; 

PIDn: pseudo-ID of tag in current session; EK(M): message encrypted by key K. 

Figure 2.1: Session-based authentication protocol (SB-A) by Wang and Sarma 
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protocol EMA [6], and ECC-based authentication protocol PII [13]. Ryu’s protocol 

generates a digital signature with an appendix on the binary message of arbitrary length, 

and requires a cryptographic hash function, as shown in Figure 2.3. The sender’s session 

key is combined with the receiver’s public key to provide privacy, in which the message 

can be verified by only the receiver’s private key. Ryu’s protocol is secure against replay 

attacks, impersonate attacks, traceability attacks, and it maintains forward security. It 

requires two scalar multiplications, two hash functions, a message total size of 544 bits, 

and two communications between tag and reader. Even though this protocol requires 

complex computations associated with scalar multiplications and a hash function, it does 

not authenticate the reader. 

Server S Reader R Tag T 

Setup Phase: 

- Generate elliptic group G of prime 

order q. 

- Choose generator P of group G. 

- Server private/public keys (y, Y = yP) 

- Store tag verifier X = xP (public key) 

 

Authentication Phase: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1: Send random c to T → 

 

 

 

 

 

Step 3: To authenticate tag 

- Compute R’ = y−1 Z 

- Derive X’ = eid ⊕ H (R’, s) 

- Check X’ = X registered verifier 

- Compute v’ = H (R’, c) 

- Authenticate the tag as H(sP − v’ X, c) = v’ 

Store x, X, Y (server public key) 

 

 

 

 

 

Step 2:  

- Pick r as session secret 

- R = rP 

- v = H (R, c) 

- schnorr sign Z = rY, s = r + x * v 

- Encrypted verifier eid = X ⊕ H (R,s) 

- Send (eid, Z, s) to R ← 

 

 

 

 

G: Cyclic additive group; P: Generator of group G; q: Order of group G; xi: Tag’s private key; ⊕ XOR; Xi: Tag’s public key; y: 

Server’s private; Y: Server’s public; H: Hash function. 

Figure 2.3: Elliptic curve cryptography-based untraceable authentication protocol (ECU) by Ryu 
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To reduce the tag’s overhead in heavyweight protocols, Yao et al. [14] introduced 

The Reviving-UNder-DoS (RUND) authentication protocol to defend against denial of 

service (DoS) and preserve user privacy by powering up the tag to do complex computing 

for symmetric and public key cryptography. It leverages the power in DoS scans to 

enable the tag to respond in two ways: either using simple encryption when low signals 

from a reader activate the tag, or using public key encryption (higher security) when the 

backscattered signals are high in an insecure environment. The more signals there are in 

communication, the more power charges the tag. The option of using public key 

encryption in RUND protocol is to overcome the problem of breaking up the 

synchronization state between the reader and tag in symmetric key encryption. The 

protocol is secure because secret information is not sent in the clear, so no useful 

information can be gained if any message is compromised. Moreover, the parameters 

used in communication are changed and updated in every session, as shown in Figure 2.4, 

to prevent replay attacks, maintain forward security, and resist tracking. Even though the 

overall efficiency of RUND is O(1), it is still not compliant with the Electronic Product 

Code Class1 Generation2 (EPC C1 G2) standard [3], which is defined by EPCGlobal Inc. 

for RFID data communication. 
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Server: S Reader R: PUR, PRR, shared Ki Tag T: PUR, shared Ki, ID 

Initialization Phase: 

 

 

Mutual Authentication 

Phase: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Updating Phase: 

Step 1: Precompute and store in S: f(Ki, c, pad1) ← 

Where pad is padding length for f() 

 

Step 2: Send power waves last for Tpw with energy Ec. 

Send PRN r1 in l length to tag → 

 

 

 

 

 

 

 

 

 

 

Step 5: If response with symmetric: 

- Check counter c and search database for f(K’, c’, pad1) ← 

- Check r1 for replayed msg. 

- If matches: tag is authenticated. 

If response with public key: 

- Check and search database for (ID, K) pair ← 

- Check r1, r2 for replayed msg. 

- If matches: tag is authenticated 

 

Step 6: Generate r3 and compute I3 = r3||f(K, r3||I1, pad1) 

- Send I3, r3 to tag → 

- Update K = f(K, r3, pad1) 

- Update precomputed f(Ki, c, pad1) with updated key. 

- Preserve old key of tag. 

- Counter c is set to 0. 

 

 

 

Step3: Compute: 

If Ec energy: 

- I1 = f(K, c, pad1) 

- I2 = r1||f(K, r1||I1, pad1) 

- I = I1||I2 

- Update c = c + 1 

- Energy consumed Esk 

If Epk energy: 

- E(PUR, K, r1||r2, ID, c) in l length 

- Energy consumed Epk 

Step4: Send I to reader ← 

 

 

 

 

 

 

 

 

 

 

 

Step 7: Check I3 using r3 by computing 

I’3 

- If matches: reader is authenticated. 

- Update K = f(K, r3, pad1) 

- C = 0 

PUR: Public key of reader; ID: Tag’s ID; Ki: Shared symmetric key; c: Counter for current key lifecycle; PRR: Private key of 

reader; padi: Padding for f(); Ec: The initial power the tag is charged; TPW: Time for the power waves to last; ESK: Energy 

consumption for hash function; EPK: Energy consumption for public key. 

Figure 2.4: The reviving-under-denial of service authentication protocol (RUND) by Yao 

2.1.2 Simple Weight Protocols 

To better improve the performance of RFID protocols and reduce the power that 

is needed for complex operations in ECC-based protocols, Farash [15] proposed a mutual 

authentication protocol (IECC) based on the elliptic curve. The protocol enhances Chou’s 

authentication protocol (EMA) [6], which does not fulfill the security requirement of 
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forward security, mutual authentication, tag privacy, and security against location 

tracking, impersonating attacks, and tag cloning attack for an RFID system. The main 

idea behind the protocol is to use the server’s public key to create the authentication 

message to avoid breaking the system privacy, as depicted in Figure 2.5. The IECC 

protocol is secure against major attacks, even though the computation cost is the same as 

in Chou’s protocol that needs to be reduced for practical implementation. 

Server S: {Xi, yP, P} Reader R Tag T: {Xi, Y, P} 

Setup phase: 

- Generate an elliptic group G of prime order q 

- Choose generator P of group G 

- Choose random no. y as a private key 

- Public key Y = yP 

- Choose random X from G as tag identifier 

- Store Xi, Y, P in each tag. 

Authentication phase: 

Step 1: 

- Choose a prime random no. r 

- Compute C0 = rP 

- Send C0 to tags → 

 

 

 

 

Step 3: 

- Obtain K’ = y−1C1 

- Obtain Xi’ = C2 – h(C0, C1, K’) 

- Find a match for Xi’ in DB 

- If found: C3 = h(Xi’, K’) and tag authenticated 

- Send C3 to tag → 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 2: 

- Choose a prime random no. k 

- K = kP 

- C1 = kY 

- C2 = Xi + h(C0, C1, K) 

- Send C1, C2 to server → 

 

 

 

 

Step 4: 

- Validate C3 = (Xi, K) 

- Server is authenticated 

G: A additive group of prime order q; P: Generator of group G; h: One-way hash function; y: Server’s private; Y: Server’s public; 

Xi: Identifier of ith tag which is a random point in G. 

Figure 2.5: Mutual authentication-based on elliptic curve cryptography (IECC) by Farash 

Zhang and Qi [16] also proposed another protocol (EECC) to withstand the 

security weaknesses of Chou’s protocol, EMA [6]. EECC protocol enhances patient 
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medication safety by also using elliptic curve cryptography. In comparison to the EMA 

protocol, EECC protocol resulted in better performance and security resistance to 

impersonate and forward security attacks. However, Baashirah et al. [17] found that 

Zhang and Qi protocol is vulnerable to forward traceability and reader impersonate attack 

since an adversary can compromise the private key of the reader by obtaining the tag’s 

secret identifier. 

Baashirah et al. improved Zhang and Qi protocol and proposed HBEC protocol 

that is based on securing the tag’s secret identifier using a one-way hash function. HBEC 

protocol overcomes the security flaws in EECC protocol to provide high security even 

though the extra hash function adds more overhead to the computation, which should be 

addressed for the network scalability. 

B.Chen [18] proposed a role-based access control (RBAC) protocol for mobile 

RFID to enable user privacy, role, and access control through the back-end server based 

on a certification mechanism. RBAC assigns role classes as keys to control the 

information and the number of times each reader can read a tag. RBAC authorizes 

readers, assigns role classes to control the reader’s authority to request tag information, 

and updates timestamps using random numbers and different shared keys between the 

database server and reader and tag ad, as depicted in Figure 2.6. Traceability and replay 

attacks are prevented using updated random numbers in every session; access control is 

provided using shared keys to prevent unauthorized readers from requesting or reading 

any tag’s information, and integrity is ensured using timestamps. However, RBAC uses 

one encryption mechanism that is excessive for low-cost passive tags. 
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The dispersion spectrum of the conventional single-mode silica fiber has a 

minimum at 1300 nm region. An increase in the signal attenuation and dispersion will 

cause a decrease in the fiber length. So at some points in an optical fiber communication 

link, the optical signal will be regenerated. 

Server: kx, ky keys Reader: ky keys Tag: kx keys 

1- Reader Authorization and role class: 

 

 

 

 

 

- Request role-class command, read tag 

command, TID, and RID from RBAC 

- RBAC sends role-class. 

- M3 = Eky(RID, r1, TS1, CertR, role-class) 

- M4 = Ekx(TID, r2, TS1, role-class) 

- Send M3, M4 to reader → 

 

 

 

 

 

2- Assign No. of reads and update 

timestamps: 

 

 

 

 

 

 

Step 7: Retrieve CertR, r2 from M7 

- If CertR is verified, retrieve TS2, TCn−1 

from M6. 

- M8 = Eky(TS2, TCn−1, r2) 

- Send M8 to reader → 

Step 1: Reader sends Hello to tag →  

 

 

- Create random no. r2. 

- M2 = Eky (M1, r2, RID, Command) 

 

Step 3: Send M2 to server ← 

 

 

 

 

Step 4:  

- Retrieve r1, TS1, CertR, role-class 

from M3. 

- M5 = H(TS1 ⊕ r2) 

- Send M4, M5 to tag → 

 

 

 

 

 

 

Step 6:  

- Receive M6 

- M7 = Eky(CertR, r2, M6) 

- Send M7 to database server ←  

 

 

 

Step 8:  

- Retrieve TS2, TCn−1, r2 from M8 

- Verify r2  

- Create random no. r1 

- M1 = Ekx (TID, TS, r1) 

 

Step 2: Sends M1 to reader ← 

 

 

 

 

 

 

 

 

 

 

 

 

Step 5: Verify M5 using TS1 from M4 

and its r1 to authenticate reader 

- Calculate number of reads  

TCn−1 = TCn – 1 

-  if TS1 is verified, it’s updated to TS2  

- M6 = Ekx(TS2, TCn−1) 

- Send M6 to reader ← 

 

TID: Tag ID; Ky: Server/Reader shared key; r: random number; TCn: number of times a reader request information; Kx: Server/Tag 

shared key; TS: Timestamp; CertR: Reader security certificate; RBAC: role-based access control. 

Figure 2.6: Role-based access control protocol (RBAC) by B.Chen 
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2.1.3 Lightweight Protocols 

Successful businesses demand an efficient RFID system that is mainly based on a 

low computation at a low cost. Many recent RFID protocols use low-cost operations that 

are handled by low-cost passive tags for practical implementations. 

Fernando and Abawajy [19] proposed a mutual authentication protocol for 

Networked RFID Systems NRS, which is a lightweight mutual authentication scheme for 

an RFID system using low operations such as exclusive OR operation (XOR) and one-

way hash functions. However, Alagheband and Aref [8] reported NRS to be vulnerable to 

major attacks and specifically a full disclosure attack that compromises the whole RFID 

system. Alagheband and Aref improved NRS protocol and proposed NRS+ by adding 

three more hash functions to the authentication message to increase the system security. 

X. Chen et al. [20] noted that the NRS+ protocol is exposed to desynchronization and 

traceability attacks by using one random number for the tag and reader. Thus, X. Chen 

proposed NRS++ to improve the security flaws in the previous versions of NRS by 

generating two different random numbers, r1 and r2, for the tag and reader using a 

pseudo-random number generator (PRNG) to defend against replay attack. In Figure 2.7, 

the authentication message M3 is encrypted using the tag’s random number r1 and 

reader’s random number r2 to provide message integrity, so the tag cannot verify any 

modified message. NRS++ uses fewer hash functions, which resulted in less computation 

overhead and storage space than the other versions, with more security power. 
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Server S Reader R Tag T 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Update secrets in Database 

IDnew = ID ⊕ (r2right||K1left) 

K1new = H[(K1right||r1left) ⊕ r2] 

Step 1: 

- Generate random no. r 

- Calculate M1 = H(EPC ⊕ K1||r) 

M2 = r ⊕ K1 

- Send to tag M1||M2 → 

 

 

 

 

 

 

Step 3: 

- Extract r1 = N ⊕ K1 

- Compute C2 = H(EPC ⊕ K1||r||r1) 

- Verify C2 = M3 

If equal: 

Generate random no. r2 

M4 = r2 ⊕ K1 

M5 = H(EPC ⊕ K1||r1||r2) 

If not equal: terminate 

- Send M4||M5 → 

 

 

 

 

 

Step 2: 

- Extract r as r = M2 ⊕ K1 

- Compute C1 = H(EPC ⊕ K1||r) 

If C1 = M1, generate r1 

N = r1 ⊕ K1 

M3 = H(EPC ⊕ K1|| r||r1) 

Else termination 

- ← Send M3||N to reader 

 

 

 

 

 

 

 

 

Step 4: 

- Extract r2 as r2 = M4 ⊕ K1 

- Compute C3 = H(EPC ⊕ K1||r1||r2) 

- Verify C3 = M5 

If equal: Update the secrets.  

If not equal: terminate  

ID, EPC: Tag identifier; H(): one-way hash function; K1: Server/Tag shared key; r, r1, r2: random No; ⊕/||: XOR and concatenation 

operation. 

Figure 2.7: Mutual authentication protocol for networked RFID systems (NRS++) by X. Chen 

C. Chen [21] proposed Anti-Counting Security Protocol (ACSP) as another 

lightweight protocol for RFID systems to defend from a counter attack, which is defined 

as the attacker’s ability to count the number of objects in a system. Safkhani et al. [22] 

reported ACSP to be vulnerable to major attacks, including the forward/backward 

traceability attack. Safkhani further proposed ACSP+ to improve Chen’s protocol. Later, 

X. Chen [20] pointed out that ACSP protocol is not secure and proposed ACSP++ to 

withstand DoS and forward/backward traceability attacks. ACSP++ enhances the session 

identifier (SID) update, which is used to verify the current session, and tag identification 
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phases that suffer from different attacks in ACSP and ACSP+ versions. In ACSP++ as 

depicted in Figure 2.8, a tag identifier (TID) is added to the identification message as (

, R4, R5, TID) instead of ( , R4, R5), and the authentication message ((

, R4, R5, TID) is replaced with ( , R5, TID) to overcome DoS attack 

and to modify the TID in the identification phase. The update phase of every key is 

associated with two separate nonce values to avoid forward and backward traceability. 

Reader R Tag T 

(SID Update Phase) Step 1: 

- Generate nonce R1 

- Send the following to tag: 

, R1⊕SID, H( , R1, SID) → 

 

 

 

 

 

Step 3: 

- Extract R2 and verify H( , R2, R1, SID) 

- Update SID as SIDnew =  H(SID||R2||R1) 

 

 

 

Step 2: 

- Extract R1 to verify H( , R1, SID) 

- Generate R2 

- Update SID 

SIDnew =  H(SID||R2||R1) 

SIDold = SIDcur 

- ← Send to reader confirmation: 

, R2 ⊕ SID, H( , R2, R1, SID) 

 

(Tag Identification Phase) Step1: 

- Generate R3, R4 

- Send the following messages to tag → 

a) , SID1⊕ R3, H( , R3, SID)) 

b) , SID ⊕ TID ⊕ R4, H( , R4, SID, TID)) 

 

 

 

 

 

 

 

Step 4: 

- Authenticate tag 

- Extract R5’ to verify H( , R4, R5, TID) 

- If not verified: stop the session and send  → 

 

- If verified: update TID as TIDnew = H(TID||R4||R5) 

TIDold = TID 

- Send ( , H( , R5, TID) → 

 

 

 

 

 

Step 2: 

- Extract R3’ to verify H( , R3, SID) 

If not verified: wait until next run. 

If verified: respond with step3. 

 

Step 3: 

- Extract R4’ to verify H( , R4, SID, TID) 

- Generate R5 

- ← Send ( , TID ⊕ R5, H( , R4, R5, TID) 

 

 

 

 

 

Step 5: 

- Calculate and verify H( , R5, TID) 

- If not verified: stop the session. 

- If verified: update the tag identifier as TIDnew = H(TID||R4||R5) 

R1, R2, R3, R4, R5: nonce; : Select/ query commands; SIDcur/ SIDnew: Current/ New session identifier; 

: SID update/ Update knowledge message; TIDcur/TIDnew: Current/ New unique identifier; : 

Identification/ authentication messages. 

Figure 2.8: Anti-counting security protocol (ACSP++) by X. Chen 
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Even though the protocol improved the security weaknesses of all of the ACSP 

versions, it did not lower the computation overhead nor the storage space. 

Chien and Huang [23] presented LAP, which is a lightweight authentication 

protocol to solve the vulnerabilities in the authentication protocol of Li et al. [24] and 

enhance the computational cost from O(n) to O(1) in identifying tags in RFID systems. 

The security of LAP protocol is based on a synchronized PRNG between the reader and 

tag using a secret key, secret ID, and index pseudonym. In Figure 2.9, LAP protocol uses 

the rotate operator on the message and left/right operator for the divided rotation during 

the messages that were exchanged to form a secure permutation. Random numbers are 

used to shift the secret values of the tag to be used safely in communication. Then, the 

random number is XORed with the shifted secret value to retrieve a tag by the server 

securely. The server uses the index pseudonym (IDS) to quickly identify the tag in the 

database instead of computing PIDL ⊕ PIDR for every tag to make the computation 

O(1). 

LAP protocol is resistant to replay attack, DoS, and forward security. It can be 

employed easily by different standards such as EPC Gen2 and ISO 15693 [25] for 

practical implementation. However, the protocol was noted as being partially secure 

against traceability and synchronization attacks, since a tag can be traced between two 

successful sessions if the tag could not update its IDS. 

Burmester and Munilla [26] proposed a lightweight mutual authentication 

protocol called Flyweight that is based on exchanging messages using only PRNG. Their 
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protocol is based on a shared PRNG algorithm between the tags and back-end server that 

takes the same seed to produce the same output. The concept of the protocol is to use 

three consecutive numbers—RN1, RN2, and RN3—generated by the same PRNG in the 

server, and the tags of five numbers if an active adversary is presented, such as in Figure 

2.10. Furthermore, RFID tags precompute the values to the server challenging the 

response so that an adversary can be detected based on the response time from the tag. 

The protocol can provide mutual authentication, integrity, confidentiality, and forward 

Server S: flag, Xold, Xnew, IDSold, IDSnew, SID Reader R Tag T: {SID, IDS, X} 

 

 

 

 

 

 

Step 2:  

- Search IDSi 

- If IDS == IDSold: flag = 0, X = Xold 

- If IDS == IDSnew: flag = 1, X = Xnew 

- g’ = g(R1||R2||X) 

- SID’ = rotate(SID, g’) 

- Verify R’ as R’ = left(SID’ ⊕ g’) 

- Compute R’’ = right(SID’ ⊕ g’) 

- If flag = 1 

• IDSold = IDSnew 

• Xold = Xnew 

- Else 

• IDSnew = g(IDS||SID’) 

• Xnew = g(X||g’) 

- Send R’’ to reader → 

 

 

 

 

 

Step 4: 

- When OK is received, send SID to R → 

Step 1: 

- Generate R1. 

- Send Query||R1 to T → 

 

 

 

- Forward R1||R2||R’||IDS to S ← 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Forward R’’ to T → 

 

 

 

 

- Forward ACK to S ← 

 

 

- Generate R2 

- Compute g’ = g(R1||R2||X) 

- SID’ = rotate(SID, g’) 

- R’ = left(SID’ ⊕ g’) 

- Send R2||R’||IDS to R ← 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3: 

- Verify R’’ right(SID’ ⊕ g’) 

- Update: 

• IDS = g(IDS||SID’) 

• X = Xnew = g(X||g’) 

- Send ACK to R ← 

SID: Secure ID; PID: Partial ID; IDS: Index pseudonym; g(): Random No. generator; X: l-bit secret key; R1, R2: Random 

numbers; Rotate(): Rotation function; Left(s): Left half of s; Right(s): Right half of s; ACK: Acknowledgement.   

Figure 2.9: Lightweight authentication protocol (LAP) by Chien 
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and backward security. Besides, it provides robust synchronization, since the server keeps 

a record for the current and next response value of the tag. 

Server S Reader R Tag T 

 

 

 

 

 

- Check if RN1 = RN1cur 

• cnt = 1 

• Generate RN2, send RN2 to R → 

- If RN1 = RN1next 

• cnt = 0 

• Update values in DB 

• Send updated RN2 to R → 

 

 

 

 

 

Step 4: 

- If RN = RN3, and cnt = 0 

• Tag is authenticated 

- If RN = RN4 

• Send RN3, store RN5 

• Update values 

• Send RN3 to R 

 

 

 

Step 6: 

- If RN5 is correct 

• Authenticate T 

• Update values 

- Else terminate 

Step 1:. 

- Send Query to T → 

 

 

Step 2: 

- Forward RN1 to S ← 

 

 

 

 

 

- Forward RN2 to T → 

 

 

 

 

 

- Forward RN4 to S ← 

 

 

 

 

- Forward RN3 to T → 

 

 

 

- Forward RN5 to S ← 

 

- RN1 = gtag (state) 

- Set alarm cnt = 1 

- Send RN1 to R ← 

 

 

 

 

 

 

Step 3: 

- If RN2 is correct to authenticate S 

• Generate RN3, RN4, RN5 

• Cnt = 0 

- If cnt = 0, send RN3 to R ← 

- If cnt = 1, send RN4 to R ← 

 

 

 

 

 

Step 5: 

- If RN3 is correct and cnt = 1 

• Send RN5 to R ← 

- Else terminate 

RN: Random numbers output of the same generator function                        cnt: l-bit flag                                            

Figure 2.10: Flyweight mutual authentication protocol by Burmeter and Munilla 

S. Lee et al. [27] proposed a lightweight protocol (MASS) for RFID systems 

using XOR and a one-way hash function to conform to the scarce resources of RFID tags. 

The concept of the MASS protocol is to challenge the tag with a fresh random string 
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every session, and the tag responds using the reader’s value and its own random key to 

authenticate the reader ad, as depicted in Figure 2.11. The secret key is shared between 

entities, and all of the messages are encrypted during transmission. However, Zuo [28] 

conducted a survivability experiment on the authentication protocol proposed by S. Lee 

et al. and defined the vulnerability of the protocol to replay, desynchronize, and 

impersonate attacks. Zuo concluded from his experiment that the system could employ 

two different values for the keys (old, new) to recognize the tag and overcome the 

desynchronization problem. 

Server S Reader R Tag T 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1: 

- Generate l-bit string str 

- Send str to tag → 

 

 

 

Step 3: 

- Search database to match key Ki 

- If found proceed to update key 

- Retrieve rB from rC 

- Ki = h(Ki) 

- r’C = h(rB ⊕ Ki ⊕ str) 

- Send r’C to tag → 

 

 

Step 2: 

- Generate l-bit string rA 

- rB = h(rA ⊕ Ki ⊕ str) 

- rC = h(rB ⊕ Ki ⊕ str) 

- Send rB, rC to reader ← 

 

 

 

 

 

Step 4: 

- Verify r’C = rC 

- If verified, update key 

Ki: Tag/server shared secret key; h(): One-way hash function 

Figure 2.11: Lightweight protocol based on synchronized secret (MASS) by S. Lee 

To reduce the communication time during the authentication session, K. Lee et al. 

[29] proposed Efficient Passively-Untraceable Authentication Protocol (EP-UAP). The 

concept of EP-UAP is that the system precomputes all of the necessary computations 

before the system initialization, so only low computation overhead is required on the tag 

side during the process phase. The protocol is based on Randomized Hash-Lock protocol, 
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which uses a static identifier, and its strong security against traceability depends mainly 

on PRNG to randomize the responses, as explained in Figure 2.12. Since precomputing 

all of the possible random numbers and responses requires a storage memory for all of 

the precomputed data in the database, EP-UAP is preferred for small to medium 

networks, as the storage memory increases when the number of tags increases. The 

protocol shows considerable improvement over the randomized hash lock protocol in 

terms of computation time, in that only requires 40 ms for authentication; this is similar 

to LRMAP, which is the most efficient one in stateful protocols. However, it requires 100 

MB of database storage memory. The protocol provides integrity due to the two 

randomly generated nonce values that are used from both tag and reader and is secure 

against passive attacks and traceability due to the random responses. However, the EP-

UAP protocol seems to be vulnerable to active attacks such as impersonate and replay 

attacks, since the random responses depend on the database/reader. It also requires high 

storage capacity in the database side. 

Reader Tag 

Step 1: 

- Generate RR 

- Send Query, RR to tag → 

 

 

 

Step 3: 

- Search for IDi
1R 

- Verify H(IDi
1R||RR) = mTR to authenticate the tag. 

- Compute mRT = H(IDi
2R||RT) 

- Send mRT to tag→ 

 

 

 

Step 2: 

- Generate RT 

- Compute mTR = H(ID1T||RR) 

- Send mRT, RT to reader ← 

 

 

 

Pre-compute cT = H(ID2T||RT) 

 

 

Step 4: 

- If mRT = cT, reader is authenticated. 

H: One-way hash function; ID: Tag identifier; RR, RT: nonce generated by reader/tag; m: Authentication challenge; c: 

Authentication challenge response. 

Figure 2.12: Efficient passively-untraceable authentication protocol (EP-UAP) by K. Lee 
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To defend against a desynchronization attack, Rahman and Ahamad [30] 

proposed a Desynchronization attack-resistant Robust Authentication Protocol (DRAP) in 

the wireless identification and sensing platforms (WISP), where RFID technology is 

combined with sensor nodes. Their protocol mechanism is to decrease the tag collision 

that leads to DoS attack, as shown in Figure 2.13. The technique is to reduce the collision 

rate at the link layer and maintain the system’s efficiency. The protocol also detects the 

DoS attack and recovers the synchronization state of the system. It has higher resources 

than passive tags, which allow higher security implementation. Yet, it has a short distance 

limitation, where tags can only function less than 1–2 m away from readers. 

Server S Reader R: IDi: Kiprev, Ki, Diprev Tag T: Ki, IDi, Δ 

 

 

 

Step 1: 

- Generate random nr. 

- Send nr to tag → 

 

 

 

 

 

Step 3: 

- Generate P(Ki ⊕ nr||ni) for all tags to verify αi. 

If there is a match: 

- Decrypt αi and βi  

- Retrieve D 

- If Dnewi is not equal to Dnew then update: 

Kiprev = Ki 

X = h(Ki) 

αj = P(X ⊕ nr||ni) 

Ki = h(x) 

Dipev = Dinew 

- Else ignore the message and αj = rand 

If there is no match: 

- Generate P(Kiprev ⊕ nr||ni) for all tags to verify αi 

- If correct: 

- Decrypt αi and βi  

- If Dnewi is not equal to Doldi then update: 

αj = P(h(Kiprev) ⊕ nr||ni) 

Diprev = Dinew 

- Else ignore the message and αj = rand 

Else ignore the message and αj = rand  

- Send αj to tag → 

 

 

 

Step 2: 

If (Δ ≤ Dnew – Dold) 

- Generate random ni 

- αi = P(Ki ⊕ nr||ni) 

- βi = EKwti(h(IDi) ⊕ Dnew) 

- Send αi, βi, ni to reader ← 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 4: 

- Y = h(Ki) 

- Generate P(Y ⊕ nr||ni) to verify αj 

- if correct: Ki = h(Y) 

P(): Pseudorandom No. generator; Δ: Activity threshold; D: Sensor value; Ki: Secret number; ID: Tag identifier; h(): One-way hash 

function. 

Figure 2.13: Desynch attack-resistant robust authentication protocol (DRAP) by Rahman 
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Authentication in most RFID protocols is executed between one reader and one 

tag at a time. Liu et al. [31] proposed a grouping proofs-based authentication protocol 

(GUPA) to enable authenticating multiple tags and multiple readers simultaneously, such 

that multiple readers can authenticate a single tag, and a single reader can authenticate 

multiple tags in large-scale RFID. GUPA protocol is based on hierarchical identification 

between independent subgroups in a distributed RFID system, and the use of an 

asymmetric denial mechanism to resist denial-of-proof attack (DoP). For the anonymous 

authentication of a new entity, GUPA deploys a ring signature using lightweight 

cryptography (elliptic curve). It also uses lightweight bitwise operations for readers and 

tags secret information updates, PRNGs, one-way hash functions, timestamps for session 

freshness, and access lists for each legal reader/tag during system initialization as identity 

flags to prevent forgery and tracking attack, as fully explained in Figure 2.14. Since the 

flags are chosen randomly from the pseudonym index, queries and responses are 

independent for each session to resist DoP attack; hence, illegal proofs are eliminated 

during authentication. 

Database: DB Reader: Rj Tag: Ta 

Initialization Phase: 

1- Generate PRN rDB 
2- Send rDB to tag → 

 

6- Verify H1 in database for match 

7- H1 = (ΔRj||LR||rTy) 

8- PRNG (ΔRj) 
9- Send H1||PRNG (ΔRj) to tag → 

 

Authentication Phase: 

 

  

 
3- Generate rTy 

4- H1(LR||rDB) 

5- Send rTy||H1(LR||rDB) to DB ← 

 

 
 

 

10- PRNG−1(ΔRj) to obtain ΔRj 

11- H1 = (ΔRj||LR||rTy) to authenticate DB 

12- Add ΔRj to LR 

LR: Local access list; ΔRj: Reader’s information; H(): One-way hash function. 

Figure 2.14: Grouping proofs-based authentication protocol (GUPA) by Liu for a 
single-reader—single-tag case 
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Since tag collision is a major problem in the large-scale networks, Rahman and 

Ahamad [32] proposed two probabilistic batch authentication protocols to determine the 

valid tags efficiently and accurately in large-scale systems. FTest is a protocol based on 

Frame Slotted Aloha algorithm that is used to reduce the probability of collision slots. 

The other protocol is GTest, which is a protocol based on group batch authentication that 

is used to reduce the cost of detecting counterfeit tags. Their protocols use simple 

lightweight operations such as XOR and cyclic redundancy checks (CRC) with a shared 

key for each group of tags. The theory in both protocols is not to send the tag ID when 

responding, but rather accept or reject a tag by estimating the number of fake tags. In the 

FTest protocol that is depicted in Figure 2.15, a counterfeit threshold parameter is used in 

the system to reduce the number of rounds in the detection process and response time of 

the protocol, so that the entire tag responses do not need to be checked. Instead, the 

detection will stop if the percentage of counterfeit tags exceeds the counterfeit threshold. 

In GTest, the reader randomly selects a population of tags to authenticate. If one 

counterfeit tag is detected, the batch of tags will be considered invalid. The reader needs 

to read a large amount of data to identify the validity of a batch in GTest, so the reader 

still consumes time through the computation overhead from the tag search. Both FTest 

and GTest protocols are proved to be secure against tracking and privacy attacks since 

tags responses are based on dynamic frame size, random numbers, and ID that is not 

transmitted during communication. However, the FTest shows less execution time and 

better performance over GTest. 
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Server S Reader R Tag T: Shared group key ki 

Group Identification Phase: 

 

 

 

 

 

Authentication Initialization Phase: 

 

 

 

 

 

 

 

 

 

 

Counterfeit Detection Phase: 

 

4- Reconstruct RVS as only valid tags can 

compute correct h() 

5- Accept valid tags if RVS = RV 

1- Send nonce nr to tag→ 

 

3- Find a group key to decrypt the message. 

4- Identify the group of tags based on the group key. 

 

1- Send to server “Start authentication” ← 

2- Receive (f, r) from server 

3- Broadcast frame size and random no. 

 

 

6- Generate RV based on responses 0, 1, coll. 

7- Turn collision slot into singleton by removing one 

tag (removed tags remain silent until next phase) 

8- Send RV to server for verification. 

 

1- Send random nr from server to rem tags → 

 

3- Forward RV to server ← 

2- Respond by h(ki||nr) ← 
 

 

 

 

 
 

 

4- Each tag compute its slot position 

SP = h(id, r) mod f = 0 or 1 

5- Send SP to reader with random bits ← 
 

 

 

 

2- Respond h(id||nr) 

n: Nonce value; ki: Shared group key; h(): One-way hash function; SP: Slot position within frame; id: Tag ID; f: Frame size; r: Random N; 

RV: Response vector generated by reader; RVs: Response vector generated by server; rem: Set of tags removed to reduce collision slot.  

Figure 2.15: Batch authentication protocol based on Frame Slotted Aloha (FTest) by Rahman 

Another anti-collision security protocol (ACS) is proposed by Keqiang et al. [33] 

for a high-efficiency RFID system combining the chaotic sequence generator with the 

dynamic frame-slotted ALOHA algorithm for fast tag identification. The protocol scheme 

is based on a logistic mapping structure with XOR operation and spreading operation to 

generate real-time keys in a chaotic sequence that are used in authentication messages. 

Keys are updated in each response from tag to reader and reader to tag during the same 

session using iteration equations that are known only to the server and tag, such as in 

Figure 2.16. The protocol is effective against counterfeits and impersonates attacks, as 

the authentication scheme not only depends on the iterated key but also on spreading 
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code and random numbers, so faking at least one of them will result in a wrong response. 

The protocol requires only four message exchanges, low hardware cost, and low 

computation cost on the tag side. It also has lower energy consumption than other heavy 

and simple weight protocols because XOR uses less energy than symmetric encryption 

and hash functions. 

Server S: K0 Reader R Tag T: K’0 

 

 

 

 

 

 

 

 

 

 

 

 

 

- K0 = Master key, x0 = K0 to compute xi 

- Verify ChaosSpec using xi: 

• If there is collision, go to step5. 

• If no collision, proceed. 

- Perform one-time iteration to get  

xi+1 = Ki+1 

- Extract R’0 from H’(R0) and verify 

R’0 = R0  

- Tag is authenticated. 

- Extract ID from H’(ID) 

- Perform R1 iteration to get xj,   

j = (r+R1+R0) 

- Kj = xj 

- H(R1) = R1 ⨁ Kj 

- Send to reader (H(R1)) ⊗ ChaosSpec → 

Step 1: 

- Generate and send a frame size R0 

to tag → 

 

 

 

 

 

 

 

 

 

Step 3: 

- Send (H’(R0)||H’(ID)||R1) ⊗ 

ChaosSpec, and R0 to S ← 

 

 

 

 

 

 

 

 

 

 

- Send (H(R1)) ⊗ ChaosSpec → 

 

 

Step 5: Collision case 

- Increase tag’s slot counter by 1 

- Restart identification process in 

Step2 

Step 6: No authentication occurs 

- Issue AdjustQuery command 

- Adjust R0 to decide a new frame 

size 

- Send search signal to rest of tags 

→ 

 

Step 2: 

- Receive R0. 

- Choose slot index with the value in [1, R0] 

- Reset time slot counter = slot-index 

- r = 20, i = (r+R0), x’0 = K’0 

- x’k+1 = rx’k (1-x’k) iteration = x’i 

- x’i = ChaosSpec 

- Perform one-time iteration to get 

K’i+1 = x’i+1 

- H’(R0) = R0 ⨁ K’i+1 

- H’(ID) = K’i+1 ⨁ ID 

- Generate random R1 

- Send (H’(R0)||H’(ID)||R1) ⊗ ChaosSpec ← 

 

 

 

 

 

 

 

 

 

 

Step 4: 

- Perform the equations to get K’j = x’j 

- Calculate R’1 = H(R1) ⨁ K’j 

- If R’1 = R1, then K’j = Kj 

- R is authenticated 

R0: Frame size; i: Number of iterations; K’0: Tag key; K0: Server master key; K’i+1: Real-time key; H(), H’(): One-way hash 

functions; ChaosSpec: Spreading code; ID: Tag’s ID; R1: Random number generated by tag; r: Constant value to put the equation in 

chaotic state. 

Figure 2.16: Anti-collision security protocol (ACS) by Keqiang 
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Cho et al. [34] proposed a hash-based mutual authentication protocol (HBA) to 

defend against the brute force attack. This protocol was reported by Chang et al. [35] to 

be vulnerable to denial of service (DoS) and replay attacks. Later, Chang et al. proposed 

an improved (HBA+) protocol to avoid DoS and replay attacks using a shared PRNG 

algorithm between the server and tag to produce the same output that is used in updating 

the protocol values, as in Figure 2.17. Also, the confidentiality in the protocol is based on 

protecting the secret value datai using reader ID (Rid), which is only known to a 

legitimate reader and server. The improved protocol of Chang is considered to be 

efficient and secure against DoS attack, traceability, and forward secrecy. 

Server S Reader R Tag T 

 

 

 

 

 
 

 

Step 4: 

Search the database using I: 

- Found: 
I = Inew {EPCi, Auknew, Acknew, datai} 

I = Iold {EPCi, Aukold, Ackold, datai} 

M1’ = Auknew ⨁ Inew ⨁ PRNG(EPCk ⨁ 

Acknew ⨁ Rt ⨁ Rr) to authenticate T. 

- Not Found: termination. 

- B = datai ⨁ Ridk 

- M2 = PRNG(Auknew ⨁ Rt) ⨁ Acknew 

- C = H(datai ⨁ Rr) 
- Update database values and keys: 

Aukold = Auknew 

Auknew = PRNG(Auknew) 

Ackold = Acknew 

Acknew = PRNG(Acknew) 
Iold = Inew 

Inew = PRNG(Acknew ⨁ Inew) 

- send {B, C, M2} → 

Step 1:  

- Generate random No. Rr → 

 

 

 
Step 3: 

- A = H(Rid ⨁ Rr) 

- ← {M1, Rt, I, A, Rr} 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

Step 5: 

- Obtain datai from B 

- C’ = H(datai ⨁ Rr) 

- send M2 → 

 

Step 2: 

- Generate random No. Rt 

- M1 = Auk ⨁ I ⨁ PRNG (EPC ⨁ Ack ⨁ 

Rr ⨁ Rt) 

- ← {M1, Rt, I} 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

Step 6: 

- Compute M2’ = PRNG(Auk ⨁ Rt) ⨁ 
Ack 

- Update tag values and keys 

Rr, Rt: Random No. of reader/tag; Auk: Authentication key of tags shared with server; Rid: Reader ID; EPC: Electronic product 

code of tag; Ack: Access key of tags shared with server; I: Index value of tag; H(): One-way hash function; datai: Secret 

information of the tag’s object. 

Figure 2.17: Hash-based mutual authentication protocol (HBA+) by Chang 
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Z.Liu et al. [36] proposed variable linear shift-based authentication protocol 

(VLP) to support the implementation of RFID for the new EPC Gen2v2 standard, satisfy 

its security features of untraceability and access control, and reduce a tag’s read range. In 

Figure 2.18, the protocol is based on a lightweight encryption function called Variable 

Linear Feedback Shift Register (VLFSR), which is implemented at the application-

specific integrated circuit (ASIC) level. In every session, mutual authentication involves 

different random numbers from the tag and reader combined with the new secret value 

SID stored in the database to provide resistance against active attacks. 

Server S Reader R Tag T 

 

 

 

 

 

 

 

 

 

Step 5: Authenticate and Update 

1- Find an SIDj match in database based on UID 

2- Extract Rt1, Rt2  

3- (Rt2||Rt1) ⨁ SIDj 

4- Find mj from Mj table based on SIDj 

5- Bb = VLFSR (Rt1||Rr, mj) 

6- If Bb = Bt, proceed to update 

• mj+1 = (Rt2||Rt1) ⨁ mj 

• SIDj+1 = VLFSR (Rt1||Rt2, mj) 

• Store new values in Mj and keep the old in 

Mj−1 tables. 

7- If Bb ≠ Bt, find mj and SIDj from Mj−1 table 

and do step3 

8- If no match is found, protocol will stop. 

 

Step 6:  

- Send to reader VLFSR (Rt1||Rr, SIDj) → 

 

Step 1:  

- Generate random Rr 

- Send Rr to tag → 

 

 

 

 

 

Step 4: 

- Send to server Rr, Bt, (Rt2||Rt1) ⨁ SIDj and 

UID ← 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 7:  

- Send to reader VLFSR (Rt1||Rr, SIDj) → 

 

 

 

Step 2:  

- Generate random Rt1, Rt2 

- Secret value = mj 

- Bt = VLFSR (Rt1||Rr, mj) 

 

Step 3: 

- Send to reader Bt, (Rt2||Rt1) ⨁ SIDj ← 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

Step 8: Authenticate R and S 

- Authentication via received msg. 

- mj+1 = Rt2||Rt1) ⨁ mj 

- SIDj+1 = VLFSR (Rt1||Rt2, mj) 

SID: Session secure ID of tag; UID: Unique ID of tag; Rr: Reader random No.; Rt1, Rt2: Random No. generated by tag; mj: Secret value used 

in a session; VLFSR(): Variable LFSR function. 

Figure 2.18: Variable linear shift-based authentication protocol (VLP) by Z.Liu 
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Another protocol (OMP) is proposed by Niu et al. [37] mainly for passive tag 

ownership transfer using a lightweight authentication mechanism to support EPC Gen2 

standard. Since the ownership transfer is based on transferring the keys, the OMP 

protocol aims to prove the possession of the shared secret key to a tag and reader without 

disclosing it using ultra-lightweight permutation operation (Per), as in Figure 2.19. Yet, 

the protocol has no mechanism to check the freshness of the message that is sent by a 

legitimate reader. 

Server S Reader R: K, KM, EPC, RID1 Tag T: K, KM, EPC, RID, IDS 

Mutual 

Authentication: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1- Generate random rnd1, rnd2 of 96 bits 

2- Ai = rnd1i ⨁ PRNG(Ki ⨁ RID1i) ⨁ PRNG(Ki ⨁ 

RID2i) 

3- Bi = rnd2i ⨁ PRNG(rnd1i ⨁ Ki) 

4- Ci PRNG(rnd1i ⨁ RID1i) ⨁ PRNG(rnd2i ⨁ RID2i) 

5- Send Ai, Bi, Ci to tag → 

 

 

 

 

 

 

 

 

 

 

 

9- Verify D: 

- D’i = PRNG(Ki+1 ⨁ IDSi+1), where i = 1 to 6 

- If D is verified, tag is authenticated 

 

 

 

 

 
 

6- Extract rnd1, rnd2 

- rnd1i = Ai ⨁ PRNG(Ki ⨁ RID1i) ⨁ PRNG(Ki ⨁ 
RID2i) 

- rnd2i = Bi ⨁PRNG(rnd1i ⨁ Ki) 

- C’i = PRNG(rnd1i ⨁ RID1i) ⨁ PRNG(rnd2i ⨁ RID2i) 

 

7- If C = C’, reader authenticated 

- Ki+1 = Per(rnd1i, Ki) ⨁ K(i+1 mod 6) 

- IDSi+1 = Per(rnd2i, Ki) ⨁ Ki 

- Di = PRNG(Ki+1 ⨁ IDSi+1), where i = 1 to 6 
 

8- Send D to reader←  

K: Secret shared key for owners; KM: Master key to modify K. EPC: Static ID of a tag. RID: ID of reader owning tag. IDS: Pointer to 

tag database. 

Figure 2.19: Passive tag ownership authentication protocol (OMP) by Niu 

Dass and Om [38] also proposed an efficient authentication protocol (SEAS) that 

uses lightweight operations and a pseudo-random number generator (PRNG) for a low 

computational cost. Their scheme is based on a secure channel between the back-end 
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server and reader, prestored tags’ secret (SIDs) in the side of the tag, a one-way hash 

function of the tag ID in the server side, and rewritable memory with a flag indicator in 

the server side to update the secret values. Any change to the messages transmitted leads 

to terminate the communication during the verification to resist security attacks, as shown 

in Figure 2.20. 

Server S Reader R Tag T 

 

 

 

 

 

 

Step 4: 

Search the database using h(ID): 

- Not Found: termination 

- Found: verify V 

V’ = PRNG(Snew ⨁ NR ⨁ NT) 

Send Snew to reader → 

Flag = 0 

 

V” = PRNG(Sold ⨁ NR ⨁ NT) 

Send Sold to reader → 

Flag = 1 

 

 

 

Step 6: 

- Flag = 0 → S = Snew 

U = h (Snew||M) 

Sold = Snew 

Snew = Snew ⨁ U 

 

- Flag = 1 → S = Sold 

U = h (Sold||M) 

Sold = Sold 

Snew = Sold ⨁ U 

Step 1:  

- Generate random No. NR → 

 

 

 

Step 3: 

- ← {V,H, NR, NT} 

 

 

 

 

 

 

 

 

Step 5: 

- Reader takes Snew or Sold 

- M = PRNG(Snew, old, NR) 

- N = PRNG(M) 

- Send N to tag → 

- ← send M to server 

 

 

Step 2: 

- Generate random No. NT 

- V = PRNG (S ⨁ NR ⨁ NT) 

- H = h (ID) 

- ← {V, H, NT} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 6: 

- To authenticate reader: 

Calculate M’ = PRNG(S, NR) 

Calculate N’ = PRNG(M’) 

Verify N’ = N 

- If equal calculate U = h (S||M’) 

- Update S = S ⨁ U 

h(): One-way hash function; NR, NT: Random No. generated by reader/tag; S: Secret value of tag; ID: ID pseudonym of tag; 

Snew, Sold: Current and old session secrets of tag. 

Figure 2.20: Efficient authentication protocol (SEAS) by Dass and Om 
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An alternative solution to replace the central database in the RFID system is to 

use a serverless model in which the database server does not maintain a connection with 

the readers and tags during the communication. Regarding this challenge, Mtita et al. [39] 

proposed (SAP), a serverless security protocol used for the mass authentication of RFID 

tags in the presence of untrusted readers. In SAP protocol, the reader and tag do not 

communicate with the back-end server; instead, they authenticate each other using only 

ephemeral of the tag’s secrets that expire within a given time, as shown in Figure 2.21. 

Verification and authentication between the reader and tag are done during the 

authentication phase to exchange the data and generate the session key locally in both tag 

and reader for their next communication. The protocol has also been proved using the 

CryptoVerif tool [40], which was shown to have low computation overhead and 

resources. 

Server: S Reader: Rj Tag: Ti 

Initialization Phase: 

2- Generate Kij, tempij, ARij (access right) for 

each tag derived from time window and start 

date 
Kij = HMACidi(Wsj||ARij) 

3- Build lists of authenticated tags Lj for Rj 

Lj − {(temp1j, K1j), (temp2j, K2j),.., (tempij, 

Kij)} 

4- Send Lj, ARij, Wsj to Rj → 
 

Mutual Authentication Phase: 

 

 

1- Request permission from server S. 

 

 

 
 

 

 

 

 
1- Generate rj 

2- Send to tag A= WSj, ARij, rj → 

 

6- Verify H’ij = HMACKij (ri||rj) 

If equal: Ti is authenticated 
If not equal: Kij is not in the list and tag is 

not authorized 

7- Generate timestamp tj and calculate 

Vij = HMACKij (ri||tj) 

9- Send to tag C =  ti, Vij → 
 

 

12- Generate session key 

KS = HMACKij (tj||ri WSj) 

- Ti has Timestamp TSYS and idi 

 

 

 
 

 

 

 

 
 

3- Generate ri 

4- Hij = HMACKij (ri||rj) 

5- Send to reader B = Hij, ri ← 

 
 

 

 

 

10- Verify V’ij = HMACKij (ri||tj) 
If equal: Rj is authenticated 

11- Update TSYS = tj 

 

13- Generate session key 

KS = HMACK’ij (tj||ri WSj) 

TSYS: Tag static timestamp; tj: Reader timestamp; idi: Tag ID; Kij: Tag’s key; tempij: Temporary tag ID; ARij: Access rights; Wsj: 

Time window; Ks: Session key; Lj: List of authorized tags; ri, rj: Reader/Tag random No.  

Figure 2.21: Serverless security authentication protocol (SAP) by Mtita 
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2.1.4 Ultra-Lightweight Protocols 

As mentioned earlier in this paper, passive tags are small chips with scarce 

resources that can only support low-cost operations. The goal of ultra-lightweight 

protocols is to reduce the cost of RFID systems at a minimum and provide strong security 

for promising future use. In this regard, Sundaresan et al. [5] introduced an ultra-

lightweight serverless protocol (STS) using only simple XOR and 128-bit PRNG 

operations that require less than 2000 gates, three random number generation on the tag, 

and two message exchanges. In Figure 2.22, the STS protocol mechanism is to use a 

blind factor to hide the pseudo-random numbers that are used in communication between 

readers and tags to overcome impersonation attacks. An RFID tag is also able to preserve 

its location privacy by responding as a noise tag. Moreover, the protocol does not employ 

a one-way hash function nor any encryption conforming to EPC C1 G2 Standards. 

Aggarwal and Das [41] proposed the CHW+ protocol, which is based on a 

previous version introduced by Y. Chen, Wang, and Hwang (CWH) [42]. In Figure 2.23, 

the protocol CHW+ solves the problem of full disclosure attack due to the simple XOR 

operation that is used in the authentication message, which uses the bit rotation and 

shifting operation on the message before transmission to increase the protocol 

complexity. CWH+ protocol is resistant to replay attack, forge attack, and DoS with a 

very efficient computation. 

Huang and Li [43] proposed and implemented two improved protocols of RFID 

mutual authentication based on generating PadGen function in the ISO 18000-6C [44] 
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Server: ts Reader R Tag T 

Setup Phase: 

- Stores access list (AL) of all n tags: 

h(TID1, ts1) = id1, rts1, ctr1, ctrmax1 

h(TIDn, tsn) = idn, rtsn, ctrn, ctrmaxn 

- Establish shared rts between a reader and 

each tag to be searched. 

 

Search Phase: 

- Server is offline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Precompute and store id = 

h(TID, ts) 

 

 

 

 

 

 

Step 1: 

1- Check that ctr <= ctrmax 

2- Generate PRN rr 

3- B = rtsj ⨁ idi 

4- M1 = idi ⨁ PRNG (rtsj ⨁ rr) 

5- M2 = rr ⨁ B 

6- Broadcast M1, M2 to all tags 

→ 

 

 

 

 

 

 

 

 

Step 3: 

1- Extract tr from M4 

2- Verify rtsj = M3 ⨁ PRNG 

(idj ⨁ tr) 

3- If verified, tag is 

authenticated 

4- Update rtsj = M3 ⨁ PRNG 

(idj ⨁ tr) 

ctr = ctr + 1 

 

- Stores id = h(TID, ts). 

- Stores for each reader: 

rts1, rts1
−1, ctr1, ctrmax1, rr1

−1 

rtsm, rtsm
−1, ctrm, ctrmaxm, rrm

−1 

- ctr = 0. 

 

 

Step 2: 

1- B = rts ⨁ id 

2- Extract rr from M2 = B ⨁ rr 

3- Check rr: 

- If rr = rr
−1, a replayed msg, exit. 

- If rr ≠ rr
−1, proceed 

4- Verify id = M1 ⨁ PRNG (rts ⨁ rr): 

- If equal, reader is authenticated 

- If not equal, repeat using rts−1. 

- If not equal, respond with λ and exit. 

5- If id is verified, check if ctr < ctrmax: 

- Generate PRN tr 

- M3 = rts ⨁ PRNG (id ⨁ tr) 

- M4 = tr ⨁ B 

6- Update rr
−1 = rr 

7- If id is verified using rts: 

- Update rts−1 = rts 

- rts = PRNG (rts) 

- ctr = ctr + 1 

8- Send M3, M4 to reader ← 

AL: Access list for the reader; ts: Secret key of tag; rts, rts−1: Shared secrets between reader/tag; B: Blind factor to hide PRN;     ctr: 

Counter value; ctrmax: Number of times a reader is pre-authorized to search; TID: Tag ID; id: hashed value of TID; rr: Random No. of 

reader in current session. 

Figure 2.22: Ultra-lightweight serverless authentication protocol (STS) by Sundaresan 

protocol to protect the memory with a 32-bit access password. The concept of their 

protocols is to cover up the tag’s access password (Apwd) before transmitting the data 

using a set of 16-bit random numbers such as RTx and RMx. One of the improved 

schemes, PadGen with XOR (PGX), implements XOR operation between the random 
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number sets and the PadGen function; the other protocol, PadGen with Mod (PGM), 

implements a Modulo operation (MOD9) in the eight-bit half of the 16-bit random 

number set (RTx, RMx) to be used in the PadGen function. Both improved schemes 

conform to the EPC C1 G2 standard, do not require any hash function or key exchange, 

do not involve synchronization for hash or key values, and also show better efficiency 

during implementation. The security level of the MOD scheme is higher due to the low-

cost implementation but requires a higher computation cost in PadGen than XOR. 

Server S Reader R Tag T 

 

 

 

 

 

 

 

 

 

 

 

 

 

- n = weight(r) 

- r’ = Rot(r,n) 

- r’prev = Rot(rprev, n) 

- Retrieve and verify TID to authenticate 

tag. 

- r’’ = Rot(r’, n) 

- r’’prev = Rot(r’prev, n) 

- t2 = (TID + r’’prev) ⋀ r’’ 

- Update rold = rprev, rprev = r’ 

- Send t2 to tag → 

 

Step 1: 

- Generate random r. 

- s = RID ⨁ r 

- n1 = weight(RID), n1 = no. of bit value 1 of 

RID 

- s’ = Rot(s, n1) 

- Send s’ to tag → 

 

 

 

 

 

Step 3: 

- Forward t1, r to server ← 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 2: 

- s = Rot’(s’, n1) 

- Retrieve r = RID ⨁ s 

- n1 = weight(r) 

- r’ = Rot(r, n1) 

- r’prev = Rot(rprev, n1) 

- t1 = (TID ⨁ r’prev) + (r’ ⋀ r’prev) 

- Send t1 to reader ← 

 

 

 

 

 

 

 

 

Step 4: 

- Compute r’’, r’’prev as the 

server 

- t’2 = (TID + r’’prev) ⋀ r’’ 

- Verify t’2 = t2 

- Update rprev = r’ 

RID: Reader ID; Rot(): Rotation function; TID: Tag ID; Weight(r): number of 1’s in the binary string shifts r to the left for  n bits. 

Figure 2.23: Improved authentication protocol (CWH+) by Aggarwal and Dass  
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Huang and Jiang [45] proposed an ultra-lightweight reader–tag mutual 

authentication protocol (MACC) based on Chien and Chen’s protocol [46] to overcome 

forge attacks, DoS, and forward security attacks. Although the improved scheme uses 

only lightweight operations such as RNG, PRNG, and XOR, it involves an exhaustive 

search in the database for tag pseudo-IDs in every session that leads to computational 

overhead, as shown in Figure 2.24. It also fails to resist tracking attacks. 

Server S Reader R Tag T 

 

 

 

 

 

 

 

Step 4: 

- Verify VR using reader ID and r1 

- Search database for tag PIDi 

- Verify M1 as: r2 = M1 ⨁ Ni
old OR r2 = M1 ⨁ Ni

new 

- Verify M2 as: M2 = P(EPCi||r1||r2||Ki
old or Ki

new) 

- M3 = P(EPCi||r2||Ni
x||Ki

x) x = old or new 

- Send M3 to reader → 

 

- If x = new, proceed to update 

Ni
old = Ni

new, Ni
new = P(Ni

new ⨁ r2) 

Ki
old = Ki

new, Ki
new = P(Ki

new ⨁ r2) 

PIDi
old = PIDi

new, PIDi
new = P(PIDi

new ⨁ r2) 

Step 1: 

- Generate r1 

- VR = h(RIDj ⨁ r1) 

- Send to tag r1 → 

 

Step 3: 

- Send to server (M1, M2, PIDi, r1, VR) 

 

 

 

 

 

Step 5: 

- Forward M3 to tag → 

 

 

Step 2: 

- Generate r2 

- M1 = Ni ⨁ r2 

- M2 = P(EPCi||r1||r2||Ki) 

- Send to reader (M1, M2, PIDi) ← 

 

 

 

 

 

 

Step 6: 

- Verify M3 = P(EPCi||r2||Ni||Ki) 

- Ni = P(Ni ⨁ r2) 

- Ki = P(Ki ⨁ r2) 

- PIDi = P(PIDi ⨁ r2) 

P: Access key with reader; PID: Pseudonym ID of tag; Ni: Nonce; EPC: Electronic product code for the tag; Ki: Authentication key. 

Figure 2.24: Ultra-lightweight mutual authentication protocol (MACC) by Huang and Jiang 

Huang and Jiang [45] proposed another mutual authentication protocol (MACD) 

based on Chen and Deng’s scheme [47] to overcome forge attacks, DoS, replay attacks, 

and mainly the tag identification time. It is shown in Figure 2.25 that the MACD protocol 

uses ultra-lightweight operations and achieves a lower communication cost between tag 

and reader than the other improved scheme, MACC. 
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Server S Reader R Tag T 

 

 

 

 

 

 

 

 

 

Step 4: 

- Search database for EPCi match 

- r2 = B ⨁ (Pi
old||r1) OR B ⨁ (Pi

new||r1) 

- A’ = r1 ⨁ r2 ⨁ Pi
old or Pi

new 

- Verify M1 = CRC(EPCi||A’|| B|| Ki
old or Ki

new) 

- M2 = CRC (EPCi||r2||Pi
x||Ki

x)  x = old, new 

- Send M2 to reader → 

 

 

 

- If x = new, proceed to update 

Pi
old = Pi

new, Pi
new = P(Pi

new ⨁ r2) 

Ki
old = Ki

new, Ki
new = P(Ki

new ⨁ r2) 

Step 1: 

- Generate r1 

- Send r1 to tag → 

 

 

 

 

 

Step 3: 

- Send to server (M1, B, r1) 

 

 

 

 

 

 

Step 5: 

- Send M2 to tag → 

 

 

Step 2: 

- Generate r2 

- A = r1 ⨁ r2 ⨁ Pi 

- B = P(Pi||r1) ⨁ r2 

- M1 = CRC(EPCi||A||B||Ki) 

- Send to reader (M1, B) ← 

 

 

 

 

 

 

 

 

 

Step 6: 

- Verify M2 = CRC (EPCi||r2||Pi||Ki) 

- Pi = P(Pi ⨁ r2) 

- Ki = P(Ki ⨁ r2) 

P: Access key with reader; Ki: Authentication key; Ni: Nonce; EPC: Electronic product code for the tag; CRC(): Cyclic 

redundancy check function. 

Figure 2.25: Mutual authentication protocol (MACD) by Huang and Jiang 

Considering the complexity of the authentication protocol, Hopper and Blum 

proposed the first HB protocol to identify unaided humans to computers [48]. Many 

authors adopted the idea of HB protocol to identify tags in RFID networks. HB family 

protocols are based on the hard problems of Learning Parity with Noise (LPN), which 

involves the calculation of inner products of binary vectors and Bernoulli noise bit 

generation [49]. In this regard, Lin and Song [50] proposed HBROT, which is one of the 

latest HB protocols that produce the key in each authentication round using the rotation 

function. The protocol is considered to be secure against most of the RFID attacks. 
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Another improvement of the HB protocol is proposed by Juels and Weis [51] as 

(HB+) to overcome the weaknesses of the original HB. The HB+ protocol involves two 

secret keys, x, and y, which are used with shared blind vectors between the reader and 

tag. The reader and tag verify the values that are computed to perform mutual 

authentication. Later, the protocol is reported by Gilbert et al. [52] to be vulnerable to the 

man-in-the-middle attack (MIM). Hence, Ouaskou et al. [53] proposed a variant of HB 

protocol based on Permutation function (HBPER). The protocol performs a permutation 

of the keys x,y during each round of the protocol to update the value of the keys, as 

shown in Figure 2.26. This method secures the protocol against the MIM attack that is 

reported in the HB+ protocol, although both protocols HB+ and HBPER almost have the 

same complexity. 

Reader R Tag T 

x = xk−1, …, x1, x0 

y = yk−1, …, y1, y0 

 

Step 1:  

- Generate random challenge (a) 

- Send (a) to T → 

 

 

 

 

 

Step 3: 

- Compute y = Per(y,a) 

- Compute x = Per(x,a) 

- Verify z = a . x 

x = xk−1, …, x1, x0 

y = yk−1, …, y1, y0 

 

 

 

Step 2:  

- Compute y = Per(y,a) 

- Compute x = Per(x,a) 

- Compute z = a . x ⨁ v 

(v = noise bit; v = 1 with probability of ) 

- Send z to R ← 

 

x: Shared key by tag and reader of k-bit; k: Length of secret keys; y: Shared key by tag and reader of k-bit; η = noise level ∈]0,1/2[). 

Figure 2.26: A variant of hb protocol based on permutation function (HBPER) by Ouaskou 
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2.2 Analysis and Security Evaluation 

In this section, we compare the different protocols in terms of computation, 

security requirements, and attacks resistance. Table 2.2.1 demonstrates the different 

operations computed by the tag in each protocol and the communication overhead based 

on the number of transmitted messages between tag and reader. 

2.2.1 Comparison of Computation Cost 

We denote TENC, TDEC, TPRNG, TRNG, TSMUL, TXOR, TCH, TH, TCRC, TROT, TSHIFT, 

TITER, TBIT, TSPR, TPER, TMOD, TVLFSR as the computation cost for encryption, decryption, 

pseudo-random number generator, random number generator, scalar multiplication, XOR, 

cryptographic hash, one-way hash function, cyclic redundancy check, rotation, shifting, 

iteration, bitwise operation, spreading, permutation, modulo, variable linear shift register 

function, respectively. Tag overhead is classified based on the cryptographic level of 

operations used in the protocol: high for symmetric key cryptography and scalar 

multiplication, medium for a one-way hash function, and low for other bitwise operations 

and random number generators. The passes are designated for the number of messages 

sent by a reader or a tag. 

2.2.2 Comparison of Security Threats 

Protocols resistance to different RFID threats is presented in Table 2.2, where we 

denote ST1 for a replay attack, ST2 for a man-in-the-middle attack (MITM), ST3 for 

eavesdropping, ST4 for an impersonating attack, ST5 for traceability, ST6 for 

desynchronization , ST7 for denial of service (DoS), and ST8 for other types of attack. 
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Table 2.2.1 Comparison of the Computation Cost on Tag 

Protocol Operations 
Tag 

Passes 

Reader 

Passes 
Tag Overhead 

SB-A [9] 1 TENC + 2 TDEC + 2 TPRNG 2 3 High 

SB-B [9] 2 TENC + 2 TDEC + 2 TPRNG 2 3 High 

EMA [6] 2 TSMUL + 2 TCH 2 1 High 

ECU [11] 2 TSMUL + 2 TCH 1 1 High 

SPA [12] 4 TSMUL + 1 TCH 1 1 High 

PII [13] 4 TSMUL + 3 TCH 1 1 High 

RUND [14] 2 TH     OR    1 TENC + 1 TPRNG 1 2 High 

IECC [15] 2 TSMUL + 2 TH 1 2 High 

EECC [16] 2 TSMUL + 2 TH 1 2 High 

RBAC [18] 2 TENC + 2 TDEC + 1 TPRNG 2 2 High 

DRAP [30] 1 TENC + 3 TXOR + 3 TH + 1 TRNG + 2 TPRNG 1 2 High 

NRS [19] 10 TXOR + 3 TH 4 5 Medium 

NRS+ [8] 10 TXOR + 6 TH 4 5 Medium 

NRS++ [20] 8 TXOR + 4 TH 1 2 Medium 

ACSP [21] 3 TXOR + 7 TH + 4 TCRC 1 4 Medium 

ACSP+ [22] 4 TXOR + 8 TH 2 4 Medium 

ACSP++ [20] 6 TXOR + 8 TH 1 2 Medium 

MASS [28] 4 TXOR + 2 TH + 1 TRNG 1 2 Medium 

EP-UAP [29] 2 TH + 1 TRNG 1 2 Medium 

GUPA [31] 2 TH + 3 TPRNG + 19 TBIT 3 3 Medium 

HBA [34] 6 TXOR + 2 TH + 1 TRNG + 4 TMOD 1 2 Medium 

VLP [36] 2 TXOR + 2 TRNG + 3 TBIT + 2 TVLFSR 1 2 Medium 

SEAS [38] 1 TXOR + 2 TH + 1 TRNG + 3 TPRNG + 1 TBIT 1 2 Medium 

SAP [39] 2 TH + 2 TRNG 1 2 Medium 

LAP [23] 2 TXOR + 1 TRNG + 2 TPRNG + 1 TROT + 1 TSHIFT 2 2 Low 

Flyweight [26] 5 TPRNG 3 3 Low 

FTest [32]  1 TXOR + 3 TCRC 3 2 Low 

ACS [33] 3 TXOR + 2 TITER + 1 TSPR 1 2 Low 

HBA+ [35] 7 TXOR + 1 TRNG + 5 TPRNG 1 2 Low 

OMP [37] 12 TXOR + 6 TPRNG + 2 TPER 1 1 Low 

STS [5] 7 TXOR + 3 TPRNG 1 1 Low 

CWH+ [41] 2 TXOR + 5 TROT + 1 TSHIFT + TBIT 1 1 Low 

PGX [43] 8 TXOR + 2 TRNG 2 2 Low 

PGM [43] 4 TXOR + 2 TRNG + 32 TMOD 2 2 Low 

MACC [45] 6 TXOR + 5 TPRNG 1 2 Low 

MACD [45] 5 TXOR + 3 TPRNG + 1 TCRC 1 2 Low 

HBROT [50] 1 TRNG + 2 TROT + 1 TXOR + 1 TBIT 1 1 Low 

HBPER [53] 1 TRNG + 2 TPER + 1 TXOR + 1 TBIT 1 1 Low 

TENC: encryption, TDEC: decryption, TPRNG: pseudo-random number generator, TRNG: random number generator, TSMUL: 

scalar multiplication, TXOR: XOR, TCH: cryptographic hash, TH: one-way hash function, TCRC: cyclic redundancy check, 

TROT: rotation, TSHIFT: shifting, TITER: iteration, TBIT: bitwise operation, TSPR: spreading, TPER: permutation, TMOD: modulo, 

TVLFSR: variable linear shift register function. 
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We found that most of the recently proposed protocols do not pay close enough attention 

to DoS, MITM, and eavesdropping attacks, while most of the protocols consider the 

system security against replay, impersonate, traceability, and desynchronization attacks. 

Certainly, protocols [35],[15],[16],[20],[31],[50, 53] are strongly resistant to all of the 

major attacks. 

2.2.3 Comparison of Security Requirements 

Security requirements for an RFID system should be satisfied with the system to 

defend against the attacks mentioned in this paper. Table 2.2.3 compares the security 

requirements in each protocol, which includes mutual authentication (SR1), 

confidentiality (SR2), message integrity (SR3), privacy (SR4), forward secrecy (SR5), 

backward secrecy (SR6), tag anonymity (SR7), and conforming to EPC standards (SR8). 

We found that most of the protocols fully considered mutual authentication, privacy, and 

data protection, while backward secrecy is given the least attention, and should be more 

considered in future work. However, Niu et al. [37] and X. Chen [20] completely 

satisfied all of the security requirements in their protocol. 

Since the RFID passive tag has limited resources to compute complex 

operations, the heavyweight and simple-weight protocols are not feasible for practical 

implementation. However, lightweight and ultra-lightweight protocols use only simple 

operations within the tag computation limits and show the lowest tag overhead level. 

Lightweight and ultra-lightweight protocols are considered the most suitable for the 

current applications. Another vital aspect when considering the appropriate RFID 

protocol is the security resistance to the attacks. We found out that Chang et al. [35],  
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Table 2.2.2: Comparison of Various System Requirements 

ST1: replay attack, ST2: man-in-the-middle, ST3: eavesdropping, ST4: impersonate attack, ST5: 

traceability, ST6: desynchronization, ST7: DoS, ST8: other types of attack, Y: satisfied, N: not satisfied. *: 

not applicable 

 

 ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8 

SB-A [9] Y Y Y Y Y Y * Cloning 

SB-B [9] Y Y Y Y Y Y * Cloning 

ECU [11] Y Y * Y Y * * * 

SPA [12] N * * N Y * * * 

EMA [6] Y * * N N * * * 

PII [13] Y * * Y Y * * * 

RUND [14] Y * * Y Y Y Y * 

IECC [15] Y Y Y Y Y Y Y Cloning 

EECC [16] Y Y Y Y Y Y Y Spoofing 

RBAC [18] Y * * Y Y * Y * 

NRS [19] N Y N N N N N * 

NRS+ [8] N Y Y N N N N * 

NRS++ [20] Y Y Y Y Y Y Y * 

ACSP [21] N N N N N N N Counting 

ACSP+ [22] N * * N Y Y N Counting 

ACSP++ [20] Y Y Y Y Y Y Y Counting 

LAP [23] Y * * N N N Y * 

Flyweight[26] Y Y Y Y Y Y * * 

MASS [28] N N N N Y N * * 

EP-UAP [29] N Y Y N Y * * * 

DRAP [30] Y * * Y Y Y Y Y 

GUPA [31] Y Y Y Y Y Y Y DoP 

FTest [32] Y Y Y Y Y * * Counterfeit +Collision 

ACS [33] Y Y Y Y Y * * Counterfeit +Collision 

HBA [34] N Y Y Y Y Y N Brute + Counterfeit 

HBA+ [35] Y Y Y Y Y Y Y Brute for 

VLP [36] Y Y Y * Y Y * * 

OMP [37] N * * Y Y Y Y * 

SEAS [38] Y Y * Y Y Y Y * 

SAP [39] Y * Y Y Y * * * 

STS [5] Y * * Y Y Y Y * 

CWH+ [41] Y * Y Y * Y * Disclosure 

PGX [43] Y Y Y Y N Y * Cloning 

PGM [43] Y Y Y Y N Y * Cloning 

MACC [45] Y Y * Y N Y Y * 

MACD [45] Y Y * Y Y Y Y * 

HBROT [50] Y Y Y Y Y Y Y * 

HBPER [53] Y Y Y Y Y Y Y * 
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Table 2.2.3: Comparison of the Security Requirements 

 SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8 

SB-A [9] Y Y Y Y Y * Y N 

SB-B [9] Y Y Y Y Y * Y N 

ECU [11] N Y Y Y Y * Y N 

SPA [12] * * * * N * * * 

EMA [6] * * * * N * * * 

PII [13] * * * * N * * * 

RUND [14] Y Y Y Y Y * Y N 

IECC [15] Y Y Y Y Y Y Y N 

EECC [16] Y Y Y Y Y Y Y N 

RBAC [18] Y Y Y Y * * Y N 

NRS [19] N Y N N N N N Y 

NRS+ [8] N Y Y N N N N Y 

NRS++ [20] Y Y Y Y Y Y Y Y 

ACSP [21] Y N N N N N N Y 

ACSP+ [22] Y Y Y * N Y * Y 

ACSP++ [20] Y Y Y Y Y Y * Y 

LAP [23] Y Y Y N Y * N Y 

Flyweight [26] Y Y Y Y Y Y Y Y 

MASS [28] Y Y N * Y * * Y 

EP-UAP [29] N Y Y Y * * Y Y 

DRAP [30] Y * * Y * * Y Y 

GUPA [31] Y Y Y Y Y * Y Y 

FTest [32] N Y Y Y Y * Y Y 

ACS [33] Y * * Y * * Y Y 

HBA [34] Y Y Y Y Y * Y Y 

HBA+ [35] Y Y Y Y Y * Y Y 

VLP [36] Y Y Y Y Y * Y Y 

OMP [37] Y Y Y Y Y Y Y Y 

SEAS [38] Y Y Y Y Y * Y Y 

SAP [39] Y Y Y * * * * Y 

STS [5] Y Y Y Y Y * Y Y 

CWH+ [41] Y Y Y * Y * * Y 

PGX [43] Y * * N * * N Y 

PGM [43] Y * * N * * N Y 

MACC [45] Y Y Y N Y * N Y 

MACD [45] Y Y Y Y Y * Y Y 

HBROT [50] Y Y Y Y Y * * Y 

HBPER [53] Y Y Y Y Y * * Y 

SR1: mutual authentication, SR2: confidentiality, SR3: message integrity, SR4: privacy, SR5: forward secrecy, SR6: 

backward secrecy, SR7: tag anonymity, SR8: conforming to EPC standard, Y: satisfied, N: not satisfied, *: not 

applicable. 

Farash [15], Zhang and Qi [16], X. Chen et al. [20], Liu et al. [31], Lin and Song [50], 

and Ouaskou et al. [53] protocols successfully resist all of the major attacks. Although 

the other protocols could not resist all of the attacks, they could perform better than the 

fully secure protocols in term of computation cost; examples include the protocols 

presented in Farash [15], Zhang and Qi [16], X. Chen et al. [20], and Liu et al. [31], 
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which have high computation overhead on the tag side. We encourage researchers to pay 

attention to the forward and backward security since most protocols do not reflect on 

these two types of attacks. Finally, maintaining the basic security requirements for an 

RFID system is required to achieve protection against the mentioned attacks in this 

literature. We assess that only the protocols of Niu et al. [37] and X. Chen et al. [20] 

satisfy all of the security requirements to maintain the system in a stable and available 

state. Even though this review shows security variation among the reviewed protocols, 

each one could still be a preference over others, depending on the requirements of the 

application in hand. 
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CHAPTER 3: PROPOSED SERVERLESS RFID 

AUTHENTICATION MODEL 

3.1 Network Model 

RFID passive tags are distributed in an area of interest and attached to mobile 

objects, i.e. cars. All the tags have the same resources and computational capabilities. The 

passive tag has no power source and gets activated based on the electromagnetic waves 

that are sent from the reader at the beginning of the communication. The RFID reader is a 

scanning device that is either in a fixed position or mobile handheld. It has more 

resources and computational capability than the passive tag. It collects the tag 

information such as the Electronic Product Code (EPC) [3] that is a 96-bit string of data 

contains the tag identity, organization, protocol, product type, and owner. The reader 

reports the scanned information to the database server. The Server is a centralized 

database device with a computer program that delivers, stores and manages all the 

information of the reader and tag. The reader interrogates the tag in the range by sending 

a challenging request signal to start the communication. The tag, on the other hand, 

responds to the reader’s request based on the approved protocol to verify its legitimate 

identity. The reader forwards the tag’s response to the server to search for the correct 

information of the tag in the database. The server supports the reader to authenticate the 
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tag to start a secure channel between the reader and the tag for their further 

communication. In addition, the tag also uses the approved protocol to verify the reader’s 

identity to avoid compromising the secret information or location of the tag. 

3.2 Serverless Model 

The server role is eliminated in the proposed serverless model of RFID. The 

backend server is not available during the communication between the reader and the tag. 

The reader and tag should be able to verify each other and process the authentication 

messages successfully while the server is offline. Since the passive tag is considered a 

low constraint device with scarce resources, the transmitted message between the reader 

and the tag should carry simple operations within the capability of the tag to perform. 

Therefore, we consider the elliptic curve cryptography that can be operated by the passive 

tag to exchange the secret keys. We employed the elliptic curve key agreement based on 

the discrete log problem in Diffie-Hellman algorithm [54] that allows the reader and the 

tag to establish a shared key from their public and private keys through an insecure 

channel to encrypt the transmitted messages. The elliptic curve is a plane curve over a 

finite field that contains points satisfying the following equation: 

𝒚𝟐 = 𝒙𝟑 + 𝒂𝒙 + 𝒃 
(

(1) 

The protocol uses the multiplicative group of integers modulo P, and G as a 

primitive root modulo P, where P is prime. The reader and the tag choose random 

integers a, b respectively as their private keys and compute their public keys as the 

following: 
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𝑨 = 𝑮𝒂 𝒎𝒐𝒅 𝑷 (2) 

𝑩 = 𝑮𝒃 𝒎𝒐𝒅 𝑷 (3) 

The values of A and B are exchanged between the reader and the tag. Then, the 

reader computes the shared secret s using the receiver B, and G, P as the following: 

𝒔 = 𝑩𝒂 𝒎𝒐𝒅 𝑷 (4) 

The tag also computes the shared secret s using the received A, and G, P as the 

following: 

𝒔 = 𝑨𝒃 𝒎𝒐𝒅 𝑷 (5) 

As a result, both the reader and the tag end up calculating the same value as their 

shared secret keys because the modulo rules satisfy the following: 

𝑨𝒃 𝒎𝒐𝒅 𝑷 = 𝑮𝒂𝒃 𝒎𝒐𝒅 𝑷 = 𝑮𝒃𝒂 𝒎𝒐𝒅 𝑷 = 𝑩𝒂 𝒎𝒐𝒅 𝑷 (6) 

which also means: 

(𝑮𝒂 𝒎𝒐𝒅 𝑷)𝒃 𝒎𝒐𝒅 𝑷 = (𝑮𝒃 𝒎𝒐𝒅 𝑷)𝒂 𝒎𝒐𝒅 𝑷 (7) 

Based on the points P and G, the resulted shared secret can take any value 

between 1 and P-1 that satisfies the following condition: 

𝟏 ≤ 𝒔 ≤  𝑷 − 𝟏  

The security of the elliptic curve algorithm lies in the complexity of computing 

the original values of public and private keys to obtain the secret key. 

3.3 Communication Model 

In this section, we present the communication model between the RFID entities. 
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3.3.1 Setup Phase 

This phase handles transferring the necessary data and values from the database 

server to the reader and the tag. The server, the reader, and the tag share by manufacturer: 

the elliptic curve point generator and the server public key. The tag by default stores its 

random identifier that is updated every session to protect the real identity of the tag. The 

setup phase is also considered a renewal phase such that the reader and the tag request 

new values to start a new communication session. The renewal phase is necessary when 

the timestamp expires, or any secret value is compromised to an unauthorized party. 

Table 3.3.1: Protocol Notations 

P Point generator of G 

G An additive group of prime order q on an elliptic curve  

yprv, rprv , tprv Private keys of server, reader, tag 

Ypub, Rpub , Tpub Public keys of server, reader, tag 

Xi Tag identifier 

Tagi tag ID, group ID, Timestamp 

Gkj , Gkj
old Current and old values for Group ID 

Listk List of tags share the same group ID 

Unlike the currently available RFID protocols, the setup phase in SLEC protocol 

is assumed to be insecure and functions as the following steps: 

1) The reader and the tag generate random numbers 𝑟𝑝𝑟𝑣1, 𝑡𝑝𝑟𝑣1 respectively, where 

𝑟, 𝑡 𝜖𝑍𝑞 , then compute their public key using the private keys and the point 

generator as: 

𝑹𝒑𝒖𝒃𝟏 = 𝒓𝒑𝒓𝒗𝟏 ∗ 𝑷 (8) 

𝑻𝒑𝒖𝒃𝟏 = 𝒕𝒑𝒓𝒗𝟏 ∗ 𝑷 (9) 
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2) The reader and the tag compute the server secret message of M1, M2 respectively 

using their private keys  𝑟𝑝𝑟𝑣1, 𝑡𝑝𝑟𝑣1 and the stored public key of the server Y as 

the following:  

𝑴𝟏 = 𝒓𝒑𝒓𝒗𝟏 ∗ 𝒀 (10) 

𝑴𝟐 = 𝒕𝒑𝒓𝒗𝟏 ∗ 𝒀 (11) 

3) The reader and tag send the computed server shared secret M1, M2 to the server, 

then the server obtains the public keys of both reader and tag as: 

𝑹′𝒑𝒖𝒃𝟏 = 𝒚−𝟏 ∗ 𝑴𝟏 (12) 

𝑻′𝒑𝒖𝒃𝟏 = 𝒚−𝟏 ∗ 𝑴𝟐 (13) 

4) The server, in turn, computes the shared secret for each reader and tag for further 

communication with the reader and the tag as the following: 

𝑴′𝟏 = 𝒚𝒑𝒓𝒗 ∗ 𝑹 ==  𝒓𝒑𝒓𝒗𝟏 ∗ 𝒀 = 𝑴𝟏 (14) 

𝑴′𝟐 = 𝒚𝒑𝒓𝒗 ∗ 𝑻 ==  𝒕𝒑𝒓𝒗𝟏 ∗ 𝒀 = 𝑴𝟐 (15) 

5) The server generates and stores the following information for each tag: 

• Random Xi as tag identifier. 

• Timestamp Ts. 

• Group ID Gk. 

such that Tagi = {Xi, GK, Ts} 

6) The server then generates a list of tags for each reader contains a group of tags that 

share the same group ID.  
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7) Further, the server sends the reader the tag list as M3, and sends the tag its 

information as M4: 

𝑴𝟑 = 𝑳𝒊𝒔𝒕𝒌 + 𝒉( 𝑹′
𝒑𝒖𝒃𝟏, 𝑴′

𝟏) (16) 

𝑴𝟒 = 𝑻𝒂𝒈𝒊 + +𝒉( 𝑻′
𝒑𝒖𝒃𝟏, 𝑴′

𝟐) (17) 

8) The reader computes and verifies the hash value to obtain the list of tags. The 

tag also validates the hash value to receive the tag information. The server current public 

key is not shared during the communication, so only the legitimate reader and tag that 

have the real server public key will be able to compute and verify the hash value to obtain 

the messages sent by the server 

3.3.2 Authentication Phase 

When the setup phase is completed successfully, each reader will have a list of 

tags that have: tag ID, group ID, a timestamp for each tag, and the tag will have: tag ID, 

group ID, and timestamp. The communication starts with mutual authentication between 

the reader and the tag as the following steps: 

1) The reader generates a random number 𝑟𝑝𝑟𝑣2, where 𝑟 𝜖 𝑍𝑞 then computes its 

public key using the private keys and the point generator as: 

𝑹𝒑𝒖𝒃𝟐 = 𝒓𝒑𝒓𝒗𝟐 ∗ 𝑷 (18) 

2) The reader computes the M1, and M2 as the following:  

𝑴𝟏 = 𝒉(𝑮𝒌𝒋) (19) 

𝑴𝟐 = 𝑹𝒑𝒖𝒃𝟐⨁ 𝑻𝒔 (20) 

Then, the reader sends M1, and M2 to the tag. 
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3) The tag will process four steps: 

- Validate 𝑀1 = ℎ(𝐺𝑘𝑗) to verify the intended group using the current or the 

old value of Gk. Based on the group verification, the tag generates a random 

number 𝑡𝑝𝑟𝑣2, where 𝑡 𝜖 𝑍𝑞 and computes its public key as: 

𝑻𝒑𝒖𝒃𝟐 = 𝒕𝒑𝒓𝒗𝟐 ∗ 𝑷 (21) 

- Obtain the reader public key from M2 

𝑹𝒑𝒖𝒃𝟐 = (𝑴𝟐 ⨁ 𝑻𝒔) − 𝒀 (22) 

- Compute the secret share key with the reader using the reader obtained public 

key  

𝑴𝟑 = 𝒕𝒑𝒓𝒗𝟐 ∗ 𝑹𝒑𝒖𝒃𝟐 (23) 

- Compute the authentication message M4 and sends it to the reader 

𝑴𝟒 = 𝒉(𝑿𝒊, 𝑹𝒑𝒖𝒃𝟐 , 𝑻𝒑𝒖𝒃𝟐 , 𝑮𝒌𝒋) (24) 

- Update the values of the tag ID, Gkj
old, and Gkj 

𝑿𝒊 = 𝑷𝑹𝑵𝑮(𝑿𝒊) (25) 

𝑮𝒌𝒋
𝒐𝒍𝒅 = 𝑮𝒌𝒋 (26) 

𝑮𝒌𝒋 = 𝑷𝑹𝑵𝑮(𝑮𝒌𝒋) (27) 

4) The reader extracts 𝑇′𝑝𝑢𝑏2 from the received message and verifies the hash value 

of M4 to authenticate the tag 

𝑻′𝒑𝒖𝒃𝟐 = 𝒓𝒑𝒓𝒗𝟐
−𝟏 ∗ 𝑴𝟑 (28) 

5) The reader computes M5 and sends it to the tag; then, updates the values of the tag 

ID, Gkj,  

𝑴𝟓 = 𝒉(𝑿𝒊, 𝑹𝒑𝒖𝒃𝟐 , 𝑻′𝒑𝒖𝒃𝟐) (29) 
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𝑿𝒊 = 𝑷𝑹𝑵𝑮(𝑿𝒊) (25) 

𝑮𝒌𝒋 = 𝑷𝑹𝑵𝑮(𝑮𝒌𝒋) (27) 

6) The tag verifies M5 to authenticate the reader 

3.3.3 Recovery Phase 

In an event where any value of the communication is compromised, the tag or the 

reader can renew the communication values from any server checkpoint during the 

transportation route. The recovery phase is similar to the security setup phase presented 

in this chapter. The tag and reader will exchange their newly generated public keys using 

the server’s public key stored in their memory. This will allow the reader and tag to be 

retrieved back into the network with new values. 
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CHAPTER 4: METHODOLOGY 

 4.1 Experiment Design 

In our SLEC protocol, we created an RFID network with a dynamic size that the 

number of readers and tags can be increased or decreased. We included one server, five 

readers, and twenty tags that are placed in objects such as cars. The distance range 

between the tags and readers is initially assumed to be a few meters based on the reading 

range of Electronic Product Code Class1 generation 2 of RFID passive tags [3]. The 

server initializes a database table to store all the readers and tags unique IDs. The readers 

are placed in fixed positions such as poles along the route of the mobile tags. Before the 

car departs the dealership inventory, the setup phase is executed, and all the values are 

stored in the tag and readers. During the tag movement, the reader can scan the tag in the 

car to perform the mutual authentication and thus, obtain the required information of the 

tag. 

4.2 Serverless Authentication Based on Elliptic curve Algorithm 

The proposed protocol is implemented based on the following algorithm: 
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Algorithm 1 SLEC 
Input parameters: minimum value for server_public_key (Y), point generator (P) 

                              tag random identifier (Xi) in server 
Server:  Reader:  Tag:  

Setup: 

 

 

 

 

 

Step2: 

- extract 𝑅𝑝𝑢𝑏1 , 𝑇𝑝𝑢𝑏1 from 𝑀1 , 𝑀2 

𝑅′𝑝𝑢𝑏1 = 𝑦−1 ∗ 𝑀1 

𝑇′𝑝𝑢𝑏1 = 𝑦−1 ∗ 𝑀2 

- generate 𝑇𝑎𝑔𝑖 : [𝑋𝑖 , 𝑇𝑠, 𝐺𝑘𝑗] 

- create 𝑇𝑎𝑔𝐿𝑖𝑠𝑡𝑘 : [𝑇𝑎𝑔𝑖, . . , 𝑇𝑎𝑔𝑛 

      𝑀3 = 𝑇𝑎𝑔𝐿𝑖𝑠𝑡𝑖 +
ℎ(𝑅′

𝑝𝑢𝑏1, 𝑀1) 

      𝑀4 = 𝑇𝑎𝑔𝑖 + ℎ(𝑇′
𝑝𝑢𝑏1, 𝑀2) 

- send 𝑀3 to reader → 

- send 𝑀4 to tag → 

Step1: 

- select random 𝑟𝑝𝑟𝑣1 𝜖𝑍𝑞 

- 𝑅𝑝𝑢𝑏1 = 𝑟𝑝𝑟𝑣1 ∗ 𝑃 

- 𝑀1 = 𝑟𝑝𝑟𝑣1 ∗ 𝑌 

 

- Forward 𝑀1 , 𝑀2 to server  

 

 

 

 

 

 

 

 

 

Step3: 

- verify the hash value and extract 

𝑇𝑎𝑔𝐿𝑖𝑠𝑡𝑖 = 𝑀3 − ℎ(𝑅′
𝑝𝑢𝑏1, 𝑀1) 

 

- select random 𝑡𝑝𝑟𝑣1 𝜖𝑍𝑞 

- 𝑇𝑝𝑢𝑏1 = 𝑡𝑝𝑟𝑣1 ∗ 𝑃 

- 𝑀2 = 𝑡𝑝𝑟𝑣1 ∗ 𝑌 

- Send 𝑀2 to reader  

 

 

 

 

 

 

 

 

¶  

 

 

- verify the hash value and extract 

𝑇𝑎𝑔𝑖 = 𝑀4 − ℎ(𝑇′
𝑝𝑢𝑏1, 𝑀2) 

Authentication Phase: 

 

Step1: 

- select random 𝑟𝑝𝑟𝑣2 𝜖𝑍𝑞 

- 𝑅𝑝𝑢𝑏2 = 𝑟𝑝𝑟𝑣2 ∗ 𝑃 

- 𝑀1 = ℎ(𝐺𝑘𝑗) 

- 𝑀2 = 𝑅𝑝𝑢𝑏2 ⨁ 𝑇𝑠 

- send 𝑀1 , 𝑀2 to tag 

 

 

 

 

 

 

Step3: 

- Extract  𝑇′𝑝𝑢𝑏2 = 𝑟𝑝𝑟𝑣2
−1 ∗ 𝑀3 

- Validate 𝑀4 to authenticate tag 

- 𝑀5 = ℎ(𝑋𝑖 , 𝑅𝑝𝑢𝑏2 , 𝑇′𝑝𝑢𝑏2) 

- Send 𝑀5 to tag → 

- Update: 

𝑋𝑖 = 𝑃𝑅𝑁𝐺(𝑋𝑖) 

𝐺𝑘𝑗 = 𝑃𝑅𝑁𝐺(𝐺𝑘𝑗) 

 

 

 

 

 

 

 

 

 

 

Step2: 

- Validate 𝑀1 to verify the group 

- select random 𝑡𝑝𝑟𝑣2 𝜖𝑍𝑞 

- 𝑇𝑝𝑢𝑏2 = 𝑡𝑝𝑟𝑣2 ∗ 𝑃 

- extract 𝑅′
𝑝𝑢𝑏2 = 𝑀2⨁ 𝑇𝑠 

- 𝑀3 = 𝑡𝑝𝑟𝑣2 ∗ 𝑅′
𝑝𝑢𝑏2  

- 𝑀4 = ℎ(𝑋𝑖 , 𝑅′
𝑝𝑢𝑏2 , 𝑇𝑝𝑢𝑏2 , 𝐺𝑘𝑗) 

- Send 𝑀3 ,𝑀4 to reader  

- Update: 

          𝑋𝑖 = 𝑃𝑅𝑁𝐺(𝑋𝑖) 

         𝐺𝑘𝑗
𝑜𝑙𝑑 = 𝐺𝑘𝑗 

         𝐺𝑘𝑗 = 𝑃𝑅𝑁𝐺(𝐺𝑘𝑗) 

 

 

 

 

 

 

Step4: 

- Validate 𝑀5 to authenticate reader 

 

 



 
 

68 

CHAPTER 5: RESULTS AND ANALYSIS 

 In this section, we present the system performance and security analysis of the 

protocol SLEC. We also compare the SLEC protocol to other serverless protocols. The 

security of SLEC mainly depends on the public key of the main server, which is securely 

disseminated to all readers and tags. Further, the setup and authentication phases can then 

be executed through an insecure network to maintain the system requirements and defend 

the security threats. 

5.1 Analysis of System Requirements 

The SLEC protocol maintains the system requirements that are necessary to create 

a secure and reliable RFID system such as mutual authentication, confidentiality, 

integrity, privacy, forward secrecy, anonymity, and availability. 

1) Mutual Authentication 

The protocol allows both the reader and the tag to perform a mutual 

authentication since only the legitimate tag can extract the public key of the reader from 

the message M2. Besides, only the legitimate reader can calculate the hash value in the 

message M5 to prove its identity to the tag. As a result, mutual authentication is satisfied. 
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2) Privacy and Confidentiality 

The transmitted message is confidential because the authentication messages are 

secured by a hash value that can only be computed by an authorized entity using their 

secret keys. The privacy of the tag is satisfied as the secret information is protected and 

not transmitted in the clear. 

3) Message Integrity 

The message integrity factor is also satisfied because the messages are combined 

with a digital signature of the sender. 

4) Forward and Backward Secrecy 

The reader and the tag generate new secret values in every authentication session 

to avoid tracking or obtaining any secret values from any successful authentication 

session. Thus, an adversary cannot perform a successful authentication from any previous 

or expired sessions or anticipate the following authentication messages. 

5) Anonymity 

The EPC of the tag is not used in the protocol, but only the tag random identifier 

that is updated every session. As a result, the private information stored in the tag is kept 

secret. 

6) Availability 

The protocol provides a recovery mechanism to maintain system availability. In 

an event where any tag or any secret value of the communication is compromised, the 
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system can recover the tag by sending new values to the tag during the recovery phase to 

perform a new authentication session as long as the public key of the server remains 

secret. Otherwise, a new setup phase is required to feed the tag with a new public key for 

the server. 

7) Scalability 

We introduce the concept of tag grouping in SLEC. We combine a number of tags 

into a group that shares the same group ID with all the tags, but each tag in the group has 

a unique tag ID. This mechanism allows the system to reduce the communication signals 

that are transmitted in the network since only the tags with the same group ID will 

respond to the reader’s request. Moreover, the grouping mechanism reduces the 

computation overhead on the reader side when identifying a tag from a large number of 

tags. As a result, the protocol is scalable by maintaining a consistent operation overhead 

on both sides of the reader and the tag. 

Table 5.1 demonstrates the comparison of the system requirements that are 

satisfied in our SLEC protocol, SAP protocol proposed by Mtita et al. [39], and STS 

protocol proposed by Sundaresan et al. [5]. 

5.2 Analysis of Security Requirements 

The protocol is based on the Diffie-Hellman digital signature algorithm using a 

256-bit key, which is equivalent to the RSA algorithm with a 3072-bit key that is longer 

than the commonly used key of 2048 [55]. This gives a higher level of security to SLEC 
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algorithm. Therefore, the protocol is secure against different security attacks that most of 

the RFID protocols can experience. 

Table 5.1. Comparison of the System Requirements 

System Requirement SAP STS SLEC 

Mutual Authentication Y Y Y 

Privacy and Confidentiality N Y Y 

Message Integrity Y Y Y 

Forward and Backward Secrecy N N Y 

Anonymity * Y Y 

Availability N N Y 

Scalability N N Y 
Y: satisfied                                 N: not satisfied                              *: Not applicable 

1) Replay Attach Resistance 

The proposed SLEC protocol is secure against replay attack since the 

authentication session involves timestamps and freshly generated random values as 

private keys for both reader and tag. If an adversary eavesdrops on the communication 

channel to replay the tag response, he will not be able to extract any message from the 

reader or the tag, and the timestamp will not match the current session. 

Lemma: SLEC is secure against replay attack 

Proof: 

Adversary replays old session1 to the reader: 

 𝑀3 = 𝑡𝑝𝑟𝑣1 × (𝑟𝑝𝑟𝑣1 × 𝑃) 

 𝑀4 = ℎ(𝑋1 + (𝑟𝑝𝑟𝑣1 × 𝑃) + (𝑡𝑝𝑟𝑣1 × 𝑃) + 𝐺𝑘1) 

 Reader verifies in session2:  

 𝑇′𝑝𝑢𝑏2 = 𝑟𝑝𝑟𝑣2
−1 × [𝑡𝑝𝑟𝑣1 × (𝑟𝑝𝑟𝑣1 × 𝑃)] 
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𝑀′4 = ℎ(𝑋2 + (𝑟𝑝𝑟𝑣2 × 𝑃) + [𝑟𝑝𝑟𝑣2
−1 × 𝑡𝑝𝑟𝑣1 × (𝑟𝑝𝑟𝑣1 × 𝑃)] + 𝐺𝑘2) 

 Verification fails since 𝑀′4 ≠ 𝑀4. Unauthorized tag is not authenticated. 

2) Man-In-The-Middle Attack Resistance 

If an adversary interrupts the message transmitted by a reader or a tag, modifies it 

and sends it back as a real message, the message will not be extracted by any entity. 

Therefore, the communication will be terminated if no response is sent because all the 

messages transmitted in the authentication session involve validating the values before 

extracting any data from them. Therefore, SLEC protocol is resistant to MIM attack. 

Lemma: SLEC is secure against modification 

Proof: 

Adversary A intercept message 3 and 4 and modifies the tag information by A:  

 𝑀3 = 𝑎𝑝𝑟𝑣1 × (𝑟𝑝𝑟𝑣1 × 𝑃) 

 𝑀4 = ℎ(𝑋𝑎 + (𝑟𝑝𝑟𝑣1 × 𝑃) + (𝑎𝑝𝑟𝑣1 × 𝑃) + 𝐺𝑘𝑎) 

 Reader verifies in session2:  

 𝐴′𝑝𝑢𝑏1 = 𝑟𝑝𝑟𝑣1
−1 × [𝑎𝑝𝑟𝑣1 × (𝑟𝑝𝑟𝑣1 × 𝑃)] 

𝑀′4 = ℎ(𝑋1 + (𝑟𝑝𝑟𝑣1 × 𝑃) + [𝑟𝑝𝑟𝑣1
−1 × 𝑡𝑝𝑟𝑣1 × (𝑟𝑝𝑟𝑣1 × 𝑃)] + 𝐺𝑘1) 

 Verification fails since 𝑀′4 ≠ 𝑀4 because the tag ID and group key used 

in the message sent by A are not the same in the reader list for the requested tag. 

Unauthorized tag is not authenticated. 
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3) Traceability Attack Resistance 

An adversary can trace the signals sent by a specific tag to identify the tag 

location. However, the reader in SLEC protocol broadcasts the message signals to a group 

of tags that respond to the reader for the same message request. This results in sending 

different signals from different locations to confuse the adversary from tracking a certain 

tag to obtain its location. Accordingly, the protocol is resistant to tracing. 

Lemma: SLEC is secure against the tracing attack 

Proof: 

To distinguish the difference between two tags T1 and T2, an adversary has to 

construct the correct hash value with correct tag id (X), timestamp (Ts), and a group key 

(Gk) which are only transmitted during the setup phase: 

 𝑀4 = 𝑇𝑎𝑔𝑖 + ℎ[(𝑡𝑝𝑟𝑣1 × 𝑃) + (𝑡𝑝𝑟𝑣1 × (𝑦 × 𝑃))] 

 𝑇𝑎𝑔𝑖 = 𝑀4 − ℎ[(𝑡𝑝𝑟𝑣1 × 𝑃) + (𝑡𝑝𝑟𝑣1 × (𝑦 × 𝑃))] 

The adversary has to solve the correct elliptic curve discrete logarithm problem 

(ECDLP) to obtain the secret values in Tagi that are used in the communication. 

4) Impersonate Attack Resistance 

It is unlikely for any adversary to impersonate the reader or the tag in our protocol 

since they used a shared point generator algorithm P that is only known to the legitimate 

server, reader, and tag. So, it is impossible for the adversary to compute the required 

messages to pass the authentication. 

Lemma: SLEC is secure against impersonation 
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Proof: 

Reader: 𝑀1 = ℎ(𝐺𝑘) 

 𝑀2 = (𝑟𝑝𝑟𝑣 × 𝑃)⨁ 𝑇𝑠 

 Adversary:  𝑎𝑝𝑟𝑣 ,  𝐴𝑝𝑢𝑏 = 𝑎𝑝𝑟𝑣 × 𝑃 

  𝑀3𝑎 = 𝑎𝑝𝑟𝑣 × (𝑟𝑎𝑝𝑟𝑣 × 𝑃) 

  𝑀4𝑎 = ℎ(𝑋𝑎 + (𝑟𝑎𝑝𝑟𝑣 × 𝑃) +  𝐴𝑝𝑢𝑏 + 𝐺𝑘𝑎) 

 Reader:  𝐴′𝑝𝑢𝑏 = 𝑟𝑝𝑟𝑣
−1 × [𝑎𝑝𝑟𝑣 × 𝑟𝑎𝑝𝑟𝑣 × 𝑃)] 

  𝑀4 = ℎ(𝑋 + 𝑅′
𝑝𝑢𝑏 + 𝐴𝑝𝑢𝑏 + 𝐺𝑘) 

  Validation fails since 𝑀4 ≠ 𝑀4𝑎 

 Therefore, the unauthorized tag is not authenticated. 

5) Desynchronization Attack Resistance 

The tag in SLEC protocol stores the new and previous values of the group 

identifier that is used at the beginning of the authentication phase. This allows the tag to 

authenticate the reader if the previous session was interrupted by an adversary to break 

the synchronization. The communication values are also updated after every successful 

authentication session using the same algorithm and inputs to maintain the 

synchronization state between the network entities. 

6) Denial of Service Attack Resistance 

In our SLEC protocol, the reader and the tag generate their keys separately using 

the same key generation algorithm, so there is no synchronous update of the keys 

between the server and the tag for the attack to occur. 
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Table 5.2 demonstrates the comparison of the security attacks resistance between 

our SLEC protocol, SAP protocol proposed by Mtita et al. [39], and STS protocol 

proposed by Sundaresan et al. [5]. 

Table 5.2 Comparison of the Security Threats Resistance 

Attacks SAP STS SLEC 

Replay Attack Y Y Y 

Man-in-the-Middle * * Y 

Eavesdropping Y * Y 

Impersonate Attack Y Y Y 

Traceability Attack Y Y Y 

Desynchronization * Y Y 

Denial of Service * Y Y 
     Y: Satisfied                               N: Not satisfied                      *: Not applicable 

 

5.3 Analysis of Computation Cost 

Since the passive tag used in the RFID system has limited capabilities and 

resources, it is essential to consider the computation and security features for the 

appropriate application. Even though the elliptic curve has higher computation overhead 

on both the reader and the tag, we provide a higher security level in our SLEC protocol 

that satisfies the resistance to all the security attacks. Moreover, we compare our protocol 

with additional server-based elliptic curve protocols such as IECC protocol proposed by 

Farash [15] and EECC protocol proposed by Zhang and Qi [16] to illustrate a well-

defined measurement for the computation complexity. The comparison shows that there 

is no major additional cost between the previously proposed ECC-based protocols and 

our SLEC protocol, although our protocol is completely serverless in the authentication 
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phase. Table 5.3 demonstrates the operations computed by the tag and the number of 

transmitted messages from the reader and the tag during the authentication phase. 

Table 5.3 Comparison of the Computation Cost on the Tag 

Protocol Operation Tag Reader 

SAP [39] 2TH + 2TRNG 1 2 

STS [5] 7TXOR + 3TPRNG 1 1 

IECC [15] 2TSMUL + 2TH 1 2 

EECC [16] 2TSMUL + TSAD + 2TH 1 2 

SLEC 2TSMUL + 3TH 1 2 
TSMUL: scalar multiplication, TSAD: scalar addition, TH: one-way hash, TXOR: XOR, TPRNG: pseudo-

random number generation 

. 
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CHAPTER 6: FORMAL VERIFICATION 

 The formal verification of the protocol is done to prove the correctness of the algorithms 

used in the protocol in terms of security and authentication. ProVerif tool [56] is one of the 

powerful tools to analyze the security of cryptographic protocols. It is an automatic cryptographic 

protocol verifier that is developed by Bruno Blanchet to validate the security and authentication 

properties of the cryptographic algorithms in formal models. 

In this section, we use the ProVerif tool to validate reachability and secrecy (security), 

and correspondence assertion (authentication) of SLEC protocol. The results of the verification 

process are also presented. 

6.1 Adversary Model 

The ProVerif tool is based on a model where the adversary can intercept, alter, 

and inject the messages into an insecure network. In SLEC protocol, the adversary has 

initial knowledge of the finite set of parameters that increase during the protocol 

execution in parallel with the adversary. No matter how the adversary interacts with the 

protocol, ProVerif verifies the secrecy of the messages and values transmitted between 

the server, the reader, and the tag. Therefore, the secret messages will never be a part of 

the adversary knowledge to run the protocol successfully. The results of the ProVerif 

verification in this section show that the protocol preserves the secrecy of the messages 

and values that intercepting or altering the message will lead to the protocol termination. 
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6.2 Reachability and Secrecy 

Reachability and secrecy in ProVerif analyze the security properties of the 

protocol against any attacker. We investigate the reachability of a term x by an adversary 

A, so we assess the secrecy of x concerning the modeled protocol. In SLEC protocol, we 

use ProVerif to test whether the secret messages in the setup phase “Ms”, and the secret 

messages in the authentication phase “Ma” are not available to an adversary A. We 

represent the messages transmitted in the setup phase from the server, the reader, and the 

tag as “Mss”, “Msr” and “Mst” respectively. Moreover, we represent the messages 

transmitted in the authentication phase from the reader and the tag as “Mar” and “Mat” 

respectively. The complete verification process is demonstrated in Figure 6.2. The results 

of the verification process conclude, “RESULT, not attacker(Mst1[]) is true” which 

means the setup phase message M1 from the tag is unreachable, and an attack cannot be 

conducted against the protocol successfully. Similarly, “RESULT not attacker(Mar1[]) is 

true” means the authentication phase message M1 from the reader is unreachable and 

secure against the attacks. All setup phase and authentication phase messages are tested 

and resulted in true reachability and secrecy proof. 

Reachability and Secrecy 

Process: 

{1}new p: P; 

{2}new y_22: Y; 

{3}new tprv1: pu_pr_key; 
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{4}new rprv1: pu_pr_key; 

{5}new xi: TagID; 

{6}new Gxi: GK; 

( 

    {7}! 

    {8}let Tpub1: pu_pr_key = find_R_and_Tpubs(p,tprv1) in 

    {9}let Mst1_23: pu_pr_key = setPhase_encrypt(tprv1,y_22) in 

    {10}out(ch, Mst1_23); 

    {11}in(ch, Mss4': Tag_and_Hash); 

    {12}let tag': Tag = verify_tag(Mss4',h(Tpub1,Mst1_23)) in 

    {13}in(ch, ms1: xored_key); 

    {14}let Ms1': GK = validate_Ms1(ms1) in 

    {15}new ggkk: GK; 

    {16}if (Ms1' = ggkk) then 

    {17}new tprv2: pu_pr_key; 

    {18}let Tpub2: pu_pr_key = find_R_and_Tpubs(p,tprv2) in 

    {19}in(ch, ms2: pu_pr_key); 

    {20}new ts2': timeStampes; 

    {21}let Rpub2': pu_pr_key = xor(ms2,ts2') in 

    [29]let Mat3_24: pu_pr_key = authen_phase_encrypt(tprv2,Rpub2') in 

    {23}out(ch, Mat3_24); 

    {24}new xi_25: TagID; 
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    {25}let Mat4_26: Hashing = h_ph2_2(xi_25,Rpub2',Tpub1,Ms1') in 

    {26}out(ch, Mat4_26); 

    {27}let xxi: TagID = PRNG(xi_25) in 

    {28}let GKi: GK = PRNG_Group(ggkk) in 

    {29}in(ch, Mar5': Hashing); 

    {30}let Mar55: Hashing = h_ph2_3(xi_25,Tpub2,Rpub2') in 

    {31}if (Mar55 = Mar5') then 

    0 

) | ( 

    {32}! 

    {33}let Rpub1: pu_pr_key = find_R_and_Tpubs(p,rprv1) in 

    {34}let Msr2_27: pu_pr_key = setPhase_encrypt(rprv1,y_22) in 

    {35}out(ch, Msr2_27); 

    {36}in(ch, Mss3': TagList_and_Hash); 

    {37}let taglisht': TageList = verify_tagList(Mss3',h(Rpub1,Msr2_27)) in 

    {38}new rprv2: pu_pr_key; 

    {39}let Rpub2: pu_pr_key = find_R_and_Tpubs(p,rprv2) in 

    {40}new GKii: GK; 

    {41}let Mar1_28: hash_GK = h_ph2_(GKii) in 

    {42}out(ch, Mar1_28); 

    {43}new ts2: timeStampes; 

    {44}let Mar2_29: pu_pr_key = xor(Rpub2,ts2) in 
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    {45}out(ch, Mar2_29); 

    {46}in(ch, Mat3': pu_pr_key); 

    {47}let Tpub2': pu_pr_key = authen_phase_dencrypt(Mat3',re_pu_pr_key(rprv2)) in 

    {48}in(ch, Mat4': Hashing); 

    {49}new xii': TagID; 

    {50}let Mar5: Hashing = h_ph2_3(xii',Rpub2,Tpub2') in 

    {51}out(ch, Mar5) 

) | ( 

    {52}! 

    {53}in(ch, (Mst1': pu_pr_key,Msr1': pu_pr_key)); 

    {54}let Tprv1': pu_pr_key = setPhase_decrypt(Mst1',getYinv(y_22)) in 

    {55}let Rprv1': pu_pr_key = setPhase_decrypt(Msr1',getYinv(y_22)) in 

    {56}new ts: timeStampes; 

    {57}let tagi: Tag = create_tag(xi,ts,Gxi) in 

    {58}let tagListi: TageList = create_taglist(tagi) in 

    {59}let Mss3_30: TagList_and_Hash = prepare_tagList(tagListi,h(Rprv1',Msr1')) in 

    {60}out(ch, Mss3_30); 

    {61}let Mss4_31: Tag_and_Hash = prepare_tag(tagi,h(Tprv1',Mst1')) in 

    {62}out(ch, Mss4_31) 

) 

-- Query not attacker(Mst1[]) 

Completing... 
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Starting query not attacker(Mst1[]) 

RESULT not attacker(Mst1[]) is true. 

-- Query not attacker(Msr2[]) 

Completing... 

Starting query not attacker(Msr2[]) 

RESULT not attacker(Msr2[]) is true. 

-- Query not attacker(Mss3[]) 

Completing... 

Starting query not attacker(Mss3[]) 

RESULT not attacker(Mss3[]) is true. 

-- Query not attacker(Mss4[]) 

Completing... 

Starting query not attacker(Mss4[]) 

RESULT not attacker(Mss4[]) is true. 

-- Query not attacker(Mar1[]) 

Completing... 

Starting query not attacker(Mar1[]) 

RESULT not attacker(Mar1[]) is true. 

-- Query not attacker(Mar2[]) 

Completing... 

Starting query not attacker(Mar2[]) 

RESULT not attacker(Mar2[]) is true. 
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-- Query not attacker(Mat3[]) 

Completing... 

Starting query not attacker(Mat3[]) 

RESULT not attacker(Mat3[]) is true. 

-- Query not attacker(Mat4[]) 

Completing... 

Starting query not attacker(Mat4[]) 

RESULT not attacker(Mat4[]) is true. 

Figure 6.2: Verification results of reachability and secrecy 

6.3 Correspondence Assertion 

The correspondence assertion in ProVerif is to model the authentication of the 

protocol using a sequence of events. We apply a sequence of events to verify the 

authentication of the reader to the tag and the authentication of the tag to the reader 

through the encrypted messages individually. The complete verification process of 

authentication is presented in Figure 6.2. The results of the correspondence assertion 

verification show “RESULT inj-event(termReader(x)) ==> inj-event(acceptsReader(x)) 

is true” which means the reader is authenticated by the tag, and “RESULT inj-

event(termTag(x_24)) ==> inj-event(acceptsTag(x_24)) is true” which means the tag is 

authenticated by the reader. The verification results confirm that SLEC protocol achieves 

a successful mutual authentication between the reader and the tag. 
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Correspondence Assertion 

Process: 

{1}new p: P; 

{2}new y_22: Y; 

{3}new tprv1: pu_pr_key; 

{4}new rprv1: pu_pr_key; 

{5}new xi: TagID; 

{6}new Gxi: GK; 

( 

    {7}! 

    {8}let Tpub1: pu_pr_key = find_R_and_Tpubs(p,tprv1) in 

    {9}let Mst1: pu_pr_key = setPhase_encrypt(tprv1,y_22) in 

    {10}out(ch, Mst1); 

    {11}in(ch, Mss4': Tag_and_Hash); 

    {12}let tag': Tag = verify_tag(Mss4',h(Tpub1,Mst1)) in 

    {13}in(ch, ms1: xored_key); 

    {14}let Ms1': GK = validate_Ms1(ms1) in 

    {15}new ggkk: GK; 

    {16}if (Ms1' = ggkk) then 

    {17}new tprv2: pu_pr_key; 

    {18}let Tpub2: pu_pr_key = find_R_and_Tpubs(p,tprv2) in 

    {19}in(ch, ms2: pu_pr_key); 
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    {20}new ts2': timeStampes; 

    {21}let Rpub2': pu_pr_key = xor(ms2,ts2') in 

    {22}let Mat3: pu_pr_key = authen_phase_encrypt(tprv2,Rpub2') in 

    {23}out(ch, Mat3); 

    {24}new xi_23: TagID; 

    [29]let Mat4: Hashing = h_ph2_2(xi_23,Rpub2',Tpub1,Ms1') in 

    {26}out(ch, Mat4); 

    {27}let xxi: TagID = PRNG(xi_23) in 

    {28}let GKi: GK = PRNG_Group(ggkk) in 

    {29}in(ch, Mar5': Hashing); 

    {30}let Mar55: Hashing = h_ph2_3(xi_23,Tpub2,Rpub2') in 

    {31}if (Mar55 = Mar5') then 

    {32}event acceptsReader(Mar55); 

    {33}event termReader(Mar55) 

) | ( 

    {34}! 

    {35}let Rpub1: pu_pr_key = find_R_and_Tpubs(p,rprv1) in 

    {36}let Msr2: pu_pr_key = setPhase_encrypt(rprv1,y_22) in 

    {37}out(ch, Msr2); 

    {38}in(ch, Mss3': TagList_and_Hash); 

    {39}let taglisht': TageList = verify_tagList(Mss3',h(Rpub1,Msr2)) in 

    {40}new rprv2: pu_pr_key; 
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    {41}let Rpub2: pu_pr_key = find_R_and_Tpubs(p,rprv2) in 

    {42}new GKii: GK; 

    {43}let Mar1: hash_GK = h_ph2_(GKii) in 

    {44}out(ch, Mar1); 

    {45}new ts2: timeStampes; 

    {46}let Mar2: pu_pr_key = xor(Rpub2,ts2) in 

    {47}out(ch, Mar2); 

    {48}in(ch, Mat3': pu_pr_key); 

    {49}let Tpub2': pu_pr_key = authen_phase_dencrypt(Mat3',re_pu_pr_key(rprv2)) in 

    {50}in(ch, Mat4': Hashing); 

    {51}new xii': TagID; 

    {52}let Mar5: Hashing = h_ph2_3(xii',Rpub2,Tpub2') in 

    {53}event acceptsTag(Mar5); 

    {54}out(ch, Mar5); 

    {55}event termTag(Mar5) 

) | ( 

    {56}! 

    {57}in(ch, (Mst1': pu_pr_key,Msr1': pu_pr_key)); 

    {58}let Tprv1': pu_pr_key = setPhase_decrypt(Mst1',getYinv(y_22)) in 

    {59}let Rprv1': pu_pr_key = setPhase_decrypt(Msr1',getYinv(y_22)) in 

    {60}new ts: timeStampes; 

    {61}let tagi: Tag = create_tag(xi,ts,Gxi) in 
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    {62}let tagListi: TageList = create_taglist(tagi) in 

    {63}let Mss3: TagList_and_Hash = prepare_tagList(tagListi,h(Rprv1',Msr1')) in 

    {64}out(ch, Mss3); 

    {65}let Mss4: Tag_and_Hash = prepare_tag(tagi,h(Tprv1',Mst1')) in 

    {66}out(ch, Mss4) 

) 

-- Query inj-event(termReader(x)) ==> inj-event(acceptsReader(x)) 

Completing... 

Starting query inj-event(termReader(x)) ==> inj-event(acceptsReader(x)) 

RESULT inj-event(termReader(x)) ==> inj-event(acceptsReader(x)) is true. 

-- Query inj-event(termTag(x_24)) ==> inj-event(acceptsTag(x_24)) 

Completing... 

Starting query inj-event(termTag(x_24)) ==> inj-event(acceptsTag(x_24)) 

RESULT inj-event(termTag(x_24)) ==> inj-event(acceptsTag(x_24)) is true. 

Figure 6.3: Verification results of correspondence assertions 
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CHAPTER 7: CONCLUSION 

RFID is the new alternative to physical barcoding, which is being widely used in the 

fields of product authentication and database storage. Serverless RFID protocols are being 

developed to provide a dynamic network that the mobile tags can be searched and identified in 

different locations away from the server. As RFID network carries along with sensitive 

information, and passive tags have limited resources, many security algorithms have been 

deduced and implemented at a minimal cost using simple operations that are still vulnerable to 

security attacks. We propose a secure serverless RFID protocol (SLEC) that uses the elliptic curve 

cryptography based on the Diffie-Hellman algorithm. The algorithm used is classified as a public 

key algorithm that can be handled by low constraint devices such as RFID passive tags. SLEC 

protocol is considered to be secure against different security attacks that simple protocols suffer 

from. The reader in SLEC protocol is completely capable of identifying and authenticating mobile 

tags under an offline server. We also introduced the tag grouping mechanism to reduce the 

computation overhead on the reader side that is elevated from the scalar operations in the elliptic 

curve computation when identifying a tag in a large-scale network, and also to create a scalable 

system that is not affected by the tag population size. Also, SLEC protocol has a recovery 

mechanism that any compromised values can soon be renewed by any server in the network to 

retrieve the tag and protocol privacy. The protocol is tested using ProVerif cryptographic 

verification tool to prove that SLEC achieves successful security and authentication. We believe 

that the widespread implementation of serverless RFID systems will improve the efficiency of all 
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businesses and processes. This will take RFID technology into the upper level by driving the 

world to go smart. 
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