thesis

Anti-collision techniques for RFID systems.

Abstract

Chiang Kong Wa.Thesis (M.Phil.)--Chinese University of Hong Kong, 2006.Includes bibliographical references (leaves 74-79).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 2 --- Technology Overview --- p.4Chapter 2.1 --- Components of RFID Systems --- p.5Chapter 2.1.1 --- Tag --- p.6Chapter 2.1.2 --- Reader --- p.9Chapter 2.1.3 --- Software systems --- p.10Chapter 2.1.4 --- Communication infrastructure --- p.11Chapter 2.2 --- Frequency Regulations and Standards --- p.11Chapter 2.2.1 --- RFID frequency bands --- p.11Chapter 2.2.2 --- Standards --- p.12Chapter 2.3 --- Advantages and Limitations of RFID Technology --- p.14Chapter 2.4 --- Applications --- p.17Chapter 3 --- Background of Research --- p.20Chapter 3.1 --- Anti-collision methods for RFID systems --- p.22Chapter 3.1.1 --- Stochastic Anti-collision Protocols --- p.25Chapter 3.1.2 --- Deterministic Anti-collision Protocols --- p.27Chapter 4 --- Even-Odd Binary Tree Protocol --- p.30Chapter 4.1 --- Protocol Description --- p.31Chapter 4.2 --- Time Complexity Analysis --- p.34Chapter 4.3 --- Performance Evaluation --- p.37Chapter 4.4 --- Summary --- p.41Chapter 5 --- Prefix-Randomized Query-Tree Protocol --- p.44Chapter 5.1 --- Tag Identification - Known Tag Set Size --- p.45Chapter 5.1.1 --- Protocol Description --- p.45Chapter 5.1.2 --- Time Complexity Analysis --- p.47Chapter 5.1.3 --- Optimal Initial Prefix Length --- p.50Chapter 5.1.4 --- Optimal Number of Level-1 Nodes --- p.52Chapter 5.2 --- Tag Identification - Unknown Tag Set Size --- p.53Chapter 5.2.1 --- Initial Prefix Length Adaptation Algorithm --- p.54Chapter 5.2.2 --- Computing r*Δ(l) --- p.55Chapter 5.2.3 --- Optimal Choice of Step Size Δ --- p.56Chapter 5.3 --- Performance Evaluation --- p.59Chapter 5.4 --- Summary --- p.64Chapter 6 --- Conclusion and Future Work --- p.68Chapter 6.1 --- Conclusion --- p.68Chapter 6.2 --- Future Work --- p.70Bibliography --- p.7

    Similar works