6 research outputs found

    Automated Deployment of a Spark Cluster with Machine Learning Algorithm Integration

    Get PDF
    The vast amount of data stored nowadays has turned big data analytics into a very trendy research field. The Spark distributed computing platform has emerged as a dominant and widely used paradigm for cluster deployment and big data analytics. However, to get started up is still a task that may take much time when manually done, due to the requisites that all nodes must fulfill. This work introduces LadonSpark, an open-source and non-commercial solution to configure and deploy a Spark cluster automatically. It has been specially designed for easy and efficient management of a Spark cluster with a friendly graphical user interface to automate the deployment of a cluster and to start up the distributed file system of Hadoop quickly. Moreover, LadonSpark includes the functionality of integrating any algorithm into the system. That is, the user only needs to provide the executable file and the number of required inputs for proper parametrization. Source codes developed in Scala, R, Python, or Java can be supported on LadonSpark. Besides, clustering, regression, classification, and association rules algorithms are already integrated so that users can test its usability from its initial installation.Ministerio de Ciencia, Innovación y Universidades TIN2017-88209-C2-1-

    Distributed ARIMA Models for Ultra-long Time Series

    Full text link
    Providing forecasts for ultra-long time series plays a vital role in various activities, such as investment decisions, industrial production arrangements, and farm management. This paper develops a novel distributed forecasting framework to tackle challenges associated with forecasting ultra-long time series by utilizing the industry-standard MapReduce framework. The proposed model combination approach facilitates distributed time series forecasting by combining the local estimators of ARIMA (AutoRegressive Integrated Moving Average) models delivered from worker nodes and minimizing a global loss function. In this way, instead of unrealistically assuming the data generating process (DGP) of an ultra-long time series stays invariant, we make assumptions only on the DGP of subseries spanning shorter time periods. We investigate the performance of the proposed distributed ARIMA models on an electricity demand dataset. Compared to ARIMA models, our approach results in significantly improved forecasting accuracy and computational efficiency both in point forecasts and prediction intervals, especially for longer forecast horizons. Moreover, we explore some potential factors that may affect the forecasting performance of our approach

    Técnicas de predicción escalables para big data temporales

    Get PDF
    Programa de Doctorado en Biotecnología, Ingeniería y Tecnología QuímicaLínea de Investigación: Ingeniería InformáticaClave Programa: DBICódigo Línea: 19En esta Tesis se presenta una metodología para pronosticar series temporales de gran longitud basada en el framework de computación distribuida Apache Spark y su librería MLlib para Machine Learning. La predicción de los h valores futuros se realiza dividiendo el problema de predicción en h subproblemas de predicción, uno para cada valor del horizonte. Esto nos permite resolver en paralelo todos los subproblemas, asegurando la escalabilidad de la metodología. Además, se propone un ensemble que nos permite predecir h valores futuros, mediante la combinación de los resultados de k modelos generados en base a distintos algoritmos. De forma concreta, se han utilizado las implementaciones de los algoritmos Decision Tree, Gradient-Boosted Trees y Random Forest que ofrece la librería MLlib de Spark. Se consideran dos estrategias, un modelo de ensemble estático y un modelo dinámico que actualiza los pesos para mejorar el modelo de predicción. Los pesos del ensemble se calculan con el método de mínimos cuadrados ponderados, y las predicciones para cada modelo que forma el ensemble se obtienen de forma distribuida. El comportamiento de los modelos se evalúa con dos casos de uso: el consumo eléctrico en España, en el que se genera un modelo para predecir las siguientes 4 horas de la serie temporal, partiendo de un histórico de 10 años de registros con una frecuencia de 10 minutos; y datos de producción de energía solar fotovoltaica de Australia, recogidos por la Universidad de Queensland durante dos años, con una frecuencia de 30 minutos entre las mediciones. Los resultados han mostrado que tanto los ensemble dinámicos como los estáticos se comportaron bien, mejorando los resultados de cualquiera de los algoritmos que componen el ensemble. El ensemble dinámico fue el modelo más preciso cometiendo un error relativo medio del 2% en la predicción de la demanda de energía eléctrica de España, resultado muy prometedor para esta serie temporal. Los resultados obtenidos para la predicción de producción de energía solar fotovoltaica se han comparado, además, con redes neurales artificiales, el algoritmo PSF el cual está basado en secuencia de patrones y con Deep Learning, obteniendo las mejores predicciones en esta serie temporal.Universidad Pablo de Olavide de Sevilla. Departamento de Deporte e InformáticaPostprin

    Modelos predictivos basados en deep learning para datos temporales masivos

    Get PDF
    Programa de Doctorado en Biotecnología, Ingeniería y Tecnología QuímicaLínea de Investigación: Ingeniería, Ciencia de Datos y BioinformáticaClave Programa: DBICódigo Línea: 111El avance en el mundo del hardware ha revolucionado el campo de la inteligencia artificial, abriendo nuevos frentes y áreas que hasta hoy estaban limitadas. El área del deep learning es quizás una de las mas afectadas por este avance, ya que estos modelos requieren de una gran capacidad de computación debido al número de operaciones y complejidad de las mismas, motivo por el cual habían caído en desuso hasta los últimos años. Esta Tesis Doctoral ha sido presentada mediante la modalidad de compendio de publicaciones, con un total de diez aportaciones científicas en Congresos Internacionales y revistas con alto índice de impacto en el Journal of Citation Reports (JCR). En ella se recoge una investigación orientada al estudio, análisis y desarrollo de las arquitecturas deep learning mas extendidas en la literatura para la predicción de series temporales, principalmente de tipo energético, como son la demanda eléctrica y la generación de energía solar. Además, se ha centrado gran parte de la investigación en la optimización de estos modelos, tarea primordial para la obtención de un modelo predictivo fiable. En una primera fase, la tesis se centra en el desarrollo de modelos predictivos basados en deep learning para la predicción de series temporales aplicadas a dos fuentes de datos reales. En primer lugar se diseñó una metodología que permitía realizar la predicción multipaso de un modelo Feed-Forward, cuyos resultados fueron publicados en el International Work-Conference on the Interplay Between Natural and Artificial Computation (IWINAC). Esta misma metodología se aplicó y comparó con otros modelos clásicos, implementados de manera distribuida, cuyos resultados fueron publicados en el 14th International Work-Conference on Artificial Neural Networks (IWANN). Fruto de la diferencia en tiempo de computación y escalabilidad del método de deep learning con los otros modelos comparados, se diseñó una versión distribuida, cuyos resultados fueron publicados en dos revistas indexadas con categoría Q1, como son Integrated Computer-Aided Engineering e Information Sciences. Todas estas aportaciones fueron probadas utilizando un conjunto de datos de demanda eléctrica en España. De forma paralela, y con el objetivo de comprobar la generalidad de la metodología, se aplicó el mismo enfoque sobre un conjunto de datos correspondiente a la generación de energía solar en Australia en dos versiones: univariante, cuyos resultados se publicaron en International on Soft Computing Models in Industrial and Environment Applications (SOCO), y la versión multivariante, que fué publicada en la revista Expert Systems, indexada con categoría Q2. A pesar de los buenos resultados obtenidos, la estrategia de optimización de los modelos no era óptima para entornos big data debido a su carácter exhaustivo y al coste computacional que conllevaba. Motivado por esto, la segunda fase de la Tesis Doctoral se basó en la optimización de los modelos deep learning. Se diseñó una estrategia de búsqueda aleatoria aplicada a la metodología propuesta en la primera fase, cuyos resultados fueron publicados en el IWANN. Posteriormente, se centró la atención en modelos de optimización basado en heurísticas, donde se desarrolló un algoritmo genético para optimizar el modelo feed-forward. Los resultados de esta investigación se presentaron en la revista Applied Sciences, indexada con categoría Q2. Además, e influenciado por la situación pandémica del 2020, se decidió diseñar e implementar una heurística basada en el modelo de propagación de la COVID-19. Esta estrategia de optimización se integró con una red Long-Short-Term-Memory, ofreciendo resultados altamente competitivos que fueron publicados en la revista Big Data, indexada en el JCR con categoría Q1. Para finalizar el trabajo de tesis, toda la información y conocimientos adquiridos fueron recopilados en un artículo a modo de survey, que fue publicado en la revista indexada con categoría Q1 Big Data.Universidad Pablo de Olavide de Sevilla. Departamento de Deporte e Informátic
    corecore