
Modelos predictivos basados en
deep learning para datos

temporales masivos.

José Francisco Torres Maldonado

Directores: Dra. Alicia Troncoso Lora
Dr. Francisco Martínez Álvarez

Centro de Estudios de Postgrado
Universidad Pablo de Olavide

Tesis doctoral por compendio de artículos

Sevilla, 12 octubre 2021

A mis familiares y amigos . . .

Tesis Doctoral subvencionada por el Ministerio de Ciencia, Ingeniería, Inno-
vación y Universidades, la Junta de Andalucía y el grupo de investigación
PAIDI TIC-254: Data Science & Big Data Lab, de la Universidad Pablo de
Olavide.

DATA SCIENCE
BIG DATA

RESEARCH LAB

PABLO DE OLAVIDE UNIVERSITY

Breaking data to gain knowledge!

Data Science & Big Data Research Lab.

Declaración

I hereby declare that except where specific reference is made to the
work of others, the contents of this dissertation are original and have not
been submitted in whole or in part for consideration for any other degree or
qualification in this, or any other university. This dissertation is my own work
and contains nothing which is the outcome of work done in collaboration with
others, except as specified in the text and Acknowledgements.

José Francisco Torres Maldonado
Sevilla, 12 octubre 2021

Agradecimientos

No os diré: no lloréis, pues no todas las
lágrimas son amargas.

– Gandalf el gris
(El señor de los anillos).

Nada hubiera sido posible sin vosotros. En un momento tan especial de
mi vida quisiera aprovechar estas líneas para expresar mi agradecimiento a
los pilares fundamentales de esta Tesis Doctoral, sin los cuales este trabajo
no hubiera sido posible.

A mis directores de tesis, Alicia Troncoso Lora y Francisco Martínez
Álvarez (Paco), por todo lo que han hecho por mi. No solo han dirigido mi
Trabajo Final de Grado, Trabajo final de Máster y mi Tesis Doctoral de forma
excepcional, sino que me acogieron con los brazos abiertos y depositaron su
total confianza en mi incluso cuando yo mismo me sentía perdido. He tenido
el gran honor de crecer a vuestro lado como profesional, pero mucho mas
importante, como persona. Y si no fuera poco, tengo la gran suerte de poder
decir que mis dos referentes a nivel profesional se han convertido en amigos y
pilares fundamentales de mi vida. No encuentro palabras para expresar lo que
significáis para mi, pero tan solo espero que nuestros caminos no se separen
jamás y que podamos seguir compartiendo momentos y alegrías juntos.

XII

A todos y cada uno de los miembros que forman y han formado parte de
nuestra casa, el Data Science & Big Data Research Lab: Gualberto Asen-
cio, Rubén Pérez, Laura Melgar, Samuel Conesa, Ricardo Talavera, Antonio
Galicia, Antonio Fernández, y, sobre todo, a David Gutiérrez, con quien he
pasado más tiempo luchando codo con codo al pie del cañón. Gracias a todos
por compartir tantas experiencias, horas de trabajo, frustraciones, alegrías,
almuerzos y viajes.

A José Torres, Mª Ángeles Maldonado y Alfredo Torres, mis padres y
hermano por inculcarme lo que soy como persona. Ellos son los que han
aguantado mi mal humor cuando ni yo mismo me aguantaba, los que han
estado para las buenas, pero sobre todo para las malas y los que han soportado
todo el peso que esta Tesis Doctoral representa a nivel de esfuerzo, constancia,
dedicación y sacrificio.

A mis amigos y a toda aquella persona que ha contribuido de una forma u
otra a que pudiera desarrollar esta Tesis.

A todos vosotros... ¡GRACIAS!

Resumen

El avance en el mundo del hardware ha revolucionado el campo de la
inteligencia artificial, abriendo nuevos frentes y áreas que hasta hoy estaban
limitadas. El área del deep learning es quizás una de las mas afectadas por este
avance, ya que estos modelos requieren de una gran capacidad de computación
debido al número de operaciones y complejidad de las mismas, motivo por el
cual habían caído en desuso hasta los últimos años.

Esta Tesis Doctoral ha sido presentada mediante la modalidad de com-
pendio de publicaciones, con un total de diez aportaciones científicas en
Congresos Internacionales y revistas con alto índice de impacto en el Journal
of Citation Reports (JCR). En ella se recoge una investigación orientada al
estudio, análisis y desarrollo de las arquitecturas deep learning mas extendidas
en la literatura para la predicción de series temporales, principalmente de tipo
energético, como son la demanda eléctrica y la generación de energía solar.
Además, se ha centrado gran parte de la investigación en la optimización de
estos modelos, tarea primordial para la obtención de un modelo predictivo
fiable.

En una primera fase, la tesis se centra en el desarrollo de modelos pre-
dictivos basados en deep learning para la predicción de series temporales
aplicadas a dos fuentes de datos reales.

En primer lugar se diseñó una metodología que permitía realizar la predic-
ción multipaso de un modelo Feed-Forward, cuyos resultados fueron publica-
dos en el International Work-Conference on the Interplay Between Natural
and Artificial Computation (IWINAC). Esta misma metodología se aplicó y

XIV

comparó con otros modelos clásicos, implementados de manera distribuida,
cuyos resultados fueron publicados en el 14th International Work-Conference
on Artificial Neural Networks (IWANN). Fruto de la diferencia en tiempo
de computación y escalabilidad del método de deep learning con los otros
modelos comparados, se diseñó una versión distribuida, cuyos resultados
fueron publicados en dos revistas indexadas con categoría Q1, como son
Integrated Computer-Aided Engineering e Information Sciences. Todas estas
aportaciones fueron probadas utilizando un conjunto de datos de demanda
eléctrica en España. De forma paralela, y con el objetivo de comprobar la
generalidad de la metodología, se aplicó el mismo enfoque sobre un conjunto
de datos correspondiente a la generación de energía solar en Australia en
dos versiones: univariante, cuyos resultados se publicaron en International on
Soft Computing Models in Industrial and Environment Applications (SOCO),
y la versión multivariante, que fué publicada en la revista Expert Systems,
indexada con categoría Q2.

A pesar de los buenos resultados obtenidos, la estrategia de optimización
de los modelos no era óptima para entornos big data debido a su carácter
exhaustivo y al coste computacional que conllevaba. Motivado por esto, la
segunda fase de la Tesis Doctoral se basó en la optimización de los modelos
deep learning.

Se diseñó una estrategia de búsqueda aleatoria aplicada a la metodolo-
gía propuesta en la primera fase, cuyos resultados fueron publicados en el
IWANN. Posteriormente, se centró la atención en modelos de optimización ba-
sado en heurísticas, donde se desarrolló un algoritmo genético para optimizar
el modelo feed-forward. Los resultados de esta investigación se presentaron
en la revista Applied Sciences, indexada con categoría Q2. Además, e influen-
ciado por la situación pandémica del 2020, se decidió diseñar e implementar
una heurística basada en el modelo de propagación de la COVID-19. Esta
estrategia de optimización se integró con una red Long-Short-Term-Memory,

XV

ofreciendo resultados altamente competitivos que fueron publicados en la
revista Big Data, indexada en el JCR con categoría Q1.

Para finalizar el trabajo de tesis, toda la información y conocimientos
adquiridos fueron recopilados en un artículo a modo de survey, que fue
publicado en la revista indexada con categoría Q1 Big Data.

Abstract

Advances in the world of hardware have revolutionised the artificial
intelligence sector, opening up new fronts and areas that were limited until
now. Perhaps the area of deep learning is one of the most affected by this
advance, since these models require a large computing capacity due to the
number of operations and their complexity, which is why they had fallen into
disuse until recent years.

This dissertation has been presented in the form of a compendium of publi-
cations, with a total of ten scientific contributions in international conferences
and journals with a high impact index in the Journal of Citation Reports (JCR).
It includes research oriented towards the study, analysis and development
of the most widespread deep learning architectures in the literature for the
prediction of time series, mainly of the energy, such as electricity demand and
solar energy generation. In addition, a large part of the research has focused
on the optimisation of these models, an essential task in order to obtain a
reliable predictive model.

In a first stage, the dissertation focuses on the development of predictive
models based on deep learning for the prediction of time series applied to two
real data sources.

First of all, a methodology was designed to perform multi-pass predic-
tion of a Feed-Forward model, the results of which were published in the
International Work-Conference on the Interplay Between Natural and Ar-
tificial Computation (IWINAC). This same methodology was applied and
compared with other classical models, implemented in a distributed manner,

XVIII

whose results were published in the 14th International Work-Conference on
Artificial Neural Networks (IWANN). As a result of the difference in compu-
tation time and scalability of the deep learning method with the other models
compared, a distributed version was designed, and the results were published
in two Q1 indexed journals, Integrated Computer-Aided Engineering and
Information Sciences. All these contributions were tested using a dataset of
electricity demand in Spain. In parallel, and in order to test the generality of
the methodology, the same approach was applied to a dataset corresponding to
solar power generation in Australia in two versions: univariate, whose results
were published in International on Soft Computing Models in Industrial and
Environment Applications (SOCO), and the multivariate version, which was
published in the journal Expert Systems, indexed in the Q2 category.

Although good results were obtained, the optimisation strategy of the
models was not optimal for big data environments due to its exhaustive nature
and the computational cost it implied. Motivated by this, the second phase
of the PhD Thesis was based on the optimisation of deep learning models. A
random search strategy applied to the first phase methodology was designed,
the results of which were published in the IWANN. Subsequently, the focus
was on heuristic-based optimisation models, developing a genetic algorithm to
optimize the feed-forward model. The results of this research were presented
in the Q2-indexed journal Applied Sciences. In addition, and influenced
by the pandemic situation in 2020, we decided to design and implement
a heuristic based on the COVID-19 propagation model. This optimisation
strategy was integrated with a Long-Short-Term-Memory network, offering
highly competitive results that were published in the journal Big Data, indexed
in the JCR with category Q1.

To finalize the thesis work, all the information and knowledge acquired
was compiled in a survey article, which was published in the Q1 Big Data
indexed journal Big Data.

Índice general

Índice de figuras XXIII

Índice de tablas XXV

I Trabajo de Tesis Doctoral 1

1. Introducción 3
1.1. Organización de la memoria 3
1.2. Motivación de la investigación 4
1.3. Objetivos . 6
1.4. Contribuciones . 7

II Marco teórico 13

2. Contexto de la investigación 15
2.1. Proceso KDD . 15
2.2. Inteligencia artificial y aprendizaje automático 16
2.3. Series temporales . 18
2.4. Big data . 19
2.5. Deep learning en la predicción de series temporales 20
2.6. Optimización de redes deep learning 22

XX Índice general

3. Discusión de resultados 25
3.1. Análisis del estado del arte 25
3.2. Deep Feed-Forward Neural Network 26
3.3. Optimización de hiperparámetros 29

III Publicaciones 33

4. Informe sobre las publicaciones 35
4.1. Artículos de revista . 36

4.1.1. A scalable approach based on deep learning for big
data time series forecasting 36

4.1.2. A novel Spark-based multi-step forecasting algorithm
for big data time series 51

4.1.3. Big data solar power forecasting based on deep lear-
ning and multiple data sources 71

4.1.4. Hybridizing Deep Learning and Neuroevolution: Ap-
plication to the Spanish Short-Term Electric Energy
Consumption Forecasting 86

4.1.5. Coronavirus Optimization Algorithm: A bioinspired
metaheuristic based on the COVID-19 propagation
model . 101

4.1.6. Deep learning for time series forecasting: A survey . 117
4.2. Congresos internacionales 128

4.2.1. Deep Learning-Based Approach for Time Series Fo-
recasting with Application to Electricity Load 128

4.2.2. Scalable Forecasting Techniques Applied to Big Elec-
tricity Time Series 139

4.2.3. Deep learning for big data time series forecasting
applied to solar power 151

Índice general XXI

4.2.4. Random hyper-parameter search-based deep neural
network for power consumption forecasting 163

IV Cierre 175

5. Conclusiones y trabajos futuros 177
5.1. Conclusiones . 177
5.2. Trabajos futuros . 178

Bibliografía 181

Índice de figuras

2.1. Ciencias de la computación 18
2.2. Estacionariedad de una serie temporal. 19

3.1. Escalabilidad del modelo DFFNN y otros modelos aplicado
a datos de demanda eléctrica en España. 27

3.2. Escalabilidad del modelo DFFNN y los modelos NN y PSF
aplicado a datos de energia solar en Australia. 28

3.3. Métricas del modelo DFFNN multivariante aplicado a datos
de energía solar en Australia. 30

Índice de tablas

1.1. Trazabilidad entre objetivos y publicaciones. 11

3.1. Métricas y tiempo de computación del modelo DFFNN y
otros modelos aplicados a datos de demanda eléctrica en
España. 27

3.2. Métricas del modelo DFFNN y los modelos NN y PSF apli-
cados a datos de energía solar en Australia. 28

3.3. Métricas de la estrategia de búsqueda aleatoria comparada con
otras estrategias aplicadas a los datos de demanda eléctrica
en España. 31

3.4. Resultados del método CVOA-LSTM comparados con otros
métodos conocidos. 32

4.1. Datos del artículo: A scalable approach based on deep lear-
ning for big data time series forecasting 36

4.2. Datos del artículo: A novel Spark-based multi-step forecas-
ting algorithm for big data time series 51

4.3. Datos del artículo: Big data solar power forecasting based on
deep learning and multiple data sources 71

4.4. Datos del artículo: Hybridizing Deep Learning and Neuro-
evolution: Application to the Spanish Short-Term Electric
Energy Consumption Forecasting 86

XXVI Índice de tablas

4.5. Datos del artículo: Coronavirus Optimization Algorithm: A
bioinspired metaheuristic based on the COVID-19 propaga-
tion model . 101

4.6. Datos del artículo: Deep learning for time series forecasting:
A survey . 117

4.7. Datos del artículo: Deep Learning-Based Approach for Time
Series Forecasting with Application to Electricity Load . . . 128

4.8. Datos del artículo: Scalable Forecasting Techniques Applied
to Big Electricity Time Series 139

4.9. Datos del artículo: Deep learning for big data time series
forecasting applied to solar power 151

4.10. Datos del artículo: Random hyper-parameter search-based
deep neural network for power consumption forecasting . . . 163

Parte I

Trabajo de Tesis Doctoral

Capítulo 1

Introducción

Sólo hay una manera de llegar al destino:
comenzar.

Sri Chinmoy (Setenta y siete mil árboles de
servicio).

1.1. Organización de la memoria

Con objeto de facilitar la comprensión y seguimiento de la lectura de esta
tesis, se describe en esta sección la estructura de la misma, compuesta por
tres partes:

Parte I. Trabajo de Tesis Doctoral. Esta primera parte contempla diver-
sas secciones generales que permiten contextualizar el presente trabajo,
como la motivación que ha resultado en el desarrollo de esta tesis, los
objetivos que se pretenden alcanzar y el marco en el que se encuadran
todas las publicaciones que dan lugar al cumplimiento de los objetivos
propuestos.

Parte II. Deep learning en la predicción de series temporales. En esta
parte se detalla el marco teórico en el que se enmarca el trabajo de esta

4 Introducción

tesis. En un primer capítulo se describe el contexto de la investigación,
abordando y detallando conceptos como el proceso Knowledge Dis-
covery in Databases (KDD), diferencias entre Inteligencia Artificial
(IA) y Machine Learning (ML) y dónde se enmarca el deep learning.
Además, se realiza una descripción de qué es una serie temporal y
cómo se aborda en un entorno big data. En el segundo capítulo, se
resumen los resultados obtenidos, utilizando para ello dos casos de
uso reales: demanda de energía eléctrica y producción de energía solar
fotovoltáica.

Parte III. Publicaciones. En esta parte del documento se recogen los
trabajos de investigación publicados durante el desarrollo de esta Tesis
Doctoral, siendo organizados por tipo y fecha de publicación. Se de-
tallan tanto las publicaciones que se consideran para el compendio de
artículos como aquellas en las que también se ha trabajado y que han
servido de apoyo o guía al estudio de investigación expuesto.

Parte IV. Cierre. En la última parte del documento se resumen las
conclusiones adquiridas tras la realización de esta tesis, así como los
trabajos futuros.

1.2. Motivación de la investigación

Actualmente vivimos inmersos en un mundo muy tecnológico en el que
encontramos innumerables sensores y dispositivos electrónicos. Es tal la
dependencia de estos artefactos que sin ellos no se podrían llevar a cabo
muchas de las actividades cotidianas que se realizan en el día a día. La
gran parte de estos dispositivos generan en mayor o menor medida datos de
diferentes tipologías, formatos y tamaños.

Se dice que la información es poder, y la mayoría de empresas son cons-
cientes de ello, por lo que uno de los principales retos en la actualidad radica

1.2 Motivación de la investigación 5

en analizar todos estos datos con el fin de obtener información útil de ellos
y bien aumentar los beneficios de la organización o disminuir costes de la
misma. Muestras del poder de la información pueden ser los sistemas de
recomendación de Amazon o Netflix, que son capaces de ofrecer servicios y
productos conforme a las necesidades y gustos de cada usuario. Otros ejem-
plos destacables podrían ser la estimación del estado del tráfico que realiza
Google en los smartphones o el famoso caso de la compañía Cambridge
Analytica para apoyar, usando datos de usuarios de Facebook, la campaña de
Trump en las elecciones de los EEUU del año 2016.

Esta tendencia ha abierto la puerta a un nuevo mercado laboral donde
conviven muy estrechamente diversas disciplinas como la Ciencia de Datos,
el Internet de las Cosas (más conocido por su acrónimo inglés, IoT, Internet
of Things) y la IA, donde los profesionales del sector se especializan en
estudiar, entender y analizar conjuntos de datos con el objetivo de obtener
conocimiento de interés para una organización, aplicado a un dominio o
problema determinado. Esta nueva vertiente es una de las más demandadas
en la actualidad, convirtiendo a los analistas y arquitectos de datos en dos de
los perfiles profesionales mas demandados en la empresa.

Uno de los componentes esenciales en la naturaleza de los datos es que
normalmente la información se encuentra indexada en el tiempo, cuyo com-
portamiento dependerá de un instante determinado como en el caso de la
meteorología o el consumo de agua, por ejemplo, entre otros. A esta tipología
de datos se le conoce como serie temporal.

Si bien es cierto que el análisis de datos se ha estado aplicando desde hace
bastante tiempo, con el paso de los años y la evolución tecnológica que se
ha experimentado, la población se ha ido concienciando de la importancia
que tiene realizar estudios sobre los datos ya almacenados y combinarlos
con la ingente cantidad de datos que se generan cada día, que requieren ser
tratados con un enfoque diferente al llevado a cabo hasta ahora, dando lugar
al término conocido como big data. Este enfoque se basa en la utilización

6 Introducción

de equipamiento de alto rendimiento, así como en la implementación de los
algoritmos de forma distribuida sobre un cluster de ordenadores. La adopción
de estas técnicas ha permitido aplicar algoritmos que antes no podían ser
utilizados debido a sus requisitos de computación a nivel hardware, como son
los algoritmos de deep learning.

1.3. Objetivos

El objetivo principal sobre el que se desarrolla esta Tesis Doctoral es el
estudio, comprensión, análisis y mejora de métodos basados en deep learning
aplicados a la predicción de series temporales en entornos big data. Para
ello, se han desarrollado una serie de algoritmos de predicción basados en
varias arquitecturas de deep learning conocidas en la literatura, tales como
Deep Feed Forward Neural Network (DFFNN), Long-Short Term Memory
(LSTM) o Temporal-Convolutional Network (TCN). Estas arquitecturas se
han estudiado en profundidad, haciendo especial hincapié en cómo afectan
cada uno de los hiperparámetros al comportamiento de los modelos para
los conjuntos de datos utilizados, adaptándolas a modelos que puedan ser
aplicables en entornos big data. Este objetivo a gran escala puede desgranarse
en los siguientes sub-objetivos:

OB.01. Estudio teorico-práctico de las arquitecturas de red DFFNN,
LSTM y TCN, analizando fortalezas y debilidades de cada método en
función de las características del problema que se desea abordar.

OB.02. Diseño y desarrollo de un modelo de predicción multipaso
que permita eliminar las limitaciones de las arquitecturas de redes
neuronales tradicionales.

OB.03. Explorar las diversas estrategias de optimización en los modelos
deep learning.

1.4 Contribuciones 7

OB.04. Diseño y desarrollo de un método de optimización genérico
aplicable a cualquier arquitectura de deep learning.

OB.05. Verificar que los modelos propuestos son generalizables a series
temporales de diversas fuentes y aplicaciones.

1.4. Contribuciones

Esta Tesis Doctoral ha sido fruto de una secuencia de publicaciones
científicas enmarcadas dentro de la predicción de series temporales y deep
learning en entornos big data. Así, las principales publicaciones alcanzadas
para cubrir los objetivos descritos en la Sección 1.3 se detallan a continuación:

En [6] se publicó la primera aproximación a una formulación matemática
que permite abordar un problema de predicción multipaso, dando solución
a las limitaciones que presentaban la mayoría de librerías deep learning
para predecir series temporales big data. En este artículo, se comprobó la
eficacia de la metodología sobre una red DFFNN. Posteriormente, se aplicó
este mismo enfoque a otros modelos de regresión que presentan la misma
limitación en [3]. Una descripción más detallada fue publicada en [7], donde
se realizó un análisis pormenorizado de las predicciones sobre un caso de
estudio real. Además, se realizaron análisis de rendimiento, comparándolos
con otros modelos como regresión lineal, un árbol de regresión simple y
dos algoritmos ensemble de árboles, tales como Gradient-Boosted Trees y
Random Forest, que fueron publicados en [2]. Con el fin de comprobar la
generalidad del método frente a otros problemas, la metodología se aplicó
sobre otra serie temporal, llevando a cabo una búsqueda exhaustiva de los
hiperparámetros de la red [10]. Esta experimentación se amplió utilizando un
conjunto de datos multivariante, y fue publicada en [11].

8 Introducción

[6] Torres, J. F., Fernández, A. M., Troncoso, A., and Martínez-Álvarez,
F. «Deep Learning-Based Approach for Time Series Forecasting with
Application to Electricity Load». Biomedical Applications Based on
Natural and Artificial Computing: International Work-Conference on
the Interplay Between Natural and Artificial Computation, IWINAC
2017. Springer International Publishing, 2017, pp. 203-212. Lecture
Notes in Computer Science, vol 10338. Springer, Cham. Conference
Ranking: National.

[3] Galicia, A., Torres, J. F., Martínez-Álvarez, F., and Troncoso, A.
«Scalable Forecasting Techniques Applied to Big Electricity Time
Series». Advances in Computational Intelligence: 14th International
Work-Conference on Artificial Neural Networks, IWANN 2017, Cadiz,
Spain, June 14-16, 2017, Proceedings, Part II. Springer International
Publishing, 2017, pp. 165–175. doi: 10.1007/978-3-319-59147-6_15.
Conference Ranking: CORE-B.

[7] Torres, J. F., Galicia, A., Troncoso, A., and Martínez-Álvarez, F.
«A scalable approach based on deep learning for big data time series
forecasting». Integrated Computer-Aided Engineering 25(2018), pp.
1–14. doi: 10.3233/ICA-180580. IF: 3.667, 21/132 (Q1) in Computer
Science-Artificial Intelligence.

[2] Galicia, A., Torres, J., Martínez-Álvarez, F., and Troncoso, A. «A
novel Spark-based multi-step forecasting algorithm for big data time
series». Information Sciences (2018). doi: 10.1016/j.ins.2018.06.010.
IF: 4.305, 12/148 (Q1) in Computer Science-Information Systems..

1.4 Contribuciones 9

[10] Torres, J. F., Troncoso, A., Koprinska, I., Wang, Z., and Martínez-
Álvarez,F. A. «Deep learning for big data time series forecasting ap-
plied to solar power». International on Soft Computing Models in
Industrial and Environment Applications (SOCO) 2018, pp. 123–133.
Lecture Notes in Advances in Intelligent Systems and Computing book
series, vol. 771. Springer International Publishing, Cham.

[11] Torres, J. F., Troncoso, A., Koprinska, I., Wang, Z., and Martínez-
Álvarez, F. «Big data solar power forecasting based on deep lear-
ning andmultiple data sources». Expert Systems (2019), pp. e12394.
doi: 10.1111/exsy.12394. IF: 1.546, 50/120 (Q2) in Computer science,
theory and methods.

Los resultados en todas las publicaciones referenciadas anteriormente se
obtuvieron aplicando una búsqueda exhaustiva de los hiperparámetros. Sin
embargo, esta práctica no es factible cuando se aplica en entornos big data
debido al gran coste computacional que lleva asociado. Por ese motivo, en la
segunda parte de la presente Tesis Doctoral se centró el foco en el análisis,
diseño e implementación de estrategias de optimización de hiperparámetros.
En [8] se publicaron los resultados de aplicar una estrategia de búsqueda
aleatoria en una red DFFNN, donde se demostró sobre un conjunto de datos
real que el rendimiento del modelo era altamente competitivo tanto en tér-
minos de error como en tiempo de computación. Posteriormente, se aplicó
una estrategia de búsqueda aplicando heurísticas, concretamente basada en
algoritmos genéticos, cuyos resultados fueron publicados en [1]. Analizando
los resultados obtenidos, se creyó viable el diseño y desarrollo de una nueva
estrategia de búsqueda basada en heurísticas que acelerara el entrenamiento
de los modelos. A este respecto, se diseñó e implementó una estrategia basada
en el modelo de propagación de la COVID-19 que fue publicado en [4]. Por
último, y con objeto de ofrecer un punto de vista global sobre la predicción de

10 Introducción

series temporales aplicando deep learning en entornos big data, se concentró
toda la información recopilada y estudiada, así como una revisión exhaustiva
de la literatura en un survey [9].

[8] Torres, J. F., Gutiérrez-Avilés, D., Troncoso, A., and Martínez-
Álvarez,F. «Random hyper-parameter search-based deep neural net-
work for power consumption forecasting». Advances in Computational
Intelligence: International Work-Conference on Artificial Neural Net-
works, IWANN 2019, Gran Canaria, Spain, May 14-16, 2019, Part of
the Lecture Notes In Computer Science, vol. 11506. Springer Interna-
tional Publishing, 2019, pp. 259-269. doi: 10.1007/978-3-319-59147-
6_15. Conference Ranking: CORE-B.

[1] Divina, F., Torres Maldonado, J. F., García-Torres, M., Martínez-
Álvarez, F., and Troncoso, A. «Hybridizing Deep Learning and Neu-
roevolution: Application to the Spanish Short-Term Electric Energy
Consumption Forecasting». (2020). doi: 10.3390/app10165487. IF:
2,697, 43/128 (Q2) in Applied Sciences.

[4] Martínez-Álvarez, F., Asencio-Cortés, G., Torres, J. F., Gutiérrez-
Avilés,D., Melgar-García, L., Pérez-Chacón, R., Rubio-Escudero, C.,
Riquelme,J. C., and Troncoso, A. « Coronavirus Optimization Algo-
rithm: Abioinspired metaheuristic based on the COVID-19 propagation
model». (2020). doi: 10.1089/big.2020.0051. IF: 3.644, 15/108 (Q1) in
Big Data.

1.4 Contribuciones 11

[9] Torres, J. F., Hadjout, D., Sebaa, A., Martínez-Álvarez, F., and
Troncoso, A. «Deep learning for time series forecasting: A survey».
(2020). doi: 10.1089/big.2020.0159. IF: 3.644, 15/108 (Q1) in Big
Data.

De este modo, la Tesis Doctoral está compuesta por un total de 10 artículos
científicos que permiten cubrir los objetivos propuestos en la Sección 1.3 y
que quedan resumidos en la Tabla 1.1, que ilustra la matriz de trazabilidad
entre los objetivos planteados y las publicaciones realizadas.

Tabla 1.1 Trazabilidad entre objetivos y publicaciones.

OB.01. OB.02. OB.03. OB.04. OB.05.

[6]
[3]
[7]
[2]

[10]
[11]
[8]
[1]
[4]
[9]

Parte II

Marco teórico

Capítulo 2

Contexto de la investigación

La educación científica de los jóvenes es
al menos tan importante, quizá incluso

más, que la propia investigación.

Glenn Theodore Seaborg.

2.1. Proceso KDD

KDD hace referencia al proceso de extracción de conocimiento en bases
de datos, cuyo principal objetivo es identificar patrones entendibles sobre los
datos, obteniendo información novedosa y de utilidad. Este proceso puede
resumirse en cinco pasos definidos:

1. Comprensión del problema. El primer paso en un proceso KDD
se basa en un buen entendimiento y contextualización del problema
a solventar. Suele ocurrir que no se tienen definidos unos objetivos
y dominio de aplicación, dando lugar a problemas en el alcance y
comprensión del proyecto.

2. Selección de datos. Determinar las fuentes y el tipo de datos a utilizar.
Estos datos deberían ser relevantes al dominio y objetivos del estudio

16 Contexto de la investigación

y se podrían obtener de diversas fuentes, tales como bases de datos,
documentos, transacciones, sitios webs, logs, etc.

3. Limpieza y preprocesamiento. Es posible que los datos tengan ano-
malías, registros vacíos o fuera de rango o algunos datos que no sean
de interés para el estudio. El paso de limpieza y preprocesamiento se
basa en el tratamiento de estos datos combinado con el conocimiento
previo para eliminar inconstencias, valores duplicados, tratamiento de
valores nulos y adaptación de los datos al problema.

4. Análisis. Una vez que los datos están procesados y estructurados confor-
me al estudio a realizar, se aplican técnicas de aprendizaje automático
(ML, por su acepción inglesa Machine Learning). Estas técnicas se
basan en la aplicación de algoritmos con el fin de buscar y obtener
patrones ocultos en los datos que ofrezcan información de interés.

5. Interpretación y evaluación. Por último, una vez que se descubren los
patrones de comportamiento en los datos, se interpretan los resultados
de estos patrones y se evalúan (generalmente a través de métricas, cua-
dros de mandos y visualizaciones), con el fin de ofrecer a los usuarios
la información de interés obtenida.

2.2. Inteligencia artificial y aprendizaje automá-
tico

Según la Real Academia Española (RAE), la IA se define como una
disciplina científica que se ocupa de desarrollar programas informáticos que
ejecutan operaciones comparables a las que realiza la mente humana, como
el aprendizaje o el razonamiento lógico.

El origen de la IA no está totalmente claro ni definido. Se dice que puede
haber empezado con antiguos juegos matemáticos, como las torres de Hanoi

2.2 Inteligencia artificial y aprendizaje automático 17

en el año 3000 a.C., aproximadamente. Por otro lado, en el año 1950, el
matemático inglés Alan Mathson Turing introdujo la máquina de Turing
como el inicio de la informática teórica, y en el 1956, se acuñó el término IA
por McCarthy.

La IA es una disciplina científica que engloba una gran diversidad de
técnicas y campos, como puede ser la ingeniería del conocimiento, la lógica
difusa, sistemas reactivos, visión artificial, procesamiento de lenguaje natural,
audición artificial o el aprendizaje automático, entre otros.

Una de las ramas de la IA mas extendida y utilizada a lo largo de los años
ha sido la minería de datos, que es un campo de la estadística cuyo objetivo
es descubrir patrones, correlaciones y anomalías en los datos.

El ML es una de las disciplinas de la IA cuya principal característica es
desarrollar técnicas y algoritmos que permitan que los sistemas aprendan, es
decir, un sistema de inducción de conocimiento.

Dentro del ML se pueden clasificar de manera general dos tipos de al-
goritmos agrupados en una taxonomía en función de la salida de dichos
algoritmos:

Aprendizaje supervisado. Consiste en hacer predicciones a futuro
basadas en comportamientos o características que se han obtenido de
un conjunto de datos. Esto permite buscar patrones relacionando los
atributos del conjunto de datos con un atributo concreto, llamado clase
o etiqueta. Dependiendo de la salida que se desee obtener, un método de
aprendizaje supervisado puede ser aplicado a problemas de regresión,
que buscan predecir un valor continuo, o a problemas de clasificación,
que tratan de predecir una categoría o etiqueta de los datos.

Aprendizaje no supervisado. En este grupo, los datos no están etique-
tados, por lo que las técnicas intentan encontrar modelos descriptivos
del comportamiento de los datos. De entre estas técnicas, destacan el
clustering y la extracción de reglas de asociación por su extendido uso
y su sencillez para interpretar los resultados obtenidos.

18 Contexto de la investigación

Para llevar a cabo estas tareas, existen infinidad de algoritmos dependiendo
del problema en cuestión. Una de las vertientes que mas éxito está teniendo en
los últimos años son los algoritmos basados en deep learning, que se apoyan
en las ya conocidas redes neuronales y que ofrecen resultados realmente
competitivos. En la literatura se recogen diversas arquitecturas de red, cuya
selección dependerá de las características del problema que se desee modelar.

Por tanto, se puede describir de forma sencilla el mapa conceptual de la
Ciencia de la Computación e IA donde se enmarca la presente Tesis Doctoral
a través de la Figura 2.1.

Ciencia de la Computación

Inteligencia Artificial

Minería
de datos

Machine Learning

Deep Learning

Big Data

Figura 2.1 Mapa de la Ciencia de la Computación.

2.3. Series temporales

Una serie temporal es una secuencia de datos medidos en determinados
intervalos de tiempo (normalmente equidistantes) y ordenados de forma
cronológica. Esta tipología de datos están muy presente en la actualidad,
como por ejemplo las acciones en bolsa, datos demográficos, etc.

Las series temporales se pueden clasificar en dos grandes grupos depen-
diendo de su estacionariedad. Se dice que una serie temporal es estacionaria
si la media y la varianza se mantienen constantes a lo largo del tiempo. Por el
contrario, se define como serie temporal no estacionaria a aquella cuya media

2.4 Big data 19

y varianza no se mantiene constante. Además, este tipo de series pueden mos-
trar una tendencia, ya sea de subida o bajada, además de efectos estacionales.
Un ejemplo de serie estacionaria y no estacionaria puede verse en las Figuras
2.2a y 2.2b, respectivamente.

600

800

1000

1200

1400

1875 1900 1925 1950

(a) Estacionaria.

200

400

600

1950 1955 1960

(b) No estacionaria.

Figura 2.2 Estacionariedad de una serie temporal.

Además de la estacionariedad, una serie temporal se compone también
de la tendencia, es decir, el comportamiento de la serie a largo plazo, y de
irregularidades, que son variaciones aleatorias de la estacionalidad y de la
tendencia.

Estos componentes hacen que la predicción de series temporales sea una
de las áreas mas complejas y estudiadas dentro de la Ciencia de Datos, debido
al gran interés que despierta en la sociedad, por ejemplo, la posibilidad de
obtener una previsión más fiable de la meteorología para determinados días
o la previsión del consumo de energía para determinar una estrategia de
consumo que minimice costes, entre otros.

2.4. Big data

El término big data no tiene una definición clara ni reconocida, sino que
hace referencia más bien a un paradigma de programación para resolver pro-
blemas que no son abordables con las técnicas de computación tradicionales.

20 Contexto de la investigación

Estos problemas de gran envergadura se caracterizan por cuatro propieda-
des, más bien conocidas como las 4V’s del big data, que hacen referencia al
volumen, velocidad, variedad y veracidad de los datos.

Para abordar problemas de estas características, se debe enfocar la solu-
ción de forma diferente a como se ha estado realizando hasta ahora. Entre
otros aspectos, se debe tener en cuenta otra forma de configurar la arquitec-
tura, tales como motores de bases de datos o frameworks de procesamiento,
la estructuración de los datos o utilizar clústers de máquinas usando el po-
tencial del procesamiento paralelo y distribuido. Este nuevo enfoque implica
que gran parte de los modelos y sistemas que se han estado utilizando hasta
ahora queden limitados, forzando a la comunidad investigadora a abrir nuevos
frentes de investigación para abordar dichas limitaciones.

2.5. Deep learning en la predicción de series tem-
porales

Aunque el término deep learning ha empezado a utilizarse en los últimos
años, el inicio se remonta al año 1943 con la publicación del modelo neuronal
[5]. A partir de dicha publicación, fueron varios autores los que innovaron
con este modelo de referencia. La comunidad investigadora proponía arqui-
tecturas cada vez mas complejas, que cayeron en desuso por el gran coste
computacional que llevaban asociadas y que no era posible abordar. En los
últimos años, e influenciado por el gran avance en el mundo del hardware,
estar arquitecturas volvieron a usarse ampliamente, siendo capaces de extraer
relaciones de los conjuntos de datos que antes no era posible, dando lugar al
término conocido como deep learning.

Existen diversas arquitecturas de referencia en la literatura, cuyo uso varia
en función de las características del problema y de los datos que se desee
abordar. En la predicción de series temporales, las arquitecturas deep learning
más extendidas en la literatura se pueden clasificar en tres grupos:

2.5 Deep learning en la predicción de series temporales 21

Redes Convolucionales (CNN). Este tipo de red se especializa en
aprender características de los datos a través de convoluciones, pre-
sentando una topologia de grid multidimensional. Intuitivamente, este
tipo de redes se puede aplicar a series temporales, donde los datos se
estructuran añadiendo una dimensión adicional para modelar la com-
ponente temporal. Entre las arquitecturas basadas en convoluciones,
destaca la Temporal-Convolutional Network (TCN), que consiste en
el uso de capas convolucionales dilatadas y causales para modelar la
dependencia temporal en los datos.

Redes Recurrentes (RNN). Las RNN se enmarcan dentro de las redes
de retroalimentación y son ampliamente utilizadas en problemas donde
se trabajan con secuencias de datos. Se caracterizan fundamentalmente
por estar diseñadas para retener información y retroalimentarse usando
como entrada la salida computada en un instante de tiempo anterior,
formando un ciclo dirigido y dotando a la red de una especie de memoria
que facilita al modelo la tarea de encadenar dependencias entre los
datos. Dentro de las RNN, existen varias arquitecturas, tales como
las redes LSTM, que son una variación de las RNN clásicas, cuya
principal ventaja es que son capaces de retener una mayor cantidad de
información en memoria, solventando de este modo las limitaciones que
presentan las RNN. Otra de las arquitecturas ampliamente utilizadas
para analizar series temporales son las Gated Recurrent Units (GRU),
que son una variación de las redes LSTM con menos parámetros y
altamente efectivas en series temporales relativamente cortas y con una
corta frecuencia de muestreo.

Temporal Fusion Transformers (TFT). Las redes TFT nacen a raíz de
la mezcla de datos de entrada que suele darse en la predicción de series
temporales, ya que es común incluir variables estáticas, predicciones
futuras y otras series temporales exógenas. Las TFT están basadas
en mecanismos de atención que combinan capas recurrentes para el

22 Contexto de la investigación

procesamiento con selección de variables, por lo que permiten desechar
información no relevante, dotándolas así de un gran rendimiento y
adaptabilidad a diversas fuentes de datos.

2.6. Optimización de redes deep learning

El rendimiento de las arquitecturas deep learning está altamente influen-
ciado por la optimización de todos sus hiperparámetros. Aunque muchos de
ellos son comunes a todas las arquitecturas, hay otros que dependen del tipo
de red que se utiliza, así como de las características de los datos a analizar y el
problema a resolver. Esto hace que la optimización del modelo sea una pieza
fundamental en cualquier estudio, y que debe ser llevada a cabo a consciencia
y de forma minuciosa. Para la optimización de los modelos deep learning, en
la literatura se recogen cuatro estrategias generales:

Trial-error. Este método se basa en variar cada uno de los hiperparáme-
tros manualmente, lanzando una ejecución cada vez que se modifique.
Este proceso requiere de la intervención del usuario para analizar los
resultados obtenidos, modificar el valor de los hiperparámetros y volver
a lanzar la ejecución. Este proceso implica invertir una gran cantidad
de tiempo, además de que ofrece un espacio de búsqueda reducido.

Grid. Dado un conjunto de hiperparámetros y sus posibles valores, esta
estrategia de búsqueda realiza todas las combinaciones existentes entre
ellos. De esta forma, se asegura cubrir el total del espacio de búsqueda,
ofreciendo siempre la mejor combinación posible, y por ende, el mejor
resultado. Sin embargo, conlleva un alto costo computacional, por lo
que no es una buena estrategia de optimización para problemas de deep
learning ni big data en los que el espacio de búsqueda sea grande y se
deban analizar grandes cantidades de datos.

2.6 Optimización de redes deep learning 23

Probabilistica. Esta estrategia hace un seguimiento de cada una de las
evaluaciones que son usadas para generar un modelo probabilístico que
asigna valores a cada uno de los hiperparámetros.

Aleatoria. Esta estrategia permite cubrir un gran espacio de búsqueda,
ya que dado un conjunto de hiperparámetros y sus posibles valores, los
combina de forma aleatoria, pudiendo explorar infinitas combinaciones.
No obstante, esta estrategia es propensa a obtener combinaciones que
caigan en mínimos locales. Para paliar este problema, es muy común
utilizar búsquedas aleatorias guiadas, como las basadas en heurísticas,
cuya función es modificar los valores de los hiperparámetros en función
de algún criterio previamente establecido y asegurando así que en cada
iteración se mejora el modelo.

Capítulo 3

Discusión de resultados

En algún lugar, algo increíble está
esperando ser conocido

Carl Sagan.

En esta sección se describe la secuencia de trabajos seguido en el desarro-
llo de esta tesis, así como un breve resumen de los resultados obtenidos en
los mismos. Para ello, se seguirá un orden cronológico, donde se expondrá la
motivación que ha llevado a realizar cada uno de los estudios propuestos.

3.1. Análisis del estado del arte

Cuando se decidió comenzar esta Tesis Doctoral, se planteó como primer
objetivo hacer un análisis exhaustivo del estado del arte y, en concreto, de
las técnicas basadas en deep learning existentes para la predicción de series
temporales. Fruto de dicho análisis, se publicó un survey en [9], en el que se
presentan tanto la formulación matemática e interpretación de los modelos
más extendidos como son las redes de propagación hacia adelante, redes recu-
rrentes, la red ELMAN, las LSTM, GRU, redes recurrentes bidireccionales,

26 Discusión de resultados

las redes convolucionales y las redes temporales-convolucionales. Además, se
estudió en profundidad los campos de aplicación en los que las diversas técni-
cas han demostrado ser efectivas. Por otro lado se analizaron y se clasificaron
las diferentes estrategias de optimización, así como una amplia gama de fra-
meworks y librerías disponibles para llevar a cabo la implementación de cada
uno de los modelos y la optimización de sus hiperparámetros en base a varios
criterios, como el lenguaje de programación en el que puede ser desarrollado
o la posibilidad de implementar los modelos de forma distribuida.

3.2. Deep Feed-Forward Neural Network

En el primer estudio [6] se propuso una formulación matemática que per-
mitía abordar un problema de predicción multipaso aplicando redes DFFNN,
dando solución a la principal limitación que presentaban la mayoría de libre-
rías deep learning. Esta propuesta consistía en dividir el problema multipaso
en diferentes problemas de un único paso y solucionarlos de forma individual.

Esta metodología se aplicó sobre un conjunto de datos de consumo eléctri-
co en España. Esta serie está compuesta por 9 años completos, (desde enero
2007 hasta junio 2016), con una frecuencia de muestreo de 10 minutos, resul-
tando en un total de 497832 muestras. En este estudio se obtuvo un Error
Relativo Medio (MRE) de 1.84% aplicando una estrategia de búsqueda grid
para la optimización de hiperparámetros.

Posteriormente, en [7] se realizó un análisis pormenorizado de las pre-
dicciones sobre el mismo conjunto de datos, así como una implementación
distribuida del modelo para optimizar el tiempo de computación. En este
estudio se realizaron pruebas de rendimiento y escalabilidad, comparando los
resultados con otros métodos de referencia conocidos en la literatura. En este
análisis se demostró que la metodología de predicción propuesta obtenía las
mejores métricas de error y que era altamente competitiva en cuanto a tiempo
de ejecución, a pesar de no ser la mas rápida. Los resultados están descritos

3.2 Deep Feed-Forward Neural Network 27

en la Tabla 3.1 y en la Figura 3.1, donde se puede observar que el método
es bastante mas rápido comparado con el modelo Linear Regression y los
modelos ensembles, sobre todo a medida que el tamaño del conjunto de datos
crece.

Tabla 3.1 Métricas y tiempo de computación del modelo DFFNN y otros
modelos aplicados a datos de demanda eléctrica en España.

MRE (%) Tiempo (s)

DFFNN 1.6769 153
Linear Regression 7.3395 553
Decision Tree 2.8783 81
Gradient-Boosted Trees 2.7190 417
Random Forest 2.2005 277

0

5000

10000

15000

20000

Time series length

T
im

e
(s

ec
)

x1 x4 x8 x16 x32 x64

Deep Learning
Linear Regression
Decision Tree
Gradient−Boosted Trees
Random Forest

Figura 3.1 Escalabilidad del modelo DFFNN y otros modelos aplicado a datos
de demanda eléctrica en España.

Una vez verificada la eficacia del método, se decidió comprobar su capa-
cidad de generalización frente a otras series temporales. Esto llevó a aplicar
la misma metodología de predicción sobre un conjunto de datos de energía

28 Discusión de resultados

solar en Australia en [10]. Esta serie temporal se obtuvo de una planta solar
localizada en la Universidad de Queensland y está formada por datos desde el
1 de enero de 2015 hasta el 31 de diciembre de 2016, con una frecuencia de
muestreo de 30 minutos. En este estudio se corroboró que la metodología es
generalizable y aplicable a series temporales con características diferentes.
Para afirmar esto, se compararon los resultados con otros modelos de pre-
dicción conocidos ya publicados en la literatura como son Pattern-Sequence
Forecasting (PSF) y el Perceptrón Multicapa (NN) en términos de rendimien-
to y escalabilidad. Los resultados están ilustrados en la Tabla 3.2 y en la
Figura 3.2, donde se observa la menor tasa de error y el menor tiempo de
computación del modelo DFFNN, debido a su carácter distribuido.

Tabla 3.2 Métricas del modelo DFFNN y los modelos NN y PSF aplicados a
datos de energía solar en Australia.

NN PSF DFFNN
RMSE 154.16 149.52 148.98
MAE 116.64 119.17 114.76

0
50

0
10

00
15

00
20

00

Training time

length factor

T
im

e
(s

)

● ● ● ●

●

●

●

1 4 8 16 32 64

● NN
PSF
DL

Figura 3.2 Escalabilidad del modelo DFFNN y los modelos NN y PSF aplica-
do a datos de energia solar en Australia.

3.3 Optimización de hiperparámetros 29

Posteriormente, la misma metodología se amplió aplicándose a un con-
junto de datos multivariante, donde se analizaron datos de energía solar
añadiendo información relativa a la meteorología [11]. En concreto, se utilizó
información adicional sobre la meteorología del día actual (W) y prediccio-
nes de la meteorología para el siguiente día (WF), considerando que dichas
predicciones podrían tener tres versiones, que corresponden a un 10%, 20%
y 30% de ruido. Los resultados de este análisis están ilustrados en la Figura
3.3. En ella se observa que en las Figuras 3.3a y 3.3b, en las que se utiliza
la previsión de la meteorología, es el modelo DFFNN el modelo que menor
error obtiene. Sin embargo, en las Figuras 3.3c y 3.3d, donde se utilizan ade-
más de las predicciones, la información meteorológica en el día actual, es el
modelo NN el que ofrece los mejores resultados. Esto sugiere que el modelo
propuesto puede llegar a mejorar en su forma multivariante ampliando la
ventana histórica utilizada para entrenar el modelo, de forma que se incluyan
en el análisis mayores dependencias temporales. No obstante, se espera que
esta mejora no sea tan diferenciada como en el caso de la versión univariante.

3.3. Optimización de hiperparámetros

Toda la experimentacion descrita hasta ahora se ha llevado a cabo apli-
cando una estrategia de búsqueda en grid (exhaustiva) de algunos de los
hiperparámetros de la red. Sin embargo, esta práctica no es recomendable,
porque para realizar esta búsqueda se discretizan los posibles valores haciendo
que el barrido no sea tan exhaustivo en sentido estricto y que, en definitiva,
sólo se evalúe un pequeño porcentaje de combinaciones posible. Motivado
por ello, además de por el escaso número de publicaciones disponibles en
la literatura al respecto, se decidió enfocar el hilo principal de la investiga-
ción al análisis, estudio e implementación de estrategias de optimización en
arquitecturas deep learning.

30 Discusión de resultados

10% 20% 30%

PV+WF data

Noise in WF

M
A

E
 [K

W
]

0

50

100

150

200
DL NN PSF

(a)

10% 20% 30%

PV+WF data

Noise in WF

R
M

S
E

 [K
W

]

0

50

100

150

200
DL NN PSF

(b)

10% 20% 30%

PV+W+WF data

Noise in WF

M
A

E
 [K

W
]

0

50

100

150

200
DL NN PSF

(c)

10% 20% 30%

PV+W+WF data

Noise in WF

R
M

S
E

 [K
W

]

0

50

100

150

200
DL NN PSF

(d)

Figura 3.3 Métricas del modelo DFFNN multivariante aplicado a datos de
energía solar en Australia.

De esta forma, se implementó una estrategia de búsqueda aleatoria sobre
la red DFFNN propuesta. Esta estrategia tiene como principal característica la
posibilidad de explorar un gran espacio de búsqueda al permitir que el valor
de cada uno de los hiperparámetros sea continuo. De esta forma, permite
obtener un número infinito de combinaciones, y, por tanto, la mejora de los
modelos, tal y como se encuentra en [8]. Esta estrategia se aplicó a los datos
de demanda eléctrica en España, siendo los resultados comparados con los
resultados obtenidos previamente con la búsqueda grid. Además, se amplió la
metodología propuesta inicialmente añadiendo como etapa final un filtro de
paso bajo basado en la media móvil para reducir el rizado en las predicciones.

3.3 Optimización de hiperparámetros 31

Este rizado era consecuencia directa de realizar las predicciones multi-paso
con diferentes modelos, ya que cada predicción era independiente de los
valores predichos inmediatamente anteriores y posteriores. De esta forma,
el modelo no era capaz de interpretar la dependencia temporal existente
entre cada una de las predicciones, por lo que se buscó una alternativa para
suavizar el cambio de predicción. Los resultados descritos en la Tabla 3.3
demuestran que la estrategia de búsqueda aleatoria mejora significativamente
a la búsqueda en grid, y que el filtro suavizado mejora significativamente la
calidad de las predicciones.

Tabla 3.3 Métricas de la estrategia de búsqueda aleatoria comparada con otras
estrategias aplicadas a los datos de demanda eléctrica en España.

MSE RMSE MAE MRE (%)

Grid 380486.80 616.84 451.96 1.68
Aleatoria 345891.20 588.13 422.55 1.57
Aleatoria+filtro 251143.90 501.14 369.19 1.36

A pesar de los buenos resultados que ofrece una búsqueda aleatoria, se
decidió diseñar e implementar una novedosa estrategia de búsqueda basada
en heurísticas que mejorara y acelerara la convergencia de los modelos. Con-
cretamente, se propuso una heurística llamada CVOA basada en el modelo de
propagación de la COVID-19 que fuera fácilmente integrable con cualquier
arquitectura deep learning [4]. Para comprobar la eficacia de la estrategia, se
realizaron implementaciones con las arquitecturas DFFNN y LSTM. Esta
última es conocida por ser altamente eficiente en series temporales a pesar
de su elevado coste computacional. Además, estas dos arquitecturas fueron
comparadas con otras estrategias de búsqueda, así como con otros métodos
clásicos muy extendidos en la literatura, como son Linear Regression (RL),
Decision Trees (DT), Gradient-Boosted Tree (GBT) y Random Forest (RF).
Los resultados descritos en la Tabla 3.4 ilustran que el método CVOA mejora
significativamente a la búsqueda aleatoria con filtro suavizado (RS+LP), a

32 Discusión de resultados

la búsqueda aleatoria (RS) o a la búsqueda Grid (GS), así como al resto
de métodos. Además, se observa que las redes LSTM son las que mejores
resultados ofrecen.

Tabla 3.4 Resultados del método CVOA-LSTM comparados con otros méto-
dos conocidos.

Método MAPE (%)
LR 7.34
DT 2.88
GBT 2.72
RF 2.20
DNN-GS 1.68
DNN-RS 1.57
DNN-RS-LP 1.36
DNN-CVOA 1.18
LSTM-GS 1.22
LSTM-RS 0.84
LSTM-RS-LP 0.82
LSTM-CVOA 0.47

Parte III

Publicaciones

Capítulo 4

Informe sobre las publicaciones

No lo intentes. Hazlo o no lo hagas, pero
no lo intentes.

Maestro Yoda (Star Wars Ep. V: El imperio
contraataca).

En este capítulo se incluyen los trabajos de investigación que componen
esta Tesis Doctoral, presentada en la modalidad por compendio de artículos.
Estas publicaciones demuestran el interés de la comunidad científica en los
avances y el impacto que supone la combinación de las técnicas analizadas.
Todas las publicaciones han sido sometidas a revisión por parte de investigado-
res expertos y discutidas en foros de impacto. Las publicaciones se mostrarán
indexadas en función de si son revistas de impacto o congresos, incluyendo
además un breve resumen de los mismos, detallando las referencias, número
de citas a fecha de redacción del documento y el medio publicador, así como
sus principales métricas, como el índice de impacto en el Journal Citation
Report (JCR), entre otros.

36 Informe sobre las publicaciones

4.1. Artículos de revista

4.1.1. A scalable approach based on deep learning for big
data time series forecasting

Tabla 4.1 Datos del artículo: A scalable approach based on deep learning for
big data time series forecasting

Autores Torres, J. F., Galicia, A., Troncoso, A., and Martínez-Álvarez,
F.

Revista Integrated Computer-Aided Engineering
Año 2018

Páginas 335-348
Volumen 24, no. 4

DOI 10.3233/ICA-180580
IF 3.667 (21/132)

Cuartil Q1 (Computer Science-Artificial Intelligence)
Citas 75 (Google Scholar)

Integrated Computer-Aided Engineering 25 (2018) 335–348 335
DOI 10.3233/ICA-180580
IOS Press

A scalable approach based on deep learning
for big data time series forecasting

J.F. Torres∗, A. Galicia, A. Troncoso and F. Martínez-Álvarez
Division of Computer Science, Universidad Pablo de Olavide, Seville, Spain

Abstract. This paper presents a method based on deep learning to deal with big data times series forecasting. The deep feed
forward neural network provided by the H2O big data analysis framework has been used along with the Apache Spark platform
for distributed computing. Since H2O does not allow the conduction of multi-step regression, a general-purpose methodology
that can be used for prediction horizons with arbitrary length is proposed here, being the prediction horizon, h, the number of
future values to be predicted. The solution consists in splitting the problem into h forecasting subproblems, being h the number of
samples to be simultaneously predicted. Thus, the best prediction model for each subproblem can be obtained, making easier its
parallelization and adaptation to the big data context. Moreover, a grid search is carried out to obtain the optimal hyperparameters
of the deep learning-based approach. Results from a real-world dataset composed of electricity consumption in Spain, with a
ten-minute frequency sampling rate, from 2007 to 2016 are reported. In particular, the accuracy and runtimes versus computing
resources and size of the dataset are analyzed. Finally, the performance and the scalability of the proposed method is compared
to other recently published techniques, showing to be a suitable method to process big data time series.

Keywords: Deep learning, time series forecasting, big data

1. Introduction

Increasing attention is being paid to the issue of time
series forecasting nowadays [1], mainly due to its in-
terdisciplinary nature. Almost all scientific disciplines
consist of data sampled over time, which makes their
forecasting a task of utmost significance and complex-
ity. Participants in electricity markets (both demand
and prices) are particularly interested in making accu-
rate predictions [2], since their obtention is critical for
many areas in order to increase benefits, such as plan-
ning, inventory management, or even in evaluating ca-
pacity needs.

When addressing big data problems, computational
issues are usually encountered. Therefore, efficient al-
gorithms must be developed to extract knowledge from
massive data. These algorithms are developed using
parallel and distributed computing techniques, which

∗Corresponding author: J.F. Torres, Pablo de Olavide University
of Seville, Ctra. Utrera, Km.1, 41013, Sevilla, Spain. Tel.: +34 605
03 57 59; E-mail: jftormal@alu.upo.es.

take advantage of the concurrency of multiple proces-
sors to execute processes at the same time [3–5]. Ad-
ditionally, many artificial intelligence techniques have
been inspired by the functioning of neural systems [6]
and are currently reporting remarkable results in this
research field [7,8].

Deep learning is an emerging branch of machine
learning that extends artificial neural networks [9]. One
of the main drawbacks that classical artificial neural
networks exhibit is that, with many layers, its training
typically becomes too complex [10]. In this sense, deep
learning consists of a set of learning algorithms to train
artificial neural networks with a large number of hid-
den layers. Deep learning models are also sensitive to
initialization and much attention must be paid at this
stage [11].

For all the aforementioned, a preliminary deep
learning-based approach to predict big data time se-
ries was published by the authors in [12]. By con-
trast, in this work, we now introduce a novel algo-
rithm to forecast big data time series, based on deep
learning architectures [13,14]. In this new deep learn-

ISSN 1069-2509/18/$35.00 c© 2018 – IOS Press and the author(s). All rights reserved

AU
TH

O
R

CO
PY

336 J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting

ing a new methodology to automatize the hyperparam-
eters adjustment has been included. The sensitivity of
the number of past values involved in the topology
of the network is also analyzed. The accuracy of the
proposed methodology is compared to other machine
learning methods for big data time series applied to the
same dataset. A thorough scalability analysis is also in-
cluded, showing that the new approach is scalable, by
varying the time series length and the number of ex-
ecutions threads, and more scalable than than most of
the methods it has been compared to.

The algorithm has been developed for prediction
horizons of arbitrary length, being suitable for the
short, mid, and long-term forecasting. To achieve this
goal, the proposed approach creates as many indepen-
dent forecasting problems as samples are desired to
be simultaneously forecasted. Later, each subproblem
is individually addressed by computing different time
slots within the historical data. Deep learning models
have been embedded in the process and are responsi-
ble for making predictions. It is worth noting that the
deep learning implementation used is that of the well-
known H2O library [15], which is open source and has
been conceived for distributed environments.

One of the most relevant features of this method
lies in its inherent suitability to be launched in paral-
lel environments, which turns this tool ready to be ap-
plied to big data. Moreover, Apache Spark has been
used to load data in memory, significantly speeding up
the whole process and thus decreasing the computation
time.

The performance of the approach has been as-
sessed in real-world datasets. Electricity consumption
in Spain has been used as case study, and data from
2007 to 2016 in the usual 70%–30% training-test sets
structure have been analyzed. Satisfactory results are
reported in terms of both accuracy and processing time,
outperforming those obtained by a linear regression, a
decision tree and two ensemble techniques based on
trees as Gradient-Boosted Trees, and Random Forest.
A scalability analysis has also been conducted in order
to show that the proposed method is fully suitable for
big data.

In summary, the main contributions of this work are:

1) We propose a new approach based on deep learn-
ing for electricity consumption forecasting. Due
to the high computational cost of training a neu-
ral network, we develop the algorithm using an
efficient distributed computing strategy, so that it
can process very large time series.

2) We develop a distributed grid search to deter-
mine the optimal parameters involved in the deep
learning training. Such parameters have been
found to be the number of layers and number of
neurons, which eventually have a great impact on
the performance of the algorithm.

3) We conduct a wide experimentation using real
electricity data, measured every 10 minutes for
ten years, from the Spanish electricity market.
We evaluate the prediction accuracy of the pro-
posed algorithm and compare it with four state-
of-the-art big data forecasting approaches, such
as decision tree, gradient-boosted tree, random
forest and linear regression [16]. The deep learn-
ing was the most accurate model achieving a
MRE of 1.68%, which is a very promising result
for the prediction of big electricity time series.

4) We carry out a scalability study with the pur-
pose of showing the suitability of the deep learn-
ing for processing large electricity time series. A
detailed analysis of computing times for differ-
ent time series lengths and number of threads is
provided. Moreover, the scalability of the deep
learning is also compared to the aforementioned
state-of-the-art algorithms.

The remainder of the paper is structured as follows.
Relevant related works are reviewed and discussed in
Section 2. The proposed methodology is introduced in
Section 3. Results are reported and discussed in Sec-
tion 4. A comparative analysis to other well established
forecasting strategies is shown in Section 5. Finally, the
conclusions drawn are summarized in Section 6.

2. Related work

This section reviews relevant works in the context
of big data, time series forecasting and deep learning.
It also pays attention to works particularly devoted to
forecast electricity demand.

Large datasets needs high performance hardware
to be processed. Distributed computing can be used
to leverage the existing hardware [17]. In this sense,
Castillo et al. [18] introduced a novel approach, in
which a SVM model was distributed. The authors em-
phasize that threads shared some data with each other
during the training phase to enhance the learning pro-
cess. Adeli and Hung described a concurrent gradi-
ent learning algorithm to train feed-forward neural net-
works applied to image recognition in [19]. In this re-
search, the authors studied the behavior in terms of

AU
TH

O
R

CO
PY

J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting 337

network speed by using large networks and vector-
ization. The use of graphics processing units (GPUs)
has increased in recent years, due to the high perfor-
mance – in terms of processing – they offer. Fang et
al. [20] made a benchmark of a GPU memory system to
quantify the capability of parallel accessing and broad-
casting. The authors in [21] studied the performance
of MPI parallel processing libraries on GPU clusters.
In order to maximize the amount of data ingested by
the training algorithm, the authors in [22] proposed
a framework that uses parallel computing over GPU
to train and combine a set of deep learning models.
As another alternative, the authors in [23] have imple-
mented the back-propagation learning algorithm on an
FPGA board by performing several configurations and
checking the runtime with other C and Matlab code
implementations. This experimentation has shown that
FPGA implementation is more efficient. To take ad-
vantage of the power of distributed computing, frame-
works such as DistBelief [24], Minerva [25], Chain-
erMN [26] or TensorFlow [27], among others, are often
used for deep learning problems. Erickson et al. sum-
marized some of these distributed frameworks in [28].

The scalability of association rules techniques com-
bined with evolutionary computation has also been ad-
dressed. The authors in [29] claimed to have devel-
oped a method particularly suitable to be applied to
large datasets. Reported results are quite satisfactory
and its use is encouraged for future works. More re-
cently, a generic MapReduce framework to discover
quantitative association rules in big data problems has
also been proposed [30].

Recently, some studies have appeared discussing the
performance associated with deep learning in the con-
text of forecasting. In 2013, the temperature forecast-
ing issue was analyzed in [31]. The authors paid par-
ticular attention to the hyperparameters of deep learn-
ing architectures and provided some clues on how to
systematically adjust them.

Event driven stock market was also forecasted by
means of a novel approach in 2015 [32]. Firstly, a deep
convolutional neural network was used and, secondly,
both short and long-term stock price fluctuations were
modeled. Results were assessed on S&P 500 stock his-
torical data, showing remarkable performance.

Dalto et al. [33] thoroughly reviewed the selection
of variables in order to decrease computational time.
As a result of their work, they were able to develop a
deep learning based forecasting approach with better
accuracy than that of compared standard artificial neu-
ral networks.

An interesting deep learning architecture, this time
particularly designed for air quality prediction, was
presented in [34]. Specially remarkable were the spa-
tio-temporal correlations analyzed by means of a
stacked autoencoder model for feature extraction that
the authors used. The experimentation carried out
and the comparisons made were useful to show how
promising the approach is.

Later in 2016, another feature data based method
was introduced in [35]. The application field was trans-
portation forecast under data-driven perspective. Nam-
ely, a deep learning model to forecast bus ridership at
the stop and stop-to-stop levels was there adopted.

Deep learning methods have also been used in
the field of health. A remarkable approach can be
found in [36], in which the authors introduced a new
deep learning approach based on voting schemes, with
application to accurate early diagnose of Alzheimer
cases. Morabito et al. presented a novel feature ex-
traction method from time-frequency representation
in EGG signals to differentiate the status of patients
with Creutzfeldt-Jakob disease [37]. Acharya et al. also
used CNN based deep learning applied to EEG signals
to aide in the diagnosis of epilepsy in [38]. The authors
in [39] explore a neural network based on adaptive dif-
ferential evolution to determine the functional state of
the human operator.

Another field of application for deep learning is civil
infrastructure and construction. Some of these works
are based on feature extraction to identify damage lo-
cations into buildings structures or pavements using
convolutional neural networks [40–42]. In the same
area, other deep learning architectures, such as Re-
stricted Boltzmann Machine (RBM), have been also
used [43,44].

Image processing has proven to be one of the most
fruitful fields of deep learning applications. Koziarski
and Cyganek present in [45] a method for reducing
the noise level in images using convolutional networks.
The authors in [46] prove the effectiveness of applying
a trained RBF polynomial network by fuzzy cluster-
ing and a trained forward propagation network with the
backward propagation algorithm to extract the coast-
line position based on video images.

On the other hand, many authors combine the use of
deep learning with metaheuristics. For instance, a deep
learning metaheuristic model for time series forecast-
ing using GPU was proposed in [47]. In the same way,
Rafiei et al. proposed a novel machine learning model
combining a genetic algorithm and a RBM in order to
forecast the sale prices of houses [48].

AU
TH

O
R

CO
PY

338 J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting

Finally, some works related to electricity demand
forecasting are also discussed in this section. In 2014,
a hybrid method was presented with aim of forecast-
ing time series [49]. In particular, the authors com-
bined Hinton and Salakhutdinov’s networks with gra-
dient descend and back propagation, as well as inte-
grating some other preprocessing techniques.

Hu [50] proposed a novel neural network GM based
model to forecast electricity consumption. Turkish
Ministry of Energy and Natural Resources and the Asia
Pacific Economic Cooperation energy database data
were used with the purpose of evaluating the quality of
the approach.

Marvuglia and Messineo [51] described a recurrent-
neural-network-based model to forecast a time series
with one hour as prediction horizon to evaluate the in-
fluence of the air-conditioning equipments.

Talavera-Llames et al. [52] proposed a forecasting
algorithm, under the Apache Spark platform [53]. Data
from the Spanish market were used to test the ap-
proach. Experimentation was conducted towards the
successful application to big data time series. Prelimi-
nary reported results are of particular interest.

Also with data from the Spanish market, Pérez-
Chacón et al. extracted demand profiles by means of
scalable k-means algorithm [54]. The authors claimed
the usefulness of using this information as input into
a subsequent stage in the forecasting process. Big data
time series were also used and profiles showed remark-
able differences between working days and festivities
and among seasons.

Large variations in consumption were analyzed in
the work introduced in [55]. The authors deeply stud-
ied the influence that data size and temporal granu-
larity may exhibit in such a context. The performance
of the approach was assessed with data from Canada
by means of different configurations of artificial neu-
ral networks and support vector regression, reporting
promising results.

Mocanu et al. [56] proposed two new stochastic
models based on artificial neural network to predict
time series.

Conclusively, some surveys have been published
collecting the latest works in which deep learning ap-
proaches have been developed, as seen in [57–59],
where more than 100 studies are classified depending
on a specific taxonomy such as the deep learning model
used or the type of tasks that are dealt with. However,
to the authors’ knowledge, none of them was devel-
oped to forecast very large time series. In summary, the
study of the related work reveals that deep learning is

already being used for big data, but mainly focused on
applications related to image, video or audio. This is
the first work that addresses deep learning for big data
time series forecasting.

3. Methodology

The theoretical background in which this work is in-
cluded is introduced in Section 3.1. Later, Section 3.2
introduces the proposed methodology itself.

3.1. Theoretical background

The research is included in the field of supervised
learning, i.e. the instances composing the dataset are
already labeled. Specifically, it is a regression task
where a numeric value, called class, is intended to
be forecasted. However, temporal order must be kept
since data are sampled over time. To infer a model,
from a part of the labeled data well-known as training
set, is required to make a prediction. This model can be
obtained by means of many techniques, such as linear
regression, regression trees, nearest neighbors, neural
networks or support vector machines. Deep learning is
here proposed to forecast in a big data environment.

Many network architectures for deep learning are
available depending on the characteristics of the target
problem. Each architecture is designed to be applied
to a particular problem, and therefore, each one works
in a different way. Some of these architectures can
be recurrent networks, convolutional networks, Hop-
field networks, Kohonen networks or feed forward net-
works. A deep feed forward architecture is applied to
forecast long time series in this work.

Feed forward neural networks are the most common
network architectures for solving forecasting prob-
lems. The main characteristic of this type of network
is that each neuron is a basic element of processing.
This network is defined by the weights, which rep-
resent the interactions between each pair of neurons.
Both weights and network topology are computed in
the training phase.

H2O is an open source platform to compute ma-
chine learning techniques into a single node or a clus-
ter of machines in a distributed way, being scalable
for big data projects. In particular, H2O is designed
for distributed computing. It allows to build machine
learning models on big data under a MapReduce pro-
cessing paradigm. Thus, H2O automatically works in
a distributed way by means of specific data structure

AU
TH

O
R

CO
PY

J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting 339

Fig. 1. Multivariable forecasting problem.

called H2OFrame. Hence, once a dataset is loaded in a
H2OFrame variable, the dataset is distributed in differ-
ent chunks across all the nodes. Each partition of the
H2OFrame is kept in memory, thus each node com-
putes its part of the H2OFrame. Any operation over
a H2OFrame is executed in parallel in each partition.
Therefore, our approach is based on a modern dis-
tributed computation that consists in partitioning data
and distributing them through different nodes in a clus-
ter. H2O can also be integrated with Apache Spark
to store data in memory instead of in hard disk. This
framework includes a deep feed forward neuronal net-
work, which has been used to forecast big data time se-
ries. The executions of this algorithm can be parame-
terized by a high number of parameters (known as hy-
perparameters) that will depend on the characteristics
of the problem to be solved.

The most important parameters used in this study are
described below:

– Hidden. All possible numbers of hidden layers
and numbers of neurons per layer are provided
through this parameter.

– L1. This parameter deals with the regularization
to avoid overfitting, thus improving the general-
ization.

– Epsilon and Rho. These parameters are related to
the learning rate and they are used to avoid to
achieve a local optima. Default values are 1E-8
and 0.99, respectively.

– Activation. The activation function is used to
model the type of relationship between inputs and
outputs of the network. It has been set to the hy-
perbolic tangent.

– Distribution. This parameter represents the loss
function to be minimized.

– Stop metric. It is the metric to be used for early
stopping. The mean square error (MSE) was se-
lected.

– Stopping tolerance. This parameter stops the tra-
ining of the deep network if an improvement of

the established value is not achieved. Its default
value is 1E-3.

– Stopping round. If a moving average composed
of the MSE of stopping_round models does not
improve according to a given tolerance, then the
deep learning algorithm stops. Its value by default
is 5.

H2O allows the creation of a grid that generates all
possible combinations according to the selected hyper-
parameters. Thus, it is possible to test several values of
these parameters and generate a model for each combi-
nation. These models are sorted in ascending order ac-
cording to the error, that is, from the best model to the
worst model. A full description on how H2O works,
in addition to all the parameters involved in the deep
learning algorithm, can be found in [60].

3.2. Description of the methodology

This section describes the methodology proposed
to forecast time series using the deep learning ap-
proach from H2O framework, under R programming
language. The main goal of this study is to predict h
next values (hereinafter called prediction horizon) of
a time series, expressed as [x1, . . . , xt], from w previ-
ous values (hereinafter called historical data window).
This process is also called multi-step regression, since
more than one value has to be forecasted. A multi-step
regression problem is illustrated in Fig. 1.

Formally, this problem can be formulated as it is pre-
sented in Eq. (1), where the goal is to find the model f ,
after application of the deep learning method:

[xt+1, xt+2, . . . , xt+h] = f(xt, xt−1, . . . , xt−(w−1))

(1)

Unfortunately, the deep learning algorithm included
in the H20 framework does not support multi-step fore-
casting. Therefore, a new methodology has to be de-
veloped to achieve this goal. A possible way consists

AU
TH

O
R

CO
PY

340 J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting

Fig. 2. Transformation from multivariate to univariate problem.

Fig. 3. Scheme of the proposed methodology.

in splitting the main problem into h forecasting sub-
problems, as shown in Fig. 2.

This new methodology can be formulated by using h
models, one for each forecasting subproblem, as shown
in Eq. (2):

xt+1 = f1(xt, xt−1, . . . , xt−(w−1)) (2)

xt+2 = f2(xt, xt−1, . . . , xt−(w−1)) (3)

xt+3 = f3(xt, xt−1, . . . , xt−(w−1)) (4)

. . . (5)

xt+(h−1) = f(h−1)(xt, xt−1, . . . , xt−(w−1)) (6)

xt+h = fh(xt, xt−1, . . . , xt−(w−1)) (7)

On the one hand, the relations between consecutive
values of the time series are missed in this methodol-
ogy, as the future value is not predicted using the w
previous consecutive values. However, if the predic-
tions of previous values were used to forecast, a greater
error would be obtained, giving rise to a wrong predic-
tion.

On the other hand, the obtention of h independent
models entails a higher computational cost than build-

ing just one model to predict all h values. The deep
learning method used in this work has an extra compu-
tational cost due to multiple models are computed, by
combining different parameters in a grid search. How-
ever, since these models are independent, they can be
easily parallelized.

A general scheme of the proposed methodology is
illustrated in Fig. 3.

4. Results

This section presents the results obtained after ap-
plying the previously mentioned methodology to fore-
cast the time series to be described in Section 4.1. Sec-
tion 4.2 describes the experimental setup designed in
order to obtain the optimal hyperparameters. After that,
an analysis of the results is presented in Section 4.3.
Finally, Section 4.4 shows the scalability of the pro-
posed deep learning method, providing the computa-
tional time of the algorithm for time series of different
length, and for different computing resources.

The hardware used in order to obtain the results
reported here has been an Intel Core i7-5820K at

AU
TH

O
R

CO
PY

J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting 341

Fig. 4. Preprocessing of the original dataset.

3.3 GHz with 15 MB of cache, 12 cores and 16 GB of
RAM memory, working under an Ubuntu 16.04 oper-
ating system. The H2O framework was used to apply
deep learning by using R language. This framework
has available a feed-forward architecture and allows to
configure a cluster to launch distributed executions.

4.1. Dataset description

The time series considered in this study is related
to the electricity consumption in Spain from January
2007 to June 2016. It is a time series of 9 years and
6 months with a high sampling frequency (10 minutes),
resulting in 497832 measures in total into a 33 MB file.

This time series needs to be preprocessed to build a
dataset of w+h attributes, being w the number of past
values used to forecast the h next values as it is shown
in Fig. 4. It can be noted that the number of instances of
the final dataset can vary depending on w and h values.
It is important to highlight that the w + h value could
not be multiple of the time series length. In that case, a
row of the matrix has a number of columns lower than
w + h, being automatically removed.

The dataset was split into 70% for the training set
and 30% for the test set, and in addition, a 30% from
the training set has also been selected for the valida-
tion set in order to obtain the optimal parameters. The
training set covers the period from January 1, 2007 at
00:00 to August 20, 2013 at 02:40. Therefore, the test
set comprises the period from August 20, 2013 at 02:50
to June 21, 2016 at 23:40.

4.2. Design of experiments

The experimentation carried out is composed of two
phases. First, the optimal parameters of the deep neural
network will be calculated. Second, a scalability anal-
ysis will be performed using the optimal parameters
found in the previous stage.

The different settings applied to make the experi-
ments are as follows:

1. The w number of historical data has been set to
24, 48, 72, 96, 120, 144 and 168, corresponding
to 4, 8, 12, 16, 20, 24 and 28 hours, respectively.
After training and calculating the validation er-
ror for each value of w, the value providing the
smallest error is selected for the rest of experi-
ments. A value of 168 was finally obtained.

2. The h prediction horizon is set to 24, which rep-
resents a block of 4 hours to be predicted.

3. The number of hidden layers for applying the
deep learning algorithm has been set from 1 to 5
layers and a number of neurons per layer varying
from 10 to 100 by steps of 10.

4. The lambda regularization parameter is set to 0,
0.1, 0.01, 0.001 and 0.0001 values.

5. Gaussian and Poisson distribution functions have
been tested.

6. Initial weights were provided by the Unifor-
mAdaptative distribution, which is an optimized
initialization with regards to the size of the net-
work. In the H2O architecture, it is possible to
use normal or uniform distributions in addition
to the UniformAdaptative. However, the Unifor-
mAdaptative distribution is considered the most
adequate as 24 sub-problems with different net-
work sizes are solved.

7. The remaining deep learning parameters are not
specified, so they are set to default values de-
scribed in the official H2O documentation [61].

Once the neural network has been trained, the opti-
mal parameters are chosen to analyze the scalability of
the proposed deep learning. Information related to the
scalability study is detailed below:

1. The size of the time series is increased, multiply-
ing its length by up to 2, 4, 8, 16, 32 and 64 times.

2. The number of local threads is set to 2, 4, 6, 8, 10
and 12 to verify how scalable is the deep learning
method according to computing resources.

AU
TH

O
R

CO
PY

342 J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting

Table 1
MRE depending on the historical data window

w Neurons per layer and subproblem MRE
24 [20 50 90 100 30 100 70 100 90 20 70 50 60 100 80 70 60 70 70 100 80 100 60 90] 3.7648
48 [50 60 100 40 80 20 90 30 90 90 100 70 100 100 70 80 50 40 20 80 100 100 100 70] 2.8904
72 [30 50 70 80 100 100 60 40 40 60 40 60 90 70 40 80 50 20 50 20 80 60 70 80] 2.7259
96 [100 80 40 70 60 90 40 60 40 70 20 30 70 100 60 100 60 70 50 40 90 80 50 60] 2.5588

120 [30 30 90 70 20 70 70 80 30 80 80 70 60 70 60 80 80 40 40 30 70 90 100 100] 2.4180
144 [50 80 50 70 60 80 30 80 50 70 60 40 100 40 90 90 90 40 70 40 80 70 90 90] 1.8722
168 [30 80 90 60 60 100 40 80 30 80 50 100 40 80 90 40 70 70 70 60 90 70 100 100] 1.8439

3. The deep learning method is executed on a clus-
ter of 2 machines, using a total of 24 threads, to
check its scalability on distributed computing re-
sources.

4. The scalability of the deep learning is compared
to other scalable methods recently published in
the literature [16].

The Root Mean Squared Error (RMSE) and the
mean absolute error (MAE) have been computed to
evaluate the accuracy of the models in the training. On
the other hand, the mean relative error (MRE) in per-
centage has been used to calculate the accuracy of the
best deep learning model in the test set. The formula-
tion of these errors is shown below:

RMSE =

√√√√ 1

n

n∑

i=1

(pi − ai)2 (8)

MAE =
1

n

n∑

i=1

|pi − ai| (9)

MRE = 100 · 1
n

n∑

i=1

|pi − ai|
ai

(10)

where n, p and a mean the number of samples, pre-
dicted values and actual values, respectively.

4.3. Analysis of results

This section discusses the results obtained by the
deep learning algorithm with different hyperparame-
ters described in Section 3.1 for the different configu-
ration settings detailed in Section 4.2.

Table 1 shows the optimal number of neurons for
each subproblem and the MRE obtained when varying
the number of past values to be used to predict. The
number of hidden layers in the net was set to 3, and the
number of neurons per layer was varying from 10 to
100 by steps of 10. It can be concluded that 168 is the
best window size.

Table 2
Errors for different lambda and distribution functions

Lambda Distribution RMSE MAE
0.0000 Gaussian 587.4677 440.6434
0.1000 Gaussian 1526.1480 1118.5480
0.0100 Gaussian 1177.0510 812.4854
0.0010 Gaussian 857.4803 620.0702
0.0001 Gaussian 636.4495 474.6989
0.0000 Poisson 633.8448 478.2030
0.1000 Poisson 662.4093 498.6579
0.0100 Poisson 637.8108 481.5656
0.0010 Poisson 632.1003 477.2920
0.0001 Poisson 630.3271 477.2203

Table 2 summarizes the errors for the validation
set when varying the lambda regularization parameter
value and the distribution function. These errors are
computed by averaging the errors obtained for each
subproblem for the validation set. It can be observed
that the best values were obtained when the regulariza-
tion was not considered and for Gaussian distribution
function, giving rise to a mean of 587.4677 for RMSE
and 440.6434 for MAE. Therefore, the lambda param-
eter is set to 0 and the distribution function to Gaussian
from now on.

Table 3 shows the optimal number of hidden lay-
ers and neurons for each subproblem along with the
RMSE and MAE for the validation set. These values
were internally calculated for each subproblem using
a grid search available in H2O in order to compute
the optimal hyperparameters. It can be seen that both
RMSE and MAE increase as the final of the prediction
horizon draw nearer. The reason for this is caused by
the existing gap between the last sample in the histori-
cal data and the next sample to be predicted.

From Tables 1–3 it can be concluded that 130 mod-
els were trained. From the optimal configuration of
all parameters previously analyzed, the final value of
MRE obtained when predicting the test set is 1.6769%.

Figures 5 and 6 present the evolution of actual and
forecasted demand corresponding to the best and worst
day, respectively, of the test set in terms of predic-
tion accuracy. Note that a day is represented by 144
measures. These days correspond to August 5, 2014

AU
TH

O
R

CO
PY

J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting 343

Table 3
Optimal number of neurons and hidden layers for each subproblem

SP∗ HL∗∗ NPL∗∗∗ RMSE MAE
1 2 80 280.9748 223.3659
2 2 100 334.5473 255.9905
3 5 60 361.0928 279.0836
4 3 60 374.1559 283.3500
5 3 80 431.9821 338.0297
6 2 60 457.2543 357.9640
7 3 70 488.2656 364.8531
8 5 80 546.8644 415.1822
9 2 100 540.2944 410.5037

10 4 60 557.4836 415.8288
11 3 70 564.0067 424.5466
12 3 100 594.0841 441.9526
13 4 40 595.4264 457.0600
14 5 70 648.6574 497.0050
15 2 70 644.0350 495.1685
16 2 70 667.3852 500.1515
17 4 50 674.7404 508.7588
18 4 80 669.1147 496.9713
19 4 90 698.5957 528.3096
20 4 50 708.2841 520.3575
21 4 90 778.9108 583.7202
22 2 80 799.7980 569.1762
23 4 90 825.2674 591.3633
24 5 100 858.0038 616.7493

∗Subproblem, ∗∗Number of hidden layers, ∗∗∗Number of neurons
per layer.

Fig. 5. Best daily forecast in the test set.

at 02:50 as the best predicted day, and December 26,
2015 at 02:50 as the worst predicted day. It is notewor-
thy that the worst day is an unusual day, namely, the
next day to the Christmas Day. In Fig. 5, it can be seen
that the evolution of the prediction during a day is not
smooth. This is due to one model is generated for each
value to be predicted instead of a single neural network
to predict all values of the prediction horizon.

On the other hand, Fig. 7 shows the predicted and
actual daily consumption corresponding to the months
of April and May in the year 2016. It can be appreci-
ated that the deep learning provides an underestimation
at peak times.

Fig. 6. Worst daily forecast in the test set.

Fig. 7. Daily average of the time series in April and May 2016.

4.4. Scalability

This section presents a study of scalability of the
deep neural network proposed to predict very long time
series. For that purpose, the deep learning algorithm
has been executed for different lengths of the time se-
ries and number of execution threads.

Table 4 shows the computing times of the deep neu-
ral network for its training phase when varying the
number of threads in a single machine from 2 to 12 by
steps of 2, and the length of the series increases de-
pending on a multiplicative factor. Thus, x2 stands for
a factor of 2, and so forth. In particular, runtimes have
been obtained with time series of two, four, eight, six-
teen, thirty and two, and sixty and four times the length
of the original time series. Figure 8 graphically sum-
marizes the results collected from Table 4. It is notice-
able that the deep learning model here proposed for big
data time series is scalable as the runtimes increase in
a linear way when increasing the size of the dataset.
Moreover, it can be seen that the optimal resources for
the different sizes of the time series used in this exper-
iment are 6 threads as similar runtimes are provided
when using a larger number of threads.

Figure 9a and b present how the runtime in the train-
ing phase decreases as the number of threads in a sin-
gle machine increases. This phenomenon happens in-

AU
TH

O
R

CO
PY

344 J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting

Table 4
Computing times for different lengths and threads

Multiplier File size Threads Training time (sec)
x1 23.9 MB 2 595

4 327
6 244
8 237

10 232
12 229

x2 47.8 MB 2 1195
4 639
6 464
8 449

10 420
12 384

x4 95.5 MB 2 2389
4 1284
6 915
8 872

10 802
12 782

x8 191.1 MB 2 4823
4 2961
6 1837
8 1725

10 1590
12 1524

x16 382.2 MB 2 9276
4 5394
6 3763
8 3579

10 3356
12 3235

x32 764.4 MB 2 18244
4 10719
6 7438
8 7034

10 6540
12 6333

x64 1.5 GB 2 35802
4 20911
6 14489
8 13929

10 13071
12 12673

dependently of the dataset size, but some important is-
sues can be concluded. For instance, the number of
threads for a short time series (for instance x1) is not
too relevant as the training computing time by using 6,
8, 10 or 12 threads does not show a great improvement.
However, the reduction of runtimes is much more re-
markable with very long time series (for instance x64)
as it can be seen in Fig. 9.

5. Comparative analysis

The proposed deep learning based methodology
has been compared to the methods reported in [16],

Fig. 8. Computing times versus length of the time series.

Fig. 9. Computing times depending on the number of threads.

namely, a linear regression (LR), a decision tree
(DT) and two ensemble techniques based on trees as
Gradient-Boosted Trees (GBT) and Random Forest
(RF). The parameters of these methods used in this
work were the optimal parameters obtained by a grid
search in [16]. Tree-based methods are very common
in machine learning, both for classification and for re-
gression, as they are easy to interpret, support continu-
ous and discrete attributes, do not require attribute scal-
ing and are able to model nonlinear relationships be-
tween attributes. A brief description of these methods
used for the comparison is made below.

AU
TH

O
R

CO
PY

J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting 345

Table 5
Comparison of accuracy and runtimes

Method MRE (%) Time (s)
Deep learning 1.6769 153
Linear regression 7.3395 553
Decision tree 2.8783 81
Gradient-boosted trees 2.7190 417
Random forest 2.2005 277

Table 6
MRE for each sub-problem

Sub-problem DT GBT RF DL
1 1.13 1.11 1.08 0.77
2 1.32 1.30 1.17 1.13
3 1.59 1.54 1.33 1.15
4 1.87 1.82 1.52 1.18
5 2.09 2.02 1.66 1.35
6 2.41 2.32 1.90 1.36
7 2.64 2.54 2.17 1.50
8 2.77 2.66 2-22 1.71
9 2.95 2.86 2.35 1.88

10 3.04 2.88 2.47 1.76
11 3.13 3.00 2.45 1.66
12 3.41 3.23 2.57 2.07
13 3.61 3.32 2.86 1.83
14 3.95 3.60 2.88 1.81
15 3.90 3.58 2.94 2.11
16 3.92 3.59 2.94 1.93
17 3.88 3.52 3.04 2.50
18 4.05 3.79 3.11 2.09
19 3.89 3.65 3.13 2.17
20 3.85 3.63 3.15 2.14
21 3.97 3.85 3.17 2.43
22 3.93 3.76 3.19 2.56
23 4.03 3.84 3.17 2.42
24 4.03 3.83 3.15 2.77

LR minimizes the mean square error of the train-
ing set by using the well-known stochastic gradient
descent method and is usually selected as a reference
model.

DT is obtained through a recursive binary partition
of the feature space. At each iteration, the attribute cho-
sen to divide the tree is the one that maximizes the in-
formation gain. The recursive construction of the tree
stops when there are not enough attributes in the child
nodes or the maximum depth is reached.

Ensembles methods are learning algorithms that cre-
ate a set of basic models to compose the final model.
GBT and RF offer very good results for many real
applications, showing a high performance in regres-
sion tasks and improving the results obtained by a sin-
gle regression. Both training processes to generate the
model are different for each algorithm. In particular,
GBT [62] is a set of decision trees trained iteratively.
Thus, in each iteration, the algorithm uses the ensem-
ble of trees of the previous iteration to correct the mis-

Table 7
Training time for each subproblem in DL method

Sub-problem Seconds Sub-problem Seconds
1 10.86 13 4.33
2 6.36 14 6.42
3 6.36 15 5.31
4 5.36 16 5.35
5 6.34 17 5.34
6 4.36 18 6.34
7 5.31 19 8.37
8 7.32 20 5.34
9 6.35 21 7.47

10 5.35 22 6.32
11 5.39 23 7.38
12 7.35 24 8.32

Fig. 10. Scalability of the deep learning and all methods used for
comparison.

takes made in the prediction, thereby improving the ac-
curacy in the following ensemble of trees. On the other
hand, RF [63] generates a set of decision trees in par-
allel. Combining them, the probability of obtaining an
overfitted model is reduced. Also, a different training
set is used in each tree in order to introduce random-
ness. In addition, the nodes of each decision tree con-
sider different subsets of attributes. To predict a new
instance, RF makes an estimation with the average of
the predictions obtained with each tree.

The results obtained of the application of these
methods to the time series described in the Section 4.1
were compared in [16], using an Apache Spark clus-
ter with one master and two slaves with Intel Core i7-
5820K @ 3.30 GHz processors and 16 GB of memory
for each machine. A comparison between the accuracy
and runtimes (in seconds) for the deep feed-forward
neural network method proposed here by using the
cluster described above and the results from [16] is
shown in Table 5, where methods are ordered by pre-
diction error for the test set. The deep learning achieves
a MRE of 1.6769% for the test set, meaning an im-
provement of 0.52% compared to RF –the method with
the best accuracy from [16]–, 1.20% compared to only

AU
TH

O
R

CO
PY

346 J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting

Table 8
Runtimes (expressed in seconds) for different time series lengths

Method x1 x2 x4 x8 x16 x32 x64
Deep learning 153 218 361 649 1209 2346 4601
Linear regression 553 846 1483 2710 5162 10057 19871
Decision tree 81 120 201 353 653 1329 2644
Gradient-boosted trees 417 581 968 1720 3336 6490 13141
Random forest 277 440 783 1525 3128 6416 12518

one decision tree, and a 5.66% in comparison with the
linear regression. These improvements in relation to
errors are of significant importance to avoid misalign-
ments in the planning of energy production that would
cause large losses.

The errors and computing times desagregated for
each subproblem in order to evaluate the performance
of each model separately are presented in Tables 6
and 7. It can be appreciated only learning times for
Deep Learning are showed in Table 7. This is due to
similar computing times for each subproblem are ob-
tained in DT, LR and RF cases, corresponding to times
shown in Table 5 divided by 24. However in Deep
learning case, each subproblem is solved with a differ-
ent number of neurons and layers, and therefore, com-
puting times for each are different.

Table 8 and Fig. 10 show a comparison of the train-
ing execution times – expressed in seconds – for dif-
ferent time series lengths in order to compare the scal-
ability of the deep learning, LR, DT, GBT and RF.
As can be seen in Table 8, the behavior of all meth-
ods is the same, keeping a linear scalability factor ac-
cording to the time series length. Figure 10 represents
graphically how training times increase according to
the length of the time series. Both tree-ensemble meth-
ods improve execution times regarding the linear re-
gression, but definitely deep learning and DT are at a
different level, being DT the most scalable method of
the comparison, followed closely by the deep learning
method.

6. Conclusions

A deep feed forward neural network applied to time
series forecasting has been proposed in this work to
deal with big data. The Apache Spark distributed com-
puting platform has been used to execute the algorithm
in a cluster of machines. The H2O framework has been
used for big data analysis, providing the deep learning
method here proposed. Reported results have shown
that the deep learning configuration setting is impor-
tant to obtain a good accuracy. A preliminary study of

several parameters has been made, obtaining a mean
relative error less than a 2%. The scalability of the
method has been assessed depending on the time se-
ries length and the number of execution threads, show-
ing a linear scalability and a high performance for dis-
tributed computing. Finally, the methodology has been
compared to other recently published techniques in
terms of accuracy and scalability. The deep learning
one turned out to be one of the most adequate meth-
ods to process big data time series along with decision
trees, in terms of scalability, and the best method in
terms of accuracy.

Acknowledgement

The authors would like to thank the Spanish Min-
istry of Economy and Competitiveness and Junta de
Andalucía for the support under projects TIN2014-
55894-C2-R, TIN2017-88209-C2-1-R, and P12-TIC-
1728, respectively.

References

[1] Rossell JL, Alomar ML, Morro A, Oliver A, Canals V. High-
density liquid-state machine circuitry for time-series forecast-
ing. International Journal of Neural Systems. 2016; 26(5): 1-
12.

[2] Martínez-Álvarez F, Troncoso A, Asencio-Cortés G,
Riquelme JC. A survey on data mining techniques applied to
energy time series forecasting. Energies. 2015; 8: 1-32.

[3] Adeli H, Kumar S. Distributed computer-aided engineering:
for analysis, design, and Visualization. 1st ed. Boca Raton,
FL, USA: CRC Press, Inc.; 1998.

[4] Adeli H. Parallel processing in computational mechanics.
New York, NY, USA: Marcel Dekker, Inc., 1992.

[5] Adeli H, Cheng NT. Concurrent genetic algorithms for opti-
mization of large structures. 1994 07; 7: 276-296.

[6] Deleforge A, Forbes F, Horaud R. Acoustic space learning
for sound-source separation and localization on binaural man-
ifolds. International Journal of Neural Systems. 2015; 25(1):
1440003.

[7] Donnarumma F, Prevete R, Chersi F, Pezzulo G. A
programmer-interpreter neural network architecture for pre-
frontal cognitive control. International Journal of Neural Sys-
tems. 2015; 25(6): 1-16.

[8] Hirschauer T, Adeli H, Buford T. Computer-aided diagnosis
of parkinson’s disease using an enhanced probabilistic neural

AU
TH

O
R

CO
PY

J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting 347

network. Journal of Medical Systems. 2015; 39(179): 1-12.
[9] Zeinalia Y, Story B. Competitive probabilistic neural net-

work. Integrated Computer-Aided Engineering. 2017; 24(2):
105-118.

[10] Livingstone DJ, Manallack DT, Tetko IV. Data modelling
with neural networks: advantages and limitations. Journal of
Computer-Aided Molecular Design. 1997; 11: 135-142.

[11] Sutskever I, Martens J, Dahl GE, Hinton GE. On the im-
portance of initialization and momentum in deep learning.
In: Proceedings of the International Conference on Machine
Learning (ICML), 2013; 1139-1147.

[12] Torres JF, Fernández AM, Troncoso A, Martínez-Álvarez F.
Deep learning-based approach for time series forecasting with
application to electricity load. In: Proceedings of the Inter-
national Work-Conference on the Interplay Between Natural
and Artificial Computation (IWINAC), 2017; 203-212.

[13] Goodfellow I, Bengio Y, Courville A. Deep learning. MIT
Press, 2016.

[14] Schmidhuber J. Deep learning in neural networks: An
overview. Neural Networks. 2015; 61: 85-117.

[15] Candel A, LeDell E, Parmar V, Arora A. Deep learning with
H2O. H2O.ai, Inc.; 2017.

[16] Galicia A, Torres JF, Martínez-Álvarez F, Troncoso A.
Scalable forecasting techniques applied to big electricity
time series. In: Proceedings of the 14th International Work-
Conference on Artificial Neural Networks (IWANN), 2017;
165-175.

[17] Adeli H. Supercomputing in engineering analysis. New York,
NY, USA: Marcel Dekker, Inc., 1992.

[18] Castillo E, Peteiro-Barral D, Berdis BG, Fontenla-Romero O.
Distributed one-class support vector machine. International
Journal of Neural Systems. 2015; 25(7): 1550029.

[19] Adeli H, Hung SL. A concurrent adaptive conjugate gradient
learning algorithm on mimd shared-memory machines. The
International Journal of Supercomputing Applications. 1993;
7(2): 155-166.

[20] Fang M, Fang J, Zhang W, Zhou H, Liao J, Wang Y. Bench-
marking the GPU memory at the warp level. Parallel Comput-
ing. 2018; 71: 23-41.

[21] Bureddy D, Wang H, Venkatesh A, Potluri S, Panda DK.
OMB-GPU: A micro-benchmark suite for evaluating MPI li-
braries on GPU clusters. In: Proceedings of the 19th European
MPI Users’ Group Meeting (EuroMPI2012). Berlin, Heidel-
berg: Springer Berlin Heidelberg; 2012; 110-120.

[22] Jacobs SA, Dryden N, Pearce R, Essen BV. Towards scalable
parallel training of deep neural networks. In: Proceedings of
the Machine Learning on HPC Environments (MLHPC). New
York, NY, USA: ACM, 2017; 5:1-5:9.

[23] Ortega-Zamorano F, Jerez JM, Gómez I, Franco L.
Layer multiplexing FPGA implementation for deep back-
propagation Learning. Integrated Computer-Aided Engineer-
ing. 2017; 24(2): 171-185.

[24] Dean J, et al. Large scale distributed deep networks. In: Pro-
ceedings of the 25th International Conference on Neural In-
formation Processing Systems (NIPS). USA: Curran Asso-
ciates Inc.; 2012; 1223-1231.

[25] Reagen B, Whatmough P, Adolf R, Rama S, Lee H, Lee
SK, et al. Minerva: Enabling low-power, highly-accurate deep
neural network accelerators. 2016; 44: 267-278.

[26] Tokui S, Oono K, Hido S, Clayton J. Chainer: A next-
generation open source framework for deep learning. In: Pro-
ceedings of Workshop on Machine Learning Systems (Learn-
ingSys) in the 29th Annual Conference on Neural Information
Processing Systems (NIPS); 2015.

[27] Abadi M, et al. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems; 2015. Software available from
tensorflow.org.

[28] Erickso BJ, Korfiatis P, Akkus Z, Kline T, Philbrick K. Toolk-
its and libraries for deep learning. Journal of Digital Imaging.
2017; 30(4): 400-405.

[29] Martínez-Ballesteros M, Bacardit J, Troncoso A, Riquelme
JC. Enhancing the scalability of a genetic algorithm to dis-
cover quantitative association rules in large-scale datasets. In-
tegrated Computer-Aided Engineering. 2015; 22(1): 21-39.

[30] Martín D, Martínez-Ballesteros M, García-Gil D, Alcalá-Fdez
J, Riquelme JC, Herrera F. MRQAR: A generic mapreduce
framework to discover quantitative association rules in big
data problems. Knowledge-Based Systems. 2018; 153: 176-
192.

[31] Romeu P, Zamora-Martínez F, Botella-Rocamora P, Pardo
J. Time-series forecasting of indoor temperature using pre-
trained deep neural networks. In: Proceedings of the 23rd
International Conference on Artificial Neural Networks
(ICANN); 2013; 451-458.

[32] Ding X, Zhang Y, Liu T, Duan J. Deep learning for event-
driven stock prediction. In: Proceedings of the International
Joint Conference on Artificial Intelligence, 2015; 2327-2334.

[33] Dalto M, Matusko J, Vasak M. Deep neural networks for ultra-
short-term wind forecasting. In: Proceedings of the IEEE
International Conference on Industrial Technology (ICIT),
2015; 1657-1663.

[34] Li X, Peng L, Hu Y, Shao J, Chi T. Deep learning architecture
for air quality predictions. Environmental Science and Pollu-
tion Research International. 2016; 23: 22408-22417.

[35] Baek J, Sohn K. Deep-learning architectures to forecast bus
ridership at the stop and stop-to-stop levels for dense and
crowded bus networks. Applied Artificial Intelligence. 2016;
30(9): 861-885.

[36] Ortiz A, Munilla J, Górriz JM, Ramírez J. Ensembles of
deep learning architectures for the early diagnosis of the
alzheimer’s disease. International Journal of Neural Systems.
2016; 26(7): 1650025.

[37] Morabito FC, et al. Deep learning representation from elec-
troencephalography of early-stage creutzfeldt-jakob disease
and features for differentiation from rapidly progressive de-
mentia. International Journal of Neural Systems. 2017; 27(2).

[38] Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep
convolutional neural network for the automated detection and
diagnosis of seizure using EEG signals. Computers in Biology
and Medicine. 2017; in press.

[39] Wang R, Zhang Y, Zhang L. An adaptive neural network
approach for operator functional state prediction using psy-
chophysiological data. Integrated Computer-Aided Engineer-
ing. 2016; 21(1): 81-97.

[40] Lin YZ, Nie ZH, Ma HW. Structural damage detection with
automatic feature-extraction through deep learning. Computer
Aided Civil and Infrastructure Engineering. 2017; 32: 1025-
1046.

[41] Zhang A, Wang K, Li B, Yang E, Dai X, Yi P, et al. Au-
tomated pixel-level pavement crack detection on 3D asphalt
surfaces using a deep-learning network: Pixel-level pavement
crack detection on 3D asphalt surfaces. Computer-Aided Civil
and Infrastructure Engineering. 2017 08; 32.

[42] Cha YJ, Choi W, Büyüköztürk O. Deep learning-based
crack damage detection using convolutional neural networks.
Computer-Aided Civil Infrastructure Engineering. 2017 May;
32(5): 361-378.

[43] Hossein RM, Adeli H. A novel machine learning based al-

AU
TH

O
R

CO
PY

348 J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting

gorithm to detect damage in highrise building structures.
The Structural Design of Tall and Special Buildings. 26(18):
e1400. E1400 TAL-17-0022.R1.

[44] Rafiei MH, Adeli H. A novel unsupervised deep learning
model for global and local health condition assessment of
structures. Engineering Structures. 2018; 156: 598-607.

[45] Koziarski M, Cyganek B. Image recognition with deep neural
networks in presence of noise – Dealing with and taking ad-
vantage of distortions. Integrated Computer-Aided Engineer-
ing. 2017; 24(4): 337-349.

[46] Rigos A, Tsekouras GE, Vousdoukas MI, Chatzipavlis A,
Velegrakis AF. Chebyshev polynomial radial basis func-
tion neural network for automated shoreline extraction from
coastal imagery. Integrated Computer-Aided Engineering.
2016; 23(2): 141-160.

[47] Coelho IM, Coelho VN, da S Luz EJ, Ochi LS, Guimars FG,
Rios E. A GPU deep learning metaheuristic based model for
time series forecasting. Applied Energy. 2017; 201: 412-418.

[48] Rafiei MH, Adeli H. A novel machine learning model for esti-
mation of sale prices of real estate units. Journal of Construc-
tion Engineering and Management. 2016; 142(2): 04015066.

[49] Kuremoto T, Kimura S, Kobayashi K, Obayashi M. Time se-
ries forecasting using a deep belief network with restricted
Boltzmann machines. Neurocomputing. 2014; 137: 47-56.

[50] Hu YC. Electricity consumption prediction using a neural-
network-based grey forecasting approach. Journal of the Op-
erational Research Society. 2016; 68(10): 1259-1264.

[51] Marvuglia A, Messineo A. Using recurrent artificial neural
networks to forecast household electricity consumption. En-
ergy Procedia. 2012; 14: 45-55.

[52] Talavera-Llames RL, Pérez-Chacón R, Martínez-Ballesteros
M, Troncoso A, Martínez-Álvarez F. A nearest neighbours-
based algorithm for big time series data forecasting. In: Pro-
ceedings of the 11th International ConferenceHybrid Artifi-
cial Intelligent Systems (HAIS); 2016; 174-185.

[53] Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I.
Spark: cluster computing withworking sets. In: Proceedings
of the International Conference on Hot Topics in Cloud Com-
puting (ICWS), 2010; 1-10.

[54] Pérez-Chacón R, Talavera-Llames RL, Troncoso A, Martínez-
Álvarez F. Finding electric energy consumption patterns in
big time series data. In: Proceedings of the International Con-
ference on Distributed Computing and Artificial Intelligence
(DCAI), 2016; 231-238.

[55] Grolinger K, L’Heureux A, Capretz MAM, Seewald L. En-
ergy forecasting for event venues: Big data and prediction ac-
curacy. Energy and Buildings. 2016; 112: 222-233.

[56] Mocanu E, Nguyen PH, Gibescu M, Kling WL. Deep learn-
ing for estimating building energy consumption. Sustainable
Energy, Grids and Networks. 2016; 6: 91-99.

[57] Zhang Q, Yang LT, Chen Z, Li P. A survey on deep learning
for big data. Information Fusion. 2018; 42: 146-157.

[58] Brunetti A, Buongiorno D, Trotta GF, Bevilacqua V. Com-
puter vision and deep learning techniques for pedestrian de-
tection and tracking: A survey. Neurocomputing. 2018; 300:
17-33.

[59] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F,
Ghafoorian M, et al. A survey on deep learning in medical
image analysis. Medical Image Analysis. 2017; 42: 60-88.

[60] Cook D. Practical machine learning with H2O: powerful,
scalable techniques for deep learning and AI. O’Reilly Media,
2016.

[61] Arora A, Candel A, Lanford J, LeDell E, Parmar V. Deep
Learning with H2O. 2015.

[62] Mason L, Baxter J, Bartlett P, Frean M. Boosting algorithms
as gradient descent. In: Proceedings of the Neural Information
Processing Systems Conference (NIPS), 1999; 512-518.

[63] Breiman L. Random forests. Machine Learning. 2001; 45(1):
5-32.

AU
TH

O
R

CO
PY

4.1 Artículos de revista 51

4.1.2. A novel Spark-based multi-step forecasting algorithm
for big data time series

Tabla 4.2 Datos del artículo: A novel Spark-based multi-step forecasting
algorithm for big data time series

Autores Galicia, A., Torres, J. F., Martínez-Álvarez, F., and Troncoso,
A.

Revista Information Sciences
Año 2018

Páginas 800-818
Volumen 467

DOI 10.1016/j.ins.2018.06.010
IF 4.305 (12/148)

Cuartil Q1 (Computer Science-Information Systems)
Citas 24 (Google Scholar)

Information Sciences 467 (2018) 800–818

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

A novel spark-based multi-step forecasting algorithm for big

data time series

A. Galicia, J.F. Torres, F. Martínez-Álvarez

∗, A. Troncoso

Division of Computer Science, Universidad Pablo de Olavide, Seville ES-41013, Spain

a r t i c l e i n f o

Article history:

Received 10 August 2017

Revised 30 May 2018

Accepted 3 June 2018

Available online 15 June 2018

Keywords:

Big data

Scalable

Electricity time series

Forecasting

a b s t r a c t

This paper presents different scalable methods for predicting big time series, namely time

series with a high frequency measurement. Methods are also developed to deal with arbi-

trary prediction horizons. The Apache Spark framework is proposed for distributed com-

puting in order to achieve the scalability of the methods. Prediction methods have been

developed using Spark’s MLlib library for machine learning. Since the library does not

support multivariate regression, the prediction problem is formulated as h prediction sub-

problems, where h is the number of future values to predict, that is, the prediction horizon.

Furthermore, different kinds of representative methods have been chosen, such as decision

trees, two tree-based ensemble techniques (Gradient-Boosted and Random Forest) and a

linear regression method as a reference method for comparisons. Finally, the methodology

has been tested in a real time series of electrical demand in Spain, with a time interval of

ten minutes between measurements.

© 2018 Published by Elsevier Inc.

1. Introduction

It is well known that advances in technology have led, in recent years, to the increasing amount of data generated and

stored, to the extent that 90% of the data that exist in the world has been generated during the last two years. The need to

process this huge amount of information has made it essential in recent years to develop and evolve tools that have been

included under the heading of Data Mining. This evolution has given rise to the term Big Data. An essential component in

the nature of the data is that information is normally indexed over time, a process that is known in the literature as time

series. This case is very common in the field of Big Data, giving rise to the term Big Data Time Series. For example, two

of Big Data’s main sources are open data repositories, which are proposed by management for transparency policies, such

as smart cities, where multiple sensors provide information on consumption, traffic, pollution, etc. These two types of data

make sense if their analysis is performed with respect to their evolution over time: data that measure electrical demand or

pollution can be analysed for various purposes: to predict their evolution; to predict anomalous values; to obtain patterns

that allow us to compare their evolution with other data; to establish relations between certain variables with respect to

others, and so forth.

Nowadays, the main existing frameworks for the massive data processing have been developed thanks to leading tech-

nology companies such as Google and Yahoo!. MapReduce technology was developed by Google [6] , which for processing

purposes divides the input data into blocks and then integrates the output information of each block into a single solution.

∗ Corresponding author.

E-mail addresses: agalde@alu.upo.es (A. Galicia), jftormal@alu.upo.es (J.F. Torres), fmaralv@upo.es (F. Martínez-Álvarez), ali@upo.es (A. Troncoso).

https://doi.org/10.1016/j.ins.2018.06.010

0020-0255/© 2018 Published by Elsevier Inc.

A. Galicia et al. / Information Sciences 467 (2018) 800–818 801

Later, Yahoo! developed Hadoop [37] , an open-source implementation based on the MapReduce paradigm, now part of the

Apache Foundation. The limitations of MapReduce when implementing algorithms that need to iterate over data have re-

quired the creation of new tools, such as Spark [15] , developed by the University of Berkeley in California, also within the

Apache Foundation.

Spark’s deployment on the Hadoop Distributed File System (HDFS) allows the parallelization of data processing in-

memory, achieving much faster processing speeds than with Hadoop. Apache Spark is also an open source project that

allows iterative calculations, provides high-level operators and supports several languages (Java, Python, R) in addition to its

native language called Scala. Furthermore, it offers different specialised modules, such as the MLlib machine learning library

[19] .

The main goal of this study is to predict a large time series with a specific (but arbitrary) time horizon in the context

of Big Data. To solve this problem in a Big Data context, the MLlib library has been selected. However, the MLlib library

currently has certain disadvantages which are detailed below. Although some approaches for Big Data can be found in the

literature, e.g. Spark TS [33] . Insufficient support is provided for these approaches as they are not officially included in the

Apache Spark project.

On the one hand, the regression techniques available in MLlib do not support multivariate regression, i.e. prediction of

more than one step. On the other hand, the MLlib regression methods are not designed to work with datasets where the

temporal order is an important factor since no high-level operation of the Scala language retains the chronological order, a

crucial aspect in a time series.

Hence, one of the main objectives of this work is to introduce a methodology, which allows MLlib to be used for the pre-

diction of time series, where the temporal order is the main characteristic of these datasets, and also allows the prediction

of a time horizon formed by h values.

In conclusion, a set of scalable algorithms are studied and adapted for very large time series forecasting. In particular,

different kinds of representative methods, such as linear regression, decision trees and two tree ensembles techniques such

as Gradient-Boosted and Random Forest have been chosen. The algorithms have been developed with the MLlib library of

the Apache Spark framework, using Scala as the programming language. All the methods have been tested with a real time

series, related to the consumption of electric energy in Spain. Reported results discuss the suitable number of cores, linearity

of algorithms and speed up, among other relevant issues.

To achieve the goal set for this paper, Section 2 reviews the literature related to time series forecasting techniques and

machine learning for big data. Theoretical background is also included in Section 3 , where the proposed methodology and

supported algorithms are detailed. Later, in Section 4.4 results are shown and discussed. Finally, Section 5 summarises the

main conclusions.

2. Related work

This section discusses the most relevant related works. Due to the nature of the proposed approach, two sections have

been created. First, Section 2.1 reviews works in the context of time series forecasting. Second, Section 2.2 specifically re-

views works within the fields of Big Data and Machine Learning.

2.1. Time series forecasting

The prediction of time series for short and medium term has been extensively studied in the literature. The methods

for predicting time series can be classified into classical methods based on Box and Jenkins [2] , such as ARIMA or GARCH;

and data mining techniques [38] , such as neural networks (ANN), Support Vector Machine (SVM) or near-neighbor tech-

niques(kNN).

The following will be a brief tour of the main published works, which have been applied to the study case presented

here a temporal series in the field of energy. A complete and more detailed review can be found in [22] .

In [12] , a variation of the ARIMA model, namely a seasonal ARIMA model, is presented to predict the maximum monthly

demand in the city of Maharashtra in India. They used the data from April 1980 to June 1999 and obtained the prediction

of the following eighteen months. The results obtained are good because this market does not show great variations in its

tendency throughout the seasons. However, for electric markets with greater volatility, one of the methods that provide the

best results is the GARCH model. The authors in [13] used the GARCH method to predict electricity prices in two regions

of New York. The results obtained were compared using different techniques such as dynamic regression, transfer function

models and exponential smoothing models. This work shows that taking into account the values in which the demand is

very high and the variance of the time series improves the prediction since they reached errors smaller than 2,5%. García

et al. [11] also proposed a GARCH model. This work focuses on the prediction of electricity prices in periods of high volatility

for the Spanish and Californian electricity market. Equally striking is the technique proposed by Malo and Kanto in [21] ,

which considered multivariable GARCH models for electric markets in Nordic countries.

The performance of a standard ANN, a fuzzy ANN, and ARIMA models when predicting energy demand in Victoria (Aus-

tralia) is compared in [1] . The results showed that the fuzzy neural network improves the results of the remaining methods.

Taylor [32] compared six univariate time series models to predict electricity demand in the markets of Rio de Janeiro, Eng-

land and Wales. The methods used were an ARIMA model, an exponential smoothing, an ANN and a linear regression. The

802 A. Galicia et al. / Information Sciences 467 (2018) 800–818

comparison showed the best methods to be the exponential smoothing and regression models, which obtained very good

results for the demand in England and Wales. In [8] , the authors presented the results obtained from an ANN applied to

the prediction of energy demand in Jordan. The ANN was trained with an optimisation algorithm based on particle swarm

simulation and compared to an ANN with a classic training based on back propagation.

In the study carried out in [25] , the feasibility of applying SVM to predict energy demand in Taiwan was analysed. The

results, were compared with those obtained from an ANN and a linear regression. Likewise, the authors in [14] reached an

optimal prediction globally by applying SVM in the Chinese electricity market. Fan et al. [10] proposed a hybrid learning

model based on Bayesian classifiers and SVM. First, Bayesian clustering techniques were used to divide the dataset into

twenty-four subsets, and then a SVM was applied to each subset to obtain hourly demand predictions.

A methodology based on kNN was proposed in [35] for the prediction of electricity prices in the Spanish electricity

market. An extension of kNN was proposed in [28] in which an iterated prediction scheme was used and an attribute

selection module was incorporated. A kNN (Pattern Sequence-Based Forecasting (PSF) discretisation is proposed in [23] . PSF

transforms the search of nearby neighbours in the search for equal discrete sequences. A combination of PSF and ANN under

an iterated prediction scheme was proposed in [16] .

2.2. Machine learning for big data

Currently, data mining techniques [36,40] are being developed for distributed computing in order to solve typical ma-

chine learning tasks, such as clustering, classification or regression for big data. The following is a brief description of the

main developments obtained over the last few years.

Increasing attention has been paid in recent years to clustering for big data [18,27] . A detailed study of clustering tech-

niques for big data can be found in [9] . In particular, many approaches have recently been proposed to apply clustering to

large time series. Specifically, in [7] the authors propose a new clustering algorithm based on a previous clustering applied

to a sample of the input data. In [39] the authors use a MapReduce-based data processing to obtain clusters and in [4] a

distributed method is proposed for the initialisation of the k-means algorithm.

As for classification tasks, there are techniques based on methods of reduction of instances in a MapReduce paradigm

[34] that propose to reduce the computational cost and storage requirement for kNN-based classification algorithms. In

addition, several parallel implementations of the kNN algorithm are proposed in [29,31] . In [5] , the support vector machines

(SVMs) have been modified to accommodate high performance computing resulting in parallel SVMs. For large-datasets, in

[20] the authors developed an iterative MapReduce solution for the k-Nearest Neighbors algorithm based on Apache Spark,

obtaining a runtime 10-times better than using Hadoop.

In the field of regression, there is still much to investigate, bearing in mind that very few papers have been published.

Tree ensemble techniques are the most recurrent topic in the literature due, in part, to their easy adaptation to a distributed

computing environment. Random Forest has been applied to some specific problems, showing good performance for large

datasets [17] . On the other hand, regression trees have been constructed using parallel learning with MapReduce technology

in a machine cluster [26] . However, a large study of the literature reveals that these methods have not been applied to the

prediction of large time series, and therefore, this work seeks to fill this gap in the literature.

Following a thorough review of these previously published works, it can be concluded that the prediction of time se-

ries has been extensively studied, but there is still much to investigate, bearing in mind that very few papers have been

published using distributed computing system to compute large time series. These facts justify the need for research in the

topic described in this paper.

3. Methodology

3.1. Theoretical background

This work is framed within supervised learning, the main characteristic of which is that the examples that are part

of the training are labelled. To be precise, it entails a regression approach, where the labels of the examples consist of

a numerical value known as the prediction. The generation of the prediction model is carried out with linear methods,

specifically regression methods, and with non-linear methods based on decision trees, which use inductive learning.

The classical regression is based on the method of least squares, being able to use different functions of loss such as Lasso

regression, Ridge regression and elastic regression, depending on whether regularisation is considered or not. As for decision

trees, methods that generate a single tree or ensemble techniques that generate many trees, such as the Gradient-Boosted

(GBT) and Random Forest methods, are compared.

3.2. Description of the methodology

This section describes the methodology proposed in order to forecast big data time series by using the MLlib library.

Given a time series recorded in the past up to the time t , [x 1 , ..., x t], the problem consists of predicting the next h

values (h is known as the prediction horizon) for the time series from a historical window composed of w -values. This is

represented in the Fig. 1 .

A. Galicia et al. / Information Sciences 467 (2018) 800–818 803

Fig. 1. Illustration of the multivariate problem.

Fig. 2. Proposed methodology for multivariate to univariate adaptation.

This forecasting problem can be formulated as below, where f is the model to be found by the forecasting method in the

training phase.

[x t+1 , x t+2 , . . . , x t+ h] = f
(
x t , x t−1 , . . . , x t−(w −1)

)
(1)

Nevertheless, the existing regression techniques in MLlib do not support the multivariate regression, that is, the multi-

step forecasting. Therefore, the first stage splits the problem into h forecasting sub-problems as follows, also represented in

Fig. 2 :

x t+1 = f 1
(
x t , x t−1 , . . . , x t−(w −1)

)
x t+2 = f 2

(
x t , x t−1 , . . . , x t−(w −1)

)
. . . =

. . .

x t+ h = f h
(
x t , x t−1 , . . . , x t−(w −1)

)
(2)

The existing possible relations between the h consecutive values x t+1 , . . . , x t+ h are missed with this formulation. How-

ever, if the prediction of previous values is used to predict the next values a greater error is obtained, as the errors are

accumulated in the last time stamps of the prediction horizon.

Additionally, obtaining h models f 1 , . . . , f h to predict h values carries a greater computational cost than the building of a

just model f to predict all the values.

The next stage entails solving each forecasting sub-problem in the Spark distributed computing framework by using the

regression methods of the MLlib library. The main variable in Apache Spark is the Resilient Distributed Dataset (RDD), which

is an immutable and partitioned collection of elements that can be operated in a distributed way. Thus, every RDD created

is split into blocks of the same size approximately across the nodes that integrate the machine cluster, as it is shown in

Fig. 3 .

Once the dataset has been distributed, the MLlib algorithms firstly obtain a model from each worker node, and later,

aggregate the predictions obtained for each model in a stage called reducer. It is important to highlight that RDD variables

do not preserve the order, and therefore, all instances have to be indexed to deal with time series by using MLlib. An

illustration of the methodology is presented in Fig. 4 . The split strategy is represented in Fig. 4 (a), where each sub-problem

is executed in parallel. In Fig. 4 (b) each problem is solved in a distributed way using the Spark cluster.

804 A. Galicia et al. / Information Sciences 467 (2018) 800–818

Fig. 3. A RDD variable in a Spark cluster.

Fig. 4. Methodology.

Furthermore, Fig. 5 represents how the proposed methodology generates h -models from the training set. These models

and the test set are used to predict some values, and the predicted values are compared with the real value of the dataset.

Regression methods from MLlib have been selected in order to cover different paradigms such as linear models, models

based on trees and, finally, ensemble techniques.

In Fig. 6 , h univariate regression problems are solved. Using the instances (composed of w -features and the label h) from

each training set, a representative model is generated by MLlib. With each h -model, w -features from the test set (TS h) are

used to predict the corresponding label h . The differences between the actual label and the predicted are measured by

certain quality metric.

This methodology has been tested with four different methods. The models based on trees have been mainly proposed

because interpretable results are always desirable for the end-user. Furthermore, the ensemble techniques usually improve

the results obtained by a single regressor and also obtain very good results for many real applications. Finally, a linear

A. Galicia et al. / Information Sciences 467 (2018) 800–818 805

Fig. 5. h -model training and generation to predict the test set.

Fig. 6. Using the test set to evaluate the model.

model has been selected as a state-of-the-art reference method. A brief description of the methods used for each paradigm

is provided below.

Within the models based on trees, a greedy algorithm [30] that performs a recursive binary partitioning of the feature

space in order to build a decision tree has been used. The tree predicts the same value for all instances that reach the

same leaf node. The root nodes are selected from a set of possible splits, but not from all attributes, by maximising the

information gain. In this approach, the possible split candidates are a quantile over the data block, which is being processed

by a certain worker machine in the cluster. Moreover, once the splits are ordered, a maximum number of bins is allowed.

Two ensembles of trees have been considered: Random Forest [3] and the Gradient-Boosted Trees (GBT) [24] . Both algo-

rithms learn ensembles of trees, but the training processes are very different. GBTs train one tree at a time, providing the

longer training than Random Forest, which can train multiple trees in parallel. Random Forest improves the performance

when the number of trees increases. However, GBTs can present overfitting when a large number of trees is used.

Random Forest is an ensemble of decision trees trained separately in the same way as detailed above for individual

decision trees. The trees generated are different because of different training sets from a bootstrap subsampling and different

random subsets of features to split on at each tree node are used. To make a prediction on a new instance, a Random Forest

makes the average of the predictions from its set of decision trees.

GBTs iteratively train a sequence of decision trees. On each iteration, the algorithm uses the current ensemble to predict

the label of each training instance and then compares the prediction with the true label by computing the mean square

error. The training instances with poor predictions are re-labelled, and therefore, in the next iteration, the decision tree will

help correct for previous mistakes.

Finally, a linear regression has been selected as the reference model. The well-known stochastic gradient descent method

has been used to minimise the mean square error for the training set in order to obtain the model.

4. Results

This section sets out the results obtained from the application of the proposed methodology to the prediction of big

data time series for electrical consumption are shown. The methodology has been applied to a set of linear and nonlinear

regression methods.

806 A. Galicia et al. / Information Sciences 467 (2018) 800–818

Section 4.1 sets an adequate window of historical data used to determinate the prediction in Section 4.2 for the electricity

consumption dataset described in Section 4.3 . With an adequate size for the window w selected, an analysis of the results

from the methods is given in Section 4.4 , which indicates the viability of the methodology, analysing in Section 4.5 the

influence of the amount of computational resources and how the methodology responds to different time series lengths.

4.1. Design of experiments

The experimentation carried out consists of a total of 168 executions, obtaining a total of 4032 prediction models for

the time series of electrical consumption in the Spanish electricity market. This experimentation was based on the criteria

described below:

1. The size of the window w made up of past values has been set to 24, 48, 72, 96, 120, 144 and 168, corresponding to a

history of 4, 8, 12, 16, 20, 24 and 28 hours, respectively. With this number of past values, The intention is to predict the

following 24 values.

2. In linear regression, the stochastic gradient descent requires an appropriate number of iterations, which has been set to

25, 50, 75 and 100, and a step size γ (also known as the learning rate) to 1E-10, 5E-10 and 1E-9.

3. The number of trees and the maximum depth of trees are input parameters in GBT and Random Forest. For both en-

semble techniques, a depth of 4 and 8 has been tested. For GBT, 5 trees have been established and for Random Forest

experiments with 25, 50, 75 and 100 trees have been performed.

In all methods, the mean relative error (MRE) has been used as an evaluation measure to compare the accuracy of the

predictions obtained by the different prediction methods, which are formulated as follows:

MRE =

1

n

n ∑

i =1

| ̂ y i − y i |
y i

, (3)

where y i and ̂

 y i represent real and predicted values of the time series, respectively.

The experimentation has been launched on High-Performance Computing Resources on the Open Telekom Cloud Platform

using five machines: the master and four slave nodes. Each node has 60 GB of main memory and 8 logical cores from an

Intel Xeon E5-2658 v3 @ 2,20 GHz processor that has 30 MB L3 cache.

4.2. Sensitivity analysis

This section provides a sensitivity analysis of the window of past attributes, known as w -features. Each of the proposed

methods requires different parameters, affecting to the convergence.

Table 1 shows the results obtained by applying a linear regression (LR, hereinafter) using the stochastic gradient (known

as LinearRegressionWithSGD in MLlib) as the optimisation method. SGD requires two parameters: stepSize , referring to the

learning rate 1E-10, 5E-10 and 1E-9; and numIterations , which is the number of iterations set at 25, 50, 75 and 100. In

this way, 84 prediction models have been obtained. The SGD parameters clearly affect the convergence of the optimisation

problem. Optimal configuration was obtained with a window of 144 values, a step of 1E-10 and 100 iterations, obtaining an

MRE of 7,3397%. When numIterations and stepSize mean that the method is not converged, the MRE is represented by NC

(not converged).

Table 2 shows the results obtained by applying a regression tree using the method known in MLlib as DecisionTreeRe-

gression (DT). This method entails specifying the maximum depth of the tree, maxDepth , which has been set to 4 and 8. In

this way, 14 prediction models have been obtained. The optimum configuration was obtained with a window of 168 values

and a depth of 8, obtaining a MRE of 2,8958%. Smaller errors are obtained with deeper trees.

Table 3 shows the results obtained by applying the ensemble GBT technique, known in MLlib as GradientBoostingRegres-

sion, to the prediction of the test set. In addition to the number of trees to train, which has been set at 5, this method

involves specifying maxDepth , also established at 4 and 8. Fourteen models have been obtained, the optimal model being

the one that uses a window of 168 passed values and trees of depth 8. The error obtained for this model was 2,7431%.

Likewise, deeper trees are closer than those of lower depth.

Finally, the ensemble Random Forest technique, known as RandomForestRegression in MLlib, has been applied to obtain

the prediction of the test set. Table 4 shows the MRE obtained depending on the parameters of the method. These parame-

ters are the number of trees to train, considering in this experiment 25, 50, 75 and 100 trees; and also 4 and 8 have been

set as the maximum depth of the tree. Finally, 56 models have been obtained, with the smallest error (2,0831%) achieved

for a window of 168 past values and 100 trees of depth 8.

For each method, Table 5 shows the minimum MRE obtained in the prediction of the test set for each value of the

window, independently of the rest of the parameters.

Table 5 and Fig. 7 shows the evolution of MRE when increasing the window size increases for all proposed methods,

selecting the lowest MRE for each window size. For all tree-based methods, an improvement in the MRE can be seen when

the size of w grows. However, a significant improvement is not achieved when the window is increased from 144 values to

168, and is barely appreciable for DT and GBT. Nevertheless, MRE is increasing even in the case of linear regression using a

window with 168 previous values.

A. Galicia et al. / Information Sciences 467 (2018) 800–818 807

Table 1

MRE for LR.

w stepSize numIterations MRE (%) w stepSize numIterations MRE (%)

24 1,00E −11 25 16,3889 96 5,00E −11 75 15,2191

24 1,00E −11 50 14,9937 96 5,00E −11 100 15,2191

24 1,00E −11 75 14,9937 96 1,00E −10 25 NC

24 1,00E −11 100 14,9937 96 1,00E −10 50 13,5324

24 5,00E −11 25 12,8400 96 1,00E −10 75 13,5324

24 5,00E −11 50 12,8400 96 1,00E −10 100 13,5324

24 5,00E −11 75 12,8400 120 1,00E −11 25 14,4325

24 5,00E −11 100 12,8400 120 1,00E −11 50 14,4325

24 1,00E −10 25 12,7129 120 1,00E −11 75 14,4325

24 1,00E −10 50 12,7129 120 1,00E −11 100 14,4325

24 1,00E −10 75 12,7129 120 5,00E −11 25 13,0596

24 1,00E −10 100 12,7129 120 5,00E −11 50 13,0596

48 1,00E −11 25 14,9596 120 5,00E −11 75 13,0596

48 1,00E −11 50 14,9596 120 5,00E −11 100 13,0596

48 1,00E −11 75 14,9596 120 1,00E −10 25 NC

48 1,00E −11 100 14,9596 120 1,00E −10 50 NC

48 5,00E −11 25 14,6481 120 1,00E −10 75 10,4554

48 5,00E −11 50 14,6481 120 1,00E −10 100 10,4554

48 5,00E −11 75 14,6481 144 1,00E −11 25 12,5119

48 5,00E −11 100 14,6481 144 1,00E −11 50 12,5119

48 1,00E −10 25 13,9949 144 1,00E −11 75 12,5119

48 1,00E −10 50 13,9949 144 1,00E −11 100 12,5119

48 1,00E −10 75 13,9949 144 5,00E −11 25 10,4821

48 1,00E −10 100 13,9949 144 5,00E −11 50 10,3061

72 1,00E −11 25 15,8229 144 5,00E −11 75 10,3061

72 1,00E −11 50 15,8229 144 5,00E −11 100 10,3061

72 1,00E −11 75 15,8229 144 1,00E −10 25 NC

72 1,00E −11 100 15,8229 144 1,00E −10 50 NC

72 5,00E −11 25 15,1816 144 1,00E −10 75 NC

72 5,00E −11 50 15,1816 144 1,00E −10 100 7,33970

72 5,00E −11 75 15,1816 168 1,00E −11 25 12,3389

72 5,00E −11 100 15,1816 168 1,00E −11 50 12,3389

72 1,00E −10 25 14,1608 168 1,00E −11 75 12,3389

72 1,00E −10 50 14,0328 168 1,00E −11 100 12,3389

72 1,00E −10 75 14,0328 168 5,00E −11 25 NC

72 1,00E −10 100 14,0328 168 5,00E −11 50 10,0876

96 1,00E −11 25 16,0632 168 5,00E −11 75 10,0876

96 1,00E −11 50 16,0632 168 5,00E −11 100 10,0876

96 1,00E −11 75 16,0632 168 1,00E −10 25 NC

96 1,00E −11 100 16,0632 168 1,00E −10 50 NC

96 5,00E −11 25 15,2191 168 1,00E −10 75 NC

96 5,00E −11 50 15,2191 168 1,00E −10 100 NC

Table 2

MRE for DT.

w maxDepth MRE (%)

24 4 6,6991

24 8 4,7625

48 4 6,4666

48 8 4,0322

72 4 5,9180

72 8 3,4386

96 4 5,8596

96 8 3,3032

120 4 5,3441

120 8 3,1801

144 4 5,1291

144 8 2,9271

168 4 5,0214

168 8 2,8958

808 A. Galicia et al. / Information Sciences 467 (2018) 800–818

Table 3

MRE for GBT.

w maxDepth MRE (%)

24 4 6,1276

24 8 4,4633

48 4 5,8249

48 8 3,7019

72 4 5,1246

72 8 3,2383

96 4 4,9933

96 8 3,1334

120 4 4,5709

120 8 3,0165

144 4 4,2949

144 8 2,7520

168 4 4,2567

168 8 2,7431

Table 4

MRE for RF.

w stepSize numIterations MRE (%) w stepSize numIterations MRE (%)

24 25 4 6,5787 96 75 4 5,3174

24 25 8 4,5122 96 75 8 2,7045

24 50 4 6,5566 96 100 4 5,3106

24 50 8 4,4915 96 100 8 2,7098

24 75 4 6,5599 120 25 4 4,6510

24 75 8 4,5021 120 25 8 2,4728

24 100 4 6,5615 120 50 4 4,6274

24 100 8 4,4846 120 50 8 2,4344

48 25 4 6,1533 120 75 4 4,6177

48 25 8 3,6477 120 75 8 2,4229

48 50 4 6,1435 120 100 4 4,6081

48 50 8 3,6185 120 100 8 2,4160

48 75 4 6,1277 144 25 4 4,2856

48 75 8 3,5969 144 25 8 2,2338

48 100 4 6,1333 144 50 4 4,2354

48 100 8 3,6006 144 50 8 2,1898

72 25 4 5,5598 144 75 4 4,2533

72 25 8 2,9286 144 75 8 2,1863

72 50 4 5,4919 144 100 4 4,2387

72 50 8 2,8984 144 100 8 2,1867

72 75 4 5,5253 168 25 4 4,0934

72 75 8 2,8912 168 25 8 2,1281

72 100 4 5,4969 168 50 4 4,0520

72 100 8 2,8893 168 50 8 2,0964

96 25 4 5,3290 168 75 4 4,0527

96 25 8 2,7466 168 75 8 2,0855

96 50 4 5,3299 168 100 4 4,0510

96 50 8 2,7245 168 100 8 2,0831

Table 5

Minimum MRE (%) for all methods.

w LR DT GBT RF

24 10,8781 4,7625 4,4633 4,4846

48 13,9949 4,0322 3,7019 3,5969

72 14,0328 3,4386 3,2383 2,8912

96 13,5324 3,3032 3,1334 2,7045

120 10,4554 3,1801 3,0165 2,4160

144 7,3397 2,9271 2,7520 2,1863

168 10,0876 2,8958 2,7431 2,0831

A. Galicia et al. / Information Sciences 467 (2018) 800–818 809

Fig. 7. MRE evolution as the window size increases.

Table 6

MRE for different depth levels and number of trees.

DT GBT RF

Number of trees 1 5 25 50 75 100

Depth 4 5,1291 4,2949 4,2856 4,2354 4,2533 4,2387

Depth 8 2,9271 2,7520 2,2338 2,1898 2,1863 2,1867

For this reason, w = 144 is the selected value for the analysis of the results shown in the following sections. This value

is not accidental since it represents the values corresponding to the 24 hours of knowledge window before the day to be

predicted, thus demonstrating the strong stationarity of the time series for electric demand in daily periods.

4.3. Dataset description

The time series used is related to the total electrical energy consumption in Spain, which ranges from January 1 st 2007

at midnight to June 21 st 2016 at 11:40 pm. In short, it is a time series of 9 and a half years which has a high sampling

frequency - 10 min intervals - giving a total of 497832 measurements.

With a prediction horizon of 4 hours (h is set to 24 values), the dataset consists of 20742 instances and 144 attributes,

corresponding to 5,70 MiB of storage size. These 144 attributes correspond to a window w of 144 past values (24 h). This

dataset is divided into a training set, corresponding to 60%, to generate the prediction model for each method, and a test

set corresponding to 40%. The training set has 298752 measurements, whose time interval begins on January 1 st , 2007 at

midnight and ends on September 8 th , 2012 at 10:30 am. Therefore, the test set consists of 199080 measurements, which

correspond to the values included from September 8 th , 2012 at 10:40 am to June 21 st , 2016 at 11:40 pm.

4.4. Analysis of results

After obtaining the optimum window to generate the models for each of the methods, Table 6 summarises the MRE

(in percentage) obtained when the test set is predicted for each of the tree-based methods. The depth of the trees clearly

influences the error and the number of trees in the case of Random Forest.

The same information summarised in Table 6 is shown graphically in Fig. 8 .

Tree depth is a critical factor, reducing the error made in the predicted values when using deeper trees. However, by

increasing depth, more computation time is needed to obtain the prediction model. Furthermore, in the Random Forest

technique, although the optimum error is obtained with 75 trees, there are no significant differences when using a smaller

or larger number of trees.

Table 7 summarises the generation times of the prediction model, i.e. the training times (in seconds), for each of the

methods, using trees of depth 8 and 75 trees in the case of Random Forest. All non-linear tree-based methods have achieved

810 A. Galicia et al. / Information Sciences 467 (2018) 800–818

Fig. 8. MRE for different depth levels and number of trees.

Table 7

Execution time for training and MRE for test

set.

MRE (%) Time (s)

LR 7,3397 503

DT 2,9271 72

GBT 2,7520 358

RF 2,1863 253

Table 8

Errors of worst and best predicted days at test set.

LR DT GBT RF

Worst 14,0 0 04 10,1348 9,7966 9,1872

Mean 7,3397 2,9274 2,7520 2,1863

Best 3,3762 1,1877 1,0656 0,6745

errors less than linear regression, with a 5% difference approximately. Although the Random Forest ensemble technique has

obtained the best result, it is possible to conclude that the decision tree could be considered the most appropriate method,

especially considering the time required to generate the model with long time series.

So far the average relative error obtained in the prediction of the test set has been analysed. However, it is interesting to

study maximum and minimum errors of methods analysed.

The time series for electrical demand has measurements every 10 min. In order to study of daily errors, the predictions

obtained must be grouped into groups of 144 values (24 h). Hence, Table 8 presents the error of the best and worst predicted

day for each method.

Fig. 9 shows the average relative error of the predictions made on the test set for each of the algorithms, as well as the

errors corresponding to the days with the best and the worst prediction.

Due to the large difference between the worst predicted day and the average of every predicted day in the test set, the

assumed MRE after predicting each day is shown in Fig. 10 . The figure shows the MRE of the test set, which consists of

199,080 measurements, corresponding to the values included from September 8 th , 2012 at 10:40 am to June 21 st , 2016 at

11:40 pm.

The best daily predictions for each of the methods are shown graphically in Fig. 11 . Fig. 11 (a) shows the day with the

best prediction obtained with the Linear Regression. The MRE is 3,37% and corresponds to measurements from Tuesday

June 17 th , 2014 at 10:50 am until Wednesday June 18 th , 2014 at 10:40 am. Fig. 11 (b) shows the day with the best predic-

tion obtained with DecisionTreeRegression, which has resulted in an MRE of 1,1877%, corresponding to the 24 hours from

Wednesday January 21 st , 2015 at 10:50 am to Thursday January 22 nd , 2015 at 10:40 am. Fig. 11 (c) shows the day with the

best prediction obtained with the GBT ensemble technique, corresponding to an MRE of 1,0656%, between Wednesday July

A. Galicia et al. / Information Sciences 467 (2018) 800–818 811

Fig. 9. Errors of worst and best predicted days at test set.

Fig. 10. Daily MRE at the test set.

812 A. Galicia et al. / Information Sciences 467 (2018) 800–818

Fig. 11. Day for the best prediction.

17 th , 2013 at 10:50 am and Thursday July 18 th , 2013 at 10:40 am. Fig. 11 (d) shows the best predicted day obtained with

Random Forest, corresponding to an MRE of 0,6745%, between Wednesday September 19 th , 2012 at 10:50 am and Thursday

September 20 th , 2012 at 10:40 am. The lowest daily error in the test set corresponds to Random Forest.

The relative error assumed for each best predicted day is shown in Fig. 12 . The highest daily error was obtained using

Linear Regression and the lowest daily error in the test set corresponds to Random Forest.

In addition, the worst daily predictions for each of the methods are shown graphically in Fig. 13 .

Fig. 13 (a) shows the day with the worst prediction obtained using the linear regression, resulting in an MRE of 14,0 0 04%,

corresponding to the measurements from Wednesday December 23 rd , 2015 at 10:50 am hours until Thursday December

24 th , 2015 at 10:40 am. In this particular case, it corresponds to a special day within the month of December. Fig. 13 (b)

shows the worst prediction obtained with the DecisionTreeRegression method of MLlib. The error obtained is 10,1348% cor-

responding to the interval from Sunday December 30 th 2012 at 10:50 am until Monday December 31 st , 2012 at 10:40 am.

Similarly to linear regression, it is a special day within the period of Christmas. Fig. 13 (c) shows the day with the worst

prediction obtained with the GBT ensemble technique, which has resulted in an MRE of 9,7966%, corresponding to the 24 h

included from Sunday December 30 th , 2012 at 10:50 am until Monday December 31 st , 2012 at 10:40 am. Fig. 13 (d) shows

the day with the worst prediction obtained using Random Forest, which has resulted in an MRE of 9,1872%, between Monday

December 23 rd , 2013 at 10:50 am and Tuesday December 24 th 2013 at 10:40 am.

In addition, it is important to observe the worst predictions since they contribute to the average increase in errors.

Table 9 shows a summary of the days in which the largest daily error is obtained for each of the algorithms analysed. In

all cases, they correspond to very special days during the holiday season.

A. Galicia et al. / Information Sciences 467 (2018) 800–818 813

Fig. 12. Relative error corresponding to each best predicted day.

Table 9

Days with the worst predictions.

From To MRE (%)

LR X. 2015-12-23 10:50 J. 2015-12-24 10:40 14,0 0 04

DT D. 2012-12-30 10:50 L. 2012-12-31 10:40 10,1348

GBT D. 2012-12-30 10:50 L. 2012-12-31 10:40 9,7966

RF L. 2013-12-23 10:50 M. 2013-12-24 10:40 9,1872

4.5. Scalability analysis

Having studied the precision of the models generated by the different algorithms, this next section analyses the scal-

ability of the proposed methodology. On the one hand, the influence of multiple threads in the generation of models is

considered. On the other hand, the length of the time series is increased, multiplying its length by up to 32 times. These

tests are performed with the configuration of the algorithms that have given rise to lowest errors, considering the number

of attributes w = 144 and prediction horizon h = 24 .

4.5.1. Computing resources remarks

To verify how scalable the various methods are according to available computing resources, the four algorithms are

analysed when the number of computing threads varies from 1 to 8 and when the length of the time series is the original

length and when the length is multiplied by 2, 4, 8, 16 and 32 (x1, x2, x4, x8, x16, x32, respectively). Only one slave has

been used to obtain these results. Table 11 shows a summary of the sizes of the time series.

814 A. Galicia et al. / Information Sciences 467 (2018) 800–818

Fig. 13. Day for the worst prediction.

The time series with initial length –x1– has 497832 measurements, corresponding to 20742 records in the dataset and

with a size of 5,70 MiB. As shown in Table 11 , multiplying the length of the time series (twice –x2– until thirty two times

–x32–) the length grows up to 15930624 measurements, corresponding to 663744 instances in the dataset and with a size

of 18,230 MiB.

The results obtained for all methods using different time series length for time scalability analysis are shown in Table 10 ,

where results are expressed in seconds. The algorithms analysed train their models in less time as availability of computing

resources is increased. In addition, there is a dependence observed, related with the length of the time series. The algorithms

are more sensitive to the increment in the number of threads; that is, the greater the scalability of the algorithms, the

longer the length of the time series. However, the decrease in computing time differs very little when increasing from 4 to

8 threads for all algorithms.

In Fig. 14 , the behaviour of each algorithm is represented, as the size of the time series and the number of processing

threads increases. It also shows the reduction in runtime required to generate the model, when the Spark worker increases

the number of processing threads. However, the decrease in computing time differs very little for all algorithms when

increasing from 4 to 8 threads. Regardless of the algorithm used, this time reduction becomes more noticeable for longer

time series, since with the original dataset x1, the time is reduced. This behaviour shows a clear dependence on the size

of the time series, since Spark is designed to process sets of data of the order of gigabytes, and therefore, the greater the

scalability of the algorithms the greater the length of the time series.

4.5.2. Data size remarks

Runtime has been obtained for the time series x2, x4, x8, x16 and x32, whose sizes are summarised in Table 11 , respect

a length multiplier, using one master and four slaves.

A. Galicia et al. / Information Sciences 467 (2018) 800–818 815

Table 10

Time scalability for all methods using different time series

length.

Multiplier Threads LR DT GBT RF

x1 1 722 165 765 815

2 574 114 523 462

3 522 98 443 381

4 519 93 417 351

5 487 88 387 317

6 513 86 378 307

7 518 86 379 302

8 521 85 376 298

x2 1 1412 253 1195 1328

2 1024 169 785 737

3 964 147 679 632

4 936 140 647 575

5 933 138 634 555

6 882 131 600 531

7 877 130 593 521

8 875 130 585 521

x4 1 2844 433 2063 2315

2 1771 264 1242 1268

3 1553 223 1044 1082

4 1527 211 996 989

5 1558 211 1002 942

6 1465 201 939 905

7 1461 199 929 890

8 1462 199 924 895

x8 1 5584 799 3798 4303

2 3523 495 2351 2376

3 2742 378 1785 1978

4 2705 356 1693 1794

5 2655 346 1647 1714

6 2633 340 1617 1643

7 2653 339 1615 1618

8 2621 336 1601 1620

x16 1 10552 1457 6970 11082

2 5703 809 3853 5915

3 5037 667 3196 4798

4 4990 640 3122 4305

5 4985 633 3024 3977

6 4987 634 2997 3731

7 5058 631 2960 3585

8 5054 639 3007 3268

x32 1 21062 2891 6970 21495

2 11563 1589 3853 11445

3 104 4 4 1391 3196 9387

4 9870 1271 3122 8470

5 9850 1238 3024 7899

6 9862 1241 2997 7446

7 10376 1275 2960 7017

8 9791 1222 3007 6772

Table 12 shows the training time with respect to the different lengths of the time series for all proposed algorithms. This

information is shown graphically in Fig. 15 (a) and Fig. 15 (b). The training time increases linearly as the length of the time

series increases exponentially, which indicates the good behaviour of all methods with regard to scalability.

A scalability factor can be expressed as:

F actor i =

t i
t i/ 2

, (4)

where t i is the training time for the time series of length x i with i = 2 , 4 , 8 , 16 and 32.

Fig. 16 shows the scalability factor of each method when the length of the time series increases by multiplying by 2, 4,

8, 16 and 32. The scalability factor is usually less than 2, which implies that scalability is even better than linear scalability.

5. Conclusions

In this work, a formal formulation is proposed to obtain multi-pass predictions using the MLlib library of the Apache

Spark framework. The use of this framework guarantees that the applied methods to predict the energy consumption of the

816 A. Galicia et al. / Information Sciences 467 (2018) 800–818

Table 11

Size of the time series and dataset.

Length of series Number of instances Size (MiB)

x1 497832 20742 5,70

x2 995664 41484 11,39

x4 1991328 82968 22,79

x8 3982656 165936 45,58

x16 7965312 331872 91,15

x32 15930624 663744 18230

Fig. 14. Scalability of training time.

Table 12

Execution time scalability.

x1 x2 x4 x8 x16 x32

LR 503 807 1381 2541 4859 9920

DT 72 119 196 342 632 1201

GBT 358 559 939 1671 3161 6046

RF 253 414 749 1456 2779 5935

following 24 values are scalable, and that, consequently, they can be used for long time series. A set of regression models,

linear and nonlinear, such as linear regression, decision trees and two tree ensembling techniques, has been selected. The

results of the prediction of electricity in the Spanish electricity market are giving with errors of approximately 2%. Likewise,

experiments have been carried out showing the degree of scalability of each of the methods, concluding the viability of the

methodology for the prediction of large time series.

A. Galicia et al. / Information Sciences 467 (2018) 800–818 817

Fig. 15. Runtime and scalability for all algorithms.

Fig. 16. Scalability factor behaviour.

One proposal for future research is to optimise the error with a validation set. Further studies should also analyse how

the number of partitions into which the dataset is distributed affects the scalability of the algorithms. In addition, it would

be very interesting to study the periodicity of the time series and its influence on the prediction model generated in the

training. Finally, the behaviour of the methods must be verified with other datasets of larger sizes and different natures.

Acknowledgment

The authors would like to thank the Spanish Ministry of Economy and Competitiveness and Junta de Andalucía for the

support under projects TIN2014-55894-C2-R and P12-TIC-1728, respectively. Additionally, the authors want to express their

gratitude to the T-Systems Iberia company since all experiments were carried out on its Open Telekom Cloud Platform based

on the Open-Stack open source.

References

[1] A. Abraham , B. Nath , A neuro-Fuzzy approach for forecasting electricity demand in victoria, Appl. Soft Comput. J. 1 (2) (2001) 127–138 .

[2] G. Box , G. Jenkins , Time Series Analysis: Forecasting and Control, John Wiley and Sons, 2008 .
[3] L. Breiman , Random forests, Mach. Learn. 45 (1) (2001) 5–32 .

[4] M. Capó, A. Pérez , J.A. Lozano , A recursive K-means initialization algorithm for massive data, in: Proceedings of the Spanish Association for Artificial

Intelligence, 2015, pp. 929–938 .
[5] G. Cavallaro , M. Riedel , M. Richerzhagen , J.A. Benediktsson , A. Plaza , On understanding big data impacts in remotely sensed image classification using

support vector machine methods, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8 (2015) 4634–4646 .
[6] J. Dean , S. Ghemawat , Mapreduce: simplified data processing on large clusters, Commun. ACM 51 (1) (2008) 107–113 .

[7] R. Ding , Q. Wang , Y. Dan , Q. Fu , H. Zhang , D. Zhang , Yading: fast clustering of large-scale time series data, in: Proceedings of the VLDB Endowment, 8,
2015, pp. 473–484 .

818 A. Galicia et al. / Information Sciences 467 (2018) 800–818

[8] M. El-Telbany , F. El-Karmi , Short-term forecasting of jordanian electricity demand using particle swarm optimization, Electr. Power Syst. Res. 78 (2008)
425–433 .

[9] A. Fahad , N. Alshatri , Z. Tari , A. Alamri , A.Y. Zomaya , I. Khalil , F. Sebti , A. Bouras , A survey of clustering algorithms for big data: taxonomy & empirical
analysis, IEEE Trans. Emerg. Top Comput. 5 (2014) 267–279 .

[10] S. Fan , C. Mao , J. Zhang , L. Chen , Forecasting electricity demand by hybrid machine learning model, Lect. Notes Comput. Sci. 4233 (2006) 952–963 .
[11] R.C. García , J. Contreras , M. van Akkeren , J.B.C. García , A GARCH forecasting model to predict day-ahead electricity prices, IEEE Trans. Power Syst. 20

(2) (2005) 867–874 .

[12] S. Ghosh , A. Das , Short-run electricity demand forecasts in maharashtra, Appl. Econ. 34 (8) (2002) 1055–1059 .
[13] H.S. Guirguis , F.A. Felder , Further advances in forecasting day-ahead electricity prices using time series models, KIEE Int. Trans. PE 4-A (3) (2004)

159–166 .
[14] Y. Guo , D. Niu , Y. Chen , Support-vector machine model in electricity load forecasting, in: Proceedings of the International Conference on Machine

Learning and Cybernetics, 2006, pp. 2892–2896 .
[15] M. Hamstra , H. Karau , M. Zaharia , A. Knwinski , P. Wendell , Learning Spark: Lightning-Fast Big Analysis, O’ Really Media, 2015 .

[16] I. Koprinska , M. Rana , A. Troncoso , F. Martínez-Álvarez , Combining pattern sequence similarity with neural networks for forecasting electricity demand
time series, in: Proceedings of the International Joint Conference on Neural Networks, 2013, pp. 940–947 .

[17] L. Li , S. Bagheri , H. Goote , A. Hassan , G. Hazard , Risk adjustement of patient expenditures: a big data analytics approach, in: Proceedings of the IEEE

International Conference on Big Data, 2013, pp. 12–14 .
[18] J.M. Luna-Romera , M. Martínez-Ballesteros , J. García-Gutierrez , J.C. Riquelme , An Approach to Silhouette and Dunn Clustering Indices Applied to Big

Data in Spark, in: Proceedings of the Conference of the Spanish Association for Artificial Intelligence, 2016, pp. 160–169 .
[19] Machine Learning Library (MLlib) for Apache Spark, On-line, http://spark.apache.org/docs/latest/mllib-guide.html (2016).

[20] J. Maillo , S. Ramírez , I. Triguero , F. Herrera , KNN-IS: an iterative spark-based design of the k-Nearest neighbors classifier for big data, Knowl. Based
Syst. 117 (2017) 3–15 .

[21] P. Malo , A. Kanto , Evaluating multivariate GARCH models in the nordic electricity markets, Commun. Stat Simul. Comput. 35 (1) (2006) 117–148 .

[22] F. Martínez-Álvarez , A. Troncoso , G. Asencio-Cortés , J.C. Riquelme , A survey on data mining techniques applied to electricity-related time series fore-
casting, Energies 8 (11) (2015) 13162–13193 .

[23] F. Martínez-Álvarez , A. Troncoso , J.C. Riquelme , J.S. Aguilar , Energy time series forecasting based on pattern sequence similarity, IEEE Trans. Knowl.
Data Eng. 23 (2011) 1230–1243 .

[24] L. Mason , J. Baxter , P. Bartlett , M. Frean , Boosting algorithms as gradient descent, in: Proceedings of the Neural Information Processing Systems Con-
ference, NIPS, 1999, pp. 512–518 .

[25] P.F. Pai , W.C. Hong , Support vector machines with simulated annealing algorithms in electricity load forecasting, Energy Convers. Manag. 46 (17) (2005)

2669–2688 .
[26] B. Panda , J.S. Herbach , S. Basu , R.J. Bayardo , PLANET: massively parallel learning of tree ensembles with MapReduce, in: Proceedings of the International

Conference in Very Large Data Bases, 2009, pp. 1426–1437 .
[27] R. Pérez-Chacón , R. Talavera-Llames , F. Martínez-Álvarez , A. Troncoso , Finding electric energy consumption patterns in big time series data, in: Pro-

ceedings of the International Conference on Distributed Computing and Artificial Intelligence, 2016, pp. 231–238 .
[28] M. Rana, I. Koprinska, A. Troncoso, V.G. Agelidis, Extended Weighted Nearest Neighbor for Electricity Load Forecasting, Springer International Publish-

ing, pp. 299–307.

[29] J.L. Reyes-Ortiz , L. Oneto , D. Anguita , Big data analytics in the cloud: spark on hadoop vs MPI/OpenMP on beowulf, Procedia Comput. Sci. 53 (2015)
121–130 .

[30] L. Rokach , O. Maimon , Top-down induction of decision trees classifiers - a survey, IEEE Trans. Syst. Man Cybern. Part C 35 (4) (2005) 476–487 .
[31] R. Talavera-Llames , R. Pérez-Chacón , M. Martínez-Ballesteros , A. Troncoso , F. Martínez-Álvarez , A nearest neighbours-based algorithm for big time

series data forecasting, in: Proceedings of the International Conference on Hybrid Artificial Intelligence Systems, 2016, pp. 174–185 .
[32] J. Taylor , Density forecasting for the efficient balancing of the generation and consumption of electricity, Int. J. Forecast 22 (2006) 707–724 .

[33] Time Series for Spark (The spark-ts Package), On-line, https://github.com/sryza/spark-timeseries (2017).

[34] I. Triguero , D. Peralta , J. Bacardit , S. García , F. Herrera , MRPR: a mapreduce solution for prototype reduction in big data classification, Neurocomputing
150 (2015) 331–345 .

[35] A. Troncoso , J.C. Riquelme , J.M. Riquelme , J.L. Martínez , A. Gómez , Electricity market price forecasting based on weighted nearest neighbours tech-
niques, IEEE Trans. Power Syst. 22 (3) (2007) 1294–1301 .

[36] C.-W. Tsai , C.-F. Lai , H.-C. Chao , A. Vasilakos , Big data analytics: a survey 2 (1) (2015) 21 .
[37] T. White , Hadoop, The Definitive Guide, O’ Really Media, 2012 .

[38] I.H. Witten , E. Frank , M.A. Hall , C.J. Pal , Data mining: Practical Machine Learning Tools and Techniques, fourth ed., Morgan Kaufmann, Burlington, MA,

2016 .
[39] W. Zhao , H. Ma , Q. He , Parallel k-means clustering based on mapreduce, Lect. Notes Comput. Sci. 5391 (2009) 674–679 .

[40] L. Zhou , S. Pan , J. Wang , A.V. Vasilakos , Machine learning on big data: opportunities and challenges, Neurocomputing (2017) . In press.

4.1 Artículos de revista 71

4.1.3. Big data solar power forecasting based on deep lear-
ning and multiple data sources

Tabla 4.3 Datos del artículo: Big data solar power forecasting based on deep
learning and multiple data sources

Autores Torres, J. F., Troncoso, A., Koprinska, I., Wang, Z., and
Martínez-Álvarez, F.

Revista Expert Systems
Año 2019

Páginas e12394
Volumen 36, issue 4

DOI 10.1111/exsy.12394
IF 1.546 (50/120)

Cuartil Q2 (Computer Science, theory and methods)
Citas 27 (Google Scholar)

Received: 23 September 2018 Revised: 6 February 2019 Accepted: 15 February 2019
DOI: 10.1111/exsy.12394

S P E C I A L I S S U E P A P E R

Big data solar power forecasting based on deep learning andmultiple data sources
José F. Torres1 Alicia Troncoso1 Irena Koprinska2 Zheng Wang2
Francisco Martínez-Álvarez1

1Data Science and Big Data Lab, Universidad
Pablo de Olavide, ES-41013 Seville, Spain
2School of Computer Science, University of
Sydney, Sydney, Australia
Correspondence
Alicia Troncoso, Data Science and Big Data
Lab, Universidad Pablo de Olavide, ES-41013
Seville, Spain.
Email: atrolor@upo.es

Abstract
In this paper, we consider the task of predicting the electricity power generated by photovoltaic
solar systems for the next day at half-hourly intervals. We introduce DL, a deep learning
approach based on feed-forward neural networks for big data time series, which decomposes
the forecasting problem into several sub-problems. We conduct a comprehensive evaluation
using 2 years of Australian solar data, evaluating accuracy and training time, and comparing the
performance of DL with two other advanced methods based on neural networks and pattern
sequence similarity. We investigate the use of multiple data sources (solar power and weather
data for the previous days, and weather forecast for the next day) and also study the effect
of different historical window sizes. The results show that DL produces competitive accuracy
results and scales well, and is thus a highly suitable method for big data environments.
KEYWORDS
big data, deep learning, solar power, time series forecasting

1 INTRODUCTION
Solar energy is a very promising renewable electricity source that is still not fully utilized. Recently, there has been a rapid growth in the
installed large-scale and residential (rooftop) solar photovoltaic (PV) systems. This is due to the reduced cost of solar PV panels, improvements in
technology and performance, and government initiatives encouraging the use of solar systems.

As a result, in many countries now, the cost of electricity produced by solar energy is comparable with that of conventional energy sources.
This competitive cost, coupled with the fact that solar is a clean and abundant energy source, has led to a huge growth in the generated solar
energy. This trend is expected to continue—for example, by 2020, the global solar capacity is projected to reach 700 GW, an increase of about
140 times compared with 2005 (SolarPowerEurope, 2016). In Australia, it is expected that by 2050, 30% of the electricity supply will come from
solar energy (Flannery & Sahajwalla, 2013).

However, solar energy is highly variable since it depends on meteorological conditions such as solar radiation, cloud cover, rainfall, and
temperature. This dependency creates uncertainty about the amount of solar power that will be generated, which makes the integration of solar
power into the electricity grid and electricity markets more difficult. Hence, the ability to accurately predict the generated solar power is a task of
utmost importance and relevance for both energy managers and electricity traders, in order to minimize uncertainty and ensure reliable electricity
supply at acceptable cost.

Historical PV solar power data with high frequency is easily available, and therefore, advanced computing technologies and machine learning
approaches for big data can be used to analyse very large time series. Deep learning is an emerging branch of machine learning that extends the
traditional neural networks by using architectures with many hidden layers that are able to learn hierarchical feature representations.

One of the main drawbacks of the classical neural networks is that if they have many hidden layers they become difficult to train (Livingstone,
Manallack, & Tetko, 1997; Schmidhuber, 2015)

Deep learning involves the use of more effective learning algorithms and techniques to train neural networks with many hidden layers.
In this paper, we propose a new approach based on deep learning feed-forward neural networks to forecast short-term (one day ahead), big

solar power time series data. Day ahead predictions are one of the most common industry-requested operational forecasts (Kostylev & Pavlovski,
Expert Systems. 2019;e12394. wileyonlinelibrary.com/journal/exsy © 2019 John Wiley & Sons, Ltd. 1 of 14https://doi.org/10.1111/exsy.12394

2 of 14 TORRES ET AL.

2011). They are needed for operational planning, switching sources, programming backups, short-term power purchases, and for planning of
reserve usage and peak load matching (Ervural & Ervural, 2018; Reikard, 2009). Specifically, we consider the following task: given a time series of
PV power outputs up to day d, where one day is a vector of half-hourly power outputs, our goal is to forecast the half-hourly PV power output
for the next day d + 1.

We first compare the performance of our proposed DL algorithm with two other advanced methods for forecasting presented in (Wang,
Koprinska, & Rana, 2017). In particular, we compare DL with the (a) Pattern Sequence-based Forecasting (PSF) algorithm, which uses clustering
and similarity of patterns (Martínez-Álvarez, Troncoso, Riquelme, & Aguilar, 2011), and (b) a neural network-based model with one hidden layer
(we will refer to it as NN), used as a reference method for solar power forecasting. Next, we conduct a scalability study in order to evaluate
the suitability of all methods to deal with big data time series. We also analyse if the accuracy of DL and the methods used for comparison
improves when using weather and weather forecast data as an additional input, taking into account different scenarios corresponding to different
percentages of noise in the weather forecast data (10%, 20%, and 30%). Finally, we study how the size of the historical window affects the
behaviour of our DL prediction system.

In summary, the main contributions of this work are:
1. We propose DL, a deep learning approach based on feed-forward neural networks, for predicting the generated PV solar power. DL

decomposes the multi-step ahead forecasting problem into sub-problems and also uses distributed computing to reduce the computational
cost of training a deep neural network and to process big data time series.

2. We conduct a comprehensive evaluation using Australian solar power data for 2 years, measured every 30 min. We evaluate the predictive
accuracy of DL and compare it with two state-of-the-art forecasting algorithms: NN and PSF. Our results showed that DL was the most
accurate method.

3. We carry out a scalability study to show the suitability of DL for processing large solar power time series, reporting computing times for
different time series lengths and comparing DL with NN and PSF.

4. We study the use of multiple input data sources (PV, weather, and weather forecast) and different levels of noise in the weather forecast
data. We found that the addition of the weather forecast for the next day to the PV data of the current day improved the accuracy,
whereas the addition of the weather data for the current day did not.

5. We analyse how the size of the historical window affects the accuracy of DL. We found that there is no benefit in using more than one
previous day.

The rest of the paper is structured as follows. Section 2 reviews of the existing literature related to time series forecasting of solar data. Section
3 introduces the proposed methodology to forecast big data time series. Section 4 describes the data and experimental setup and Section 5
presents and discusses the results. Finally, Section 6 summarizes the main results, providing final conclusions, as well as directions for future work.

2 RELATED WORK
In this section, we review the recently published approaches for PV solar power prediction, distinguishing between traditional and deep learning
techniques.

2.1 Non-deep learning methods
The non-deep learning methods for time series forecasting can be divided into two groups: classical statistical and data mining techniques
(Martínez-Álvarez, Troncoso, Asencio-Cortés, & Riquelme, 2015). With regard to the first group (statistical methods), autoregressive integrated
moving average and exponential smoothing have been the most popular methods for predicting PV time series (Dong, Yang, Reindl, & Walsh, 2015;
Pedro & Coimbra, 2012). With regard to the second group (data mining methods), neural networks, Support Vector Machines (SVM), and k nearest
neighbours have been recently applied to PV solar data. For example, Barbieri et al. (Barbieri, Rajakaruna, & Ghosh, 2017) presented an overview
of methods for very short-term PV solar forecasting with cloud modelling. They found that forecasting the irradiance and cell temperature were
the best approaches for forecasting PV power fluctuations due to cloud cover, and that a combination of satellite and sky images led to the
best results for very-short term forecasting. A neural network, optimized with a genetic algorithm for forecasting the intra-hour PV power, was
proposed in Chu et al. (2015). A clustering-based approach based on the weather characteristics was proposed in Wang, Koprinska, and Rana
(2017) and Zhang et al. (2018). A survey paper on forecasting methodologies for solar power forecasting was presented in Wan et al. (2015).

Interval forecasts using SVM were studied in Rana, Koprinska, and Agelidis (2015); these type of forecasts were considered as suitable for
the highly variable nature of the solar data. A forecasting method based on the weather and power data for the previous days and the weather
forecast for the next day was proposed in Z. Wang and Koprinska (2017) for one-day-ahead PV power prediction.

Brecl and Topic (2018) proposed an approach that uses only common weather forecasts, without solar irradiance information, obtaining
satisfactory results.

TORRES ET AL. 3 of 14

In the last few years, several studies in time series forecasting have focused on creating ensembles of prediction models. Ensembles combine
the predictions of several forecasting models and have been shown to be very competitive, and more accurate than single forecasting models in
Cerqueira, Torgo, Pinto, and Soares (2017), Koprinska, Rana, Troncoso, and Martínez-Álvarez (2013), and Oliveira and Torgo (2015), including
for PV power forecasting (Z. Wang et al. (2017)). Another ensemble method was proposed by Thorey, Chaussin, and Mallet (2018)—an online
learning method that generates a weighted combination of PV power forecasts for PV plants located in France; this technique was used to predict
solar energy up to 6 days in advance.

2.2 Deep learning methods
Deep learning methods have gained a lot of interest in recent years due to their excellent results, especially in image and speech recognition
tasks (Hinton et al., 2012; Krizhevsky, Sutskever, & Hinton, 2012; LeCun, Bengio, & Hinton, 2015). For surveys on deep learning architectures
and applications, see Kamilaris and Prenafeta-Boldú (2018), Mohammadi, Al-Fuqaha, Sorour, and Guizani (2018), and Pouyanfar et al. (2018)

A few recent studies have applied deep learning methods to forecasting tasks, including to energy related time series. For example, Binkowski,
Marti, and Donnat (2017) applied deep learning convolutional neural networks (CNNs) and long short-term memory (LSTM) networks to financial
and electricity household consumption data with promising results. LSTM networks were also applied for air quality forecasting (Zhou, Chang,
Chang, Kao, & Wang, 2019) and indoor temperature prediction (Xu, Chen, Wang, Guo, & Yuan, 2019), and CNNs were used for short-term rainfall
prediction (Qiu et al., 2017).

Torres, Fernández, Troncoso, and Martínez-Álvarez (2017) developed a deep learning feed-forward neural network for electricity demand
forecasting. The method was used to predict big data times series of Spanish electricity consumption data for 10 years, with a 10-min sampling
rate. In Coelho et al. (2017), a deep learning model was applied for household energy demand forecasting, using a GPU parallel architecture for
fast processing and model training. A deep learning forecasting model for multi-site PV plant connected with a renewable energy management
system was introduced in Lee, Lee, and Kim (2017). Neo, Teo, Woo, Logenthiran, and Sharma (2017) presented an application of Deep Belief NN
for forecasting PV solar power.

In Koprinska, Wu, and Wang (2018), CNNs were used for electricity demand and solar power forecasting and were shown to perform similarly
to feed-forward neural networks with one hidden layer and to outperform LSTM networks. In Wang et al. (2017), a hybrid method based on
wavelet transforms and CNN was applied for PV power forecasting. The wavelet transform was used to decompose the original time series data
into several time series with different frequencies; CNNs were then used to extract features from each time series and finally a probabilistic model
was applied to forecast each series separately. In Yuchi, Gergely, and Brandt (2018), CNNs were used to correlate PV output to contemporaneous
images of the sky and forecast PV power. The effect of the different CNNs and image parameters on the accuracy was also evaluated.

Further, deep recurrent neural networks (RNN) have been shown to provide promising results for predicting PV power in Abdel-Nasser and
Mahmoud (2017). Alzahrani, Shamsi, Dagli, and Ferdowsi (2017) used an RNN to forecast the solar irradiance, and compared its performance
with several commonly used methods such as SVR and feed-forward neural networks.

After a wide literature review, to the best of our knowledge, we conclude that although there have been previous studies on solar power
forecasting using different types of deep learning techniques, none of them deals with big data time series. In this paper, we address this gap by
proposing an algorithm for forecasting big solar data using deep learning and evaluating its performance on multiple data sources.

3 METHODOLOGY
This section presents the proposed methodology to forecast time series, for the context of PV solar data.

The main goal of this work is to predict future values, expressed as [x1, … , xh], where h is the number of values to predict. The prediction is
based on previous values from a historical window w. In this way, the problem can be formulated as:

[xt+1, xt+2, … , xt+h] = f(xt, xt−1, … , xt−(w−1)), (1)
where f refers to the model to be found in the training phase by the algorithm, which will be used to forecast the next h values.

In order to use in-memory data, we utilize Apache Spark cluster-computing. For the deep learning implementation, we choose the H2O
machine learning framework, which provides a simple syntax for parallel and distributed programming. However, H2O does not support
multi-step forecasting. To deal with this issue, a possible solution is to split the forecasting problem into h forecasting sub-problems. Therefore,
it is necessary to compute a prediction model for each sub-problem as follows:

xt+1 = f1(xt, xt−1, … , xt−(w−1)), (2)
xt+2 = f2(xt, xt−1, … , xt−(w−1)), (3)

... (4)
xt+h = fh(xt, xt−1, … , xt−(w−1)). (5)

4 of 14 TORRES ET AL.

From this problem formulation, we can see that each of the h values from the prediction horizon is predicted separately, thus removing
the propagation error due to previously predicted samples being used to predict the next one. Nevertheless, the computational cost of this
methodology is higher than building just one model to predict all h values from the prediction horizon because we need to train h different models
and conduct a hyperparameter search for each of them, instead of training only one model and conducting a single hyperparameter search for
optimal parameter selection. The deep learning architecture used for solving each sub-problem is presented in Figure 1.

It is well-known that the values of the hyper-parameters of the deep learning algorithm highly influence the results. To find a good combination
of hyper-parameters, we employed the grid search method of H20. The grid-search was used separately for each sub-problem to obtain the best
parameter setting as described in detail in Section 5.1.

Figure 2 shows a flow diagram of the proposed methodology. As it can be seen, given a time series data (in column vector format), the task is
to find a function that allows to predict a sub-sequence of future values h based on the previous know values w. This multi-step ahead prediction
problem is transformed into h sub-problems, where the target value for a sub-problem i corresponds to the ith value from the prediction horizon.
For each of these sub-problems, the data set is divided into training, validation, and test sets. First, the training and validation sets are used
for the training and parameter selection. The grid search method computes a model for each combination of hyper-parameters and for each
sub-problem. These models are evaluated on the validation set and the best one is chosen to predict the test set and compute the error.

4 DATA AND EXPERIMENTAL SETUP
4.1 Data description
We use data from three sources: PV power, weather and weather forecast, for 2 years—from 1 January 2015 to 31 December 2016. This is the
same data as in Wang et al. (2017). The PV power is the main data source, but as the generated PV power depends on the weather conditions,
we also collected weather and weather forecast data to investigate if its addition can improve the PV power predictions. The three data sets are
described below.

PV data. This data set was collected from a rooftop PV plant, located at the University of Queensland in Brisbane, Australia, and is publicly
available (http://www.uq.edu.au/solarenergy/). For each day, we only selected the data during the 10-hour daylight period from 7:00 a.m. to

FIGURE 1 DL's architecture

FIGURE 2 Proposed methodology

TORRES ET AL. 5 of 14

5:00 p.m. The original PV power data was measured at 1-min intervals and aggregated to 30-min intervals by taking the average value of the
interval. As a result, this data set contains 14,620 data points—(365 + 366) days × 20 measurements per day.

Weather data (W). This data set was obtained from the Australian Bureau of Meteorology (http://www.bom.gov.au/). For each day, we
collected 14 meteorological variables, described in Table 1. In total, this data set contains 731 days and 14 measurements per day, resulting in
10,234 data points.

Weather forecast data (WF). This data set is a subset of the weather data—it includes four weather variables that are typically available from
meteorological bureaus as part of the weather forecast for the next day, as shown in Table 2. Because the weather forecasts were not available
retrospectively for 2015 and 2016, we used the actual weather data with added noise at three different levels: 10%, 20%, and 30%. We generated
uniformly distributed noise. In total, each of the three versions of this data set contains 2,924 data points—731 days × 4 measurements per day.

Data Preprocessing. There was a small number of missing values—0.82% for the weather data and 0.02% for the PV data. They were replaced
using the following nearest neighbour method, applied first to the weather data and then to the PV data: (a) if a day d has missing values in its
weather vector Wd, we find its nearest neighbour with no missing values, day s, using the Euclidean distance and the available values in Wd. The
missing values in Wd are replaced with the corresponding values in Ws; (b) if day d has missing values in its PV vector Pd, we find its nearest
neighbour day s, by comparing weather vectors, and then replace the missing values in Pd with the corresponding values in Ps.

The data sets were also re-arranged based on the chosen historical data window and prediction horizon. Specifically, we considered seven
historical windows, from 1 to 7 previous days, when predicting the next day. For the PV data, this corresponds to using 20, 40, 60, 80, 100, 120,
and 140 past samples as a historical window and 20 samples as a prediction horizon.

All three data sets were normalized to the range of [0,1].
4.2 Experimental setup
The data was split into training set (the 2015 data) and test set (the 2016 data). The training set was further split into 70% for training and 30%
for validation. The training data was used for model training, the validation set was used for parameter tuning, and the test set was used to
evaluate the accuracy.

Two performance measures were used to evaluate the accuracy: the mean absolute error (MAE) and the root mean squared error (RMSE).
MAE and RMSE are the most commonly used measures for assessing the quality of solar power forecasts (Kostylev & Pavlovski, 2011) and are
defined below:

MAE = 1n
n∑

i=1
|pi − ai|, (6)

RMSE =

√√√√1n
n∑

i=1
(pi − ai)2. (7)

TABLE 1 Weather data
ID Abbreviation Description
1 DMIN Daily minimum temperature
2 DMAX Daily maximum temperature
3 DRAIN Daily rainfall
4 DSUN Daily sun hours
5 DMAXWIND Daily maximum wind speed
6 TEMP9 Temperature at 9:00 a.m.
7 HUM9 Relative humidity at 9:00 a.m.
8 CLOUD9 Cloud cover at 9:00 a.m.
9 WIND9 Wind speed at 9:00 a.m.
10 TEMP3 Temperature at 3:00 p.m.
11 HUM3 Relative humidity at 3:00 p.m.
12 CLOUD3 Cloud cover at 3:00 p.m.
13 WIND3 Wind speed at 3:00 p.m.
14 DSOLARIRR Daily solar irradiance

TABLE 2 Weather forecast data
ID Abbreviation Description
1 DMIN_F Forecasted daily minimum temperature
2 DMAX_F Forecasted daily maximum temperature
3 DRAIN_F Forecasted daily rainfall
4 DSOLARIRR_F Forecasted daily solar irradiance

6 of 14 TORRES ET AL.

All experiments were run on an Intel Core i7-5820 K 3.3 GHz machine with 15 MB of cache, six cores with 12 threads, and 16 GB of RAM
memory, working under Ubuntu 16.04 operating system.

5 RESULTS
This section summarizes the results obtained after applying the proposed deep learning method from Section 3 for forecasting PV solar time
series data.

The proposed DL method has been evaluated using a total of seven data sets: (a) PV data alone, (b–d) PV data together with WF data, with
three levels of noise in WF, (e–g) PV data together with W and WF data, with three levels of noise in WF. The results are compared with the
NN and PSF results from Wang et al. (2017). Section 5.1 presents the optimal parameters obtained by the grid search for each sub-problem. We
firstly compare the accuracy and scalability of DL with NN and PSF using only PV data (Section 5.2 and 5.3). Then, we investigate which is the
best input data source for DL out of seven data sets, answering four research questions (Q1, Q2, Q3, and Q4) in Section 5.4. We also compare
DL with NN and PSF when using W and WF in addition to PV data (Q5) in Section 5.4. Finally, in Section 5.5 we analyse how the size of the
historical data window affects the accuracy of the DL method.

5.1 Parameter selection
As stated before, we applied the grid search strategy available in H2O to find optimal parameters for each sub-problem. Many of the grid
search parameters can be customized and are very useful for adapting the network behaviour and improving the training. The following list of
parameters were used:

• We varied the number of hidden layers from 1 to 5 and the number of neurons in each layer from 10 to 40.
• The initial weight distribution was set to uniform distribution.
• As an activation function, we chose the hyperbolic tangent function (tanh).
• The distribution function was set to Gaussian distribution.
For each sub-problem of the prediction horizon, an exhaustive search is performed to determine the optimal parameters for the model, using

the validation set. When the grid search is completed, the best model for each sub-problem is chosen and used to perform the rest of the
experimentation.

Table 3 shows the parameters of the best model obtained for each sub-problem (number of hidden layers and neurons per layer), and also the
accuracy (MAE and RMSE) on the training and validation sets. We can see that the best network configuration varied and most often (for 40% of

TABLE 3 Best DL models for each sub-problem
Hidden Neurons MAE RMSE MAE RMSE

Sub-problem layers per layer training training validation validation
1 5 39 40.94 58.01 109.13 128.31
2 1 13 62.32 86.83 120.24 145.66
3 3 27 69.57 90.96 132.08 158.33
4 1 37 90.32 120.60 140.98 174.85
5 2 30 98.39 128.22 147.77 184.39
6 2 11 116.47 146.58 162.55 189.90
7 4 14 128.87 161.54 179.44 208.80
8 3 23 134.46 167.14 170.35 212.02
9 2 39 135.11 168.24 177.33 217.07
10 3 32 130.43 161.17 180.26 219.82
11 2 31 134.74 166.59 181.73 218.45
12 5 32 131.25 158.69 174.76 211.29
13 4 37 138.96 165.03 168.33 202.01
14 3 17 138.59 165.03 184.85 213.21
15 5 14 127.95 155.30 167.23 196.42
16 1 39 107.20 132.54 155.12 184.21
17 5 38 92.98 117.94 130.06 152.45
18 4 34 65.72 86.55 100.04 122.07
19 4 40 53.33 74.16 79.49 96.01
20 3 28 48.37 63.70 45.80 57.09

TORRES ET AL. 7 of 14

the sub-problems) included three hidden layers, with number of neurons in these layers between 17 and 32. We can also see that the training
and validation errors followed the same pattern—they increased until step 13–14 from the prediction horizon (sub-problems 13–14), and then
decreased. As expected, the error on the validation set was higher than the error on the training set.

5.2 Accuracy
Once the optimal configuration of DL for each sub-problem is selected, a new run was launched to predict the test set using this configuration.
The results are shown in Tables 4 and 5, and Figure 3.

Table 4 shows a comparison of DL with the PSF and NN results from (Wang et al., 2017) where the same data and data split were used. PSF
(Martínez-Álvarez et al., 2011) combines clustering with sequence matching. It firstly clusters all days from the training data based on their PV
vectors and labels them with the cluster tag. To make a prediction for a new day d+1, it extracts a sequence of consecutive days with length w,
starting from the previous day d and going backwards, and matches the cluster labels of this sequence against the previous days to find a set

TABLE 4 Accuracy of the NN, PSF, and DLalgorithms
NN PSF DL

MAE 116.64 119.17 114.76
RMSE 154.16 149.52 148.98

TABLE 5 Best and worst day for NN, PSF,and DL
Best day Worst day

MAE RMSE MAE RMSE
NN 58.87 106.88 191.52 221.58
PSF 31.72 36.15 252.77 279.12
DL 31.66 41.91 206.33 233.00

FIGURE 3 Best and worst day for NN, PSF, and DL algorithms

8 of 14 TORRES ET AL.

of equal sequences ESd. It then follows a nearest neighbour approach—finds the post-sequence day for each sequence in ESd and averages the
PV vectors for these days, to produce the prediction for day d+1. The NN model is a multi-layer neural network with one hidden layer (shallow
neural network), trained with the Levenberg–Marquardt version of the backpropagation algorithm.

Table 4 shows that DL is the best performing method in terms of both MAE and RMSE. NN is the second best in terms of MAE, and PSF is
the second best in terms of RMSE. MAE and RMSE are related measures but RMSE emphasizes less the big differences between the actual and
forecasted values.

To study these errors in more detail, we examine the performance of the three methods for the best and worst predicted days. The worst
predicted day was the same for all methods (19 June 2016). A further examination revealed that it was indeed an unusual day—there was a heavy
rain in central and southern Queensland, causing flash flooding in the roads in Brisbane and more than 9,000 blackouts in the region. This also
explains the fact that the average solar power on 19 June 2016 was significantly lower than the one on the same day in other years. On the other
hand, the best predicted day was different for the three methods: 7 April 2016 for NN, 3 April 2016 for PSF, and 11 September 2016 for DL.
The difference is due to the different nature of the three models.

Figure 3 presents the daily evolution of the actual and forecasted values for the best and worst days, and Table 5 summarizes the daily
MAE and RMSE. For the worst day (19 June 2016, the same for the three methods), NN performed best; for the best day (different for every
method), DL and PSF were the best performing methods. These results also show that different methods may be more suitable for different days,
motivating methods for dynamic selection of the best prediction model for the new day.

5.3 Scalability
A comparison between the three methods in terms of runtime was also conducted. It includes an evaluation for the original time series, and also
for time series 2, 4, 8, 16, 32, and 64 times longer. These longer time series were created from the original by multiplying its length with 2, 4, 8,
16, 32, and 64. The experiments were performed with the optimal DL configurations from Table 3 again.

The results of the scalability analysis are shown in Table 6. As it can be seen, for short time series, the NN and PSF algorithm are faster than DL.
However, as the size of the data set increases with a factor of 32 or bigger, the DL method is much faster than the other algorithms. This is because
the H2O framework supports distributed and parallel computing, whereas the Matlab implementations of NN and PSF were single-thread.

Figure 4 graphically summarizes the results from Table 6. We can see that the proposed DL model is scalable as its training time increases in a
linear way while the training time of the other two methods increases exponentially. This means that the proposed DL approach is highly scalable
and is hence suitable for analysing large time series.

5.4 Use of weather and weather forecast data
The generated PV power depends on the solar irradiance and other meteorological factors. In this section, we investigate if the addition of
weather data for the current day (W) and weather forecast data for the next day (WF) can improve the PV power prediction.

The weather and weather forecast data we used have been described in Section 4.1. Recall also that we consider three different versions of
the weather forecast data—with 10%, 20%, and 30% noise.

TABLE 6 Computing times (in seconds) for different time series lengths
×1 ×2 ×4 ×8 ×16 ×32 ×64

NN 0.8020 1.8885 5.4975 24.7970 114.1169 378.0876 2098.0432
PSF 2.4858 14.6286 9.6493 28.9169 101.3701 365.4012 1345.8199
DL 23.0470 23.0480 23.0540 23.0400 22.9600 43.1210 63.2050

FIGURE 4 Scalability of NN, PSF, and DL algorithms

TORRES ET AL. 9 of 14

TAB
LE7

Acc
ura

cyo
fth

eD
Lfo

rdi
ffer

ent
hist

oric
alw

ind
ow

size
s(fr

om
1to

7d
ays

)
PV

PV+
W

PV+
WF

(10
%)

PV+
WF

(20
%)

PV+
WF

(30
%)

PV+
W+

WF
(10

%)
PV+

W+
WF

(20
%)

PV+
W+

WF
(30

%)
Day

s
MA

E
RM

SE
MA

E
RM

SE
MA

E
RM

SE
MA

E
RM

SE
MA

E
RM

SE
MA

E
RM

SE
MA

E
RM

SE
MA

E
RM

SE
1

114
.76

128
.66

126
.01

154
.00

110
.06

135
.64

110
.27

135
.17

109
.52

136
.32

113
.41

140
.22

115
.32

142
.76

122
.45

149
.83

2
126

.15
154

.61
129

.27
160

.44
127

.07
156

.23
129

.28
158

.57
123

.14
152

.34
129

.02
158

.70
131

.24
161

.21
135

.17
167

.08
3

126
.03

156
.37

133
.69

163
.97

129
.94

160
.28

128
.66

158
.93

128
.49

157
.83

129
.32

160
.41

136
.93

166
.75

133
.35

164
.48

4
127

.77
157

.15
131

.95
160

.80
136

.86
167

.99
130

.51
160

.93
132

.00
162

.55
133

.34
164

.57
133

.61
165

.17
131

.82
162

.43
5

130
.74

160
.71

130
.03

159
.64

133
.32

162
.98

132
.64

163
.42

129
.07

157
.71

141
.67

173
.63

139
.93

171
.92

139
.55

170
.35

6
132

.02
162

.77
133

.31
163

.87
132

.02
162

.27
133

.74
164

.51
136

.98
167

.57
136

.00
166

.88
135

.78
165

.75
142

.08
173

.77
7

130
.66

160
.37

136
.25

167
.07

132
.70

163
.26

136
.83

168
.99

134
.88

165
.99

133
.48

163
.54

139
.97

171
.67

137
.31

168
.90

10 of 14 TORRES ET AL.

We investigated the following research questions:
• Q1. Does the addition of the weather data for the current day improve the results?
• Q2. Does the addition of the weather forecast data for the next day improve the results?
• Q3. How does the noise level in the weather forecast data affect the results?
• Q4. Which is the best data source for DL?
• Q5. How does the performance of DL compare with NN and PSF when using weather and weather forecast data, in addition to PV data?
All results are presented in Table 7. Below, we elaborate more on each question and present the relevant results from Table 7 as graphs for

visual comparison.
Q1. Using W in addition to PV. We investigate if the addition of the weather data for the current day (W) will improve the prediction. Figure 5

compares the DL's results using the PV data only (PV) and using both the PV and weather data (PV + W). As we can see, the addition of the
weather data does not improve the results. A possible explanation for this result is that the weather data is already factored in the PV data as the
PV data is highly frequent (every half-hour), and hence, its addition does not contribute any important information for the prediction.

Q2. Using WF in addition to PV. We investigate if the addition of weather forecast data for the next day will improve the performance.
Figure 6 shows DL's performance for three different inputs: PV (PV for the current day), PV + WF (PV and weather data for the current day), and
PV + W + WF (PV and weather data for the current day, and weather forecast for the next day). In addition, there are three different levels of
noise in WF: 10%, 20%, and 30%. Because the noise is only in WF, the results for PV are not affected and are the same for all three noise levels,
whereas the results for PV + WF and PV + W + WF change.

We first examine the MAE results. By comparing PV and PV + WF, we can see that DL's performance improves when the weather forecast
for the next day is used in addition to the PV data for the current day, and this holds for all three noise levels in WF. By comparing PV + WF
and PV + W + WF, we can see that the further addition of the weather data for the current day does not improve the results for all noise levels.
Now turning to the RMSE, we observe that RMSE results are consistent with the MAE results, except that the addition of WF does not improve
RMSE. This discrepancy between MAE and RMSE shows that we have days with big differences between the actual and predicted values, as
RMSE emphasizes such large differences due to the squared term.

FIGURE 5 Accuracy of DL using PV and PV + W data

FIGURE 6 Accuracy of DL using PV, PV + WF, and PV + W + WF for three different noise levels in WF

TORRES ET AL. 11 of 14

Hence, revisiting Q2 we conclude that the addition of the weather forecast for the next day helps to improve MAE but not RMSE, and that
the further addition of the weather data for the current day does not improve the accuracy.

Q3. Effect of the noise level in WF. We investigate the effect of increasing the noise in the weather forecast from 10% to 30% on the
predictive accuracy. We first study this effect on the PV + WF data source. Figure 6 shows that the MAE and RMSE results are stable and not
affected by the noise level. We now compare the changes in PV + W + WF; we can see that as the noise level increases from 10% to 20%, MAE
and RMSE are stable but they increase as the noise increases to 30%. Thus, we conclude that higher level of noise decreases the accuracy of the
PV + W + WF data source, whereas the accuracy of PV + WF is not affected.

Q4. Best data source. From Table 7, we can see that DL achieves its best MAE (109.52 kW) when using PV + WF and best RMSE (128.66 kW)
when using PV only.

Q5. Comparison of DL with NN and PSF when using W and WF data. We already saw that DL is more accurate than NN and PSF when using
the PV data as an input (see Table 4). Here, we assess DL's competitiveness against NN and PFS when using the PV + WF and PV + W + WF
data. The NN and PSF methods are implemented as in Wang et al. (2017). Note that the traditional PSF algorithm is univariate and operates
on the PV data in our case; to accomodate multivariate data (PV + WF and PV + W + WF), we used the extensions PSF1 and PSF2 (Wang et al.,
2017).

Figure 7 presents the results. We can see that for PV + WF, DL is more accurate than NN and PSF, and the advantage increases as the noise
level increases. For PV + W + WF, NN is the most accurate method, followed by DL and PSF, and the differences are bigger for MAE than RMSE.
We note, however, that DL achieves its best performance while using PV + WF and not PV + W + WF.

Hence, we conclude that DL shows competitive results compared with NN and PSF—it outperforms them on the PV and PV + WF data, and is
the second best method on the PV + W + WF data after NN.

5.5 Historical window size
We investigate how the size of the historical data window w affects the accuracy of DL. Table 7 presents the results for w varying from 1 to 7
previous days, for all data sources (PV, PV + W, PV + WF, and PV + W + WF) and all three levels of noise in WF. It can be seen that in all cases,
the best accuracy is achieved by using only the previous day (day 1 in the table). This is an important observation as it shows that only the data
from the previous day is sufficient to make PV power predictions for the next day and that there is no benefit in using more previous days as part
of the historical window.

FIGURE 7 Comparison of DL, NN, and PSF using different data sources and noise levels

12 of 14 TORRES ET AL.

6 CONCLUSIONS
In this paper, we introduced DL, a deep neural network approach for predicting the electricity power generated by solar PV systems for the
next day.

Our approach has been specifically developed to handle big data time series and has been implemented using the H2O package in conjunction
with the Apache Spark cluster-computing framework. It uses a multi-step methodology which decomposes the forecasting problem into several
sub-problems, allowing arbitrary prediction horizons. DL was evaluated on Australian data for 2 years and compared with two well-established
methods, NN and PSF, demonstrating competitive accuracy results. The scalability analysis demonstrated that DL is suitable for big solar data
due to its linear increase in training time, compared with the exponential of NN and PSF. We investigated the use of multiple data sources (PV,
weather, and weather forecast) and different levels of noise in the weather forecast. We showed that the addition of the weather forecast for the
next day to the PV data for the current day can improve the accuracy, whereas the addition of weather data for the current day is not beneficial.
We also studied the effect of the historical window size and showed that there is no benefit in using more than one previous day. In summary,
our results show that DL is a promising method for big data solar power forecasting—it scales well and produces competitive accuracy results.

In future work, we plan to develop prediction models for big data based on other types of deep neural networks, for example, LSTM and CNN,
and compare them with DL for time series of different nature and length. We will also investigate the application of metaheuristics for more
efficient optimization of the hyperparameters of our deep learning network. Other avenues for future work include dynamic selection of the best
prediction model for the next day or studying seasonal differences (Koprinska, Rana, & Agelidis, 2011) and building prediction models that are
better tuned to the seasonal variations. We also plan to develop dynamic ensembles for big data, motivated by Cerqueira et al. (2017).
ACKNOWLEDGEMENT
The authors would like to thank the Spanish Ministry of Economy and Competitiveness and Junta de Andalucía for the support under projects
TIN2017-8888209C2-1-R, TIN2014-55894-C2-R, and P12-TIC-1728, respectively.
ORCID
Alicia Troncoso https://orcid.org/0000-0002-9801-7999

REFERENCES
Abdel-Nasser, M., & Mahmoud, K. (2017). Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Computing and Applications, 1–14.
Alzahrani, A., Shamsi, P., Dagli, C., & Ferdowsi, M. (2017). Solar irradiance forecasting using deep neural networks. Procedia Computer Science, 114, 304–313.
Barbieri, F., Rajakaruna, S., & Ghosh, A. (2017). Very short-term photovoltaic power forecasting with cloud modeling: A review. Renewable and SustainableEnergy Reviews, 75, 242–263.
Binkowski, M., Marti, G., & Donnat, P. (2017). Autoregressive convolutional neural networks for asynchronous time series. In Time Series Workshop atInternational Conference on Machine Learning (ICML), Stockholm, Sweden.
Brecl, K., & Topic, M. (2018). Photovoltaics (PV) system energy forecast on the basis of the local weather forecast: Problems, uncertainties and solutions.Energies, 11(5), 1143.
Cerqueira, V., Torgo, L., Pinto, F., & Soares, C. (2017). Arbitrated ensemble for time series forecasting. In Proceedings of the European Conference on MachineLearning and Principles of Knowledge Discovery in Databases, Cham, pp. 478–494.
Chu, Y., Urquhart, B., Gohari, S. M. I., Pedro, H. T. C., Kleissl, J., & Coimbra, C. F. M. (2015). Short-term reforecasting of power output from a 48 mwe solarpv plant. Solar Energy, 112, 68–77.
Coelho, I. M., Coelho, V. N., da Luz, E. J. S., Ochi, L. S., Guimarães, F. G., & Rios, E. (2017). A GPU deep learning metaheuristic based model for time seriesforecasting. Applied Energy, 201, 412–418.
Dong, Z., Yang, D., Reindl, T., & Walsh, W. M. (2015). A novel hybrid approach based on self-organizing maps, support vector regression and particle swarmoptimization to forecast solar irradiance. Energy, 82, 570–577.
Ervural, B. C., & Ervural, B. (2018). Improvement of grey prediction models and their usage for energy demand forecasting. Journal of Intelligent & FuzzySystems, 24, 2679–2688.
Flannery, T. F., & Sahajwalla, V. (2013). The critical decade: Australia's future: Solar energy: Climate Commission Secretariat, Department of Industry,Innovation, Climate Change, Science, Research and Tertiary Education. http://apo.org.au/sites/default/files/docs/ClimateCommission_Australias-Future-Solar-Energy_2013.pdf
Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., ... Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition:The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97.
Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90.
Koprinska, I., Rana, M., & Agelidis, V. G. (2011). Yearly and seasonal models for electricity load forecasting. In International Joint Conference on NeuralNetworks (IJCNN), San Jose, CA, USA, pp. 1474–1481.
Koprinska, I., Rana, M., Troncoso, A., & Martínez-Álvarez, F. (2013). Combining pattern sequence similarity with neural networks for forecasting electricitydemand time series. In Proceedings of the International Joint Conference on Neural Networks, Dallas, TX, USA, pp. 1–8.
Koprinska, I., Wu, D., & Wang, Z. (2018). Convolutional neural networks for energy time series forecasting. In International Joint Conference on NeuralNetworks (IJCNN), Rio de Janeiro, Brazil, pp. 1–8.

TORRES ET AL. 13 of 14

Kostylev, V., & Pavlovski, A. (2011). Solar power forecasting performance—Towards industry standards. In First International Workshop on Integration ofSolar Power Into Power Systems, Aarhus, Denmark, pp. 1–11.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in Neural InformationProcessing Systems, Lake Tahoe, Nevada, pp. 1097–1105.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Lee, J., Lee, I., & Kim, S. (2017). Multi-site photovoltaic power generation forecasts based on deep-learning algorithm. In 2017 International Conference onInformation and Communication Technology Convergence (ICTC), Jeju, South Korea, pp. 1118–1120.
Livingstone, D. J., Manallack, D. T., & Tetko, I. V. (1997). Data modelling with neural networks: Advantages and limitations. Journal of Computer-AidedMolecular Design, 11, 135–142.
Martínez-Álvarez, F., Troncoso, A., Asencio-Cortés, G., & Riquelme, J. C. (2015). A survey on data mining techniques applied to energy time seriesforecasting. Energies, 8, 1–32.
Martínez-Álvarez, F., Troncoso, A., Riquelme, J. C., & Aguilar, J. S. (2011). Energy time series forecasting based on pattern sequence similarity. IEEETransactions on Knowledge and Data Engineering, 23, 1230–1243.
Mohammadi, M., Al-Fuqaha, A., Sorour, S., & Guizani, M. (2018). Deep learning for IoT big data and streaming analytics: A survey. IEEE CommunicationsSurveys Tutorials, 20(4), 2923–2960.
Neo, Y. Q., Teo, T. T., Woo, W. L., Logenthiran, T., & Sharma, A. (2017). Forecasting of photovoltaic power using deep belief network. In Tencon 2017 -2017 IEEE Region 10 Conference, Penang, Malaysia, pp. 1189–1194.
Oliveira, M., & Torgo, L. (2015). Ensembles for time series forecasting. In Proceedings of the Sixth Asian Conference on Machine Learning, Nha Trang City,Vietnam, pp. 360–370.
Pedro, H. T. C., & Coimbra, C. F. M. (2012). Assessment of forecasting techniques for solar power production with no exogenous inputs. Solar Energy, 86,2017–2028.
Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., ... Iyengar, S. S. (2018). A survey on deep learning: Algorithms, techniques, and applications.ACM Computing Surveys, 51(5), 92:1–92:36. https://doi.org/10.1145/3234150
Qiu, M., Zhao, P., Zhang, K., Huang, J., Shi, X., Wang, X., & Chu, W. (2017). A short-term rainfall prediction model using multi-task convolutional neuralnetworks. In 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, pp. 395–404.
Rana, M., Koprinska, I., & Agelidis, V. G. (2015). 2d-interval forecasts for solar power production. Solar Energy, 122, 191–203.
Reikard, G. (2009). Predicting solar radiation at high resolutions: A comparison of time series forecasts. Solar Energy, 83, 342–349.
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.
SolarPowerEurope (2016). Global market outlook for solar power / 2016 - 2020.
Thorey, J., Chaussin, C., & Mallet, V. (2018). Ensemble forecast of photovoltaic power with online crps learning. International Journal of Forecasting, 34(4),762–773.
Torres, J. F., Fernández, A. M., Troncoso, A., & Martínez-Álvarez, F. (2017). Deep learning-based approach for time series forecasting with application toelectricity load. In Biomedical Applications Based on Natural and Artificial Computing, Cham, pp. 203–212.
Wan, C., Zhao, J., Song, Y., Xu, Z., Lin, J., & Hu, Z. (2015). Photovoltaic and solar power forecasting for smart grid energy management. CSEE Journal ofPower and Energy Systems, 1(1), 38–46.
Wang, Z., & Koprinska, I. (2017). Solar power prediction with data source weighted nearest neighbors. In Proceedings of the International Joint Conferenceon Neural Networks, Anchorage, AK, USA, pp. 1411–1418.
Wang, Z., Koprinska, I., & Rana, M. (2017). Solar power forecasting using pattern sequences. In Artificial Neural Networks and Machine Learning (ICANN),Cham, pp. 486–494.
Wang, Z., Koprinska, I., & Rana, M. (2017). Solar power prediction using weather type pair patterns. In Proceedings of the International Joint Conference onNeural Networks, Anchorage, AK, USA, pp. 4259–4266.
Wang, H., Yi, H., Peng, J., Wang, G., Liu, Y., Jiang, H., & Liu, W. (2017). Deterministic and probabilistic forecasting of photovoltaic power based on deepconvolutional neural network. Energy Conversion and Management, 153, 409–422.
Xu, C., Chen, H., Wang, J., Guo, Y., & Yuan, Y. (2019). Improving prediction performance for indoor temperature in public buildings based on a novel deeplearning method. Building and Environment, 148, 128–135.
Yuchi, S., Gergely, S., & Brandt, B. A. R. (2018). Solar pv output prediction from video streams using convolutional neural networks. Energy and EnvironmentalScience, 11, 1811–1818.
Zhang, X., Li, Y., Lu, S., Hamann, H., Hodge, B. S., & Lehman, B. (2018). A solar time-based analog ensemble method for regional solar power forecasting.IEEE Transactions on Sustainable Energy, 10, 268–279.
Zhou, Y., Chang, F., Chang, L., Kao, I., & Wang, Y. (2019). Explore a deep learning multi-output neural network for regional multi-step ahead air qualityforecasts. Journal of Cleaner Production, 209, 134–145.

AUTHOR BIOGRAPHIES
José F. Torres. received the degree in Computer Science from the Pablo de Olavide University, Seville, Spain. He is currently a PhD
student in Computer Science at Pablo de Olavide University. His primary areas of interest are big data, data science, deep learning and
neural networks, internet of things, time series analysis, and forecasting.
Alicia Troncoso. received the PhD degree in Computer Science from the University of Seville, Spain, in 2005. She was an assistant
professor in the Department of Computer Science at the University of Seville from 2002 to 2005. She has been with the Department of

14 of 14 TORRES ET AL.

Computer Science at the Pablo de Olavide University since 2005, where she is currently a full professor. Her primary areas of interest are
time series forecasting, machine learning and big data.

Irena Koprinska. is an associate professor at the School of Computer Science, University of Sydney, Australia. She holds a PhD in Computer
Science and MEd in Higher Education. Her research interests are in neural networks, machine learning, and data mining, both applications
and novel algorithms. She also teaches courses in these areas and serves on the programme committee of leading conferences.

Zheng Wang. received a BE degree in Software Engineering with First class Honours from the University of Sydney, Australia, in 2011.
He is currently pursuing a PhD degree in the School of Computer Science, University of Sydney. His research interests include neural
networks, time series prediction, and feature selection.

Francisco Martínez-Álvarez. received the MSc degree in Telecommunications Engineering from the University of Seville, and the PhD
degree in Computer Engineering from the Pablo de Olavide University. He has been with the Department of Computer Science at the
Pablo de Olavide University since 2007, where he is currently an associate professor. His primary areas of interest are time series analysis,
data mining, and big data analytics.

How to cite this article: Torres JF, Troncoso A, Koprinska I, Wang Z, Martínez-Álvarez F. Big data solar power forecasting based on
deep learning and multiple data sources. Expert Systems. 2019;e12394. https://doi.org/10.1111/exsy.12394

86 Informe sobre las publicaciones

4.1.4. Hybridizing Deep Learning and Neuroevolution: Ap-
plication to the Spanish Short-Term Electric Energy
Consumption Forecasting

Tabla 4.4 Datos del artículo: Hybridizing Deep Learning and Neuroevolution:
Application to the Spanish Short-Term Electric Energy Consumption Fore-
casting

Autores Divina, F., Torres, J. F., García-Torres, M., MartínezÁlvarez,
F., and Troncoso, A.

Revista Applied Sciences
Año 2020

Páginas 5487
Volumen 10, issue 16

DOI 10.3390/app10165487
IF 2.697

Cuartil Q2
Citas 4 (Google Scholar)

applied
sciences

Article

Hybridizing Deep Learning and Neuroevolution:
Application to the Spanish Short-Term Electric Energy
Consumption Forecasting

Federico Divina 1,2,*,† , José F. Torres 1,† , Miguel García-Torres 1,2 ,
Francisco Martínez-Álvarez 1 and Alicia Troncoso 1

1 Data Science and Big Data Lab, Pablo de Olavide University, ES-41013 Seville, Spain; jftormal@upo.es (J.F.T.);
mgarciat@upo.es (M.G.-T.); fmaralv@upo.es (F.M.-Á.); atrolor@upo.es (A.T.)

2 Computer Engineer Department, Universidad Americana de Paraguay, Asunción 1029, Paraguay
* Correspondence: fdivina@upo.es
† These authors contributed equally to this work.

Received: 1 July 2020; Accepted: 5 August 2020; Published: 7 August 2020
����������
�������

Abstract: The electric energy production would be much more efficient if accurate estimations of
the future demand were available, since these would allow allocating only the resources needed for
the production of the right amount of energy required. With this motivation in mind, we propose a
strategy, based on neuroevolution, that can be used to this aim. Our proposal uses a genetic algorithm
in order to find a sub-optimal set of hyper-parameters for configuring a deep neural network, which
can then be used for obtaining the forecasting. Such a strategy is justified by the observation that the
performances achieved by deep neural networks are strongly dependent on the right setting of the
hyper-parameters, and genetic algorithms have shown excellent search capabilities in huge search
spaces. Moreover, we base our proposal on a distributed computing platform, which allows its use
on a large time-series. In order to assess the performances of our approach, we have applied it to
a large dataset, related to the electric energy consumption registered in Spain over almost 10 years.
Experimental results confirm the validity of our proposal since it outperforms all other forecasting
techniques to which it has been compared.

Keywords: time-series forecasting; deep learning; evolutionary computation; neuroevolution

1. Introduction

The electric energy needs are constantly growing. It is estimated that such demand will increment
from 549 quadrillion British thermal unit (Btu), registered in 2012, to 629 quadrillion Btu in 2020.
A further increment of 48% is estimated by 2040 [1].

The accurate estimation of the short-term electric energy demand provides several benefits.
The economic benefits are evident because this would allow us to allocate only the right amount of
resources that are needed in order to produce the amount of energy actually needed to face the actual
demand [2,3]. There are also environmental aspects to consider, since, by producing only the right
amount of energy required, the emission of CO2 would be reduced as well. In fact, energy efficiency
is another relevant goal pursued with these kinds of approaches since the accurate forecasting of
electricity demand in public buildings or in industrial plants usually leads to energy savings [4–6].

Such observations highlight the importance of being able to count on efficient electric energy
management systems and prediction strategies and, consequently, different organizations around
the world are taking actions in order to increase energy efficiency. Hence, the European Union (EU),
under the current energy plan [7], established that EU countries will have to embrace various energy

Appl. Sci. 2020, 10, 5487; doi:10.3390/app10165487 www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 5487 2 of 14

efficiency requirements with the objective of improving at least a 20% the energy efficiency. In addition
to this, countries belonging to the EU closed an agreement to obtain an additional 27% increment of
the efficiency by 2020, with the possibility of increasing the target to 30% by the year 2030.

Forecasting algorithms could contribute to reaching such objectives [2,3]. In this context, energy
demand forecasting can be described as the problem of predicting the energy demand within a
specified prediction horizon, using past data, or, in other words, a historical window.

Depending on the time scale of the predictions, we can generally distinguish three classes of
forecasting, i.e., short, medium and long-term forecasting. In short-term forecasting, the objective is to
predict the energy demand using horizons going from one hour up to a week. If the prediction horizon
is set between one week and one month, we talk about medium-term forecasting, while long-term
forecasting involves longer horizons [8].

In this paper, we focus on the problem of short-term forecasting. This is an important problem,
since with accurate predictions of short-term load it would be possible to make precisely plan the
resources that need to be allocated in order to face the actual demand, which, as already stated, would
have benefits from both the economical and environmental points of view.

To this aim, we propose an extension of the work proposed in [9], where a deep feed-forward
neural network was used to tackle the short-term load forecasting problem. In the original work,
the tools provided by the H2O big data analysis framework were used along with the Apache Spark
platform for distributed computing.

Differently from [9], where a grid search strategy was used for setting the values of the deep
neural network parameters, in this work, we propose to use a genetic algorithm (GA) in order to
determine a sub-optimal set of hyper-parameters for building the deep neural network that will then be
used for obtaining the predictions. Due to the large search space composed of all hyper-parameters of a
deep learning network, and considering that the method should be scalable for big data environments,
it has been decided to reduce the search range of the GA. For this reason, our proposal will not
always be able to find the optimal set of hyper-parameters for the network, but ensures a competitive
sub-optimal configuration.

Our main motivation lies in the observation that the success of deep learning depends on
finding an architecture to fit the task. As deep learning has scaled up to more challenging problems,
the architectures have become difficult to design by hand [10]. To this aim, evolutionary algorithms
(EAs) can be used in order to find good configurations of the deep neural networks. Individuals can
be set of parameter values, and their fitnesses are determined based on how well they can be trained
to perform in the task.

This field is known as neuroevolution, which, in a nutshell, can be defined as a strategy for
evolving neural networks with the use of EAs [11]. Usually, deep artificial neural networks (DNNs)
are trained via gradient-based learning algorithms, namely backpropagation, see for example [12].
EAs can be used in order to seek the optimal values of hyper parameters, for the example the learning
rates, or the number of layers and the amount of neurons per layer, among others.

It has been proven that EAs can be combined with backpropagation-based techniques, such as
Q-learning and policy gradients, on difficult problems, see, e.g., [13]. In fact, the problem of setting
parameters for such methods is not trivial, and, if the parameters are not correctly set, the forecasting
can be poor.

The above observations motivate us to use a neuroevoltution approach in order to tackle the
short-term energy load forecasting problem. In order to validate our proposal, we applied it to a
dataset regarding the electric energy consumption registered over almost 10 years in Spain. We have
also compared our proposal with other standard and machine learning (ML) strategies, and results
obtained confirm that our proposal achieves the best predictions.

Appl. Sci. 2020, 10, 5487 3 of 14

In the following, we summarise the main contributions of this paper:

1. We propose a new general-purpose approach based on deep learning for big data time-series
forecasting. Due to the high computational cost of the deep learning, we adopted a distributed
computing solution in order to be able to process large time series.

2. The hyper-parameter tuning and optimization of the deep neural networks is a key factor for
obtaining competitive results. Usually, the hyper-parameters of a deep neural network are
pre-fixed previously or computed by a grid search, which performs an exhaustive search through
the whole set of established hyper-parameters. However, the grid search presents an important
limitation: it works with discrete values, which greatly limits the fine-tuning of the vast majority
of hyper-parameters. Thus, an evolutionary search is proposed to find the hyper-parameters.

3. We conduct a wide experimentation using Spanish electricity consumption registered over
10 years, with measurements recorded every 10 min. Results show a mean relative error of
1.44%, demonstrating the high potential of the proposed approach, also compared to other
forecasting strategies.

4. We evaluate our proposal predictive accuracy and compare it with a strategy based on deep
learning using a grid search for setting the hyper parameters. The evolutionary search showed to
be effective in order to achieve higher accuracy.

5. In addition, we compare the approach with seven state-of-the-art forecasting algorithms such
as ARIMA, decision tree, an algorithm based on gradient boosting, random forest, evolutionary
decision trees, a standard neural network and an ensemble proposed in [14], outperforming all
of them.

6. We analyze how the size of the historical window affects the accuracy of the model. We found
that when using the past 168 values as input features to predict the next 24 values the best results
were obtained.

The rest of the paper is organized as follows. In Section 2 we provide a brief overview of the
state of the art of electric energy time-series forecasting. The dataset used in this work is described
and analyzed in Section 3.1, while the methodology used is discussed in Section 3.2. In Section 4 we
describe the results obtained by our approach and compare them to those achieved by other strategies.
Finally, we draw the main conclusions and identify futures works in Section 5.

2. Related Works

As previously mentioned, a lot of attention has been paid to short-term electricity consumption
forecasting during the last decades. This section provides a brief overview of up-to-date related works.

We can distinguish two main strategies to predict energy consumption. A first strategy is based
on conventional methods, e.g., [15,16], whilst an alternative, and more recent strategy, is based on ML
techniques.

Conventional methods include, among others, statistical analysis, smoothing techniques such as
the autoregressive integrated moving average (ARIMA), exponential smoothing and regression-based
approaches. Such techniques can obtain satisfactory results when applied to linear problems.

In contrast, ML strategies are also suitable for non-linear cases. We refer the reader to [17] for
an expanded survey on data mining techniques applied to electricity-related time-series forecasting.
In this work, several markets and prediction horizons are considered and discussed.

Popular ML techniques successfully applied to the forecasting of power consumption data include
Artificial Neural Networks (ANN) [18–20] or Support Vector Machines (SVM), see, for instance, [21,22].

Other strategies are based on pattern similarity [23,24]. Since 2011, when the Pattern Sequence
based Forecasting (PSF) algorithm was published [24], a number of variants has been proposed for
forecasting this kind of time-series [25–28], including an R package [29] and a big data version [30]. Grey
forecast models have also been used for predicting time-series. In particular such an approach has been
applied to forecast the demand of natural gas in China. For instance, in [31] a self-adapting intelligent
grey prediction model was proposed, where a linear function was used in order to automatically

Appl. Sci. 2020, 10, 5487 4 of 14

optimize the parameters used by the proposed grey model. This strategy was substituted with a
genetic algorithm in [32], which resolved various limitations of the previous mechanism. A novel
time-delayed polynomial grey model was introduced in [33], while in [34] authors proposed a least
squares support vector machine model based on grey analysis.

Recently, Deep Learning (DL) has also been applied to this problem, see, e.g., [9,35]. However,
to the best of our knowledge, a part from the early version [36] and few other works, such as [37],
in which Brazilian data were analyzed, or [38] for Irish data, or [39] for Chinese data, no other works
based on DL can be found in the literature.

Although ML techniques provide effective solutions for time-series forecasting, these methods
tend to get stuck in a local optimum. For instance, ANN and SVM may get trapped in a local optimum
if their configuration parameters are not properly set.

Recently, methods developed for big data environments have also been applied to electricity
consumption forecasting. In [40] an approach based on the k-weighted nearest neighbours algorithm
was introduced and implemented using the Apache Spark framework. The performances of
the resulting algorithm were tested using a Spanish energy consumption Big Data time-series.
As mentioned above, in 2018, Torres et al. [9] proposed a DL model to deal with big data time-series
forecasting. In particular, the H2O Big Data analysis framework was used. Results from a real-world
dataset composed of electricity consumption in Spain, with a ten-minute frequency sampling rate,
from 2007 to 2016 were reported.

As can be seen, although much attention has been paid to the electricity consumption forecasting
problem, few works based on DL have been proposed. Moreover, such existing works did not applied
any metaheuristic strategy to set the parameters. These facts highlight the existing gap in the literature
and justify, from the authors’ point of view, the development of this work.

As previously stated, in this paper we aim at using DL, in order to perform time-series forecasting.
In DL, many parameters have to be set. The setting of such parameters have a great influence
on the final results obtained by such a strategy. An alternative way to set the DL parameters is
to use an Evolutionary Algorithm (EA) in order to find a sub-optimal set of parameters. This
field, known as neuroevolution [11,41], has received much attention lately in the ML community.
Neuroevolution enables important capabilities such as learning neural network building blocks,
e.g., the activation function, hyperparameters, architectures and even the algorithms for learning
themselves. Neuroevolution also differs from DL (and deep reinforcement learning) since in
neuroevolution a population of solutions is maintained during the search. This provides extreme
exploration capabilities and the possibility of massive parallelization. There also exist alternative
strategies in order to find an optimal set of parameter, going from grid search to more complex
approaches, such as methods based on Bayesian optimization, see, for instance [42,43]. Neuroevolution
has been successfully applied to different fields, especially in image classification, where Convolutional
Neural Networks (CNN) are evolved, see, for instance [44–47]. To be best of our knowledge,
Neuroevolution has not been applied to time-series forecasting.

3. Data and Methodology

3.1. Data

In order to assess the quality of our proposal, we used a dataset containing information regarding
the global electricity consumption registered in Spain (in MW), available at [48].

In particular, the data were recorder over a period going from 1 January 2007 at midnight until
21 June 2016 at 11:40 pm, which amounts to nine years and six months. Specifically, the data is relative
to the consumption measured at 10 minutes intervals, meaning that the dataset consists of a total
of 497,832 measurements. No missing values or outliers were found, since data are provided by
the Spanish Nominated Electricity Market Operator (NEMO) and all data are already preprocessed
and cleaned.

Appl. Sci. 2020, 10, 5487 5 of 14

Time-series regarding the electric energy demand are typically non-stationary. This fact renders
the problem of forecasting the electric energy demand challenging, since such time-series present
statistical properties, such as the mean, variance and autocorrelation, that are not all constant over
time. It follows that they can present changes in variance, trends or seasonal effects. For this reason,
we performed a preliminary study of the dataset in order to assess whether or not the time-series
used in this paper is stationary. To this aim, we analyzed the AutoCorrelation Function (ACF) and the
Partial AutoCorrelation Function (PACF) of the time-series, which are reported in Figure 1.

(a) (b)

Figure 1. Correlation plots for the original time-series. (a) AutoCorrelation Function (ACF); (b) Partial
AutoCorrelation Function (PACF).

From Figure 1a, we can notice that the time-series has a high correlation with a number significant
of lags, while from Figure 1b we can see that there are four spikes in the first lags, from which we can
determine the order of autoregression of the time-series. From these observations, we can conclude
that the time-series is not stationary, and that the order of autoregression to be used should be 4.

A preprocessing of the dataset had to be applied before it could be used. In particular, we used the
preprocessing strategy proposed in [36], which is graphically depicted in Figure 2. In a first step, we
extract the attribute corresponding to the energy consumption, obtaining in this way a consumption
vector Vc.

Figure 2. Dataset pre-processing. w determines the amount of historical data used, while h represents
the prediction horizon.

From Vc matrix Mc is built. The size of Mc depends on the values of the historical window (w) and
of the prediction horizon (h) used. Notice that w determines the number of previous entries that will
be used in order to induce a forecasting model that will be used to estimate the subsequent h values.

In this work, as in [36], h was set to 4 hours, which corresponds to a value of 24 reads. Various
values of w were tested.

In particular, w was set to values 24, 48, 72, 96, 120, 144 and 168. Such values correspond to 4, 8,
12, 16, 20, 24 and 28 hours, respectively.

One the matrix Mc has been obtained, we divided the resulting dataset into a 70% used as a
training set, while the remaining 30% was used as a testing set. This means that the prediction model
was obtained using only the training set. The forecasting performances of the so induced model are

Appl. Sci. 2020, 10, 5487 6 of 14

assessed on the test set, which basically represents unseen data. Within the training set, a 30% is used
as a validation set for determining the deep learning hyperparameters.

These preprocessing steps yield the generation of seven different matrices, whose information
is reported in Table 1. Note that for all the obtained datasets, the last 24 columns represent the
prediction horizon.

Table 1. Dataset information depending on the value of w.

w #Rows #Columns File Size (In MB)

24 20,742 48 6
48 20,741 72 9
72 20,740 96 11.9
96 20,739 120 14.9
120 20,738 144 17.9
144 20,737 168 20.9
168 20,736 192 23.9

3.2. Methodology

This section describes the proposed methodology for forecasting time-series using a deep learning
approach. There are various deep learning architectures which can be used for time-series forecast, such
as convolutional neural nets (CNN), recurrent neural nets (RNN) or feed-forward neural nets (FFNN).

In this paper, a deep feed-forward network has been used, implemented by R package H2O [49].
H2O is an open-source framework that implements various machine learning techniques in a parallel
and distributed way using a single machine or a cluster of machines, being scalable for big data projects.

Among the algorithms included in H2O, we can find a feed-forward neural network, that is the
most common network architectures. The main characteristic of this net is that each neuron is a basic
element of processing and their information is propagated through adjacent neurons.

In addition, in order to select the configuration of the network hyperparameters, we used a GA,
which was implemented by using the GA R package [50].

3.2.1. Parameters of the Neural Network

The network architecture implemented in the H2O package needs to be configured by setting
different parameters, that will affect the behavior of the neural network and influence the final results.
The most important parameters are: number of layers, neurons per hidden layer, L1 (λ), ρ, ε, activation
and distribution functions and end metric. These are the parameters that the GA will optimize.

The parameter λ controls the regularization of the model by inserting penalties in the model
creation process in order to adjust the predictions as much as possible with actual values and the
penalization is defined by the following equation:

λ
n

∑
i=0
|wi| . (1)

In Equation (1), n is the number of weights received by the neurons and wi represents the weight
for the neuron i.

The parameter ρ allows us to manage the update of different weights of synapses and is used to
maintain some consistency between the different updates of previous weights.

The parameter ε prevents the deep learning algorithm from being stuck in local optimums or to
skip a global optimum, and can assume values between 0 and 1.

The activation function can assume three values: tanh (hyperbolic tangent), ramp function, maxout.
Seven different possibilities are considered for the distribution function: Gaussian, Poisson,

Laplace, Tweedie, Huber, Gamma and Quantile.

Appl. Sci. 2020, 10, 5487 7 of 14

The end metric defines the specific measure that is used to stop early the training phase of the
deep learning algorithm. There are seven different possibilities: mean squared error (MSE), Deviance
(the difference between an expected value and an observed value), root mean squared error (RMSE),
mean absolute error (MAE), root mean squared log error (RMSLE), the mean per class error and lift
top group. The last metric is a measure of the relative performance.

The possible values for each parameter are shown in Table 2.

Table 2. Search space of the neural network parameters.

Parameter Values

Layers From 2 to 100
Neurons From 10 to 1000
Lambda (λ) From 0 to 1 × 10−10

Rho (ρ) From 0.99 to 1
Epsilon (ε) From 0 to 1 × 10−12

Activation function From 0 to 3
Distribution function From 0 to 7
End metric From 0 to 7

As we described before, the activation function, distribution function and end metric are
categorical parameters, so each value corresponds to a specific category of the parameter.

3.2.2. Genetic Algorithm Parameters

As previously stated, in order to find a sub-optimal set of hyper-parameters, described in the
previous section, for the deep learning algorithm, we use a GA. In particular we use the implementation
provided by the GA R package [50]. So our proposal lies within the field of neuroevolution.

The GA package contains a collection of general-purpose functions for optimization using genetic
algorithms. The package includes a flexible set of tools for implementing genetic algorithms in both
the continuous and discrete case, whether constrained or not. However the package does not allow to
simultaneously optimize continuous and discrete parameters, so we had to treat all the parameters as
continuous, which caused the dimension of the search space to increase drastically.

The package allows us to define objective functions to be optimized, which, in our case, is the
forecasting results obtained by a deep neural network built with a specific set of parameters. In fact,
each individual of the population encodes the values of the eight parameters shown in Table 2.

Each parameter setting yields a specific deep neural network, which is then applied to the data
and the forecasting result represent the fitness of the individual.

In particular, the fitness of an individual is equal to the MRE obtained by the deep neural network
on the validation set, being the MRE defined as:

MRE =
1
n

n

∑
i=1

|Yi − Ŷi|
Yi

, (2)

where Ŷi is the predicted value, Yi the real value and Yi is the mean of the observed data, and n is the
number of data.

Several genetic operators are available and can be combined to explore the best settings for the
current task. After having performed a set of preliminary experiments aimed at setting the GA’s
parameters, we used, in our implementation, a tournament selection mechanism (with tournament
size of 3), the BLX-a crossover (with a = 0.5), which combines two parents to generate offspring by
sampling a new value in a defined range with the maximum and the minimum of the parents [51].
We used the random mutation around the solution, which allows us to change one value of an element
by another value.

Appl. Sci. 2020, 10, 5487 8 of 14

The setting of the parameters used in the GA are reported in Table 3. The value shown are
those that obtained the best performances in the preliminary runs, but the population size. In fact,
better results were achieved with higher population size. However, the computational cost increases
dramatically the higher the population size is. In fact, the deep learning algorithm takes around 89.42 s
for a number of layers between 2 and 100 and for a number of neurons between 10 and 1000.

The execution of the GA with the deep learning algorithm as a fitness function and with the
parameters defined in Table 3 takes around five days. If the population size is doubled, the execution
can take more than one week. It is necessary to enhance one of the parameters (population size or
number of generations) but not both. Moreover, if the fitness of the best individual does not improve
after 50 generations, the GA is stopped.

At the end of the execution, the best individual is returned and used in order to build a deep
learning network.

Table 3. Genetic algorithm (GA) parameter setting.

Operator Value

Population size 50
Generations 100

Limit of generations 50
Crossover probability 0.8
Mutation probability 0.1
Elitisms probability 0.05

3.2.3. Description of the Methodology

The main objective of this work is to predict the next h future values, called the prediction horizon,
of a time-series [x1, x2, . . . , xt].

The predictions are based on w previous values, or, in other words, on a historical data window.
This process is called multi-step forecasting, as various consecutive values have to be predicted.
The aim of multi-step forecasting is to induce a prediction model f , and in our case f is obtained by
using a deep learning strategy, following the equation:

[xt+1, xt+2, . . . , xt+h] = f (xt, xt−1, . . . , xt−(w−1)). (3)

Unfortunately, frameworks that provide deep learning networks model, such as H20, does not
support this multi-step formulation.

In order to solve this issue, a different methodology has been proposed [9]. The basic idea is to
divide the main problem into h prediction sub-problems. Then a forecasting model will be induced for
each of the sub-problems, as shown in Equation (4).

xt+1 = f1(xt, xt−1, . . . , xt−(w−1)) (4)

xt+2 = f2(xt, xt−1, . . . , xt−(w−1))

. . . = . . .

xt+(h−1) = f(h−1)(xt, xt−1, . . . , xt−(w−1))

xt+h = fh(xt, xt−1, . . . , xt−(w−1))

Notice that in this way, we lose the time relationship between consecutive records of the
time-series. For instance, instants t + 1, t + 2, t + 3 or t + 4 will not be considered when forecasting
t + 5.

On the other hand, considering such values for the predictions could increment the forecasting
error. This is because values for t + 1, t + 2, t + 3 or t + 4 are based on predictions, and they would
have a negative effect on the forecasts if the values were not precisely estimated.

Appl. Sci. 2020, 10, 5487 9 of 14

It follows that a search for optimal parameters should be carried out for each sub-problem,
where the evaluation of each individual corresponds to the error made by the neural network in the
training phase. This means that the computational time needed to train the complete model is high.
However, the capability of H2O to perform distributed computation decreases the total computational
time required.

4. Experimental Results

In this section, we present the forecast results obtained on the dataset described in Section 3.1 by
the strategy we propose. We also present a comparison with different methods, both standard and
ML based.

In order to assess the predictions produced by our proposal, we used the MRE measure, as defined
in Equation (2). MRE represents the ratio of the forecasting absolute error to the observed value.

Before presenting the comparison with other methods, we inspect the results obtained by the
proposed strategy for each historical window value used (w) and each subproblem (h). Figure 3 shows
a graphical representation of the results obtained, showing the associated MRE for different values of
w, when varying the length of h. We can see that the best results were achieved when the forecasting is
based on more historical data, i.e., for higher values of w. In fact, the best results were obtained for
w = 168. Analogously, the MRE increases as h becomes longer. The proposed strategy obtains similar
results for w = {168, 144, 120} on all the considered values of the prediction horizon h.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25

M
R

E

h

w=168
w=144
w=120
w=96
w=72
w=48
w=24

Figure 3. Results obtained for each value of h and w.

It can be noticed that there is a significant increment in the error when the historical window size
is lower. In particular, when w is set to 24 or 48, the predictions degenerates evidently. We can also
notice that performances of the proposed strategy deteriorates, i.e., the achieved MRE is higher, as the
values of h increase. This means that it is more difficult to predict further in the future.

Table 4 shows the parameters selected by the GA for each h when a historical window of 168 was
used. We can notice that the number of layers range between 27 and 98, and the number of neurons
per layer between 478 and 942. It does not seem that this parameter is connected with the value of h.

Parameters λ, ρ and ε assume almost the same values on all the cases, while the Maxout is the
activation function mostly chosen. The GA selected two possibilities as distribution functions, namely
the Gaussian and the Huber function. The end metric selected, on the other hand, presents more
variations. This could suggest that we could perhaps fix some of the parameters, e.g., ε, in order to
reduce the search space.

Appl. Sci. 2020, 10, 5487 10 of 14

Table 4. Parameters found by the GA for w = 168.

h Layers Neurons λ ρ ε Activation Distribution End Metric

1 52 942 4.09× 10−10 1.00 6.43 × 10−12 Tanh Gaussian Deviance
2 68 921 0 1.00 0 Maxout Huber MSE
3 75 880 0 1.00 0 Maxout Huber Deviance
4 68 921 0 1.00 0 Maxout Huber MSE
5 88 504 0 1.00 0 Maxout Huber Deviance
6 80 789 0 1.00 0 Maxout Huber MSE
7 74 892 0 1.00 0 Maxout Huber RMSLE
8 46 300 0 1.00 0 Maxout Huber MAE
9 75 889 5.57 × 10−10 0.99 6.74 × 10−10 Tanh Gaussian Mean per class error

10 25 852 0 1.00 0 Maxout Huber RMSLE
11 58 843 3.69 × 10−10 1.00 2.45 × 10−10 Tanh Gaussian RMSE
12 41 491 0 1.00 0 Maxout Huber RMSLE
13 17 552 0 0.99 0 Maxout Huber MSE
14 26 661 0 0.99 0 Maxout Huber MAE
15 89 811 5.61 × 10−10 0.99 4.23 × 10−10 Tanh Gaussian RMSE
16 98 697 0 1.00 0 Maxout Huber MAE
17 74 478 1.46 × 10−10 1.00 3.58 × 10−10 Tanh Gaussian Deviance
18 62 705 2.74 × 10−10 0.99 6.64 × 10−10 Tanh Gaussian MAE
19 65 879 0 0.99 0 Maxout Huber MAE
20 81 780 7.62 × 10−10 0.99 5.21 × 10−10 Tanh Gaussian MSE
21 27 931 0 1.00 0 Maxout Huber MAE
22 95 745 0 1.00 0 Maxout Huber Deviance
23 41 923 0 1.00 0 Maxout Huber MSE
24 80 754 0 1.00 0 Maxout Huber MAE

As previously stated, in order to globally assess the performance of our proposal, we compared the
results achieved by our methodology (NDL) with the results obtained by other strategies commonly
used for time-series forecast. In particular, we considered Random Forest (RF), Artificial Neural
Networks (NN), Evolutionary Decision Trees (EV), the Auto-Regressive Integrated Moving Average
(ARIMA), an algorithm based on Gradient Boosting (GBM), three Deep Learning models (FFNN,
Feed-Forward Neural Network; CNN, Convolutional Neural Network; LSTM, Long Short-Term
Memory), decision tree algorithm (DT) and an ensemble strategy that was proposed in [14], which
combined regression trees-based, artificial neural networks and random forests (ENSEMBLE).

For ARIMA, we used the tool in Ref. [52] for determining the order of auto-regressive (AR) terms
(p), the degree of differencing (d) and the order of moving-average (MA) terms (q). The values obtained
are p = 4, d = 1 and q = 3. The value for the auto-regressive parameter and the degree of differencing
confirm that the time-series is not stationary, as indicated in Section 3.1.

The deep learning models were designed using H2O framework of R [49]. The difference between
NDL and DL, is that in the latter case, the network is trained with stochastic gradient descend using
back-propagation algorithm. In order to set the parameters for DL, we used a grid search approach.
As a consequence, we used a hyperbolic tangent function as activation function, the number of hidden
layer was set to 3 and the number of neurons to 30. The distribution function was set to Poisson and in
order to avoid overfitting, the regularization parameter (Lambda) has been set to 0.001. The other two
parameters (ρ and ε) were set as default as in [36].

The DT algorithm is based on a greedy algorithm [53] that performs a recursive binary partitioning
of the feature space in order to build a decision tree. This algorithm uses the information gain in order
to build the decision trees, and we used the default parameter as in the package rpart of R [54].

For the GBM, we used the GBM package of R [55] with Gaussian distribution, 3000 gradient
boosting interactions, learning rate of 0.9 and 40 as maximum depth of variable interactions.

For RF, we used the implementation from provided by the randomForest package of R [56], using
100 as the number of trees to be built by algorithm and 100 as the maximum number of terminal nodes
trees in the forest can have.

For ANN we used the nnet package of R [57], with maximum 10 number of hidden units, 10,000
maximum number of weights allowed and 1000 maximum number of iterations.

EV is an evolutionary algorithm for producing regression trees, and we used the R evtree package
(from now on EVTree) [58], with parameters as in [14].

Appl. Sci. 2020, 10, 5487 11 of 14

The ensemble method [14] uses a two layer strategy, where in the first layer random forests, neural
networks and an evolutionary algorithm are used. The results produced by these three algorithms are
then used by an algorithm based on Gradient Boosting in order to produce the final prediction.

All the parameters of the ML based techniques were established after several preliminary runs.
Table 5 shows the results obtained by the various methods for each value of w. We can notice

that all the methods obtained better results with a historical window of 168 reads. NDL obtained the
lowest MRE in all the cases, while the ensemble strategy obtains the second best results. Moreover,
we can see that NDL outperforms all other methods even when only a historical window of 96 is used,
confirming the extremely good performances of such strategy.

Table 5. Average results obtained by different methods for different historical window values. Standard
deviation between brackets.

w

24 48 72 96 120 144 168

NDL 3.01 (0.90) 2.38 (0.69) 2.08 (0.57) 1.85 (0.55) 1.60 (0.46) 1.51 (0.46) 1.44 (0.42)
CNN 4.08 (0.04) 3.16 (0.03) 2.69 (0.02) 2.51 (0.02) 2.30 (0.02) 1.71 (0.02) 1.79 (0.02)
LSTM 2.43 (0.03) 2.05 (0.02) 1.82 (0.02) 2.08 (0.02) 1.74 (0.02) 1.78 (0.02) 1.97 (0.02)
FFNN 4.51 (0.52) 3.46 (0.33) 3.39 (0.30) 3.12 (0.42) 2.98 (0.28) 2.32 (0.29) 2.46 (0.29)
ARIMA 8.82 (5.31) 8.26 (4.73) 11.37 (10.43) 14.03 (13.00) 6.79 (2.53) 7.63 (2.54) 6.92 (2.97)
DT 9.52 (1.55) 9.45 (1.48) 9.33 (1.39) 9.40 (1.45) 9.08 (1.12) 8.86 (1.01) 8.79 (0.96)
GBM 8.07 (3.82) 6.59 (2.71) 5.73 (2.23) 5.33 (2.08) 5.02 (1.81) 4.49 (1.54) 4.45 (1.56)
RF 4.39 (2.13) 3.69 (1.71) 2.93 (1.16) 2.78 (1.04) 2.45 (0.79) 2.22 (0.71) 2.15 (0.69)
EV 4.49 (1.91) 3.98 (1.52) 3.48 (1.18) 3.42 (1.15) 3.19 (0.95) 3.15 (0.90) 3.09 (0.84)
NN 4.39 (2.23) 4.27 (2.16) 4.13 (2.05) 3.55 (1.56) 3.15 (1.41) 2.16 (0.78) 2.08 (0.74)
ENSEMBLE 3.58 (1.65) 2.95 (1.19) 2.64 (0.99) 2.57 (0.97) 2.38 (0.81) 1.94 (0.69) 1.88 (0.67)

It is interesting also to notice that NDL obtains better results than DL for all the values of the
historical window used, which confirms that using an evolutionary approach for optimizing the
parameters of the deep learning network can be considered as a superior strategy with respect to
grid optimization.

5. Conclusions and Future Works

In this paper, we proposed a strategy based on neuroevolution in order to predict the short-term
electric energy demand. In particular, we used a genetic algorithm in order to obtain the architecture of
a deep feed-forward neural network provided by the H2O big data analysis framework. The resulting
networks have been applied to a dataset registering the electric energy consumption in Spain over
almost 10 years.

The results were compared with other standard and machine learning strategies for time-series
forecasting. For the experimentation performed we can conclude that the methodology we proposed
in this paper is efficient for short-term electric energy forecasting, and on the particular dataset used in
this paper the proposed strategy obtained the best performances. It is interesting to notice that our
proposal outperforms the other ten strategies in all the cases, and that even when a historical window
of 96 reads was used, our proposal achieved more precise predictions than any other methods with
any other historical window size.

As for future work, we intend to apply the framework proposed in this paper to other datasets,
and also to other kinds of time-series, in order to check the validity of our proposal also in other
fields. Moreover, we intend to overcome a present limitation of the current proposal. In fact, the R GA
package we have used does not allow to optimize parameter of different types, e.g., real and integer
parameters. In order to overcome this, in this proposal we had to treat all the parameters as real.
However, this causes the search space dimension to increase drastically. In the future we intend to
solve this problem as well, and by reducing the size of the search space, we are confident that better

Appl. Sci. 2020, 10, 5487 12 of 14

configurations of the deep learning can be found. The use of on-line learning will also be explored in
future works in order to speed up the prediction process and reduce the volume of stored data.

Author Contributions: F.D. conceived and partially wrote the paper. J.F.T. launched the experimentation. M.G.-T.
and F.M.-Á. addressed the reviewers comments. A.T. validated the experiments. All authors have read and agree
to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the Spanish Ministry of Science, Innovation and
Universities for the support under project TIN2017-88209-C2-1-R. This work has also been partially supported by
CONACYT-Paraguay through Research Grant PINV18-661.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. U.S. Energy Information Administration. International Energy Outlook. Available online: https://www.eia.
gov/outlooks/ieo/index.php (accessed on 05 August 2020).

2. Narayanaswamy, B.; Jayram, T.S.; Yoong, V.N. Hedging strategies for renewable resource integration and
uncertainty management in the smart grid. In Proceedings of the 3rd IEEE PES Innovative Smart Grid
Technologies Europe, ISGT, Berlin, Germany, 14–17 October 2012; pp. 1–8.

3. Haque, R.; Jamal, T.; Maruf, M.N.I.; Ferdous, S.; Priya, S.F.H. Smart management of PHEV and renewable
energy sources for grid peak demand energy supply. In Proceedings of the 2015 International Conference on
Electrical Engineering and Information Communication Technology (ICEEICT), Dhaka, Bangladesh, 21–23
May 2015; pp. 1–6.

4. Kim, Y.; Son, H.; Kim, S. Short term electricity load forecasting for institutional buildings. Energy Rep. 2019,
5, 1270–1280. [CrossRef]

5. Nazeriye, M.; Haeri, A.; Martínez-Álvarez, F. Analysis of the Impact of Residential Property and Equipment
on Building Energy Efficiency and Consumption-A Data Mining Approach. Appl. Sci. 2020, 10, 3589.
[CrossRef]

6. Zekic-Suzac, M.; Mitrovic, S.; Has, A. Machine learning based system for managing energy efficiency of
public sector as an approach towards smart cities. Int. J. Inf. Manag. 2020, 54, 102074. [CrossRef]

7. Energy 2020—A Strategy for Competitive, Sustainable and Secure Energy. Available online: http:
//eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52010DC0639&from=EN (accessed on
5 August 2020).

8. Raza, M.Q.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for
smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [CrossRef]

9. Torres, J.F.; de Castro, A.G.; Troncoso, A.; Martínez-Álvarez, F. A scalable approach based on deep learning
for big data time series forecasting. Integr. Comput.-Aided Eng. 2018, 25, 1–14. [CrossRef]

10. Miikkulainen, R.; Liang, J.Z.; Meyerson, E.; Rawal, A.; Fink, D.; Francon, O.; Raju, B.; Shahrzad, H.;
Navruzyan, A.; Duffy, N.; et al. Evolving Deep Neural Networks. CoRR 2017, abs/1703.00548. Available
online: https://arxiv.org/abs/1703.00548 (accessed on 5 August 2020) .

11. Stanley, K.O.; Clune, J.; Lehman, J.; Miikkulainen, R. Designing neural networks through neuroevolution.
Nat. Mach. Intell. 2019, 1, 24–35. [CrossRef]

12. LeCun, Y.; Bengio, Y.; Hinton, G.E. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
13. Such, F.P.; Madhavan, V.; Conti, E.; Lehman, J.; Stanley, K.O.; Clune, J. Deep Neuroevolution:

Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement
Learning. CoRR 2017, abs/1712.06567. Available online: https://arxiv.org/abs/1712.06567 (accessed on
5 August 2020).

14. Divina, F.; Gilson, A.; Goméz-Vela, F.; Torres, M.G.; Torres, J.F. Stacking Ensemble Learning for Short-Term
Electricity Consumption Forecasting. Energies 2018, 11, 949. [CrossRef]

15. Nowicka-Zagrajek, J.; Weron, R. Modeling electricity loads in California: ARMA models with hyperbolic
noise. Signal Process. 2002, 82, 1903–1915. [CrossRef]

16. Huang, S.J.; Shih, K.R. Short-term load forecasting via ARMA model identification including non-Gaussian
process considerations. IEEE Trans. Power Syst. 2003, 18, 673–679. [CrossRef]

Appl. Sci. 2020, 10, 5487 13 of 14

17. Martínez-Álvarez, F.; Troncoso, A.; Asencio-Cortés, G.; Riquelme, J.C. A survey on data mining techniques
applied to energy time series forecasting. Energies 2015, 8, 1–32. [CrossRef]

18. Muralitharan, K.; Sakthivel, R.; Vishnuvarthan, R. Neural network based optimization approach for energy
demand prediction in smart grid. Neurocomputing 2018, 273, 199–208. [CrossRef]

19. Mordjaoui, M.; Haddad, S.; Medoued, A.; Laouafi, A. Electric load forecasting by using dynamic neural
network. Int. J. Hydrogen Energy 2017, 42, 17655–17663. [CrossRef]

20. Wei, S.; Mohan, L. Application of improved artificial neural networks in short-term power load forecasting.
J. Renew. Sustain. Energy 2015, 7, id043106. [CrossRef]

21. Gajowniczek, K.; Ząbkowski, T. Short Term Electricity Forecasting Using Individual Smart Meter Data.
Procedia Comput. Sci. 2014, 35, 589–597. [CrossRef]

22. Min, Z.; Qingle, P. Very Short-Term Load Forecasting Based on Neural Network and Rough Set.
In Proceedings of the Intelligent Computation Technology and Automation, International Conference
on(ICICTA), Changsha, China, 11–12 May 2010; Volume 3, pp. 1132–1135.

23. Troncoso, A.; Riquelme, J.C.; Riquelme, J.M.; Martínez, J.L.; Gómez, A. Electricity Market Price Forecasting
Based on Weighted Nearest Neighbours Techniques. IEEE Trans. Power Syst. 2007, 22, 1294–1301.

24. Martínez-Álvarez, F.; Troncoso, A.; Riquelme, J.C.; Aguilar-Ruiz, J.S. Energy time series forecasting based on
pattern sequence similarity. IEEE Trans. Knowl. Data Eng. 2011, 23, 1230–1243. [CrossRef]

25. Shen, W.; Babushkin, V.; Aung, Z.; Woon, W.L. An ensemble model for day-ahead electricity demand time
series forecasting. In Proceedings of the International Conference on Future Energy Systems, Berkeley, CA,
USA, 22–24 May 2013; pp. 51–62.

26. Koprinska, I.; Rana, M.; Troncoso, A.; Martínez-Álvarez, F. Combining pattern sequence similarity with
neural networks for forecasting electricity demand time series. In Proceedings of the IEEE International
Joint Conference on Neural Networks, Dallas, TX, USA, 4–9 August 2013; pp. 940–947.

27. Jin, C.H.; Pok, G.; Park, H.W.; Ryu, K.H. Improved pattern sequence-based forecasting method for electricity
load. IEEJ Trans. Electr. Electron. Eng. 2014, 9, 670–674. [CrossRef]

28. Wang, Z.; Koprinska, I.; Rana, M. Pattern sequence-based energy demand forecast using photovoltaic energy
records. In Proceedings of the International Conference on Artificial Neural Networks, Nagasaki, Japan,
11–14 November 2017; pp. 486–494.

29. Bokde, N.; Asencio-Cortés, G.; Martínez-Álvarez, F.; Kulat, K. PSF: Introduction to R Package for Pattern
Sequence Based Forecasting Algorithm. R J. 2017, 1, 324–333. [CrossRef]

30. Pérez-Chacón, R.; Asencio-Cortés, G.; Martínez-Álvarez, F.; Troncoso, A. Big data time series forecasting
based on pattern sequence similarity and its application to the electricity demand. Inf. Sci. 2020, 540, 160–174.
[CrossRef]

31. Zeng, B.; Li, C. Forecasting the natural gas demand in China using a self-adapting intelligent grey model.
Energy 2016, 112, 810–825. [CrossRef]

32. Fan, G.F.; Wang, A.; Hong, W.C. Combining Grey Model and Self-Adapting Intelligent Grey Model with
Genetic Algorithm and Annual Share Changes in Natural Gas Demand Forecasting. Energies 2018, 11, 1625.
[CrossRef]

33. Ma, X.; Liu, Z. Application of a novel time-delayed polynomial grey model to predict the natural gas
consumption in China. J. Comput. Appl. Math. 2017, 324, 17–24. [CrossRef]

34. Wu, Y.H.; Shen, H. Grey-related least squares support vector machine optimization model and its application
in predicting natural gas consumption demand. J. Comput. Appl. Math. 2018, 338, 212–220. [CrossRef]

35. Martínez-Álvarez, F.; Asencio-Cortés, G.; Torres, J.F.; Gutiérrez-Avilés, D.; Melgar-García, L.; Pérez-Chacón,
R.; Rubio-Escudero, C.; Troncoso, A.; Riquelme, J.C. Coronavirus Optimization Algorithm: A Bioinspired
Metaheuristic Based on the COVID-19 Propagation Model. Big Data 2020, 8, 232–246. [CrossRef]

36. Torres, J.F.; Fernández, A.M.; Troncoso, A.; Martínez-Álvarez, F. Deep Learning-Based Approach for Time
Series Forecasting with Application to Electricity Load. In Biomedical Applications Based on Natural and
Artificial Computing; Springer International Publishing: Berlin, Germany, 2017; pp. 203–212.

37. Berriel, R.F.; Lopes, A.T.; Rodrigues, A.; Varejão, F.M.; Oliveira-Santos, T. Monthly energy consumption
forecast: A deep learning approach. In Proceedings of the 2017 International Joint Conference on Neural
Networks, IJCNN 2017, Anchorage, AK, USA, 14–19 May 2017; pp. 4283–4290.

38. Shi, H.; Xu, M.; Li, R. Deep Learning for Household Load Forecasting: A Novel Pooling Deep RNN. IEEE
Trans. Smart Grid 2018, 9, 5271–5280. [CrossRef]

Appl. Sci. 2020, 10, 5487 14 of 14

39. Guo, Z.; Zhou, K.; Zhang, X.; Yang, S. A deep learning model for short-term power load and probability
density forecasting. Energy 2018, 160, 1186–1200. [CrossRef]

40. Talavera-Llames, R.L.; Pérez-Chacón, R.; Lora, A.T.; Martínez-Álvarez, F. Big data time series forecasting
based on nearest neighbours distributed computing with Spark. Knowl.-Based Syst. 2018, 161, 12–25.
[CrossRef]

41. Floreano, D.; Dürr, P.; Mattiussi, C. Neuroevolution: From architectures to learning. Evol. Intell. 2008,
1, 47–62. [CrossRef]

42. Kandasamy, K.; Neiswanger, W.; Schneider, J.; Póczos, B.; Xing, E. Neural Architecture Search with
Bayesian Optimisation and Optimal Transport. CoRR 2018, abs/1802.07191. Available online: https:
//arxiv.org/abs/1802.07191 (accessed on 5 August 2020).

43. Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. In
NIPS’12, Proceedings of the 25th International Conference on Neural Information Processing Systems—Volume 2;
Curran Associates Inc.: New York, USA, 2012; pp. 2951–2959.

44. Assunção, F.; Lourenço, N.; Ribeiro, B.; Machado, P. Incremental Evolution and Development of Deep
Artificial Neural Networks. In Genetic Programming; Hu, T., Lourenço, N., Medvet, E., Divina, F., Eds.;
Springer International Publishing: Cham, Switzerland, 2020; pp. 35–51.

45. Assunção, F.; Lourenço, N.; Machado, P.; Ribeiro, B. Fast DENSER: Efficient Deep NeuroEvolution. In Genetic
Programming; Sekanina, L., Hu, T., Lourenço, N., Richter, H., García-Sánchez, P., Eds.; Springer International
Publishing: Cham, Switzerland, 2019; pp. 197–212.

46. Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Regularized Evolution for Image Classifier Architecture Search.
CoRR 2018, abs/1802.01548. Available online: https://arxiv.org/abs/1802.01548 (accessed on 5 August 2020).
[CrossRef]

47. Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y.L.; Tan, J.; Le, Q.V.; Kurakin, A. Large-Scale Evolution
of Image Classifiers. In Proceedings of the 34th International Conference on Machine Learning, Sydney,
Australia, 6–11 August 2017; Precup, D., Teh, Y.W., Eds.; PMLR: International Convention Centre: Sydney,
Australia, 2017; Volume 70, pp. 2902–2911.

48. Spanish Electricity Price Market Operator. Available online: http://www.omie.es/files/flash/
ResultadosMercado.html (accessed on 5 August 2020).

49. Team, T.H. H2O: R Interface for H2O. In R Package Version 3.1.0.99999; H2O.ai, Inc.: New York, NY,
USA, 2015.

50. Scrucca, L. On some extensions to GA package: Hybrid optimisation, parallelisation and islands evolution.
R J. 2017, 9, 187–206. [CrossRef]

51. Herrera, F.; Lozano, M.; Sánchez, A.M. A taxonomy for the crossover operator for real-coded genetic
algorithms: An experimental study. Int. J. Intell. Syst. 2003, 18, 309–338. [CrossRef]

52. Salles, R.; Assis, L.; Guedes, G.; Bezerra, E.; Porto, F.; Ogasawara, E. A Framework for Benchmarking
Machine Learning Methods Using Linear Models for Univariate Time Series Prediction. In Proceedings of
the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017.

53. Rokach, L.; Maimon, O. Top-down Induction of Decision Trees Classifiers-a Survey. Trans. Sys. Man Cyber
Part C 2005, 35, 476–487. [CrossRef]

54. Therneau, T.M.; Atkinson, B.; Ripley, B. rpart: Recursive Partitioning. Available online: https://rdrr.io/
cran/rpart/ (accessed on 5 August 2020).

55. Ridgeway, G. Generalized Boosted Models: A Guide to the Gbm Package. Available online: https://rdrr.io/
cran/gbm/man/gbm.html (accessed on 5 August 2020).

56. Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22.
57. Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002.
58. Grubinger, T.; Zeileis, A.; Pfeiffer, K. evtree: Evolutionary Learning of Globally Optimal Classification and

Regression Trees in R. J. Stat. Softw. 2014, 61, 1–29. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

4.1 Artículos de revista 101

4.1.5. Coronavirus Optimization Algorithm: A bioinspired
metaheuristic based on the COVID-19 propagation
model

Tabla 4.5 Datos del artículo: Coronavirus Optimization Algorithm: A bioins-
pired metaheuristic based on the COVID-19 propagation model

Autores Martínez-Álvarez, F., Asencio-Cortés, G., Torres, J. F.,
Gutiérrez-Avilés, D., Melgar-García, L., Pérez-Chacón, R.,
Rubio-Escudero, C., Riquelme, J. C., and Troncoso, A.

Revista Big Data
Año 2020

Páginas 308-322
Volumen 8, no. 4

DOI 10.1089/big.2020.0051
IF 3.644 (15/108)

Cuartil Q1
Citas 49 (Google Scholar)

ORIGINAL ARTICLE

Coronavirus Optimization Algorithm:
A Bioinspired Metaheuristic Based on the COVID-19
Propagation Model
F. Martı́nez-Álvarez,1,* G. Asencio-Cortés,1 J. F. Torres,1 D. Gutiérrez-Avilés,1 L. Melgar-Garcı́a,1 R. Pérez-Chacón,1

C. Rubio-Escudero,2 J. C. Riquelme,2 and A. Troncoso1

Abstract
This study proposes a novel bioinspired metaheuristic simulating how the coronavirus spreads and infects
healthy people. From a primary infected individual (patient zero), the coronavirus rapidly infects new victims,
creating large populations of infected people who will either die or spread infection. Relevant terms such as re-
infection probability, super-spreading rate, social distancing measures, or traveling rate are introduced into the
model to simulate the coronavirus activity as accurately as possible. The infected population initially grows ex-
ponentially over time, but taking into consideration social isolation measures, the mortality rate, and number of
recoveries, the infected population gradually decreases. The coronavirus optimization algorithm has two major
advantages when compared with other similar strategies. First, the input parameters are already set according to
the disease statistics, preventing researchers from initializing them with arbitrary values. Second, the approach
has the ability to end after several iterations, without setting this value either. Furthermore, a parallel multivirus
version is proposed, where several coronavirus strains evolve over time and explore wider search space areas in
less iterations. Finally, the metaheuristic has been combined with deep learning models, to find optimal hyper-
parameters during the training phase. As application case, the problem of electricity load time series forecasting
has been addressed, showing quite remarkable performance.

Keywords: metaheuristics; soft computing; deep learning; big data; coronavirus

Introduction
The severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) is a new respiratory virus, causing
coronavirus disease 2019 (COVID-19), first discovered
in humans in December 2019, that has spread across
the globe, having reportedly infected >4 million people
so far.1 Much remains unknown about the virus, in-
cluding how many people who may have very mild,
asymptomatic, or simply undocumented infections
and whether they can transmit the virus or not.2

The precise dimensions of the outbreak are hard to
evaluate.3

Bioinspired models typically mimic behaviors from
the nature and are known for their successful appli-
cation in hybrid approaches to find parameters in ma-
chine learning model optimization.4 Viruses can infect

people and these people can either die, infect other peo-
ple, or simply recover after the disease. Vaccines and
the immune defense system typically fight the disease
and help to mitigate their effects while an individual
is still infected. This behavior is typically modeled by
an SIR model, consisting of three types of individuals:
S for the number of susceptible, I for the number of
infectious, and R for the number of recovered.5

Metaheuristics must deal with huge search spaces,
even infinite for the continuous cases, and must find
suboptimal solutions in reasonable execution times.6

The rapid propagation of the coronavirus along with
its ability to cause infection in most of the countries
in the world impressively fast has inspired the novel
metaheuristic proposed in this study, named coronavi-
rus optimization algorithm (CVOA). A parallel version

1Data Science and Big Data Lab, Pablo de Olavide University, Seville, Spain.
2Department of Computer Science, University of Seville, Seville, Spain.

*Address correspondence to: F. Martı́nez-Álvarez, Data Science and Big Data Lab, Pablo de Olavide University, Seville ES-41013, Spain, E-mail: fmaralv@upo.es

Big Data
Volume 8, Number 4, 2020
ª Mary Ann Liebert, Inc.
DOI: 10.1089/big.2020.0051

308

D
ow

nl
oa

de
d

by
 6

2.
83

.7
1.

86
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
27

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

is also proposed to spread different coronavirus strains
and achieve better results in less iterations.

The main CVOA advantages regarding other similar
approaches can be summarized as follows:

(1) Coronavirus statistics are not currently known with
precision by the scientific community and some
aspects are still controversial, like the reinfection
rate.7 In this sense, the infection rate, the mortality
rate, the spreading rate, or the reinfection proba-
bility cannot be accurately estimated so far, due
to several issues such as the lack of tests for asymp-
tomatic people. However, the current state of the
pandemic suggests certain values, as reported by
the World Health Organization (WHO).8 There-
fore, CVOA is parametrized with the actual
reported values for rates and probabilities, pre-
venting the user from performing an additional
study on the most suitable setup configuration.

(2) CVOA can stop the solutions exploration after
several iterations, with no need to be configured.
That is, the number of infected people increases
over the first iterations; however, after a certain
number of iterations, the number of infected
people starts decreasing, until reaching a void
infected set of individuals.

(3) The coronavirus high spreading rate is useful for
exploring promising regions more thoroughly
(intensification), whereas the use of parallel
strains ensures that all regions of the search
space are evenly explored (diversification).

(4) Another relevant contribution of this study is the
proposal of a new discrete and of dynamic length
codification, specifically designed for combining
long short-term memory (LSTM) networks
with CVOA (or any other metaheuristic).

There is one limitation to the current approach.
Since there is no vaccine currently, it has not been in-
cluded in the procedure to reduce the number of can-
didates to be infected. This fact involves an exponential
increase of the infected population in the first iterations
and, therefore, an exponential increase of the execution
time for such iterations. This, however, is partially
solved with the implementation of social isolation mea-
sures to simulate individuals who cannot be infected
during a particular iteration.

A study case is included in this work that discusses the
CVOA performance. CVOA has been used to find the op-
timal values for the hyperparameters of an LSTM architec-
ture,9 which is a widely used model for artificial recurrent

neural network (RNN), in the field of deep learning.10

Data from the Spanish electricity consumption have
been used to validate the accuracy. The results achieved
verge on 0.45%, substantially outperforming other well-
established methods such as random forest (RF), gradient-
boost trees (GBT), linear regression (LR), or deep learning
optimized with other metaheuristics. The code, developed
in Python with a discrete codification, is available in the
Supplementary Material section (along with an academic
version in Java for a binary codification).

Finally, the need to further study the performance of
well-established fitness functions11 is acknowledged.
However, given the relevance that this pandemic is
acquiring throughout the world and the remarkable re-
sults achieved when combined with deep learning, this
study is shared with the hope that it inspires future
research in this direction.

The rest of the article is organized as follows. Related
Works section discusses related and recent studies. The
methodology proposed is introduced in Methodology
section. Hybridizing Deep Learning with CVOA section
proposes a discrete codification to hybridize deep learn-
ing models with CVOA and provides some illustrative
cases. A sensitivity analysis on how populations are
created and evolved over time is discussed in CVOA
Sensitivity Analysis section. The results achieved are
reported and discussed in Results section. Finally, the
conclusions drawn and future study suggestions are
included in Conclusions and Future Works section.

Related Works
There are many bioinspired metaheuristics to solve
optimization problems. Although CVOA has been
conceived to optimize any kind of problems, this sec-
tion focuses on optimization algorithms applied to
hybridize deep learning models.

It is hard to find consensus among the researchers on
which method should be applied to which problem,
and, for this reason, many optimization methods
have been proposed during the past decade to improve
deep learning models. In general, the criterion for
selecting a method is its associated performance from
a wide variety of perspectives. Low computation cost,
accuracy, or even implementation difficulty can be
accepted as one of these criteria.

The virus optimization algorithm was proposed by
Liang and Cuevas-Juárez in 201612 and later im-
proved by Liang et al.13 However, as many other meta-
heuristics, the results of its application are highly
dependent on its initial configuration. In addition, it

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM 309

D
ow

nl
oa

de
d

by
 6

2.
83

.7
1.

86
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
27

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

simulates generic viruses, without adding individual-
ized properties for particular viruses. The results
achieved indicate that its usefulness is beyond doubt.

One of the most extended metaheuristics used to im-
prove deep learning parameters is genetic algorithms
(GAs). Hence, an LSTM network optimized with GA
can be found in Chung and Shin.14 To evaluate the pro-
posed hybrid approach, the daily Korea Stock Price Index
data were used, outperforming the benchmark model. In
2019, a network traffic prediction model based on LSTM
and GA was proposed in Chen et al.15 The results were
compared with pure LSTM and autoregressive integrated
moving average, reporting higher accuracy.

Multiagents systems have also been applied to optimize
deep learning models. The use of particle swarm optimiza-
tion (PSO) can be found in Liu et al.16 The authors pro-
posed a model based on kernel principal component
analysis and back propagation neural network with PSO
for midterm power load forecasting. The hybridization
of deep learning models with PSO was also explored in
Fernandes-Junior and Yen17 but, this time, the authors ap-
plied the methodology with image classification purposes.

Ants colony optimization (ACO) models have also
been used to hybridize deep learning. Thus, Desell
et al.18 proposed an evolving deep RNNs using ACO
applied to the challenging task of predicting general
aviation flight data. The study in ElSaid et al.19 intro-
duced a method based on ACO to optimize an LSTM
RNNs. Again, the field of application was flight data
records obtained from an airline containing flights
that suffered from excessive vibration.

Some articles exploring the cuckoo search (CS)
properties have been published recently as well. In
Srivastava,20 CS was used to find suitable heuristics
for adjusting the hyperparameters of another LSTM
network. The authors claimed an accuracy superior to
96% for all the data sets examined. Nawi et al.21 pro-
posed the use of CS to improve the training of RNN
to achieve fast convergence and high accuracy. Results
obtained outperformed those than other metaheuristics.

The use of the artificial bee colony (ABC) optimiza-
tion algorithm applied to LSTM can also be found in
the literature. Hence, an optimized LSTM with ABC
to forecast the bitcoin price was introduced in Yuliyono
and Girsang.22 The combination of ABC and RNN was
also proposed in Bosire23 for traffic volume forecasting.
This time the results were compared with standard
backpropagation models.

From the analysis of these studies, it can be con-
cluded that there is an increasing interest in using meta-

heuristics in LSTM models. However, not as many
studies as for artificial neural networks can be found
in the literature and, none of them, based on a virus
propagation model. These two facts, among others, jus-
tify the application of CVOA to optimize LSTM models.

Methodology
This section introduces the CVOA methodology. Thus,
Steps section describes the steps for a single strain.
Remarks for a Parallel CVOA Version section intro-
duces the modifications added to use CVOA as a
parallel version. Suggested Parameters Setup section
suggests how the input parameters must be set. Pseu-
docodes section includes the CVOA pseudocodes.

Steps
Step 1. Generation of the initial population. The ini-

tial population consists of one individual, the so-called
patient-zero (PZ). As in the coronavirus pandemic, it
identifies the first human being infected. If no previous
local minima has been found, a random initialization
for the PZ is suggested.

Step 2. Disease propagation. Depending on the indi-
vidual, several cases are evaluated:

(1) Each infected individual has a probability of
dying (P DIE), according to the COVID-19
death rate. Such individuals cannot spread the
disease to new individuals.

(2) The individuals who do not die will cause infec-
tion to new individuals (intensification). Two
types of spreading are considered, according to
a given probability (P SUPERSPREADER):
(a) Ordinary spreaders. Infected individuals will

infect new individuals according to a regular
spreading rate (SPREADING RATE).

(b) Super-spreaders. Infected individuals will
infect new individuals according to a super-
spreading rate (SUPERSPREADING RATE).

(3) There is another consideration, since it is needed
to ensure diversification. Both ordinary and
super-spreader individuals can travel and explore
very different solutions in the search space.
Therefore, individuals have a probability of
traveling (P TRAVEL) to propagate the disease
to solutions that may be quite different
(TRAVELER RATE). In case of not being a
traveler, new solutions will change according
to an ORDINARY RATE. Note that one indi-
vidual can be both super-spreader and traveler.

310 MARTÍNEZ-ÁLVAREZ ET AL.

D
ow

nl
oa

de
d

by
 6

2.
83

.7
1.

86
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
27

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Step 3. Updating populations. Three populations are
maintained and updated for each generation.

(1) Deaths. If any individual dies, it is added to this
population and can never be used again.

(2) Recovered population. After each iteration,
infected individuals (after spreading the corona-
virus according to the previous step) are sent to
the recovered population. It is known that there
is a reinfection probability (P REINFECTION).
Hence, an individual belonging to this popula-
tion could be reinfected at any iteration pro-
vided that it meets the reinfection criterion.
Another situation must be considered since
individuals might be isolated, as if they were fol-
lowing social distancing recommendations. For
the sake of simplicity, it is considered that an
isolated individual is sent to the recovered pop-
ulation when the isolation probability is met
(P ISOLATION).

(3) New infected population. This population gath-
ers all individuals infected at each iteration,
according to the procedure described in the pre-
vious steps. It is possible that repeated new
infected individuals are created at each iteration
and, consequently, it is recommended to remove
such repeated individuals from this population
before the next iteration starts running.

Step 4. Stop criterion. One of the most interesting
features of the proposed approach lies on its ability to
end without the need of controlling any parameter.
This situation occurs because the recovered and dead
populations are constantly growing as time goes by,
and the new infected population cannot infect new
individuals. It is expected that the number of infected
individuals increases for a certain number of iterations.
However, from a particular iteration on, the size of
the new infected population will be smaller than that
of the current size because recovered and dead popula-
tions are too big, and the size of the infected population
decays over time. In addition, a preset number of iter-
ations (PANDEMIC DURATION) can be added to
the stop criterion. The social distancing measures also
contribute to reach the stop criterion.

Remarks for a parallel CVOA version
It must be noted that it is very simple to use CVOA in
a multivirus version since it can be implemented as a
population-based algorithm, when considering the
pandemic as a set of intelligent agents each of them

evolving in parallel. In contrast to trajectory-based meta-
heuristics, population-based metaheuristics enhances
the diversification in the search space.

For this case, a new variable must be defined, strains,
which determines the number of strains that will be
launched in parallel. Each strain can explore different
regions and can be differently configured so that each
of them intensifies with their own rates.

Several considerations must be done for this case:

(1) Every strain is run independently, following the
steps in the previous section.

(2) A wise strategy must be followed to generate PZs
for each strain. For instance, it is suggested the
generation of PZs is evenly spaced or, at least,
with high Hamming distances. That way, the ex-
ploration of distinct regions of the search space
is facilitated (diversification).

(3) The interaction between the different strains is
done by means of dead and recovered popula-
tions, which must be shared by all the strains.
Operations over these populations must be han-
dled as concurrent updates.24

(4) New infected populations, on the contrary, are
different for each strain and no concurrent oper-
ations are required.

(5) This version may help to simulate different rates
for different strains. That way, if there is any ini-
tial information about the search space, some
strains could be more focused on diversification
and some others on intensification.

Depending on the hardware resources and how busy
they are, every strain may evolve at different speeds.
This situation should not pose any problems since it
is known that the pandemic evolves at different rates
and starts at different time stamps depending on region
of the world.

Last, another application can be found for this paral-
lel version. CVOA simulates an SIR model and conse-
quently, any other global pandemic can be modeled by
using the specific rates. Different pandemics could be
run in parallel.

Suggested parameters setup
Since CVOA simulates the COVID-19 propagation,
most of the rates (propagation, isolation, or mortality)
are already known. This fact prevents the researcher
from wasting time in selecting values for such rates
and turns the CVOA into a metaheuristic quite easy
to execute.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM 311

D
ow

nl
oa

de
d

by
 6

2.
83

.7
1.

86
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
27

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

However, it must be noted that the current rates are
still changing and it is expected they will vary over
time, as the pandemic evolves. Maybe these values
will not be stable until 2021 or even 2022. The sug-
gested values have been retrieved from the World
Health Organization25 and are discussed hereunder:

(1) P DIE. An infected individual can die with a
given probability. The case fatality ratio26 varies
by location, age of person infected, and the pres-
ence of underlying health conditions but, cur-
rently, this rate is set to *5% by the scientific
community.27 Therefore, P DIE = 0:05.

(2) P SUPERSPREADER. It is the probability that
an individual spreads the disease to a greater
number of healthy individuals. It is believed
that this situation affects to a 10% of the infected
population,28 therefore, P SUPERSPREADER =
0:1. After this condition is validated, two situa-
tions can be found:
(a) ORDINARY RATE. If the infected individ-

ual is not a super-spreader, then the infec-
tion rate (also known as reproductive
number, R0) is 2.5. It is suggested that this
rate is controlled by a random number in
the range [0, 5].

(b) SUPERSPREADER RATE. If the infected in-
dividual turns out to be a super-spreader, then
up to 15 healthy individuals can be infected.
It is suggested that this rate is controlled by a
random number in the range [6, 15].

(3) P REINFECTION . This is a very controversial
issue, since the scientific community does not
agree on whether a recovered individual can
be retested positive or not. As claimed by the
WHO, no study has evaluated whether the
presence of antibodies to COVID-19 confers im-
munity to subsequent infection by this virus
in humans.29 Some tests performed in South
Korea suggest a rate of 2% according to the
Korea Centers for Disease Control and Preven-
tion.30 Therefore, P REINFECTION = 0:02, but
this value will be re-evaluated, for sure, in the
near future.

(4) P ISOLATION . This value is uncertain because
countries are taking different measures for social
isolation. This parameter helps to reduce the ex-
ponential growth of the infected population
after each iteration. In other words, this param-
eter helps to reduce R0 and it is crucial to ensure

the pandemic ends. Therefore, a high value must
be assigned to this probability. It is suggested
that P ISOLATION � 0:7, since this value
ensures R0 < 1 (please refer to Fig. 5 to see Dis-
cussion section).

(5) P TRAVEL. This probability simulates how an
infected individual can travel to any place in
the world and can infect healthy individuals.
It is known that almost a 10% of the popula-
tion travel during a week (simulated time for
every iteration),31 so P TRAVEL = 0:1.

(6) SOCIAL DISTANCING. It is the number of iter-
ations without social distancing measures. Since
the populations grow exponentially at the begin-
ning of the pandemic, this value must be care-
fully selected and must be set according to the
size of the problem. Empirical values that suit
for any codification vary from 7 to 12, so it is sug-
gested that 7 � SOCIAL DISTANCING � 12.

(7) PANDEMIC DURATION . This parameter sim-
ulates the duration of the pandemic, that is,
the number of iterations. Currently, these data
are unknown so this number can be adjusted
to the size of the problem. It is suggested that
PANDEMIC DURATION = 30.

(8) strains. This parameter should be adjusted
according to the size of the problem and the
hardware availability, and it is difficult to suggest
a value suitable for all situations. But a tentative
initial value could be 5, in an attempt to simu-
late one different strain per continent. There-
fore, strains = 5. Another important decision
that must be made is how to initialize every
PZ associated with the strains. When just one
strain is considered, PZ is suggested to be ran-
domly initialized. However, with strains > 1
the user should search for orthogonal PZs and
to uniformly distribute them in the search
space. This strategy should help to cover bigger
search spaces in less iterations and to explore
individuals with maximal distances.

Pseudocodes
This section provides the pseudocode of the most rele-
vant functions for the CVOA, along with some com-
ments to better understand them.

Function CVOA. This is the main function and its
pseudocode can be found in Algorithm 1. Four lists
must be maintained: dead, recovered, infected (the

312 MARTÍNEZ-ÁLVAREZ ET AL.

D
ow

nl
oa

de
d

by
 6

2.
83

.7
1.

86
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
27

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

current set of infected individuals), and new infected
individuals (the set of new infected individuals, gener-
ated by the spreading of the coronavirus from the
current infected individuals).

The initial population is generated by means of the
patient zero (PZ), which is a random solution.

The number of iterations is controlled by the main
loop, evaluating the duration of the pandemic (preset
value) and whether there is still any infected individ-
ual. In this loop, every individual can either die (it is
sent to the dead list) or infect, thus enlarging the size
of the new infected population. This infection mecha-
nism is coded in function infect (see Function infect
section).

Once the new population is formed, all individuals
are evaluated and whether any of them outperforms
the best current one, the latter is updated.

Algorithm 1: Function CVOA

1: define infectedPopulation, newInfectedPopulation as set of
Individual

2: define dead, recovered as list of Individual
3: define PZ, bestIndividual, currentBestIndividual, aux as Individual
4: define time as integer
5: define bestSolutionFitness, currentbestFitness as real
6: time) 0
7: PZ) InfectPatientZero()
8: infectedPopulation) PZ
9: bestIndividual) PZ

10: while time < PANDEMIC DURATION AND sizeof
(infectedPopulation) > 0 do

11: dead) die(infectedPopulation)
12: for all i 2 infectedPopulation do
13: aux) infect(i,recovered,dead)
14: if notnull(aux) then
15: newInfectedPopulation) aux
16: end if
17: end for
18: currentBestIndividual)

selectBestIndividual(newInfectedPopulation)
19: if fitness(currentBestIndividual) > bestIndividual then
20: bestIndividual) currentBestIndividual
21: end if
22: recovered) infectedPopulation
23: clear(infectedPopulation)
24: infectedPopulation) newInfectedPopulation
25: time) time þ 1
26: end while
27: return bestIndividual

Function infect. This function receives an infected in-
dividual and returns the set of new infected individuals.
Two additional lists, recovered and dead, are also re-
ceived as input parameters since they must be updated
after the evaluation of every infected individuals. The
pseudocode is shown in Algorithm 2.

Two conditions are evaluated to determine the num-
ber of new infected individuals (use of SPREADER

RATE or SUPERSPREADER RATE) or how differ-
ent the new individuals will be (ORDINARY RATE
or TRAVELER RATE). The implementation on how
these new infected individuals are encoded accord-
ing to such rates is carried out in the function
newInfection.

Algorithm 2: Function infect

Require: infected as of Individual; recovered, dead as list of Individual
1: define R1, R2 as real
2: define newInfected as list of Individual
3: R1) RandomNumber()
4: R2) RandomNumber()
5: if R1 < P TRAVEL then
6: if R2 < P SUPERSPREADER then
7: newInfected) newInfection (infected, recovered, dead,

SPREADER RATE, ORDINARY RATE)
8: else
9: newInfected) newInfection (infected, recovered, dead,

SUPERSPREADER RATE, ORDINARY RATE)
10: end if
11: else
12: if R2 < P SUPERSPREADER then
13: newInfected) newInfection (infected, recovered, dead,

SPREADER RATE, TRAVELER RATE)
14: else
15: newInfected) newInfection (infected, recovered, dead,

SUPERSPREADER RATE, TRAVELER RATE)
16: end if
17: end if
18: return newInfected

Function newInfection. Given an infected individual,
this function generates new infected individuals accord-
ing to the spreading and traveling rates. This function
also controls that the new infected individuals are not
already in the dead list (in such case, this new infection
is ignored) or in the recovered list (in such case, the
P REINFECTION is applied to determine whether the
individual is reinfected or whether it remains in the re-
covered list). In addition, it considers that the new po-
tential infected individual might be isolated, which is
controlled by P ISOLATION. Although the use of an
extra list could be implemented, it has been decided
to treat these individuals as recovered. Therefore, if an
isolated individual is attempted to be infected, it is
added to the recovered list.

The effective generation of the new infected individ-
uals must be carried in the function replicate, whose
pseudocode is not provided because it depends on
the codification and the nature of the problem to be op-
timized. This function must return a set of new infected
individuals, according to the aforementioned rates.
Specific information on how this codification and
replication is done for LSTM models is provided in
Hybridizing Deep Learning with CVOA section.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM 313

D
ow

nl
oa

de
d

by
 6

2.
83

.7
1.

86
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
27

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

The pseudocode for the described procedure can be
found in Algorithm 3.

Algorithm 3: Function newInfection

Require: infected as Individual; recovered, dead as list of Individual
1: define R3, R4 as real
2: define newInfected as list of Individual
3: R3) RandomNumber()
4: R4) RandomNumber()
5: aux) replicate(infected, SPREAD RATE, TRAVELER RATE)
6: for all i 2 aux do
7: if i 62 dead then
8: if i 62 recovered then
9: if R4 > P ISOLATION then

10: newInfected) i
11: else
12: recovered)i
13: end if
14: else if R3 < P REINFECTION then
15: newInfected) i
16: remove i from recovered
17: end if
18: end if
19: end for
20: return newInfected

Function die. This function is called from the main
function. It evaluates all individuals in the infected
population and determines whether they die or not,
according to the given P DIE. Those meeting this con-
dition are sent to the dead list. Algorithm 4 describes
this procedure.

Algorithm 4: Function die

Require: infectedPopulation as list of Individual
1: define dead as list of Individual
2: define R5 as real
3: for all i 2 infectedPopulation do
4: R5) RandomNumber()
5: if R5 < P DIE then
6: dead) i
7: end if
8: end for
9: return dead

Function selectBestIndividual. This is an auxiliary
function used to find the best fitness in a list of infected
individuals. Its peudo code is given in Algorithm 5.

Hybridizing Deep Learning with CVOA
This section describes the codification proposed for an
individual, to hybridize deep learning with CVOA. The
term hybridize is used in this context as the combina-
tion of two computational techniques (deep learning
and CVOA) so that the best hyperparameter values
are discovered. This strategy is very common in ma-
chine learning for optimizing models during the train-
ing process.32–34

Algorithm 5: Function selectBestIndividual

Require: infectedPopulation as list of Individual
1: define bestIndividual as Individual
2: define bestFitness as real
3: bestFitness) MINVALUE
4: for all i 2 infectedPopulation do
5: if fitness(i) > bestFitness then
6: bestFitness) fitness(i)
7: bestIndividual) i
8: end if
9: end for

10: return bestIndividual

Hence, the individual codification shown in Figure 1
has been implemented to apply CVOA to optimize
deep neural network architectures.

As is shown in Figure 1, each individual is composed
of the following elements. The element LR encodes the
learning rate used in the neural network algorithm. It
can take a value from 0 to 5 and its corresponding
decoded values are 0, 0:1, 0:01, 0:001, 0:0001, and
0:00001.

The element DROP encodes the dropout rate ap-
plied to the neural network. It can take values from
0 to 8 that correspond to 0, 0:10, 0:15, 0:20, 0:25,
0:30, 0:35, 0:40, and 0:45, respectively. The dropout
rate is distributed uniformly for all the layers of the
network. That is, if the dropout is 0:4 and the network
has four layers, then the 10% (0:1) of the neurons of
each layer will be removed.

The element L of the individual stores the number of
layers of the network. It is restricted to 1 < L � 11.
The first layer is referred to the input layer of the neural
network. The rest of layers are hidden layers. The out-
put layer is excluded from the codification. Therefore,
the optimized network can contain from 1 to 10 hidden
layers.

The proposed individual codification has a variable
size. Thus, its size depends on the number of layers
indicated in the element L. Consequently, a list of
elements (LAYER 1, ., LAYER L) are also included
in the individual, which encode the number of units
(neurons) for each network layer. Each of these ele-
ments can take values from 0 to 11, and their corre-
sponding decoded values range from 25 to 300, with
a step of 25.

PZ generation
The PZ, as it has been described previously, is the indi-
vidual of the first iteration in the CVOA algorithm.
After the hybridization proposed, a random individual
is created considering the codification already defined.

314 MARTÍNEZ-ÁLVAREZ ET AL.

D
ow

nl
oa

de
d

by
 6

2.
83

.7
1.

86
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
27

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

In first place, a random value for the learning rate of
the PZ is generated. Specifically, a number between 0
and 5 is generated randomly in a uniform distribution.
Such limits are indicated in Figure 1, according to the
possible encoded values of the learning rate element.
The same process is carried out to produce a random
value for the dropout element. In such case, a random
number between 0 and 8 is generated.

In second place, a random number of layers are gen-
erated for the element L of PZ. Such number of layers is
a random number between 2 and 11. Note that the first
layer is reserved for the input layer of the neural net-
work, as it has been discussed before.

In last place, for each one of the L layers, a random
number of units is generated between 0 and 11, cover-
ing the possible encoded values for the number of units
previously defined (Fig. 1).

Infection procedure
The infection procedure described here corresponds to
the functionality of replicate(), introduced in line 5
of Algorithm 3. This procedure takes an individual as
input and returns an infected individual according to
the following procedure.

The first step is to determine the element L of the
infected individual that will be mutated. The probabil-
ity of such mutation that occurs has been set to 1

3 so that
every element has the same probability to mutate. If the
mutation occurs, then the element L of the individual is

modified according to the process described in Single
Position Mutation section.

If the element L (the number of layers of the net-
work) changes, then the elements encoding the different
layers within the individual (LAYER 1, ., LAYER L)
must be resized accordingly. Such resizing process is
explained in Individual Resizing Process section.

The second step is to determine how many ele-
ments of the individual will be infected. If the
TRAVELER RATE < 0, then the number of infected
elements is generated randomly from 0 to the length
of the individual (excluding the element L). Else, the
TRAVELER RATE indicates itself the number of infec-
ted elements.

As third step, once the number of infected elements
of the individual is determined, a list of random posi-
tions is generated. For example, if three positions of
the individual must be changed, then the random
positions affected could be, for instance, referred to
the elements {DROP, LAYER 2, LAYER 4}.

Finally, the selected positions of the individual are
mutated. Such mutation is described in Single Position
Mutation section.

Individual resizing process
When an individual is infected at the position of the
element L, the list of elements that encodes the num-
ber of units per layer (LAYER 1, ., LAYER L) must
be resized accordingly.

FIG. 1. Individual codification for hybridizing deep learning architectures using the proposed coronavirus
optimization algorithm.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM 315

D
ow

nl
oa

de
d

by
 6

2.
83

.7
1.

86
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
27

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

In the case that the new number of layers after the
infection is lower than its previous value, then the
last leftover elements are removed. For instance, if
the initial individual is f2, 0, 4gf3, 2, 1, 6g (four layers),
the element L = 4 is infected and the new value is L = 2,
then the resulting individual will be f2, 0, 2gf3, 2g.

In the case that the new number of layers after the
infection is higher than its previous value, the new
random elements are added at the end of the indi-
vidual. For instance, if the initial individual is
f2, 0, 4gf3, 2, 1, 6g (four layers), the element L = 4 is
infected and the new value is L = 6, then the resulting
individual could be f2, 0, 6gf3, 2, 1, 6, 0, 4g.

Single position mutation
The process carried out to change the value of a specific
element of an individual is described in this section.

First, a signed amount of change C 2 f� 2, � 1,

þ 1, þ 2g is randomly determined using the following
criteria. A random real number P between 0 and 1 is
generated using a uniform distribution. If P < 0:25,
then the amount of change will be C = � 2. Else if
P < 0:5, then the amount of change will be C = � 1.
Else if P < 0:75, then the amount of change will be
C = þ 1. Else, the amount of change will be C = þ 2.

Once the amount of change is determined, the
new value for the infected element is computed. If its
previous value is V, then the new value after the single
position mutation will be V ¢ = V þC. If the new value
V ¢ exceeds the limits defined for the individual codifi-
cation, such value is set to the maximum or minimum
allowed value accordingly.

CVOA Sensitivity Analysis
This section discusses several aspects about the sensi-
tiveness of CVOA to different configurations. Hence,
Sensitivity to the Number of Strains section evaluates
the evolution of the populations for a different number
of strains. Sensitivity to the Parameters section assesses
the performance when other well-known viruses are
modeled. Finally, Sensitivity to the Social Distancing
Measures section provides information about R0 and
how it varies when social distancing measures change.

Sensitivity to the number of strains
This section provides an overview on how populations
evolve over time and how the search space is explored,
when a different number of strains are used.

A binary codification has been used, with 20 bits, to
conduct this experimentation. A simple fitness func-
tion has been evaluated, f (x) = (x� 15)2, because the

goal of this section is to evaluate the growth of the pop-
ulations, and not to find challenging optimum values.
This function reaches the minimum value at x = 15,
that is, f (15) = 0.

According to Suggested Parameters Setup section,
the following configuration has been used: P DIE =
0:05, P ISOLATION = 0:8, P SUPERSPREADER = 0:1,
P REINFECTION = 0:02, SOCIAL DISTANCING = 8,
P TRAVEL = 0:1, and PANDEMIC DURATION = 30.

Every experiment has been launched 50 times and,
on average, the optimum value was found during the
iteration number 13, 6, and 3, for 1, 4, and 8 strains,
respectively.

Figure 2 illustrates the evolution of the new infected
population over time, for 1, 4, and 8 strains. The number
of new infected people increases exponentially during
the first SOCIAL DISTANCING = 8 iterations because
R0 > 0 but, from iteration 9 onward, an acute decrease
is reported because R0 becomes <0. This fact is controlled
by P ISOLATION = 0:8 (a deeper study on R0 and
P ISOLATION can be found in Sensitivity to the Social
Distancing Measures section). It must be noted that iter-
ation 0 (PZ infection) counts as a regular iteration.

Figures 3 and 4 show the accumulated number of
recovered people and accumulated deaths, respectively.
Note that deaths and recovered individuals cannot
be infected again (except for the individuals in the re-
covered list that can be reinfected with a given prob-
ability, P REINFECTION). These two curves are a
direct consequence of the number of new infected peo-
ple, so, once the number of new infections decreases or
even disappears, these values remain almost constant.
Also, it can be observed that P ISOLATION = 0:8
after SOCIAL DISTANCING = 8 iterations help to flat-
ten the curves. A directly proportional relationship is
reported between the number of strains and the num-
ber of explored individuals at the end of the pandemic.

Four main conclusions can be drawn from the anal-
ysis of these figures:

(1) The number of new infected individuals, accu-
mulated recovered, and deaths is directly pro-
portional to the number of strains.

(2) The higher the number of strains, the lower the
number of iterations that are required to reach
the optimal value.

(3) The number of individuals evaluated increases
at each iteration on an almost linear basis, as
the number of strains increases. In case no ran-
dom numbers were generated, the relationship

316 MARTÍNEZ-ÁLVAREZ ET AL.

D
ow

nl
oa

de
d

by
 6

2.
83

.7
1.

86
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
27

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

would be directly proportional, that is, four
strains would evaluate four times the number
of individuals than one strain would do.

(4) To reach the optimum values, the search space ex-
plored is smaller as the number of strains increases.
This is due to the generation of PZ evenly spaced,
which makes easier to explore wider areas.

Sensitivity to the parameters
Several well-known viruses with deep impact in human
beings’ health are modeled in this section, to assess the
CVOA robustness to different input parameter values.

Middle East respiratory syndrome (MERS), SARS,
influenza (seasonal strains), and Ebola have been se-
lected, with the parametrization given in Table 1. It is
worth mentioning that the modeling of each virus re-
quires much research and an approximate parametri-
zation has been used, according to the references in
the rightmost column.

All experiments have been conducted with 4 strains
and 30 iterations. The viruses with vaccines have been
simulated by using P ISOLATION = 0:95 after five iter-
ations, since this feature is not implemented in CVOA.

Table 2 summarizes the percentage of search space
explored and the best fitness found, on average.

FIG. 2. Number of new infected individuals for a 20-bit binary codification execution, with 1, 4, and 8 strains.

FIG. 3. Total number of recovered people for a 20-bit binary codification execution, with 1, 4, and 8 strains.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM 317

D
ow

nl
oa

de
d

by
 6

2.
83

.7
1.

86
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
27

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Codifications of 10, 20, 30, 40, and 50 bits have been
used, with associated search spaces of length 1024,
1.05E+6, 1.07E+09, 1.10E+12, and 1.13E+15, respec-
tively. Several findings are revealed:

(1) CVOA finds the optimal values even for the
longest codification (50 bits) and it is done by
exploring a similar search space size as the
other configurations do.

(2) SARS is the second best parametrization, reach-
ing remarkable fitness even for 50 bits. But it
required the evaluation of a greater number of
individuals and, therefore, the execution time
was greater as well.

(3) MERS obtained the poorest results in terms of
fitness but it explored a smaller space search.
This situation may be explained due to the low
associated reproductive number (R0 < 1).

(4) Influenza has obtained slightly worse results in
terms of fitness than CVOA but with less solu-
tions explored. This configuration may be useful
to obtain satisfactory results in a reduced execu-
tion time.

(5) The high death fatality rate of Ebola pre-
vents from exploring most of the search space.
This fact makes difficult to visit optimal val-
ues. However, results for 40 bits are satisfac-
tory in terms of fitness. For 50 bits, its use is
discouraged considering the poor fitness value
reached.

It can be concluded that variations in the input pa-
rameter values lead to results varying both in fitness
and in execution time. This feature is very useful for
the CVOA parallel version, since strains with different
rates and probabilities can be simultaneously launched.
That is, strains aiming at diversifying can be combined
with strains aiming at intensifying.

Sensitivity to the social distancing measures
In this section, an analysis on how P ISOLATION
modifies R0 is conducted. The purpose is to discover
when R0 < 1, situation in which the pandemic preva-
lence declines. A study with a 10-bit to 50-bit codifica-
tion has been done as well as using different number of
strains (1, 4, and 8).

Figure 5 illustrates how R0 varies for a 40-bit codifi-
cation, with probabilities of isolation ranging from 0 to
1, and with 1, 4, and 8 strains. Quite similar behaviors
have been achieved for all codifications.

From the analysis of this figure, several conclusions
are drawn:

(1) R0 is linear and inversely proportional to
P ISOLATION .

FIG. 4. Total number of deaths for a 20-bit binary codification execution, with 1, 4, and 8 strains.

Table 1. Parametrization for other viruses

Disease R0

Fatality
rate (%) Vaccine

Super-
spreaders References

SARS 1.4–2.5 11 No Yes 35,36

MERS 0.3–0.8 34.4 No Yes 28,35,37

Influenza 0.9–2.1 0.1 Yes No 38

Ebola 1.5–1.9 50 Yes No 39,40

MERS, Middle East respiratory syndrome; SARS, severe acute respira-
tory syndrome.

318 MARTÍNEZ-ÁLVAREZ ET AL.

D
ow

nl
oa

de
d

by
 6

2.
83

.7
1.

86
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
27

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

(2) The same negative slope is shown, with varia-
tions no higher than 10E�2 on average for all
codifications and number of strains.

(3) R0 is <1 with P ISOLATION values close to 0.65
(and higher). This fact involves a decline of the
infectious disease.

Results
This section reports the results achieved by hybridiz-
ing a deep learning model with CVOA. Study Case:
Electricity Demand Time Series Forecasting section
describes the study case selected to prove the effective-
ness of the proposed algorithm. Data Set Description
section describes the data set used. Performance Anal-
ysis section discusses the results achieved and includes
some comparative methods.

Study case: electricity demand time
series forecasting
The forecasting of future values fascinates the human
being. To be able to understand how certain variables
evolve over time has many benefits in many fields.

Electricity demand forecasting is not an exception,
since there is a real need for planning the amount to
be generated or, in some countries, to be bought.

The use of machine learning to forecast such time se-
ries has been intensive during the past years.41 But,
with the development of deep learning models, and,
in particular of LSTM, much research is being con-
ducted in this application field.42

Data set description
The time series considered in this study is related to the
electricity consumption in Spain from January 2007 to
June 2016, the same as used in Torres et al..43 It is a
time series composed of 9 years and 6 months with a
10-minute sampling frequency, resulting in 497,832
measures.

As in the original article, the prediction horizon is 24,
that is, this is a multistep strategy with h = 24. The size
of samples used for the prediction of these 24 values is
168. Furthermore, the data set was split into 70% for
the training set and 30% for the test set, and in addition,

Table 2. CVOA performance with different configurations

Disease

10 bits 20 bits 30 bits 40 bits 50 bits

Explored (%) Fitness Explored (%) Fitness Explored (%) Fitness Explored (%) Fitness Explored (%) Fitness

SARS 57.32 0 0.54 0 6E�03 1 1E�05 4 3E�08 252
MERS 20.34 0 0.04 16 1E�02 36 1E�05 112 2E�09 3210
Influenza 13.23 0 0.02 0 8E�04 2 1E�06 14 1E�08 310
Ebola 62.93 0 0.44 0 7E�02 4 2E�05 15 1E�09 810
COVID-19 15.63 0 0.21 0 1E�03 0 1E�05 0 2E�08 0

COVID-19, coronavirus disease 2019; CVOA, coronavirus optimization algorithm.

FIG. 5. R0 sensitivity to P ISOLATION, in a 40-bit codification.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM 319

D
ow

nl
oa

de
d

by
 6

2.
83

.7
1.

86
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
27

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

a 30% of the training set has also been selected for the val-
idation set, to find the optimal parameters. The training
set covers the period from January 1, 2007, at 00:00 to Au-
gust 20, 2013, at 02:40. Therefore, the test set comprises
the period from August 20, 2013, at 02:50 to June 21,
2016, at 23:40.

Performance analysis
This section reports the results obtained by hybridizing
LSTM with CVOA, by means of the codification pro-
posed in Hybridizing Deep Learning with CVOA
section, to forecast the Spanish electricity data set de-
scribed in Data Set Description section.

LR, decision tree, GBT, and RF models have been used
with parametrization setups according to those studied in
Galicia et al.44,45 A deep neural network optimized with
a grid search (DNN-GS) according to Torres et al.43 has
also been applied. Another deep neural network, but opti-
mized with random search (DNN-RS) and smoothed with
a low-pass filter (DNN-RS-LP),46 has also been applied.
Furthermore, CVOA has been combined with DNN
(DNN-CVOA), using the same codification as in LSTM.

These results along with those of LSTM, and combina-
tions with GS, RS, RS-LP, and CVOA, are summarized in
Table 3, expressed in terms of the mean absolute per-
centage error. It can be observed that LSTM-CVOA out-
performs all evaluated methods that have showed
particularly remarkable performance for this real-world
data set. In addition, DNN-CVOA outperforms all
other DNN configurations, which confirms the superior-
ity of CVOA with reference to GS, RS, and RS-LP.

Another relevant consideration that must be taken
into account is that the compared methods generated
24 independent models, each of them for every value
forming h. So, it would be expected that LSTM-
CVOA performance increases if independent models
are generated for each of the values in h.

These results have been achieved with the follow-
ing codification: {4,0,8}{9,7,2,7,2,7,10,7}. The decoded
architecture parameters are listed below:

(1) Learning rate: 10E�04.
(2) Dropout: 0.
(3) Number of layers: 8.
(4) Units per layer: [250, 200, 75, 200, 75, 200,

275, 200]

Finally, Figure 6 depicts the first 5 predicted days
versus their actual values, expressed in watts.

Table 3. Results in terms of MAPE for LSTM-CVOA compared
with other well-established methods

Method MAPE (%)

LR 7.34
DT 2.88
GBT 2.72
RF 2.20
DNN-GS 1.68
DNN-RS 1.57
DNN-RS-LP 1.36
DNN-CVOA 1.18
LSTM-GS 1.22
LSTM-RS 0.84
LSTM-RS-LP 0.82
LSTM-CVOA 0.47

Bold indicates the best results for the proposed method in the article
(LSTM-CVOA).

CVOA, coronavirus optimization algorithm; DNN, deep neural network;
DNN-CVOA, CVOA has been combined with DNN; DNN-GS, DNN opti-
mized with a grid search; DNN-RS, DNN optimized with random search;
DNN-RS-LP, DNN smoothed with a low-pass filter; DT, decision tree; GBT,
gradient-boosted trees; LR, linear regression; LSTM, long short-term
memory; LSTM-CVOA, CVOA has been combined with LSTM; LSTM-GS,
LSTM optimized with a grid search; LSTM-RS, LSTM optimized with ran-
dom search; LSTM-RS-LP, LSTM smoothed with a low-pass filter; MAPE,
mean absolute percentage error; RF, random forest.

FIG. 6. Actual versus predicted values for the first 5 days in the test set (in W).

320 MARTÍNEZ-ÁLVAREZ ET AL.

D
ow

nl
oa

de
d

by
 6

2.
83

.7
1.

86
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
27

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Conclusions and Future Studies
This study has introduced a novel bioinspired meta-
heuristic, based on the COVID-19 pandemic behavior.
On the one hand, CVOA has three major advantages.
First, its high relation to the coronavirus spreading
model prevents users from making any decision
about the input values. Second, it ends after a certain
number of iterations due to the exchange of individuals
between healthy and dead/recovered lists.

In addition, a novel discrete and dynamic codifica-
tion has been proposed to hybridize deep learning mod-
els. On the other hand, it exhibits some limitations.
Such is the case for the exponential growth of the
infected population as time (iterations) goes by.

Furthermore, a parallel version is proposed so that
CVOA is easily transformed into a multivirus meta-
heuristic, in which different coronavirus strains search
for the best solution in a collaborative way. This fact
allows to model every strain with different initial setups
(higher DEATH RATE, for instance), sharing recov-
ered or dead lists.

Additional experimentation must be conducted to
assess its performance on standard F functions and
find out the search space shapes in which it can be
more effective.

As for future study, some actions might be taken to
reduce the size of the infected population after several
iterations, which grows exponentially. In this sense,
a vaccine could be implemented. This case would
involve adding to the recovered list, at a given
VACCINE RATE healthy individuals. This rate will
remain unknown until a vaccine is developed.

Another suggested research line is using dynamic
rates. For instance, the observation of the preliminary
effects of the social isolation measures in countries
such as China, Italy, or Spain suggests that the
INFECT RATE could be simulated as a Poisson pro-
cess, but more time and country recoveries are required
to confirm this trend.

For the multistep forecasting problem analyzed, it
would be desirable to generate independent models
for each of the values that form the prediction hori-
zon h.

Finally, further research has to be conducted to as-
sess the CVOA performance when applied to other
fields and combined with other networks.

Supplementary Material
Along with this article, an academic version in Java for
a binary codification is provided, with a simple fitness

function in a GitHub repository (https://github.com/
DataLabUPO/CVOA_academic). The master branch
includes a simple implementation, whereas the sets
branch provides an optimized version with a command
line interface. In addition, the code in Python for the
deep learning approach is also provided, with a more
complex codification and the suggested implementa-
tion, according to the pseudocode provided (https://
github.com/DataLabUPO/CVOA_LSTM).

Author Disclosure Statement
No competing financial interests exist.

Funding Information
The authors thank the Spanish Ministry of Economy
and Competitiveness for the support under project
TIN2017-88209-C2.

References
1. Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Health.

2020;25:278–280.
2. Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates

the rapid dissemination of novel coronavirus (SARS-CoV-2). Nature.
2020;368:489–493.

3. Giordano G, Blanchini F, Bruno R, et al. Modelling the COVID-19 epidemic
and implementation of population-wide interventions in Italy. Nat Med.
2020;26:855–860.

4. Del Ser J, Osaba E, Molina D, et al. Bio-inspired computation: Where we
stand and what’s next. Swarm Evol Comput. 2019;48:220–250.

5. Tolic D, Kleineberg K, Antulov-Fantulin N. Simulating SIR processes on
networks using weighted shortest paths. Sci Rep. 2018;8:6562.

6. Boussaı̈d I, Lepagnot J, Siarry P. A survey on optimization metaheuristics.
Inf Sci. 2013;237:82–117.

7. Tay MZ, Poh CM, Rénia L, et al. The trinity of COVID-19: immunity,
inflammation and intervention. Nat Rev Immunol. 2020;20:363–374.

8. World Health Organization. 2019. Available online at https://www.who
.int/es/emergencies/diseases/novel-coronavirus-2019 (last accessed
March 20, 2020).

9. Kelotra A, Pandey P. Stock market prediction using optimized deep-
ConvLSTM model. Big Data. 2020;8:5–24.

10. De-Cnudde S, Ramon Y, Martens D, Provost F. Deep learning on big,
sparse, behavioral data. Big Data. 2019;7:286–307.

11. Glover F, Kochenberger GA. Handbook of metaheuristics. New York:
Springer, 2003.

12. Liang YC, Cuevas-Juárez JR. A novel metaheuristic for continuous opti-
mization problems: Virus optimization algorithm. Eng Optim. 2016;48:
73–93.

13. Liang YC, Cuevas-Juárez JR. A self-adaptive virus optimization algorithm
for continuous optimization problems. Soft Comput. 2020. [Epub ahead
of print]; DOI: 10.1007/s00500-020-04730-0.

14. Chung H, Shin K-S. Genetic algorithm-optimized long short-term
memory network for stock market prediction. Sustainability. 2018;
10:3765.

15. Chen J, Xing H, Yang H, Xu L. Network traffic prediction based on LSTM
networks with genetic algorithm. Lect Notes Electr Eng. 2019;550:
411–419.

16. Liu Z, Sun X, Wang S, et al. Midterm power load forecasting model
based on kernel principal component analysis and back propagation
neural network with particle swarm optimization. Big Data. 2019;7:
130–138.

17. Fernandes-Junior FE, Yen GG. Particle swarm optimization of deep neural
networks architectures for image classification. Swarm Evol Comput.
2019;49:62–74.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM 321

D
ow

nl
oa

de
d

by
 6

2.
83

.7
1.

86
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
27

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

18. Desell T, Clachar S, Higgins J, Wild B. Evolving deep recurrent neural
networks using ant colony optimization. Lect Notes Comput Sci. 2015;
9026:86–98.

19. ElSaid A, ElJamiy F, Higgings J, et al. Using ant colony optimization to
optimize long short-term memory recurrent neural networks. In:
Proceedings of the Genetic and Evolutionary Computation Conference,
2018, pp. 13–20.

20. Srivastava D, Singh Y, Sahoo A. Auto tuning of RNN hyper-parameters
using cuckoo search algorithm. In: Proceedings of the International
Conference on Contemporary Computing, 2019, pp. 1–5.

21. Nawi NM, Khan A, Rehman MZ. A new optimized cuckoo search recurrent
neural network (CSRNN). In: Proceedings of the International
Conference on Robotic, Vision, Signal Processing & Power Applications,
2014, pp. 335–341.

22. Yuliyono AD, Girsang AS. Artificial bee colony-optimized LSTM for bitcoin
price prediction. Adv Sci Technol Eng Syst J. 2019;4:375–383.

23. Bosire A. Recurrent neural network training using ABC algorithm for
traffic volume prediction. Informatica. 2019;43:551–559.

24. Dhar V, Sun C, Batra P. Transforming finance into vision: Concurrent
financial time series as convolutional net. Big Data. 2019;7:276–285.

25. World Health Organization. 2020. Coronavirus disease 2019 (COVID-
19): Situation report 74. Technical report, WHO. Available online at
https://www.who.int/docs/default-source/coronaviruse/situation-
reports/20200403-sitrep-74-covid-19-mp.pdf (last accessed May 9,
2020).

26. Ghani AC, Donnelly CA, Cox DR, et al. Methods for estimating the case
fatality ratio for a novel, emerging infectious disease. Am J Epidemiol.
2005;162:479–486.

27. Mizumoto K, Chowell G. Estimating risk for death from 2019 novel
coronavirus disease, China, January–February 2020. Emerg Infect Dis.
2020;26;1251–1256.

28. Wu JY, Leung K, Leung GM. Nowcasting and forecasting the potential
domestic and international spread of the 2019-nCoV outbreak
originating in Wuhan, China: A modelling study. Lancet. 2020;396:
689–697.

29. World Health Organization. 2020. Immunity passports in the context of
COVID-19. Technical report, WHO. Available online at https://www.who
.int/news-room/commentaries/detail/immunity-passports-in-the-
context-of-covid-19 (last accessed April 29, 2020).

30. Korea Centers for Disease Control and Prevention. 2020. Coronavirus
Disease-19. Available online at https://www.cdc.go.kr/cdc_eng/ (last
accessed May 9, 2020).

31. González MC, Hidalgo CA, Barabási AL. Understanding individual human
mobility patterns. Nature. 2008;453:779–782.

32. Calvet L, Armas JD, Masip D, Juan AA. Learnheuristics: Hybridizing
metaheuristics with machine learning for optimization with dynamic
inputs. Math Open. 2017;15:261–280.

33. Darwish A, Hassanien AE, Das S. A survey of swarm and evolutionary
computing approaches for deep learning. Artif Intell Rev. 2020;53:
1767–1812.

34. Devikanniga D, Vetrivel K, Badrinath N. Review of meta-heuristic
optimization based artificial neural networks and its applications. J Phy:
Conf Ser. 2019;1362:012074.

35. Trilla A. One world, one health: The novel coronavirus COVID-19
epidemic. Med Clin. 2020;154:175–177.

36. World Health Organization. 2003. Consensus document on the epide-
miology of severe acute respiratory syndrome (SARS). Technical report,
WHO. Available online at https://www.who.int/csr/sars/en/
WHOconsensus.pdf (last accessed May 10, 2020).

37. World Health Organization. 2019. Middle East respiratory syndrome
coronavirus (MERS-CoV). Technical report, WHO. Available online at
https://www.who.int/emergencies/mers-cov/en/ (last accessed May 10,
2020).

38. Coburn BJ, Wagner BG, Blower S. Modeling influenza epidemics and pan-
demics: insights into the future of swine flu (H1N1). BMC Med. 2009;7:30.

39. Khan A, Naveed M, Dur e Ahmad M. Estimating the basic reproductive
ratio for the Ebola outbreak in Liberia and Sierra Leone. Infect Dis
Poverty. 2015;4:13.

40. World Health Organization. 2020. Ebola virus disease. Technical report,
WHO. Available online at https://www.who.int/news-room/fact-sheets/
detail/ebola-virus-disease (last accessed May 10, 2020).

41. Martı́nez-Álvarez F, Troncoso A, Asencio-Cortés G, Riquelme JC. A survey
on data mining techniques applied to electricity-related time series
forecasting. Energies. 2015;8:13162–13193.

42. Bedi J, Toshniwal D. Deep learning framework to forecast electricity
demand. Appl Energy. 2019;238:1312–1326.

43. Torres JF, Galicia A, Troncoso A, Martı́nez-Álvarez F. A scalable approach
based on deep learning for big data time series forecasting. Integr
Comp Aided Eng. 2018;25:335–348.

44. Galicia A, Torres JF, Martı́nez-Álvarez F, Troncoso A. Scalable forecasting
techniques applied to big electricity time series. Lect Notes Comput Sci.
2019;10306:165–175.

45. Galicia A, Talavera-Llames RL, Troncoso A, et al. Multi-step forecasting for
big data time series based on ensemble learning. Knowl Based Syst.
2019;163:830–841.

46. Torres JF, Gutiérrez-Avilés D, Troncoso A, Martı́nez-Álvarez F. Random
hyper-parameter search-based deep neural network for power con-
sumption forecasting. Lect Notes Comput Sci. 2019;11506:259–269.

Cite this article as: Martı́nez-Álvarez F, Asencio-Cortés G, Torres JF,
Gutiérrez-Avilés D, Melgar-Garcı́a L, Pérez-Chacón R, Rubio-Escudero
C, Riquelme JC, Troncoso A (2020) Coronavirus optimization
algorithm: a bioinspired metaheuristic based on the COVID-19
propagation model. Big Data 8:4, 308–322, DOI: 10.1089/
big.2020.0051.

Abbreviations Used
ABC ¼ artificial bee colony
ACO ¼ ants colony optimization

COVID-19 ¼ coronavirus disease 2019
CS ¼ cuckoo search

CVOA ¼ coronavirus optimization algorithm
DNN ¼ deep neural network

DNN-CVOA ¼ CVOA has been combined with DNN
DT ¼ decision tree

GAs ¼ genetic algorithms
GBTs ¼ gradient-boosted trees

GS ¼ grid search
LR ¼ linear regression

LSTM ¼ long short-term memory
MAPE ¼ mean absolute percentage error

RF ¼ random forest
RS ¼ random search

MERS ¼ Middle East respiratory syndrome
PSO ¼ particle swarm optimization

SARS ¼ severe acute respiratory syndrome
SARS-CoV-2 ¼ SARS coronavirus 2

WHO ¼ World Health Organization

322 MARTÍNEZ-ÁLVAREZ ET AL.

D
ow

nl
oa

de
d

by
 6

2.
83

.7
1.

86
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
27

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

4.1 Artículos de revista 117

4.1.6. Deep learning for time series forecasting: A survey

Tabla 4.6 Datos del artículo: Deep learning for time series forecasting: A
survey

Autores Torres, J. F., Hadjout, D., Sebaa, A., Martínez-Álvarez, F., and
Troncoso, A.

Revista Big Data
Año 2021

Páginas 308-322
Volumen 9, no. 1

DOI 10.1089/big.2020.0159
IF 3.644 (15/108)

Cuartil Q1
Citas 19 (Google Scholar)

128 Informe sobre las publicaciones

4.2. Congresos internacionales

4.2.1. Deep Learning-Based Approach for Time Series Fo-
recasting with Application to Electricity Load

Tabla 4.7 Datos del artículo: Deep Learning-Based Approach for Time Series
Forecasting with Application to Electricity Load

Autores Torres, J. F., Fernández, A. M., Troncoso, A., and Martínez-
Álvarez, F.

Congreso International Work-Conference on the Interplay Between
Natural and Artificial Computation

Publicación Lecture Notes in Computer Science book series. Springer
International Publishing.

Año 2017
Páginas 203-212

Volumen 10338
DOI 10.1007/978-3-319-59773-7_21

ISBN 978-3-319-59773-7
Ranking Nacional

Citas 39 (Google Scholar)

Deep Learning-Based Approach for Time Series
Forecasting with Application to Electricity Load

J.F. Torres, A.M. Fernández, A. Troncoso, and F. Mart́ınez-Álvarez(B)

Division of Computer Science, Universidad Pablo de Olavide, 41013 Seville, Spain
{jftormal,amfergom}@alu.upo.es, {ali,fmaralv}@upo.es

Abstract. This paper presents a novel method to predict times series
using deep learning. In particular, the method can be used for arbitrary
time horizons, dividing each predicted sample into a single problem. This
fact allows easy parallelization and adaptation to the big data context.
Deep learning implementation in H2O library is used for each subprob-
lem. However, H2O does not permit multi-step regression, therefore the
solution proposed consists in splitting into h forecasting subproblems,
being h the number of samples to be predicted, and, each of one has
been separately studied, getting the best prediction model for each sub-
problem. Additionally, Apache Spark is used to load in memory large
datasets and speed up the execution time. This methodology has been
tested on a real-world dataset composed of electricity consumption in
Spain, with a ten minute frequency sampling rate, from 2007 to 2016.
Reported results exhibit errors less than 2%.

Keywords: Deep learning · Time series · Forecasting · Apache spark

1 Introduction

Time series forecasting is a task of utmost relevance that can be found in almost
any scientific discipline. Electricity is not an exception, and much work is devoted
to predict both demand and prices [10]. Achieving accurate demand forecasts is
critical since it can be used in production planning, inventory management, or
even in evaluating capacity needs. In other words, it may lead to insufficient or
excessive energy production, thus reducing profits.

A novel approach based on deep learning [5,12] is proposed in this article to
forecast time series, with application to electricity demand. Deep learning is an
emerging branch of machine learning that extends artificial neural networks. One
of the main drawbacks that classical artificial neural networks exhibit is that,
with many layers, its training typically becomes too complex [9]. In this sense,
deep learning consists of a set of learning algorithms to train artificial neural
networks with a large number of hidden layers. Deep learning models are also
sensitive to initialization and much attention must be paid at this stage [13].

The main idea underlying the method is dividing the number of samples to
be simultaneously predicted (horizon of prediction) into different subproblems.

c© Springer International Publishing AG 2017
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2017, Part II, LNCS 10338, pp. 203–212, 2017.
DOI: 10.1007/978-3-319-59773-7 21

204 J.F. Torres et al.

Every subproblem is independently solved making use of different pieces of the
historical data. The implementation of the deep learning method used is that of
the well-known H2O library, which is open source and designed for a distributed
environment [2].

It is worth noting that this strategy is particularly suitable for parallel imple-
mentations and it is ready to be used for big data environments. Furthermore,
in order to speed up the whole process, Apache Spark is used to load the data
in memory.

The performance of the approach has been assessed in real-world datasets.
Electricity consumption in Spain has been used as case study, by analyzing data
from 2007 to 2016 in the usual 70–30% training-test sets structure.

The rest of the paper is structured as follows. Relevant related works are
discussed in Sect. 2. The methodology proposed in this paper is introduced and
described in Sect. 3. The results of applying the approach to Spanish electricity
data are reported and discussed in Sect. 4. Finally, the conclusions drawn are
summarized in Sect. 5.

2 Related Works

This section reviews relevant works in the context of time series forecasting and
deep learning.

Some studies are currently applying deep learning to prediction problems.
Ding et al. [4] proposed a method for event driven stock market prediction.
They used a deep convolutional neural network, at a second stage, to model
both short-term and long-term stock price fluctuations. Results were assessed
on S&P 500 stock historical data.

A novel deep learning architecture for air quality prediction was first intro-
duce in [8]. The authors evaluated spatio-temporal correlations by first applying
a stacked autoencoder model for feature extraction. Comparisons to other mod-
els confirmed that the method achieved promising results.

A meaningful attempt to apply a data-driven approach to forecasting trans-
portation demand can be found in [1]. In particular, a deep learning model to
forecast bus ridership at the stop and stop-to-stop levels was there adopted. As
main novelty, the authors claim that, for the first time, the method is only based
on feature data.

Deep learning based studies can be found for classification as well. Image
processing has been shown to be one of the most fruitful fields of deep learning
application. A successful approach for image classification with deep convolu-
tional neural networks was introduced in [7]. They classified 1.2 million high-
resolution images achieving top errors in the ImageNet LSVRC-2010 contest.

The authors in [3] proposed a deep learning-based classifier for hyperspectral
data. The hybrid method (it is also combined with principal component analysis
and logistic regression) was applied to extract deep features for such kind of
data, achieving competitive results.

Deep Learning-Based Approach for Time Series Forecasting 205

Tabar and Halici [14] introduced an approach based on deep learning for clas-
sification of electroencephalography (EEG) motor imagery signals. In particular,
the method combined convolutional neural networks and stacked autoencoders
and showed to be competitive when compared to other existing techniques.

Finally, some works relating to electricity demand forecasting are also dis-
cussed. Talavera et al. [15] proposed a forecasting algorithm to deal with Spanish
electricity data. The algorithm was developed under the Apache Spark which is
an engine for large-scale data processing framework [16], and was applied to big
data time series. Satisfactory results were reported.

Electricity demand profiles were discovered as initial step for forecasting pur-
poses in [11]. Spanish data were also analyzed and, as happened in the afore
discussed study, the method was designed to be able to evaluate big time series
data. Relevant patterns were discovered, distinguishing between different seasons
and days of the week.

Grolinger et at. [6] explored sensor-based forecasting in event venues, a sce-
nario with typically large variations in consumption. They authors paid par-
ticular attention to the relevance of the size of the data and on the temporal
granularity impact. Neural networks and support vector regression were applied
to 15-minute frequency data for Ontario, Canada.

As it can been seen after the analysis of updated state-of-the-art, deep learn-
ing is being currently applied into a variety of problems. However, to the authors’
knowledge, no method has been developed to forecast electricity-related time
series and has been conceived for big data time series forecasting. Therefore, the
conduction of this research is justified.

3 Methodology

This section describes the methodology proposed in order to forecast time series.
Apache Spark has been used to load data in memory and a deep learning imple-
mentation in R language, within the H2O package, has been applied to forecast
time series.

The objective of this study consists in predicting h next values for a time
series, expressed as [x1,. . . ,xt], being h the horizon of prediction, depending on
a historical window composed of w values. This can be formulated as:

[xt+1, xt+2, . . . , xt+h] = f(xt, xt−1, . . . , xt−w−1) (1)

where f is the model to be found in the training phase by the deep learning algo-
rithm. However, the package chosen does not support the multivariate regression,
therefore, multi-step forecasting is not supported either.

The solution for this is splitting the problem into h forecast subproblems,
which can formulated as:

206 J.F. Torres et al.

xt+1 = f1(xt, xt−1, . . . , xt−w−1) (2)

xt+2 = f2(xt, xt−1, . . . , xt−w−1) (3)

. . . (4)

xt+h = fh(xt, xt−1, . . . , xt−w−1) (5)

That is, given w samples used as input for the deep learning algorithm, h
values are simultaneously forecasted. Based on this formulation, each estimation
is made separately, thus avoiding the consideration of previously predicted sam-
ples and, consequently, removing the error propagation. In other words, if the
prediction of previous values would be used to predict the next value, the error
would be higher because the error would be accumulated in each iteration of
the prediction horizon. Also, to create a model for each h value could involve a
higher computational cost than building just a model to predict all values.

The last step consists in obtaining the best model for each subproblem by
applying deep learning and varying the number of hidden layers and neurons
per layer. Once the training for each subproblem is complete, the test set is
predicted.

Fig. 1. Illustration of the proposed methodology.

Deep Learning-Based Approach for Time Series Forecasting 207

Figure 1 shows the full study’s flow, starting with input dataset and ending
with aggregated output. It can be seen that, in its current implementation, an
iterative strategy has been followed since each subproblem is solved after the
previous one is done. However, it is easy to figure out that this strategy can be
easily parallelized and adapted to a big data environment.

It is important to highlight that H2O frame can be created without Spark
dataframe conversion, but this step allocates data in memory and makes the
access more quickly. Also it is important to note that deep learning algorithm
on H2O library has a lot of parameters to adjust the execution. In this study,
some of this parameters have been used. They will be thoroughly discussed in
Sect. 4.2

4 Results

As previously mentioned, a study to forecast a time series of electricity con-
sumption has been conducted. This section presents the results obtained. First,
Sect. 4.1 describes the dataset used for the study. Second, Sect. 4.2 provides the
experimental setup carried out and, finally, Sect. 4.3 discusses results obtained.

4.1 Dataset Description

The dataset considered in this study provides electricity consumptions readings
in Spain from January 2007 to June 2016 with a measure every 10 min, i.e., the
time series is composed of 497832 measurements.

In study, the dataset was only filtered by consumption and redistributed in
a matrix depending of the window size and prediction horizon. The values of
these parameters were set to 168 and 24, respectively. After this preprocessing,
the final dataset has 20736 rows and 192 columns into a 23.9 MB file which was
recorded for further studies.

To perform the entire experimentation, the dataset has been split into 14515
instances for training (70%) and 6221 for test (30%).

4.2 Design of Experiments

In order to assess the performance of the algorithm, the well-known mean relative
error (MRE) measure has been selected. For a matrix of data, the formula is:

MRE =
1

r ∗ c

r∑

i=1

c∑

j=1

|vpred − vactual|
vactual

(6)

where r and c represents the number of rows and columns on the test set, vpred

stands for the predicted values and vactual for the actual values.
As discussed in previous sections, it is necessary to define and initialize several

variables. Variable values have been set to:

208 J.F. Torres et al.

1. The size of the window (w) represents the length of the historical data consid-
ered to predict the target subsequence. It has been set to 168, which represents
7 blocks of 4 h (1 day and 4 h, in total). This parameter was set during the
training phase with values 24, 48, 72, 96, 120, 144 and 168, and was found to
be the one with minimum error.

2. As for the prediction horizon (h), it was set to h = 24 (4 h). Considering a
higher h would turn the problem into a long-term forecasting one, and some
others consideration should then be taken into consideration.

3. To apply deep learning, it is necessary to set the number of hidden layers and
number of neurons. The number of hidden layer was set to 3 and the number
of neurons for each one was set to an interval ranging from 10 to 100 with
a step of 10, using a validation set composed of the 30% of the training set.
Then, only the best value was chosen for the analysis.

4. λ was set to 0.001. This parameter is used for regularization of the dataset.
5. Also, two different parameters were set to describe the adaptive rate. These

were ρ and ε, which were set to 0.99 and 1.0E − 9, which are default values
for those parameters, respectively.

6. The activation function chosen was the hyperbolic tangent function.
7. As for the distribution function, Poisson distribution was the one chosen.

These parameters were chosen based on several tests varying values. Some rel-
evant results are shown in Table 1, in which it can be seen MRE values obtained
for some parameters. For instance, Poisson distribution offers better results than
other options.

Table 1. Errors varying deep learning parameters.

Lambda Rho Epsilon Activation Distribution MRE (%)

1 0.9 1.0E-9 Tanh Poisson 2.56

1 0.99 1.0E-9 Tanh Poisson 2.43

1 0.999 1.0E-9 Tanh Poisson 2.49

1 0.9 1.0E-9 Tanh Gaussian 15.61

1 0.99 1.0E-9 Tanh Gaussian 15.61

1 0.999 1.0E-9 Tanh Gaussian 15.57

0.001 0.99 1.0E-9 Tanh Poisson 1.84

1 0.99 1.0E-9 Tanh Tweedie 4.21

10 0.99 1.0E-9 Tanh Poisson 2.69

1 0.99 1.0E-9 Tanh Huber 15.63

1 0.99 1.0E-9 Tanh Laplace 15.63

The algorithm has been executed using the dataset described in Sect. 4.1.
The computer used to complete this execution has been an Intel Core i7-5820K

Deep Learning-Based Approach for Time Series Forecasting 209

at 3.30 GHz, 15 MB cache, 12 cores and 16 GB of RAM memory working, under
Ubuntu 16.04.

Finally, the dataset was loaded from Apache Spark to allocate it in memory
instead of in disk, thus accessing to the data more efficiently and quickly.

4.3 Electricity Consumption Time Series Forecasting

This section describes the results obtained after applying the algorithm proposed
to the dataset, which were described in Sect. 4.1 over the machine described
in Sect. 4.2. This test provides a total of 20736 instances and 192 attributes,
resulting in 149305 forecast values.

As forecasting are divided in h subproblems (in this case, h is 24), it is possible
to use different neuron values in each subproblem to obtain smaller errors. In
this study, it was decided to set the possible neurons combinations to 3 hidden
layers, each one with a interval of neurons (10 to 100 with a step of 10), as
discussed in the previous section. Table 2 shows the neuron configurations that
are optimum for each subproblem:

Table 2. Optimum neurons configuration for each subproblem.

Subproblem Hidden layers Neurons Error Subproblem Hidden layers Neurons Error

1 3 30 0.77 13 3 40 1.83

2 3 80 1.13 14 3 80 1.81

3 3 90 1.15 15 3 90 2.11

4 3 60 1.18 16 3 40 1.93

5 3 60 1.35 17 3 70 2.50

6 3 100 1.36 18 3 70 2.09

7 3 40 1.50 19 3 70 2.17

8 3 80 1.71 20 3 60 2.14

9 3 30 1.88 21 3 90 2.43

10 3 80 1.76 22 3 70 2.56

11 3 50 1.66 23 3 100 2.42

12 3 100 2.07 24 3 100 2.77

Table 2 summarizes the errors for each subproblem depending of the optimum
number of neurons per layer. This error tends to increase as the subproblem
increases because there exists a gap between the first sample in the historical
data and the sample to be predicted, that is, there immediately after values of
the target sample are missing and omitted during the forecasting process.

Using this configuration of neurons and the other deep learning parameter
values mentioned in Sect. 4.2 the final value of MRE to predict the full data test
has been 1.84%.

Figures 2 and 3 are depicted for illustrative purposes. They represent the
best and the worst comparison between actual and predicted consumption on a

210 J.F. Torres et al.

0 20 40 60 80 100 120 140

24000

26000

28000

30000

32000

34000

Time (10 min.)

E
le

ct
ric

ity
 c

on
su

m
pt

io
n

Actual data

Predicted data

Fig. 2. The best forecast achieved for a full day.

0 20 40 60 80 100 120 140

18000

20000

22000

24000

26000

28000

Time (10 min.)

E
le

ct
ric

ity
 c

on
su

m
pt

io
n

Actual data

Predicted data

Fig. 3. The worst forecast achieved for a full day.

full day (144 measures) in the test set, respectively. It must be noted that some
ripple in predicted data that is present not only in days depicted in the figures,
but in almost the entire test set. This fact is justified because every sample is
independently estimated. A feasible and successful post-processing could consist
in the automatic application of any filter. In short, such a shape for the output
must be further studied in future works.

Deep Learning-Based Approach for Time Series Forecasting 211

5 Conclusions

This work describes a new approach to use deep learning methods as regres-
sors and forecast the electricity consumption for the next twenty four values. It
uses Apache Spark framework to load data in memory and the H2O library to
apply the algorithm developed in R language. On this preliminary study, the
results obtained can be considered satisfactory since errors are smaller than 2%.
However, future works will be directed towards the improvement of the selection
of the best parameters to forecast time series and to scale it to be applied to
big data using a cluster of machines. Also, some post-processing seems to be
necessary to reduce the ripple in forecasted values.

Acknowledgments. The authors would like to thank the Spanish Ministry of Econ-
omy and competitiveness and Junta de Andalućıa for the support under projects
TIN2014-55894-C2-R and P12-TIC-1728, respectively.

References

1. Baek, J., Sohn, K.: Deep-learning architectures to forecast bus ridership at the
stop and stop-to-stop levels for dense and crowded bus networks. Appl. Artif.
Intell. 30(9), 861–885 (2016)

2. Candel, A., LeDell, E., Parmar, V., Arora, A.: Deep Learning with H2O. H2O.ai
Inc., California (2017)

3. Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification
of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(6),
2094–2107 (2014)

4. Ding, X., Zhang, Y., Liu, T., Duan, J.: Deep learning for event-driven stock predic-
tion. In: Proceedings of the International Joint Conference on Artificial Intelligence,
pp. 2327–2334 (2015)

5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

6. Grolinger, K., L’Heureux, A., Capretz, M.A.M., Seewald, L.: Energy forecasting
for event venues: big data and prediction accuracy. Energy Buildings 112, 222–233
(2016)

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

8. Li, X., Peng, L., Hu, Y., Shao, J., Chi, T.: Deep learning architecture for air quality
predictions. Environ. Sci. Pollut. Res. Int. 23, 22408–22417 (2016)

9. Livingstone, D.J., Manallack, D.T., Tetko, I.V.: Data modelling with neural net-
works: advantages and limitations. J. Comput.-Aided Mol. Des. 11, 135–142 (1997)

10. Mart́ınez-Álvarez, F., Troncoso, A., Asencio-Cortés, G., Riquelme, J.C.: A survey
on data mining techniques applied to energy time series forecasting. Energies 8,
1–32 (2015)

11. Pérez-Chacón, R., Talavera-Llames, R.L., Troncoso, A., Mart́ınez-Álvarez, F.:
Finding electric energy consumption patterns in big time series data. In: Omatu,
S., et al. (eds.) Proceedings of the International Conference on Distributed Com-
puting and Artificial Intelligence. AISC, vol. 474, pp. 231–238. Springer, Cham
(2016)

212 J.F. Torres et al.

12. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85–117 (2015)

13. Sutskever, I., Martens, J., Dahl, G.E., Hinton, G.E.: On the importance of ini-
tialization and momentum in deep learning. In: Proceedings of the International
Conference on Machine Learning, pp. 1139–1147 (2013)

14. Tabar, Y.R., Halici, U.: Deep learning-based classification of hyperspectral data.
J. Neural Eng. 14(1), 016003 (2016)

15. Talavera-Llames, R.L., Pérez-Chacón, R., Mart́ınez-Ballesteros, M., Troncoso, A.,
Mart́ınez-Álvarez, F.: A nearest neighbours-based algorithm for big time series
data forecasting. In: Mart́ınez-Álvarez, F., Troncoso, A., Quintián, H., Corchado,
E. (eds.) HAIS 2016. LNCS, vol. 9648, pp. 174–185. Springer, Cham (2016). doi:10.
1007/978-3-319-32034-2 15

16. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of the International Conference on
Hot Topics in Cloud Computing, pp. 1–10 (2010)

4.2 Congresos internacionales 139

4.2.2. Scalable Forecasting Techniques Applied to Big Elec-
tricity Time Series

Tabla 4.8 Datos del artículo: Scalable Forecasting Techniques Applied to Big
Electricity Time Series

Autores Galicia, A., Torres, J. F., Martínez-Álvarez, F., and Tronco-
so, A.

Congreso Advances in Computational Intelligence. International
Work-Conference on Artificial Neural Networks

Publicación Lecture Notes in Computer Science book series. Springer
International Publishing.

Año 2017
Páginas 165–175

Volumen 10306
DOI 10.1007/978-3-319-59147-6_15

ISBN 978-3-319-59147-6
Ranking CORE B

Citas 19 (Google Scholar)

Scalable Forecasting Techniques Applied to Big
Electricity Time Series

Antonio Galicia, José F. Torres, Francisco Mart́ınez-Álvarez,
and Alicia Troncoso(B)

Division of Computer Science, Universidad Pablo de Olavide, 41013 Seville, Spain
{agalde,jftormal}@alu.upo.es, {fmaralv,ali}@upo.es

Abstract. This paper presents different scalable methods to predict
time series of very long length such as time series with a high sampling
frequency. The Apache Spark framework for distributed computing is
proposed in order to achieve the scalability of the methods. Namely, the
existing MLlib machine learning library from Spark has been used. Since
MLlib does not support multivariate regression, the forecasting problem
has been split into h forecasting subproblems, where h is the number
of future values to predict. Then, representative forecasting methods of
different nature have been chosen such as models based on trees, two
ensembles techniques (gradient-boosted trees and random forests), and
a linear regression as a reference method. Finally, the methodology has
been tested on a real-world dataset from the Spanish electricity load data
with a ten-minute frequency.

Keywords: Big data · Scalable · Electricity time series · Forecasting

1 Introduction

It is known that advances in technology have meant that the amount of data
being generated and stored is increasing to the point that 90% of the data in
the world have been generated in the last years. The need to process this huge
amount of data has become essential for the evolution of the data mining tools
giving rise to the term big data. On the other hand, an essential component in
the nature of the big data is that they are commonly indexed over time, called
here big time series, and its prediction in future time periods can be extremely
important in diverse areas such as energy, traffic, pollution and so forth.

Nowadays, the main existing frameworks for processing big time series have
been developed by over the top tech companies like Google or Yahoo. Google devel-
oped the MapReduce technology [5], which divides input data for processing in
blocks and then integrates the output information of each block in a single solution.
Later, Yahoo developed Hadoop technology [22], an open code implementation
of the MapReduce paradigm, currently integrated with the Apache foundation.
The limitations of MapReduce in the implementation of algorithms, which iterate

c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part II, LNCS 10306, pp. 165–175, 2017.
DOI: 10.1007/978-3-319-59147-6 15

166 A. Galicia et al.

over the data, have required the creation of new tools, such as Spark [9], devel-
oped by the University of Berkeley and also today in the Apache Foundation.
Spark installed on a Hadoop distributed file system (HDFS) allows in-memory
parallel data processing, achieving a much higher processing speed than Hadoop.
Apache Spark is also an open source software project that allows the multi-
pass computations, provides high-level operators, uses diverse languages (Java,
Python, R) in addition to its own language called Scala, and finally, offers the
machine learning library MLlib [8].

In this work, a collection of scalable algorithms are proposed in order to
forecast big data time series. In particular, representative prediction methods of
different nature have been chosen such as models based on trees, linear regression
and two ensembles techniques (gradient-boosted trees and random forests). The
algorithms have been developed in the framework Apache Spark under the Scala
programming language by using the library MLlib. All the methods have been
tested on a real-world big time series related to energy consumption.

The rest of the paper is structured as follows. Section 2 reviews of the existing
literature related to the machine learning algorithms for big data. In Sect. 3 the
proposed methodology to forecast big data time series is introduced. Section 4
presents the experimental results corresponding to the prediction of the energy
consumption. Finally, Sect. 5 closes the paper giving some final conclusions.

2 Related Work

The prediction of future events has always fascinated humankind. Not in vain,
many of these efforts can be seen in everyday activities, such as weather fore-
casting, the prediction of exchange rate fluctuations or of pollution.

The methods for time series forecasting can be roughly classified as follows:
classical Box and Jenkins-based methods such as ARMA, ARIMA, ARCH or
GARCH [1] and data mining techniques (the reader is referred to [12] for a
taxonomy of these techniques applied to energy time series forecasting). However,
the majority of the data mining techniques cannot be applied when big data have
to be processed due to the high computational cost. Therefore, big data mining
techniques [21,24] are being developed for distributed computing in order to
solve typical tasks as clustering, classification or regression. A brief description
of the main advances is made below.

Increased attention has been paid to big data clustering in recent years
[11,15]. A survey on this topic can be found in [7]. Specifically, several approaches
have been recently proposed to apply clustering to big data time series. Namely,
in [6] the authors propose a new clustering algorithm based on a previous clus-
tering of a sample of the input data. The dynamic time warping was tested to
measure the similarity between big time series in [16]. In [23] a data processing
based on MapReduce was used to obtain clusters. A distributed method for the
initialization of the k-means is proposed in [3].

Regarding classification tasks, several MapReduce-based approaches in big
data scenarios have been recently provided. A MapReduce-based framework

Scalable Forecasting Techniques Applied to Big Electricity Time Series 167

focused on several instance reduction methods is proposed in [20] to reduce the
computational cost and storage requirements of the k Nearest Neighbors (kNN)
classification algorithm. Also, several parallel implementations of the kNN algo-
rithm based on Spark have been proposed in the literature [17,19]. Support
vector machines (SVM) were recently adapted to the field of high performance
computing giving rise to parallel SVMs [4].

In the regression field, there is still much research to be conducted, especially
considering that very few works have been published. For instance, the ensemble
techniques based on trees have been the most studied topic in the literature due
to its easy adaptation to a distributed computing framework. Random forests
have been applied to some particular problems showing a good performance for
high-dimensional data [10]. On the other hand, regression trees have been built
by parallel learning based on MapReduce on computer clusters in [14]. However,
these methods based on a distributed computing have not used for big time
series forecasting in to the best of authors’ knowledge, and therefore, this work
aims at filling this gap.

3 Methodology

This section describes the methodology proposed in order to forecast big data
time series by using the MLlib library.

Given a time series recorded in the past up to the time t, [x1,...,xt], the prob-
lem consists in predicting the h next values for the time series from a historical
windows composed of w-values (h is known as the prediction horizon). This can
be formulated as:

[xt+1, xt+2, . . . , xt+h] = f(xt, xt−1, . . . , xt−(w−1)) (1)

where f is the model to be found by the forecasting method in the training
phase.

Nevertheless, the existing regression techniques in MLlib do not support the
multivariate regression, that is, the multi-step forecasting. Therefore, the first
stage splits the problem into h forecasting subproblems as follows:

xt+1 = f1(xt, xt−1, . . . , xt−(w−1))

xt+2 = f2(xt, xt−1, . . . , xt−(w−1))

...

xt+h = fh(xt, xt−1, . . . , xt−(w−1)) (2)

The existing possible relations between the h consecutive values xt+1, ..., xt+h

are missed with this formulation. However, if the prediction of previous values
is used to predict the next values a greater error is obtained, as the errors are
accumulated in the last time stamps of the prediction horizon. Additionally, to
obtain h models f1, ..., fh to predict h values has a greater computational cost
than the building of a just model f to predict all the values.

168 A. Galicia et al.

The next stage consists in solving each forecasting subproblem in the Spark
distributed computing framework by using the regression methods of the MLlib
library. The main variable in Apache Spark is the Resilient Distributed Dataset
(RDD), which is an immutable and partitioned collection of elements that can
be operated in a distributed way. Thus, every RDD created is split in blocks of
the same size approximately across the nodes that integrate the cluster, as it is
shown in Fig. 1.

dataSetFile RDD: dataSet

Executor1

rdd_1

Executor2

rdd_2

Executor3

rdd_3

RDD
CLUSTER

Fig. 1. A RDD variable in a spark cluster.

Once the dataset has been distributed, the MLlib algorithms firstly obtain a
model from each worker node, and later, aggregate the predictions obtained for
each model in a stage called reducer. It is important to highlight that RDD vari-
ables do not preserve the order, and therefore, all instances have to be indexed
to deal with time series by using MLlib. An illustration of the methodology is
presented in Fig. 2.

Fig. 2. Illustration of the proposed methodology.

Scalable Forecasting Techniques Applied to Big Electricity Time Series 169

Regression methods from MLlib have been selected according to cover dif-
ferent paradigms such as linear models, models based on trees and, finally, tech-
niques ensembles.

The models based on trees have been mainly proposed because interpretable
results are always desirable for the end-user. Furthermore, the ensemble tech-
niques usually improve the results obtained by a single regressor in addition to
obtain very good results for many real applications. Finally, a linear model has
been selected as a state-of-the-art reference method. A brief description of the
methods used for each paradigm is made below.

Within the models based on trees, a greedy algorithm [18] that performs a
recursive binary partitioning of the feature space in order to build a decision tree
has been used. The tree predicts the same value for all instances that reach the
same leaf node. The root nodes are selected from a set of possible splits, but no
from all attributes, by maximizing the information gain. In this approach, the
possible split candidates are a quantile over the block of the data, which is being
processed by a certain worker machine in the cluster. Moreover, once the splits
are ordered, a maximum number of bins is allowed.

Two ensemble of decision trees have been considered: random forests [2] and
the gradient-boosted trees (GBTs) [13]. Both algorithms learn ensembles of trees,
but the training processes are very different. GBTs train one tree at a time,
being the longer training than random forests, which can train multiple trees in
parallel. Random forests improves the performance when the number of trees
increases, however, GBTs can present overfitting if the number of trees grows
too large.

Random forests is an ensemble of decision trees trained separately in the
same way as detailed above for individual decision trees. The trees generated
are different because of different training sets from a bootstrap subsampling and
different random subsets of features to split on at each tree node are used. To
make a prediction on a new instance, a random forest makes the average of the
predictions from its set of decision trees.

GBTs iteratively train a sequence of decision trees. On each iteration, the
algorithm uses the current ensemble to predict the label of each training instance
and then compares the prediction with the true label by computing the mean
square error. The training instances with poor predictions are re-labeled, and
therefore, in the next iteration, the decision tree will help correct for previous
mistakes.

Finally, a linear regression has been selected as linear model. The well-known
stochastic gradient descent method has been used to minimize the mean square
error for the training set in order to obtain the model.

4 Results

This section presents the results obtained from the application of the proposed
methodology to electricity consumption big data time series to predict the 24
next values, that is, the forecast horizon set to h = 24 (4 h). Hence, Sect. 4.1

170 A. Galicia et al.

describes the used dataset. The experimental setup carried out is detailed in
Sect. 4.2. Finally, the results are discussed in Sect. 4.3.

4.1 Datasets Description

The time series used is related to the electrical energy consumption, which ranges
from January 1st 2007 at 00:00 am to June 21st 2016 at 23:40 am. The consump-
tion is measured every ten minutes during this period. This makes a time series
with a total length of 497832 measurements, which have been split into 298608
samples for the training set corresponding to the period from January 1st, 2007
at 00:00 am to September 8th 2012 at 10:30 am and 199080 samples for the test
set corresponding to the period from September 8th 2012 at 10:40 am to June
21st 2016 at 11:40 pm.

4.2 Design of Experiments

The experimental setting of the algorithms is as follows:

1. The number of past values used to predict the 24 next values has been set to
144 (window w = 144), which represents all the values for a whole day.

2. In the linear regression, the stochastic gradient descent method requires an
adequate number of iterations and rate of learning in order to guarantee the
convergence of the optimization technique. In this work, values of 1.0E − 10
for the rate and 100 for the iterations have shown to be suitable.

3. The number of trees and the maximum depth are the main inputs for random
forests and GBTs. Different depth levels have been tested for both ensembles,
namely, four and eight. A number of five trees has been set for GBTs and
values of 50, 75, 100, 125 and 150 trees for random forests.

The experimentation has been launched on a cluster, which is composed of
three nodes: the master and two slaves nodes. Each node has two Intel Xeon
E7-5820K processors at 3.3 GHz, 15 MB cache, 6 cores per processor and 16 GB
of main memory working under Linux Ubuntu. The cluster works with Apache
Spark 2.0.2 and Hadoop 2.6.

Finally, the well-known mean relative error (MRE) measure has been selected
to assess the accuracy of the predictions. Its formula is:

MRE =
1

N

N∑

i=1

|x̂i − xi|
xi

(3)

where x̂i stands for the predicted values and xi for the actual consumption
values.

Scalable Forecasting Techniques Applied to Big Electricity Time Series 171

4.3 Electricity Consumption Big Data Time Series Forecasting

Table 1 summarizes the MRE obtained by all methods based on trees when
predicting the test set. A study of how the number of trees has an influence
on the error is made for the random forests ensemble. In addition, the depth of
the trees used for all methods has been analyzed. It can be seen that a greater
accuracy is provided when the depth of the trees increases due to trees more
specific are obtained. By contrast, it seems that the number of trees to be used
by the random forest has not a high impact over the error, and therefore, fifty
trees was a sufficient number to obtain a good performance of the method.

Table 1. MRE for different depth levels and number of trees.

Decision tree Random forests GBTs

Number of trees 1 50 75 100 125 150 5

Depth 4 5.1516 4.2823 4.2583 4.2415 4.2415 4.2427 4.3402

Depth 8 2.8783 2.2005 2.1853 2.1842 2.1810 2.1773 2.7190

Table 2 shows the MRE for the methods based on trees when a depth of 8 and
a number of 50 trees for random forests has been used. Additionally, it shows the
MRE obtained by means of a linear regression as baseline method to establish
a benchmarking. All non linear methods based on trees achieved better errors
than the linear regression, namely a difference of 5% approximately. Although
the best results are obtained by the random forests ensemble technique, it can
be concluded that the decision tree is the more adequate method in terms of
accuracy and CPU time to predict big data time series.

Table 2. MRE for the test set and CPU time for training.

MRE (%) Time (seconds)

Linear regression 7.3395 553

Decision tree 2.8783 81

Random forests 2.2005 277

GBTs 2.7190 417

Figures 3 and 4 present the predicted values along with the actual values for
the random forest algorithm for the two days from the test set leading to the
largest and smallest errors, respectively. The worst prediction corresponds to an
error of 9.12% associated to the period from December 24th 2013 at 10:50 am to
December 25th 2013 at 10:40 am and the error of the best prediction is 0.67%
corresponding to the day from September 20th 2012 at 10:40 am to September
21st 2012 at 10:30 am. It can be noted that the worst day is a special day,
namely, Christmas Eve.

172 A. Galicia et al.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Time (10 min)

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

×104

Actual values
Predicted values

Fig. 3. The day corresponding to the worst prediction when using random forests.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Time (10 min)

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

E
n

e
rg

y
co

n
su

m
p

tio
n

×104

Actual values

Predicted values

Fig. 4. The day corresponding to the best prediction when using random forests.

Finally, the training time versus the length of the time series for all algorithms
proposed here are shown in the Fig. 5. The execution time has been obtained
with time series of two, four, eight, sixteen and thirty and two times the length
of the original time series. It is necessary to highlight the building of the dataset
from the time series for each subproblem is not included in the training time as
that is not made in a distributed way, but in an iterative way. From this figure,
it can be observed that the most scalable method is the decision tree.

Scalable Forecasting Techniques Applied to Big Electricity Time Series 173

23x61x8x4x2x1

Length of the time series

0

2000

4000

6000

8000

10000

12000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Linear regression
Decision tree
Random forests
GBTs

Fig. 5. Runtime and scalability for all algorithms.

5 Conclusions

In this work, a new formulation has been proposed for multi-step forecasting
problems in order to be able to use the MLlib library from Apache Spark frame-
work. The use of this library guarantees that the methods applied to predict
the energy consumption for the next twenty four values are scalable, and there-
fore, they can be used for big data time series. A pool of linear and non linear
methods have been selected, e.g., methods based on trees, ensemble techniques
based on trees and a linear regression. Results for the Spanish electricity demand
time series have been reported, showing the good performance of the methods
proposed here and the grade of scalability for each of them.

Future work is directed towards solving the forecasting subproblems in a
distributed way by using technology based on multithreads.

Acknowledgments. The authors would like to thank the Spanish Ministry of Econ-
omy and Competitiveness and Junta de Andalućıa for the support under projects
TIN2014-55894-C2-R and P12-TIC-1728, respectively.

References

1. Box, G., Jenkins, G.: Time Series Analysis: Forecasting and Control. Wiley,
New York (2008)

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
3. Capó, M., Pérez, A., Lozano, J.A.: A Recursive k-means initialization algorithm for

massive data. In: Proceedings of the Spanish Association for Artificial Intelligence,
pp. 929–938 (2015)

174 A. Galicia et al.

4. Cavallaro, G., Riedel, M., Richerzhagen, M., Benediktsson, J.A.: On understand-
ing big data impacts in remotely sensed image classification using support vector
machine methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 4634–4646
(2015)

5. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

6. Ding, R., Wang, Q., Dan, Y., Fu, Q., Zhang, H., Zhang, D.: Yading: fast clustering
of large-scale time series data. Proc. VLDB Endow. 8(5), 473–484 (2015)

7. Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Zomaya, A.Y., Khalil, I., Sebti, F.,
Bouras, A.: A survey of clustering algorithms for big data: taxonomy & empirical
analysis. IEEE Trans. Emerg. Top. Comput. 5, 267–279 (2014)

8. Machine Learning Library (MLlib) for Spark. On-line (2016). http://spark.apache.
org/docs/latest/mllib-guide.html

9. Hamstra, M., Karau, H., Zaharia, M., Knwinski, A., Wendell, P., Spark, L.:
Lightning-Fast Big Analytics. O’ Really Media, USA (2015)

10. Li, L., Bagheri, S., Goote, H., Hassan, A., Hazard, G., Risk adjustment of patient
expenditures: a big data analytics approach. In: Proceedings of the IEEE Interna-
tional Conference on Big Data, pp. 12–14 (2013)

11. Luna-Romera, J.M., Mart́ınez-Ballesteros, M., Garćıa-Gutiérrez, J., Riquelme-
Santos, J.C.: An approach to Silhouette and Dunn clustering indices applied to
big data in spark. In: Luaces, O., Gámez, J.A., Barrenechea, E., Troncoso, A.,
Galar, M., Quintián, H., Corchado, E. (eds.) CAEPIA 2016. LNCS, vol. 9868, pp.
160–169. Springer, Cham (2016). doi:10.1007/978-3-319-44636-3 15

12. Mart́ınez-Álvarez, F., Troncoso, A., Asencio-Cortés, G., Riquelme, J.C.: A survey
on data mining techniques applied to electricity-related time series forecasting.
Energies 8(11), 13162–13193 (2015)

13. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient
descent. In: Proceedings of the Neural Information Processing Systems Conference,
NIPS, pp. 512–518 (1999)

14. Panda, B., Herbach, J.S., Basu, S., Bayardo, R.J.: PLANET: massively parallel
learning of tree ensembles with mapreduce. In: Proceedings of the Very Large
Databases, pp. 1426–1437 (2009)

15. Perez-Chacon, R., Talavera-Llames, R.L., Martinez-Alvarez, F., Troncoso, A.:
Finding electric energy consumption patterns in big time series data. In: Omatu, S.
(ed.) Proceedings of the International Conference on Distributed Computing and
Artificial Intelligence. Advances in Intelligent Systems and Computing, vol. 474.
Springer, Cham (1991)

16. Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q.,
Zakaria, J., Keogh, E.: Addressing big data time series: mining trillions of time
series subsequences under dynamic time warping. ACM Trans. Knowl. Discov.
Data 7(3), 267–279 (2014)

17. Reyes-Ortiz, J.L., Oneto, L., Anguita, D.: Big data analytics in the cloud: spark on
Hadoop vs MPI/OpenMP on Beowulf. Procedia Comput. Sci. 53, 121–130 (2015)

18. Rokach, L., Maimon, O.: Top-down induction of decision trees classifiers - a survey.
IEEE Trans. Syst. Man Cybern. Part C 35(4), 476–487 (2005)

19. Talavera-Llames, R.L., Pérez-Chacón, R., Mart́ınez-Ballesteros, M., Troncoso, A.,
Mart́ınez-Álvarez, F.: A nearest neighbours-based algorithm for big time series
data forecasting. In: Mart́ınez-Álvarez, F., Troncoso, A., Quintián, H., Corchado,
E. (eds.) HAIS 2016. LNCS, vol. 9648, pp. 174–185. Springer, Cham (2016). doi:10.
1007/978-3-319-32034-2 15

Scalable Forecasting Techniques Applied to Big Electricity Time Series 175

20. Triguero, I., Peralta, D., Bacardit, J., Garćıa, S., Herrera, F.: MRPR: a mapreduce
solution for prototype reduction in big data classification. Neurocomputing 150,
331–345 (2015)

21. Tsai, C.-W., Lai, C.-F., Chao, H.-C., Vasilakos, A.: Big data analytics: a survey.
J. Big Data 2(1), 21 (2015)

22. White, T.: Hadoop, The Definitive Guide. O’ Really Media, USA (2012)
23. Zhao, W., Ma, H., He, Q.: Parallel k-means clustering based on mapreduce. In:

Jaatun, M.G., Zhao, G., Rong, C. (eds.) Cloud Computing. LNCS, vol. 5391, pp.
674–679. Springer, Heidelberg (2009). doi:10.1007/978-3-540-95885-7 24

24. Zhou, L., Pan, S., Wang, J., Vasilakos, A.V.: Machine learning on big data: oppor-
tunities and challenges. Neurocomputing 237, 350–361 (2017)

4.2 Congresos internacionales 151

4.2.3. Deep learning for big data time series forecasting
applied to solar power

Tabla 4.9 Datos del artículo: Deep learning for big data time series forecasting
applied to solar power

Autores Torres, J. F., Troncoso, A., Koprinska, I., Wang, Z., and
Martínez-Álvarez, F.

Congreso International on Soft Computing Models in Industrial and
Environment Applications (SOCO) 2018

Publicación Part of the Advances in Intelligent Systems and Computing
book series. Springer International Publishing.

Año 2018
Páginas 123–133

Volumen 771
DOI 10.1007/978-3-319-94120-2_12

ISBN 978-3-319-94120-2
Ranking –

Citas 25 (Google Scholar)

Deep Learning for Big Data Time Series
Forecasting Applied to Solar Power

J. F. Torres1, A. Troncoso1(B), I. Koprinska2, Z. Wang2,
and F. Mart́ınez-Álvarez1

1 Division of Computer Science, Universidad Pablo de Olavide, 41013 Seville, Spain
jftormal@alu.upo.es, {atrolor,fmaralv}@upo.es

2 School of Information Technologies, University of Sydney, Sydney, Australia
{irena.koprinska,zheng.wang}@sydney.edu.au

Abstract. Accurate solar energy prediction is required for the integra-
tion of solar power into the electricity grid, to ensure reliable electricity
supply, while reducing pollution. In this paper we propose a new app-
roach based on deep learning for the task of solar photovoltaic power fore-
casting for the next day. We firstly evaluate the performance of the pro-
posed algorithm using Australian solar photovoltaic data for two years.
Next, we compare its performance with two other advanced methods for
forecasting recently published in the literature. In particular, a forecast-
ing algorithm based on similarity of sequences of patterns and a neural
network as a reference method for solar power forecasting. Finally, the
suitability of all methods to deal with big data time series is analyzed by
means of a scalability study, showing the deep learning promising results
for accurate solar power forecasting.

Keywords: Deep learning · Big data · Solar power
Time series forecasting

1 Introduction

Solar energy is a very promising renewable energy source that is still underused.
However, in recent years there has been a considerable increase world while in the
production and use of solar power. This is due to the lower cost of solar panels
and also the bigger number of large-scale solar plants which have been especially
efficient. In many countries the cost of electricity produced by solar energy is
now comparable to that of using conventional energy sources. This competitive
cost, coupled with the fact that solar is a clean and abundant energy source,
has led to a huge growth in solar capacity. This trend is expected to continue -
by 2020, the global solar capacity is projected to reach 700 GW, an increase of
about 140 times compared to 2005 [6]. In Australia it is expected that by 2050
30% of the electricity supply will come from solar energy [1].

Solar energy suffers a great variability since it depends on meteorological con-
ditions such as solar radiation, cloud cover, rainfall and temperature. This depen-
dency creates uncertainty about how much power will be generated, which is
c© Springer International Publishing AG, part of Springer Nature 2019
M. Graña et al. (Eds.): SOCO’18-CISIS’18-ICEUTE’18, AISC 771, pp. 123–133, 2019.
https://doi.org/10.1007/978-3-319-94120-2_12

124 J. F. Torres et al.

important to ensure reliable electricity supply, and makes the integration of
solar power into electricity markets more difficult. Hence, the ability to predict
the generated solar power is a task of utmost importance and relevance for both
energy managers and electricity traders, in order to minimize the aforementioned
uncertainty when this kind of renewable energy is used.

Historical photovoltaic power data with high frequency is easily available, and
therefore, advanced computing technologies and machine learning approaches
for big data can be used to analyze very large time series. Deep learning is an
emerging branch of machine learning that extends artificial neural networks to
deal with big data. One of the main drawbacks that classical artificial neural
networks exhibit is that, with many layers, their training typically becomes too
complex [9]. In this sense, deep learning involves the use of a set of learning
algorithms to train artificial neural networks with a large number of hidden
layers.

In this paper we propose a new approach based on deep learning to forecast
big solar power time series data. We firstly compare the performance of the
proposed algorithm with two other advanced methods for forecasting published
in [18]. In particular, Pattern Sequence-based Forecasting (PSF [10]) based on
similarity of patterns and a Neural Network (NN) as a reference method for solar
power forecasting. In addition, we also conduct a scalability study in order to
evaluate the suitability of all methods to deal with big data time series.

The rest of the paper is structured as follows. Section 2 reviews of the existing
literature related to time series forecasting of solar data. Section 3 introduces
the proposed methodology to forecast big data time series. Section 4 presents
the experimental results corresponding to the prediction of solar energy. Finally,
Sect. 5 summarizes the main results and provides final conclusions.

2 Related Work

In this section, we review the recently published approaches related to photo-
voltaic (PV) power forecasting.

The methods for time series forecasting can be divided into two groups:
classical statistical and data mining techniques [10]. With regard to the statistical
methods, autoregressive integrated moving average and exponential smoothing
have been the most popular for predicting PV time series [5,12]. Concerning to
data mining techniques, neural networks, Support Vector Machine (SVM) or k
nearest neighbors techniques have been recently applied to PV solar data. For
instance, a NN optimized by means of a genetic algorithm is proposed in [3] to
obtain a forecasting for the intra-hour power of a PV plant. In [17], the training
data is split into clusters based on the weather characteristics. Next, the solar
power output for the previous day and the cluster label are used to compute the
forecasting for the next day. In [13] a SVM is used as prediction algorithm to
obtain interval forecasts, which are more suitable for the highly variable nature
of the solar data. A forecasting method based on the weather and power data
for the previous days and the weather forecast for the next day is proposed to
one-day-ahead prediction in [16].

Deep Learning for Big Data Time Series Forecasting Applied to Solar Power 125

In the last years, several studies in time series forecasting have focused on
ensembles that combine the predictions of several forecasting models as they
have shown to be very competitive and more accurate than single forecasting
models [2,8,11], including for PV power forecasting [18].

Currently, deep learning techniques are being explored in many applications
due to their excellent results [7]. Moreover, deep learning models have been shown
to be effective for energy demand forecasting in the area if big data. In [14] a novel
method based on deep learning was proposed to predict big data times series
using electricity consumption in Spain, with a ten minute frequency sampling
rate, from 2007 to 2016. In [4] a deep learning model is used for disaggregated
household energy demand forecasting. In this case, a Graphics Processing Unit
(GPU) architecture is proposed in order to accelerate time series learning. In
[15] a hybrid method based on wavelet transforms and deep convolutional neu-
ral networks is proposed for PV power forecasting. With wavelet transforms the
original data are decomposed into several frequency series, and the deep convo-
lutional neural network is used to extract the features in PV power data for each
series. Later, a probabilistic model is applied to forecast each series separately.

After a wide literature review, to the best of our knowledge, there are no
previous studies that have addressed the problem of forecasting big solar data
by using deep learning techniques. This work tries to fill this gap by proposing
and evaluating an algorithm for forecasting big PV solar data.

3 Methodology

This section presents the methodology proposed to forecast time series in solar
PV data context.

The main goal of this work is to predict future values, expressed as [x1,...,xh],
where h means the number of values to predict. To predict these h values, the
process is based on a historical value window called w. In this way, the problem
can be formulate as:

[xt+1, xt+2, . . . , xt+h] = f(xt, xt−1, . . . , xt−w−1) (1)

where f refers to the model to be found in the training phase by the algorithm
to forecast the next h values.

In order to use in-memory data, we use the Apache Spark cluster-computing.
For the deep learning implementation, we chose the H2O package written in R.
This framework provides a simple syntax for parallel and distributed program-
ming. However, H2O does not support the multi-step forecasting. To avoid this
problem, a possible solution consist of splitting the problem in h forecasting sub-
problems. Therefore, it is necessary to compute a model for each sub-problem.
This new formulation can be expressed as:

xt+1 = f1(xt, xt−1, ..., xt−w−1)
xt+2 = f2(xt, xt−1, ..., xt−w−1)

... (2)
xt+h = fh(xt, xt−1, ..., xt−w−1)

126 J. F. Torres et al.

From this formulation, we can see that each of the h values from the pre-
diction horizon is predicted separately, thus removing the error propagation due
to previously predicted samples being used to predict the next one. Neverthe-
less, the computational cost of this methodology is higher than building just one
model to predict all h values from the prediction horizon. The deep learning
architecture used for solving each subproblem is presented in Fig. 1.

It is well known that the values of hyper-parameters of the deep learning algo-
rithm may influence the results. To find a good combination of hyper-parameters,
we employed the grid search method of H20. The grid-search was used separately
for each sub-problem to obtain the best parameter setting.

The parameters used in the grid search are described in Sect. 4. A flow dia-
gram of the proposed methodology is depicted in Fig. 2.

Fig. 1. Illustration of the DL architecture.

As can be seen in Fig. 2, the original dataset (in column vector format) is
transformed depending on the data history (w) and the prediction horizon (h),
where each column of this prediction horizon corresponds to the class of each sub-
problem. To compute each model, the dataset is divided into training, validation
and test sets. First, the training and validation sets are used for the grid search.
The grid search computes a model for each combination of hyper-parameters,
for each sub-problems. These models are evaluated on the validation set and the
best one is chosen to predict the test set.

4 Results

This section summarizes the results obtained after applying the methodology
proposed in Sect. 3 for forecasting PV solar time series. This methodology has
been compared to the methodology and implementation described by Zheng et
al. in [18]. We firstly describe the dataset and experimental setup, and then
discuss the results.

Deep Learning for Big Data Time Series Forecasting Applied to Solar Power 127

Fig. 2. Illustration of the proposed methodology.

4.1 Dataset Description

The time series considered in this study is related to PV power, collected from a
rooftop PV plant located at the University of Queensland, Australia. The dataset
is composed of two years, exactly from January 1st, 2015 to December 31st, 2016
in 30 min intervals between each measure. Due to the context of the study, only
the daylight period have been considered, selecting the data between 7 a.m. and
5 p.m. As a result, the dataset is composed of 14620 samples.

The dataset has been pre-processed in order to adapt it to the chosen histor-
ical data window and prediction horizon. Concretely, a historical window of one
day has been considerated to forecast the full next day. These values correspond
to 20 past samples as historical window and also 20 future samples as prediction
horizon. Thus, the final dataset considered in this research has 730 rows and 40
columns, resulting in a total of 29200 measures. Furthermore, the data has been
normalized to [0,1].

4.2 Experimental Setup

The experimentation carried out consisted in comparing the results obtained
by the proposed methodology and the results described by the authors in [18],
which discusses the results of a traditional neural network (NN) and the pattern
sequence forecasting (PSF) algorithm, applied to the same datset. In particular,
we compare the accuracy and scalability of the methods. All experiments have
been run in an Intel Core i7-5820K at 3.3 GHz with 15 Mb of cache, 6 cores with
12 threads and 16 GB of RAM memory, working under Ubuntu 16.04 operating
system.

To evaluate the accuracy of the models, we use the Root Mean Squared Error
(RMSE) and the Mean Absolute Error (MAE).

128 J. F. Torres et al.

4.3 Analysis of Results

4.3.1 Parameter Selection
As stated before, we applied the grid search strategy available in H2O to find
optimal parameters for each sub-problem. Many of the grid search parameters
can be customised. In this experiment, we used the following settings:

– The dataset has been split into training and test sets, corresponding to 2015
for the training set and 2016 for the test set. The training set has also been
split into 70% for training and 30% for validation.

– The number of hidden layers for applying the deep learning ranges from 1 to
5 and the number of neurons for each layer from 10 to 40.

– The initial weight distribution was set to uniform distribution.
– As activation function, the hyperbolic tangent function (tanh) has been cho-

sen.
– The distribution function has been set to Gaussian distribution.

After training a model for each combination of the above described param-
eters for each sub-problem, it has been tested on the validation set and the
best model has been obtained. Table 1 shows the parameters of the best model
obtained for each sub-problem using the above-mentioned grid search: number
of hidden layers and neurons per layer, and also the errors on the training and
validation set.

We can see that the best network configuration varied and most often (for
40% of the sub-problems) included 3 hidden layers, with number of neurons in
these 3 layers between 17 and 32. The training and validation errors followed the
same pattern, they increased till step 13–14 from the prediction horizon (sub-
problem 13–14), and then decreased. As expected the error on the validation set
was higher than the error on the training set.

4.3.2 Accuracy
For the optimal configuration of the network for each subproblem, a new run was
launched to predict the test set. The results are shown in Table 2 and compared
with the PSF and NN algorithms from [18]. The PSF algorithm first applies
clustering to the training set, adding a class tag. Next, the prediction of a new
data is based on the similarity of tag sequences previous to the point to be
predicted. The NN model is a multi-layer NN with one hidden layer, trained
with the Levenberg-Marquardt version of the backpropagation algorithm.

It can be seen that the deep learning algorithm slightly improves the PSF
and NN results, but not enough to decide to use it instead of PSF or NN.

To study these errors in more detail, the best and worst predicted day have
been obtained. These results are depicted in Fig. 3 which presents the evolution
of actual and forecasted solar data for the NN, PSF and DL algorithms. The
best and worst days are: Apr. 7 2016 and Jun. 19 2016 for NN, Apr. 3 2016 and
Jun. 19 2016 for PSF, and finally, Sept. 11 2016 and Jun. 18 2016 for DL.

Deep Learning for Big Data Time Series Forecasting Applied to Solar Power 129

Table 1. Best models for each sub-problem

Sub-problem Hidden
layers

Neurons
per layer

RMSE
training

MAE
training

RMSE
validation

MAE
validation

1 5 39 58.01 40.94 128.31 109.13

2 1 13 86.83 62.32 145.66 120.24

3 3 27 90.96 69.57 158.33 132.08

4 1 37 120.60 90.32 174.85 140.98

5 2 30 128.22 98.39 184.39 147.77

6 2 11 146.58 116.47 189.90 162.55

7 4 14 161.54 128.87 208.80 179.44

8 3 23 167.14 134.46 212.02 170.35

9 2 39 168.24 135.11 217.07 177.33

10 3 32 161.17 130.43 219.82 180.26

11 2 31 166.59 134.74 218.45 181.73

12 5 32 158.69 131.25 211.29 174.76

13 4 37 165.03 138.96 202.01 168.33

14 3 17 165.03 138.59 213.21 184.85

15 5 14 155.30 127.95 196.42 167.23

16 1 39 132.54 107.20 184.21 155.12

17 5 38 117.94 92.98 152.45 130.06

18 4 34 86.55 65.72 122.07 100.04

19 4 40 74.16 53.33 96.01 79.49

20 3 28 63.70 48.37 57.09 45.80

Table 2. Accuracy of the NN, PSF and DL algorithms.

NN PSF DL

RMSE 154.16 149.52 148.98

MAE 116.64 119.17 114.76

Table 3 summarizes the MAE and RMSE for the above stated days. For the
best day, overall PSF is the best performing method and NN is the worst, while
for the worst day NN is the best and PSF is the worst.

4.3.3 Scalability
Finally, a scalability comparison -in terms of runtime- between these methods
have been accomplished. To conduct this, the optimal values described in Table 1
have been set. Furthermore, the time series length has been multiplied by 2, 4,
8, 16, 32 and 64, respectively. The results obtained are shown in Table 4.

130 J. F. Torres et al.

Table 3. Best and worst day for NN, PSF and DL.

Best day Worst day

MAE RMSE MAE RMSE

NN 58.87 106.88 191.52 221.58

PSF 31.72 36.15 252.77 279.12

DL 31.66 41.91 206.33 233.00

Fig. 3. Best and worst day for NN, PSF and DL algorithms.

As it can be seen in Table 4, for short time series the NN and PSF algorithm
are faster than DL. However, as the size of the data set increases with a factor of
32 or bigger, the deep learning method is much faster than the other algorithms.

Deep Learning for Big Data Time Series Forecasting Applied to Solar Power 131

Table 4. Computing times (in seconds) for different time series lengths.

x1 x2 x4 x8 x16 x32 x64

NN 0.8020 1.8885 5.4975 24.7970 114.1169 378.0876 2098.0432

PSF 2.4858 14.6286 9.6493 28.9169 101.3701 365.4012 1345.8199

DL 23.0470 23.0480 23.0540 23.0400 22.9600 43.1210 63.2050

Fig. 4. Scalability of NN, PSF and DL algorithms.

This is because the H2O framework supports distributed and parallel computing,
while the Matlab implementations of NN and PSF were single-thread.

Figure 4 graphically summarizes the results collected from Table 4. We can
see that the proposed deep learning model is scalable as its training time increase
in a linear way while the training time of the other two methods increases expo-
nentially.

5 Conclusions

In this paper we introduced a novel approach for predicting the electricity power
generated by solar photovoltaic systems. Our approach has three main novel fea-
tures. Firstly, it uses deep learning which hasn’t been investigated previously for
solar power forecasting. The deep neural network has been implemented using
the H2O R package. Second, it has been specifically developed to handle big time
series data, and, hence, has been implemented using an Apache Spark cluster-
computing framework. And, third, it uses a novel multi-step methodology which
decomposes the forecasting problem into several sub-problems, allowing arbi-
trary prediction horizons. The performance of our approach has been evaluated
on real Australian data and compared with two well-established algorithms, PSF
and NN, showing competitive results. Finally, a scalability analysis has also been
conducted demonstrating that the proposed deep learning approach is particu-
larly suitable for big solar data, given its linear time increase behavior, contrary
to PSF and NN which show an exponential time increase.

132 J. F. Torres et al.

Acknowledgments. The authors would like to thank the Spanish Ministry of Econ-
omy and Competitiveness and Junta de Andalućıa for the support under projects
TIN2014-55894-C2-R and P12-TIC-1728, respectively.

References

1. Climate Commission. The critical decade: Australia’s future - solar energy (2013)
2. Cerqueira, V., Torgo, L., Pinto, F., Soares, C.: Arbitrated ensemble for time series

forecasting. In: Proceedings of the European Conference on Machine Learning and
Principles of Knowledge Discovery in Databases, pp. 478–494 (2017)

3. Chu, Y., Urquhart, B., Gohari, S.M.I., Pedro, H.T.C., Kleissl, J., Coimbra, C.F.M.:
Short-term reforecasting of power output from a 48 mwe solar pv plant. Solar.
Energ. 112, 68–77 (2015)

4. Coelho, I.M., Coelho, V.N., Luz, E.J.S., Ochi, L.S., Guimarães, F.G., Rios, E.: A
GPU deep learning metaheuristic based model for time series forecasting. Appl.
Energ. 201, 412–418 (2017)

5. Dong, Z., Yang, D., Reindl, T., Walsh, W.M.: A novel hybrid approach based on
self-organizing maps, support vector regression and particle swarm optimization
to forecast solar irradiance. Energy 82, 570–577 (2015)

6. Solar Power Europe. Global market outlook for solar power/2016–2020 (2016)
7. Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Com-

put. Electron. Agric. 147, 70–90 (2018)
8. Koprinska, I., Rana, M., Troncoso, A., Mart́ınez-Álvarez, F.: Combining pattern

sequence similarity with neural networks forforecasting electricity demand time
series. In: Proceedings of the International Joint Conference on Neural Networks,
pp. 1–8 (2013)

9. Livingstone, D.J., Manallack, D.T., Tetko, I.V.: Data modelling with neural net-
works: advantages and limitations. J. Comput. Aided Mol. Des. 11, 135–142 (1997)

10. Mart́ınez-Álvarez, F., Troncoso, A., Riquelme, J.C., Aguilar, J.S.: Energy time
series forecasting based on pattern sequence similarity. IEEE Trans. Knowl. Data
Eng. 23, 1230–1243 (2011)

11. Oliveira, M., Torgo, L.: Ensembles for time series forecasting. In: Proceedings of
the Sixth Asian Conference on Machine Learning, pp. 360–370 (2015)

12. Pedro, H.T.C., Coimbra, C.F.M.: Assessment of forecasting techniques for solar
power production with no exogenous inputs. Solar Energ. 86, 2017–2028 (2012)

13. Rana, M., Koprinska, I., Agelidis, V.G.: 2D-interval forecasts for solar power pro-
duction. Solar Energ. 122, 191–203 (2015)

14. Torres, J.F., Fernández, A.M., Troncoso, A., Mart́ınez-Álvarez, F.: Deep learning-
based approach for time series forecasting with application to electricity load, pp.
203–212. In: Biomedical Applications Based on Natural and Artificial, Computing
(2017)

15. Wang, H., Yi, H., Peng, J., Wang, G., Liu, Y., Jiang, H., Liu, W.: Deterministic
and probabilistic forecasting of photovoltaic power based on deep convolutional
neural network. Energ. Convers. Manag. 153, 409–422 (2017)

16. Wang, Z., Koprinska, I.: Solar power prediction with data source weighted nearest
neighbors. In: Proceedings of the International Joint Conference on Neural Net-
works, pp. 1411–1418 (2017)

Deep Learning for Big Data Time Series Forecasting Applied to Solar Power 133

17. Wang, Z., Koprinska, I., Rana, M.: Solar power prediction using weather type
pair patterns. In: Proceedings of the International Joint Conference on Neural
Networks, pp. 4259–4266 (2017)

18. Wang, Z., Koprinska, I., Rana, M.: Solar power forecasting using pattern sequences.
In: Artificial Neural Networks and Machine Learning (ICANN), pp. 486–494 (2017)

4.2 Congresos internacionales 163

4.2.4. Random hyper-parameter search-based deep neural
network for power consumption forecasting

Tabla 4.10 Datos del artículo: Random hyper-parameter search-based deep
neural network for power consumption forecasting

Autores Torres, J. F., Gutiérrez-Avilés, D., Troncoso, A., and
Martínez-Álvarez, F.

Congreso Advances in Computational Intelligence: International
Work-Conference on Artificial Neural Networks

Publicación Lecture Notes in Computer Science book series. Springer
International Publishing.

Año 2019
Páginas 259-269

Volumen 11506
DOI 10.1007/978-3-030-20521-8_22

ISBN 978-3-030-20521-8
Ranking CORE B

Citas 17 (Google Scholar)

Random Hyper-parameter Search-Based
Deep Neural Network for Power

Consumption Forecasting

J. F. Torres(B), D. Gutiérrez-Avilés, A. Troncoso(B), and F. Mart́ınez-Álvarez

Division of Computer Science, Pablo de Olavide University, Seville, Spain
{jftormal,dguvati,atrolor,fmaralv}@upo.es

Abstract. In this paper, we introduce a deep learning approach, based
on feed-forward neural networks, for big data time series forecasting
with arbitrary prediction horizons. We firstly propose a random search
to tune the multiple hyper-parameters involved in the method perfor-
mance. There is a twofold objective for this search: firstly, to improve
the forecasts and, secondly, to decrease the learning time. Next, we pro-
pose a procedure based on moving averages to smooth the predictions
obtained by the different models considered for each value of the pre-
diction horizon. We conduct a comprehensive evaluation using a real-
world dataset composed of electricity consumption in Spain, evaluating
accuracy and comparing the performance of the proposed deep learning
with a grid search and a random search without applying smoothing.
Reported results show that a random search produces competitive accu-
racy results generating a smaller number of models, and the smoothing
process reduces the forecasting error.

Keywords: Hyperparameters · Time series forecasting · Deep learning

1 Introduction

Deep learning is an emerging branch of machine learning that extends artifi-
cial neural networks. One of the main drawbacks that classical artificial neural
networks exhibit is that, with many layers, its training typically becomes too
complex. In this sense, deep learning consists of a set of learning algorithms to
train artificial neural networks with a large number of hidden layers.

Deep learning models are also sensitive to a large numbers of hyper-
parameters and much attention must be paid at this stage [6]. For Deep Feed
Forward Neural Network (DFFNN), these hyper-parameters include the number
of hidden layers, the number of neurons for hidden layers, the batch size and other
parameters related to the optimization method used to compute the weights of
the DFFNN in the training phase. There are many optimization methods such as
gradient descend, gradient descend with momentum, RMSProp or Adam opti-
mization algorithm, among others [14]. But the convergence of all of these algo-
rithms depend on the learning rate, being one of the most important parameters.
c© Springer Nature Switzerland AG 2019
I. Rojas et al. (Eds.): IWANN 2019, LNCS 11506, pp. 259–269, 2019.
https://doi.org/10.1007/978-3-030-20521-8_22

260 J. F. Torres et al.

Therefore, the task of selecting an appropriate set of hyper-parameters is critical
for the performance of the DFFNN.

In this context, we propose a DFFNN for time series forecasting that imple-
ments a random search to find the best values for the most relevant parame-
ters related to the network structure and optimization method to compute the
weights of the network. With this strategy, we aim at improving the performance
of the DFFNN in terms of both learning time and accuracy. In addition, we pro-
pose a smoothing technique as last step of the proposed methodology, in order
to minimize the prediction error. To evaluate the performance of the proposed
approach, we use a real-world dataset composed of electricity consumption in
Spain, and we compare the results with those generated by a grid search and a
random search without smoothing.

The rest of the paper is organized as follows. Section 2 reviews relevant works
related to time series forecasting based on deep learning and to the tuning of
hyper-parameters in deep learning. Section 3 introduces the methodology pro-
posed in this paper. The most relevant results obtained by the methodology are
discussed in Sect. 4. Finally, the conclusions drawn from this research work are
summarized in Sect. 5.

2 Related Work

In this section, we analyze recent and relevant state-of-the-art proposals in the
fields of deep learning time series forecasting and the hyper-parameter tuning
and optimization of deep neural networks.

Deep learning approaches for time series analysis have been widely applied
during the last years and, indeed, several strategies to predict future values with
deep neural networks models have been developed. The authors in [7] presented,
in 2015, a novel deep learning-based solution to forecast event-driven stock mar-
ket values. In particular, a deep convolutional neural network was used obtaining
a remarkable performance.

A paradigmatic example of an effort for improving the predictions perfor-
mance through the network architecture can be found in [10]. There, the authors
designed a stacked auto-encoder model for feature extraction to predict air qual-
ity. In the proposal presented in [5], a full revision of the input variables was
carried out to decrease the computational time related to the training of the
proposed deep learning approach for time series forecasting.

Due to the nature of these neural networks architectures and the consider-
able length of the current time series, distributed computation and data storage
approaches play a relevant role in this field of study. In this sense, the authors
in [15] proposed a deep feed-forward solution deployed along with the Apache
Spark [17] platform for distributed computing to predict electricity consumption
in Spain.

The hyper-parameter tuning and optimization of the deep neural networks is
a fundamental factor for obtaining a competitive performance of the results. In
this regard, the authors in [9] introduced a Bayesian method for hyper-parameter

Random Hyper-parameter Search-Based Deep Neural Network 261

optimization in which model the loss and the execution time in function of the
dataset size. Random search and greedy methods for hyper-parameter tuning
were applied in [1]. The authors concluded that the random search method can
be useful in deep learning environments. The authors in [2] made a compara-
tive study of three hyper-parameter optimization techniques: grid, experience-
based, and random search methods. They concluded that the random one estab-
lishes a baseline to judge the performance of other hyper-parameter optimization
algorithms.

Evolutionary strategies for optimization problems have been widely used,
yielding competitive results. The authors in [16] addressed the hyper-parameter
optimization problem with the approach mentioned above. Another specific app-
roach for hyper-parameter optimization can be found in [8] where an efficient
and deterministic method using radial functions was presented. Finally, in [11],
the authors proposed a mixed strategy called Covariance Matrix Adaptation
Evolution.

3 Methodology

This section describes the proposed methodology for time series forecasting using
the DFFNN, which has been implemented in the H2O framework [3], under R
language. It is also proposed an alternative method to the one implemented
in H2O for the optimization of hyper-parameters and the use of a smoothing
filter in order to minimize the impact of the time gap on each prediction. First,
Sect. 3.1 describes a method for optimizing neural network hyper-parameters.
After, Sect. 3.2 details the formulation that allows the multi-step forecast of a
time series. Finally, the use of a smoothing filter to modulate the frequency of the
prediction is introduced in Sect. 3.3. A complete workflow of the methodology
proposed is illustrated in Fig. 1.

3.1 Hyper-parameters Tuning

It is well-known that the values of the hyper-parameters of the deep learning
algorithm highly influence on the results. The algorithm implemented in H2O
allows adjusting a large number of them, being worth highlighting some, such as
the number of hidden layers or the number of neurons per layer or the learning
rate.

In order to optimize the hyper-parameters described above, H2O implements
two search options. One of them is a grid search, which performs an exhaustive
search through the whole set of established hyper-parameters. The other one
is a random search, which makes combinations of the defined hyper-parameters
without a specific order or criteria. However, both search methods work with
discrete values, which greatly limits the fine-tuning of the vast majority of hyper-
parameters.

To avoid this problem, a random search is proposed in this article with con-
tinuous values. That is, given a set of hyper-parameters and a range for each

262 J. F. Torres et al.

Start

Load original
time series

Preprocess
(set w / h)

subproblem=1

randomParams=1
Train Feed Forward

Neural Net

Yes

No
improve the
old model?

replace the best
model

No

Yes
Yes

max random
params?

Use the best
model to forecast

No

Yes

max
subproblems?

subproblem+=1

get predictions of
all subproblems

Apply filter

Compute
the error

randomParams=+1

Fig. 1. Complete work-flow of the proposed methodology.

one, a random value is generated for each hyper-parameter and it is validated by
computing the forecasting error using a validation set. This process is repeated
during a certain number of iterations, storing the model that obtains the small-
est error. Finally, a single model is stored for each sub-problem, corresponding
to the one whose hyper-parameters offer the best results.

3.2 Multi-step to Single-step Regression

Given a time series expressed as [x1, x2, . . . , xt], the main goal of this research is
to forecast the future values of the time series. To do this, a predictive model is
formed based on a historical window composed of w past values that allow the
prediction of the h following values, also called the prediction horizon. This kind
of problem is known as multi-step forecasting and can be formulated as:

[xt+1, xt+2, . . . , xt+h] = model(xt−(w−1), . . . , xt−1, xt) (1)

Regretfully, the deep learning algorithm included in the H2O framework does
not support multi-step forecasting. To achieve this goal, a methodology has
been developed. This methodology consists in focusing on the prediction of each
instant of time individually, dividing the multi-step prediction into h predictions
of a single step. This methodology is formulated in Eqs. (2)–(5):

xt+1 = model1(xt−(w−1), . . . , xt−1, xt) (2)

Random Hyper-parameter Search-Based Deep Neural Network 263

xt+2 = model2(xt−(w−1), . . . , xt−1, xt) (3)
... (4)

xt+h = modelh(xt−(w−1), . . . , xt−1, xt) (5)

As can be seen from these Equations, there is a gap in the data used in each
prediction (e.g. the prediction of xt+2 is not used to predict xt+3). However, if
these predictions were taken into account to forecast the next point of data, it
would cause a propagation of the error, giving rise to a wrong prediction [4].

This formulation involves the training of h different models instead of a single
model, requiring a high computational cost. However, the implementation of the
deep learning algorithm in H2O is optimized and parallelized, which minimizes
this shortcoming.

3.3 Smoothing Filter

Once the hyper-parameters are calculated, the final task can be accomplished.
The estimation of individual and independent models to forecast a set of values
representing a prediction horizon has a consequence: the predicted values exhibit
some significant ripple because the estimated values have no information about
neither previous nor subsequent estimations. That is, sharp variations from one
value to another may be generated.

For this reason, the application of a smoothing filter is also proposed, as the
last step of the methodology. Different strategies can be chosen. For instance,
filters based on Fourier transform are quite popular [12] but their quadratic cost
function, O(n2), turn these filters into a not particularly suitable solution in the
big data context.

Another much simpler, but powerful, filter has been selected: the one based
on moving averages with linear cost function, O(n), and, in particular, the one
implemented in the Stats R package [13]. This low-pass filter is a common finite
impulse response type that removes high frequencies, i.e. the sharp variations. It
only needs to adjust the number of previous data that will be used to calculate
the average, N.

Mathematically, the calculation of the first filtered value is formulated as
follows:

x′(t) =
1
N

N∑

i=1

x(t− i) (6)

where x(t) is the current smoothed value and x(t − i), for i = 1, are the N values
preceding x(t). Then, x(t+ i), for i > 0, are calculated by shifting forward x′(t)
but excluding the first number of the time series and including its next value.

To adjust this parameter, N is trained using values from 1 to 12 (as it will
explained in Sect. 4, N = 12 involves the two previous hours).

264 J. F. Torres et al.

4 Results

This section presents the results obtained after applying the methodology
described in Sect. 3 to the dataset detailed in Sect. 4.1. All the experiments have
been executed into a Intel Core i7-5820K at 3.3 GHz with 15 MB of cache, 12
cores and 16 GB of RAM, working under an Ubuntu 18.04 operating system.

4.1 Dataset Description

The time series considered in this study is related to electrical electricity con-
sumption in Spain, from January 2007 to June 2016. There is a total of 9 years
and 6 months with a frequency of 10 min between each measure. This fact makes
a time series with a total length of 497832 measures, stored into a 33 MB file in
CSV format with a single column. For this reason, a preprocess has been applied
to transform the time series into a supervised dataset with w+h columns, where
w refers to the historical window of data used to predict the following h values,
called the prediction horizon. The whole dataset was split into 70% for the train-
ing set and 30% for the test set. In addition, a 30% from the training set has also
been selected as the validation set in order to optimize the hyper-parameters of
the deep learning algorithm as well as the smoothing filter.

4.2 Error Metrics

To measure the error of the methodology proposed in Sect. 3, the most used
metrics in the literature for time series forecasting problems have been used.
These metrics are the Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE) and Mean Relative Error (MRE). The
formulation of these error metrics is shown below:

MSE =
1
n

n∑

i=1

(pi − ai)2 (7)

RMSE =

√√√√ 1
n

n∑

i=1

(pi − ai)2 (8)

MAE =
1
n

n∑

i=1

|pi − ai| (9)

MRE = 100 · 1
n

n∑

i=1

|pi − ai|
ai

(10)

where n, p and a mean the number of samples, predicted values and actual
values, respectively.

Random Hyper-parameter Search-Based Deep Neural Network 265

4.3 Performance in Terms of Error

The experimental setting of the proposed methodology is as follows:

1. The historical window size used to predict the following four hours (24 values)
has been set to 168, which represents a whole day and 4 h. This value has been
chosen because the larger the historical window of data, the better results will
be obtained, as demonstrated in [15].

2. The hyper-parameters that have been optimized are the number of layers, the
number of neurons per layer and the value of learning ratio (rho). The hyper-
parameters search ranges have been set to [1, 5], [10, 100] and [0.9, 0.999],
respectively.

3. A number of 50 epochs was established in the training phase of the deep learn-
ing algorithm. The rest of the deep learning hyper-parameters have default
values.

4. To find the optimal hyper-parameters, a total of 50 iterations over each prob-
lem was carried out during the training and validation phase.

5. The possible values of N for the smoothing filter have been set between 1 and
12. After the training phase of this parameter, the value has been set to 7.

The configuration of the experiments described above results in a total of
1200 calculated models. The best model for each sub-problem will be used to
predict the test set. In order to have a reference point, the results obtained with
the proposed methodology have been compared with the methodology proposed
by the authors in [15]. This methodology applies an exhaustive search to opti-
mize the size of the historical window, the value of the L1 penalty, distribution
function, number of layers and number of neurons, calculating a total of 3120
different models. If only the optimized parameters proposed in this article are
taken into account, the grid search calculates 1320 models, 120 more than the
methodology proposed in this research.

After completing the training and validation step, 24 different network con-
figurations were obtained, each corresponding to a sub-problem, as detailed in
Table 1. It can be seen that the error increases when the timestamp to forecast
increases. This fact is due to the time gap between the data to train the model
and the timestamp to forecast.

Table 2 summarizes the errors reached by the different approaches. It can be
seen how the use of the methodology proposed in this article improves by 20%
the mean relative error obtained by the exhaustive search. This is because the
exhaustive search only allowed the search for hyper-parameters in a discrete set of
values. It is also observed how the application of the smoothed filter significantly
improves the error.

A graphical comparison between the real data, non-smoothed predictions and
smoothed predictions (described in Sect. 3.3) for an arbitrary day in the test set
has been depicted in Fig. 2. It can be seen how the smoothed predictions remove
the peaks of the non-smooth predictions, thus significantly decreasing the error.

266 J. F. Torres et al.

Table 1. Best hyper-parameters for each subproblem (without smoothing).

Hyper-parameters Error in test phase

SP1 #hidden #neurons Rho MSE RMSE MAE MRE (%)

#1 4 [66, 44, 99, 98] 0.971 57099.12 238.95 186.20 0.69

#2 3 [91, 82, 11] 0.922 90365.86 300.61 235.87 0.87

#3 5 [53, 59, 96, 29, 47] 0.961 114441.50 338.29 265.31 0.96

#4 5 [79, 96, 94, 22, 44] 0.937 121272.40 348.24 270.05 0.99

#5 3 [76, 86, 62] 0.971 141457.60 376.11 288.54 1.07

#6 5 [3, 43, 27, 82, 53] 0.928 157920.10 397.39 307.77 1.14

#7 4 [91, 48, 89, 83] 0.988 178831.50 422.88 323.95 1.20

#8 3 [57, 99, 46] 0.981 245192.60 495.17 383.04 1.43

#9 4 [41, 85, 46, 80] 0.970 246930.00 496.92 383.03 1.42

#10 5 [49, 69, 62, 22, 27] 0.917 245124.70 495.10 381.89 1.39

#11 3 [68, 47, 71] 0.927 310147.90 556.91 430.91 1.59

#12 4 [89, 23, 96, 90] 0.966 309112.60 555.98 432.56 1.60

#13 4 [36, 77, 45, 92] 0.961 325379.70 570.42 438.93 1.64

#14 3 [77, 72, 81] 0.969 336707.90 580.27 435.58 1.63

#15 5 [55, 61, 34, 91, 85] 0.941 401978.60 634.02 478.17 1.77

#16 5 [45, 73, 38, 71, 61] 0.963 373900.30 611.47 464.31 1.70

#17 5 [44, 41, 46, 98, 43] 0.978 406642.40 637.69 489.32 1.80

#18 2 [88, 24] 0.966 407873.10 638.65 482.05 1.79

#19 5 [91, 48, 89, 76, 46] 0.907 395915.50 629.22 468.49 1.75

#20 5 [88, 37, 62, 78, 56] 0.928 526235.70 725.42 541.03 2.01

#21 3 [53, 82, 33] 0.962 657200.40 810.68 582.92 2.17

#22 5 [99, 89, 57, 27, 69] 0.986 808235.20 899.02 648.59 2.43

#23 4 [75, 52, 88, 56] 0.997 753634.70 868.12 622.51 2.33

#24 3 [82, 74, 63] 0.941 689790.30 830.54 600.27 2.23
1 Sub-problem

Figure 3 shows a comparison between actual and predicted data using the
models obtained in Table 1. Figure 3(a) shows the prediction of the best day
(144 values) for the entire test set. On the other contrary, Fig. 3(b) shows the
forecast of the worst day.

Table 2. Comparison of the search metrics and the proposed methodology.

MSE RMSE MAE MRE (%)

Grid 380486.80 616.84 451.96 1.68

Random 345891.20 588.13 422.55 1.57

Random + Filter 251143.90 501.14 369.19 1.36

Random Hyper-parameter Search-Based Deep Neural Network 267

0 20 40 60 80 100 120 140

15000

20000

25000

30000

35000

40000

24 hours

D
em

an
d

(M
W

)

Actual data
Predicted without smoothing
Predicted with smoothing

Fig. 2. Comparison between real data, non-smoothed and smoothed predictions.

0 20 40 60 80 100 120 140

15000

20000

25000

30000

35000

40000

24 hours

D
em

an
d

(M
W

)

Actual data
Predicted with smoothing

(a) Best day.

0 20 40 60 80 100 120 140

15000

20000

25000

30000

35000

40000

24 hours

D
em

an
d

(M
W

)

Actual data
Predicted with smoothing

(b) Worst day.

Fig. 3. The best and worst day predicted by the proposed methodology.

268 J. F. Torres et al.

5 Conclusions

A method based on deep learning is proposed to forecast big data time series
with arbitrary prediction horizon in this work. In particular, a deep feed forward
neural network has been used. The tuning of a set of hyper-parameters has
been done through a random search approach, as suggested in the literature.
Given the nature of the proposed method which estimates different models for
every sample included in the prediction horizon, a smoothing procedure based on
moving averages is also applied in order to reduce high frequencies in the outputs.
The electricity demand forecasting from Spain has been addressed so that the
methodology performance can be assessed, reporting two main achievements:
acute decrease in the execution time and reduced forecasting error (1.36%).

Acknowledgements. The authors would like to thank the Spanish Ministry of Econ-
omy and Competitiveness for the support under the project TIN2017-88209-C2-1-R.

References

1. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: Proceedings of the 24th International Conference on Neural Infor-
mation Processing Systems, NIPS’11, pp. 2546–2554. Curran Associates Inc., New
York (2011)

2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

3. Candel, A., LeDell, E., Parmar, V., Arora, A.: Deep learning with H2O. H2O.ai,
Inc., California (2017)

4. Cheng, H., Tan, P.-N., Gao, J., Scripps, J.: Multistep-ahead time series prediction.
In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS
(LNAI), vol. 3918, pp. 765–774. Springer, Heidelberg (2006). https://doi.org/10.
1007/11731139 89

5. Dalto, M., Matusko, J., Vasak, M.: Deep neural networks for ultra-short-term wind
forecasting. In: Proceedings of the IEEE International Conference on Industrial
Technology (ICIT), pp. 1657–1663 (2015)

6. Diaz, G.I., Fokoue-Nkoutche, A., Nannicini, G., Samulowitz, H.: An effective algo-
rithm for hyperparameter optimization of neural networks. IBM J. Res. Dev.
61(4/5), 9:1–9:11 (2017)

7. Ding, X., Zhang, Y., Liu, T., Duan, J.: Deep learning for event-driven stock predic-
tion. In: Proceedings of the International Joint Conference on Artificial Intelligence,
pp. 2327–2334 (2015)

8. Ilievski, I., Akhtar, T., Feng, J., Shoemaker, C.A.: Efficient hyperparameter opti-
mization for deep learning algorithms using deterministic RBF surrogates. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence (2017)

9. Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast bayesian optimiza-
tion of machine learning hyperparameters on large datasets. CoRR abs/1605.07079
(2016)

10. Li, X., Peng, L., Hu, Y., Shao, J., Chi, T.: Deep learning architecture for air quality
predictions. Environ. Sci. Pollut. Res. Int. 23, 22408–22417 (2016)

Random Hyper-parameter Search-Based Deep Neural Network 269

11. Loshchilov, I., Hutter, F.: CMA-ES for hyperparameter optimization of deep neural
networks. arXiv preprint arXiv:1604.07269 (2016)

12. Manolakis, D.G., Ingle, V.K.: Applied Digital Signal Processing. Cambridge Uni-
versity Press, Cambridge (2011)

13. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2013). http://www.R-project.
org/. ISBN 3-900051-07-0

14. Ruder, S.: An overview of gradient descent optimization algorithms. CoRR
abs/1609.04747 (2016)

15. Torres, J., Galicia, A., Troncoso, A., Mart́ınez-Álvarez, F.: A scalable approach
based on deep learning for big data time series forecasting. Integr. Comput.-Aid.
E. 25(4), 335–348 (2018)

16. Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.H., Patton, R.M.: Optimizing
deep learning hyper-parameters through an evolutionary algorithm. In: Proceed-
ings of the Workshop on Machine Learning in High-Performance Computing Envi-
ronments, p. 4. ACM, New York (2015)

17. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X.,
Rosen, J., Venkataraman, S., Franklin, M.J., et al.: Apache spark: a unified engine
for big data processing. Communications of the ACM 59(11), 56–65 (2016)

Parte IV

Cierre

Capítulo 5

Conclusiones y trabajos futuros

No mires atrás y preguntes: ¿Por qué?
Mira adelante y pregúntate: ¿Por qué no?

Alberto Mur.

5.1. Conclusiones

En este trabajo se ha abordado la predicción de series temporales usando
modelos deep learning. En una primera etapa se han estudiado y analizado las
diferentes arquitecturas de predicción, determinando que la mayoría de los
frameworks de implementación presentaban limitaciones para aplicar una red
DFFNN multipaso. Esta limitación fue superada con la formulación formal
de una metodología de predicción, cuya eficacia a nivel de rendimiento y
escalabilidad ha sido probada en varios conjuntos de datos y comparada con
múltiples métodos bien conocidos por la comunidad investigadora.

Posteriormente, se puso el foco del estudio en la optimización de cual-
quier modelo deep learning, centrándose en todos los hiperparámetros de los
que depende. Para ello, se realizaron pruebas con diferentes estrategias de
búsqueda, tales como la búsqueda en grid (exhaustiva), aleatorias y aleatorias
basadas en heurísticas. Con el objetivo de mejorar el entrenamiento de los

178 Conclusiones y trabajos futuros

modelos, se desarrolló un método de optimización con heurísticas basado en
la COVID-19, en el que se integró una red LSTM y una DFFNN, obteniendo
resultados altamente competitivos.

Finalmente, se publicó un survey con todo el conocimiento adquirido,
donde queda reflejado un análisis exhaustivo del estado del arte, las técnicas
de deep learning para la predicción de series temporales, los métodos de
optimización para las mismas y los frameworks de desarrollo mas extendidos
para tal fin.

Tras todos los estudios llevados a cabo, se puede concluir que los modelos
basados en deep learning ofrecen un rendimiento muy superior a los modelos
tradicionales basados tanto en técnicas estadísticas clásicas como en otros
algoritmos de ML.

A cambio, suelen tener un tiempo de ejecución algo más elevado, en la
mayoría de los casos debido a la cantidad de hiperparámetros que tienen que
configurarse y al elevado número de operaciones que requieren estos modelos.
El buen uso de metaheurísticas se hace pues un requisito inidispensable para
poder evaluar un subconjunto de valores reducido y poder encontrar buenas
soluciones con relativamente pocas pruebas durante la fase de entrenamiento,
guiando así la optimización de los modelos de forma automatizada con el
objetivo de encontrar una solución óptima. Otra cuestión también importante
es el número de épocas, que ha demostrado ser un parámetro crítico a la
hora de encontrar buenos modelos, ya que no solamente hace falta una buena
selección de valores para los hiperparámetros, sino un número suficiente de
pasadas por el conjunto de datos para que el modelo sea capaz de aprender la
relación entre las variables.

5.2. Trabajos futuros

Como futuro trabajo se plantea el desarrollo e integración de la librería
de optimización CVOA de forma nativa con las diferentes arquitecturas deep

5.2 Trabajos futuros 179

learning disponibles en la literatura para la predicción de series temporales,
con el objetivo de ofrecer a la comunidad investigadora un software modular
y usable. Esta línea de investigación engloba el análisis y estudio de las arqui-
tecturas deep learning emergenes, tales como el modelo transformer, entre
otros. Esta implementación permitirá la ejecución de todos los modelos de
forma distribuida. Una vez implementada, se probará con diversos proble-
mas de predicción, tales como problemas energéticos solares, hidráulicos,
criptomonedas o la predicción de catástrofes naturales, entre otros.

Otra línea de investigación que se propone es el desarrollo de modelos
deep learning explicables, donde los modelos de predicción que se imple-
menten sean transparentes al usuario y resulte sencillo interpretar tanto su
funcionamiento como los resultados obtenidos. Y es que, quizás, una de las
críticas más recurrente de los modelos de deep learning es su nula posibilidad
de ser interpretados, a diferencia de, por ejemplo, aquellos basados en árboles.
Este hecho está fuertemente ligado al alto número de capas y relaciones no
lineales que entre ellas se establecen, dando como resultado modelos de caja
negra que resultan imposibles de analizar.

Por último y como propuesta más ambiciosa, una vez adquirida la ex-
periencia durante esta tesis, se plantea el desarrollo de modelos específicos
basados en deep learning para la predicción de series temporales. Se preten-
den explorar varias vías pero, sobre todo, aquellas que conlleven la reducción
del tiempo de ejecución de ciertos modelos como las redes LSTM o dotando
a otras como las GRU o DFFNN de mecanismos capaces para adquirir mejor
las características propias de las series temporales.

Bibliografía

[1] Divina, F., Torres Maldonado, J. F., García-Torres, M., Martínez-Álvarez,
F., and Troncoso, A. (2020). Hybridizing deep learning and neuroevolu-
tion: Application to the spanish short-term electric energy consumption
forecasting. Applied Sciences, 10(16).

[2] Galicia, A., Torres, J., Martínez-Álvarez, F., and Troncoso, A. (2018). A
novel spark-based multi-step forecasting algorithm for big data time series.
Information Sciences, 467:800–818.

[3] Galicia, A., Torres, J. F., Martínez-Álvarez, F., and Troncoso, A. (2017).
Scalable forecasting techniques applied to big electricity time series. In
Rojas, I., Joya, G., and Catala, A., editors, Advances in Computational
Intelligence, pages 165–175, Cham. Springer International Publishing.

[4] Martínez-Álvarez, F., Asencio-Cortés, G., Torres, J. F., Gutiérrez-Avilés,
D., Melgar-García, L., Pérez-Chacón, R., Rubio-Escudero, C., Riquelme,
J. C., and Troncoso, A. (2020). Coronavirus Optimization Algorithm: A
bioinspired metaheuristic based on the COVID-19 propagation model. Big
Data, 8(4):308–322.

[5] McCulloch, W. S. and Pitts, W. H. (1943). A logical calculus of the ideas
immanent in nervous activity.

[6] Torres, J. F., Fernández, A. M., Troncoso, A., and Martínez-Álvarez, F.
(2017). Deep learning-based approach for time series forecasting with ap-
plication to electricity load. In Ferrández Vicente, J. M., Álvarez-Sánchez,
J. R., de la Paz López, F., Toledo Moreo, J., and Adeli, H., editors, Bio-
medical Applications Based on Natural and Artificial Computing, pages
203–212, Cham. Springer International Publishing.

182 Bibliografía

[7] Torres, J. F., Galicia, A., Troncoso, A., and Martínez-Álvarez, F. (2018a).
A scalable approach based on deep learning for big data time series fore-
casting. Integrated Computer-Aided Engineering, 25(4):335–348.

[8] Torres, J. F., Gutiérrez-Avilés, D., Troncoso, A., and Martínez-Álvarez,
F. (2019a). Random hyper-parameter search-based deep neural network
for power consumption forecasting. In Rojas, I., Joya, G., and Catala, A.,
editors, Advances in Computational Intelligence, pages 259–269, Cham.
Springer International Publishing.

[9] Torres, J. F., Hadjout, D., Sebaa, A., Martínez-Álvarez, F., and Troncoso,
A. (2020). Deep learning for time series forecasting: A survey. Big Data,
9:3–21.

[10] Torres, J. F., Troncoso, A., Koprinska, I., Wang, Z., and Martínez-
Álvarez, F. (2018b). Deep learning for big data time series forecasting
applied to solar power. In Graña, M., López-Guede, J. M., Etxaniz, O.,
Herrero, Á., Sáez, J. A., Quintián, H., and Corchado, E., editors, Interna-
tional Joint Conference SOCO’18-CISIS’18-ICEUTE’18, pages 123–133,
Cham. Springer International Publishing.

[11] Torres, J. F., Troncoso, A., Koprinska, I., Wang, Z., and Martínez-
Álvarez, F. (2019b). Big data solar power forecasting based on deep
learning and multiple data sources. Expert Systems, 36(4):e12394.

	Índice general
	Índice de figuras
	Índice de tablas
	I Trabajo de Tesis Doctoral
	1 Introducción
	1.1 Organización de la memoria
	1.2 Motivación de la investigación
	1.3 Objetivos
	1.4 Contribuciones

	II Marco teórico
	2 Contexto de la investigación
	2.1 Proceso KDD
	2.2 Inteligencia artificial y aprendizaje automático
	2.3 Series temporales
	2.4 Big data
	2.5 Deep learning en la predicción de series temporales
	2.6 Optimización de redes deep learning

	3 Discusión de resultados
	3.1 Análisis del estado del arte
	3.2 Deep Feed-Forward Neural Network
	3.3 Optimización de hiperparámetros

	III Publicaciones
	4 Informe sobre las publicaciones
	4.1 Artículos de revista
	4.1.1 A scalable approach based on deep learning for big data time series forecasting
	4.1.2 A novel Spark-based multi-step forecasting algorithm for big data time series
	4.1.3 Big data solar power forecasting based on deep learning and multiple data sources
	4.1.4 Hybridizing Deep Learning and Neuroevolution: Application to the Spanish Short-Term Electric Energy Consumption Forecasting
	4.1.5 Coronavirus Optimization Algorithm: A bioinspired metaheuristic based on the COVID-19 propagation model
	4.1.6 Deep learning for time series forecasting: A survey

	4.2 Congresos internacionales
	4.2.1 Deep Learning-Based Approach for Time Series Forecasting with Application to Electricity Load
	4.2.2 Scalable Forecasting Techniques Applied to Big Electricity Time Series
	4.2.3 Deep learning for big data time series forecasting applied to solar power
	4.2.4 Random hyper-parameter search-based deep neural network for power consumption forecasting

	IV Cierre
	5 Conclusiones y trabajos futuros
	5.1 Conclusiones
	5.2 Trabajos futuros

	Bibliografía

