Modelos predictivos basados en
deep learning para datos
temporales masivos.

UNIVERSIDAD

>
4
o
o
O
~N

SEVILLA

PABLOPOLAVIDE

José Francisco Torres Maldonado

Directores: Dra. Alicia Troncoso Lora

Dr. Francisco Martinez Alvarez

Centro de Estudios de Postgrado
Universidad Pablo de Olavide

Tesis doctoral por compendio de articulos

Sevilla, 12 octubre 2021

A mis familiares y amigos ...

Tesis Doctoral subvencionada por el Ministerio de Ciencia, Ingenieria, Inno-
vacion y Universidades, la Junta de Andalucia y el grupo de investigacion
PAIDI TIC-254: Data Science & Big Data Lab, de la Universidad Pablo de
Olavide.

E & = s
@3\ JUNTA TE ANDALUCIA

DATA SCIENCE
&BIG DATA

RESEARCH LAB

PABLO DE OLAVIDE UNIVERSITY

Breaking data to gain knowledge!

Data Science & Big Data Research Lab.

Declaracion

I hereby declare that except where specific reference is made to the
work of others, the contents of this dissertation are original and have not
been submitted in whole or in part for consideration for any other degree or
qualification in this, or any other university. This dissertation is my own work
and contains nothing which is the outcome of work done in collaboration with

others, except as specified in the text and Acknowledgements.

José Francisco Torres Maldonado
Sevilla, 12 octubre 2021

Agradecimientos

No os diré: no lloréis, pues no todas las

ldgrimas son amargas.

— Gandalf el gris
(El sefior de los anillos).

Nada hubiera sido posible sin vosotros. En un momento tan especial de
mi vida quisiera aprovechar estas lineas para expresar mi agradecimiento a
los pilares fundamentales de esta Tesis Doctoral, sin los cuales este trabajo
no hubiera sido posible.

A mis directores de tesis, Alicia Troncoso Lora 'y Francisco Martinez
Alvarez (Paco), por todo lo que han hecho por mi. No solo han dirigido mi
Trabajo Final de Grado, Trabajo final de Master y mi Tesis Doctoral de forma
excepcional, sino que me acogieron con los brazos abiertos y depositaron su
total confianza en mi incluso cuando yo mismo me sentia perdido. He tenido
el gran honor de crecer a vuestro lado como profesional, pero mucho mas
importante, como persona. Y si no fuera poco, tengo la gran suerte de poder
decir que mis dos referentes a nivel profesional se han convertido en amigos y
pilares fundamentales de mi vida. No encuentro palabras para expresar lo que
significdis para mi, pero tan solo espero que nuestros caminos no se separen

jamds y que podamos seguir compartiendo momentos y alegrias juntos.

XII

A todos y cada uno de los miembros que forman y han formado parte de
nuestra casa, el Data Science & Big Data Research Lab: Gualberto Asen-
cio, Rubén Pérez, Laura Melgar, Samuel Conesa, Ricardo Talavera, Antonio
Galicia, Antonio Ferndndez, y, sobre todo, a David Gutiérrez, con quien he
pasado mds tiempo luchando codo con codo al pie del caiién. Gracias a todos
por compartir tantas experiencias, horas de trabajo, frustraciones, alegrias,

almuerzos y viajes.

A José Torres, M Angeles Maldonado y Alfredo Torres, mis padres y
hermano por inculcarme lo que soy como persona. Ellos son los que han
aguantado mi mal humor cuando ni yo mismo me aguantaba, los que han
estado para las buenas, pero sobre todo para las malas y los que han soportado
todo el peso que esta Tesis Doctoral representa a nivel de esfuerzo, constancia,
dedicacion y sacrificio.

A mis amigos y a toda aquella persona que ha contribuido de una forma u

otra a que pudiera desarrollar esta Tesis.

A todos vosotros... (GRACIAS!

Resumen

El avance en el mundo del hardware ha revolucionado el campo de la
inteligencia artificial, abriendo nuevos frentes y dreas que hasta hoy estaban
limitadas. El drea del deep learning es quizas una de las mas afectadas por este
avance, ya que estos modelos requieren de una gran capacidad de computacién
debido al nimero de operaciones y complejidad de las mismas, motivo por el
cual habian caido en desuso hasta los ultimos afios.

Esta Tesis Doctoral ha sido presentada mediante la modalidad de com-
pendio de publicaciones, con un total de diez aportaciones cientificas en
Congresos Internacionales y revistas con alto indice de impacto en el Journal
of Citation Reports (JCR). En ella se recoge una investigacion orientada al
estudio, andlisis y desarrollo de las arquitecturas deep learning mas extendidas
en la literatura para la prediccion de series temporales, principalmente de tipo
energético, como son la demanda eléctrica y la generacion de energia solar.
Ademas, se ha centrado gran parte de la investigacion en la optimizacion de
estos modelos, tarea primordial para la obtencién de un modelo predictivo
fiable.

En una primera fase, la tesis se centra en el desarrollo de modelos pre-
dictivos basados en deep learning para la prediccion de series temporales
aplicadas a dos fuentes de datos reales.

En primer lugar se diseiié una metodologia que permitia realizar la predic-
cién multipaso de un modelo Feed-Forward, cuyos resultados fueron publica-
dos en el International Work-Conference on the Interplay Between Natural
and Artificial Computation (IWINAC). Esta misma metodologia se aplicé y

X1V

comparo con otros modelos cldsicos, implementados de manera distribuida,
cuyos resultados fueron publicados en el 14th International Work-Conference
on Artificial Neural Networks IWANN). Fruto de la diferencia en tiempo
de computacion y escalabilidad del método de deep learning con los otros
modelos comparados, se disefié una version distribuida, cuyos resultados
fueron publicados en dos revistas indexadas con categoria Q1, como son
Integrated Computer-Aided Engineering e Information Sciences. Todas estas
aportaciones fueron probadas utilizando un conjunto de datos de demanda
eléctrica en Espafia. De forma paralela, y con el objetivo de comprobar la
generalidad de la metodologia, se aplicé el mismo enfoque sobre un conjunto
de datos correspondiente a la generacion de energia solar en Australia en
dos versiones: univariante, cuyos resultados se publicaron en International on
Soft Computing Models in Industrial and Environment Applications (SOCO),
y la version multivariante, que fué publicada en la revista Expert Systems,
indexada con categoria Q2.

A pesar de los buenos resultados obtenidos, la estrategia de optimizacion
de los modelos no era ptima para entornos big data debido a su caricter
exhaustivo y al coste computacional que conllevaba. Motivado por esto, la
segunda fase de la Tesis Doctoral se basé en la optimizacién de los modelos
deep learning.

Se disefi6 una estrategia de busqueda aleatoria aplicada a la metodolo-
gia propuesta en la primera fase, cuyos resultados fueron publicados en el
IWANN. Posteriormente, se centrd la atencién en modelos de optimizacion ba-
sado en heuristicas, donde se desarroll6 un algoritmo genético para optimizar
el modelo feed-forward. Los resultados de esta investigacion se presentaron
en la revista Applied Sciences, indexada con categoria Q2. Ademas, e influen-
ciado por la situaciéon pandémica del 2020, se decidi6 disefiar e implementar
una heuristica basada en el modelo de propagacién de la COVID-19. Esta

estrategia de optimizacion se integré con una red Long-Short-Term-Memory,

XV

ofreciendo resultados altamente competitivos que fueron publicados en la
revista Big Data, indexada en el JCR con categoria Q1.

Para finalizar el trabajo de tesis, toda la informacion y conocimientos
adquiridos fueron recopilados en un articulo a modo de survey, que fue

publicado en la revista indexada con categoria Q1 Big Data.

Abstract

Advances in the world of hardware have revolutionised the artificial
intelligence sector, opening up new fronts and areas that were limited until
now. Perhaps the area of deep learning is one of the most affected by this
advance, since these models require a large computing capacity due to the
number of operations and their complexity, which is why they had fallen into
disuse until recent years.

This dissertation has been presented in the form of a compendium of publi-
cations, with a total of ten scientific contributions in international conferences
and journals with a high impact index in the Journal of Citation Reports (JCR).
It includes research oriented towards the study, analysis and development
of the most widespread deep learning architectures in the literature for the
prediction of time series, mainly of the energy, such as electricity demand and
solar energy generation. In addition, a large part of the research has focused
on the optimisation of these models, an essential task in order to obtain a
reliable predictive model.

In a first stage, the dissertation focuses on the development of predictive
models based on deep learning for the prediction of time series applied to two
real data sources.

First of all, a methodology was designed to perform multi-pass predic-
tion of a Feed-Forward model, the results of which were published in the
International Work-Conference on the Interplay Between Natural and Ar-
tificial Computation (IWINAC). This same methodology was applied and

compared with other classical models, implemented in a distributed manner,

XVIII

whose results were published in the 14th International Work-Conference on
Artificial Neural Networks (IWANN). As a result of the difference in compu-
tation time and scalability of the deep learning method with the other models
compared, a distributed version was designed, and the results were published
in two QI indexed journals, Integrated Computer-Aided Engineering and
Information Sciences. All these contributions were tested using a dataset of
electricity demand in Spain. In parallel, and in order to test the generality of
the methodology, the same approach was applied to a dataset corresponding to
solar power generation in Australia in two versions: univariate, whose results
were published in International on Soft Computing Models in Industrial and
Environment Applications (SOCO), and the multivariate version, which was
published in the journal Expert Systems, indexed in the Q2 category.

Although good results were obtained, the optimisation strategy of the
models was not optimal for big data environments due to its exhaustive nature
and the computational cost it implied. Motivated by this, the second phase
of the PhD Thesis was based on the optimisation of deep learning models. A
random search strategy applied to the first phase methodology was designed,
the results of which were published in the IWANN. Subsequently, the focus
was on heuristic-based optimisation models, developing a genetic algorithm to
optimize the feed-forward model. The results of this research were presented
in the Q2-indexed journal Applied Sciences. In addition, and influenced
by the pandemic situation in 2020, we decided to design and implement
a heuristic based on the COVID-19 propagation model. This optimisation
strategy was integrated with a Long-Short-Term-Memory network, offering
highly competitive results that were published in the journal Big Data, indexed
in the JCR with category Q1.

To finalize the thesis work, all the information and knowledge acquired
was compiled in a survey article, which was published in the Q1 Big Data

indexed journal Big Data.

Indice general

Indice de figuras XXIIT
Indice de tablas XXV
I Trabajo de Tesis Doctoral 1
1. Introduccién 3
1.1. Organizaciéon de lamemoria 3
1.2. Motivacién de la investigacién 4
1.3. Objetivos e 6
1.4. Contribuciones 7
I Marco tedrico 13
2. Contexto de la investigacion 15
2.1. ProcesoKDD 15
2.2. Inteligencia artificial y aprendizaje automatico 16
2.3. Seriestemporales 18
24. Bigdata 19
2.5. Deep learning en la prediccion de series temporales 20
2.6. Optimizacion de redes deep learning 22

XX Indice general
3. Discusion de resultados 25
3.1. Andlisis del estadodelarte 25
3.2. Deep Feed-Forward Neural Network 26
3.3. Optimizacién de hiperpardmetros 29
III Publicaciones 33
4. Informe sobre las publicaciones 35
4.1. Articulosderevista Lo oL 36
4.1.1. A scalable approach based on deep learning for big
data time series forecasting 36
4.1.2. A novel Spark-based multi-step forecasting algorithm
for big data time series 51
4.1.3. Big data solar power forecasting based on deep lear-
ning and multiple data sources 71
4.1.4. Hybridizing Deep Learning and Neuroevolution: Ap-
plication to the Spanish Short-Term Electric Energy
Consumption Forecasting 86
4.1.5. Coronavirus Optimization Algorithm: A bioinspired
metaheuristic based on the COVID-19 propagation
model 101
4.1.6. Deep learning for time series forecasting: A survey . 117
4.2. Congresos internacionales 128
4.2.1. Deep Learning-Based Approach for Time Series Fo-
recasting with Application to Electricity Load 128
4.2.2. Scalable Forecasting Techniques Applied to Big Elec-
tricity Time Series 139
4.2.3. Deep learning for big data time series forecasting

applied to solarpower 151

Indice general XXI

4.2.4. Random hyper-parameter search-based deep neural

network for power consumption forecasting 163

IV Cierre 175
5. Conclusiones y trabajos futuros 177
5.1. Conclusiones 177
5.2. Trabajosfuturos, 178

Bibliografia 181

Indice de figuras

2.1.
2.2.

3.1.

3.2

3.3.

Ciencias de la computacién 18
Estacionariedad de una serie temporal. 19
Escalabilidad del modelo DFFNN y otros modelos aplicado

a datos de demanda eléctricaen Espafia. 27
Escalabilidad del modelo DFFNN y los modelos NN y PSF
aplicado a datos de energia solar en Australia. 28

Métricas del modelo DFFNN multivariante aplicado a datos

de energia solar en Australia. 30

Indice de tablas

1.1.

3.1.

3.2.

3.3.

34.

4.1.

4.2.

4.3.

4.4.

Trazabilidad entre objetivos y publicaciones.

Métricas y tiempo de computacién del modelo DFFNN vy
otros modelos aplicados a datos de demanda eléctrica en
Espafia.
Métricas del modelo DFFNN y los modelos NN y PSF apli-
cados a datos de energia solar en Australia.
Métricas de la estrategia de busqueda aleatoria comparada con
otras estrategias aplicadas a los datos de demanda eléctrica
enEspafa. L o
Resultados del método CVOA-LSTM comparados con otros
métodos conocidos. Lo

Datos del articulo: A scalable approach based on deep lear-
ning for big data time series forecasting
Datos del articulo: A novel Spark-based multi-step forecas-
ting algorithm for big data time series
Datos del articulo: Big data solar power forecasting based on

deep learning and multiple data sources
Datos del articulo: Hybridizing Deep Learning and Neuro-
evolution: Application to the Spanish Short-Term Electric

Energy Consumption Forecasting

XXVI Indice de tablas

4.5. Datos del articulo: Coronavirus Optimization Algorithm: A

bioinspired metaheuristic based on the COVID-19 propaga-
tionmodel L L L 101

4.6. Datos del articulo: Deep learning for time series forecasting:
ASUIVEY o o e 117

4.7. Datos del articulo: Deep Learning-Based Approach for Time
Series Forecasting with Application to Electricity Load . . . 128

4.8. Datos del articulo: Scalable Forecasting Techniques Applied
to Big Electricity Time Series 139

4.9. Datos del articulo: Deep learning for big data time series
forecasting applied to solarpower 151

4.10. Datos del articulo: Random hyper-parameter search-based

deep neural network for power consumption forecasting . . . 163

Parte I

Trabajo de Tesis Doctoral

Capitulo 1

Introduccion

Solo hay una manera de llegar al destino:

comenzar.

Sri Chinmoy (Setenta y siete mil drboles de

servicio).

1.1. Organizacion de la memoria

Con objeto de facilitar la comprension y seguimiento de la lectura de esta
tesis, se describe en esta seccion la estructura de la misma, compuesta por

tres partes:

= Parte I. Trabajo de Tesis Doctoral. Esta primera parte contempla diver-
sas secciones generales que permiten contextualizar el presente trabajo,
como la motivacion que ha resultado en el desarrollo de esta tesis, los
objetivos que se pretenden alcanzar y el marco en el que se encuadran
todas las publicaciones que dan lugar al cumplimiento de los objetivos
propuestos.

= Parte II. Deep learning en la prediccion de series temporales. En esta

parte se detalla el marco tedrico en el que se enmarca el trabajo de esta

4 Introduccién

tesis. En un primer capitulo se describe el contexto de la investigacion,
abordando y detallando conceptos como el proceso Knowledge Dis-
covery in Databases (KDD), diferencias entre Inteligencia Artificial
(IA) y Machine Learning (ML) y dénde se enmarca el deep learning.
Ademads, se realiza una descripciéon de qué es una serie temporal y
como se aborda en un entorno big data. En el segundo capitulo, se
resumen los resultados obtenidos, utilizando para ello dos casos de
uso reales: demanda de energia eléctrica y produccion de energia solar

fotovoltaica.

= Parte I1I. Publicaciones. En esta parte del documento se recogen los
trabajos de investigacion publicados durante el desarrollo de esta Tesis
Doctoral, siendo organizados por tipo y fecha de publicacién. Se de-
tallan tanto las publicaciones que se consideran para el compendio de
articulos como aquellas en las que también se ha trabajado y que han

servido de apoyo o guia al estudio de investigacién expuesto.

= Parte IV. Cierre. En la dltima parte del documento se resumen las
conclusiones adquiridas tras la realizacion de esta tesis, asi como los

trabajos futuros.

1.2. Motivacion de la investigacion

Actualmente vivimos inmersos en un mundo muy tecnolégico en el que
encontramos innumerables sensores y dispositivos electrénicos. Es tal la
dependencia de estos artefactos que sin ellos no se podrian llevar a cabo
muchas de las actividades cotidianas que se realizan en el dia a dia. La
gran parte de estos dispositivos generan en mayor o menor medida datos de
diferentes tipologias, formatos y tamafios.

Se dice que la informacién es poder, y la mayoria de empresas son cons-

cientes de ello, por lo que uno de los principales retos en la actualidad radica

1.2 Motivacion de la investigacion 5

en analizar todos estos datos con el fin de obtener informacion ttil de ellos
y bien aumentar los beneficios de la organizaciéon o disminuir costes de la
misma. Muestras del poder de la informacion pueden ser los sistemas de
recomendacion de Amazon o Netflix, que son capaces de ofrecer servicios y
productos conforme a las necesidades y gustos de cada usuario. Otros ejem-
plos destacables podrian ser la estimacion del estado del tréfico que realiza
Google en los smartphones o el famoso caso de la compafiia Cambridge
Analytica para apoyar, usando datos de usuarios de Facebook, la campafia de
Trump en las elecciones de los EEUU del ano 2016.

Esta tendencia ha abierto la puerta a un nuevo mercado laboral donde
conviven muy estrechamente diversas disciplinas como la Ciencia de Datos,
el Internet de las Cosas (mas conocido por su acréonimo inglés, IoT, Internet
of Things) y la IA, donde los profesionales del sector se especializan en
estudiar, entender y analizar conjuntos de datos con el objetivo de obtener
conocimiento de interés para una organizacién, aplicado a un dominio o
problema determinado. Esta nueva vertiente es una de las mas demandadas
en la actualidad, convirtiendo a los analistas y arquitectos de datos en dos de
los perfiles profesionales mas demandados en la empresa.

Uno de los componentes esenciales en la naturaleza de los datos es que
normalmente la informacion se encuentra indexada en el tiempo, cuyo com-
portamiento dependera de un instante determinado como en el caso de la
meteorologia o el consumo de agua, por ejemplo, entre otros. A esta tipologia
de datos se le conoce como serie temporal.

Si bien es cierto que el andlisis de datos se ha estado aplicando desde hace
bastante tiempo, con el paso de los afos y la evolucion tecnoldgica que se
ha experimentado, la poblacién se ha ido concienciando de la importancia
que tiene realizar estudios sobre los datos ya almacenados y combinarlos
con la ingente cantidad de datos que se generan cada dia, que requieren ser
tratados con un enfoque diferente al llevado a cabo hasta ahora, dando lugar

al término conocido como big data. Este enfoque se basa en la utilizacion

6 Introduccién

de equipamiento de alto rendimiento, asi como en la implementacién de los
algoritmos de forma distribuida sobre un cluster de ordenadores. La adopcién
de estas técnicas ha permitido aplicar algoritmos que antes no podian ser
utilizados debido a sus requisitos de computacién a nivel hardware, como son

los algoritmos de deep learning.

1.3. Objetivos

El objetivo principal sobre el que se desarrolla esta Tesis Doctoral es el
estudio, comprension, andlisis y mejora de métodos basados en deep learning
aplicados a la prediccion de series temporales en entornos big data. Para
ello, se han desarrollado una serie de algoritmos de prediccion basados en
varias arquitecturas de deep learning conocidas en la literatura, tales como
Deep Feed Forward Neural Network (DFFNN), Long-Short Term Memory
(LSTM) o Temporal-Convolutional Network (TCN). Estas arquitecturas se
han estudiado en profundidad, haciendo especial hincapié en como afectan
cada uno de los hiperpardmetros al comportamiento de los modelos para
los conjuntos de datos utilizados, adaptidndolas a modelos que puedan ser
aplicables en entornos big data. Este objetivo a gran escala puede desgranarse

en los siguientes sub-objetivos:

= OB.Ol. Estudio teorico-préctico de las arquitecturas de red DFFNN,
LSTM y TCN, analizando fortalezas y debilidades de cada método en
funcién de las caracteristicas del problema que se desea abordar.

= OB.02. Disefio y desarrollo de un modelo de prediccién multipaso
que permita eliminar las limitaciones de las arquitecturas de redes

neuronales tradicionales.

= OB.03. Explorar las diversas estrategias de optimizacién en los modelos
deep learning.

1.4 Contribuciones 7

= OB.04. Disefio y desarrollo de un método de optimizacién genérico

aplicable a cualquier arquitectura de deep learning.

= OB.05. Verificar que los modelos propuestos son generalizables a series

temporales de diversas fuentes y aplicaciones.

1.4. Contribuciones

Esta Tesis Doctoral ha sido fruto de una secuencia de publicaciones
cientificas enmarcadas dentro de la prediccion de series temporales y deep
learning en entornos big data. Asi, las principales publicaciones alcanzadas
para cubrir los objetivos descritos en la Seccion 1.3 se detallan a continuacion:

En [6] se public la primera aproximacién a una formulacién matematica
que permite abordar un problema de prediccién multipaso, dando solucién
a las limitaciones que presentaban la mayoria de librerias deep learning
para predecir series temporales big data. En este articulo, se comprob6 la
eficacia de la metodologia sobre una red DFFNN. Posteriormente, se aplic
este mismo enfoque a otros modelos de regresion que presentan la misma
limitacion en [3]. Una descripcion mds detallada fue publicada en [7], donde
se realiz6 un anélisis pormenorizado de las predicciones sobre un caso de
estudio real. Ademads, se realizaron andlisis de rendimiento, comparandolos
con otros modelos como regresion lineal, un drbol de regresiéon simple y
dos algoritmos ensemble de arboles, tales como Gradient-Boosted Trees y
Random Forest, que fueron publicados en [2]. Con el fin de comprobar la
generalidad del método frente a otros problemas, la metodologia se aplico
sobre otra serie temporal, llevando a cabo una bisqueda exhaustiva de los
hiperpardmetros de la red [10]. Esta experimentacion se amplié utilizando un

conjunto de datos multivariante, y fue publicada en [11].

Introduccién

[6] Torres, J. E., Fernandez, A. M., Troncoso, A., and Martinez—Alvarez,
F. «<Deep Learning-Based Approach for Time Series Forecasting with
Application to Electricity Load». Biomedical Applications Based on
Natural and Artificial Computing: International Work-Conference on
the Interplay Between Natural and Artificial Computation, ININAC
2017. Springer International Publishing, 2017, pp. 203-212. Lecture
Notes in Computer Science, vol 10338. Springer, Cham. Conference
Ranking: National.

[3] Galicia, A., Torres, J. F., Martl’nez—Alvarez, F., and Troncoso, A.
«Scalable Forecasting Techniques Applied to Big Electricity Time
Series». Advances in Computational Intelligence: 14th International
Work-Conference on Artificial Neural Networks, IWANN 2017, Cadiz,
Spain, June 14-16, 2017, Proceedings, Part II. Springer International
Publishing, 2017, pp. 165-175. doi: 10.1007/978-3-319-59147-6_15.
Conference Ranking: CORE-B.

[7] Torres, J. F., Galicia, A., Troncoso, A., and Martinez-Alvarez, F.
«A scalable approach based on deep learning for big data time series
forecasting». Integrated Computer-Aided Engineering 25(2018), pp.
1-14. doi: 10.3233/ICA-180580. IF: 3.667, 21/132 (Q1) in Computer
Science-Artificial Intelligence.

[2] Galicia, A., Torres, J., Martinez-Alvarez, F., and Troncoso, A. «A
novel Spark-based multi-step forecasting algorithm for big data time
series». Information Sciences (2018). doi: 10.1016/;.ins.2018.06.010.
IF: 4.305, 12/148 (Q1) in Computer Science-Information Systems..

1.4 Contribuciones 9

[10] Torres, J. F., Troncoso, A., Koprinska, I., Wang, Z., and Martinez-
Alvarez,F. A. «Deep learning for big data time series forecasting ap-
plied to solar power». International on Soft Computing Models in
Industrial and Environment Applications (SOCO) 2018, pp. 123-133.
Lecture Notes in Advances in Intelligent Systems and Computing book

series, vol. 771. Springer International Publishing, Cham.

[11] Torres, J. F., Troncoso, A., Koprinska, 1., Wang, Z., and Martinez-
Alvarez, F. «Big data solar power forecasting based on deep lear-
ning andmultiple data sources». Expert Systems (2019), pp. €12394.
doi: 10.1111/exsy.12394. IF: 1.546, 50/120 (Q2) in Computer science,
theory and methods.

Los resultados en todas las publicaciones referenciadas anteriormente se
obtuvieron aplicando una buisqueda exhaustiva de los hiperpardmetros. Sin
embargo, esta practica no es factible cuando se aplica en entornos big data
debido al gran coste computacional que lleva asociado. Por ese motivo, en la
segunda parte de la presente Tesis Doctoral se centr6 el foco en el andlisis,
disefio e implementacion de estrategias de optimizacion de hiperpardmetros.
En [8] se publicaron los resultados de aplicar una estrategia de busqueda
aleatoria en una red DFFNN, donde se demostré sobre un conjunto de datos
real que el rendimiento del modelo era altamente competitivo tanto en tér-
minos de error como en tiempo de computacion. Posteriormente, se aplicd
una estrategia de buisqueda aplicando heuristicas, concretamente basada en
algoritmos genéticos, cuyos resultados fueron publicados en [1]. Analizando
los resultados obtenidos, se crey6 viable el disefio y desarrollo de una nueva
estrategia de busqueda basada en heuristicas que acelerara el entrenamiento
de los modelos. A este respecto, se disené e implementé una estrategia basada
en el modelo de propagacién de la COVID-19 que fue publicado en [4]. Por

ultimo, y con objeto de ofrecer un punto de vista global sobre la prediccion de

10 Introduccién

series temporales aplicando deep learning en entornos big data, se concentrd
toda la informacidn recopilada y estudiada, asi como una revision exhaustiva

de la literatura en un survey [9].

[8] Torres, J. F., Gutiérrez-Avilés, D., Troncoso, A., and Martinez-
Alvarez,F. «<Random hyper-parameter search-based deep neural net-
work for power consumption forecasting». Advances in Computational
Intelligence: International Work-Conference on Artificial Neural Net-
works, IWANN 2019, Gran Canaria, Spain, May 14-16, 2019, Part of
the Lecture Notes In Computer Science, vol. 11506. Springer Interna-
tional Publishing, 2019, pp. 259-269. doi: 10.1007/978-3-319-59147-
6_15. Conference Ranking: CORE-B.

[1] Divina, F., Torres Maldonado, J. F., Garcia-Torres, M., Martinez-
Alvarez, F., and Troncoso, A. «Hybridizing Deep Learning and Neu-
roevolution: Application to the Spanish Short-Term Electric Energy
Consumption Forecasting». (2020). doi: 10.3390/app10165487. IF:
2,697, 43/128 (Q2) in Applied Sciences.

[4] Martinez-Alvarez, F., Asencio-Cortés, G., Torres, J. F., Gutiérrez-
Avilés,D., Melgar-Garcia, L., Pérez-Chacén, R., Rubio-Escudero, C.,
Riquelme,J. C., and Troncoso, A. « Coronavirus Optimization Algo-
rithm: Abioinspired metaheuristic based on the COVID-19 propagation
model». (2020). doi: 10.1089/big.2020.0051. IF: 3.644, 15/108 (Q1) in
Big Data.

1.4 Contribuciones 11

[9] Torres, J. F., Hadjout, D., Sebaa, A., Martinez-Alvarez, F., and
Troncoso, A. «Deep learning for time series forecasting: A survey».
(2020). doi: 10.1089/big.2020.0159. IF: 3.644, 15/108 (Q1) in Big

Data.

De este modo, la Tesis Doctoral estd compuesta por un total de 10 articulos
cientificos que permiten cubrir los objetivos propuestos en la Seccién 1.3 y
que quedan resumidos en la Tabla 1.1, que ilustra la matriz de trazabilidad

entre los objetivos planteados y las publicaciones realizadas.

Tabla 1.1 Trazabilidad entre objetivos y publicaciones.

OB.01. OB.02. OB.03. OB.04. OB.05.

Parte 11

Marco teorico

Capitulo 2
Contexto de la investigacion

La educacion cientifica de los jovenes es
al menos tan importante, quizd incluso
mds, que la propia investigacion.

Glenn Theodore Seaborg.

2.1. Proceso KDD

KDD hace referencia al proceso de extraccion de conocimiento en bases
de datos, cuyo principal objetivo es identificar patrones entendibles sobre los
datos, obteniendo informacion novedosa y de utilidad. Este proceso puede

resumirse en cinco pasos definidos:

1. Comprension del problema. El primer paso en un proceso KDD
se basa en un buen entendimiento y contextualizacién del problema
a solventar. Suele ocurrir que no se tienen definidos unos objetivos
y dominio de aplicacion, dando lugar a problemas en el alcance y

comprension del proyecto.

2. Seleccion de datos. Determinar las fuentes y el tipo de datos a utilizar.
Estos datos deberian ser relevantes al dominio y objetivos del estudio

16

Contexto de la investigacion

2.2

y se podrian obtener de diversas fuentes, tales como bases de datos,

documentos, transacciones, sitios webs, logs, etc.

. Limpieza y preprocesamiento. Es posible que los datos tengan ano-

malias, registros vacios o fuera de rango o algunos datos que no sean
de interés para el estudio. El paso de limpieza y preprocesamiento se
basa en el tratamiento de estos datos combinado con el conocimiento
previo para eliminar inconstencias, valores duplicados, tratamiento de

valores nulos y adaptacion de los datos al problema.

Analisis. Una vez que los datos estdn procesados y estructurados confor-
me al estudio a realizar, se aplican técnicas de aprendizaje automatico
(ML, por su acepcion inglesa Machine Learning). Estas técnicas se
basan en la aplicacion de algoritmos con el fin de buscar y obtener

patrones ocultos en los datos que ofrezcan informacién de interés.

. Interpretacion y evaluacion. Por dltimo, una vez que se descubren los

patrones de comportamiento en los datos, se interpretan los resultados
de estos patrones y se evaliian (generalmente a través de métricas, cua-
dros de mandos y visualizaciones), con el fin de ofrecer a los usuarios

la informacién de interés obtenida.

Inteligencia artificial y aprendizaje automa-

tico

Segiin la Real Academia Espaifiola (RAE), la TA se define como una

disciplina cientifica que se ocupa de desarrollar programas informéticos que

ejecutan operaciones comparables a las que realiza la mente humana, como

el aprendizaje o el razonamiento légico.

El origen de la IA no estd totalmente claro ni definido. Se dice que puede

haber empezado con antiguos juegos matematicos, como las torres de Hanoi

2.2 Inteligencia artificial y aprendizaje automatico 17

en el afo 3000 a.C., aproximadamente. Por otro lado, en el afio 1950, el
matematico inglés Alan Mathson Turing introdujo la maquina de Turing
como el inicio de la informética tedrica, y en el 1956, se acufi6 el término 1A
por McCarthy.

La IA es una disciplina cientifica que engloba una gran diversidad de
técnicas y campos, como puede ser la ingenieria del conocimiento, la 16gica
difusa, sistemas reactivos, vision artificial, procesamiento de lenguaje natural,
audicidn artificial o el aprendizaje automético, entre otros.

Una de las ramas de la IA mas extendida y utilizada a lo largo de los afios
ha sido la mineria de datos, que es un campo de la estadistica cuyo objetivo
es descubrir patrones, correlaciones y anomalias en los datos.

El ML es una de las disciplinas de la IA cuya principal caracteristica es
desarrollar técnicas y algoritmos que permitan que los sistemas aprendan, es
decir, un sistema de induccién de conocimiento.

Dentro del ML se pueden clasificar de manera general dos tipos de al-
goritmos agrupados en una taxonomia en funcion de la salida de dichos

algoritmos:

» Aprendizaje supervisado. Consiste en hacer predicciones a futuro
basadas en comportamientos o caracteristicas que se han obtenido de
un conjunto de datos. Esto permite buscar patrones relacionando los
atributos del conjunto de datos con un atributo concreto, llamado clase
o etiqueta. Dependiendo de la salida que se desee obtener, un método de
aprendizaje supervisado puede ser aplicado a problemas de regresion,
que buscan predecir un valor continuo, o a problemas de clasificacion,

que tratan de predecir una categoria o etiqueta de los datos.

= Aprendizaje no supervisado. En este grupo, los datos no estdn etique-
tados, por lo que las técnicas intentan encontrar modelos descriptivos
del comportamiento de los datos. De entre estas técnicas, destacan el
clustering y la extraccion de reglas de asociacion por su extendido uso

y su sencillez para interpretar los resultados obtenidos.

18 Contexto de la investigacion

Para llevar a cabo estas tareas, existen infinidad de algoritmos dependiendo
del problema en cuestién. Una de las vertientes que mas éxito estd teniendo en
los ultimos afios son los algoritmos basados en deep learning, que se apoyan
en las ya conocidas redes neuronales y que ofrecen resultados realmente
competitivos. En la literatura se recogen diversas arquitecturas de red, cuya
seleccion dependera de las caracteristicas del problema que se desee modelar.

Por tanto, se puede describir de forma sencilla el mapa conceptual de la
Ciencia de la Computacion e IA donde se enmarca la presente Tesis Doctoral
a través de la Figura 2.1.

Ciencia de la Computacion

Inteligencia Artificial

Machine Learning

Mineria
Deep Learning de datos

Big Data

Figura 2.1 Mapa de la Ciencia de la Computacion.

2.3. Series temporales

Una serie temporal es una secuencia de datos medidos en determinados
intervalos de tiempo (normalmente equidistantes) y ordenados de forma
cronoldgica. Esta tipologia de datos estin muy presente en la actualidad,
como por ejemplo las acciones en bolsa, datos demograficos, etc.

Las series temporales se pueden clasificar en dos grandes grupos depen-
diendo de su estacionariedad. Se dice que una serie temporal es estacionaria
si la media y la varianza se mantienen constantes a lo largo del tiempo. Por el

contrario, se define como serie temporal no estacionaria a aquella cuya media

2.4 Big data 19

y varianza no se mantiene constante. Ademads, este tipo de series pueden mos-
trar una tendencia, ya sea de subida o bajada, ademas de efectos estacionales.
Un ejemplo de serie estacionaria y no estacionaria puede verse en las Figuras

2.2ay 2.2b, respectivamente.

1400
600-
1200
1000 400-

800

600 200-

1875 1900 1925 1950 1950 1955 1960
(a) Estacionaria. (b) No estacionaria.

Figura 2.2 Estacionariedad de una serie temporal.

Ademas de la estacionariedad, una serie temporal se compone también
de la tendencia, es decir, el comportamiento de la serie a largo plazo, y de
irregularidades, que son variaciones aleatorias de la estacionalidad y de la
tendencia.

Estos componentes hacen que la prediccion de series temporales sea una
de las areas mas complejas y estudiadas dentro de la Ciencia de Datos, debido
al gran interés que despierta en la sociedad, por ejemplo, la posibilidad de
obtener una prevision mads fiable de la meteorologia para determinados dias
o la prevision del consumo de energia para determinar una estrategia de

consumo que minimice costes, entre otros.

2.4. Bigdata

El término big data no tiene una definicién clara ni reconocida, sino que
hace referencia més bien a un paradigma de programacion para resolver pro-

blemas que no son abordables con las técnicas de computacion tradicionales.

20 Contexto de la investigacion

Estos problemas de gran envergadura se caracterizan por cuatro propieda-
des, mas bien conocidas como las 4V’s del big data, que hacen referencia al
volumen, velocidad, variedad y veracidad de los datos.

Para abordar problemas de estas caracteristicas, se debe enfocar la solu-
cién de forma diferente a como se ha estado realizando hasta ahora. Entre
otros aspectos, se debe tener en cuenta otra forma de configurar la arquitec-
tura, tales como motores de bases de datos o frameworks de procesamiento,
la estructuracion de los datos o utilizar clusters de mdquinas usando el po-
tencial del procesamiento paralelo y distribuido. Este nuevo enfoque implica
que gran parte de los modelos y sistemas que se han estado utilizando hasta
ahora queden limitados, forzando a la comunidad investigadora a abrir nuevos

frentes de investigacion para abordar dichas limitaciones.

2.5. Deep learning en la prediccion de series tem-

porales

Aunque el término deep learning ha empezado a utilizarse en los tltimos
afios, el inicio se remonta al afio 1943 con la publicacién del modelo neuronal
[5]. A partir de dicha publicacién, fueron varios autores los que innovaron
con este modelo de referencia. La comunidad investigadora proponia arqui-
tecturas cada vez mas complejas, que cayeron en desuso por el gran coste
computacional que llevaban asociadas y que no era posible abordar. En los
ultimos afos, e influenciado por el gran avance en el mundo del hardware,
estar arquitecturas volvieron a usarse ampliamente, siendo capaces de extraer
relaciones de los conjuntos de datos que antes no era posible, dando lugar al
término conocido como deep learning.

Existen diversas arquitecturas de referencia en la literatura, cuyo uso varia
en funcidn de las caracteristicas del problema y de los datos que se desee
abordar. En la prediccion de series temporales, las arquitecturas deep learning

mads extendidas en la literatura se pueden clasificar en tres grupos:

2.5 Deep learning en la prediccion de series temporales 21

= Redes Convolucionales (CNN). Este tipo de red se especializa en
aprender caracteristicas de los datos a través de convoluciones, pre-
sentando una topologia de grid multidimensional. Intuitivamente, este
tipo de redes se puede aplicar a series temporales, donde los datos se
estructuran afiadiendo una dimension adicional para modelar la com-
ponente temporal. Entre las arquitecturas basadas en convoluciones,
destaca la Temporal-Convolutional Network (TCN), que consiste en
el uso de capas convolucionales dilatadas y causales para modelar la

dependencia temporal en los datos.

= Redes Recurrentes (RNN). Las RNN se enmarcan dentro de las redes
de retroalimentacién y son ampliamente utilizadas en problemas donde
se trabajan con secuencias de datos. Se caracterizan fundamentalmente
por estar disefiadas para retener informacién y retroalimentarse usando
como entrada la salida computada en un instante de tiempo anterior,
formando un ciclo dirigido y dotando a la red de una especie de memoria
que facilita al modelo la tarea de encadenar dependencias entre los
datos. Dentro de las RNN, existen varias arquitecturas, tales como
las redes LSTM, que son una variacion de las RNN clésicas, cuya
principal ventaja es que son capaces de retener una mayor cantidad de
informacién en memoria, solventando de este modo las limitaciones que
presentan las RNN. Otra de las arquitecturas ampliamente utilizadas
para analizar series temporales son las Gated Recurrent Units (GRU),
que son una variacioén de las redes LSTM con menos parametros y
altamente efectivas en series temporales relativamente cortas y con una

corta frecuencia de muestreo.

» Temporal Fusion Transformers (TFT). Las redes TFT nacen a raiz de
la mezcla de datos de entrada que suele darse en la prediccion de series
temporales, ya que es comun incluir variables estaticas, predicciones
futuras y otras series temporales exdgenas. Las TFT estdn basadas

en mecanismos de atencién que combinan capas recurrentes para el

22 Contexto de la investigacion

procesamiento con seleccion de variables, por lo que permiten desechar
informacién no relevante, dotdndolas asi de un gran rendimiento y

adaptabilidad a diversas fuentes de datos.

2.6. Optimizacion de redes deep learning

El rendimiento de las arquitecturas deep learning esta altamente influen-
ciado por la optimizacion de todos sus hiperpardmetros. Aunque muchos de
ellos son comunes a todas las arquitecturas, hay otros que dependen del tipo
de red que se utiliza, asi como de las caracteristicas de los datos a analizar y el
problema a resolver. Esto hace que la optimizacién del modelo sea una pieza
fundamental en cualquier estudio, y que debe ser llevada a cabo a consciencia
y de forma minuciosa. Para la optimizacién de los modelos deep learning, en

la literatura se recogen cuatro estrategias generales:

= Trial-error. Este método se basa en variar cada uno de los hiperparame-
tros manualmente, lanzando una ejecucion cada vez que se modifique.
Este proceso requiere de la intervencion del usuario para analizar los
resultados obtenidos, modificar el valor de los hiperpardmetros y volver
a lanzar la ejecucion. Este proceso implica invertir una gran cantidad

de tiempo, ademads de que ofrece un espacio de bisqueda reducido.

= Grid. Dado un conjunto de hiperpardmetros y sus posibles valores, esta
estrategia de busqueda realiza todas las combinaciones existentes entre
ellos. De esta forma, se asegura cubrir el total del espacio de busqueda,
ofreciendo siempre la mejor combinacién posible, y por ende, el mejor
resultado. Sin embargo, conlleva un alto costo computacional, por lo
que no es una buena estrategia de optimizacion para problemas de deep
learning ni big data en los que el espacio de busqueda sea grande y se

deban analizar grandes cantidades de datos.

2.6 Optimizacion de redes deep learning 23

= Probabilistica. Esta estrategia hace un seguimiento de cada una de las
evaluaciones que son usadas para generar un modelo probabilistico que

asigna valores a cada uno de los hiperparametros.

= Aleatoria. Esta estrategia permite cubrir un gran espacio de busqueda,
ya que dado un conjunto de hiperparametros y sus posibles valores, los
combina de forma aleatoria, pudiendo explorar infinitas combinaciones.
No obstante, esta estrategia es propensa a obtener combinaciones que
caigan en minimos locales. Para paliar este problema, es muy comun
utilizar busquedas aleatorias guiadas, como las basadas en heuristicas,
cuya funcidn es modificar los valores de los hiperpardmetros en funcién
de algtn criterio previamente establecido y asegurando asi que en cada
iteracién se mejora el modelo.

Capitulo 3
Discusion de resultados

En algiin lugar, algo increible estd

esperando ser conocido

Carl Sagan.

En esta seccion se describe la secuencia de trabajos seguido en el desarro-
llo de esta tesis, asi como un breve resumen de los resultados obtenidos en
los mismos. Para ello, se seguird un orden cronoldgico, donde se expondra la

motivacion que ha llevado a realizar cada uno de los estudios propuestos.

3.1. Analisis del estado del arte

Cuando se decidié comenzar esta Tesis Doctoral, se plante6 como primer
objetivo hacer un anélisis exhaustivo del estado del arte y, en concreto, de
las técnicas basadas en deep learning existentes para la prediccion de series
temporales. Fruto de dicho andlisis, se publicé un survey en [9], en el que se
presentan tanto la formulacién matematica e interpretacion de los modelos
mads extendidos como son las redes de propagacion hacia adelante, redes recu-
rrentes, la red ELMAN, las LSTM, GRU, redes recurrentes bidireccionales,

26 Discusion de resultados

las redes convolucionales y las redes temporales-convolucionales. Ademas, se
estudié en profundidad los campos de aplicacién en los que las diversas técni-
cas han demostrado ser efectivas. Por otro lado se analizaron y se clasificaron
las diferentes estrategias de optimizacion, asi como una amplia gama de fra-
meworks y librerias disponibles para llevar a cabo la implementacion de cada
uno de los modelos y la optimizacidn de sus hiperpardmetros en base a varios
criterios, como el lenguaje de programacion en el que puede ser desarrollado

o la posibilidad de implementar los modelos de forma distribuida.

3.2. Deep Feed-Forward Neural Network

En el primer estudio [6] se propuso una formulacién matematica que per-
mitia abordar un problema de prediccién multipaso aplicando redes DFFNN,
dando solucién a la principal limitacién que presentaban la mayoria de libre-
rias deep learning. Esta propuesta consistia en dividir el problema multipaso
en diferentes problemas de un Unico paso y solucionarlos de forma individual.

Esta metodologia se aplic6 sobre un conjunto de datos de consumo eléctri-
co en Espafa. Esta serie estd compuesta por 9 afios completos, (desde enero
2007 hasta junio 2016), con una frecuencia de muestreo de 10 minutos, resul-
tando en un total de 497832 muestras. En este estudio se obtuvo un Error
Relativo Medio (MRE) de 1.84 % aplicando una estrategia de busqueda grid
para la optimizacion de hiperpardmetros.

Posteriormente, en [7] se realiz6é un andlisis pormenorizado de las pre-
dicciones sobre el mismo conjunto de datos, asi como una implementacién
distribuida del modelo para optimizar el tiempo de computacion. En este
estudio se realizaron pruebas de rendimiento y escalabilidad, comparando los
resultados con otros métodos de referencia conocidos en la literatura. En este
andlisis se demostré que la metodologia de prediccidon propuesta obtenia las
mejores métricas de error y que era altamente competitiva en cuanto a tiempo

de ejecucion, a pesar de no ser la mas rdpida. Los resultados estdn descritos

3.2 Deep Feed-Forward Neural Network 27

en la Tabla 3.1 y en la Figura 3.1, donde se puede observar que el método
es bastante mas rapido comparado con el modelo Linear Regression y los
modelos ensembles, sobre todo a medida que el tamafio del conjunto de datos

crece.

Tabla 3.1 Métricas y tiempo de computacion del modelo DFFNN vy otros
modelos aplicados a datos de demanda eléctrica en Espaiia.

MRE (%) Tiempo (s)

DFFNN 1.6769 153
Linear Regression 7.3395 553
Decision Tree 2.8783 81

Gradient-Boosted Trees 2.7190 417
Random Forest 2.2005 277

20000 - === Deep Learning .
= - Linear Regression PR

« + Decision Tree -

- Gradient-Boosted Trees »
— - Random Forest .

15000 — -

10000 . ESe

Time (sec)
\
\
\

Figura 3.1 Escalabilidad del modelo DFFNN y otros modelos aplicado a datos
de demanda eléctrica en Espaiia.

Una vez verificada la eficacia del método, se decidié comprobar su capa-
cidad de generalizacion frente a otras series temporales. Esto llevo a aplicar

la misma metodologia de prediccion sobre un conjunto de datos de energia

28 Discusion de resultados

solar en Australia en [10]. Esta serie temporal se obtuvo de una planta solar
localizada en la Universidad de Queensland y estd formada por datos desde el
1 de enero de 2015 hasta el 31 de diciembre de 2016, con una frecuencia de
muestreo de 30 minutos. En este estudio se corrobord que la metodologia es
generalizable y aplicable a series temporales con caracteristicas diferentes.
Para afirmar esto, se compararon los resultados con otros modelos de pre-
diccion conocidos ya publicados en la literatura como son Pattern-Sequence
Forecasting (PSF) y el Perceptron Multicapa (NN) en términos de rendimien-
to y escalabilidad. Los resultados estdn ilustrados en la Tabla 3.2 y en la
Figura 3.2, donde se observa la menor tasa de error y el menor tiempo de

computacion del modelo DFFNN, debido a su carécter distribuido.

Tabla 3.2 Métricas del modelo DFFNN y los modelos NN y PSF aplicados a
datos de energia solar en Australia.

NN PSF DFFNN
RMSE 154.16 149.52 148.98
MAE 116.64 119.17 114.76
Training time

2000
|

-e- NN
—=— PSF
—>— DL

1500
|

Time (s)
1000

T
4 8 16 32 64
length factor

Figura 3.2 Escalabilidad del modelo DFFNN y los modelos NN y PSF aplica-
do a datos de energia solar en Australia.

3.3 Optimizacion de hiperpardmetros 29

Posteriormente, la misma metodologia se amplié aplicindose a un con-
junto de datos multivariante, donde se analizaron datos de energia solar
afiadiendo informacion relativa a la meteorologia [11]. En concreto, se utilizé
informacion adicional sobre la meteorologia del dia actual (W) y prediccio-
nes de la meteorologia para el siguiente dia (WF), considerando que dichas
predicciones podrian tener tres versiones, que corresponden a un 10 %, 20 %
y 30% de ruido. Los resultados de este analisis estan ilustrados en la Figura
3.3. En ella se observa que en las Figuras 3.3a y 3.3b, en las que se utiliza
la prevision de la meteorologia, es el modelo DFFNN el modelo que menor
error obtiene. Sin embargo, en las Figuras 3.3c y 3.3d, donde se utilizan ade-
mads de las predicciones, la informacion meteoroldgica en el dia actual, es el
modelo NN el que ofrece los mejores resultados. Esto sugiere que el modelo
propuesto puede llegar a mejorar en su forma multivariante ampliando la
ventana histdrica utilizada para entrenar el modelo, de forma que se incluyan
en el andlisis mayores dependencias temporales. No obstante, se espera que

esta mejora no sea tan diferenciada como en el caso de la version univariante.

3.3. Optimizacion de hiperparametros

Toda la experimentacion descrita hasta ahora se ha llevado a cabo apli-
cando una estrategia de busqueda en grid (exhaustiva) de algunos de los
hiperparametros de la red. Sin embargo, esta prictica no es recomendable,
porque para realizar esta biisqueda se discretizan los posibles valores haciendo
que el barrido no sea tan exhaustivo en sentido estricto y que, en definitiva,
sOlo se evalie un pequefio porcentaje de combinaciones posible. Motivado
por ello, ademds de por el escaso nimero de publicaciones disponibles en
la literatura al respecto, se decidi6é enfocar el hilo principal de la investiga-
cion al andlisis, estudio e implementacion de estrategias de optimizacién en

arquitecturas deep learning.

30 Discusion de resultados

PV+WF data PV+WF data

B8 DL 2 NN @ PSF B8 DL 2 NN @ PSF

150 150

RMSE [KW]
-
5
8

Noise in WF

(a) (b)
PV+W+WF data PV+W+WF data
200 200
0 DL NN PSF o bL NN PSF

10% 20% 30%

Noise in WF Noise in WF

(© (d)

Figura 3.3 Métricas del modelo DFFNN multivariante aplicado a datos de
energia solar en Australia.

De esta forma, se implement6 una estrategia de bisqueda aleatoria sobre
la red DFFNN propuesta. Esta estrategia tiene como principal caracteristica la
posibilidad de explorar un gran espacio de biisqueda al permitir que el valor
de cada uno de los hiperpardmetros sea continuo. De esta forma, permite
obtener un nimero infinito de combinaciones, y, por tanto, la mejora de los
modelos, tal y como se encuentra en [8]. Esta estrategia se aplic6 a los datos
de demanda eléctrica en Espaiia, siendo los resultados comparados con los
resultados obtenidos previamente con la busqueda grid. Ademas, se amplio la
metodologia propuesta inicialmente afiadiendo como etapa final un filtro de

paso bajo basado en la media mévil para reducir el rizado en las predicciones.

3.3 Optimizacion de hiperpardmetros 31

Este rizado era consecuencia directa de realizar las predicciones multi-paso
con diferentes modelos, ya que cada prediccion era independiente de los
valores predichos inmediatamente anteriores y posteriores. De esta forma,
el modelo no era capaz de interpretar la dependencia temporal existente
entre cada una de las predicciones, por lo que se buscé una alternativa para
suavizar el cambio de prediccion. Los resultados descritos en la Tabla 3.3
demuestran que la estrategia de busqueda aleatoria mejora significativamente
a la busqueda en grid, y que el filtro suavizado mejora significativamente la

calidad de las predicciones.

Tabla 3.3 Métricas de la estrategia de busqueda aleatoria comparada con otras
estrategias aplicadas a los datos de demanda eléctrica en Espafa.

MSE RMSE MAE MRE (%)

Grid 380486.80 616.84 451.96 1.68
Aleatoria 345891.20 588.13 422.55 1.57
Aleatoria+filtro 251143.90 501.14 369.19 1.36

A pesar de los buenos resultados que ofrece una busqueda aleatoria, se
decidi6 disefar e implementar una novedosa estrategia de busqueda basada
en heuristicas que mejorara y acelerara la convergencia de los modelos. Con-
cretamente, se propuso una heuristica llamada CVOA basada en el modelo de
propagacion de la COVID-19 que fuera facilmente integrable con cualquier
arquitectura deep learning [4]. Para comprobar la eficacia de la estrategia, se
realizaron implementaciones con las arquitecturas DFFNN y LSTM. Esta
dltima es conocida por ser altamente eficiente en series temporales a pesar
de su elevado coste computacional. Ademads, estas dos arquitecturas fueron
comparadas con otras estrategias de busqueda, asi como con otros métodos
clasicos muy extendidos en la literatura, como son Linear Regression (RL),
Decision Trees (DT), Gradient-Boosted Tree (GBT) y Random Forest (RF).
Los resultados descritos en la Tabla 3.4 ilustran que el método CVOA mejora

significativamente a la busqueda aleatoria con filtro suavizado (RS+LP), a

32 Discusion de resultados

la busqueda aleatoria (RS) o a la busqueda Grid (GS), asi como al resto
de métodos. Ademas, se observa que las redes LSTM son las que mejores

resultados ofrecen.

Tabla 3.4 Resultados del método CVOA-LSTM comparados con otros méto-
dos conocidos.

Método MAPE (%)
LR 7.34
DT 2.88
GBT 2.72
RF 2.20
DNN-GS 1.68
DNN-RS 1.57
DNN-RS-LP 1.36
DNN-CVOA 1.18
LSTM-GS 1.22
LSTM-RS 0.84
LSTM-RS-LP 0.82

LSTM-CVOA 0.47

Parte 111

Publicaciones

Capitulo 4

Informe sobre las publicaciones

No lo intentes. Hazlo o no lo hagas, pero

no lo intentes.

Maestro Yoda (Star Wars Ep. V: El imperio
contraataca).

En este capitulo se incluyen los trabajos de investigacion que componen
esta Tesis Doctoral, presentada en la modalidad por compendio de articulos.
Estas publicaciones demuestran el interés de la comunidad cientifica en los
avances y el impacto que supone la combinacion de las técnicas analizadas.
Todas las publicaciones han sido sometidas a revision por parte de investigado-
res expertos y discutidas en foros de impacto. Las publicaciones se mostrardn
indexadas en funcidn de si son revistas de impacto o congresos, incluyendo
ademas un breve resumen de los mismos, detallando las referencias, nimero
de citas a fecha de redaccion del documento y el medio publicador, asi como
sus principales métricas, como el indice de impacto en el Journal Citation
Report (JCR), entre otros.

36 Informe sobre las publicaciones

4.1. Articulos de revista

4.1.1. A scalable approach based on deep learning for big
data time series forecasting

Tabla 4.1 Datos del articulo: A scalable approach based on deep learning for
big data time series forecasting

Autores Torres, J. F., Galicia, A., Troncoso, A., and Martl’nez—Alvarez,
F.
Revista Integrated Computer-Aided Engineering
Ano 2018

Paginas 335-348

Volumen 24, no.4
DOI 10.3233/ICA-180580
IF 3.667 (21/132)
Cuartil QI (Computer Science-Artificial Intelligence)
Citas 75 (Google Scholar)

Integrated Computer-Aided Engineering 25 (2018) 335-348 335
DOI 10.3233/ICA-180580
10S Press

A scalable approach based on deep learning
for big data time series forecasting

J.F. Torres*, A. Galicia, A. Troncoso and F. Martinez-Alvarez
Division of Computer Science, Universidad Pablo de Olavide, Seville, Spain

Abstract. This paper presents a method based on deep learning to deal with big data times series forecasting. The deep feed
forward neural network provided by the H20 big data analysis framework has been used along with the Apache Spark platform
for distributed computing. Since H20 does not allow the conduction of multi-step regression, a general-purpose methodology
that can be used for prediction horizons with arbitrary length is proposed here, being the prediction horizon, h, the number of
future values to be predicted. The solution consists in splitting the problem into h forecasting subproblems, being A the number of
samples to be simultaneously predicted. Thus, the best prediction model for each subproblem can be obtained, making easier its
parallelization and adaptation to the big data context. Moreover, a grid search is carried out to obtain the optimal hyperparameters
of the deep learning-based approach. Results from a real-world dataset composed of electricity consumption in Spain, with a
ten-minute frequency sampling rate, from 2007 to 2016 are reported. In particular, the accuracy and runtimes versus computing
resources and size of the dataset are analyzed. Finally, the performance and the scalability of the proposed method is compared

to other recently published techniques, showing to be a suitable method to process big data time series.

Keywords: Deep learning, time series forecasting, big data

1. Introduction

Increasing attention is being paid to the issue of time
series forecasting nowadays [1], mainly due to.its in-
terdisciplinary nature. Almost all scientific disciplines
consist of data sampled over time, which makes their
forecasting a task of utmost significance and complex-
ity. Participants in electricity markets (both demand
and prices) are particularly interested in making accu-
rate predictions [2], since their obtention is critical for
many areas in order to increase benefits, such as plan-
ning, inventory management, or even in evaluating ca-
pacity needs.

When addressing big data problems, computational
issues are usually encountered. Therefore, efficient al-
gorithms must be developed to extract knowledge from
massive data. These algorithms are developed using
parallel and distributed computing techniques, which

*Corresponding author: J.F. Torres, Pablo de Olavide University
of Seville, Ctra. Utrera, Km.1, 41013, Sevilla, Spain. Tel.: +34 605
03 57 59; E-mail: jftormal @alu.upo.es.

take advantage of the concurrency of multiple proces-
sors to execute processes at the same time [3-5]. Ad-
ditionally, many artificial intelligence techniques have
been inspired by the functioning of neural systems [6]
and are currently reporting remarkable results in this
research field [7,8].

Deep learning is an emerging branch of machine
learning that extends artificial neural networks [9]. One
of the main drawbacks that classical artificial neural
networks exhibit is that, with many layers, its training
typically becomes too complex [10]. In this sense, deep
learning consists of a set of learning algorithms to train
artificial neural networks with a large number of hid-
den layers. Deep learning models are also sensitive to
initialization and much attention must be paid at this
stage [11].

For all the aforementioned, a preliminary deep
learning-based approach to predict big data time se-
ries was published by the authors in [12]. By con-
trast, in this work, we now introduce a novel algo-
rithm to forecast big data time series, based on deep
learning architectures [13,14]. In this new deep learn-

ISSN 1069-2509/18/$35.00 (© 2018 — 10S Press and the author(s). All rights reserved

336 J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting

ing a new methodology to automatize the hyperparam-
eters adjustment has been included. The sensitivity of
the number of past values involved in the topology
of the network is also analyzed. The accuracy of the
proposed methodology is compared to other machine
learning methods for big data time series applied to the
same dataset. A thorough scalability analysis is also in-
cluded, showing that the new approach is scalable, by
varying the time series length and the number of ex-
ecutions threads, and more scalable than than most of
the methods it has been compared to.

The algorithm has been developed for prediction
horizons of arbitrary length, being suitable for the
short, mid, and long-term forecasting. To achieve this
goal, the proposed approach creates as many indepen-
dent forecasting problems as samples are desired to
be simultaneously forecasted. Later, each subproblem
is individually addressed by computing different time
slots within the historical data. Deep learning models
have been embedded in the process and are responsi-
ble for making predictions. It is worth noting that the
deep learning implementation used is that of the well-
known H2O library [15], which is open source and has
been conceived for distributed environments.

One of the most relevant features of this method
lies in its inherent suitability to be launched in paral-
lel environments, which turns this tool ready to be ap-
plied to big data. Moreover, Apache Spark has been
used to load data in memory, significantly speeding up
the whole process and thus decreasing the computation
time.

The performance of the approach has been as-
sessed in real-world datasets. Electricity consumption
in Spain has been used as case study, and data from
2007 to 2016 in the usual 70%—30% training-test sets
structure have been analyzed. Satisfactory results are
reported in terms of both accuracy and processing time,
outperforming those obtained by a linear regression, a
decision tree and two ensemble techniques based on
trees as Gradient-Boosted Trees, and Random Forest.
A scalability analysis has also been conducted in order
to show that the proposed method is fully suitable for
big data.

In summary, the main contributions of this work are:

1) We propose a new approach based on deep learn-
ing for electricity consumption forecasting. Due
to the high computational cost of training a neu-
ral network, we develop the algorithm using an
efficient distributed computing strategy, so that it
can process very large time series.

2) We develop a distributed grid search to deter-
mine the optimal parameters involved in the deep
learning training. Such parameters have been
found to be the number of layers and number of
neurons, which eventually have a great impact on
the performance of the algorithm.

3) We conduct a wide experimentation using real
electricity data, measured every 10 minutes for
ten years, from the Spanish electricity market.
We evaluate the prediction accuracy of the pro-
posed algorithm and compare it with four state-
of-the-art big data forecasting approaches, such
as decision tree, gradient-boosted tree, random
forest and linear regression [16]. The deep learn-
ing was the most accurate model achieving a
MRE of 1.68%, which is a very promising result
for the prediction of big electricity time series.

4) We carry out a scalability study with the pur-
pose of showing the suitability of the deep learn-
ing for processing large electricity time series. A
detailed analysis of computing times for differ-
ent time series lengths and number of threads is
provided. Moreover, the scalability of the deep
learning is also compared to the aforementioned
state-of-the-art algorithms.

The remainder of the paper is structured as follows.
Relevant related works are reviewed and discussed in
Section 2. The proposed methodology is introduced in
Section 3. Results are reported and discussed in Sec-
tion 4. A comparative analysis to other well established
forecasting strategies is shown in Section 5. Finally, the
conclusions drawn are summarized in Section 6.

2. Related work

This section reviews relevant works in the context
of big data, time series forecasting and deep learning.
It also pays attention to works particularly devoted to
forecast electricity demand.

Large datasets needs high performance hardware
to be processed. Distributed computing can be used
to leverage the existing hardware [17]. In this sense,
Castillo et al. [18] introduced a novel approach, in
which a SVM model was distributed. The authors em-
phasize that threads shared some data with each other
during the training phase to enhance the learning pro-
cess. Adeli and Hung described a concurrent gradi-
ent learning algorithm to train feed-forward neural net-
works applied to image recognition in [19]. In this re-
search, the authors studied the behavior in terms of

J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting 337

network speed by using large networks and vector-
ization. The use of graphics processing units (GPUs)
has increased in recent years, due to the high perfor-
mance — in terms of processing — they offer. Fang et
al. [20] made a benchmark of a GPU memory system to
quantify the capability of parallel accessing and broad-
casting. The authors in [21] studied the performance
of MPI parallel processing libraries on GPU clusters.
In order to maximize the amount of data ingested by
the training algorithm, the authors in [22] proposed
a framework that uses parallel computing over GPU
to train and combine a set of deep learning models.
As another alternative, the authors in [23] have imple-
mented the back-propagation learning algorithm on an
FPGA board by performing several configurations and
checking the runtime with other C and Matlab code
implementations. This experimentation has shown that
FPGA implementation is more efficient. To take ad-
vantage of the power of distributed computing, frame-
works such as DistBelief [24], Minerva [25], Chain-
erMN [26] or TensorFlow [27], among others, are often
used for deep learning problems. Erickson et al. sum-
marized some of these distributed frameworks in [28].

The scalability of association rules techniques com-
bined with evolutionary computation has also been ad-
dressed. The authors in [29] claimed to have devel-
oped a method particularly suitable to be applied to
large datasets. Reported results are quite satisfactory
and its use is encouraged for future works. More re-
cently, a generic MapReduce framework to discover
quantitative association rules in big data problems has
also been proposed [30].

Recently, some studies have appeared discussing the
performance associated with deep learning in the con-
text of forecasting. In 2013, the temperature forecast-
ing issue was analyzed in [31]. The authors paid par-
ticular attention to the hyperparameters of deep learn-
ing architectures and provided some clues on how to
systematically adjust them.

Event driven stock market was also forecasted by
means of a novel approach in 2015 [32]. Firstly, a deep
convolutional neural network was used and, secondly,
both short and long-term stock price fluctuations were
modeled. Results were assessed on S&P 500 stock his-
torical data, showing remarkable performance.

Dalto et al. [33] thoroughly reviewed the selection
of variables in order to decrease computational time.
As a result of their work, they were able to develop a
deep learning based forecasting approach with better
accuracy than that of compared standard artificial neu-
ral networks.

An interesting deep learning architecture, this time
particularly designed for air quality prediction, was
presented in [34]. Specially remarkable were the spa-
tio-temporal correlations analyzed by means of a
stacked autoencoder model for feature extraction that
the authors used. The experimentation carried out
and the comparisons made were useful to show how
promising the approach is.

Later in 2016, another feature data based method
was introduced in [35]. The application field was trans-
portation forecast under data-driven perspective. Nam-
ely, a deep learning model to forecast bus ridership at
the stop and stop-to-stop levels was there adopted.

Deep ‘learning methods have also been used in
the field of health. A remarkable approach can be
found in [36], in which the authors introduced a new
deep learning approach based on voting schemes, with
application to accurate early diagnose of Alzheimer
cases. Morabito et al. presented a novel feature ex-
traction method from time-frequency representation
in EGG signals to differentiate the status of patients
with Creutzfeldt-Jakob disease [37]. Acharya et al. also
used CNN based deep learning applied to EEG signals
to aide in the diagnosis of epilepsy in [38]. The authors
in [39] explore a neural network based on adaptive dif-
ferential evolution to determine the functional state of
the human operator.

Another field of application for deep learning is civil
infrastructure and construction. Some of these works
are based on feature extraction to identify damage lo-
cations into buildings structures or pavements using
convolutional neural networks [40-42]. In the same
area, other deep learning architectures, such as Re-
stricted Boltzmann Machine (RBM), have been also
used [43,44].

Image processing has proven to be one of the most
fruitful fields of deep learning applications. Koziarski
and Cyganek present in [45] a method for reducing
the noise level in images using convolutional networks.
The authors in [46] prove the effectiveness of applying
a trained RBF polynomial network by fuzzy cluster-
ing and a trained forward propagation network with the
backward propagation algorithm to extract the coast-
line position based on video images.

On the other hand, many authors combine the use of
deep learning with metaheuristics. For instance, a deep
learning metaheuristic model for time series forecast-
ing using GPU was proposed in [47]. In the same way,
Rafiei et al. proposed a novel machine learning model
combining a genetic algorithm and a RBM in order to
forecast the sale prices of houses [48].

338 J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting

Finally, some works related to electricity demand
forecasting are also discussed in this section. In 2014,
a hybrid method was presented with aim of forecast-
ing time series [49]. In particular, the authors com-
bined Hinton and Salakhutdinov’s networks with gra-
dient descend and back propagation, as well as inte-
grating some other preprocessing techniques.

Hu [50] proposed a novel neural network GM based
model to forecast electricity consumption. Turkish
Ministry of Energy and Natural Resources and the Asia
Pacific Economic Cooperation energy database data
were used with the purpose of evaluating the quality of
the approach.

Marvuglia and Messineo [51] described a recurrent-
neural-network-based model to forecast a time series
with one hour as prediction horizon to evaluate the in-
fluence of the air-conditioning equipments.

Talavera-Llames et al. [52] proposed a forecasting
algorithm, under the Apache Spark platform [53]. Data
from the Spanish market were used to test the ap-
proach. Experimentation was conducted towards the
successful application to big data time series. Prelimi-
nary reported results are of particular interest.

Also with data from the Spanish market, Pérez-
Chacén et al. extracted demand profiles by means of
scalable k-means algorithm [54]. The authors claimed
the usefulness of using this information as input into
a subsequent stage in the forecasting process. Big data
time series were also used and profiles showed remark-
able differences between working days and festivities
and among seasons.

Large variations in consumption were analyzed in
the work introduced in [55]. The authors deeply stud-
ied the influence that data size and temporal granu-
larity may exhibit in such a context. The performance
of the approach was assessed with data from Canada
by means of different configurations of artificial neu-
ral networks and support vector regression, reporting
promising results.

Mocanu et al. [56] proposed two new stochastic
models based on artificial neural network to predict
time series.

Conclusively, some surveys have been published
collecting the latest works in which deep learning ap-
proaches have been developed, as seen in [57-59],
where more than 100 studies are classified depending
on a specific taxonomy such as the deep learning model
used or the type of tasks that are dealt with. However,
to the authors’ knowledge, none of them was devel-
oped to forecast very large time series. In summary, the
study of the related work reveals that deep learning is

already being used for big data, but mainly focused on
applications related to image, video or audio. This is
the first work that addresses deep learning for big data
time series forecasting.

3. Methodology

The theoretical background in which this work is in-
cluded is introduced in Section 3.1. Later, Section 3.2
introduces the proposed methodology itself.

3.1. Theoretical background

The research is included in the field of supervised
learning, i.e. the instances composing the dataset are
already labeled. Specifically, it is a regression task
where a numeric value, called class, is intended to
be forecasted. However, temporal order must be kept
since data are sampled over time. To infer a model,
from a part of the labeled data well-known as training
set, is required to make a prediction. This model can be
obtained by means of many techniques, such as linear
regression, regression trees, nearest neighbors, neural
networks or support vector machines. Deep learning is
here proposed to forecast in a big data environment.

Many network architectures for deep learning are
available depending on the characteristics of the target
problem. Each architecture is designed to be applied
to a particular problem, and therefore, each one works
in a different way. Some of these architectures can
be recurrent networks, convolutional networks, Hop-
field networks, Kohonen networks or feed forward net-
works. A deep feed forward architecture is applied to
forecast long time series in this work.

Feed forward neural networks are the most common
network architectures for solving forecasting prob-
lems. The main characteristic of this type of network
is that each neuron is a basic element of processing.
This network is defined by the weights, which rep-
resent the interactions between each pair of neurons.
Both weights and network topology are computed in
the training phase.

H20 is an open source platform to compute ma-
chine learning techniques into a single node or a clus-
ter of machines in a distributed way, being scalable
for big data projects. In particular, H20 is designed
for distributed computing. It allows to build machine
learning models on big data under a MapReduce pro-
cessing paradigm. Thus, H20 automatically works in
a distributed way by means of specific data structure

J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting 339

Time series Forecasting

Multivariate regression

w values h values
;7 Xy Xp o Xy Xusi o Xush
’ X1+h X2+h ><w+h Xw+h+1 s xw+2h
- ‘ Xis2n Xoszh - Xwazh || Xwazhet - Xwash
| i X143n X243n - Xwasn Xwaah+1 - Xwsah

X1 Xp(w-1) Xt Xt+h H
T] S R >
[Xtats s Xeeh] = fry (XX, -oos Xeo(w-2)s Xt(w-1))

w past values h values to be predicted

Fig. 1. Multivariable forecasting problem.

called H20OFrame. Hence, once a dataset is loaded in a
H2OFrame variable, the dataset is distributed in differ-
ent chunks across all the nodes. Each partition of the
H2OFrame is kept in memory, thus each node com-
putes its part of the H20Frame. Any operation over
a H2OFrame is executed in parallel in each partition.
Therefore, our approach is based on a modern dis-
tributed computation that consists in partitioning data
and distributing them through different nodes in a clus-
ter. H20 can also be integrated with Apache Spark
to store data in memory instead of in hard disk. This
framework includes a deep feed forward neuronal net-
work, which has been used to forecast big data time se-
ries. The executions of this algorithm can be parame-
terized by a high number of parameters (known as hy-
perparameters) that will depend on the characteristics
of the problem to be solved.

The most important parameters used in this study are
described below:

— Hidden. All possible numbers of hidden. layers
and numbers of neurons per layer are provided
through this parameter.

— LI. This parameter deals with the regularization
to avoid overfitting, thus improving the general-
ization.

— Epsilon and Rho. These parameters are related to
the learning rate and they are used to avoid to
achieve a local optima. Default values are 1E-8
and 0.99, respectively.

— Activation. The activation function is used to
model the type of relationship between inputs and
outputs of the network. It has been set to the hy-
perbolic tangent.

— Distribution. This parameter represents the loss
function to be minimized.

— Stop metric. It is the metric to be used for early
stopping. The mean square error (MSE) was se-
lected.

— Stopping tolerance. This parameter stops the tra-
ining of the deep network if an improvement of

the established value is not achieved. Its default
value is 1E-3.

— Stopping round. If a moving average composed
of the MSE of stopping_round models does not
improve according to a given tolerance, then the
deep learning algorithm stops. Its value by default
is 5.

H20 allows the creation of a grid that generates all
possible combinations according to the selected hyper-
parameters. Thus, it is possible to test several values of
these parameters and generate a model for each combi-
nation. These models are sorted in ascending order ac-
cording to the error, that is, from the best model to the
worst model. A full description on how H20 works,
in addition to all the parameters involved in the deep
learning algorithm, can be found in [60].

3.2. Description of the methodology

This section describes the methodology proposed
to forecast time series using the deep learning ap-
proach from H20 framework, under R programming
language. The main goal of this study is to predict h
next values (hereinafter called prediction horizon) of
a time series, expressed as [z1, . .., 2], from w previ-
ous values (hereinafter called historical data window).
This process is also called multi-step regression, since
more than one value has to be forecasted. A multi-step
regression problem is illustrated in Fig. 1.

Formally, this problem can be formulated as it is pre-
sented in Eq. (1), where the goal is to find the model f,
after application of the deep learning method:

< -'L't—(w—l))
(¢Y)
Unfortunately, the deep learning algorithm included
in the H20 framework does not support multi-step fore-

casting. Therefore, a new methodology has to be de-
veloped to achieve this goal. A possible way consists

[fL't+1~, Lt42y v+ 7$t+ll] = f(l'tyl't,—ly ..

340

Multivariate regression

J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting

h univariate regressions

X1 X2 Xw Xw+1 % Xw+h X1 X2 Xw Xw+1 Xw+h
X1+h X2+h s Xw+h Xw+h+1 J Xw+2h X1+h X2+h G Xw+h Xw+h+1 Xw+2h
X1+2h X2+2h Xw+2h Xw+2h+1 Xw+3h x1+2h X2+2h Xw+2h Xw+2h+1 Xw+3h
X143n Xo43n - Xws3n Xw+3nt1 - Xwaah X143n Xo43n - Xwash || Xwashet Xw+4n
e U > e > 1-th i-th h-th
w past values h values to be predicted w past values value value value
Fig. 2. Transformation from multivariate to univariate problem.
Start Load original Setw and h preprocess Split into h
time series values time series subproblems
i<=h
C—
no
End i=1
yes o iz ie >
. select best deep learning split training
[compute SHor predict model algorithm and test
|

Fig. 3. Scheme of the proposed methodology.

in splitting the main problem into h forecasting sub-
problems, as shown in Fig. 2.

This new methodology can be formulated by using i
models, one for each forecasting subproblem, as shown
in Eq. (2):

i1 = f1(@e o1, Tym (1)) 2)
Tiro = fo(@, Teo1,s - -5 Ty—(w=1)) 3)
T3 = f3(Te, Too1,s ooy Tpm (1)) “4)

®)

Toy(h—1) = f(h—1)(Tt, Te—1, - -+, T (w—1)) (6)
Topn = fo(Te, i1, T (w-1)) @)

On the one hand, the relations between consecutive
values of the time series are missed in this methodol-
ogy, as the future value is not predicted using the w
previous consecutive values. However, if the predic-
tions of previous values were used to forecast, a greater
error would be obtained, giving rise to a wrong predic-
tion.

On the other hand, the obtention of A independent
models entails a higher computational cost than build-

ing just one model to predict all h values. The deep
learning method used in this work has an extra compu-
tational cost due to multiple models are computed, by
combining different parameters in a grid search. How-
ever, since these models are independent, they can be
easily parallelized.

A general scheme of the proposed methodology is
illustrated in Fig. 3.

4. Results

This section presents the results obtained after ap-
plying the previously mentioned methodology to fore-
cast the time series to be described in Section 4.1. Sec-
tion 4.2 describes the experimental setup designed in
order to obtain the optimal hyperparameters. After that,
an analysis of the results is presented in Section 4.3.
Finally, Section 4.4 shows the scalability of the pro-
posed deep learning method, providing the computa-
tional time of the algorithm for time series of different
length, and for different computing resources.

The hardware used in order to obtain the results
reported here has been an Intel Core i7-5820K at

J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting 341

preprocessed time series

original dataset time series

c c

2 »]

Bllgg g

£ o - - -
2||8E 2 CX X
S < 8 v Xish Xosn
T Xysh Xoszh o

w past values

h
. Xw i Xw+1 Xw+2 . Xw+h o
Xw+h i Xwshe1 Xwshe2 - Xwa2h h
e
Xw+2h : Xw+2h+1 Xw+2h+2 Xw+3h 4
______________ o e

h values to be predicted

Fig. 4. Preprocessing of the original dataset.

3.3 GHz with 15 MB of cache, 12 cores and 16 GB of
RAM memory, working under an Ubuntu 16.04 oper-
ating system. The H20 framework was used to apply
deep learning by using R language. This framework
has available a feed-forward architecture and allows to
configure a cluster to launch distributed executions.

4.1. Dataset description

The time series considered in this study is related
to the electricity consumption in Spain from January
2007 to June 2016. It is a time series of 9 years and
6 months with a high sampling frequency (10 minutes),
resulting in 497832 measures in total into a 33 MB file.

This time series needs to be preprocessed to build a
dataset of w + h attributes, being w the number of past
values used to forecast the h next values as it is shown
in Fig. 4. It can be noted that the number of instances of
the final dataset can vary depending on w and h values.
It is important to highlight that the w + h value could
not be multiple of the time series length. In that case, a
row of the matrix has a number of columns lower than
w + h, being automatically removed.

The dataset was split into 70% for the training set
and 30% for the test set, and in addition, a 30% from
the training set has also been selected for the valida-
tion set in order to obtain the optimal parameters. The
training set covers the period from January 1, 2007 at
00:00 to August 20, 2013 at 02:40. Therefore, the test
set comprises the period from August 20, 2013 at 02:50
to June 21, 2016 at 23:40.

4.2. Design of experiments

The experimentation carried out is composed of two
phases. First, the optimal parameters of the deep neural
network will be calculated. Second, a scalability anal-
ysis will be performed using the optimal parameters
found in the previous stage.

The different settings applied to make the experi-
ments are as follows:

1. The w number of historical data has been set to
24,48, 72,96, 120, 144 and 168, corresponding
to 4,8, 12, 16, 20, 24 and 28 hours, respectively.
After training and calculating the validation er-
ror for each value of w, the value providing the
smallest error is selected for the rest of experi-
ments. A value of 168 was finally obtained.

2. The h prediction horizon is set to 24, which rep-
resents a block of 4 hours to be predicted.

3. The number of hidden layers for applying the
deep learning algorithm has been set from 1 to 5
layers and a number of neurons per layer varying
from 10 to 100 by steps of 10.

4. The lambda regularization parameter is set to 0,
0.1, 0.01, 0.001 and 0.0001 values.

5. Gaussian and Poisson distribution functions have
been tested.

6. Initial weights were provided by the Unifor-
mAdaptative distribution, which is an optimized
initialization with regards to the size of the net-
work. In the H20 architecture, it is possible to
use normal or uniform distributions in addition
to the UniformAdaptative. However, the Unifor-
mAdaptative distribution is considered the most
adequate as 24 sub-problems with different net-
work sizes are solved.

7. The remaining deep learning parameters are not
specified, so they are set to default values de-
scribed in the official H20 documentation [61].

Once the neural network has been trained, the opti-
mal parameters are chosen to analyze the scalability of
the proposed deep learning. Information related to the
scalability study is detailed below:

1. The size of the time series is increased, multiply-
ing its length by up to 2, 4, 8, 16, 32 and 64 times.

2. The number of local threads is set to 2, 4, 6, 8, 10
and 12 to verify how scalable is the deep learning
method according to computing resources.

342 J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting

MRE depending on the historical data window

w Neurons per layer and subproblem MRE
24 [20 50 90 100 30 100 70 100 90 20 70 50 60 100 80 70 60 70 70 100 80 100 60 90] 3.7648
48 [50 60 100 40 80 20 90 30 90 90 100 70 100 100 70 80 50 40 20 80 100 100 100 70] 2.8904
72 [30 50 70 80 100 100 60 40 40 60 40 60 90 70 40 80 50 20 50 20 80 60 70 80] 2.7259
96 [100 80 40 70 60 90 40 60 40 70 20 30 70 100 60 100 60 70 50 40 90 80 50 60] 2.5588
120 [30 3090 70 20 70 70 80 30 80 80 70 60 70 60 80 80 40 40 30 70 90 100 100] 2.4180
144 [50 80 50 70 60 80 30 80 50 70 60 40 100 40 90 90 90 40 70 40 80 70 90 90] 1.8722
168 [30 80 90 60 60 100 40 80 30 80 50 100 40 80 90 40 70 70 70 60 90 70 100 100] 1.8439
3. The deep learning method is executed on a clus- Table 2
¢ o hi . total of 24 threads. t Errors for different lambda and distribution functions
61: Ok 'tmaclnli'els"t USIHi.at 9bat(zi reta s, to Lambda Distribution RMSE MAE
check 1ts scalabrlity on distributed computing re- 0.0000 Gaussian 587.4677 4406434
sources. 0.1000 Gaussian 1526.1480 1118.5480
4. The scalability of the deep learning is compared 0.0100 Gaussian 1177.0510 812.4854
to other scalable methods recently published in 0.0040 Gaussian 857.4803 620.0702
he li 16 0.0001 Gaussian 636.4495 474.6989
the literature [16]. 0.0000 Poisson 633.8448 478.2030
The Root Mean Squared Error (RMSE) and the 0-1000 Poisson 662.4093 498.6579
mean absolute error (MAE) have been computed to 0.0100 Poisson 637.8108 481.5656
X P! 0.0010 Poisson 632.1003 477.2920
evaluate the accuracy of the models in the training. On 0.0001 Poisson 630.3271 477.2203

the other hand, the mean relative error (MRE) in per-
centage has been used to calculate the accuracy of the
best deep learning model in the test set. The formula-
tion of these errors is shown below:

(8)

IYIVIES oM ©

MRE = 100~1iw (10)
ne= a

where 7, p and a mean the number of samples, pre-
dicted values and actual values, respectively.

4.3. Analysis of results

This section discusses the results obtained by the
deep learning algorithm with different hyperparame-
ters described in Section 3.1 for the different configu-
ration settings detailed in Section 4.2.

Table 1 shows the optimal number of neurons for
each subproblem and the MRE obtained when varying
the number of past values to be used to predict. The
number of hidden layers in the net was set to 3, and the
number of neurons per layer was varying from 10 to
100 by steps of 10. It can be concluded that 168 is the
best window size.

Table 2 summarizes the errors for the validation
set when varying the lambda regularization parameter
value and the distribution function. These errors are
computed by averaging the errors obtained for each
subproblem for the validation set. It can be observed
that the best values were obtained when the regulariza-
tion was not considered and for Gaussian distribution
function, giving rise to a mean of 587.4677 for RMSE
and 440.6434 for MAE. Therefore, the lambda param-
eter is set to 0 and the distribution function to Gaussian
from now on.

Table 3 shows the optimal number of hidden lay-
ers and neurons for each subproblem along with the
RMSE and MAE for the validation set. These values
were internally calculated for each subproblem using
a grid search available in H20 in order to compute
the optimal hyperparameters. It can be seen that both
RMSE and MAE increase as the final of the prediction
horizon draw nearer. The reason for this is caused by
the existing gap between the last sample in the histori-
cal data and the next sample to be predicted.

From Tables 1-3 it can be concluded that 130 mod-
els were trained. From the optimal configuration of
all parameters previously analyzed, the final value of
MRE obtained when predicting the test set is 1.6769%.

Figures 5 and 6 present the evolution of actual and
forecasted demand corresponding to the best and worst
day, respectively, of the test set in terms of predic-
tion accuracy. Note that a day is represented by 144
measures. These days correspond to August 5, 2014

J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting 343

Table 3
Optimal number of neurons and hidden layers for each subproblem
Sp* HL** NPL*** RMSE MAE
1 2 80 280.9748 223.3659
2 2 100 334.5473 255.9905
3 5 60 361.0928 279.0836
4 3 60 374.1559 283.3500
5 3 80 431.9821 338.0297
6 2 60 457.2543 357.9640
7 3 70 488.2656 364.8531
8 5 80 546.8644 415.1822
9 2 100 540.2944 410.5037
10 4 60 557.4836 415.8288
11 3 70 564.0067 424.5466
12 3 100 594.0841 441.9526
13 4 40 595.4264 457.0600
14 5 70 648.6574 497.0050
15 2 70 644.0350 495.1685
16 2 70 667.3852 500.1515
17 4 50 674.7404 508.7588
18 4 80 669.1147 496.9713
19 4 90 698.5957 528.3096
20 4 50 708.2841 520.3575
21 4 90 778.9108 583.7202
22 2 80 799.7980 569.1762
23 4 90 825.2674 591.3633
24 5 100 858.0038 616.7493

*Subproblem, **Number of hidden layers, ***Number of neurons
per layer.

34000

32000

30000

28000

Electricity consumption

26000
24000

— Actual data
22000 Predicted data

] 20 40 60 80 100 120 140

Time (10 min.)

Fig. 5. Best daily forecast in the test set.

at 02:50 as the best predicted day, and December 26,
2015 at 02:50 as the worst predicted day. It is notewor-
thy that the worst day is an unusual day, namely, the
next day to the Christmas Day. In Fig. 5, it can be seen
that the evolution of the prediction during a day is not
smooth. This is due to one model is generated for each
value to be predicted instead of a single neural network
to predict all values of the prediction horizon.

On the other hand, Fig. 7 shows the predicted and
actual daily consumption corresponding to the months
of April and May in the year 2016. It can be appreci-
ated that the deep learning provides an underestimation
at peak times.

— Actual data M{v‘\\
26000 —— Predicted data n NV W
c
8
°a
£ 24000
E
2
2
8
> 22000
g
8
{ij 20000
18000
0 2 40 60 80 100 120 140
Time (10 min.)
Fig. 6. Worst daily forecast in the test set.
—+— Actual data
30000 1 —— Predicted data
c
S
£ 28000 1
5
2
8
226000 4
2
3
(o]
iU 24000
22000

0 10 20 30 40 50 60

Fig. 7. Daily average of the time series in April and May 2016.
4.4. Scalability

This section presents a study of scalability of the
deep neural network proposed to predict very long time
series. For that purpose, the deep learning algorithm
has been executed for different lengths of the time se-
ries and number of execution threads.

Table 4 shows the computing times of the deep neu-
ral network for its training phase when varying the
number of threads in a single machine from 2 to 12 by
steps of 2, and the length of the series increases de-
pending on a multiplicative factor. Thus, x2 stands for
a factor of 2, and so forth. In particular, runtimes have
been obtained with time series of two, four, eight, six-
teen, thirty and two, and sixty and four times the length
of the original time series. Figure 8 graphically sum-
marizes the results collected from Table 4. It is notice-
able that the deep learning model here proposed for big
data time series is scalable as the runtimes increase in
a linear way when increasing the size of the dataset.
Moreover, it can be seen that the optimal resources for
the different sizes of the time series used in this exper-
iment are 6 threads as similar runtimes are provided
when using a larger number of threads.

Figure 9a and b present how the runtime in the train-
ing phase decreases as the number of threads in a sin-
gle machine increases. This phenomenon happens in-

344 J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting

Table 4
Computing times for different lengths and threads

Multiplier File size Threads Training time (sec)

x1 23.9 MB 2 595
4 327

6 244

8 237

10 232

12 229

x2 47.8 MB 2 1195
4 639

6 464

8 449

10 420

12 384

x4 95.5 MB 2 2389
4 1284

6 915

8 872

10 802

12 782

x8 191.1 MB 2 4823
4 2961

6 1837

8 1725

10 1590

12 1524

x16 382.2 MB 2 9276
4 5394

6 3763

8 3579

10 3356

12 3235

x32 764.4 MB 2 18244
4 10719

6 7438

8 7034

10 6540

12 6333

x64 1.5GB 2 35802
4 20911

6 14489

8 13929

10 13071

12 12673

dependently of the dataset size, but some important is-
sues can be concluded. For instance, the number of
threads for a short time series (for instance x1) is not
too relevant as the training computing time by using 6,
8, 10 or 12 threads does not show a great improvement.
However, the reduction of runtimes is much more re-
markable with very long time series (for instance x64)
as it can be seen in Fig. 9.

5. Comparative analysis

The proposed deep learning based methodology
has been compared to the methods reported in [16],

35000 2 threads

---- 4 threads
300001 — 6 threads
- 8threads
250001 --- 10 threads
------ 12 threads

20000 1

Time (sec)

15000

10000 -

5000 1

0

Time series length

Fig. 8. Computing times versus length of the time series.

Time (sec)
J

Number of threads

()

350001 .. — A
s000{ .. K
25000
(%)
8
20000
£
= 15000 s
10000

5000

Number of threads

(b)

Fig. 9. Computing times depending on the number of threads.

namely, a linear regression (LR), a decision tree
(DT) and two ensemble techniques based on trees as
Gradient-Boosted Trees (GBT) and Random Forest
(RF). The parameters of these methods used in this
work were the optimal parameters obtained by a grid
search in [16]. Tree-based methods are very common
in machine learning, both for classification and for re-
gression, as they are easy to interpret, support continu-
ous and discrete attributes, do not require attribute scal-
ing and are able to model nonlinear relationships be-
tween attributes. A brief description of these methods
used for the comparison is made below.

J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting 345

Table 5 Table 7
Comparison of accuracy and runtimes Training time for each subproblem in DL method
Method MRE (%) Time (s) Sub-problem Seconds Sub-problem Seconds
Deep learning 1.6769 153 1 10.86 13 433
Linear regression 7.3395 553 2 6.36 14 6.42
Decision tree 2.8783 81 3 6.36 15 5.31
Gradient-boosted trees 2.7190 417 4 5.36 16 5.35
Random forest 2.2005 277 5 6.34 17 5.34
6 4.36 18 6.34
7 5.31 19 8.37
Table 6
8 7.32 20 5.34
MRE for each sub-problem 9 6.35 o1 747
Sub-problem DT GBT RF DL 10 5.35 22 6.32
1 1.13 111 1.08 0.77 1 5.39 23 7.38
2 1.32 1.30 1.17 1.13 12 7.35 24 8.32
3 1.59 1.54 1.33 1.15
4 1.87 1.82 1.52 1.18
5 2.09 2.02 1.66 1.35 200007 - Deep Learing e
. Inear Regression -’
6 241 2.32 1.90 136 Decision Tree o
7 2.64 2.54 2.17 1.50 150004~~~ Gradient-Boosted Trees JPtae
8 2.77 2.66 2-22 1.71 - = RS (RS -
9 2.95 2.86 2.35 1.88 8
10 3.04 2.88 2.47 1.76 2
11 3.13 3.00 2.45 1.66 =
12 341 3.23 2.57 2.07
13 3.61 3.32 2.86 1.83
14 3.95 3.60 2.88 1.81
15 3.90 3.58 2.94 2.11 - T e &
X X X X X
16 3.92 3.59 2.94 1.93 Time series length
17 3.88 3.52 3.04 2.50
18 4.05 3.79 3.11 2.09 Fig. 10. Scalability of the deep learning and all methods used for
19 3.89 3.65 3.13 2.17 comparison.
20 3.85 3.63 3.15 2.14
21 3.97 3.85 3.17 243 . L. . .
2 3.93 376 3.19 2.56 takes made in the prediction, thereby improving the ac-
23 4.03 3.84 3.17 242 curacy in the following ensemble of trees. On the other
24 4.03 3.83 3.15 2.77

LR minimizes the mean square error of the train-
ing set by using the well-known stochastic gradient
descent method and is usually selected as a reference
model.

DT is obtained through a recursive binary partition
of the feature space. At each iteration, the attribute cho-
sen to divide the tree is the one that maximizes the in-
formation gain. The recursive construction of the tree
stops when there are not enough attributes in the child
nodes or the maximum depth is reached.

Ensembles methods are learning algorithms that cre-
ate a set of basic models to compose the final model.
GBT and RF offer very good results for many real
applications, showing a high performance in regres-
sion tasks and improving the results obtained by a sin-
gle regression. Both training processes to generate the
model are different for each algorithm. In particular,
GBT [62] is a set of decision trees trained iteratively.
Thus, in each iteration, the algorithm uses the ensem-
ble of trees of the previous iteration to correct the mis-

hand, RF [63] generates a set of decision trees in par-
allel. Combining them, the probability of obtaining an
overfitted model is reduced. Also, a different training
set is used in each tree in order to introduce random-
ness. In addition, the nodes of each decision tree con-
sider different subsets of attributes. To predict a new
instance, RF makes an estimation with the average of
the predictions obtained with each tree.

The results obtained of the application of these
methods to the time series described in the Section 4.1
were compared in [16], using an Apache Spark clus-
ter with one master and two slaves with Intel Core i7-
5820K @ 3.30 GHz processors and 16 GB of memory
for each machine. A comparison between the accuracy
and runtimes (in seconds) for the deep feed-forward
neural network method proposed here by using the
cluster described above and the results from [16] is
shown in Table 5, where methods are ordered by pre-
diction error for the test set. The deep learning achieves
a MRE of 1.6769% for the test set, meaning an im-
provement of 0.52% compared to RF —the method with
the best accuracy from [16]—, 1.20% compared to only

346 J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting

Table 8
Runtimes (expressed in seconds) for different time series lengths
Method x1 x2 x4 x8 x16 x32 x64
Deep learning 153 218 361 649 1209 2346 4601
Linear regression 553 846 1483 2710 5162 10057 19871
Decision tree 81 120 201 353 653 1329 2644
Gradient-boosted trees 417 581 968 1720 3336 6490 13141
Random forest 271 440 783 1525 3128 6416 12518

one decision tree, and a 5.66% in comparison with the
linear regression. These improvements in relation to
errors are of significant importance to avoid misalign-
ments in the planning of energy production that would
cause large losses.

The errors and computing times desagregated for
each subproblem in order to evaluate the performance
of each model separately are presented in Tables 6
and 7. It can be appreciated only learning times for
Deep Learning are showed in Table 7. This is due to
similar computing times for each subproblem are ob-
tained in DT, LR and RF cases, corresponding to times
shown in Table 5 divided by 24. However in Deep
learning case, each subproblem is solved with a differ-
ent number of neurons and layers, and therefore, com-
puting times for each are different.

Table 8 and Fig. 10 show a comparison of the train-
ing execution times — expressed in seconds — for dif-
ferent time series lengths in order to compare the scal-
ability of the deep learning, LR, DT, GBT and RF.
As can be seen in Table 8, the behavior of all meth-
ods is the same, keeping a linear scalability factor ac-
cording to the time series length. Figure 10 represents
graphically how training times increase according to
the length of the time series. Both tree-ensemble meth-
ods improve execution times regarding the linear re-
gression, but definitely deep learning and DT are at a
different level, being DT the most scalable method of
the comparison, followed closely by the deep learning
method.

6. Conclusions

A deep feed forward neural network applied to time
series forecasting has been proposed in this work to
deal with big data. The Apache Spark distributed com-
puting platform has been used to execute the algorithm
in a cluster of machines. The H20 framework has been
used for big data analysis, providing the deep learning
method here proposed. Reported results have shown
that the deep learning configuration setting is impor-
tant to obtain a good accuracy. A preliminary study of

several parameters has been made, obtaining a mean
relative error less than a 2%. The scalability of the
method has been assessed depending on the time se-
ries length and the number of execution threads, show-
ing a linear scalability and a high performance for dis-
tributed computing. Finally, the methodology has been
compared to other recently published techniques in
terms of accuracy and scalability. The deep learning
one turned out to be one of the most adequate meth-
ods to process big data time series along with decision
trees, in terms of scalability, and the best method in
terms. of accuracy.

Acknowledgement

The authors would like to thank the Spanish Min-
istry of Economy and Competitiveness and Junta de
Andalucfa for the support under projects TIN2014-
55894-C2-R, TIN2017-88209-C2-1-R, and P12-TIC-
1728, respectively.

References

[1] Rossell JL, Alomar ML, Morro A, Oliver A, Canals V. High-
density liquid-state machine circuitry for time-series forecast-
ing. International Journal of Neural Systems. 2016; 26(5): 1-
12.

[2] Martinez-Alvarez F, Troncoso A, Asencio-Cortés G,
Riquelme JC. A survey on data mining techniques applied to
energy time series forecasting. Energies. 2015; 8: 1-32.

[3] Adeli H, Kumar S. Distributed computer-aided engineering:
for analysis, design, and Visualization. 1st ed. Boca Raton,
FL, USA: CRC Press, Inc.; 1998.

[4] Adeli H. Parallel processing in computational mechanics.
New York, NY, USA: Marcel Dekker, Inc., 1992.

[5]1 Adeli H, Cheng NT. Concurrent genetic algorithms for opti-
mization of large structures. 1994 07; 7: 276-296.

[6] Deleforge A, Forbes F, Horaud R. Acoustic space learning
for sound-source separation and localization on binaural man-
ifolds. International Journal of Neural Systems. 2015; 25(1):
1440003.

[71 Donnarumma F, Prevete R, Chersi F, Pezzulo G. A
programmer-interpreter neural network architecture for pre-
frontal cognitive control. International Journal of Neural Sys-
tems. 2015; 25(6): 1-16.

[8] Hirschauer T, Adeli H, Buford T. Computer-aided diagnosis
of parkinson’s disease using an enhanced probabilistic neural

9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting 347

network. Journal of Medical Systems. 2015; 39(179): 1-12.
Zeinalia Y, Story B. Competitive probabilistic neural net-
work. Integrated Computer-Aided Engineering. 2017; 24(2):
105-118.

Livingstone DJ, Manallack DT, Tetko IV. Data modelling
with neural networks: advantages and limitations. Journal of
Computer-Aided Molecular Design. 1997; 11: 135-142.
Sutskever I, Martens J, Dahl GE, Hinton GE. On the im-
portance of initialization and momentum in deep learning.
In: Proceedings of the International Conference on Machine
Learning (ICML), 2013; 1139-1147.

Torres JF, Fernandez AM, Troncoso A, Martinez-Alvarez F.
Deep learning-based approach for time series forecasting with
application to electricity load. In: Proceedings of the Inter-
national Work-Conference on the Interplay Between Natural
and Artificial Computation IWINAC), 2017; 203-212.
Goodfellow I, Bengio Y, Courville A. Deep learning. MIT
Press, 2016.

Schmidhuber J. Deep learning in neural networks: An
overview. Neural Networks. 2015; 61: 85-117.

Candel A, LeDell E, Parmar V, Arora A. Deep learning with
H20. H20.ai, Inc.; 2017.

Galicia A, Torres JF, Martinez-Alvarez F, Troncoso A.
Scalable forecasting techniques applied to big electricity
time series. In: Proceedings of the 14th International Work-
Conference on Artificial Neural Networks (IWANN), 2017;
165-175.

Adeli H. Supercomputing in engineering analysis. New York,
NY, USA: Marcel Dekker, Inc., 1992.

Castillo E, Peteiro-Barral D, Berdis BG, Fontenla-Romero O.
Distributed one-class support vector machine. International
Journal of Neural Systems. 2015; 25(7): 1550029.

Adeli H, Hung SL. A concurrent adaptive conjugate gradient
learning algorithm on mimd shared-memory machines. The
International Journal of Supercomputing Applications. 1993;
7(2): 155-166.

Fang M, Fang J, Zhang W, Zhou H, Liao J, Wang Y. Bench-
marking the GPU memory at the warp level. Parallel Comput-
ing. 2018; 71: 23-41.

Bureddy D, Wang H, Venkatesh A, Potluri S, Panda DK.
OMB-GPU: A micro-benchmark suite for evaluating MPT li-
braries on GPU clusters. In: Proceedings of the 19th European
MPI Users’ Group Meeting (EuroMPI2012). Berlin, Heidel-
berg: Springer Berlin Heidelberg; 2012; 110-120.

Jacobs SA, Dryden N, Pearce R, Essen BV. Towards scalable
parallel training of deep neural networks. In: Proceedings of
the Machine Learning on HPC Environments (MLHPC). New
York, NY, USA: ACM, 2017; 5:1-5:9.

Ortega-Zamorano F, Jerez JM, Goémez I, Franco L.
Layer multiplexing FPGA implementation for deep back-
propagation Learning. Integrated Computer-Aided Engineer-
ing. 2017; 24(2): 171-185.

Dean J, et al. Large scale distributed deep networks. In: Pro-
ceedings of the 25th International Conference on Neural In-
formation Processing Systems (NIPS). USA: Curran Asso-
ciates Inc.; 2012; 1223-1231.

Reagen B, Whatmough P, Adolf R, Rama S, Lee H, Lee
SK, et al. Minerva: Enabling low-power, highly-accurate deep
neural network accelerators. 2016; 44: 267-278.

Tokui S, Oono K, Hido S, Clayton J. Chainer: A next-
generation open source framework for deep learning. In: Pro-
ceedings of Workshop on Machine Learning Systems (Learn-
ingSys) in the 29th Annual Conference on Neural Information
Processing Systems (NIPS); 2015.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[39]

[40]

[41]

[42]

[43]

Abadi M, et al. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems; 2015. Software available from
tensorflow.org.

Erickso BJ, Korfiatis P, Akkus Z, Kline T, Philbrick K. Toolk-
its and libraries for deep learning. Journal of Digital Imaging.
2017; 30(4): 400-405.

Martinez-Ballesteros M, Bacardit J, Troncoso A, Riquelme
JC. Enhancing the scalability of a genetic algorithm to dis-
cover quantitative association rules in large-scale datasets. In-
tegrated Computer-Aided Engineering. 2015; 22(1): 21-39.
Martin D, Martinez-Ballesteros M, Garcia-Gil D, Alcald-Fdez
J, Riquelme JC, Herrera F. MRQAR: A generic mapreduce
framework to discover quantitative association rules in big
data problems. Knowledge-Based Systems. 2018; 153: 176~
192.

Romeu P, Zamora-Martinez F, Botella-Rocamora P, Pardo
J. Time-series forecasting of indoor temperature using pre-
trained deep neural networks. In: Proceedings of the 23rd
International Conference on Artificial Neural Networks
(ICANN); 2013; 451-458.

Ding X, Zhang Y, Liu T, Duan J. Deep learning for event-
driven stock prediction. In: Proceedings of the International
Joint Conference on Artificial Intelligence, 2015; 2327-2334.
Dalto M, Matusko J, Vasak M. Deep neural networks for ultra-
short-term wind forecasting. In: Proceedings of the IEEE
International Conference on Industrial Technology (ICIT),
2015; 1657-1663.

Li X, Peng L, Hu Y, Shao J, Chi T. Deep learning architecture
for air quality predictions. Environmental Science and Pollu-
tion Research International. 2016; 23: 22408-22417.

Baek J, Sohn K. Deep-learning architectures to forecast bus
ridership at the stop and stop-to-stop levels for dense and
crowded bus networks. Applied Artificial Intelligence. 2016;
30(9): 861-885.

Ortiz A, Munilla J, G6rriz JM, Ramirez J. Ensembles of
deep learning architectures for the early diagnosis of the
alzheimer’s disease. International Journal of Neural Systems.
2016; 26(7): 1650025.

Morabito FC, et al. Deep learning representation from elec-
troencephalography of early-stage creutzfeldt-jakob disease
and features for differentiation from rapidly progressive de-
mentia. International Journal of Neural Systems. 2017; 27(2).
Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep
convolutional neural network for the automated detection and
diagnosis of seizure using EEG signals. Computers in Biology
and Medicine. 2017; in press.

Wang R, Zhang Y, Zhang L. An adaptive neural network
approach for operator functional state prediction using psy-
chophysiological data. Integrated Computer-Aided Engineer-
ing. 2016; 21(1): 81-97.

Lin YZ, Nie ZH, Ma HW. Structural damage detection with
automatic feature-extraction through deep learning. Computer
Aided Civil and Infrastructure Engineering. 2017; 32: 1025-
1046.

Zhang A, Wang K, Li B, Yang E, Dai X, Yi P, et al. Au-
tomated pixel-level pavement crack detection on 3D asphalt
surfaces using a deep-learning network: Pixel-level pavement
crack detection on 3D asphalt surfaces. Computer-Aided Civil
and Infrastructure Engineering. 2017 08; 32.

Cha YJ, Choi W, Biiyiikoztirk O. Deep learning-based
crack damage detection using convolutional neural networks.
Computer-Aided Civil Infrastructure Engineering. 2017 May;
32(5): 361-378.

Hossein RM, Adeli H. A novel machine learning based al-

348

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

J.F. Torres et al. / A scalable approach based on deep learning for big data time series forecasting

gorithm to detect damage in highrise building structures.
The Structural Design of Tall and Special Buildings. 26(18):
¢1400. E1400 TAL-17-0022.R1.

Rafiei MH, Adeli H. A novel unsupervised deep learning
model for global and local health condition assessment of
structures. Engineering Structures. 2018; 156: 598-607.
Koziarski M, Cyganek B. Image recognition with deep neural
networks in presence of noise — Dealing with and taking ad-
vantage of distortions. Integrated Computer-Aided Engineer-
ing. 2017; 24(4): 337-349.

Rigos A, Tsekouras GE, Vousdoukas MI, Chatzipavlis A,
Velegrakis AF. Chebyshev polynomial radial basis func-
tion neural network for automated shoreline extraction from
coastal imagery. Integrated Computer-Aided Engineering.
2016; 23(2): 141-160.

Coelho IM, Coelho VN, da S Luz EJ, Ochi LS, Guimars FG,
Rios E. A GPU deep learning metaheuristic based model for
time series forecasting. Applied Energy. 2017; 201: 412-418.
Rafiei MH, Adeli H. A novel machine learning model for esti-
mation of sale prices of real estate units. Journal of Construc-
tion Engineering and Management. 2016; 142(2): 04015066.
Kuremoto T, Kimura S, Kobayashi K, Obayashi M. Time se-
ries forecasting using a deep belief network with restricted
Boltzmann machines. Neurocomputing. 2014; 137: 47-56.
Hu YC. Electricity consumption prediction using a neural-
network-based grey forecasting approach. Journal of the Op-
erational Research Society. 2016; 68(10): 1259-1264.
Marvuglia A, Messineo A. Using recurrent artificial neural
networks to forecast household electricity consumption. En-
ergy Procedia. 2012; 14: 45-55.

Talavera-Llames RL, Pérez-Chacén R, Martinez-Ballesteros
M, Troncoso A, Martinez-Alvarez F. A nearest neighbours-
based algorithm for big time series data forecasting. In: Pro-
ceedings of the 11th International ConferenceHybrid Artifi-
cial Intelligent Systems (HAIS); 2016; 174-185.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I.
Spark: cluster computing withworking sets. In: Proceedings
of the International Conference on Hot Topics in Cloud Com-
puting (ICWS), 2010; 1-10.

Pérez-Chacon R, Talavera-Llames RL, Troncoso A, Martinez-
Alvarez F. Finding electric energy consumption patterns in
big time series data. In: Proceedings of the International Con-
ference on Distributed Computing and Artificial Intelligence
(DCAI), 2016; 231-238.

Grolinger K, L’Heureux A, Capretz MAM, Seewald L. En-
ergy forecasting for event venues: Big data and prediction ac-
curacy. Energy and Buildings. 2016; 112: 222-233.

Mocanu E, Nguyen PH, Gibescu M, Kling WL. Deep learn-
ing for estimating building energy consumption. Sustainable
Energy, Grids and Networks. 2016; 6: 91-99.

Zhang Q, Yang LT, Chen Z, Li P. A survey on deep learning
for big data. Information Fusion. 2018; 42: 146-157.

Brunetti A, Buongiorno D, Trotta GF, Bevilacqua V. Com-
puter vision and deep learning techniques for pedestrian de-
tection and tracking: A survey. Neurocomputing. 2018; 300:
17-33.

Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F,
Ghafoorian M, et al. A survey on deep learning in medical
image analysis. Medical Image Analysis. 2017; 42: 60-88.
Cook D. Practical machine learning with H20: powerful,
scalable techniques for deep learning and Al O’Reilly Media,
2016.

Arora A, Candel A, Lanford J, LeDell E, Parmar V. Deep
Learning with H20. 2015.

Mason L, Baxter J, Bartlett P, Frean M. Boosting algorithms
as gradient descent. In: Proceedings of the Neural Information
Processing Systems Conference (NIPS), 1999; 512-518.
Breiman L. Random forests. Machine Learning. 2001; 45(1):
5-32.

4.1 Articulos de revista 51

4.1.2. A novel Spark-based multi-step forecasting algorithm

for big data time series

Tabla 4.2 Datos del articulo: A novel Spark-based multi-step forecasting
algorithm for big data time series

Autores Galicia, A., Torres, J. F., Martinez-Alvarez, F., and Troncoso,
A.

Revista Information Sciences
Ano 2018

Paginas 800-818

Volumen 467
DOI 10.1016/}.ins.2018.06.010
IF 4.305 (12/148)
Cuartil Q1 (Computer Science-Information Systems)
Citas 24 (Google Scholar)

Information Sciences 467 (2018) 800-818

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins —

A novel spark-based multi-step forecasting algorithm for big n
data time series

A. Galicia, J.F. Torres, F. Martinez-Alvarez*, A. Troncoso

Division of Computer Science, Universidad Pablo de Olavide, Seville ES-41013, Spain

ARTICLE INFO ABSTRACT

Article history: This paper presents different scalable methods for predicting big time series, namely time
Received 10 August 2017 series with a high frequency measurement. Methods are also developed to deal with arbi-
Revised 30 May 2018 trary prediction horizons. The Apache Spark framework is proposed for distributed com-
Accepted 3 June 2018 ; . . I -
: - puting in order to achieve the scalability of the methods. Prediction methods have been
Available online 15 June 2018 .)
developed using Spark’s MLIib library for machine learning. Since the library does not

Keywords: support multivariate regression, the prediction problem is formulated as h prediction sub-
Big data problems, where h is the number of future values to predict, that is, the prediction horizon.
Scalable Furthermore, different kinds of representative methods have been chosen, such as decision
Electricity time series trees, two tree-based ensemble techniques (Gradient-Boosted and Random Forest) and a
Forecasting linear regression method as a reference method for comparisons. Finally, the methodology

has been tested in a real time series of electrical demand in Spain, with a time interval of
ten minutes between measurements.

© 2018 Published by Elsevier Inc.

1. Introduction

It is well known that advances in technology have led, in recent years, to the increasing amount of data generated and
stored, to the extent that 90% of the data that exist in the world has been generated during the last two years. The need to
process this huge amount of information has made it essential in recent years to develop and evolve tools that have been
included under the heading of Data Mining. This evolution has given rise to the term Big Data. An essential component in
the nature of the data is that information is normally indexed over time, a process that is known in the literature as time
series. This case is very common in the field of Big Data, giving rise to the term Big Data Time Series. For example, two
of Big Data’s main sources are open data repositories, which are proposed by management for transparency policies, such
as smart cities, where multiple sensors provide information on consumption, traffic, pollution, etc. These two types of data
make sense if their analysis is performed with respect to their evolution over time: data that measure electrical demand or
pollution can be analysed for various purposes: to predict their evolution; to predict anomalous values; to obtain patterns
that allow us to compare their evolution with other data; to establish relations between certain variables with respect to
others, and so forth.

Nowadays, the main existing frameworks for the massive data processing have been developed thanks to leading tech-
nology companies such as Google and Yahoo!. MapReduce technology was developed by Google [6], which for processing
purposes divides the input data into blocks and then integrates the output information of each block into a single solution.

* Corresponding author.
E-mail addresses: agalde@alu.upo.es (A. Galicia), jftormal@alu.upo.es (J.F. Torres), fmaralv@upo.es (F. Martinez-Alvarez), ali@upo.es (A. Troncoso).

https://doi.org/10.1016/.ins.2018.06.010
0020-0255/© 2018 Published by Elsevier Inc.

A. Galicia et al./Information Sciences 467 (2018) 800-818 801

Later, Yahoo! developed Hadoop [37], an open-source implementation based on the MapReduce paradigm, now part of the
Apache Foundation. The limitations of MapReduce when implementing algorithms that need to iterate over data have re-
quired the creation of new tools, such as Spark [15], developed by the University of Berkeley in California, also within the
Apache Foundation.

Spark’s deployment on the Hadoop Distributed File System (HDFS) allows the parallelization of data processing in-
memory, achieving much faster processing speeds than with Hadoop. Apache Spark is also an open source project that
allows iterative calculations, provides high-level operators and supports several languages (Java, Python, R) in addition to its
native language called Scala. Furthermore, it offers different specialised modules, such as the MLIib machine learning library
[19].

The main goal of this study is to predict a large time series with a specific (but arbitrary) time horizon in the context
of Big Data. To solve this problem in a Big Data context, the MLIib library has been selected. However, the MLIib library
currently has certain disadvantages which are detailed below. Although some approaches for Big Data can be found in the
literature, e.g. Spark TS [33]. Insufficient support is provided for these approaches as they are not officially included in the
Apache Spark project.

On the one hand, the regression techniques available in MLIib do not support multivariate regression, i.e. prediction of
more than one step. On the other hand, the MLIib regression methods are not designed to work with datasets where the
temporal order is an important factor since no high-level operation of the Scala language retains the chronological order, a
crucial aspect in a time series.

Hence, one of the main objectives of this work is to introduce a methodology, which allows MLIib to be used for the pre-
diction of time series, where the temporal order is the main characteristic of these datasets, and also allows the prediction
of a time horizon formed by h values.

In conclusion, a set of scalable algorithms are studied and adapted for very large time series forecasting. In particular,
different kinds of representative methods, such as linear regression, decision trees and two tree ensembles techniques such
as Gradient-Boosted and Random Forest have been chosen. The algorithms have been developed with the MLIib library of
the Apache Spark framework, using Scala as the programming language. All the methods have been tested with a real time
series, related to the consumption of electric energy in Spain. Reported results discuss the suitable number of cores, linearity
of algorithms and speed up, among other relevant issues.

To achieve the goal set for this paper, Section 2 reviews the literature related to time series forecasting techniques and
machine learning for big data. Theoretical background is also included in Section 3, where the proposed methodology and
supported algorithms are detailed. Later, in Section 4.4 results are shown and discussed. Finally, Section 5 summarises the
main conclusions.

2. Related work

This section discusses the most relevant related works. Due to the nature of the proposed approach, two sections have
been created. First, Section 2.1 reviews works in the context of time series forecasting. Second, Section 2.2 specifically re-
views works within the fields of Big Data and Machine Learning.

2.1. Time series forecasting

The prediction of time series for short and medium term has been extensively studied in the literature. The methods
for predicting time series can be classified into classical methods based on Box and Jenkins [2], such as ARIMA or GARCH;
and data mining techniques [38], such as neural networks (ANN), Support Vector Machine (SVM) or near-neighbor tech-
niques(kNN).

The following will be a brief tour of the main published works, which have been applied to the study case presented
here a temporal series in the field of energy. A complete and more detailed review can be found in [22].

In [12], a variation of the ARIMA model, namely a seasonal ARIMA model, is presented to predict the maximum monthly
demand in the city of Maharashtra in India. They used the data from April 1980 to June 1999 and obtained the prediction
of the following eighteen months. The results obtained are good because this market does not show great variations in its
tendency throughout the seasons. However, for electric markets with greater volatility, one of the methods that provide the
best results is the GARCH model. The authors in [13] used the GARCH method to predict electricity prices in two regions
of New York. The results obtained were compared using different techniques such as dynamic regression, transfer function
models and exponential smoothing models. This work shows that taking into account the values in which the demand is
very high and the variance of the time series improves the prediction since they reached errors smaller than 2,5%. Garcia
et al. [11] also proposed a GARCH model. This work focuses on the prediction of electricity prices in periods of high volatility
for the Spanish and Californian electricity market. Equally striking is the technique proposed by Malo and Kanto in [21],
which considered multivariable GARCH models for electric markets in Nordic countries.

The performance of a standard ANN, a fuzzy ANN, and ARIMA models when predicting energy demand in Victoria (Aus-
tralia) is compared in [1]. The results showed that the fuzzy neural network improves the results of the remaining methods.
Taylor [32] compared six univariate time series models to predict electricity demand in the markets of Rio de Janeiro, Eng-
land and Wales. The methods used were an ARIMA model, an exponential smoothing, an ANN and a linear regression. The

802 A. Galicia et al./Information Sciences 467 (2018) 800-818

comparison showed the best methods to be the exponential smoothing and regression models, which obtained very good
results for the demand in England and Wales. In [8], the authors presented the results obtained from an ANN applied to
the prediction of energy demand in Jordan. The ANN was trained with an optimisation algorithm based on particle swarm
simulation and compared to an ANN with a classic training based on back propagation.

In the study carried out in [25], the feasibility of applying SVM to predict energy demand in Taiwan was analysed. The
results, were compared with those obtained from an ANN and a linear regression. Likewise, the authors in [14] reached an
optimal prediction globally by applying SVM in the Chinese electricity market. Fan et al. [10] proposed a hybrid learning
model based on Bayesian classifiers and SVM. First, Bayesian clustering techniques were used to divide the dataset into
twenty-four subsets, and then a SVM was applied to each subset to obtain hourly demand predictions.

A methodology based on KNN was proposed in [35] for the prediction of electricity prices in the Spanish electricity
market. An extension of KNN was proposed in [28] in which an iterated prediction scheme was used and an attribute
selection module was incorporated. A kNN (Pattern Sequence-Based Forecasting (PSF) discretisation is proposed in [23]. PSF
transforms the search of nearby neighbours in the search for equal discrete sequences. A combination of PSF and ANN under
an iterated prediction scheme was proposed in [16].

2.2. Machine learning for big data

Currently, data mining techniques [36,40] are being developed for distributed computing in order to solve typical ma-
chine learning tasks, such as clustering, classification or regression for big data. The following is a brief description of the
main developments obtained over the last few years.

Increasing attention has been paid in recent years to clustering for big data [18,27]. A detailed study of clustering tech-
niques for big data can be found in [9]. In particular, many approaches have recently been proposed to apply clustering to
large time series. Specifically, in [7] the authors propose a new clustering algorithm based on a previous clustering applied
to a sample of the input data. In [39] the authors use a MapReduce-based data processing to obtain clusters and in [4] a
distributed method is proposed for the initialisation of the k-means algorithm.

As for classification tasks, there are techniques based on methods of reduction of instances in a MapReduce paradigm
[34] that propose to reduce the computational cost and storage requirement for kNN-based classification algorithms. In
addition, several parallel implementations of the kNN algorithm are proposed in [29,31]. In [5], the support vector machines
(SVMs) have been modified to accommodate high performance computing resulting in parallel SVMs. For large-datasets, in
[20] the authors developed an iterative MapReduce solution for the k-Nearest Neighbors algorithm based on Apache Spark,
obtaining a runtime 10-times better than using Hadoop.

In the field of regression, there is still much to investigate, bearing in mind that very few papers have been published.
Tree ensemble techniques are the most recurrent topic in the literature due, in part, to their easy adaptation to a distributed
computing environment. Random Forest has been applied to some specific problems, showing good performance for large
datasets [17]. On the other hand, regression trees have been constructed using parallel learning with MapReduce technology
in a machine cluster [26]. However, a large study of the literature reveals that these methods have not been applied to the
prediction of large time series, and therefore, this work seeks to fill this gap in the literature.

Following a thorough review of these previously published works, it can be concluded that the prediction of time se-
ries has been extensively studied, but there is still much to investigate, bearing in mind that very few papers have been
published using distributed computing system to compute large time series. These facts justify the need for research in the
topic described in this paper.

3. Methodology
3.1. Theoretical background

This work is framed within supervised learning, the main characteristic of which is that the examples that are part
of the training are labelled. To be precise, it entails a regression approach, where the labels of the examples consist of
a numerical value known as the prediction. The generation of the prediction model is carried out with linear methods,
specifically regression methods, and with non-linear methods based on decision trees, which use inductive learning.

The classical regression is based on the method of least squares, being able to use different functions of loss such as Lasso
regression, Ridge regression and elastic regression, depending on whether regularisation is considered or not. As for decision
trees, methods that generate a single tree or ensemble techniques that generate many trees, such as the Gradient-Boosted
(GBT) and Random Forest methods, are compared.

3.2. Description of the methodology

This section describes the methodology proposed in order to forecast big data time series by using the MLIib library.

Given a time series recorded in the past up to the time t, [x;, .., X;], the problem consists of predicting the next h
values (h is known as the prediction horizon) for the time series from a historical window composed of w-values. This is
represented in the Fig. 1.

A. Galicia et al./Information Sciences 467 (2018) 800-818 803

Multivariate regression definition

Time serie data Forecasting definition (Example for h=24)

N w-values h-values w-values h-values
c 1 . .
= X2 ~ 4 L
€ = N, X4 e Xy Xw1 o Xwi24
2 |, > : >
S t-1 < < > Xi4h - Xwah Xu425 -+ Xw+48
Xt 1 Xt (w-1) t t+h
Xq42h -+ Xw+2h Xw+49 -+ Xw472
Xta1s oo Xtah | = Fa(Xts Xty oo Xtw-2), Xt (w-1))
Fig. 1. Illustration of the multivariate problem.
Multivariate regression definition Arrangement to univariate regression h-univariate regressions
(Example for h=24) (Example for h=24) (Example for h=24)
w-values h-values w-values h; hag
P ———) h, hoy hy
Xt X [T Xt e Xweza Xp Xy X1 | Kweza
X X, w
Xt+h - Xwsh Xw+25 - Xw+48 X1+h - Xwih w425 w+48
Xi42h -+ Xws2h X449 -+ Xw472 Xiazh - Xwson | Xwedo || Xwa72 [

Fig. 2. Proposed methodology for multivariate to univariate adaptation.

This forecasting problem can be formulated as below, where f is the model to be found by the forecasting method in the
training phase.

[Xes1: Xes2, - Xesn] = F(Xe. X1, Xe_won)) (1)

Nevertheless, the existing regression techniques in MLIib do not support the multivariate regression, that is, the multi-
step forecasting. Therefore, the first stage splits the problem into h forecasting sub-problems as follows, also represented in
Fig. 2:

Xer1 = fi1 (thxt—ls---sxt—(w—l))

X2 = fz(Xuthl, . --sxt—(w—l))

Xerh = Fu(Xe: Xeo1 o Xe_wen)) (2)
The existing possible relations between the h consecutive values x;,1,...,X,,, are missed with this formulation. How-

ever, if the prediction of previous values is used to predict the next values a greater error is obtained, as the errors are
accumulated in the last time stamps of the prediction horizon.

Additionally, obtaining h models fi, ..., f, to predict h values carries a greater computational cost than the building of a
just model f to predict all the values.

The next stage entails solving each forecasting sub-problem in the Spark distributed computing framework by using the
regression methods of the MLIib library. The main variable in Apache Spark is the Resilient Distributed Dataset (RDD), which
is an immutable and partitioned collection of elements that can be operated in a distributed way. Thus, every RDD created
is split into blocks of the same size approximately across the nodes that integrate the machine cluster, as it is shown in
Fig. 3.

Once the dataset has been distributed, the MLIib algorithms firstly obtain a model from each worker node, and later,
aggregate the predictions obtained for each model in a stage called reducer. It is important to highlight that RDD variables
do not preserve the order, and therefore, all instances have to be indexed to deal with time series by using MLIib. An
illustration of the methodology is presented in Fig. 4. The split strategy is represented in Fig. 4(a), where each sub-problem
is executed in parallel. In Fig. 4(b) each problem is solved in a distributed way using the Spark cluster.

804 A. Galicia et al./Information Sciences 467 (2018) 800-818

- CLUSTER
(Executorl

\

N (ExecutorZ
—
_‘/

\.

-
Executor3

K\ rd

Fig. 3. A RDD variable in a Spark cluster.

)

- Split into h .
Multivariate problem subproblems _)@

Start D —

() Y

PREDICTION RDD;
Xtsi

-~ J

_-—| SPARKCLUSTER L _ _ . PREDICTION Xpyj : = === === = === === = === - mmmmm e e mm = = -
. R YT B S

f \
1) : . |
Executor_01 .]

1 - ini Model; icti !
' —> Training set —)| i Predictions I—— X

. - .]
: Test set . S \
1 . . H 1
1 . . U 0 1
m Traini t —)| Model; Predictions l F utput !
: RDDI A raining se N i | T F Xt+i .
! - P "1 Testset . L :
1 . . E
1 .) 1
—_—
1 E . . 1
f xecutor_03 Training set —)| Model Predictions I—— 1
1 . | . — 1
\ > . !
\ Tost set ’
~ 4
N e e e e e e e e m e m e == -7
(b)

Fig. 4. Methodology.

Furthermore, Fig. 5 represents how the proposed methodology generates h-models from the training set. These models
and the test set are used to predict some values, and the predicted values are compared with the real value of the dataset.

Regression methods from MLIib have been selected in order to cover different paradigms such as linear models, models
based on trees and, finally, ensemble techniques.

In Fig. 6, h univariate regression problems are solved. Using the instances (composed of w-features and the label h) from
each training set, a representative model is generated by MLIib. With each h-model, w-features from the test set (TSj) are
used to predict the corresponding label h. The differences between the actual label and the predicted are measured by
certain quality metric.

This methodology has been tested with four different methods. The models based on trees have been mainly proposed
because interpretable results are always desirable for the end-user. Furthermore, the ensemble techniques usually improve
the results obtained by a single regressor and also obtain very good results for many real applications. Finally, a linear

A. Galicia et al./Information Sciences 467 (2018) 800-818 805

Distributed h-dataset

TRy, > —>» | Model, >

training set (TR) f'
Train @

=
test set (TS) e o TSy > Predict

L F

v

time

Fig. 5. h-model training and generation to predict the test set.

Train —> Modely, —>

| > Predict — | Prediction;,

TS, |: w I
Evaluate

error

%

Fig. 6. Using the test set to evaluate the model.

model has been selected as a state-of-the-art reference method. A brief description of the methods used for each paradigm
is provided below.

Within the models based on trees, a greedy algorithm [30] that performs a recursive binary partitioning of the feature
space in order to build a decision tree has been used. The tree predicts the same value for all instances that reach the
same leaf node. The root nodes are selected from a set of possible splits, but not from all attributes, by maximising the
information gain. In this approach, the possible split candidates are a quantile over the data block, which is being processed
by a certain worker machine in the cluster. Moreover, once the splits are ordered, a maximum number of bins is allowed.

Two ensembles of trees have been considered: Random Forest [3] and the Gradient-Boosted Trees (GBT) [24]. Both algo-
rithms learn ensembles of trees, but the training processes are very different. GBTs train one tree at a time, providing the
longer training than Random Forest, which can train multiple trees in parallel. Random Forest improves the performance
when the number of trees increases. However, GBTs can present overfitting when a large number of trees is used.

Random Forest is an ensemble of decision trees trained separately in the same way as detailed above for individual
decision trees. The trees generated are different because of different training sets from a bootstrap subsampling and different
random subsets of features to split on at each tree node are used. To make a prediction on a new instance, a Random Forest
makes the average of the predictions from its set of decision trees.

GBTs iteratively train a sequence of decision trees. On each iteration, the algorithm uses the current ensemble to predict
the label of each training instance and then compares the prediction with the true label by computing the mean square
error. The training instances with poor predictions are re-labelled, and therefore, in the next iteration, the decision tree will
help correct for previous mistakes.

Finally, a linear regression has been selected as the reference model. The well-known stochastic gradient descent method
has been used to minimise the mean square error for the training set in order to obtain the model.

4. Results
This section sets out the results obtained from the application of the proposed methodology to the prediction of big

data time series for electrical consumption are shown. The methodology has been applied to a set of linear and nonlinear
regression methods.

806 A. Galicia et al./Information Sciences 467 (2018) 800-818

Section 4.1 sets an adequate window of historical data used to determinate the prediction in Section 4.2 for the electricity
consumption dataset described in Section 4.3. With an adequate size for the window w selected, an analysis of the results
from the methods is given in Section 4.4, which indicates the viability of the methodology, analysing in Section 4.5 the
influence of the amount of computational resources and how the methodology responds to different time series lengths.

4.1. Design of experiments

The experimentation carried out consists of a total of 168 executions, obtaining a total of 4032 prediction models for
the time series of electrical consumption in the Spanish electricity market. This experimentation was based on the criteria
described below:

1. The size of the window w made up of past values has been set to 24, 48, 72, 96, 120, 144 and 168, corresponding to a
history of 4, 8, 12, 16, 20, 24 and 28 hours, respectively. With this number of past values, The intention is to predict the
following 24 values.

2. In linear regression, the stochastic gradient descent requires an appropriate number of iterations, which has been set to
25, 50, 75 and 100, and a step size y (also known as the learning rate) to 1E-10, 5E-10 and 1E-9.

3. The number of trees and the maximum depth of trees are input parameters in GBT and Random Forest. For both en-
semble techniques, a depth of 4 and 8 has been tested. For GBT, 5 trees have been established and for Random Forest
experiments with 25, 50, 75 and 100 trees have been performed.

In all methods, the mean relative error (MRE) has been used as an evaluation measure to compare the accuracy of the
predictions obtained by the different prediction methods, which are formulated as follows:

1< i il
MRE = -y L0, (3)
n ; Vi
where y; and y; represent real and predicted values of the time series, respectively.
The experimentation has been launched on High-Performance Computing Resources on the Open Telekom Cloud Platform
using five machines: the master and four slave nodes. Each node has 60 GB of main memory and 8 logical cores from an
Intel Xeon E5-2658 v3 @ 2,20 GHz processor that has 30 MB L3 cache.

4.2. Sensitivity analysis

This section provides a sensitivity analysis of the window of past attributes, known as w-features. Each of the proposed
methods requires different parameters, affecting to the convergence.

Table 1 shows the results obtained by applying a linear regression (LR, hereinafter) using the stochastic gradient (known
as LinearRegressionWithSGD in MLIib) as the optimisation method. SGD requires two parameters: stepSize, referring to the
learning rate 1E-10, 5E-10 and 1E-9; and numliterations, which is the number of iterations set at 25, 50, 75 and 100. In
this way, 84 prediction models have been obtained. The SGD parameters clearly affect the convergence of the optimisation
problem. Optimal configuration was obtained with a window of 144 values, a step of 1E-10 and 100 iterations, obtaining an
MRE of 7,3397%. When numlterations and stepSize mean that the method is not converged, the MRE is represented by NC
(not converged).

Table 2 shows the results obtained by applying a regression tree using the method known in MLIlib as DecisionTreeRe-
gression (DT). This method entails specifying the maximum depth of the tree, maxDepth, which has been set to 4 and 8. In
this way, 14 prediction models have been obtained. The optimum configuration was obtained with a window of 168 values
and a depth of 8, obtaining a MRE of 2,8958%. Smaller errors are obtained with deeper trees.

Table 3 shows the results obtained by applying the ensemble GBT technique, known in MLIlib as GradientBoostingRegres-
sion, to the prediction of the test set. In addition to the number of trees to train, which has been set at 5, this method
involves specifying maxDepth, also established at 4 and 8. Fourteen models have been obtained, the optimal model being
the one that uses a window of 168 passed values and trees of depth 8. The error obtained for this model was 2,7431%.
Likewise, deeper trees are closer than those of lower depth.

Finally, the ensemble Random Forest technique, known as RandomForestRegression in MLIib, has been applied to obtain
the prediction of the test set. Table 4 shows the MRE obtained depending on the parameters of the method. These parame-
ters are the number of trees to train, considering in this experiment 25, 50, 75 and 100 trees; and also 4 and 8 have been
set as the maximum depth of the tree. Finally, 56 models have been obtained, with the smallest error (2,0831%) achieved
for a window of 168 past values and 100 trees of depth 8.

For each method, Table 5 shows the minimum MRE obtained in the prediction of the test set for each value of the
window, independently of the rest of the parameters.

Table 5 and Fig. 7 shows the evolution of MRE when increasing the window size increases for all proposed methods,
selecting the lowest MRE for each window size. For all tree-based methods, an improvement in the MRE can be seen when
the size of w grows. However, a significant improvement is not achieved when the window is increased from 144 values to
168, and is barely appreciable for DT and GBT. Nevertheless, MRE is increasing even in the case of linear regression using a
window with 168 previous values.

A. Galicia et al./Information Sciences 467 (2018) 800-818

Table 1
MRE for LR.
w stepSize numlterations MRE (%) w stepSize numlterations ~ MRE (%)
24 1,00E-11 25 16,3889 96 5,00E-11 75 15,2191
24 1,00E-11 50 14,9937 96 5,00E-11 100 15,2191
24 1,00E-11 75 14,9937 96 1,00E-10 25 NC
24 100E-11 100 14,9937 96 1,00E-10 50 13,5324
24 5,00E-11 25 12,8400 96 1,00E-10 75 13,5324
24 5,00E-11 50 12,8400 96 1,00E-10 100 13,5324
24 5,00E-11 75 12,8400 120 1,00E-11 25 14,4325
24 500E-11 100 12,8400 120 1,00E-11 50 14,4325
24 1,00E-10 25 12,7129 120 1,00E-11 75 14,4325
24 1,00E-10 50 12,7129 120 1,00E-11 100 14,4325
24 100E-10 75 12,7129 120 500E-11 25 13,0596
24 1,00E-10 100 12,7129 120 5,00E-11 50 13,0596
48 1,00E-11 25 14,9596 120 5,00E-11 75 13,0596
48 1,00E-11 50 14,9596 120 5,00E-11 100 13,0596
48 1,00E-11 75 14,9596 120 100E-10 25 NC
48 1,00E-11 100 14,9596 120 1,00E-10 50 NC
48 5,00E-11 25 14,6481 120 1,00E-10 75 10,4554
48 5,00E-11 50 14,6481 120 1,00E-10 100 10,4554
48 500E-11 75 14,6481 144 1,00E-11 25 12,5119
48 5,00E-11 100 14,6481 144 1,00E-11 50 12,5119
48 1,00E-10 25 13,9949 144 1,00E-11 75 12,5119
48 1,00E-10 50 13,9949 144 1,00E-11 100 12,5119
48 100E-10 75 13,9949 144 500E-11 25 10,4821
48 100E-10 100 13,9949 144 500E-11 50 10,3061
72 1,00E-11 25 15,8229 144 5,00E-11 75 10,3061
72 1,00E-11 50 15,8229 144 5,00E-11 100 10,3061
72 100E-11 75 15,8229 144 100E-10 25 NC
72 1,00E-11 100 15,8229 144 1,00E-10 50 NC
72 5,00E-11 25 15,1816 144 1,00E-10 75 NC
72 5,00E-11 50 15,1816 144 1,00E-10 100 733970
72 500E-11 75 15,1816 168 1,00E-11 25 12,3389
72 5,00E-11 100 15,1816 168 1,00E-11 50 12,3389
72 1,00E-10 25 14,1608 168 1,00E-11 75 12,3389
72 1,00E-10 50 14,0328 168 1,00E-11 100 12,3389
72 100E-10 75 14,0328 168 500E-11 25 NC
72 1,00E-10 100 14,0328 168 5,00E-11 50 10,0876
96 1,00E-11 25 16,0632 168 5,00E-11 75 10,0876
96 1,00E-11 50 16,0632 168 5,00E-11 100 10,0876
96 1,00E-11 75 16,0632 168 100E-10 25 NC
96 1,00E-11 100 16,0632 168 1,00E-10 50 NC
96 5,00E-11 25 15,2191 168 1,00E-10 75 NC
96 500E-11 50 15,2191 168 1,00E-10 100 NC
Table 2
MRE for DT.

w maxDepth MRE (%)

24 4 6,6991

24 8 4,7625

48 4 6,4666

48 8 4,0322

72 4 5,9180

72 8 3,4386

96 4 5,8596

96 8 3,3032

120 4 5,3441

120 8 3,1801

144 4 51291

144 8 2,9271

168 4 5,0214

168 8 2,8958

807

808

A. Galicia et al./Information Sciences 467 (2018) 800-818

Table 3

MRE for GBT.
w maxDepth MRE (%)
24 4 6,1276
24 8 4,4633
48 4 5,8249
48 8 3,7019
72 4 5,1246
72 8 3,2383
96 4 4,9933
96 8 3,1334
120 4 4,5709
120 8 3,0165
144 4 4,2949
144 8 2,7520
168 4 4,2567
168 8 2,7431

Table 4
MRE for RE.
w stepSize numlterations ~ MRE (%) w stepSize numlterations MRE (%)
24 25 4 6,5787 96 75 4 5,3174
24 25 8 45122 96 75 8 2,7045
24 50 4 6,5566 96 100 4 5,3106
24 50 8 4,4915 96 100 8 2,7098
24 75 4 6,5599 120 25 4 4,6510
24 75 8 4,5021 120 25 8 24728
24 100 4 6,5615 120 50 4 4,6274
24 100 8 4,4846 120 50 8 2,4344
48 25 4 6,1533 120 75 4 4,6177
48 25 8 3,6477 120 75 8 2,4229
48 50 4 6,1435 120 100 4 4,6081
48 50 8 3,6185 120 100 8 2,4160
48 75 4 6,1277 144 25 4 4,2856
48 75 8 3,5969 144 25 8 2,2338
48 100 4 6,1333 144 50 4 4,2354
48 100 8 3,6006 144 50 8 2,1898
72 25 4 5,5598 144 75 4 4,2533
72 25 8 2,9286 144 75 8 2,1863
72 50 4 5,4919 144 100 4 4,2387
72 50 8 2,8984 144 100 8 2,1867
72 75 4 5,5253 168 25 4 4,0934
72 75 8 2,8912 168 25 8 2,1281
72 100 4 5,4969 168 50 4 4,0520
72 100 8 2,8893 168 50 8 2,0964
9% 25 4 5,3290 168 75 4 4,0527
96 25 8 2,7466 168 75 8 2,0855
96 50 4 5,3299 168 100 4 4,0510
96 50 8 2,7245 168 100 8 2,0831

Table 5

Minimum MRE (%) for all methods.
w LR DT GBT RF
24 10,8781 4,7625 4,4633 4,4846
48 13,9949 40322 3,7019 3,5969
72 14,0328 34386 3,2383 2,8912
96 13,5324 3,3032 3,1334 2,7045
120 10,4554 3,1801 3,0165 2,4160
144 73397 2,9271 2,7520 2,1863
168 10,0876 2,8958 2,7431 2,0831

A. Galicia et al./Information Sciences 467 (2018) 800-818 809

14%

12%

10%

RE

S 8%
6%

4%

2%

Fig. 7. MRE evolution as the window size increases.

Table 6
MRE for different depth levels and number of trees.
DT GBT RF
Number of trees 1 5 25 50 75 100
Depth 4 5,1291 4,2949 4,2856 4,2354 4,2533 4,2387
Depth 8 2,9271 2,7520 2,2338 2,1898 2,1863 2,1867

For this reason, w = 144 is the selected value for the analysis of the results shown in the following sections. This value
is not accidental since it represents the values corresponding to the 24 hours of knowledge window before the day to be
predicted, thus demonstrating the strong stationarity of the time series for electric demand in daily periods.

4.3. Dataset description

The time series used is related to the total electrical energy consumption in Spain, which ranges from January 1st 2007
at midnight to June 21st 2016 at 11:40 pm. In short, it is a time series of 9 and a half years which has a high sampling
frequency - 10 min intervals - giving a total of 497832 measurements.

With a prediction horizon of 4 hours (h is set to 24 values), the dataset consists of 20742 instances and 144 attributes,
corresponding to 5,70 MiB of storage size. These 144 attributes correspond to a window w of 144 past values (24 h). This
dataset is divided into a training set, corresponding to 60%, to generate the prediction model for each method, and a test
set corresponding to 40%. The training set has 298752 measurements, whose time interval begins on January 1st, 2007 at
midnight and ends on September 8th, 2012 at 10:30 am. Therefore, the test set consists of 199080 measurements, which
correspond to the values included from September 8th, 2012 at 10:40 am to June 21st, 2016 at 11:40 pm.

4.4. Analysis of results

After obtaining the optimum window to generate the models for each of the methods, Table 6 summarises the MRE
(in percentage) obtained when the test set is predicted for each of the tree-based methods. The depth of the trees clearly
influences the error and the number of trees in the case of Random Forest.

The same information summarised in Table 6 is shown graphically in Fig. 8.

Tree depth is a critical factor, reducing the error made in the predicted values when using deeper trees. However, by
increasing depth, more computation time is needed to obtain the prediction model. Furthermore, in the Random Forest
technique, although the optimum error is obtained with 75 trees, there are no significant differences when using a smaller
or larger number of trees.

Table 7 summarises the generation times of the prediction model, i.e. the training times (in seconds), for each of the
methods, using trees of depth 8 and 75 trees in the case of Random Forest. All non-linear tree-based methods have achieved

810 A. Galicia et al./Information Sciences 467 (2018) 800-818

5,50/0 T T
DT (1 tree)

5.0% [I P GBT (5 trees) KXXX _|
’ RF (25 trees) BX2eed
o RF (50 trees)
4’5 /0 P I T RF (75 trees) m —
]E.f:i 7] RF (100 trees) 2z
= 40% [0‘::::: .. -
@ o2o%
& S
= 3,5% [roeeeeeriennnd .:E:E:E .. _
]
3,0% |rreeerenennninnens .:E:Z:E
B
B
2’50/0 PPN .4:::::
2,0% =
Depth 4 Depth 8
Methods and depth

Fig. 8. MRE for different depth levels and number of trees.

Table 7
Execution time for training and MRE for test
set.

MRE (%) Time (s)
LR 73397 503
DT 2,9271 72
GBT 2,7520 358
RF 2,1863 253

Table 8
Errors of worst and best predicted days at test set.

LR DT GBT RF

Worst 14,0004 10,1348 9,7966 9,1872
Mean 73397 2,9274 2,7520 2,1863
Best 3,3762 1,1877 1,0656 0,6745

errors less than linear regression, with a 5% difference approximately. Although the Random Forest ensemble technique has
obtained the best result, it is possible to conclude that the decision tree could be considered the most appropriate method,
especially considering the time required to generate the model with long time series.

So far the average relative error obtained in the prediction of the test set has been analysed. However, it is interesting to
study maximum and minimum errors of methods analysed.

The time series for electrical demand has measurements every 10 min. In order to study of daily errors, the predictions
obtained must be grouped into groups of 144 values (24 h). Hence, Table 8 presents the error of the best and worst predicted
day for each method.

Fig. 9 shows the average relative error of the predictions made on the test set for each of the algorithms, as well as the
errors corresponding to the days with the best and the worst prediction.

Due to the large difference between the worst predicted day and the average of every predicted day in the test set, the
assumed MRE after predicting each day is shown in Fig. 10. The figure shows the MRE of the test set, which consists of
199,080 measurements, corresponding to the values included from September 8th, 2012 at 10:40 am to June 21st, 2016 at
11:40 pm.

The best daily predictions for each of the methods are shown graphically in Fig. 11. Fig. 11(a) shows the day with the
best prediction obtained with the Linear Regression. The MRE is 3,37% and corresponds to measurements from Tuesday
June 17th, 2014 at 10:50 am until Wednesday June 18th, 2014 at 10:40 am. Fig. 11(b) shows the day with the best predic-
tion obtained with DecisionTreeRegression, which has resulted in an MRE of 1,1877%, corresponding to the 24 hours from
Wednesday January 21st, 2015 at 10:50 am to Thursday January 22nd, 2015 at 10:40 am. Fig. 11(c) shows the day with the
best prediction obtained with the GBT ensemble technique, corresponding to an MRE of 1,0656%, between Wednesday July

MRE per day

MRE per day

A. Galicia et al./Information Sciences 467 (2018) 800-818 811

16% T T T
LR C—
14% feeeereeensy SO U OSSOSO SRS URUO DT KXXX
GBT R=xxz2
12% o] e RF mm -
100/0 v‘ ...
E 8%
0
E <]
6% X SR .l
4%
2%
0%
Best
Daily MRE
Fig. 9. Errors of worst and best predicted days at test set.
16,0% 16,0%
14,0% 14,0%
12,0% 12,0%
=)
10.0% I 10,0%
1%
8,0% | 2 8,0%
=
6.0% g 6%
4,0% 4,0%
2,0% 2,0%
0,0% 0,0%
Year 1 Year 2 Year 3 Year 1 Year 2 Year 3
Test set Test set
(a) Linear Regression (b) Decision Tree
16,0% 16,0%
14,0% 14,0%
12,0% 12,0%
o)
10.0% Z10,0%
Bt
8.0% 2 8,0%
=
6.0% g 6%
4,0% 4,0%
2,0% 2,0% 3
0,0% 0,0% L
Year 1 Year 2 Year 3 Year 1 Year 2 Year 3
Test set Test set
(¢) Gradient-Boosted Trees (d) Random Forest

Fig. 10. Daily MRE at the test set.

812 A. Galicia et al./Information Sciences 467 (2018) 800-818

45000 T 45000 T
Actual Actual
Predicted - - - - Predicted - - - -
40000 40000 Y
£ 35000 £ 35000 ! : ! fﬁ“
2 30000 f < . 2 30000
< ~ =1 d
g Ne- o g \ '
& 25000 NI & 25000 2
20000 20000
1 5000 | | | | | l 5000 | | | | |
24 48 72 96 120 144 24 48 72 96 120 144
24 hours 24 hours
(a) Linear Regression (b) Decision Tree
45000 T T 45000 T T
Actual Actual
Predicted - - - - Predicted - - - -
40000 40000

35000 i 35000

30000

Demand (MW)
Demand (MW)

\ // 30000 \\ /

25000 § g 25000

g w
20000 20000
15000 l 1 1 l l 15000 l 1 1 l l

24 48 72 96 120 144 24 48 72 96 120 144
24 hours 24 hours
(c¢) Gradient-Boosted Trees (d) Random Forest

Fig. 11. Day for the best prediction.

17th, 2013 at 10:50 am and Thursday July 18th, 2013 at 10:40 am. Fig. 11(d) shows the best predicted day obtained with
Random Forest, corresponding to an MRE of 0,6745%, between Wednesday September 19th, 2012 at 10:50 am and Thursday
September 20th, 2012 at 10:40 am. The lowest daily error in the test set corresponds to Random Forest.

The relative error assumed for each best predicted day is shown in Fig. 12. The highest daily error was obtained using
Linear Regression and the lowest daily error in the test set corresponds to Random Forest.

In addition, the worst daily predictions for each of the methods are shown graphically in Fig. 13.

Fig. 13(a) shows the day with the worst prediction obtained using the linear regression, resulting in an MRE of 14,0004%,
corresponding to the measurements from Wednesday December 23rd, 2015 at 10:50 am hours until Thursday December
24th, 2015 at 10:40 am. In this particular case, it corresponds to a special day within the month of December. Fig. 13(b)
shows the worst prediction obtained with the DecisionTreeRegression method of MLIib. The error obtained is 10,1348% cor-
responding to the interval from Sunday December 30th 2012 at 10:50 am until Monday December 31st, 2012 at 10:40 am.
Similarly to linear regression, it is a special day within the period of Christmas. Fig. 13(c) shows the day with the worst
prediction obtained with the GBT ensemble technique, which has resulted in an MRE of 9,7966%, corresponding to the 24 h
included from Sunday December 30th, 2012 at 10:50 am until Monday December 31st, 2012 at 10:40 am. Fig. 13(d) shows
the day with the worst prediction obtained using Random Forest, which has resulted in an MRE of 9,1872%, between Monday
December 23rd, 2013 at 10:50 am and Tuesday December 24th 2013 at 10:40 am.

In addition, it is important to observe the worst predictions since they contribute to the average increase in errors.

Table 9 shows a summary of the days in which the largest daily error is obtained for each of the algorithms analysed. In
all cases, they correspond to very special days during the holiday season.

12,0%

10,0%

8,0%

6,0%

Relative error

4,0%

2,0%

0,0%

12,0%

10,0%

8,0%

6,0%

Relative error

4,0%

2,0%

0,0%

A. Galicia et al./Information Sciences 467 (2018) 800-818 813

Relative error -
ol
e
8 Jo
\ // Wi
120 144
24 hours
(a) Linear Regression
Relative error -
— M ﬂ |
e g
24 48 72 9% 120 144

24 hours

(c) Gradient-Boosted Trees

12,0%

10,0%

8.0%

6,0%

Relative error

4,0%

2,0%

0,0%

12,0%

10,0%

8,0%

6,0%

Relative error

4,0%

2,0%

0,0%

T
Relative error

Ul ol

w WVWWWWW NI

120 144

—

24 hours

(b) Decision Tree

T
Relative error

A 1
| I\ 1
24 48 96 120
24 hours

(d) Random Forest

Fig. 12. Relative error corresponding to each best predicted day.

Table 9

Days with the worst predictions.

From

To

MRE (%)

LR X. 2015-12-23 10:50
DT D. 2012-12-30 10:50
GBT D. 2012-12-30 10:50
RF L. 2013-12-23 10:50

J. 2015-12-24 10:40 14,0004
L. 2012-12-31 10:40 10,1348
L. 2012-12-31 10:40 9,7966
M. 2013-12-24 10:40 9,1872

4.5. Scalability analysis

Having studied the precision of the models generated by the different algorithms, this next section analyses the scal-
ability of the proposed methodology. On the one hand, the influence of multiple threads in the generation of models is
considered. On the other hand, the length of the time series is increased, multiplying its length by up to 32 times. These
tests are performed with the configuration of the algorithms that have given rise to lowest errors, considering the number
of attributes w = 144 and prediction horizon h = 24.

4.5.1. Computing resources remarks

To verify how scalable the various methods are according to available computing resources, the four algorithms are
analysed when the number of computing threads varies from 1 to 8 and when the length of the time series is the original
length and when the length is multiplied by 2, 4, 8, 16 and 32 (x1, x2, x4, x8, X16, x32, respectively). Only one slave has
been used to obtain these results. Table 11 shows a summary of the sizes of the time series.

814

A. Galicia et al./Information Sciences 467 (2018) 800-818

45000 T T T T T 45000 T T T T T
Actual Actual
Predicted - - - - Predicted - - - -
40000 40000
£ 35000 £ 35000 o
2 2 e
T 30000 [y R = 30000 w 2 :
< A\ 5} i ah Y '
& 25000 S s & 25000 [ttty N b s
~ PRI 5 n ,-' !
20000 20000 TN
15000 : L : L L 15000 : L : L L
24 48 72 96 120 144 24 48 72 96 120 144
24 hours 24 hours
(a) Linear Regression (b) Decision Tree
45000 - - - - - 45000 - - - - -
Actual Actual
Predicted - - - - Predicted - - - -
40000 40000
£ 35000 ot £ 35000
= Pl =
= . 7 W ~ N - /-’\ N
= 30000 : i/ = 30000 s !
R T TN : RN
£ Ry ' N E N |
& 25000 e fan _\ i b & 25000 e
N . " N \» N R L
20000 a 20000 = 2
15000 1 1 1 1 1 15000 1 1 1 1 1
24 48 72 96 120 144 24 48 72 96 120 144
24 hours 24 hours

(c) Gradient-Boosted Trees (d) Random Forest

Fig. 13. Day for the worst prediction.

The time series with initial length -x1- has 497832 measurements, corresponding to 20742 records in the dataset and
with a size of 5,70 MiB. As shown in Table 11, multiplying the length of the time series (twice —x2- until thirty two times
-x32-) the length grows up to 15930624 measurements, corresponding to 663744 instances in the dataset and with a size
of 18,230 MiB.

The results obtained for all methods using different time series length for time scalability analysis are shown in Table 10,
where results are expressed in seconds. The algorithms analysed train their models in less time as availability of computing
resources is increased. In addition, there is a dependence observed, related with the length of the time series. The algorithms
are more sensitive to the increment in the number of threads; that is, the greater the scalability of the algorithms, the
longer the length of the time series. However, the decrease in computing time differs very little when increasing from 4 to
8 threads for all algorithms.

In Fig. 14, the behaviour of each algorithm is represented, as the size of the time series and the number of processing
threads increases. It also shows the reduction in runtime required to generate the model, when the Spark worker increases
the number of processing threads. However, the decrease in computing time differs very little for all algorithms when
increasing from 4 to 8 threads. Regardless of the algorithm used, this time reduction becomes more noticeable for longer
time series, since with the original dataset x1, the time is reduced. This behaviour shows a clear dependence on the size
of the time series, since Spark is designed to process sets of data of the order of gigabytes, and therefore, the greater the
scalability of the algorithms the greater the length of the time series.

4.5.2. Data size remarks
Runtime has been obtained for the time series x2, x4, X8, x16 and x32, whose sizes are summarised in Table 11, respect
a length multiplier, using one master and four slaves.

A. Galicia et al./Information Sciences 467 (2018) 800-818 815

Table 10
Time scalability for all methods using different time series
length.
Multiplier ~ Threads LR DT GBT RF
x1 1 722 165 765 815
2 574 114 523 462
3 522 98 443 381
4 519 93 417 351
5 487 88 387 317
6 513 86 378 307
7 518 86 379 302
8 521 85 376 298
X2 1 1412 253 1195 1328
2 1024 169 785 737
3 964 147 679 632
4 936 140 647 575
5 933 138 634 555
6 882 131 600 531
7 877 130 593 521
8 875 130 585 521
x4 1 2844 433 2063 2315
2 1771 264 1242 1268
3 1553 223 1044 1082
4 1527 211 996 989
5 1558 211 1002 942
6 1465 201 939 905
7 1461 199 929 890
8 1462 199 924 895
X8 1 5584 799 3798 4303
2 3523 495 2351 2376
3 2742 378 1785 1978
4 2705 356 1693 1794
5 2655 346 1647 1714
6 2633 340 1617 1643
7 2653 339 1615 1618
8 2621 336 1601 1620
x16 1 10552 1457 6970 11082
2 5703 809 3853 5915
3 5037 667 3196 4798
4 4990 640 3122 4305
5 4985 633 3024 3977
6 4987 634 2997 3731
7 5058 631 2960 3585
8 5054 639 3007 3268
x32 1 21062 2891 6970 21495
2 11563 1589 3853 11445
3 10444 1391 3196 9387
4 9870 1271 3122 8470
5 9850 1238 3024 7899
6 9862 1241 2997 7446
7 10376 1275 2960 7017
8 9791 1222 3007 6772

Table 12 shows the training time with respect to the different lengths of the time series for all proposed algorithms. This
information is shown graphically in Fig. 15(a) and Fig. 15(b). The training time increases linearly as the length of the time
series increases exponentially, which indicates the good behaviour of all methods with regard to scalability.

A scalability factor can be expressed as:

Factor; =

1
L 4)
tij2
where t; is the training time for the time series of length x; with i = 2, 4, 8, 16 and 32.

Fig. 16 shows the scalability factor of each method when the length of the time series increases by multiplying by 2, 4,
8, 16 and 32. The scalability factor is usually less than 2, which implies that scalability is even better than linear scalability.

5. Conclusions

In this work, a formal formulation is proposed to obtain multi-pass predictions using the MLIlib library of the Apache
Spark framework. The use of this framework guarantees that the applied methods to predict the energy consumption of the

816

A. Galicia et al./Information Sciences 467 (2018) 800-818

Table 11
Size of the time series and dataset.

Length of series ~ Number of instances Size (MiB)

x1 497832 20742 5,70
X2 995664 41484 11,39
x4 1991328 82968 22,79
x8 3982656 165936 45,58
x16 7965312 331872 91,15
Xx32 15930624 663744 18230
25000 T T T T T T 3000[T T T T T
x| —— x]l —+—
q X2 - =% - X2 - =% -
20000 x4 --okees] 2500 x4 %
x8 —B—- x8 —B—-
x16 —8— 2000 x16 —8— |
= 15000 x32 —8— = x32 —8—
%) D
£ \S\E‘\ E 1500 \E\E\a—a—/ﬂ\(
& 10000 = = g = 1
5000 e)
SR _ﬂ'\"ﬁ-— =€ — 88— —f——a—-—[
0 K- -- _§I_"_"_"_'§‘."."_". S R S Sl
1 2 3 4 5 6 7 8
Threads Threads
(a) Linear Regression (b) Decision Tree
14000 0 T T T T T T 25000 T T T T T
\ x1 —— xl —+—
12000 X2 =% - 2 - % -
\ X4 - K- 20000 X4 K-
x§ —B—- x§ —B—-
10000 x16 —8— x16 —8—
\ x32 —8— x32 —8—
8000

Time (s)
2
S

/E

a

Time (s)
g 2
8 S
ﬁ

Threads

(¢) Gradient-Boosted Trees

Fig. 14. Scalability of training time.

Table 12
Execution time scalability.

x1 X2 x4 x8 x16 x32

LR 503 807 1381 2541 4859 9920

D
G

T 72 119 196 342 632 1201
BT 358 559 939 1671 3161 6046

RF 253 414 749 1456 2779 5935

Threads

(d) Random Forest

following 24 values are scalable, and that, consequently, they can be used for long time series. A set of regression models,
linear and nonlinear, such as linear regression, decision trees and two tree ensembling techniques, has been selected. The
results of the prediction of electricity in the Spanish electricity market are giving with errors of approximately 2%. Likewise,

experiments have been carried out showing the degree of scalability of each of the methods, concluding the viability of the
methodology for the prediction of large time series.

A. Galicia et al./Information Sciences 467 (2018) 800-818 817
3000 T T 10000 T
LR —— LR ——
BT - -x - 9000 DT - -x -
2500 [GBT -+ 8000 FGBT ---:--
RF —8—- RF —B—-
2000 7000
=z A = 6000 i
2 1500 o 2 5000 eI
£ UL | £ L
B . = e
= 1000 /// = 4000 / e
Lk 3000 S
. o
500 7 ; o 2000 frvoves
;S IV 1000 L e S T R T
0E——= X o 1 0 k----"-"° |
1 2 4 8 8 16 32
Length Multiplier Length Multiplier

(a) (b)

Fig. 15. Runtime and scalability for all algorithms.

2,2 LIR T T
’
© [GBT - .~

Scalability factor

Length Multiplier

Fig. 16. Scalability factor behaviour.

One proposal for future research is to optimise the error with a validation set. Further studies should also analyse how
the number of partitions into which the dataset is distributed affects the scalability of the algorithms. In addition, it would
be very interesting to study the periodicity of the time series and its influence on the prediction model generated in the
training. Finally, the behaviour of the methods must be verified with other datasets of larger sizes and different natures.

Acknowledgment

The authors would like to thank the Spanish Ministry of Economy and Competitiveness and Junta de Andalucia for the
support under projects TIN2014-55894-C2-R and P12-TIC-1728, respectively. Additionally, the authors want to express their
gratitude to the T-Systems Iberia company since all experiments were carried out on its Open Telekom Cloud Platform based
on the Open-Stack open source.

References

[1] A. Abraham, B. Nath, A neuro-Fuzzy approach for forecasting electricity demand in victoria, Appl. Soft Comput. J. 1 (2) (2001) 127-138.

[2] G. Box, G. Jenkins, Time Series Analysis: Forecasting and Control, John Wiley and Sons, 2008.

[3] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5-32.

[4] M. Capé, A. Pérez,].A. Lozano, A recursive K-means initialization algorithm for massive data, in: Proceedings of the Spanish Association for Artificial
Intelligence, 2015, pp. 929-938.

[5] G. Cavallaro, M. Riedel, M. Richerzhagen, J.A. Benediktsson, A. Plaza, On understanding big data impacts in remotely sensed image classification using
support vector machine methods, IEEE]. Sel. Top. Appl. Earth Obs. Remote Sens. 8 (2015) 4634-4646.

[6] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters, Commun. ACM 51 (1) (2008) 107-113.

[7] R. Ding, Q. Wang, Y. Dan, Q. Fu, H. Zhang, D. Zhang, Yading: fast clustering of large-scale time series data, in: Proceedings of the VLDB Endowment, 8,
2015, pp. 473-484.

818 A. Galicia et al./Information Sciences 467 (2018) 800-818

[8] M. El-Telbany, F. El-Karmi, Short-term forecasting of jordanian electricity demand using particle swarm optimization, Electr. Power Syst. Res. 78 (2008)
425-433.
[9] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, A.Y. Zomaya, . Khalil, F. Sebti, A. Bouras, A survey of clustering algorithms for big data: taxonomy & empirical

analysis, [EEE Trans. Emerg. Top Comput. 5 (2014) 267-279.

[10] S. Fan, C. Mao, J. Zhang, L. Chen, Forecasting electricity demand by hybrid machine learning model, Lect. Notes Comput. Sci. 4233 (2006) 952-963.

[11] R.C. Garcia, J. Contreras, M. van Akkeren, J.B.C. Garcia, A GARCH forecasting model to predict day-ahead electricity prices, IEEE Trans. Power Syst. 20
(2) (2005) 867-874.

[12] S. Ghosh, A. Das, Short-run electricity demand forecasts in maharashtra, Appl. Econ. 34 (8) (2002) 1055-1059.

[13] H.S. Guirguis, FA. Felder, Further advances in forecasting day-ahead electricity prices using time series models, KIEE Int. Trans. PE 4-A (3) (2004)
159-166.

[14] Y. Guo, D. Niu, Y. Chen, Support-vector machine model in electricity load forecasting, in: Proceedings of the International Conference on Machine
Learning and Cybernetics, 2006, pp. 2892-2896.

[15] M. Hamstra, H. Karau, M. Zaharia, A. Knwinski, P. Wendell, Learning Spark: Lightning-Fast Big Analysis, O’ Really Media, 2015.

[16] 1. Koprinska, M. Rana, A. Troncoso, F. Martinez-Alvarez, Combining pattern sequence similarity with neural networks for forecasting electricity demand
time series, in: Proceedings of the International Joint Conference on Neural Networks, 2013, pp. 940-947.

[17] L. Li, S. Bagheri, H. Goote, A. Hassan, G. Hazard, Risk adjustement of patient expenditures: a big data analytics approach, in: Proceedings of the IEEE
International Conference on Big Data, 2013, pp. 12-14.

[18] J.M. Luna-Romera, M. Martinez-Ballesteros,]. Garcia-Gutierrez, J.C. Riquelme, An Approach to Silhouette and Dunn Clustering Indices Applied to Big
Data in Spark, in: Proceedings of the Conference of the Spanish Association for Artificial Intelligence, 2016, pp. 160-169.

[19] Machine Learning Library (MLIib) for Apache Spark, On-line, http://spark.apache.org/docs/latest/mllib-guide.html (2016).

[20] J. Maillo, S. Ramirez, 1. Triguero, F. Herrera, KNN-IS: an iterative spark-based design of the k-Nearest neighbors classifier for big data, Knowl. Based
Syst. 117 (2017) 3-15.

[21] P. Malo, A. Kanto, Evaluating multivariate GARCH models in the nordic electricity markets, Commun. Stat Simul. Comput. 35 (1) (2006) 117-148.

[22] F. Martinez-Alvarez, A. Troncoso, G. Asencio-Cortés,].C. Riquelme, A survey on data mining techniques applied to electricity-related time series fore-
casting, Energies 8 (11) (2015) 13162-13193.

[23] F. Martinez-Alvarez, A. Troncoso, J.C. Riquelme, .S. Aguilar, Energy time series forecasting based on pattern sequence similarity, IEEE Trans. Knowl.
Data Eng. 23 (2011) 1230-1243.

[24] L. Mason,]. Baxter, P. Bartlett, M. Frean, Boosting algorithms as gradient descent, in: Proceedings of the Neural Information Processing Systems Con-
ference, NIPS, 1999, pp. 512-518.

[25] P.E. Pai, W.C. Hong, Support vector machines with simulated annealing algorithms in electricity load forecasting, Energy Convers. Manag. 46 (17) (2005)
2669-2688.

[26] B. Panda,].S. Herbach, S. Basu, RJ. Bayardo, PLANET: massively parallel learning of tree ensembles with MapReduce, in: Proceedings of the International
Conference in Very Large Data Bases, 2009, pp. 1426-1437.

[27] R. Pérez-Chacén, R. Talavera-Llames, F. Martinez-Alvarez, A. Troncoso, Finding electric energy consumption patterns in big time series data, in: Pro-
ceedings of the International Conference on Distributed Computing and Artificial Intelligence, 2016, pp. 231-238.

[28] M. Rana, 1. Koprinska, A. Troncoso, V.G. Agelidis, Extended Weighted Nearest Neighbor for Electricity Load Forecasting, Springer International Publish-
ing, pp. 299-307.

[29]].L. Reyes-Ortiz, L. Oneto, D. Anguita, Big data analytics in the cloud: spark on hadoop vs MPI/OpenMP on beowulf, Procedia Comput. Sci. 53 (2015)
121-130.

[30] L. Rokach, O. Maimon, Top-down induction of decision trees classifiers - a survey, IEEE Trans. Syst. Man Cybern. Part C 35 (4) (2005) 476-487.

[31] R. Talavera-Llames, R. Pérez-Chacén, M. Martinez-Ballesteros, A. Troncoso, F. Martinez-Alvarez, A nearest neighbours-based algorithm for big time
series data forecasting, in: Proceedings of the International Conference on Hybrid Artificial Intelligence Systems, 2016, pp. 174-185.

[32] J. Taylor, Density forecasting for the efficient balancing of the generation and consumption of electricity, Int.]. Forecast 22 (2006) 707-724.

[33] Time Series for Spark (The spark-ts Package), On-line, https://github.com/sryza/spark-timeseries (2017).

[34] 1. Triguero, D. Peralta, J. Bacardit, S. Garcia, F. Herrera, MRPR: a mapreduce solution for prototype reduction in big data classification, Neurocomputing
150 (2015) 331-345.

[35] A. Troncoso,].C. Riquelme, J.M. Riquelme,].L. Martinez, A. Gomez, Electricity market price forecasting based on weighted nearest neighbours tech-
niques, IEEE Trans. Power Syst. 22 (3) (2007) 1294-1301.

[36] C.-W. Tsai, C.-F. Lai, H.-C. Chao, A. Vasilakos, Big data analytics: a survey 2 (1) (2015) 21.

[37] T. White, Hadoop, The Definitive Guide, O" Really Media, 2012.

[38] LH. Witten, E. Frank, M.A. Hall, CJ. Pal, Data mining: Practical Machine Learning Tools and Techniques, fourth ed., Morgan Kaufmann, Burlington, MA,
2016.

[39] W. Zhao, H. Ma, Q. He, Parallel k-means clustering based on mapreduce, Lect. Notes Comput. Sci. 5391 (2009) 674-679.

[40] L. Zhou, S. Pan, J. Wang, A.V. Vasilakos, Machine learning on big data: opportunities and challenges, Neurocomputing (2017). In press.

4.1 Articulos de revista 71

4.1.3. Big data solar power forecasting based on deep lear-

ning and multiple data sources

Tabla 4.3 Datos del articulo: Big data solar power forecasting based on deep
learning and multiple data sources

Autores Torres, J. F., Troncoso, A., Koprinska, 1., Wang, Z., and
Martl’nez—Alvarez, F.
Revista Expert Systems
Ano 2019
Paginas e12394
Volumen 36, issue 4
DOI 10.1111/exsy.12394
IF 1.546 (50/120)
Cuartil Q2 (Computer Science, theory and methods)
Citas 27 (Google Scholar)

Received: 23 September 2018 Revised: 6 February 2019 Accepted: 15 February 2019
DOI: 10.1111/exsy.12394

WILEY |30 1S

SPECIAL ISSUE PAPER

Big data solar power forecasting based on deep learning and
multiple data sources

José F. Torres! | Alicia Troncoso! @ | Irena Koprinska? | Zheng Wang? |
Francisco Martinez-Alvarez!

1Data Science and Big Data Lab, Universidad
Pablo de Olavide, ES-41013 Seville, Spain Abstract
2School of Computer Science, University of

Sydney, Sydney, Australia In this paper, we consider the task of predicting the electricity power generated by photovoltaic

solar systems for the next day at half-hourly intervals. We introduce DL, a deep learning

Correspondence approach based on feed-forward neural networks for big data time series, which decomposes
Alicia Troncoso, Data Science and Big Data
Lab, Universidad Pablo de Olavide, ES-41013
Seville, Spain.

Email: atrolor@upo.es performance of DL with two other advanced methods based on neural networks and pattern

the forecasting problem into several sub-problems. We conduct a comprehensive evaluation

using 2 years of Australian solar data, evaluating accuracy and training time, and comparing the

sequence similarity. We investigate the use of multiple data sources (solar power and weather
data for the previous days, and weather forecast for the next day) and also study the effect
of different historical window sizes. The results show that DL produces competitive accuracy

results and scales well, and is thus a highly suitable method for big data environments.

KEYWORDS

big data, deep learning, solar power, time series forecasting

1 | INTRODUCTION

Solar energy is a very promising renewable electricity source that is still not fully utilized. Recently, there has been a rapid growth in the
installed large-scale and residential (rooftop) solar photovoltaic (PV) systems. This is due to the reduced cost of solar PV panels, improvements in
technology and performance, and government initiatives encouraging the use of solar systems.

As a result, in many countries now, the cost of electricity produced by solar energy is comparable with that of conventional energy sources.
This competitive cost, coupled with the fact that solar is a clean and abundant energy source, has led to a huge growth in the generated solar
energy. This trend is expected to continue—for example, by 2020, the global solar capacity is projected to reach 700 GW, an increase of about
140 times compared with 2005 (SolarPowerEurope, 2016). In Australia, it is expected that by 2050, 30% of the electricity supply will come from
solar energy (Flannery & Sahajwalla, 2013).

However, solar energy is highly variable since it depends on meteorological conditions such as solar radiation, cloud cover, rainfall, and
temperature. This dependency creates uncertainty about the amount of solar power that will be generated, which makes the integration of solar
power into the electricity grid and electricity markets more difficult. Hence, the ability to accurately predict the generated solar power is a task of
utmost importance and relevance for both energy managers and electricity traders, in order to minimize uncertainty and ensure reliable electricity
supply at acceptable cost.

Historical PV solar power data with high frequency is easily available, and therefore, advanced computing technologies and machine learning
approaches for big data can be used to analyse very large time series. Deep learning is an emerging branch of machine learning that extends the
traditional neural networks by using architectures with many hidden layers that are able to learn hierarchical feature representations.

One of the main drawbacks of the classical neural networks is that if they have many hidden layers they become difficult to train (Livingstone,
Manallack, & Tetko, 1997; Schmidhuber, 2015)

Deep learning involves the use of more effective learning algorithms and techniques to train neural networks with many hidden layers.

In this paper, we propose a new approach based on deep learning feed-forward neural networks to forecast short-term (one day ahead), big
solar power time series data. Day ahead predictions are one of the most common industry-requested operational forecasts (Kostylev & Pavlovski,

Expert Systems. 2019;e12394. wileyonlinelibrary.com/journal/exsy © 2019 John Wiley & Sons, Ltd. ‘ 10of 14
https://doi.org/10.1111/exsy.12394

20f14 | TORRES ET AL.

2011). They are needed for operational planning, switching sources, programming backups, short-term power purchases, and for planning of
reserve usage and peak load matching (Ervural & Ervural, 2018; Reikard, 2009). Specifically, we consider the following task: given a time series of
PV power outputs up to day d, where one day is a vector of half-hourly power outputs, our goal is to forecast the half-hourly PV power output
for the next day d + 1.

We first compare the performance of our proposed DL algorithm with two other advanced methods for forecasting presented in (Wang,
Koprinska, & Rana, 2017). In particular, we compare DL with the (a) Pattern Sequence-based Forecasting (PSF) algorithm, which uses clustering
and similarity of patterns (Martinez-Alvarez, Troncoso, Riquelme, & Aguilar, 2011), and (b) a neural network-based model with one hidden layer
(we will refer to it as NN), used as a reference method for solar power forecasting. Next, we conduct a scalability study in order to evaluate
the suitability of all methods to deal with big data time series. We also analyse if the accuracy of DL and the methods used for comparison
improves when using weather and weather forecast data as an additional input, taking into account different scenarios corresponding to different
percentages of noise in the weather forecast data (10%, 20%, and 30%). Finally, we study how the size of the historical window affects the
behaviour of our DL prediction system.

In summary, the main contributions of this work are:

1. We propose DL, a deep learning approach based on feed-forward neural networks, for predicting the generated PV solar power. DL
decomposes the multi-step ahead forecasting problem into sub-problems and also uses distributed computing to reduce the computational
cost of training a deep neural network and to process big data time series.

2. We conduct a comprehensive evaluation using Australian solar power data for 2 years, measured every 30 min. We evaluate the predictive
accuracy of DL and compare it with two state-of-the-art forecasting algorithms: NN and PSF. Our results showed that DL was the most
accurate method.

3. We carry out a scalability study to show the suitability of DL for processing large solar power time series, reporting computing times for
different time series lengths and comparing DL with NN and PSF.

4. We study the use of multiple input data sources (PV, weather, and weather forecast) and different levels of noise in the weather forecast
data. We found that the addition of the weather forecast for the next day to the PV data of the current day improved the accuracy,
whereas the addition of the weather data for the current day did not.

5. We analyse how the size of the historical window affects the accuracy of DL. We found that there is no benefit in using more than one

previous day.

The rest of the paper is structured as follows. Section 2 reviews of the existing literature related to time series forecasting of solar data. Section
3 introduces the proposed methodology to forecast big data time series. Section 4 describes the data and experimental setup and Section 5
presents and discusses the results. Finally, Section 6 summarizes the main results, providing final conclusions, as well as directions for future work.

2 | RELATED WORK

In this section, we review the recently published approaches for PV solar power prediction, distinguishing between traditional and deep learning

techniques.

2.1 | Non-deep learning methods

The non-deep learning methods for time series forecasting can be divided into two groups: classical statistical and data mining techniques
(Martinez-Alvarez, Troncoso, Asencio-Cortés, & Riquelme, 2015). With regard to the first group (statistical methods), autoregressive integrated
moving average and exponential smoothing have been the most popular methods for predicting PV time series (Dong, Yang, Reindl, & Walsh, 2015;
Pedro & Coimbra, 2012). With regard to the second group (data mining methods), neural networks, Support Vector Machines (SVM), and k nearest
neighbours have been recently applied to PV solar data. For example, Barbieri et al. (Barbieri, Rajakaruna, & Ghosh, 2017) presented an overview
of methods for very short-term PV solar forecasting with cloud modelling. They found that forecasting the irradiance and cell temperature were
the best approaches for forecasting PV power fluctuations due to cloud cover, and that a combination of satellite and sky images led to the
best results for very-short term forecasting. A neural network, optimized with a genetic algorithm for forecasting the intra-hour PV power, was
proposed in Chu et al. (2015). A clustering-based approach based on the weather characteristics was proposed in Wang, Koprinska, and Rana
(2017) and Zhang et al. (2018). A survey paper on forecasting methodologies for solar power forecasting was presented in Wan et al. (2015).

Interval forecasts using SVM were studied in Rana, Koprinska, and Agelidis (2015); these type of forecasts were considered as suitable for
the highly variable nature of the solar data. A forecasting method based on the weather and power data for the previous days and the weather
forecast for the next day was proposed in Z. Wang and Koprinska (2017) for one-day-ahead PV power prediction.

Brecl and Topic (2018) proposed an approach that uses only common weather forecasts, without solar irradiance information, obtaining
satisfactory results.

TORRES ET AL.

WILEY | B i i i

In the last few years, several studies in time series forecasting have focused on creating ensembles of prediction models. Ensembles combine
the predictions of several forecasting models and have been shown to be very competitive, and more accurate than single forecasting models in
Cerqueira, Torgo, Pinto, and Soares (2017), Koprinska, Rana, Troncoso, and Martinez-Alvarez (2013), and Oliveira and Torgo (2015), including
for PV power forecasting (Z. Wang et al. (2017)). Another ensemble method was proposed by Thorey, Chaussin, and Mallet (2018)—an online
learning method that generates a weighted combination of PV power forecasts for PV plants located in France; this technique was used to predict
solar energy up to 6 days in advance.

2.2 | Deep learning methods

Deep learning methods have gained a lot of interest in recent years due to their excellent results, especially in image and speech recognition
tasks (Hinton et al., 2012; Krizhevsky, Sutskever, & Hinton, 2012; LeCun, Bengio, & Hinton, 2015). For surveys on deep learning architectures
and applications, see Kamilaris and Prenafeta-Boldd (2018), Mohammadi, Al-Fugaha, Sorour, and Guizani (2018), and Pouyanfar et al. (2018)

A few recent studies have applied deep learning methods to forecasting tasks, including to energy related time series. For example, Binkowski,
Marti, and Donnat (2017) applied deep learning convolutional neural networks (CNNs) and long short-term memory (LSTM) networks to financial
and electricity household consumption data with promising results. LSTM networks were also applied for air quality forecasting (Zhou, Chang,
Chang, Kao, & Wang, 2019) and indoor temperature prediction (Xu, Chen, Wang, Guo, & Yuan, 2019), and CNNs were used for short-term rainfall
prediction (Qiu et al., 2017).

Torres, Fernandez, Troncoso, and Martinez-Alvarez (2017) developed a deep learning feed-forward neural network for electricity demand
forecasting. The method was used to predict big data times series of Spanish electricity consumption data for 10 years, with a 10-min sampling
rate. In Coelho et al. (2017), a deep learning model was applied for household energy demand forecasting, using a GPU parallel architecture for
fast processing and model training. A deep learning forecasting model for multi-site PV plant connected with a renewable energy management
system was introduced in Lee, Lee, and Kim (2017). Neo, Teo, Woo, Logenthiran, and Sharma (2017) presented an application of Deep Belief NN
for forecasting PV solar power.

In Koprinska, Wu, and Wang (2018), CNNs were used for electricity demand and solar power forecasting and were shown to perform similarly
to feed-forward neural networks with one hidden layer and to outperform LSTM networks. In Wang et al. (2017), a hybrid method based on
wavelet transforms and CNN was applied for PV power forecasting. The wavelet transform was used to decompose the original time series data
into several time series with different frequencies; CNNs were then used to extract features from each time series and finally a probabilistic model
was applied to forecast each series separately. In Yuchi, Gergely, and Brandt (2018), CNNs were used to correlate PV output to contemporaneous
images of the sky and forecast PV power. The effect of the different CNNs and image parameters on the accuracy was also evaluated.

Further, deep recurrent neural networks (RNN) have been shown to provide promising results for predicting PV power in Abdel-Nasser and
Mahmoud (2017). Alzahrani, Shamsi, Dagli, and Ferdowsi (2017) used an RNN to forecast the solar irradiance, and compared its performance
with several commonly used methods such as SVR and feed-forward neural networks.

After a wide literature review, to the best of our knowledge, we conclude that although there have been previous studies on solar power
forecasting using different types of deep learning techniques, none of them deals with big data time series. In this paper, we address this gap by
proposing an algorithm for forecasting big solar data using deep learning and evaluating its performance on multiple data sources.

3 | METHODOLOGY

This section presents the proposed methodology to forecast time series, for the context of PV solar data.
The main goal of this work is to predict future values, expressed as [x4, ..., x,], where h is the number of values to predict. The prediction is

based on previous values from a historical window w. In this way, the problem can be formulated as:
[Xer1s Xes2s - s Xexn] = FXes Xeots 2ov s Xemwo1))s (1)

where f refers to the model to be found in the training phase by the algorithm, which will be used to forecast the next h values.

In order to use in-memory data, we utilize Apache Spark cluster-computing. For the deep learning implementation, we choose the H20
machine learning framework, which provides a simple syntax for parallel and distributed programming. However, H20O does not support
multi-step forecasting. To deal with this issue, a possible solution is to split the forecasting problem into h forecasting sub-problems. Therefore,

it is necessary to compute a prediction model for each sub-problem as follows:

Xer1 = Fa(Xes Xeo1s - > Xemw-1))» ()
Xer2 = F2(Xes Xeo1s - > Xemw-1))» (3)
4)

Xerh = fn(Xe Xeots oov s Xeewo1))- (5)

4of14 | TORRES ET AL

WILEY B B

From this problem formulation, we can see that each of the h values from the prediction horizon is predicted separately, thus removing
the propagation error due to previously predicted samples being used to predict the next one. Nevertheless, the computational cost of this
methodology is higher than building just one model to predict all h values from the prediction horizon because we need to train h different models
and conduct a hyperparameter search for each of them, instead of training only one model and conducting a single hyperparameter search for
optimal parameter selection. The deep learning architecture used for solving each sub-problem is presented in Figure 1.

It is well-known that the values of the hyper-parameters of the deep learning algorithm highly influence the results. To find a good combination
of hyper-parameters, we employed the grid search method of H20. The grid-search was used separately for each sub-problem to obtain the best
parameter setting as described in detail in Section 5.1.

Figure 2 shows a flow diagram of the proposed methodology. As it can be seen, given a time series data (in column vector format), the task is
to find a function that allows to predict a sub-sequence of future values h based on the previous know values w. This multi-step ahead prediction
problem is transformed into h sub-problems, where the target value for a sub-problem i corresponds to the ith value from the prediction horizon.
For each of these sub-problems, the data set is divided into training, validation, and test sets. First, the training and validation sets are used
for the training and parameter selection. The grid search method computes a model for each combination of hyper-parameters and for each
sub-problem. These models are evaluated on the validation set and the best one is chosen to predict the test set and compute the error.

4 | DATAANDEXPERIMENTAL SETUP

4.1 | Data description

We use data from three sources: PV power, weather and weather forecast, for 2 years—from 1 January 2015 to 31 December 2016. This is the
same data as in Wang et al. (2017). The PV power is the main data source, but as the generated PV power depends on the weather conditions,
we also collected weather and weather forecast data to investigate if its addition can improve the PV power predictions. The three data sets are
described below.

PV data. This data set was collected from a rooftop PV plant, located at the University of Queensland in Brisbane, Australia, and is publicly

available (http://www.ug.edu.au/solarenergy/). For each day, we only selected the data during the 10-hour daylight period from 7:00 a.m. to

II o
'\ A\\"IA.
“YV”
m “

Output

FIGURE1 DL's architecture

h univariate regressions

X = = =
x1 w values h values
2
it
X3 : Xp X Xy Xy . Xweh
X4 L — Xish Xosh - Xwsh Xwh1 . Xw+2h
X5 ' Xis2h Xoszh - Xwszh || Xwszhet . Xw+3h
! Xisan Xouah = Xwash || Xwsshet . Xwean
Xt X1 Xt(w-1) Xt Xt+h
original Bior, e Harl = e, e e Yo] 1h ith hth
115 5 Xeehl = Fh (XXt o Xiwe2) X1
dataset i i (w2) Ttw-t) value value value

vov ¥

C t "
Oer:gtl ¢ | <« Predict <« * <« <« Training set
€ Validation set
Get best H20 DL grid
model search
Test set

FIGURE2 Proposed methodology

TORRES ET AL.

WILEY | B i i i

5:00 p.m. The original PV power data was measured at 1-min intervals and aggregated to 30-min intervals by taking the average value of the
interval. As a result, this data set contains 14,620 data points—(365 + 366) days x 20 measurements per day.

Weather data (W). This data set was obtained from the Australian Bureau of Meteorology (http://www.bom.gov.au/). For each day, we
collected 14 meteorological variables, described in Table 1. In total, this data set contains 731 days and 14 measurements per day, resulting in

10,234 data points.
Weather forecast data (WF). This data set is a subset of the weather data—it includes four weather variables that are typically available from

meteorological bureaus as part of the weather forecast for the next day, as shown in Table 2. Because the weather forecasts were not available
retrospectively for 2015 and 2016, we used the actual weather data with added noise at three different levels: 10%, 20%, and 30%. We generated
uniformly distributed noise. In total, each of the three versions of this data set contains 2,924 data points—731 days x 4 measurements per day.

Data Preprocessing. There was a small number of missing values—0.82% for the weather data and 0.02% for the PV data. They were replaced
using the following nearest neighbour method, applied first to the weather data and then to the PV data: (a) if a day d has missing values in its
weather vector W9, we find its nearest neighbour with no missing values, day s, using the Euclidean distance and the available values in W9. The
missing values in W are replaced with the corresponding values in W5; (b) if day d has missing values in its PV vector P9, we find its nearest
neighbour day s, by comparing weather vectors, and then replace the missing values in P4 with the corresponding values in Ps.

The data sets were also re-arranged based on the chosen historical data window and prediction horizon. Specifically, we considered seven
historical windows, from 1 to 7 previous days, when predicting the next day. For the PV data, this corresponds to using 20, 40, 60, 80, 100, 120,
and 140 past samples as a historical window and 20 samples as a prediction horizon.

All three data sets were normalized to the range of [0,1].

4.2 | Experimental setup

The data was split into training set (the 2015 data) and test set (the 2016 data). The training set was further split into 70% for training and 30%
for validation. The training data was used for model training, the validation set was used for parameter tuning, and the test set was used to
evaluate the accuracy.

Two performance measures were used to evaluate the accuracy: the mean absolute error (MAE) and the root mean squared error (RMSE).
MAE and RMSE are the most commonly used measures for assessing the quality of solar power forecasts (Kostylev & Pavlovski, 2011) and are
defined below:

1 n
MAE = =3'|p; - a; 6
nI_:1Ip, ajl, (6)

N I R
RMSE = ngm. a)2. (7)

TABLE1 Weather data

ID Abbreviation Description

1 DMIN Daily minimum temperature
2 DMAX Daily maximum temperature
3 DRAIN Daily rainfall

4 DSUN Daily sun hours

5 DMAXWIND Daily maximum wind speed

6 TEMP9 Temperature at 9:00 a.m.

7 HUM9 Relative humidity at 9:00 a.m.
8 CLOUD9 Cloud cover at 9:00 a.m.

9 WIND9 Wind speed at 9:00 a.m.

10 TEMP3 Temperature at 3:00 p.m.

11 HUM3 Relative humidity at 3:00 p.m.
12 CLOUD3 Cloud cover at 3:00 p.m.

13 WIND3 Wind speed at 3:00 p.m.

14 DSOLARIRR Daily solar irradiance

TABLE2 Weather forecast data

ID Abbreviation Description

1 DMIN_F Forecasted daily minimum temperature
2 DMAX_F Forecasted daily maximum temperature
3 DRAIN_F Forecasted daily rainfall

4 DSOLARIRR_F Forecasted daily solar irradiance

60f14 | TORRES ET AL

WILEY B B

All experiments were run on an Intel Core i7-5820K 3.3 GHz machine with 15 MB of cache, six cores with 12 threads, and 16 GB of RAM
memory, working under Ubuntu 16.04 operating system.

5 | RESULTS

This section summarizes the results obtained after applying the proposed deep learning method from Section 3 for forecasting PV solar time
series data.

The proposed DL method has been evaluated using a total of seven data sets: (a) PV data alone, (b-d) PV data together with WF data, with
three levels of noise in WF, (e-g) PV data together with W and WF data, with three levels of noise in WF. The results are compared with the
NN and PSF results from Wang et al. (2017). Section 5.1 presents the optimal parameters obtained by the grid search for each sub-problem. We
firstly compare the accuracy and scalability of DL with NN and PSF using only PV data (Section 5.2 and 5.3). Then, we investigate which is the
best input data source for DL out of seven data sets, answering four research questions (Q1, Q2, Q3, and Q4) in Section 5.4. We also compare
DL with NN and PSF when using W and WF in addition to PV data (Q5) in Section 5.4. Finally, in Section 5.5 we analyse how the size of the
historical data window affects the accuracy of the DL method.

5.1 | Parameter selection

As stated before, we applied the grid search strategy available in H20 to find optimal parameters for each sub-problem. Many of the grid
search parameters can be customized and are very useful for adapting the network behaviour and improving the training. The following list of

parameters were used:

e We varied the number of hidden layers from 1 to 5 and the number of neurons in each layer from 10 to 40.
e The initial weight distribution was set to uniform distribution.

e As an activation function, we chose the hyperbolic tangent function (tanh).

e The distribution function was set to Gaussian distribution.

For each sub-problem of the prediction horizon, an exhaustive search is performed to determine the optimal parameters for the model, using
the validation set. When the grid search is completed, the best model for each sub-problem is chosen and used to perform the rest of the
experimentation.

Table 3 shows the parameters of the best model obtained for each sub-problem (number of hidden layers and neurons per layer), and also the
accuracy (MAE and RMSE) on the training and validation sets. We can see that the best network configuration varied and most often (for 40% of

TABLE3 Best DL models for each sub-problem

Hidden Neurons MAE RMSE MAE RMSE
Sub-problem layers per layer training training validation validation
1 5 39 40.94 58.01 109.13 128.31
2 1 13 62.32 86.83 120.24 145.66
3 3 27 69.57 90.96 132.08 158.33
4 1 37 90.32 120.60 140.98 174.85
5 2 30 98.39 12822 147.77 184.39
6 2 11 116.47 146.58 162.55 189.90
7 4 14 128.87 161.54 179.44 208.80
8 3 23 13446 167.14 170.35 212.02
9 2 39 13511 168.24 177.33 217.07
10 3 32 13043 161.17 180.26 219.82
11 2 31 13474 16659 181.73 218.45
12 5 32 131.25 158.69 174.76 211.29
13 4 37 138.96 165.03 168.33 202.01
14 3 17 138.59 165.03 184.85 21321
15 5 14 127.95 155.30 167.23 196.42
16 1 39 107.20 132.54 155.12 184.21
17 5 38 92.98 117.94 130.06 152.45
18 4 34 65.72 86.55 100.04 122.07
19 4 40 53.33 74.16 79.49 96.01
20 3 28 48.37 63.70 45.80 57.09

TORRES ETAL WILE Y- 2GRS EliS

the sub-problems) included three hidden layers, with number of neurons in these layers between 17 and 32. We can also see that the training
and validation errors followed the same pattern—they increased until step 13-14 from the prediction horizon (sub-problems 13-14), and then
decreased. As expected, the error on the validation set was higher than the error on the training set.

5.2 | Accuracy

Once the optimal configuration of DL for each sub-problem is selected, a new run was launched to predict the test set using this configuration.
The results are shown in Tables 4 and 5, and Figure 3.

Table 4 shows a comparison of DL with the PSF and NN results from (Wang et al., 2017) where the same data and data split were used. PSF
(Martinez-Alvarez et al., 2011) combines clustering with sequence matching. It firstly clusters all days from the training data based on their PV
vectors and labels them with the cluster tag. To make a prediction for a new day d+1, it extracts a sequence of consecutive days with length w,
starting from the previous day d and going backwards, and matches the cluster labels of this sequence against the previous days to find a set

TABLE4 Accuracy of the NN, PSF, and DL
algorithms

NN PSF DL

MAE 116.64 119.17 114.76
RMSE 154.16 149.52 148.98

TABLE5 Best and worst day for NN, PSF,
and DL

Best day Worst day
MAE RMSE MAE RMSE

NN 5887 106.88 191.52 221.58
PSF 3172 3615 25277 279.12
DL 31.66 4191 206.33 233.00

800 800 4

--- Actualdata ~— Predicted data --- Actualdata — Predicted data
600 600 -
Iy o
T T
T 400 D 400 1
> >
o a
200 200 -
0 T T T T 1 0- T
0 5 10 15 20 0
Time (30 min) Time (30 min)
(a) Best day for NN. (b) Worst day for NN.
800 --- Actualdata —— Predicted data 800 1 --- Actualdata — Predicted data
600 R 600 -
] g A =
T T
S 400 S 400 -
> >
o o
200 200 1
0 Iy T T T 1 0- Iy
0 5 10 15 20 0
Time (30 min) Time (30 min)
(c) Best day for PSF. (d) Worst day for PSF.
800 --- Actualdata ~—— Predicted data 8001 --- Actualdata —— Predicted data
600 600 1
£)
T e}
T 400 D 400
> >
o o
200 200
0 T T T T 1 0- I
0 5 10 15 20 0
Time (30 min) Time (30 min)
(e) Best day for DL. (f) Worst day for DL.

FIGURE3 Best and worst day for NN, PSF, and DL algorithms

8of14 | TORRES ET AL

e LAALESE Expert Systems afigsl.;

of equal sequences ESg. It then follows a nearest neighbour approach—finds the post-sequence day for each sequence in ES4 and averages the
PV vectors for these days, to produce the prediction for day d+1. The NN model is a multi-layer neural network with one hidden layer (shallow
neural network), trained with the Levenberg-Marquardt version of the backpropagation algorithm.

Table 4 shows that DL is the best performing method in terms of both MAE and RMSE. NN is the second best in terms of MAE, and PSF is
the second best in terms of RMSE. MAE and RMSE are related measures but RMSE emphasizes less the big differences between the actual and
forecasted values.

To study these errors in more detail, we examine the performance of the three methods for the best and worst predicted days. The worst
predicted day was the same for all methods (19 June 2016). A further examination revealed that it was indeed an unusual day—there was a heavy
rain in central and southern Queensland, causing flash flooding in the roads in Brisbane and more than 9,000 blackouts in the region. This also
explains the fact that the average solar power on 19 June 2016 was significantly lower than the one on the same day in other years. On the other
hand, the best predicted day was different for the three methods: 7 April 2016 for NN, 3 April 2016 for PSF, and 11 September 2016 for DL.
The difference is due to the different nature of the three models.

Figure 3 presents the daily evolution of the actual and forecasted values for the best and worst days, and Table 5 summarizes the daily
MAE and RMSE. For the worst day (19 June 2016, the same for the three methods), NN performed best; for the best day (different for every
method), DL and PSF were the best performing methods. These results also show that different methods may be more suitable for different days,

motivating methods for dynamic selection of the best prediction model for the new day.

5.3 | Scalability

A comparison between the three methods in terms of runtime was also conducted. It includes an evaluation for the original time series, and also
for time series 2, 4, 8, 16, 32, and 64 times longer. These longer time series were created from the original by multiplying its length with 2, 4, 8,
16, 32, and 64. The experiments were performed with the optimal DL configurations from Table 3 again.

The results of the scalability analysis are shown in Table 6. As it can be seen, for short time series, the NN and PSF algorithm are faster than DL.
However, as the size of the data set increases with a factor of 32 or bigger, the DL method is much faster than the other algorithms. This is because
the H20 framework supports distributed and parallel computing, whereas the Matlab implementations of NN and PSF were single-thread.

Figure 4 graphically summarizes the results from Table 6. We can see that the proposed DL model is scalable as its training time increases in a
linear way while the training time of the other two methods increases exponentially. This means that the proposed DL approach is highly scalable
and is hence suitable for analysing large time series.

5.4 | Use of weather and weather forecast data

The generated PV power depends on the solar irradiance and other meteorological factors. In this section, we investigate if the addition of
weather data for the current day (W) and weather forecast data for the next day (WF) can improve the PV power prediction.

The weather and weather forecast data we used have been described in Section 4.1. Recall also that we consider three different versions of
the weather forecast data—with 10%, 20%, and 30% noise.

TABLE6 Computing times (in seconds) for different time series lengths
x1 X2 x4 x8 x16 %32 x64
NN 0.8020 1.8885 5.4975 24.7970 114.1169 378.0876 2098.0432

PSF 24858 14.6286 9.6493 28.9169 101.3701 365.4012 1345.8199
DL 23.0470 23.0480 23.0540 23.0400 22.9600 43.1210 63.2050

800 --- Actual data — Predicted data

600 -
©
©
S 400+
>
o

200 -

0 - T T T 1
0 5 10 15 20
Time (30 min)

FIGURE4 Scalability of NN, PSF, and DL algorithms

06891 TELET L9TLT L6'6ET ¥SEIT 8YEET 66'G9T 88VET 66891 €89ET 9T€9T 0LCET LOL9T SCT9ET LEO9T 990€T
LL€LT 8O0CTYPT GL'G9T 8L'SET 88991 009€T /LS'/9T 869€T 1TSV9T VLEET LTC9T <COCET [8€E€9T TEEET LLTI9T ¢<COTET
SE0LT SS'6ET TOHTLT €6'6ET €9CLT L9TVT TL/LST LO6ZT CTVEIT VY9CET 86CIT <CEEET V9651 €00ET TLO9T VL OET
EV'C9T CBTET LT'G9T T9€ET LSPIT VEEET GSC9T O00CET €6'09T TSOET 66/9T 989€T 08091 G6TET ST'LST LL/[TT
8y V9T GEEET GL991T €69€T TV09T <CE€6CT €8/LST 6¥'8CT €685T 99'8CT 8C'09T V6'6CT LEEIT 69€EET LEIST €0'9¢CT
8091 L1'SET TTT9T ¥CTET 0L8ST <CO6CT PETST PIE€CT LS98ST 8T6CT €C9ST LO/ZT v¥O9T [LT6CT T9¥ST ST9CT
€8'6¥1 SvcZl 9LTPT CESTT CZCOovl IVETT CE€9€T ¢9'60T LT'GET [LZOTT P9'SET 90011 O00vST T0O9CT 99821 9L V1T

s N M T N 0N

ISY IVIN ISNY IVIN ISY IVIN IS IVIN IS IVIN IS IVIN ISWY IVIN ISWY JvN sheq
(%0€) AM+M+Ad (%02) AM+M+Ad (%0T) AM+M+Ad (%0€) AM+Ad (%02) AM+Ad (%0T) AM+Ad M+Ad Nd
(sAep £ 01 T WOJ}) SIZIS MOPUIM [EDLIO]SIY JUSISHIP 104 T Y3 JO AdeInddy £ I1avL

TORRES ET AL.

100f14 | TORRES ET AL

WILEY- B R e R

We investigated the following research questions:

o Q1. Does the addition of the weather data for the current day improve the results?

e Q2. Does the addition of the weather forecast data for the next day improve the results?

e Q3. How does the noise level in the weather forecast data affect the results?

o Q4. Which is the best data source for DL?

e Q5. How does the performance of DL compare with NN and PSF when using weather and weather forecast data, in addition to PV data?

All results are presented in Table 7. Below, we elaborate more on each question and present the relevant results from Table 7 as graphs for
visual comparison.

Q1. Using W in addition to PV. We investigate if the addition of the weather data for the current day (W) will improve the prediction. Figure 5
compares the DL's results using the PV data only (PV) and using both the PV and weather data (PV + W). As we can see, the addition of the
weather data does not improve the results. A possible explanation for this result is that the weather data is already factored in the PV data as the
PV data is highly frequent (every half-hour), and hence, its addition does not contribute any important information for the prediction.

Q2. Using WF in addition to PV. We investigate if the addition of weather forecast data for the next day will improve the performance.
Figure 6 shows DL's performance for three different inputs: PV (PV for the current day), PV + WF (PV and weather data for the current day), and
PV + W + WF (PV and weather data for the current day, and weather forecast for the next day). In addition, there are three different levels of
noise in WF: 10%, 20%, and 30%. Because the noise is only in WF, the results for PV are not affected and are the same for all three noise levels,
whereas the results for PV + WF and PV + W + WF change.

We first examine the MAE results. By comparing PV and PV + WF, we can see that DL's performance improves when the weather forecast
for the next day is used in addition to the PV data for the current day, and this holds for all three noise levels in WF. By comparing PV + WF
and PV + W + WF, we can see that the further addition of the weather data for the current day does not improve the results for all noise levels.
Now turning to the RMSE, we observe that RMSE results are consistent with the MAE results, except that the addition of WF does not improve
RMSE. This discrepancy between MAE and RMSE shows that we have days with big differences between the actual and predicted values, as

RMSE emphasizes such large differences due to the squared term.

DL DL
150 4 150 4 // ////
N

- / /// ;

) .

100 — 100 —

MAE [KW]
RMSE [KW]

) //:///

|

/

\

—

-

/

——

//% 50 — /%

7 /
PV+W PV PV+W
data data
FIGURE5 Accuracy of DL using PV and PV + W data
DL
150 =l PV+WF @ PV+W+WF 150 — W PV+W+WF
100 = 100
g H
im w
< 2}
= H
50 50
0 - 0 -
10% 20% 20% 30%
Noise in WF Noise in WF

FIGURE6 Accuracy of DL using PV, PV + WF, and PV + W + WF for three different noise levels in WF

| 110f14

TORRES ET AL. | L o
WAIBAE Expert Systems =8gzl tbm

Hence, revisiting Q2 we conclude that the addition of the weather forecast for the next day helps to improve MAE but not RMSE, and that
the further addition of the weather data for the current day does not improve the accuracy.

Q8. Effect of the noise level in WF. We investigate the effect of increasing the noise in the weather forecast from 10% to 30% on the
predictive accuracy. We first study this effect on the PV + WF data source. Figure 6 shows that the MAE and RMSE results are stable and not
affected by the noise level. We now compare the changes in PV + W + WF; we can see that as the noise level increases from 10% to 20%, MAE
and RMSE are stable but they increase as the noise increases to 30%. Thus, we conclude that higher level of noise decreases the accuracy of the
PV + W + WF data source, whereas the accuracy of PV + WF is not affected.

Q4. Best data source. From Table 7, we can see that DL achieves its best MAE (109.52 kW) when using PV + WF and best RMSE (128.66 kW)
when using PV only.

Q5. Comparison of DL with NN and PSF when using W and WF data. We already saw that DL is more accurate than NN and PSF when using
the PV data as an input (see Table 4). Here, we assess DL's competitiveness against NN and PFS when using the PV + WF and PV + W + WF
data. The NN and PSF methods are implemented as in Wang et al. (2017). Note that the traditional PSF algorithm is univariate and operates
on the PV data in our case; to accomodate multivariate data (PV + WF and PV + W + WF), we used the extensions PSF1 and PSF2 (Wang et al.,
2017).

Figure 7 presents the results. We can see that for PV + WF, DL is more accurate than NN and PSF, and the advantage increases as the noise
level increases. For PV + W + WF, NN is the most accurate method, followed by DL and PSF, and the differences are bigger for MAE than RMSE.
We note, however, that DL achieves its best performance while using PV + WF and not PV + W + WF.

Hence, we conclude that DL shows competitive results compared with NN and PSF—it outperforms them on the PV and PV + WF data, and is
the second best method on the PV + W + WF data after NN.

5.5 | Historical window size

We investigate how the size of the historical data window w affects the accuracy of DL. Table 7 presents the results for w varying from 1 to 7
previous days, for all data sources (PV, PV + W, PV + WF, and PV + W + WF) and all three levels of noise in WF. It can be seen that in all cases,
the best accuracy is achieved by using only the previous day (day 1 in the table). This is an important observation as it shows that only the data
from the previous day is sufficient to make PV power predictions for the next day and that there is no benefit in using more previous days as part

of the historical window.

PV+WF data PV+WF data
200 200
B8 DL NN @ PSF B8 DL NN @ PSF
150 —
g :
u<J 100 — w
s =
(3
50 +
0 -
10% 20% 30% 20%
Noise in WF Noise in WF
PV+W+WF data PV+W+WF data
200 200
5 DL NN @ PSF B DL NN @ PSF
150 150
J J
E 100 % 100
= =
©
50 o 50 o
0 - 0 -
Noise in WF Noise in WF

FIGURE7 Comparison of DL, NN, and PSF using different data sources and noise levels

120f14 | TORRES ET AL

WILEY B i i

6 | CONCLUSIONS

In this paper, we introduced DL, a deep neural network approach for predicting the electricity power generated by solar PV systems for the
next day.

Our approach has been specifically developed to handle big data time series and has been implemented using the H20 package in conjunction
with the Apache Spark cluster-computing framework. It uses a multi-step methodology which decomposes the forecasting problem into several
sub-problems, allowing arbitrary prediction horizons. DL was evaluated on Australian data for 2 years and compared with two well-established
methods, NN and PSF, demonstrating competitive accuracy results. The scalability analysis demonstrated that DL is suitable for big solar data
due to its linear increase in training time, compared with the exponential of NN and PSF. We investigated the use of multiple data sources (PV,
weather, and weather forecast) and different levels of noise in the weather forecast. We showed that the addition of the weather forecast for the
next day to the PV data for the current day can improve the accuracy, whereas the addition of weather data for the current day is not beneficial.
We also studied the effect of the historical window size and showed that there is no benefit in using more than one previous day. In summary,
our results show that DL is a promising method for big data solar power forecasting—it scales well and produces competitive accuracy results.

In future work, we plan to develop prediction models for big data based on other types of deep neural networks, for example, LSTM and CNN,
and compare them with DL for time series of different nature and length. We will also investigate the application of metaheuristics for more
efficient optimization of the hyperparameters of our deep learning network. Other avenues for future work include dynamic selection of the best
prediction model for the next day or studying seasonal differences (Koprinska, Rana, & Agelidis, 2011) and building prediction models that are

better tuned to the seasonal variations. We also plan to develop dynamic ensembles for big data, motivated by Cerqueira et al. (2017).

ACKNOWLEDGEMENT

The authors would like to thank the Spanish Ministry of Economy and Competitiveness and Junta de Andalucia for the support under projects
TIN2017-8888209C2-1-R, TIN2014-55894-C2-R, and P12-TIC-1728, respectively.

ORCID

Alicia Troncoso https://orcid.org/0000-0002-9801-7999

REFERENCES

Abdel-Nasser, M., & Mahmoud, K. (2017). Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Computing and Applications, 1-14.

Alzahrani, A., Shamsi, P., Dagli, C., & Ferdowsi, M. (2017). Solar irradiance forecasting using deep neural networks. Procedia Computer Science, 114, 304-313.

Barbieri, F., Rajakaruna, S., & Ghosh, A. (2017). Very short-term photovoltaic power forecasting with cloud modeling: A review. Renewable and Sustainable
Energy Reviews, 75, 242-263.

Binkowski, M., Marti, G., & Donnat, P. (2017). Autoregressive convolutional neural networks for asynchronous time series. In Time Series Workshop at
International Conference on Machine Learning (ICML), Stockholm, Sweden.

Brecl, K., & Topic, M. (2018). Photovoltaics (PV) system energy forecast on the basis of the local weather forecast: Problems, uncertainties and solutions.
Energies, 11(5), 1143.

Cerqueira, V., Torgo, L., Pinto, F., & Soares, C. (2017). Arbitrated ensemble for time series forecasting. In Proceedings of the European Conference on Machine
Learning and Principles of Knowledge Discovery in Databases, Cham, pp. 478-494.

Chuy, Y., Urquhart, B., Gohari, S. M. I., Pedro, H. T. C., Kleissl, J., & Coimbra, C. F. M. (2015). Short-term reforecasting of power output from a 48 mwe solar
pv plant. Solar Energy, 112, 68-77.

Coelho, I. M., Coelho, V. N., da Luz, E. J. S., Ochi, L. S., Guimaraes, F. G., & Rios, E. (2017). A GPU deep learning metaheuristic based model for time series
forecasting. Applied Energy, 201, 412-418.

Dong, Z., Yang, D., Reindl, T., & Walsh, W. M. (2015). A novel hybrid approach based on self-organizing maps, support vector regression and particle swarm
optimization to forecast solar irradiance. Energy, 82, 570-577.

Ervural, B. C., & Ervural, B. (2018). Improvement of grey prediction models and their usage for energy demand forecasting. Journal of Intelligent & Fuzzy
Systems, 24, 2679-2688.

Flannery, T. F., & Sahajwalla, V. (2013). The critical decade: Australia's future: Solar energy: Climate Commission Secretariat, Department of Industry,
Innovation, Climate Change, Science, Research and Tertiary Education. http://apo.org.au/sites/default/files/docs/ClimateCommission_Australias-
Future-Solar-Energy_2013.pdf

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., ... Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82-97.

Kamilaris, A., & Prenafeta-Boldd, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70-90.

Koprinska, I., Rana, M., & Agelidis, V. G. (2011). Yearly and seasonal models for electricity load forecasting. In International Joint Conference on Neural
Networks (IJCNN), San Jose, CA, USA, pp. 1474-1481.

Koprinska, ., Rana, M., Troncoso, A., & Martinez-Alvarez, F. (2013). Combining pattern sequence similarity with neural networks for forecasting electricity
demand time series. In Proceedings of the International Joint Conference on Neural Networks, Dallas, TX, USA, pp. 1-8.

Koprinska, I., Wu, D., & Wang, Z. (2018). Convolutional neural networks for energy time series forecasting. In International Joint Conference on Neural
Networks (IJCNN), Rio de Janeiro, Brazil, pp. 1-8.

TORRES ETAL. WIB A Expert Systems ol i .;.‘ | 130f14

Kostylev, V., & Pavlovski, A. (2011). Solar power forecasting performance—Towards industry standards. In First International Workshop on Integration of
Solar Power Into Power Systems, Aarhus, Denmark, pp. 1-11.

Krizhevsky, A., Sutskever, I, & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in Neural Information
Processing Systems, Lake Tahoe, Nevada, pp. 1097-1105.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539

Lee, J., Lee, ., & Kim, S. (2017). Multi-site photovoltaic power generation forecasts based on deep-learning algorithm. In 2017 International Conference on
Information and Communication Technology Convergence (ICTC), Jeju, South Korea, pp. 1118-1120.

Livingstone, D. J., Manallack, D. T., & Tetko, I. V. (1997). Data modelling with neural networks: Advantages and limitations. Journal of Computer-Aided
Molecular Design, 11, 135-142.

Martinez-Alvarez, F., Troncoso, A., Asencio-Cortés, G., & Riquelme, J. C. (2015). A survey on data mining techniques applied to energy time series
forecasting. Energies, 8, 1-32.

Martinez-Alvarez, F., Troncoso, A., Riquelme, J. C., & Aguilar, J. S. (2011). Energy time series forecasting based on pattern sequence similarity. IEEE
Transactions on Knowledge and Data Engineering, 23, 1230-1243.

Mohammadi, M., Al-Fugaha, A., Sorour, S., & Guizani, M. (2018). Deep learning for loT big data and streaming analytics: A survey. |IEEE Communications
Surveys Tutorials, 20(4), 2923-2960.

Neo, Y. Q, Teo, T. T., Woo, W. L., Logenthiran, T., & Sharma, A. (2017). Forecasting of photovoltaic power using deep belief network. In Tencon 2017 -
2017 IEEE Region 10 Conference, Penang, Malaysia, pp. 1189-1194.

Oliveira, M., & Torgo, L. (2015). Ensembles for time series forecasting. In Proceedings of the Sixth Asian Conference on Machine Learning, Nha Trang City,
Vietnam, pp. 360-370.

Pedro, H. T. C., & Coimbra, C. F. M. (2012). Assessment of forecasting techniques for solar power production with no exogenous inputs. Solar Energy, 86,
2017-2028.

Pouyanfar, S., Sadig, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P, ... lyengar, S. S. (2018). A survey on deep learning: Algorithms, techniques, and applications.
ACM Computing Surveys, 51(5), 92:1-92:36. https://doi.org/10.1145/3234150

Qiu, M., Zhao, P., Zhang, K., Huang, J., Shi, X., Wang, X., & Chu, W. (2017). A short-term rainfall prediction model using multi-task convolutional neural
networks. In 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, pp. 395-404.

Rana, M., Koprinska, ., & Agelidis, V. G. (2015). 2d-interval forecasts for solar power production. Solar Energy, 122, 191-203.
Reikard, G. (2009). Predicting solar radiation at high resolutions: A comparison of time series forecasts. Solar Energy, 83, 342-349.
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117.

SolarPowerEurope (2016). Global market outlook for solar power / 2016 - 2020.

Thorey, J., Chaussin, C., & Mallet, V. (2018). Ensemble forecast of photovoltaic power with online crps learning. International Journal of Forecasting, 34(4),
762-773.

Torres, J. F., Fernandez, A. M., Troncoso, A., & Martinez-Alvarez, F. (2017). Deep learning-based approach for time series forecasting with application to
electricity load. In Biomedical Applications Based on Natural and Artificial Computing, Cham, pp. 203-212.

Wan, C., Zhao, J., Song, Y., Xu, Z., Lin, J., & Hu, Z. (2015). Photovoltaic and solar power forecasting for smart grid energy management. CSEE Journal of
Power and Energy Systems, 1(1), 38-46.

Wang, Z., & Koprinska, I. (2017). Solar power prediction with data source weighted nearest neighbors. In Proceedings of the International Joint Conference
on Neural Networks, Anchorage, AK, USA, pp. 1411-1418.

Wang, Z., Koprinska, I., & Rana, M. (2017). Solar power forecasting using pattern sequences. In Artificial Neural Networks and Machine Learning (ICANN),
Cham, pp. 486-494.

Wang, Z., Koprinska, I., & Rana, M. (2017). Solar power prediction using weather type pair patterns. In Proceedings of the International Joint Conference on
Neural Networks, Anchorage, AK, USA, pp. 4259-4266.

Wang, H., Yi, H., Peng, J., Wang, G,, Liu, Y., Jiang, H., & Liu, W. (2017). Deterministic and probabilistic forecasting of photovoltaic power based on deep
convolutional neural network. Energy Conversion and Management, 153, 409-422.

Xu, C., Chen, H., Wang, J., Guo, Y., & Yuan, Y. (2019). Improving prediction performance for indoor temperature in public buildings based on a novel deep
learning method. Building and Environment, 148, 128-135.

Yuchi, S., Gergely, S., & Brandt, B. A. R. (2018). Solar pv output prediction from video streams using convolutional neural networks. Energy and Environmental
Science, 11,1811-1818.

Zhang, X., Li, Y., Lu, S., Hamann, H., Hodge, B. S., & Lehman, B. (2018). A solar time-based analog ensemble method for regional solar power forecasting.
IEEE Transactions on Sustainable Energy, 10, 268-279.

Zhovu, Y., Chang, F., Chang, L., Kao, I., & Wang, Y. (2019). Explore a deep learning multi-output neural network for regional multi-step ahead air quality
forecasts. Journal of Cleaner Production, 209, 134-145.

AUTHOR BIOGRAPHIES

José F. Torres. received the degree in Computer Science from the Pablo de Olavide University, Seville, Spain. He is currently a PhD
student in Computer Science at Pablo de Olavide University. His primary areas of interest are big data, data science, deep learning and
neural networks, internet of things, time series analysis, and forecasting.

Alicia Troncoso. received the PhD degree in Computer Science from the University of Seville, Spain, in 2005. She was an assistant
professor in the Department of Computer Science at the University of Seville from 2002 to 2005. She has been with the Department of

140f14 | TORRES ET AL

WILEY B i i

Computer Science at the Pablo de Olavide University since 2005, where she is currently a full professor. Her primary areas of interest are
time series forecasting, machine learning and big data.

Irena Koprinska. is an associate professor at the School of Computer Science, University of Sydney, Australia. She holds a PhD in Computer
Science and MEd in Higher Education. Her research interests are in neural networks, machine learning, and data mining, both applications
and novel algorithms. She also teaches courses in these areas and serves on the programme committee of leading conferences.

Zheng Wang. received a BE degree in Software Engineering with First class Honours from the University of Sydney, Australia, in 2011.
He is currently pursuing a PhD degree in the School of Computer Science, University of Sydney. His research interests include neural

networks, time series prediction, and feature selection.

Francisco Martinez-Alvarez. received the MSc degree in Telecommunications Engineering from the University of Seville, and the PhD
degree in Computer Engineering from the Pablo de Olavide University. He has been with the Department of Computer Science at the
Pablo de Olavide University since 2007, where he is currently an associate professor. His primary areas of interest are time series analysis,
data mining, and big data analytics.

How to cite this article: Torres JF, Troncoso A, Koprinska I, Wang Z, Martinez-Alvarez F. Big data solar power forecasting based on
deep learning and multiple data sources. Expert Systems. 2019;e12394. https://doi.org/10.1111/exsy.12394

86 Informe sobre las publicaciones

4.1.4. Hybridizing Deep Learning and Neuroevolution: Ap-
plication to the Spanish Short-Term Electric Energy

Consumption Forecasting

Tabla 4.4 Datos del articulo: Hybridizing Deep Learning and Neuroevolution:
Application to the Spanish Short-Term Electric Energy Consumption Fore-
casting

Autores Divina, F., Torres, J. F., Garcia-Torres, M., MartinezAlvarez,
F., and Troncoso, A.
Revista Applied Sciences
Ano 2020
Paginas 5487
Volumen 10, issue 16
DOI 10.3390/app10165487
IF 2.697
Cuartil Q2
Citas 4 (Google Scholar)

iriricd applied -
= sciences m'\"\"y
Article

Hybridizing Deep Learning and Neuroevolution:
Application to the Spanish Short-Term Electric Energy

Consumption Forecasting

1,2,%,1 Lt 1,2

, José E. Torres , Miguel Garcia-Torres ,
Francisco Martinez-Alvarez 1@ and Alicia Troncoso !

Federico Divina

1" Data Science and Big Data Lab, Pablo de Olavide University, ES-41013 Seville, Spain; jftormal@upo.es (J.ET.);
mgarciat@upo.es (M.G.-T.); fmaralv@upo.es (EM.-A)); atrolor@upo.es (A.T.)

Computer Engineer Department, Universidad Americana de Paraguay, Asuncion 1029, Paraguay

* Correspondence: fdivina@upo.es

1t These authors contributed equally to this work.

check for
Received: 1 July 2020; Accepted: 5 August 2020; Published: 7 August 2020 updates

Abstract: The electric energy production would be much more efficient if accurate estimations of
the future demand were available, since these would allow allocating only the resources needed for
the production of the right amount of energy required. With this motivation in mind, we propose a
strategy, based on neuroevolution, that can be used to this aim. Our proposal uses a genetic algorithm
in order to find a sub-optimal set of hyper-parameters for configuring a deep neural network, which
can then be used for obtaining the forecasting. Such a strategy is justified by the observation that the
performances achieved by deep neural networks are strongly dependent on the right setting of the
hyper-parameters, and genetic algorithms have shown excellent search capabilities in huge search
spaces. Moreover, we base our proposal on a distributed computing platform, which allows its use
on a large time-series. In order to assess the performances of our approach, we have applied it to
a large dataset, related to the electric energy consumption registered in Spain over almost 10 years.
Experimental results confirm the validity of our proposal since it outperforms all other forecasting
techniques to which it has been compared.

Keywords: time-series forecasting; deep learning; evolutionary computation; neuroevolution

1. Introduction

The electric energy needs are constantly growing. It is estimated that such demand will increment
from 549 quadrillion British thermal unit (Btu), registered in 2012, to 629 quadrillion Btu in 2020.
A further increment of 48% is estimated by 2040 [1].

The accurate estimation of the short-term electric energy demand provides several benefits.
The economic benefits are evident because this would allow us to allocate only the right amount of
resources that are needed in order to produce the amount of energy actually needed to face the actual
demand [2,3]. There are also environmental aspects to consider, since, by producing only the right
amount of energy required, the emission of CO; would be reduced as well. In fact, energy efficiency
is another relevant goal pursued with these kinds of approaches since the accurate forecasting of
electricity demand in public buildings or in industrial plants usually leads to energy savings [4-6].

Such observations highlight the importance of being able to count on efficient electric energy
management systems and prediction strategies and, consequently, different organizations around
the world are taking actions in order to increase energy efficiency. Hence, the European Union (EU),
under the current energy plan [7], established that EU countries will have to embrace various energy

Appl. Sci. 2020, 10, 5487; doi:10.3390/app10165487 www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 5487 20f 14

efficiency requirements with the objective of improving at least a 20% the energy efficiency. In addition
to this, countries belonging to the EU closed an agreement to obtain an additional 27% increment of
the efficiency by 2020, with the possibility of increasing the target to 30% by the year 2030.

Forecasting algorithms could contribute to reaching such objectives [2,3]. In this context, energy
demand forecasting can be described as the problem of predicting the energy demand within a
specified prediction horizon, using past data, or, in other words, a historical window.

Depending on the time scale of the predictions, we can generally distinguish three classes of
forecasting, i.e., short, medium and long-term forecasting. In short-term forecasting, the objective is to
predict the energy demand using horizons going from one hour up to a week. If the prediction horizon
is set between one week and one month, we talk about medium-term forecasting, while long-term
forecasting involves longer horizons [8].

In this paper, we focus on the problem of short-term forecasting. This is an important problem,
since with accurate predictions of short-term load it would be possible to make precisely plan the
resources that need to be allocated in order to face the actual demand, which, as already stated, would
have benefits from both the economical and environmental points of view.

To this aim, we propose an extension of the work proposed in [9], where a deep feed-forward
neural network was used to tackle the short-term load forecasting problem. In the original work,
the tools provided by the H20 big data analysis framework were used along with the Apache Spark
platform for distributed computing.

Differently from [9], where a grid search strategy was used for setting the values of the deep
neural network parameters, in this work, we propose to use a genetic algorithm (GA) in order to
determine a sub-optimal set of hyper-parameters for building the deep neural network that will then be
used for obtaining the predictions. Due to the large search space composed of all hyper-parameters of a
deep learning network, and considering that the method should be scalable for big data environments,
it has been decided to reduce the search range of the GA. For this reason, our proposal will not
always be able to find the optimal set of hyper-parameters for the network, but ensures a competitive
sub-optimal configuration.

Our main motivation lies in the observation that the success of deep learning depends on
finding an architecture to fit the task. As deep learning has scaled up to more challenging problems,
the architectures have become difficult to design by hand [10]. To this aim, evolutionary algorithms
(EAs) can be used in order to find good configurations of the deep neural networks. Individuals can
be set of parameter values, and their fitnesses are determined based on how well they can be trained
to perform in the task.

This field is known as neuroevolution, which, in a nutshell, can be defined as a strategy for
evolving neural networks with the use of EAs [11]. Usually, deep artificial neural networks (DNNs)
are trained via gradient-based learning algorithms, namely backpropagation, see for example [12].
EAs can be used in order to seek the optimal values of hyper parameters, for the example the learning
rates, or the number of layers and the amount of neurons per layer, among others.

It has been proven that EAs can be combined with backpropagation-based techniques, such as
Q-learning and policy gradients, on difficult problems, see, e.g., [13]. In fact, the problem of setting
parameters for such methods is not trivial, and, if the parameters are not correctly set, the forecasting
can be poor.

The above observations motivate us to use a neuroevoltution approach in order to tackle the
short-term energy load forecasting problem. In order to validate our proposal, we applied it to a
dataset regarding the electric energy consumption registered over almost 10 years in Spain. We have
also compared our proposal with other standard and machine learning (ML) strategies, and results
obtained confirm that our proposal achieves the best predictions.

Appl. Sci. 2020, 10, 5487 3of 14

In the following, we summarise the main contributions of this paper:

1. We propose a new general-purpose approach based on deep learning for big data time-series
forecasting. Due to the high computational cost of the deep learning, we adopted a distributed
computing solution in order to be able to process large time series.

2. The hyper-parameter tuning and optimization of the deep neural networks is a key factor for
obtaining competitive results. Usually, the hyper-parameters of a deep neural network are
pre-fixed previously or computed by a grid search, which performs an exhaustive search through
the whole set of established hyper-parameters. However, the grid search presents an important
limitation: it works with discrete values, which greatly limits the fine-tuning of the vast majority
of hyper-parameters. Thus, an evolutionary search is proposed to find the hyper-parameters.

3. We conduct a wide experimentation using Spanish electricity consumption registered over
10 years, with measurements recorded every 10 min. Results show a mean relative error of
1.44%, demonstrating the high potential of the proposed approach, also compared to other
forecasting strategies.

4. We evaluate our proposal predictive accuracy and compare it with a strategy based on deep
learning using a grid search for setting the hyper parameters. The evolutionary search showed to

be effective in order to achieve higher accuracy.

5. In addition, we compare the approach with seven state-of-the-art forecasting algorithms such
as ARIMA, decision tree, an algorithm based on gradient boosting, random forest, evolutionary
decision trees, a standard neural network and an ensemble proposed in [14], outperforming all
of them.

6. We analyze how the size of the historical window affects the accuracy of the model. We found
that when using the past 168 values as input features to predict the next 24 values the best results
were obtained.

The rest of the paper is organized as follows. In Section 2 we provide a brief overview of the
state of the art of electric energy time-series forecasting. The dataset used in this work is described
and analyzed in Section 3.1, while the methodology used is discussed in Section 3.2. In Section 4 we
describe the results obtained by our approach and compare them to those achieved by other strategies.
Finally, we draw the main conclusions and identify futures works in Section 5.

2. Related Works

As previously mentioned, a lot of attention has been paid to short-term electricity consumption
forecasting during the last decades. This section provides a brief overview of up-to-date related works.

We can distinguish two main strategies to predict energy consumption. A first strategy is based
on conventional methods, e.g., [15,16], whilst an alternative, and more recent strategy, is based on ML
techniques.

Conventional methods include, among others, statistical analysis, smoothing techniques such as
the autoregressive integrated moving average (ARIMA), exponential smoothing and regression-based
approaches. Such techniques can obtain satisfactory results when applied to linear problems.

In contrast, ML strategies are also suitable for non-linear cases. We refer the reader to [17] for
an expanded survey on data mining techniques applied to electricity-related time-series forecasting.
In this work, several markets and prediction horizons are considered and discussed.

Popular ML techniques successfully applied to the forecasting of power consumption data include
Artificial Neural Networks (ANN) [18-20] or Support Vector Machines (SVM), see, for instance, [21,22].

Other strategies are based on pattern similarity [23,24]. Since 2011, when the Pattern Sequence
based Forecasting (PSF) algorithm was published [24], a number of variants has been proposed for
forecasting this kind of time-series [25-28], including an R package [29] and a big data version [30]. Grey
forecast models have also been used for predicting time-series. In particular such an approach has been
applied to forecast the demand of natural gas in China. For instance, in [31] a self-adapting intelligent
grey prediction model was proposed, where a linear function was used in order to automatically

Appl. Sci. 2020, 10, 5487 40f 14

optimize the parameters used by the proposed grey model. This strategy was substituted with a
genetic algorithm in [32], which resolved various limitations of the previous mechanism. A novel
time-delayed polynomial grey model was introduced in [33], while in [34] authors proposed a least
squares support vector machine model based on grey analysis.

Recently, Deep Learning (DL) has also been applied to this problem, see, e.g., [9,35]. However,
to the best of our knowledge, a part from the early version [36] and few other works, such as [37],
in which Brazilian data were analyzed, or [38] for Irish data, or [39] for Chinese data, no other works
based on DL can be found in the literature.

Although ML techniques provide effective solutions for time-series forecasting, these methods
tend to get stuck in a local optimum. For instance, ANN and SVM may get trapped in a local optimum
if their configuration parameters are not properly set.

Recently, methods developed for big data environments have also been applied to electricity
consumption forecasting. In [40] an approach based on the k-weighted nearest neighbours algorithm
was introduced and implemented using the Apache Spark framework. The performances of
the resulting algorithm were tested using a Spanish energy consumption Big Data time-series.
As mentioned above, in 2018, Torres et al. [9] proposed a DL model to deal with big data time-series
forecasting. In particular, the H20 Big Data analysis framework was used. Results from a real-world
dataset composed of electricity consumption in Spain, with a ten-minute frequency sampling rate,
from 2007 to 2016 were reported.

As can be seen, although much attention has been paid to the electricity consumption forecasting
problem, few works based on DL have been proposed. Moreover, such existing works did not applied
any metaheuristic strategy to set the parameters. These facts highlight the existing gap in the literature
and justify, from the authors’ point of view, the development of this work.

As previously stated, in this paper we aim at using DL, in order to perform time-series forecasting.
In DL, many parameters have to be set. The setting of such parameters have a great influence
on the final results obtained by such a strategy. An alternative way to set the DL parameters is
to use an Evolutionary Algorithm (EA) in order to find a sub-optimal set of parameters. This
field, known as neuroevolution [11,41], has received much attention lately in the ML community.
Neuroevolution enables important capabilities such as learning neural network building blocks,
e.g., the activation function, hyperparameters, architectures and even the algorithms for learning
themselves. Neuroevolution also differs from DL (and deep reinforcement learning) since in
neuroevolution a population of solutions is maintained during the search. This provides extreme
exploration capabilities and the possibility of massive parallelization. There also exist alternative
strategies in order to find an optimal set of parameter, going from grid search to more complex
approaches, such as methods based on Bayesian optimization, see, for instance [42,43]. Neuroevolution
has been successfully applied to different fields, especially in image classification, where Convolutional
Neural Networks (CNN) are evolved, see, for instance [44-47]. To be best of our knowledge,
Neuroevolution has not been applied to time-series forecasting.

3. Data and Methodology

3.1. Data

In order to assess the quality of our proposal, we used a dataset containing information regarding
the global electricity consumption registered in Spain (in MW), available at [48].

In particular, the data were recorder over a period going from 1 January 2007 at midnight until
21 June 2016 at 11:40 pm, which amounts to nine years and six months. Specifically, the data is relative
to the consumption measured at 10 minutes intervals, meaning that the dataset consists of a total
of 497,832 measurements. No missing values or outliers were found, since data are provided by
the Spanish Nominated Electricity Market Operator (NEMO) and all data are already preprocessed
and cleaned.

Appl. Sci. 2020, 10, 5487 50f 14

Time-series regarding the electric energy demand are typically non-stationary. This fact renders
the problem of forecasting the electric energy demand challenging, since such time-series present
statistical properties, such as the mean, variance and autocorrelation, that are not all constant over
time. It follows that they can present changes in variance, trends or seasonal effects. For this reason,
we performed a preliminary study of the dataset in order to assess whether or not the time-series
used in this paper is stationary. To this aim, we analyzed the AutoCorrelation Function (ACF) and the
Partial AutoCorrelation Function (PACF) of the time-series, which are reported in Figure 1.

§
3 |
L T
] ‘ ‘ |
. HHHHHHHHHH
10 20 30 40 50

Lag Lag

(a) (b)

Figure 1. Correlation plots for the original time-series. (a) AutoCorrelation Function (ACF); (b) Partial
AutoCorrelation Function (PACF).

Partial ACF

From Figure 1a, we can notice that the time-series has a high correlation with a number significant
of lags, while from Figure 1b we can see that there are four spikes in the first lags, from which we can
determine the order of autoregression of the time-series. From these observations, we can conclude
that the time-series is not stationary, and that the order of autoregression to be used should be 4.

A preprocessing of the dataset had to be applied before it could be used. In particular, we used the
preprocessing strategy proposed in [36], which is graphically depicted in Figure 2. In a first step, we
extract the attribute corresponding to the energy consumption, obtaining in this way a consumption
vector V.

Historical data Prediction horizon
Original dataset 1
consumption s matrix X4 Xw Xw+1 o Xwah
extraction 'g- transformation Xish o Xw+h Xwi(1+h) - Xws2h
> | 5 > Xisoh - Xws2h Xws(1+2h) - Xw+3h
(7]
5 X1s38h - Xw+3h Xw+(148h) -+ Xw+ah

Figure 2. Dataset pre-processing. w determines the amount of historical data used, while / represents
the prediction horizon.

From V. matrix M, is built. The size of M. depends on the values of the historical window (w) and
of the prediction horizon (&) used. Notice that w determines the number of previous entries that will
be used in order to induce a forecasting model that will be used to estimate the subsequent & values.

In this work, as in [36], i was set to 4 hours, which corresponds to a value of 24 reads. Various
values of w were tested.

In particular, w was set to values 24, 48, 72, 96, 120, 144 and 168. Such values correspond to 4, 8,
12,16, 20, 24 and 28 hours, respectively.

One the matrix M, has been obtained, we divided the resulting dataset into a 70% used as a
training set, while the remaining 30% was used as a testing set. This means that the prediction model
was obtained using only the training set. The forecasting performances of the so induced model are

Appl. Sci. 2020, 10, 5487 6 0f 14

assessed on the test set, which basically represents unseen data. Within the training set, a 30% is used
as a validation set for determining the deep learning hyperparameters.

These preprocessing steps yield the generation of seven different matrices, whose information
is reported in Table 1. Note that for all the obtained datasets, the last 24 columns represent the
prediction horizon.

Table 1. Dataset information depending on the value of w.

w #Rows #Columns File Size (In MB)

24 20,742 48 6

48 20,741 72 9

72 20,740 96 11.9
96 20,739 120 14.9
120 20,738 144 17.9
144 20,737 168 20.9
168 20,736 192 23.9

3.2. Methodology

This section describes the proposed methodology for forecasting time-series using a deep learning
approach. There are various deep learning architectures which can be used for time-series forecast, such
as convolutional neural nets (CNN), recurrent neural nets (RNN) or feed-forward neural nets (FFNN).

In this paper, a deep feed-forward network has been used, implemented by R package H20 [49].
H20 is an open-source framework that implements various machine learning techniques in a parallel
and distributed way using a single machine or a cluster of machines, being scalable for big data projects.

Among the algorithms included in H20, we can find a feed-forward neural network, that is the
most common network architectures. The main characteristic of this net is that each neuron is a basic
element of processing and their information is propagated through adjacent neurons.

In addition, in order to select the configuration of the network hyperparameters, we used a GA,
which was implemented by using the GA R package [50].

3.2.1. Parameters of the Neural Network

The network architecture implemented in the H20 package needs to be configured by setting
different parameters, that will affect the behavior of the neural network and influence the final results.
The most important parameters are: number of layers, neurons per hidden layer, L1 (1), p, €, activation
and distribution functions and end metric. These are the parameters that the GA will optimize.

The parameter A controls the regularization of the model by inserting penalties in the model
creation process in order to adjust the predictions as much as possible with actual values and the
penalization is defined by the following equation:

i=0

In Equation (1), n is the number of weights received by the neurons and w; represents the weight
for the neuron i.

The parameter p allows us to manage the update of different weights of synapses and is used to
maintain some consistency between the different updates of previous weights.

The parameter € prevents the deep learning algorithm from being stuck in local optimums or to
skip a global optimum, and can assume values between 0 and 1.

The activation function can assume three values: tanh (hyperbolic tangent), ramp function, maxout.

Seven different possibilities are considered for the distribution function: Gaussian, Poisson,
Laplace, Tweedie, Huber, Gamma and Quantile.

Appl. Sci. 2020, 10, 5487 7 of 14

The end metric defines the specific measure that is used to stop early the training phase of the
deep learning algorithm. There are seven different possibilities: mean squared error (MSE), Deviance
(the difference between an expected value and an observed value), root mean squared error (RMSE),
mean absolute error (MAE), root mean squared log error (RMSLE), the mean per class error and lift
top group. The last metric is a measure of the relative performance.

The possible values for each parameter are shown in Table 2.

Table 2. Search space of the neural network parameters.

Parameter Values

Layers From 2 to 100
Neurons From 10 to 1000
Lambda (A) From0to1 x 10~10
Rho (p) From 0.99 to 1
Epsilon (¢) From0to1 x 10712
Activation function From 0 to 3
Distribution function From 0to7

End metric From 0 to 7

As we described before, the activation function, distribution function and end metric are
categorical parameters, so each value corresponds to a specific category of the parameter.

3.2.2. Genetic Algorithm Parameters

As previously stated, in order to find a sub-optimal set of hyper-parameters, described in the
previous section, for the deep learning algorithm, we use a GA. In particular we use the implementation
provided by the GA R package [50]. So our proposal lies within the field of neuroevolution.

The GA package contains a collection of general-purpose functions for optimization using genetic
algorithms. The package includes a flexible set of tools for implementing genetic algorithms in both
the continuous and discrete case, whether constrained or not. However the package does not allow to
simultaneously optimize continuous and discrete parameters, so we had to treat all the parameters as
continuous, which caused the dimension of the search space to increase drastically.

The package allows us to define objective functions to be optimized, which, in our case, is the
forecasting results obtained by a deep neural network built with a specific set of parameters. In fact,
each individual of the population encodes the values of the eight parameters shown in Table 2.

Each parameter setting yields a specific deep neural network, which is then applied to the data
and the forecasting result represent the fitness of the individual.

In particular, the fitness of an individual is equal to the MRE obtained by the deep neural network
on the validation set, being the MRE defined as:

1 &Y — Y
MRE ==Y “_—4 2
nhT

where Y; is the predicted value, Y; the real value and Y; is the mean of the observed data, and 7 is the
number of data.

Several genetic operators are available and can be combined to explore the best settings for the
current task. After having performed a set of preliminary experiments aimed at setting the GA’s
parameters, we used, in our implementation, a tournament selection mechanism (with tournament
size of 3), the BLX-a crossover (with a = 0.5), which combines two parents to generate offspring by
sampling a new value in a defined range with the maximum and the minimum of the parents [51].
We used the random mutation around the solution, which allows us to change one value of an element
by another value.

Appl. Sci. 2020, 10, 5487 8 0of 14

The setting of the parameters used in the GA are reported in Table 3. The value shown are
those that obtained the best performances in the preliminary runs, but the population size. In fact,
better results were achieved with higher population size. However, the computational cost increases
dramatically the higher the population size is. In fact, the deep learning algorithm takes around 89.42 s
for a number of layers between 2 and 100 and for a number of neurons between 10 and 1000.

The execution of the GA with the deep learning algorithm as a fitness function and with the
parameters defined in Table 3 takes around five days. If the population size is doubled, the execution
can take more than one week. It is necessary to enhance one of the parameters (population size or
number of generations) but not both. Moreover, if the fitness of the best individual does not improve
after 50 generations, the GA is stopped.

At the end of the execution, the best individual is returned and used in order to build a deep
learning network.

Table 3. Genetic algorithm (GA) parameter setting.

Operator Value
Population size 50
Generations 100
Limit of generations 50

Crossover probability 0.8
Mutation probability 0.1
Elitisms probability 0.05

3.2.3. Description of the Methodology

The main objective of this work is to predict the next i future values, called the prediction horizon,
of a time-series [x1, X2, ..., X¢].

The predictions are based on w previous values, or, in other words, on a historical data window.
This process is called multi-step forecasting, as various consecutive values have to be predicted.
The aim of multi-step forecasting is to induce a prediction model f, and in our case f is obtained by
using a deep learning strategy, following the equation:

(X1, X2, Xen] = F(0 X1 X (o)) ®3)

Unfortunately, frameworks that provide deep learning networks model, such as H20, does not
support this multi-step formulation.

In order to solve this issue, a different methodology has been proposed [9]. The basic idea is to
divide the main problem into & prediction sub-problems. Then a forecasting model will be induced for
each of the sub-problems, as shown in Equation (4).

Xty1 = fl(xl’/xt71/~-'/xt—(w—l)) (4)
Xty2 = fz(xt,xt,],...,X[,(w,l))

Y-ty = o (xe X1, X (1))
Xeew = fu(Xe X1, X (w-1))

Notice that in this way, we lose the time relationship between consecutive records of the
time-series. For instance, instants t + 1, f 2, t + 3 or t + 4 will not be considered when forecasting
t+5.

On the other hand, considering such values for the predictions could increment the forecasting
error. This is because values for t +1, f + 2, t + 3 or t + 4 are based on predictions, and they would
have a negative effect on the forecasts if the values were not precisely estimated.

Appl. Sci. 2020, 10, 5487 90f 14

It follows that a search for optimal parameters should be carried out for each sub-problem,
where the evaluation of each individual corresponds to the error made by the neural network in the
training phase. This means that the computational time needed to train the complete model is high.
However, the capability of H20 to perform distributed computation decreases the total computational
time required.

4. Experimental Results

In this section, we present the forecast results obtained on the dataset described in Section 3.1 by
the strategy we propose. We also present a comparison with different methods, both standard and
ML based.

In order to assess the predictions produced by our proposal, we used the MRE measure, as defined
in Equation (2). MRE represents the ratio of the forecasting absolute error to the observed value.

Before presenting the comparison with other methods, we inspect the results obtained by the
proposed strategy for each historical window value used (w) and each subproblem (h). Figure 3 shows
a graphical representation of the results obtained, showing the associated MRE for different values of
w, when varying the length of i. We can see that the best results were achieved when the forecasting is
based on more historical data, i.e., for higher values of w. In fact, the best results were obtained for
w = 168. Analogously, the MRE increases as / becomes longer. The proposed strategy obtains similar
results for w = {168,144,120} on all the considered values of the prediction horizon .

4.5

4

3.5

3

2.5

MRE

2

15

1

05 1 1 1 1

h

Figure 3. Results obtained for each value of & and w.

It can be noticed that there is a significant increment in the error when the historical window size
is lower. In particular, when w is set to 24 or 48, the predictions degenerates evidently. We can also
notice that performances of the proposed strategy deteriorates, i.e., the achieved MRE is higher, as the
values of /1 increase. This means that it is more difficult to predict further in the future.

Table 4 shows the parameters selected by the GA for each & when a historical window of 168 was
used. We can notice that the number of layers range between 27 and 98, and the number of neurons
per layer between 478 and 942. It does not seem that this parameter is connected with the value of .

Parameters A, p and € assume almost the same values on all the cases, while the Maxout is the
activation function mostly chosen. The GA selected two possibilities as distribution functions, namely
the Gaussian and the Huber function. The end metric selected, on the other hand, presents more
variations. This could suggest that we could perhaps fix some of the parameters, e.g., €, in order to
reduce the search space.

Appl. Sci. 2020, 10, 5487 10 of 14

Table 4. Parameters found by the GA for w = 168.

h Layers Neurons A P € Activation Distribution End Metric
1 52 942 409% 1071 100 643 x 10712 Tanh Gaussian Deviance
2 68 921 0 1.00 0 Maxout Huber MSE

3 75 880 0 1.00 0 Maxout Huber Deviance
4 68 921 0 1.00 0 Maxout Huber MSE

5 88 504 0 1.00 0 Maxout Huber Deviance
6 80 789 0 1.00 0 Maxout Huber MSE

7 74 892 0 1.00 0 Maxout Huber RMSLE
8 46 300 0 1.00 0 Maxout Huber MAE

9 75 889 557 x 10710 099 6.74 x 1071° Tanh Gaussian Mean per class error
10 25 852 0 1.00 0 Maxout Huber RMSLE
1 58 843 369 x 10710 100 245x 1071 Tanh Gaussian RMSE

12 41 491 0 1.00 0 Maxout Huber RMSLE
13 17 552 0 0.99 0 Maxout Huber MSE

14 26 661 0 0.99 0 Maxout Huber MAE

15 89 811 561 x 10710 099 423 x 107 Tanh Gaussian RMSE
16 98 697 0 1.00 0 Maxout Huber MAE

17 74 478 146 x 10710 1,00 358 x 107 Tanh Gaussian Deviance
18 62 705 274 %1071 099 6.64 x 1071 Tanh Gaussian MAE

19 65 879 0 0.99 0 Maxout Huber MAE

20 81 780 762x 10710 099 521x 107 Tanh Gaussian MSE

21 27 931 0 1.00 0 Maxout Huber MAE

22 9 745 0 1.00 0 Maxout Huber Deviance
23 41 923 0 1.00 0 Maxout Huber MSE

24 80 754 0 1.00 0 Maxout Huber MAE

As previously stated, in order to globally assess the performance of our proposal, we compared the
results achieved by our methodology (NDL) with the results obtained by other strategies commonly
used for time-series forecast. In particular, we considered Random Forest (RF), Artificial Neural
Networks (NN), Evolutionary Decision Trees (EV), the Auto-Regressive Integrated Moving Average
(ARIMA), an algorithm based on Gradient Boosting (GBM), three Deep Learning models (FFNN,
Feed-Forward Neural Network; CNN, Convolutional Neural Network; LSTM, Long Short-Term
Memory), decision tree algorithm (DT) and an ensemble strategy that was proposed in [14], which
combined regression trees-based, artificial neural networks and random forests (ENSEMBLE).

For ARIMA, we used the tool in Ref. [52] for determining the order of auto-regressive (AR) terms
(p), the degree of differencing (d) and the order of moving-average (MA) terms (g). The values obtained
are p = 4,d = 1 and q = 3. The value for the auto-regressive parameter and the degree of differencing
confirm that the time-series is not stationary, as indicated in Section 3.1.

The deep learning models were designed using H20 framework of R [49]. The difference between
NDL and DL, is that in the latter case, the network is trained with stochastic gradient descend using
back-propagation algorithm. In order to set the parameters for DL, we used a grid search approach.
As a consequence, we used a hyperbolic tangent function as activation function, the number of hidden
layer was set to 3 and the number of neurons to 30. The distribution function was set to Poisson and in
order to avoid overfitting, the regularization parameter (Lambda) has been set to 0.001. The other two
parameters (p and €) were set as default as in [36].

The DT algorithm is based on a greedy algorithm [53] that performs a recursive binary partitioning
of the feature space in order to build a decision tree. This algorithm uses the information gain in order
to build the decision trees, and we used the default parameter as in the package rpart of R [54].

For the GBM, we used the GBM package of R [55] with Gaussian distribution, 3000 gradient
boosting interactions, learning rate of 0.9 and 40 as maximum depth of variable interactions.

For RF, we used the implementation from provided by the randomForest package of R [56], using
100 as the number of trees to be built by algorithm and 100 as the maximum number of terminal nodes
trees in the forest can have.

For ANN we used the nnet package of R [57], with maximum 10 number of hidden units, 10,000
maximum number of weights allowed and 1000 maximum number of iterations.

EV is an evolutionary algorithm for producing regression trees, and we used the R evtree package
(from now on EVTree) [58], with parameters as in [14].

Appl. Sci. 2020, 10, 5487 11 of 14

The ensemble method [14] uses a two layer strategy, where in the first layer random forests, neural
networks and an evolutionary algorithm are used. The results produced by these three algorithms are
then used by an algorithm based on Gradient Boosting in order to produce the final prediction.

All the parameters of the ML based techniques were established after several preliminary runs.

Table 5 shows the results obtained by the various methods for each value of w. We can notice
that all the methods obtained better results with a historical window of 168 reads. NDL obtained the
lowest MRE in all the cases, while the ensemble strategy obtains the second best results. Moreover,
we can see that NDL outperforms all other methods even when only a historical window of 96 is used,
confirming the extremely good performances of such strategy.

Table 5. Average results obtained by different methods for different historical window values. Standard
deviation between brackets.

ENSEMBLE 3.58 (1.65

w
24 48 72 96 120 144 168

NDL 301(090) 238(0.69) 208(057) 1.85(0.55) 1.60(0.46) 151 (0.46) 1.4 (0.42)
CNN 408(0.04) 3.16(0.03) 269(0.02) 251(0.02) 230(0.02) 1.71(0.02) 1.79 (0.02)
LSTM 243(0.03) 2.05(0.02) 1.82(0.02) 2.08(0.02) 1.74(0.02) 1.78(0.02) 1.97(0.02)
FFNN 451(052) 3.46(033) 339(0.30) 3.12(042) 298(028) 232(0.29) 2.46(0.29)
ARIMA 8.82(5.31) 826(473) 11.37(1043) 14.03(13.00) 679 (253) 7.63 (254) 6.92(2.97)
DT 952(1.55) 9.45(148) 9.33(1.39) 9.40(145) 9.08(1.12) 8.86(1.01) 8.79 (0.96)
GBM 8.07(3.82) 659(271) 573(223) 533(2.08) 5.02(1.81) 449 (1.54) 4.45 (1.56)
RF 439(213) 3.69(171) 293(1.16) 2.78(1.04) 245(079) 222(0.71) 2.15(0.69)
EV 449(191) 398(1.52) 3.48(1.18) 342(1.15) 3.19(0.95) 3.15(0.90) 3.09 (0.84)
NN 439(2.23) 427(216) 4.13(205) 355(1.56) 3.15(141) 2.16(0.78) 2.08 (0.74)

(1.65) (0.67)

295(1.19) 2.64(0.99) 257(097) 2.38(0.81) 1.94(0.69) 1.88(0.67

It is interesting also to notice that NDL obtains better results than DL for all the values of the
historical window used, which confirms that using an evolutionary approach for optimizing the
parameters of the deep learning network can be considered as a superior strategy with respect to
grid optimization.

5. Conclusions and Future Works

In this paper, we proposed a strategy based on neuroevolution in order to predict the short-term
electric energy demand. In particular, we used a genetic algorithm in order to obtain the architecture of
a deep feed-forward neural network provided by the H20 big data analysis framework. The resulting
networks have been applied to a dataset registering the electric energy consumption in Spain over
almost 10 years.

The results were compared with other standard and machine learning strategies for time-series
forecasting. For the experimentation performed we can conclude that the methodology we proposed
in this paper is efficient for short-term electric energy forecasting, and on the particular dataset used in
this paper the proposed strategy obtained the best performances. It is interesting to notice that our
proposal outperforms the other ten strategies in all the cases, and that even when a historical window
of 96 reads was used, our proposal achieved more precise predictions than any other methods with
any other historical window size.

As for future work, we intend to apply the framework proposed in this paper to other datasets,
and also to other kinds of time-series, in order to check the validity of our proposal also in other
fields. Moreover, we intend to overcome a present limitation of the current proposal. In fact, the R GA
package we have used does not allow to optimize parameter of different types, e.g., real and integer
parameters. In order to overcome this, in this proposal we had to treat all the parameters as real.
However, this causes the search space dimension to increase drastically. In the future we intend to
solve this problem as well, and by reducing the size of the search space, we are confident that better

Appl. Sci. 2020, 10, 5487 12 of 14

configurations of the deep learning can be found. The use of on-line learning will also be explored in
future works in order to speed up the prediction process and reduce the volume of stored data.

Author Contributions: F.D. conceived and partially wrote the paper.].ET. launched the experimentation. M.G.-T.
and EM.-A. addressed the reviewers comments. A.T. validated the experiments. All authors have read and agree
to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the Spanish Ministry of Science, Innovation and
Universities for the support under project TIN2017-88209-C2-1-R. This work has also been partially supported by
CONACYT-Paraguay through Research Grant PINV18-661.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. US. Energy Information Administration. International Energy Outlook. Available online: https://www.eia.
gov/outlooks/ieo/index.php (accessed on 05 August 2020).

2. Narayanaswamy, B.; Jayram, T.S.; Yoong, V.N. Hedging strategies for renewable resource integration and
uncertainty management in the smart grid. In Proceedings of the 3rd IEEE PES Innovative Smart Grid
Technologies Europe, ISGT, Berlin, Germany, 14-17 October 2012; pp. 1-8.

3. Haque, R; Jamal, T.; Maruf, M.N.L; Ferdous, S.; Priya, S.EH. Smart management of PHEV and renewable
energy sources for grid peak demand energy supply. In Proceedings of the 2015 International Conference on
Electrical Engineering and Information Communication Technology (ICEEICT), Dhaka, Bangladesh, 21-23
May 2015; pp. 1-6.

4. Kim, Y;; Son, H,; Kim, S. Short term electricity load forecasting for institutional buildings. Energy Rep. 2019,
5,1270-1280. [CrossRef]

5. Nazeriye, M.; Haeri, A ; Martinez-Alvarez, F. Analysis of the Impact of Residential Property and Equipment
on Building Energy Efficiency and Consumption-A Data Mining Approach. Appl. Sci. 2020, 10, 3589.
[CrossRef]

6. Zekic-Suzac, M.; Mitrovic, S.; Has, A. Machine learning based system for managing energy efficiency of
public sector as an approach towards smart cities. Int. J. Inf. Manag. 2020, 54, 102074. [CrossRef]

7. Energy 2020—A Strategy for Competitive, Sustainable and Secure Energy. Available online: http:
/ /eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52010DC0639&from=EN (accessed on
5 August 2020).

8. Raza, M.Q.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for
smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352-1372. [CrossRef]

9. Torres, J.E; de Castro, A.G.; Troncoso, A.; Martinez-Alvarez, F. A scalable approach based on deep learning
for big data time series forecasting. Integr. Comput.-Aided Eng. 2018, 25, 1-14. [CrossRef]

10. Miikkulainen, R.; Liang, J.Z.; Meyerson, E.; Rawal, A.; Fink, D.; Francon, O.; Raju, B.; Shahrzad, H.;
Navruzyan, A.; Duffy, N.; et al. Evolving Deep Neural Networks. CoRR 2017, abs/1703.00548. Available
online: https://arxiv.org/abs/1703.00548 (accessed on 5 August 2020) .

11. Stanley, K.O.; Clune, J.; Lehman, J.; Miikkulainen, R. Designing neural networks through neuroevolution.
Nat. Mach. Intell. 2019, 1, 24-35. [CrossRef]

12. LeCun, Y.; Bengio, Y,; Hinton, G.E. Deep learning. Nature 2015, 521, 436-444. [CrossRef]

13. Such, EP; Madhavan, V.; Conti, E; Lehman, J.; Stanley, K.O.; Clune, J. Deep Neuroevolution:
Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement
Learning. CoRR 2017, abs/1712.06567. Available online: https:/ /arxiv.org/abs/1712.06567 (accessed on
5 August 2020).

14. Divina, F; Gilson, A.; Goméz-Vela, F.; Torres, M.G.; Torres, J.E. Stacking Ensemble Learning for Short-Term
Electricity Consumption Forecasting. Energies 2018, 11, 949. [CrossRef]

15. Nowicka-Zagrajek, J.; Weron, R. Modeling electricity loads in California: ARMA models with hyperbolic
noise. Signal Process. 2002, 82, 1903-1915. [CrossRef]

16. Huang, S.J.; Shih, K.R. Short-term load forecasting via ARMA model identification including non-Gaussian
process considerations. IEEE Trans. Power Syst. 2003, 18, 673-679. [CrossRef]

Appl. Sci. 2020, 10, 5487 13 of 14

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Martinez-Alvarez, E.; Troncoso, A.; Asencio-Cortés, G.; Riquelme, J.C. A survey on data mining techniques
applied to energy time series forecasting. Energies 2015, 8, 1-32. [CrossRef]

Muralitharan, K.; Sakthivel, R.; Vishnuvarthan, R. Neural network based optimization approach for energy
demand prediction in smart grid. Neurocomputing 2018, 273, 199-208. [CrossRef]

Mordjaoui, M.; Haddad, S.; Medoued, A.; Laouafi, A. Electric load forecasting by using dynamic neural
network. Int.]. Hydrogen Energy 2017, 42, 17655-17663. [CrossRef]

Wei, S.; Mohan, L. Application of improved artificial neural networks in short-term power load forecasting.
J. Renew. Sustain. Energy 2015, 7,1d043106. [CrossRef]

Gajowniczek, K.; Zabkowski, T. Short Term Electricity Forecasting Using Individual Smart Meter Data.
Procedia Comput. Sci. 2014, 35, 589-597. [CrossRef]

Min, Z.; Qingle, P. Very Short-Term Load Forecasting Based on Neural Network and Rough Set.
In Proceedings of the Intelligent Computation Technology and Automation, International Conference
on(ICICTA), Changsha, China, 11-12 May 2010; Volume 3, pp. 1132-1135.

Troncoso, A.; Riquelme,].C.; Riquelme,] M.; Martinez, J.L.; G6mez, A. Electricity Market Price Forecasting
Based on Weighted Nearest Neighbours Techniques. IEEE Trans. Power Syst. 2007, 22, 1294-1301.
Martinez-Alvarez, F; Troncoso, A.; Riquelme, J.C.; Aguilar-Ruiz,].S. Energy time series forecasting based on
pattern sequence similarity. IEEE Trans. Knowl. Data Eng. 2011, 23, 1230-1243. [CrossRef]

Shen, W.; Babushkin, V.; Aung, Z.; Woon, W.L. An ensemble model for day-ahead electricity demand time
series forecasting. In Proceedings of the International Conference on Future Energy Systems, Berkeley, CA,
USA, 22-24 May 2013; pp. 51-62.

Koprinska, I.; Rana, M.; Troncoso, A.; Martinez-Alvarez, F. Combining pattern sequence similarity with
neural networks for forecasting electricity demand time series. In Proceedings of the IEEE International
Joint Conference on Neural Networks, Dallas, TX, USA, 4-9 August 2013; pp. 940-947.

Jin, C.H.; Pok, G.; Park, HW.; Ryu, K.H. Improved pattern sequence-based forecasting method for electricity
load. IEE] Trans. Electr. Electron. Eng. 2014, 9, 670-674. [CrossRef]

Wang, Z.; Koprinska, I.; Rana, M. Pattern sequence-based energy demand forecast using photovoltaic energy
records. In Proceedings of the International Conference on Artificial Neural Networks, Nagasaki, Japan,
11-14 November 2017; pp. 486-494.

Bokde, N.; Asencio-Cortés, G.; Martinez-Alvarez, F; Kulat, K. PSF: Introduction to R Package for Pattern
Sequence Based Forecasting Algorithm. R J. 2017, 1, 324-333. [CrossRef]

Pérez-Chacon, R.; Asencio-Cortés, G.; Martinez-Alvarez, E; Troncoso, A. Big data time series forecasting
based on pattern sequence similarity and its application to the electricity demand. Inf. Sci. 2020, 540, 160-174.
[CrossRef]

Zeng, B.; Li, C. Forecasting the natural gas demand in China using a self-adapting intelligent grey model.
Energy 2016, 112, 810-825. [CrossRef]

Fan, G.F; Wang, A.; Hong, W.C. Combining Grey Model and Self-Adapting Intelligent Grey Model with
Genetic Algorithm and Annual Share Changes in Natural Gas Demand Forecasting. Energies 2018, 11, 1625.
[CrossRef]

Ma, X.; Liu, Z. Application of a novel time-delayed polynomial grey model to predict the natural gas
consumption in China. J. Comput. Appl. Math. 2017, 324, 17-24. [CrossRef]

Wu, Y.H,; Shen, H. Grey-related least squares support vector machine optimization model and its application
in predicting natural gas consumption demand. J. Comput. Appl. Math. 2018, 338, 212-220. [CrossRef]
Martinez-Alvarez, F.,; Asencio-Cortés, G.; Torres, J.E; Gutiérrez-Avilés, D.; Melgar-Garcia, L.; Pérez-Chacén,
R.; Rubio-Escudero, C.; Troncoso, A.; Riquelme, J.C. Coronavirus Optimization Algorithm: A Bioinspired
Metaheuristic Based on the COVID-19 Propagation Model. Big Data 2020, 8, 232-246. [CrossRef]

Torres,].E; Fernandez, A.M.; Troncoso, A.; Martinez-Alvarez, F. Deep Learning-Based Approach for Time
Series Forecasting with Application to Electricity Load. In Biomedical Applications Based on Natural and
Artificial Computing; Springer International Publishing: Berlin, Germany, 2017; pp. 203-212.

Berriel, R.F,; Lopes, A.T.; Rodrigues, A.; Varejao, EM.; Oliveira-Santos, T. Monthly energy consumption
forecast: A deep learning approach. In Proceedings of the 2017 International Joint Conference on Neural
Networks, IJCNN 2017, Anchorage, AK, USA, 14-19 May 2017; pp. 4283—4290.

Shi, H.; Xu, M.; Li, R. Deep Learning for Household Load Forecasting: A Novel Pooling Deep RNN. IEEE
Trans. Smart Grid 2018, 9, 5271-5280. [CrossRef]

Appl. Sci. 2020, 10, 5487 14 of 14

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.
58.

Guo, Z; Zhou, K,; Zhang, X,; Yang, S. A deep learning model for short-term power load and probability
density forecasting. Energy 2018, 160, 1186-1200. [CrossRef]

Talavera-Llames, R.L.; Pérez-Chacén, R.; Lora, A.T.; Martinez-Alvarez, F. Big data time series forecasting
based on nearest neighbours distributed computing with Spark. Knowl.-Based Syst. 2018, 161, 12-25.
[CrossRef]

Floreano, D.; Diirr, P.; Mattiussi, C. Neuroevolution: From architectures to learning. Ewvol. Intell. 2008,
1, 47-62. [CrossRef]

Kandasamy, K.; Neiswanger, W.; Schneider, J.; P6czos, B.; Xing, E. Neural Architecture Search with
Bayesian Optimisation and Optimal Transport. CoRR 2018, abs/1802.07191. Available online: https:
//arxiv.org/abs/1802.07191 (accessed on 5 August 2020).

Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. In
NIPS’12, Proceedings of the 25th International Conference on Neural Information Processing Systems—Volume 2;
Curran Associates Inc.: New York, USA, 2012; pp. 2951-2959.

Assungao, F.; Lourenco, N.; Ribeiro, B.; Machado, P. Incremental Evolution and Development of Deep
Artificial Neural Networks. In Genetic Programming; Hu, T., Lourenco, N., Medvet, E., Divina, F, Eds.;
Springer International Publishing: Cham, Switzerland, 2020; pp. 35-51.

Assungdo, F; Lourenco, N.; Machado, P; Ribeiro, B. Fast DENSER: Efficient Deep NeuroEvolution. In Genetic
Programming; Sekanina, L., Hu, T., Lourengo, N., Richter, H., Garcia-Sdnchez, P, Eds.; Springer International
Publishing: Cham, Switzerland, 2019; pp. 197-212.

Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Regularized Evolution for Image Classifier Architecture Search.
CoRR 2018, abs/1802.01548. Available online: https://arxiv.org/abs/1802.01548 (accessed on 5 August 2020).
[CrossRef]

Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y.L.; Tan, J.; Le, Q.V.; Kurakin, A. Large-Scale Evolution
of Image Classifiers. In Proceedings of the 34th International Conference on Machine Learning, Sydney,
Australia, 6-11 August 2017; Precup, D., Teh, Y.W,, Eds.; PMLR: International Convention Centre: Sydney,
Australia, 2017; Volume 70, pp. 2902-2911.

Spanish Electricity Price Market Operator. Available online: http://www.omie.es/files/flash/
ResultadosMercado.html (accessed on 5 August 2020).

Team, T.H. H2O: R Interface for H20O. In R Package Version 3.1.0.99999; H20.ai, Inc.: New York, NY,
USA, 2015.

Scrucca, L. On some extensions to GA package: Hybrid optimisation, parallelisation and islands evolution.
RJ. 2017, 9, 187-206. [CrossRef]

Herrera, F; Lozano, M.; Sanchez, AM. A taxonomy for the crossover operator for real-coded genetic
algorithms: An experimental study. Int. J. Intell. Syst. 2003, 18, 309-338. [CrossRef]

Salles, R.; Assis, L.; Guedes, G.; Bezerra, E.; Porto, F.; Ogasawara, E. A Framework for Benchmarking
Machine Learning Methods Using Linear Models for Univariate Time Series Prediction. In Proceedings of
the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14-19 May 2017.
Rokach, L.; Maimon, O. Top-down Induction of Decision Trees Classifiers-a Survey. Trans. Sys. Man Cyber
Part C 2005, 35, 476-487. [CrossRef]

Therneau, T.M.; Atkinson, B.; Ripley, B. rpart: Recursive Partitioning. Available online: https://rdrr.io/
cran/rpart/ (accessed on 5 August 2020).

Ridgeway, G. Generalized Boosted Models: A Guide to the Gbm Package. Available online: https://rdrr.io/
cran/gbm/man/gbm.html (accessed on 5 August 2020).

Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18-22.

Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002.
Grubinger, T.; Zeileis, A.; Pfeiffer, K. evtree: Evolutionary Learning of Globally Optimal Classification and
Regression Trees in R. J. Stat. Softw. 2014, 61, 1-29. [CrossRef]

® © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CCBY) license (http://creativecommons.org/licenses /by /4.0/).

4.1 Articulos de revista 101

4.1.5. Coronavirus Optimization Algorithm: A bioinspired
metaheuristic based on the COVID-19 propagation
model

Tabla 4.5 Datos del articulo: Coronavirus Optimization Algorithm: A bioins-
pired metaheuristic based on the COVID-19 propagation model

Autores Martinez-Alvarez, F., Asencio-Cortés, G., Torres, J. F,
Gutiérrez-Avilés, D., Melgar-Garcia, L., Pérez-Chacén, R.,
Rubio-Escudero, C., Riquelme, J. C., and Troncoso, A.

Revista Big Data

Ano 2020
Paginas 308-322
Volumen 8, no.4
DOI 10.1089/big.2020.0051
IF 3.644 (15/108)
Cuartil QI
Citas 49 (Google Scholar)

Big Data

Volume 8, Number 4, 2020
© Mary Ann Liebert, Inc.
DOI: 10.1089/big.2020.0051

ORIGINAL ARTICLE

Coronavirus Optimization Algorithm:
A Bioinspired Metaheuristic Based on the COVID-19
Propagation Model

F. Martinez-Alvarez,'”™ G. Asencio-Cortés,' J. F. Torres,' D. Gutiérrez-Avilés,' L. Melgar-Garcia,' R. Pérez-Chacon,’
C. Rubio-Escudero,? J. C. Riquelme,2 and A. Troncoso'

Abstract

This study proposes a novel bioinspired metaheuristic simulating how the coronavirus spreads and infects
healthy people. From a primary infected individual (patient zero), the coronavirus rapidly infects new victims,
creating large populations of infected people who will either die or spread infection. Relevant terms such as re-
infection probability, super-spreading rate, social distancing measures, or traveling rate are introduced into the
model to simulate the coronavirus activity as accurately as possible. The infected population initially grows ex-
ponentially over time, but taking into consideration social isolation measures, the mortality rate, and number of
recoveries, the infected population gradually decreases. The coronavirus optimization algorithm has two major
advantages when compared with other similar strategies. First, the input parameters are already set according to
the disease statistics, preventing researchers from initializing them with arbitrary values. Second, the approach
has the ability to end after several iterations, without setting this value either. Furthermore, a parallel multivirus
version is proposed, where several coronavirus strains evolve over time and explore wider search space areas in
less iterations. Finally, the metaheuristic has been combined with deep learning models, to find optimal hyper-
parameters during the training phase. As application case, the problem of electricity load time series forecasting
has been addressed, showing quite remarkable performance.

Keywords: metaheuristics; soft computing; deep learning; big data; coronavirus

Introduction people and these people can either die, infect other peo-

Downloaded by 62.83.71.86 from www.liebertpub.com at 08/27/20. For personal use only.

The severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) is a new respiratory virus, causing
coronavirus disease 2019 (COVID-19), first discovered
in humans in December 2019, that has spread across
the globe, having reportedly infected >4 million people
so far.! Much remains unknown about the virus, in-
cluding how many people who may have very mild,
asymptomatic, or simply undocumented infections
and whether they can transmit the virus or not.
The precise dimensions of the outbreak are hard to
evaluate.”

Bioinspired models typically mimic behaviors from
the nature and are known for their successful appli-
cation in hybrid approaches to find parameters in ma-
chine learning model optimization.* Viruses can infect

"Data Science and Big Data Lab, Pablo de Olavide University, Seville, Spain.
2Department of Computer Science, University of Seville, Seville, Spain.

ple, or simply recover after the disease. Vaccines and
the immune defense system typically fight the disease
and help to mitigate their effects while an individual
is still infected. This behavior is typically modeled by
an SIR model, consisting of three types of individuals:
S for the number of susceptible, I for the number of
infectious, and R for the number of recovered.’
Metaheuristics must deal with huge search spaces,
even infinite for the continuous cases, and must find
suboptimal solutions in reasonable execution times.®
The rapid propagation of the coronavirus along with
its ability to cause infection in most of the countries
in the world impressively fast has inspired the novel
metaheuristic proposed in this study, named coronavi-
rus optimization algorithm (CVOA). A parallel version

*Address correspondence to: F. Martinez-Alvarez, Data Science and Big Data Lab, Pablo de Olavide University, Seville ES-41013, Spain, E-mail: fmaralv@upo.es

308

Downloaded by 62.83.71.86 from www.liebertpub.com at 08/27/20. For personal use only.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM

is also proposed to spread different coronavirus strains
and achieve better results in less iterations.

The main CVOA advantages regarding other similar
approaches can be summarized as follows:

(1) Coronavirus statistics are not currently known with
precision by the scientific community and some
aspects are still controversial, like the reinfection
rate.” In this sense, the infection rate, the mortality
rate, the spreading rate, or the reinfection proba-
bility cannot be accurately estimated so far, due
to several issues such as the lack of tests for asymp-
tomatic people. However, the current state of the
pandemic suggests certain values, as reported by
the World Health Organization (WHO).® There-
fore, CVOA is parametrized with the actual
reported values for rates and probabilities, pre-
venting the user from performing an additional
study on the most suitable setup configuration.

(2) CVOA can stop the solutions exploration after
several iterations, with no need to be configured.
That is, the number of infected people increases
over the first iterations; however, after a certain
number of iterations, the number of infected
people starts decreasing, until reaching a void
infected set of individuals.

(3) The coronavirus high spreading rate is useful for
exploring promising regions more thoroughly
(intensification), whereas the use of parallel
strains ensures that all regions of the search
space are evenly explored (diversification).

(4) Another relevant contribution of this study is the
proposal of a new discrete and of dynamic length
codification, specifically designed for combining
long short-term memory (LSTM) networks
with CVOA (or any other metaheuristic).

There is one limitation to the current approach.
Since there is no vaccine currently, it has not been in-
cluded in the procedure to reduce the number of can-
didates to be infected. This fact involves an exponential
increase of the infected population in the first iterations
and, therefore, an exponential increase of the execution
time for such iterations. This, however, is partially
solved with the implementation of social isolation mea-
sures to simulate individuals who cannot be infected
during a particular iteration.

A study case is included in this work that discusses the
CVOA performance. CVOA has been used to find the op-
timal values for the hyperparameters of an LSTM architec-
ture,” which is a widely used model for artificial recurrent

309

neural network (RNN), in the field of deep learning.10
Data from the Spanish electricity consumption have
been used to validate the accuracy. The results achieved
verge on 0.45%, substantially outperforming other well-
established methods such as random forest (RF), gradient-
boost trees (GBT), linear regression (LR), or deep learning
optimized with other metaheuristics. The code, developed
in Python with a discrete codification, is available in the
Supplementary Material section (along with an academic
version in Java for a binary codification).

Finally, the need to further study the performance of
well-established fitness functions'' is acknowledged.
However, given the relevance that this pandemic is
acquiring throughout the world and the remarkable re-
sults achieved when combined with deep learning, this
study is shared with the hope that it inspires future
research in this direction.

The rest of the article is organized as follows. Related
Works section discusses related and recent studies. The
methodology proposed is introduced in Methodology
section. Hybridizing Deep Learning with CVOA section
proposes a discrete codification to hybridize deep learn-
ing models with CVOA and provides some illustrative
cases. A sensitivity analysis on how populations are
created and evolved over time is discussed in CVOA
Sensitivity Analysis section. The results achieved are
reported and discussed in Results section. Finally, the
conclusions drawn and future study suggestions are
included in Conclusions and Future Works section.

Related Works

There are many bioinspired metaheuristics to solve
optimization problems. Although CVOA has been
conceived to optimize any kind of problems, this sec-
tion focuses on optimization algorithms applied to
hybridize deep learning models.

It is hard to find consensus among the researchers on
which method should be applied to which problem,
and, for this reason, many optimization methods
have been proposed during the past decade to improve
deep learning models. In general, the criterion for
selecting a method is its associated performance from
a wide variety of perspectives. Low computation cost,
accuracy, or even implementation difficulty can be
accepted as one of these criteria.

The virus optimization algorithm was proposed by
Liang and Cuevas-Judrez in 2016' and later im-
proved by Liang et al."* However, as many other meta-
heuristics, the results of its application are highly
dependent on its initial configuration. In addition, it

Downloaded by 62.83.71.86 from www.liebertpub.com at 08/27/20. For personal use only.

310

simulates generic viruses, without adding individual-
ized properties for particular viruses. The results
achieved indicate that its usefulness is beyond doubt.

One of the most extended metaheuristics used to im-
prove deep learning parameters is genetic algorithms
(GAs). Hence, an LSTM network optimized with GA
can be found in Chung and Shin."* To evaluate the pro-
posed hybrid approach, the daily Korea Stock Price Index
data were used, outperforming the benchmark model. In
2019, a network traffic prediction model based on LSTM
and GA was proposed in Chen et al.'® The results were
compared with pure LSTM and autoregressive integrated
moving average, reporting higher accuracy.

Multiagents systems have also been applied to optimize
deep learning models. The use of particle swarm optimiza-
tion (PSO) can be found in Liu et al.'® The authors pro-
posed a model based on kernel principal component
analysis and back propagation neural network with PSO
for midterm power load forecasting. The hybridization
of deep learning models with PSO was also explored in
Fernandes-Junior and Yen'” but, this time, the authors ap-
plied the methodology with image classification purposes.

Ants colony optimization (ACO) models have also
been used to hybridize deep learning. Thus, Desell
et al."® proposed an evolving deep RNNs using ACO
applied to the challenging task of predicting general
aviation flight data. The study in ElSaid et al."® intro-
duced a method based on ACO to optimize an LSTM
RNNs. Again, the field of application was flight data
records obtained from an airline containing flights
that suffered from excessive vibration.

Some articles exploring the cuckoo search (CS)
properties have been published recently as well. In
Srivastava,”® CS was used to find suitable heuristics
for adjusting the hyperparameters of another LSTM
network. The authors claimed an accuracy superior to
96% for all the data sets examined. Nawi et al.>! pro-
posed the use of CS to improve the training of RNN
to achieve fast convergence and high accuracy. Results
obtained outperformed those than other metaheuristics.

The use of the artificial bee colony (ABC) optimiza-
tion algorithm applied to LSTM can also be found in
the literature. Hence, an optimized LSTM with ABC
to forecast the bitcoin price was introduced in Yuliyono
and Girsang,”? The combination of ABC and RNN was
also proposed in Bosire** for traffic volume forecasting.
This time the results were compared with standard
backpropagation models.

From the analysis of these studies, it can be con-
cluded that there is an increasing interest in using meta-

MARTINEZ-ALVAREZ ET AL.

heuristics in LSTM models. However, not as many
studies as for artificial neural networks can be found
in the literature and, none of them, based on a virus
propagation model. These two facts, among others, jus-
tify the application of CVOA to optimize LSTM models.

Methodology

This section introduces the CVOA methodology. Thus,
Steps section describes the steps for a single strain.
Remarks for a Parallel CVOA Version section intro-
duces the modifications added to use CVOA as a
parallel version. Suggested Parameters Setup section
suggests how the input parameters must be set. Pseu-
docodes section includes the CVOA pseudocodes.

Steps

Step 1. Generation of the initial population. The ini-
tial population consists of one individual, the so-called
patient-zero (PZ). As in the coronavirus pandemic, it
identifies the first human being infected. If no previous
local minima has been found, a random initialization
for the PZ is suggested.

Step 2. Disease propagation. Depending on the indi-
vidual, several cases are evaluated:

(1) Each infected individual has a probability of
dying (P_DIE), according to the COVID-19
death rate. Such individuals cannot spread the
disease to new individuals.

(2) The individuals who do not die will cause infec-
tion to new individuals (intensification). Two
types of spreading are considered, according to
a given probability (P_.SUPERSPREADER):

(a) Ordinary spreaders. Infected individuals will
infect new individuals according to a regular
spreading rate (SPREADING_RATE).

(b) Super-spreaders. Infected individuals will
infect new individuals according to a super-
spreading rate (SUPERSPREADING_RATE).

(3) There is another consideration, since it is needed
to ensure diversification. Both ordinary and
super-spreader individuals can travel and explore
very different solutions in the search space.
Therefore, individuals have a probability of
traveling (P_TRAVEL) to propagate the disease
to solutions that may be quite different
(TRAVELER RATE). In case of not being a
traveler, new solutions will change according
to an ORDINARY RATE. Note that one indi-
vidual can be both super-spreader and traveler.

Downloaded by 62.83.71.86 from www.liebertpub.com at 08/27/20. For personal use only.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM

Step 3. Updating populations. Three populations are
maintained and updated for each generation.

(1) Deaths. If any individual dies, it is added to this
population and can never be used again.

(2) Recovered population. After each iteration,
infected individuals (after spreading the corona-
virus according to the previous step) are sent to
the recovered population. It is known that there
is a reinfection probability (P_REINFECTION).
Hence, an individual belonging to this popula-
tion could be reinfected at any iteration pro-
vided that it meets the reinfection criterion.
Another situation must be considered since
individuals might be isolated, as if they were fol-
lowing social distancing recommendations. For
the sake of simplicity, it is considered that an
isolated individual is sent to the recovered pop-
ulation when the isolation probability is met
(P_ISOLATION).

(3) New infected population. This population gath-
ers all individuals infected at each iteration,
according to the procedure described in the pre-
vious steps. It is possible that repeated new
infected individuals are created at each iteration
and, consequently, it is recommended to remove
such repeated individuals from this population
before the next iteration starts running.

Step 4. Stop criterion. One of the most interesting
features of the proposed approach lies on its ability to
end without the need of controlling any parameter.
This situation occurs because the recovered and dead
populations are constantly growing as time goes by,
and the new infected population cannot infect new
individuals. It is expected that the number of infected
individuals increases for a certain number of iterations.
However, from a particular iteration on, the size of
the new infected population will be smaller than that
of the current size because recovered and dead popula-
tions are too big, and the size of the infected population
decays over time. In addition, a preset number of iter-
ations (PANDEMIC_DURATION) can be added to
the stop criterion. The social distancing measures also
contribute to reach the stop criterion.

Remarks for a parallel CVOA version

It must be noted that it is very simple to use CVOA in
a multivirus version since it can be implemented as a
population-based algorithm, when considering the
pandemic as a set of intelligent agents each of them

311

evolving in parallel. In contrast to trajectory-based meta-
heuristics, population-based metaheuristics enhances
the diversification in the search space.

For this case, a new variable must be defined, strains,
which determines the number of strains that will be
launched in parallel. Each strain can explore different
regions and can be differently configured so that each
of them intensifies with their own rates.

Several considerations must be done for this case:

(1) Every strain is run independently, following the
steps in the previous section.

(2) A wise strategy must be followed to generate PZs
for each strain. For instance, it is suggested the
generation of PZs is evenly spaced or, at least,
with high Hamming distances. That way, the ex-
ploration of distinct regions of the search space
is facilitated (diversification).

(3) The interaction between the different strains is
done by means of dead and recovered popula-
tions, which must be shared by all the strains.
Operations over these populations must be han-
dled as concurrent updates.**

(4) New infected populations, on the contrary, are
different for each strain and no concurrent oper-
ations are required.

(5) This version may help to simulate different rates
for different strains. That way, if there is any ini-
tial information about the search space, some
strains could be more focused on diversification
and some others on intensification.

Depending on the hardware resources and how busy
they are, every strain may evolve at different speeds.
This situation should not pose any problems since it
is known that the pandemic evolves at different rates
and starts at different time stamps depending on region
of the world.

Last, another application can be found for this paral-
lel version. CVOA simulates an SIR model and conse-
quently, any other global pandemic can be modeled by
using the specific rates. Different pandemics could be
run in parallel.

Suggested parameters setup

Since CVOA simulates the COVID-19 propagation,
most of the rates (propagation, isolation, or mortality)
are already known. This fact prevents the researcher
from wasting time in selecting values for such rates
and turns the CVOA into a metaheuristic quite easy
to execute.

Downloaded by 62.83.71.86 from www.liebertpub.com at 08/27/20. For personal use only.

312

However, it must be noted that the current rates are
still changing and it is expected they will vary over
time, as the pandemic evolves. Maybe these values
will not be stable until 2021 or even 2022. The sug-
gested values have been retrieved from the World
Health Organization®® and are discussed hereunder:

(1) P_DIE. An infected individual can die with a
given probability. The case fatality ratio®® varies
by location, age of person infected, and the pres-
ence of underlying health conditions but, cur-
rently, this rate is set to ~5% by the scientific
community.27 Therefore, P_DIE=0.05.

(2) P_.SUPERSPREADER. 1t is the probability that
an individual spreads the disease to a greater
number of healthy individuals. It is believed
that this situation affects to a 10% of the infected
population,28 therefore, P_SUPERSPREADER =
0.1. After this condition is validated, two situa-
tions can be found:

(a) ORDINARY _RATE. If the infected individ-
ual is not a super-spreader, then the infec-
tion rate (also known as reproductive
number, Ry) is 2.5. It is suggested that this
rate is controlled by a random number in
the range [0, 5].

SUPERSPREADER_RATE. If the infected in-

dividual turns out to be a super-spreader, then

up to 15 healthy individuals can be infected.

It is suggested that this rate is controlled by a

random number in the range [6, 15].

(3) P_REINFECTION. This is a very controversial

issue, since the scientific community does not

agree on whether a recovered individual can
be retested positive or not. As claimed by the

WHO, no study has evaluated whether the

presence of antibodies to COVID-19 confers im-

munity to subsequent infection by this virus

in humans.*® Some tests performed in South

Korea suggest a rate of 2% according to the

Korea Centers for Disease Control and Preven-

tion.”” Therefore, P_REINFECTION =0.02, but

this value will be re-evaluated, for sure, in the
near future.

P_ISOLATION. This value is uncertain because

countries are taking different measures for social

isolation. This parameter helps to reduce the ex-
ponential growth of the infected population
after each iteration. In other words, this param-
eter helps to reduce R, and it is crucial to ensure

(b

=

(4

~

MARTINEZ-ALVAREZ ET AL.

the pandemic ends. Therefore, a high value must
be assigned to this probability. It is suggested
that P_ISOLATION > 0.7, since this value
ensures Ry < 1 (please refer to Fig. 5 to see Dis-
cussion section).

(5) P_TRAVEL. This probability simulates how an
infected individual can travel to any place in
the world and can infect healthy individuals.
It is known that almost a 10% of the popula-
tion travel during a week (simulated time for
every i'[eration),31 so P_.TRAVEL=0.1.

(6) SOCIAL_DISTANCING. It is the number of iter-
ations without social distancing measures. Since
the populations grow exponentially at the begin-
ning of the pandemic, this value must be care-
fully selected and must be set according to the
size of the problem. Empirical values that suit
for any codification vary from 7 to 12, so it is sug-
gested that 7 < SOCIAL_DISTANCING < 12.

(7) PANDEMIC_DURATION. This parameter sim-
ulates the duration of the pandemic, that is,
the number of iterations. Currently, these data
are unknown so this number can be adjusted
to the size of the problem. It is suggested that
PANDEMIC_DURATION = 30.

(8) strains. This parameter should be adjusted
according to the size of the problem and the
hardware availability, and it is difficult to suggest
a value suitable for all situations. But a tentative
initial value could be 5, in an attempt to simu-
late one different strain per continent. There-
fore, strains=5. Another important decision
that must be made is how to initialize every
PZ associated with the strains. When just one
strain is considered, PZ is suggested to be ran-
domly initialized. However, with strains > 1
the user should search for orthogonal PZs and
to uniformly distribute them in the search
space. This strategy should help to cover bigger
search spaces in less iterations and to explore
individuals with maximal distances.

Pseudocodes

This section provides the pseudocode of the most rele-
vant functions for the CVOA, along with some com-
ments to better understand them.

Function CVOA. This is the main function and its
pseudocode can be found in Algorithm 1. Four lists
must be maintained: dead, recovered, infected (the

Downloaded by 62.83.71.86 from www.liebertpub.com at 08/27/20. For personal use only.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM

current set of infected individuals), and new infected
individuals (the set of new infected individuals, gener-
ated by the spreading of the coronavirus from the
current infected individuals).

The initial population is generated by means of the
patient zero (PZ), which is a random solution.

The number of iterations is controlled by the main
loop, evaluating the duration of the pandemic (preset
value) and whether there is still any infected individ-
ual. In this loop, every individual can either die (it is
sent to the dead list) or infect, thus enlarging the size
of the new infected population. This infection mecha-
nism is coded in function infect (see Function infect
section).

Once the new population is formed, all individuals
are evaluated and whether any of them outperforms
the best current one, the latter is updated.

Algorithm 1: Function CVOA

1: define infectedPopulation, newInfectedPopulation as set of
Individual

2: define dead, recovered as list of Individual

3: define PZ, bestindividual, currentBestindividual, aux as Individual
4: define time as integer

5: define bestSolutionFitness, currentbestFitness as real

6: time < 0

7: PZ < InfectPatientZero()

8: infectedPopulation < PZ

9: bestindividual < PZ
10: while time < PANDEMIC_DURATION AND sizeof

(infectedPopulation) > 0 do

11: dead « die(infectedPopulation)

12: for all i € infectedPopulation do

13: aux « infect(i,recovered,dead)
14: if notnull(aux) then

15: newlnfectedPopulation < aux
16: end if

17: end for

18: currentBestIndividual <
selectBestIndividual(newInfectedPopulation)

19: if fitness(currentBestindividual) > bestindividual then

20: bestindividual < currentBestindividual

21: endif

22: recovered « infectedPopulation

23: clear(infectedPopulation)

24: infectedPopulation < newlInfectedPopulation

25: time « time + 1

26: end while

27: return bestindividual

Function infect. This function receives an infected in-
dividual and returns the set of new infected individuals.
Two additional lists, recovered and dead, are also re-
ceived as input parameters since they must be updated
after the evaluation of every infected individuals. The
pseudocode is shown in Algorithm 2.

Two conditions are evaluated to determine the num-
ber of new infected individuals (use of SPREADER_

313

RATE or SUPERSPREADER_RATE) or how differ-
ent the new individuals will be (ORDINARY RATE
or TRAVELER RATE). The implementation on how
these new infected individuals are encoded accord-
ing to such rates is carried out in the function
newlnfection.

Algorithm 2: Function infect

Require: infected as of Individual; recovered, dead as list of Individual

1: define R1, R2 as real

2: define newinfected as list of Individual

3:R1 < RandomNumber()

4: R2 < RandomNumber()

5:if R1 < P_TRAVEL then

6: if R2 < P_SUPERSPREADER then

7: newlnfected « newlnfection (infected, recovered, dead,
SPREADER _RATE, ORDINARY _RATE)

8 else

9: newlInfected < newlnfection (infected, recovered, dead,
SUPERSPREADER_RATE, ORDINARY _RATE)

10: end if

11: else

12: if R2 < P_SUPERSPREADER then

13: newlinfected < newlnfection (infected, recovered, dead,
SPREADER_RATE, TRAVELER _RATE)

14: else

15: newlInfected < newinfection (infected, recovered, dead,
SUPERSPREADER RATE, TRAVELER RATE)

16: end if

17: end if

18: return newlinfected

Function newinfection. Given an infected individual,
this function generates new infected individuals accord-
ing to the spreading and traveling rates. This function
also controls that the new infected individuals are not
already in the dead list (in such case, this new infection
is ignored) or in the recovered list (in such case, the
P_REINFECTION is applied to determine whether the
individual is reinfected or whether it remains in the re-
covered list). In addition, it considers that the new po-
tential infected individual might be isolated, which is
controlled by P_ISOLATION. Although the use of an
extra list could be implemented, it has been decided
to treat these individuals as recovered. Therefore, if an
isolated individual is attempted to be infected, it is
added to the recovered list.

The effective generation of the new infected individ-
uals must be carried in the function replicate, whose
pseudocode is not provided because it depends on
the codification and the nature of the problem to be op-
timized. This function must return a set of new infected
individuals, according to the aforementioned rates.
Specific information on how this codification and
replication is done for LSTM models is provided in
Hybridizing Deep Learning with CVOA section.

Downloaded by 62.83.71.86 from www.liebertpub.com at 08/27/20. For personal use only.

314

The pseudocode for the described procedure can be
found in Algorithm 3.

Algorithm 3: Function newInfection

Require: infected as Individual; recovered, dead as list of Individual
1: define R3, R4 as real
2: define newlnfected as list of Individual
3: R3 < RandomNumber()
4: R4 <~ RandomNumber()
5: aux « replicate(infected, SPREAD_RATE, TRAVELER RATE)
6: for all i € aux do
7: ifi & dead then

8: if i € recovered then

9: if R4 > P_ISOLATION then
10: newlinfected « i

1 else

12: recovered < i

13: end if

14: else if R3 < P_REINFECTION then
15: newlInfected « i

16: remove i from recovered
17: end if

18: end if

19: end for

20: return newlnfected

Function die. This function is called from the main
function. It evaluates all individuals in the infected
population and determines whether they die or not,
according to the given P_DIE. Those meeting this con-
dition are sent to the dead list. Algorithm 4 describes
this procedure.

Algorithm 4: Function die

Require: infectedPopulation as list of Individual
1: define dead as list of Individual
2: define R5 as real
3: for all i € infectedPopulation do
4: R5 < RandomNumber()
5. if R5 < P_DIE then
6: dead « i
7: endif
8: end for
9: return dead

Function selectBestindividual. This is an auxiliary
function used to find the best fitness in a list of infected
individuals. Its peudo code is given in Algorithm 5.

Hybridizing Deep Learning with CVOA

This section describes the codification proposed for an
individual, to hybridize deep learning with CVOA. The
term hybridize is used in this context as the combina-
tion of two computational techniques (deep learning
and CVOA) so that the best hyperparameter values
are discovered. This strategy is very common in ma-
chine learning for optimizing models during the train-
ing process.”*~>*

MARTINEZ-ALVAREZ ET AL.

Algorithm 5: Function selectBestIndividual

Require: infectedPopulation as list of Individual
1: define bestindividual as Individual
2: define bestFitness as real
3: bestFitness < MINVALUE
4: for all i € infectedPopulation do
5: if fitness(i) > bestFitness then
6: bestFitness « fitness(i)
7 bestindividual « i
8: end if
9: end for
10: return bestindividual

Hence, the individual codification shown in Figure 1
has been implemented to apply CVOA to optimize
deep neural network architectures.

As is shown in Figure 1, each individual is composed
of the following elements. The element LR encodes the
learning rate used in the neural network algorithm. It
can take a value from 0 to 5 and its corresponding
decoded values are 0, 0.1, 0.01, 0.001, 0.0001, and
0.00001.

The element DROP encodes the dropout rate ap-
plied to the neural network. It can take values from
0 to 8 that correspond to 0, 0.10, 0.15, 0.20, 0.25,
0.30, 0.35, 0.40, and 0.45, respectively. The dropout
rate is distributed uniformly for all the layers of the
network. That is, if the dropout is 0.4 and the network
has four layers, then the 10% (0.1) of the neurons of
each layer will be removed.

The element L of the individual stores the number of
layers of the network. It is restricted to 1 < L < 11.
The first layer is referred to the input layer of the neural
network. The rest of layers are hidden layers. The out-
put layer is excluded from the codification. Therefore,
the optimized network can contain from 1 to 10 hidden
layers.

The proposed individual codification has a variable
size. Thus, its size depends on the number of layers
indicated in the element L. Consequently, a list of
elements (LAYER 1, ..., LAYER L) are also included
in the individual, which encode the number of units
(neurons) for each network layer. Each of these ele-
ments can take values from 0 to 11, and their corre-
sponding decoded values range from 25 to 300, with
a step of 25.

PZ generation

The PZ, as it has been described previously, is the indi-
vidual of the first iteration in the CVOA algorithm.
After the hybridization proposed, a random individual
is created considering the codification already defined.

Downloaded by 62.83.71.86 from www.liebertpub.com at 08/27/20. For personal use only.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM

315

Encoded 0 1 2 3 4 5

Decoded 0| 0.1|0.01 0.001 | 0.0001 ' 0.00001

Encoded 0 1 2 3 4 5 6 7 8

Decoded 0 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

optimization algorithm.

Learning Rate Dropout
A
LR DROP L LAYER 1 R LAYER L
1<L<I11
Number of units
Encoded 0 1 2 3 4 5 6 7 8 9 10 1

Decoded 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 275 | 300

FIG. 1. Individual codification for hybridizing deep learning architectures using the proposed coronavirus

In first place, a random value for the learning rate of
the PZ is generated. Specifically, a number between 0
and 5 is generated randomly in a uniform distribution.
Such limits are indicated in Figure 1, according to the
possible encoded values of the learning rate element.
The same process is carried out to produce a random
value for the dropout element. In such case, a random
number between 0 and 8 is generated.

In second place, a random number of layers are gen-
erated for the element L of PZ. Such number of layers is
a random number between 2 and 11. Note that the first
layer is reserved for the input layer of the neural net-
work, as it has been discussed before.

In last place, for each one of the L layers, a random
number of units is generated between 0 and 11, cover-
ing the possible encoded values for the number of units
previously defined (Fig. 1).

Infection procedure

The infection procedure described here corresponds to
the functionality of replicate(), introduced in line 5
of Algorithm 3. This procedure takes an individual as
input and returns an infected individual according to
the following procedure.

The first step is to determine the element L of the
infected individual that will be mutated. The probabil-
ity of such mutation that occurs has been set to 1 so that
every element has the same probability to mutate. If the
mutation occurs, then the element L of the individual is

modified according to the process described in Single
Position Mutation section.

If the element L (the number of layers of the net-
work) changes, then the elements encoding the different
layers within the individual (LAYER 1, ..., LAYER L)
must be resized accordingly. Such resizing process is
explained in Individual Resizing Process section.

The second step is to determine how many ele-
ments of the individual will be infected. If the
TRAVELER RATE < 0, then the number of infected
elements is generated randomly from 0 to the length
of the individual (excluding the element L). Else, the
TRAVELER_RATE indicates itself the number of infec-
ted elements.

As third step, once the number of infected elements
of the individual is determined, a list of random posi-
tions is generated. For example, if three positions of
the individual must be changed, then the random
positions affected could be, for instance, referred to
the elements {DROP, LAYER 2, LAYER 4}.

Finally, the selected positions of the individual are
mutated. Such mutation is described in Single Position
Mutation section.

Individual resizing process

When an individual is infected at the position of the
element L, the list of elements that encodes the num-
ber of units per layer (LAYER 1, ..., LAYER L) must
be resized accordingly.

Downloaded by 62.83.71.86 from www.liebertpub.com at 08/27/20. For personal use only.

316

In the case that the new number of layers after the
infection is lower than its previous value, then the
last leftover elements are removed. For instance, if
the initial individual is {2, 0,4}{3, 2, 1,6} (four layers),
the element L =4 is infected and the new value is L=2,
then the resulting individual will be {2,0,2}{3,2}.

In the case that the new number of layers after the
infection is higher than its previous value, the new
random elements are added at the end of the indi-
vidual. For instance, if the initial individual is
{2,0,4}{3,2,1,6} (four layers), the element L=4 is
infected and the new value is L=6, then the resulting
individual could be {2,0,6}{3,2,1,6,0,4}.

Single position mutation
The process carried out to change the value of a specific
element of an individual is described in this section.
First, a signed amount of change C € {—2, —1,
+1, 42} is randomly determined using the following
criteria. A random real number P between 0 and 1 is
generated using a uniform distribution. If P < 0.25,
then the amount of change will be C= —2. Else if
P < 0.5, then the amount of change will be C= —1.
Else if P < 0.75, then the amount of change will be
C= + 1. Else, the amount of change will be C= +2.
Once the amount of change is determined, the
new value for the infected element is computed. If its
previous value is V, then the new value after the single
position mutation will be V=V + C. If the new value
V’ exceeds the limits defined for the individual codifi-
cation, such value is set to the maximum or minimum
allowed value accordingly.

CVOA Sensitivity Analysis

This section discusses several aspects about the sensi-
tiveness of CVOA to different configurations. Hence,
Sensitivity to the Number of Strains section evaluates
the evolution of the populations for a different number
of strains. Sensitivity to the Parameters section assesses
the performance when other well-known viruses are
modeled. Finally, Sensitivity to the Social Distancing
Measures section provides information about R, and
how it varies when social distancing measures change.

Sensitivity to the number of strains
This section provides an overview on how populations
evolve over time and how the search space is explored,
when a different number of strains are used.

A binary codification has been used, with 20 bits, to
conduct this experimentation. A simple fitness func-
tion has been evaluated, f(x)=(x — 15)%, because the

MARTINEZ-ALVAREZ ET AL.

goal of this section is to evaluate the growth of the pop-
ulations, and not to find challenging optimum values.
This function reaches the minimum value at x=15,
that is, f(15)=0.

According to Suggested Parameters Setup section,
the following configuration has been used: P_DIE=
0.05, P_ISOLATION =0.8, P_.SUPERSPREADER=0.1,
P_REINFECTION =0.02, SOCIAL_DISTANCING=3,
P_TRAVEL=0.1, and PANDEMIC_DURATION = 30.

Every experiment has been launched 50 times and,
on average, the optimum value was found during the
iteration number 13, 6, and 3, for 1, 4, and 8 strains,
respectively.

Figure 2 illustrates the evolution of the new infected
population over time, for 1, 4, and 8 strains. The number
of new infected people increases exponentially during
the first SOCIAL_DISTANCING =38 iterations because
Ry > 0 but, from iteration 9 onward, an acute decrease
is reported because Ry becomes <0. This fact is controlled
by P_ISOLATION=0.8 (a deeper study on R, and
P_ISOLATION can be found in Sensitivity to the Social
Distancing Measures section). It must be noted that iter-
ation 0 (PZ infection) counts as a regular iteration.

Figures 3 and 4 show the accumulated number of
recovered people and accumulated deaths, respectively.
Note that deaths and recovered individuals cannot
be infected again (except for the individuals in the re-
covered list that can be reinfected with a given prob-
ability, P_REINFECTION). These two curves are a
direct consequence of the number of new infected peo-
ple, so, once the number of new infections decreases or
even disappears, these values remain almost constant.
Also, it can be observed that P_ISOLATION =0.8
after SOCIAL_DISTANCING = 8 iterations help to flat-
ten the curves. A directly proportional relationship is
reported between the number of strains and the num-
ber of explored individuals at the end of the pandemic.

Four main conclusions can be drawn from the anal-
ysis of these figures:

(1) The number of new infected individuals, accu-
mulated recovered, and deaths is directly pro-
portional to the number of strains.

(2) The higher the number of strains, the lower the
number of iterations that are required to reach
the optimal value.

(3) The number of individuals evaluated increases
at each iteration on an almost linear basis, as
the number of strains increases. In case no ran-
dom numbers were generated, the relationship

Downloaded by 62.83.71.86 from www.liebertpub.com at 08/27/20. For personal use only.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM

317

120000 q

100000

80000 -

60000 -

New infected

400001

20000 -

—— 1 strain
—— 4 strains
—— 8 strains

0 5 10

FIG. 2. Number of new infected individuals for a 20-bit binary codification execution, with 1, 4, and 8 strains.

15 20 25
Iterations

J

would be directly proportional, that is, four
strains would evaluate four times the number
of individuals than one strain would do.

(4) To reach the optimum values, the search space ex-
plored is smaller as the number of strains increases.
This is due to the generation of PZ evenly spaced,
which makes easier to explore wider areas.

Sensitivity to the parameters

Several well-known viruses with deep impact in human
beings’ health are modeled in this section, to assess the
CVOA robustness to different input parameter values.

Middle East respiratory syndrome (MERS), SARS,
influenza (seasonal strains), and Ebola have been se-
lected, with the parametrization given in Table 1. It is
worth mentioning that the modeling of each virus re-
quires much research and an approximate parametri-
zation has been used, according to the references in
the rightmost column.

All experiments have been conducted with 4 strains
and 30 iterations. The viruses with vaccines have been
simulated by using P_ISOLATION =0.95 after five iter-
ations, since this feature is not implemented in CVOA.

Table 2 summarizes the percentage of search space
explored and the best fitness found, on average.

~
4500004
—— 1 strain
—— 4 strains
—— 8 strains

400000 4

350000

300000

2500001

200000 4

Recovered

150000

100000

N\

50000 J

0
0 5 10

FIG. 3. Total number of recovered people for a 20-bit binary codification execution, with 1, 4, and 8 strains.

15 20 25
Iterations

Downloaded by 62.83.71.86 from www.liebertpub.com at 08/27/20. For personal use only.

318 MARTINEZ-ALVAREZ ET AL.
'd N\
25000 1
—— 1 strain
—— 4 strains
200001 —— 8 strains
15000
%)
Ky
©
[
[
10000
5000
0 - . i ;
0 5 10 15 20 25
Iterations
FIG. 4. Total number of deaths for a 20-bit binary codification execution, with 1, 4, and 8 strains.
J

.

Codifications of 10, 20, 30, 40, and 50 bits have been
used, with associated search spaces of length 1024,
1.05E+6, 1.07E+09, 1.10E+12, and 1.13E+15, respec-
tively. Several findings are revealed:

(1) CVOA finds the optimal values even for the
longest codification (50 bits) and it is done by
exploring a similar search space size as the
other configurations do.

(2) SARS is the second best parametrization, reach-
ing remarkable fitness even for 50 bits. But it
required the evaluation of a greater number of
individuals and, therefore, the execution time
was greater as well.

(3) MERS obtained the poorest results in terms of
fitness but it explored a smaller space search.
This situation may be explained due to the low
associated reproductive number (Ry < 1).

(4) Influenza has obtained slightly worse results in
terms of fitness than CVOA but with less solu-
tions explored. This configuration may be useful
to obtain satisfactory results in a reduced execu-
tion time.

Table 1. Parametrization for other viruses

Fatality Super-
Disease Ro rate (%) Vaccine spreaders References
SARS 14-25 1 No Yes 3536
MERS 0.3-0.8 344 No Yes 283537
Influenza 0.9-2.1 0.1 Yes No 38
Ebola 15-1.9 50 Yes No 3940

MERS, Middle East respiratory syndrome; SARS, severe acute respira-
tory syndrome.

(5) The high death fatality rate of Ebola pre-
vents from exploring most of the search space.
This fact makes difficult to visit optimal val-
ues. However, results for 40 bits are satisfac-
tory in terms of fitness. For 50 bits, its use is
discouraged considering the poor fitness value
reached.

It can be concluded that variations in the input pa-
rameter values lead to results varying both in fitness
and in execution time. This feature is very useful for
the CVOA parallel version, since strains with different
rates and probabilities can be simultaneously launched.
That is, strains aiming at diversifying can be combined
with strains aiming at intensifying.

Sensitivity to the social distancing measures

In this section, an analysis on how P_ISOLATION
modifies R, is conducted. The purpose is to discover
when Ry < 1, situation in which the pandemic preva-
lence declines. A study with a 10-bit to 50-bit codifica-
tion has been done as well as using different number of
strains (1, 4, and 8).

Figure 5 illustrates how R, varies for a 40-bit codifi-
cation, with probabilities of isolation ranging from 0 to
1, and with 1, 4, and 8 strains. Quite similar behaviors
have been achieved for all codifications.

From the analysis of this figure, several conclusions
are drawn:

(1) Ry is linear and inversely proportional to
P_ISOLATION.

Downloaded by 62.83.71.86 from www.liebertpub.com at 08/27/20. For personal use only.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM

Table 2. CVOA performance with different configurations

319

10 bits 20 bits 30 bits 40 bits 50 bits
Disease Explored (%) Fitness Explored (%) Fitness Explored (%) Fitness Explored (%) Fitness Explored (%) Fitness
SARS 57.32 0 0.54 0 6E—03 1 1E—-05 4 3E-08 252
MERS 20.34 0 0.04 16 1E—02 36 1E—05 112 2E—-09 3210
Influenza 13.23 0 0.02 0 8E—04 2 1E—-06 14 1E—08 310
Ebola 62.93 0 0.44 0 7E—-02 4 2E-05 15 1E—-09 810
COVID-19 15.63 0 0.21 0 1E-03 0 1E—-05 0 2E—08 0

COVID-19, coronavirus disease 2019; CVOA, coronavirus optimization algorithm.

(2) The same negative slope is shown, with varia-
tions no higher than 10E—2 on average for all
codifications and number of strains.

(3) Ry is <1 with P_LISOLATION values close to 0.65
(and higher). This fact involves a decline of the
infectious disease.

Results

This section reports the results achieved by hybridiz-
ing a deep learning model with CVOA. Study Case:
Electricity Demand Time Series Forecasting section
describes the study case selected to prove the effective-
ness of the proposed algorithm. Data Set Description
section describes the data set used. Performance Anal-
ysis section discusses the results achieved and includes
some comparative methods.

Study case: electricity demand time

series forecasting

The forecasting of future values fascinates the human
being. To be able to understand how certain variables
evolve over time has many benefits in many fields.

Electricity demand forecasting is not an exception,
since there is a real need for planning the amount to
be generated or, in some countries, to be bought.

The use of machine learning to forecast such time se-
ries has been intensive during the past years.*' But,
with the development of deep learning models, and,
in particular of LSTM, much research is being con-
ducted in this application field.**

Data set description

The time series considered in this study is related to the
electricity consumption in Spain from January 2007 to
June 2016, the same as used in Torres et al..** It is a
time series composed of 9 years and 6 months with a
10-minute sampling frequency, resulting in 497,832
measures.

As in the original article, the prediction horizon is 24,
that is, this is a multistep strategy with h=24. The size
of samples used for the prediction of these 24 values is
168. Furthermore, the data set was split into 70% for
the training set and 30% for the test set, and in addition,

(")
3.0
—— 1 thread
—— 4 threads
25 —— 8 threads
2.0
o« 1.5
1.0
0.5
0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
P_ISOLATION
FIG. 5. Ry sensitivity to P_ISOLATION, in a 40-bit codification.
J

Downloaded by 62.83.71.86 from www.liebertpub.com at 08/27/20. For personal use only.

320

Table 3. Results in terms of MAPE for LSTM-CVOA compared
with other well-established methods

Method MAPE (%)
LR 7.34
DT 2.88
GBT 272
RF 220
DNN-GS 1.68
DNN-RS 157
DNN-RS-LP 136
DNN-CVOA 118
LSTM-GS 1.22
LSTM-RS 0.84
LSTM-RS-LP 0.82
LSTM-CVOA 0.47

Bold indicates the best results for the proposed method in the article
(LSTM-CVOA).

CVOA, coronavirus optimization algorithm; DNN, deep neural network;
DNN-CVOA, CVOA has been combined with DNN; DNN-GS, DNN opti-
mized with a grid search; DNN-RS, DNN optimized with random search;
DNN-RS-LP, DNN smoothed with a low-pass filter; DT, decision tree; GBT,
gradient-boosted trees; LR, linear regression; LSTM, long short-term
memory; LSTM-CVOA, CVOA has been combined with LSTM; LSTM-GS,
LSTM optimized with a grid search; LSTM-RS, LSTM optimized with ran-
dom search; LSTM-RS-LP, LSTM smoothed with a low-pass filter; MAPE,
mean absolute percentage error; RF, random forest.

a 30% of the training set has also been selected for the val-
idation set, to find the optimal parameters. The training
set covers the period from January 1, 2007, at 00:00 to Au-
gust 20, 2013, at 02:40. Therefore, the test set comprises
the period from August 20, 2013, at 02:50 to June 21,
2016, at 23:40.

Performance analysis

This section reports the results obtained by hybridizing
LSTM with CVOA, by means of the codification pro-
posed in Hybridizing Deep Learning with CVOA
section, to forecast the Spanish electricity data set de-
scribed in Data Set Description section.

MARTINEZ-ALVAREZ ET AL.

LR, decision tree, GBT, and RF models have been used
with parametrization setups according to those studied in
Galicia et al.***> A deep neural network optimized with
a grid search (DNN-GS) according to Torres et al.** has
also been applied. Another deep neural network, but opti-
mized with random search (DNN-RS) and smoothed with
a low-pass filter (DNN-RS-LP),* has also been applied.
Furthermore, CVOA has been combined with DNN
(DNN-CVOA), using the same codification as in LSTM.

These results along with those of LSTM, and combina-
tions with GS, RS, RS-LP, and CVOA, are summarized in
Table 3, expressed in terms of the mean absolute per-
centage error. It can be observed that LSTM-CVOA out-
performs all evaluated methods that have showed
particularly remarkable performance for this real-world
data set. In addition, DNN-CVOA outperforms all
other DNN configurations, which confirms the superior-
ity of CVOA with reference to GS, RS, and RS-LP.

Another relevant consideration that must be taken
into account is that the compared methods generated
24 independent models, each of them for every value
forming h. So, it would be expected that LSTM-
CVOA performance increases if independent models
are generated for each of the values in h.

These results have been achieved with the follow-
ing codification: {4,0,8}{9,7,2,7,2,7,10,7}. The decoded
architecture parameters are listed below:

(1) Learning rate: 10E—04.

(2) Dropout: 0.

(3) Number of layers: 8.

(4) Units per layer:

275,200]

Finally, Figure 6 depicts the first 5 predicted days

versus their actual values, expressed in watts.

[250, 200, 75, 200, 75, 200,

-

36000 1

340001

320001

onsumption
N w
o] o
o o
o o
o o

© 26000
24000,

220004

— Actual
—— Predictions

00:00

312:00 3 00:00 312:00 3
2010812013 11082033 T1 10812013 %5108/20%3 T3 10

2:00 0:00 2:00 0:00 0
812013 17210812013 O 10812013 12 1582013 O 5812013 1 gs 2

FIG. 6. Actual versus predicted values for the first 5 days in the test set (in W).

12:0! 013 00:00

Date

Downloaded by 62.83.71.86 from www.liebertpub.com at 08/27/20. For personal use only.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM

Conclusions and Future Studies

This study has introduced a novel bioinspired meta-
heuristic, based on the COVID-19 pandemic behavior.
On the one hand, CVOA has three major advantages.
First, its high relation to the coronavirus spreading
model prevents users from making any decision
about the input values. Second, it ends after a certain
number of iterations due to the exchange of individuals
between healthy and dead/recovered lists.

In addition, a novel discrete and dynamic codifica-
tion has been proposed to hybridize deep learning mod-
els. On the other hand, it exhibits some limitations.
Such is the case for the exponential growth of the
infected population as time (iterations) goes by.

Furthermore, a parallel version is proposed so that
CVOA is easily transformed into a multivirus meta-
heuristic, in which different coronavirus strains search
for the best solution in a collaborative way. This fact
allows to model every strain with different initial setups
(higher DEATH RATE, for instance), sharing recov-
ered or dead lists.

Additional experimentation must be conducted to
assess its performance on standard F functions and
find out the search space shapes in which it can be
more effective.

As for future study, some actions might be taken to
reduce the size of the infected population after several
iterations, which grows exponentially. In this sense,
a vaccine could be implemented. This case would
involve adding to the recovered list, at a given
VACCINE_RATE healthy individuals. This rate will
remain unknown until a vaccine is developed.

Another suggested research line is using dynamic
rates. For instance, the observation of the preliminary
effects of the social isolation measures in countries
such as China, Italy, or Spain suggests that the
INFECT _RATE could be simulated as a Poisson pro-
cess, but more time and country recoveries are required
to confirm this trend.

For the multistep forecasting problem analyzed, it
would be desirable to generate independent models
for each of the values that form the prediction hori-
zon h.

Finally, further research has to be conducted to as-
sess the CVOA performance when applied to other
fields and combined with other networks.

Supplementary Material
Along with this article, an academic version in Java for
a binary codification is provided, with a simple fitness

321

function in a GitHub repository (https://github.com/
DataLabUPO/CVOA_academic). The master branch
includes a simple implementation, whereas the sets
branch provides an optimized version with a command
line interface. In addition, the code in Python for the
deep learning approach is also provided, with a more
complex codification and the suggested implementa-
tion, according to the pseudocode provided (https://
github.com/DataLabUPO/CVOA_LSTM).

Author Disclosure Statement
No competing financial interests exist.

Funding Information

The authors thank the Spanish Ministry of Economy
and Competitiveness for the support under project
TIN2017-88209-C2.

References

. Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Health.
2020;25:278-280.

. Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates
the rapid dissemination of novel coronavirus (SARS-CoV-2). Nature.
2020;368:489-493.

. Giordano G, Blanchini F, Bruno R, et al. Modelling the COVID-19 epidemic
and implementation of population-wide interventions in Italy. Nat Med.
2020;26:855-860.

. Del Ser J, Osaba E, Molina D, et al. Bio-inspired computation: Where we
stand and what's next. Swarm Evol Comput. 2019;48:220-250.

. Tolic D, Kleineberg K, Antulov-Fantulin N. Simulating SIR processes on
networks using weighted shortest paths. Sci Rep. 2018;8:6562.

. Boussaid |, Lepagnot J, Siarry P. A survey on optimization metaheuristics.
Inf Sci. 2013;237:82-117.

. Tay MZ, Poh CM, Rénia L, et al. The trinity of COVID-19: immunity,
inflammation and intervention. Nat Rev Immunol. 2020;20:363-374.

8. World Health Organization. 2019. Available online at https://www.who
.int/es/emergencies/diseases/novel-coronavirus-2019 (last accessed
March 20, 2020).

9. Kelotra A, Pandey P. Stock market prediction using optimized deep-
ConvLSTM model. Big Data. 2020;8:5-24.

10. De-Cnudde S, Ramon Y, Martens D, Provost F. Deep learning on big,
sparse, behavioral data. Big Data. 2019;7:286-307.

11. Glover F, Kochenberger GA. Handbook of metaheuristics. New York:
Springer, 2003.

12. Liang YC, Cuevas-Judrez JR. A novel metaheuristic for continuous opti-
mization problems: Virus optimization algorithm. Eng Optim. 2016;48:
73-93.

13. Liang YC, Cuevas-Juarez JR. A self-adaptive virus optimization algorithm
for continuous optimization problems. Soft Comput. 2020. [Epub ahead
of print]; DOI: 10.1007/500500-020-04730-0.

14. Chung H, Shin K-S. Genetic algorithm-optimized long short-term
memory network for stock market prediction. Sustainability. 2018;
10:3765.

15. Chen J, Xing H, Yang H, Xu L. Network traffic prediction based on LSTM
networks with genetic algorithm. Lect Notes Electr Eng. 2019;550:
411-419.

16. Liu Z, Sun X, Wang S, et al. Midterm power load forecasting model
based on kernel principal component analysis and back propagation
neural network with particle swarm optimization. Big Data. 2019;7:
130-138.

17. Fernandes-Junior FE, Yen GG. Particle swarm optimization of deep neural
networks architectures for image classification. Swarm Evol Comput.
2019;49:62-74.

N

w

EN

w

o

~

Downloaded by 62.83.71.86 from www.liebertpub.com at 08/27/20. For personal use only.

322

20.

21.

22.

23.

24,

25.

26.

27.

~

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

~N

. Desell T, Clachar S, Higgins J, Wild B. Evolving deep recurrent neural

networks using ant colony optimization. Lect Notes Comput Sci. 2015;
9026:86-98.

. ElSaid A, ElJamiy F, Higgings J, et al. Using ant colony optimization to

optimize long short-term memory recurrent neural networks. In:
Proceedings of the Genetic and Evolutionary Computation Conference,
2018, pp. 13-20.

Srivastava D, Singh Y, Sahoo A. Auto tuning of RNN hyper-parameters
using cuckoo search algorithm. In: Proceedings of the International
Conference on Contemporary Computing, 2019, pp. 1-5.

Nawi NM, Khan A, Rehman MZ. A new optimized cuckoo search recurrent
neural network (CSRNN). In: Proceedings of the International
Conference on Robotic, Vision, Signal Processing & Power Applications,
2014, pp. 335-341.

Yuliyono AD, Girsang AS. Artificial bee colony-optimized LSTM for bitcoin
price prediction. Adv Sci Technol Eng Syst J. 2019;4:375-383.

Bosire A. Recurrent neural network training using ABC algorithm for
traffic volume prediction. Informatica. 2019;43:551-559.

Dhar V, Sun C, Batra P. Transforming finance into vision: Concurrent
financial time series as convolutional net. Big Data. 2019;7:276-285.
World Health Organization. 2020. Coronavirus disease 2019 (COVID-
19): Situation report 74. Technical report, WHO. Available online at
https://www.who.int/docs/default-source/coronaviruse/situation-
reports/20200403-sitrep-74-covid-19-mp.pdf (last accessed May 9,
2020).

Ghani AC, Donnelly CA, Cox DR, et al. Methods for estimating the case
fatality ratio for a novel, emerging infectious disease. Am J Epidemiol.
2005;162:479-486.

Mizumoto K, Chowell G. Estimating risk for death from 2019 novel
coronavirus disease, China, January-February 2020. Emerg Infect Dis.
2020;26;1251-1256.

Wu JY, Leung K, Leung GM. Nowcasting and forecasting the potential
domestic and international spread of the 2019-nCoV outbreak
originating in Wuhan, China: A modelling study. Lancet. 2020;396:
689-697.

World Health Organization. 2020. Immunity passports in the context of
COVID-19. Technical report, WHO. Available online at https://www.who
.int/news-room/commentaries/detail/immunity-passports-in-the-
context-of-covid-19 (last accessed April 29, 2020).

Korea Centers for Disease Control and Prevention. 2020. Coronavirus
Disease-19. Available online at https://www.cdc.go.kr/cdc_eng/ (last
accessed May 9, 2020).

Gonzalez MC, Hidalgo CA, Barabasi AL. Understanding individual human
mobility patterns. Nature. 2008;453:779-782.

Calvet L, Armas JD, Masip D, Juan AA. Learnheuristics: Hybridizing
metaheuristics with machine learning for optimization with dynamic
inputs. Math Open. 2017;15:261-280.

Darwish A, Hassanien AE, Das S. A survey of swarm and evolutionary
computing approaches for deep learning. Artif Intell Rev. 2020;53:
1767-1812.

Devikanniga D, Vetrivel K, Badrinath N. Review of meta-heuristic
optimization based artificial neural networks and its applications. J Phy:
Conf Ser. 2019;1362:012074.

Trilla A. One world, one health: The novel coronavirus COVID-19
epidemic. Med Clin. 2020;154:175-177.

World Health Organization. 2003. Consensus document on the epide-
miology of severe acute respiratory syndrome (SARS). Technical report,
WHO. Available online at https://www.who.int/csr/sars/en/
WHOconsensus.pdf (last accessed May 10, 2020).

World Health Organization. 2019. Middle East respiratory syndrome
coronavirus (MERS-CoV). Technical report, WHO. Available online at
https://www.who.int/emergencies/mers-cov/en/ (last accessed May 10,
2020).

3

39.

4

o

4

4

4

44,

4

4

©

N

w

ke

o

MARTINEZ-ALVAREZ ET AL.

Coburn BJ, Wagner BG, Blower S. Modeling influenza epidemics and pan-
demics: insights into the future of swine flu (H1N1). BMC Med. 2009;7:30.
Khan A, Naveed M, Dur e Ahmad M. Estimating the basic reproductive
ratio for the Ebola outbreak in Liberia and Sierra Leone. Infect Dis
Poverty. 2015;4:13.

. World Health Organization. 2020. Ebola virus disease. Technical report,

WHO. Available online at https://www.who.int/news-room/fact-sheets/
detail/ebola-virus-disease (last accessed May 10, 2020).

. Martinez-Alvarez F, Troncoso A, Asencio-Cortés G, Riquelme JC. A survey

on data mining techniques applied to electricity-related time series
forecasting. Energies. 2015;8:13162-13193.

Bedi J, Toshniwal D. Deep learning framework to forecast electricity
demand. Appl Energy. 2019;238:1312-1326.

Torres JF, Galicia A, Troncoso A, Martinez-Alvarez F. A scalable approach
based on deep learning for big data time series forecasting. Integr
Comp Aided Eng. 2018;25:335-348.

Galicia A, Torres JF, Martinez-Alvarez F, Troncoso A. Scalable forecasting
techniques applied to big electricity time series. Lect Notes Comput Sci.
2019;10306:165-175.

Galicia A, Talavera-Llames RL, Troncoso A, et al. Multi-step forecasting for
big data time series based on ensemble learning. Knowl Based Syst.
2019;163:830-841.

Torres JF, Gutiérrez-Avilés D, Troncoso A, Martinez-Alvarez F. Random
hyper-parameter search-based deep neural network for power con-
sumption forecasting. Lect Notes Comput Sci. 2019;11506:259-269.

Cite this article as: Martinez-Alvarez F, Asencio-Cortés G, Torres JF,
Gutiérrez-Avilés D, Melgar-Garcia L, Pérez-Chacén R, Rubio-Escudero
C, Riquelme JC, Troncoso A (2020) Coronavirus optimization
algorithm: a bioinspired metaheuristic based on the COVID-19
propagation model. Big Data 8:4, 308-322, DOI: 10.1089/

big.2020.0051.
'a N\
Abbreviations Used
ABC = artificial bee colony
ACO = ants colony optimization
COVID-19 = coronavirus disease 2019
CS = cuckoo search
CVOA = coronavirus optimization algorithm
DNN = deep neural network
DNN-CVOA = CVOA has been combined with DNN
DT = decision tree
GAs = genetic algorithms
GBTs = gradient-boosted trees
GS = grid search
LR = linear regression
LSTM = long short-term memory
MAPE = mean absolute percentage error
RF = random forest
RS = random search
MERS = Middle East respiratory syndrome
PSO = particle swarm optimization
SARS = severe acute respiratory syndrome
SARS-CoV-2 = SARS coronavirus 2
WHO = World Health Organization
(. J

4.1 Articulos de revista 117

4.1.6. Deep learning for time series forecasting: A survey

Tabla 4.6 Datos del articulo: Deep learning for time series forecasting: A
survey

Autores Torres, J. F., Hadjout, D., Sebaa, A., Martinez-Alvarez, F., and
Troncoso, A.

Revista Big Data
Ano 2021

Paginas 308-322

Volumen 9, no.1
DOI 10.1089/big.2020.0159
IF 3.644 (15/108)
Cuartil Ql
Citas 19 (Google Scholar)

Duwnlooded by

89 Data

Volume 9, Number 1, 2021
@ Mary Ann Lieber, Inc
DO 10.1089/big 20200159

REVIEW ARTICLE

Deep Learning for Time Series Forecasting:

A Survey

José F. Torres, ™ Dalil Hadjout2* Abderrazak Sebaa Francisco Martinez-Alvarez,' and Alicia Troncoso'*

Abstract

Time series forecasting has become a very
neural networks

field of researcn,
d are achieving high accuracy in many application fields. For these

reasing in recent years. Deep

reasons, hey are one of the most widely used methods of machine learing to solve problems dealing With big
data nowadays.In this work, the time series forecasting problem s initally formulated along with its mathematical

Then, the most
predict time descrived, their ad

architectures that are curiently being successfully applied to

d limitations. Particular attention is given to feed

fmwavd networks, lecu'renl

long-short gated recument units, and
Pract such as the setting of values for hyper-

parameters and the choice dme most suitable frameworks, for the successful application of deep leaming to time
series are also provided and discussed. Several fruitiul research fields in which the architectures analyzed have
obtained 3 good performance are reviewed. A a result, research gaps have been identified in the literature for
several domains of application, thus expecting to inspire new and better forms of knowledge.

Keywords: big data; deep learning; time series forecasting

Introduction

The interest in processing huge amounts of data has ex-
perienced a rapid increase during the past decade due
10 the massive deployment of smart sensors' or the so-
cial media platforms, which generate data on a continu-
ous basis.> However, this situation poses new challenges,
such as storing these data in disks or making available
the required computational resources.

Big data analytics emerges, in this context, as an es-
sential process focused on efficiently collecting, organiz-
ing, and analyzing big data with the aim of discovering
patterns and extracting valuable information.* In most
organizations, this helps to identify new opportunities
and making smarter moves, which leads to more effi-
cient operations and higher profits.®

From all the learning paradigms that are cur-
rently being used in big data, deep learning high-
lights because of its outstanding performance as the
scale of data increases.® Most of the layer computa-

tions in deep learning can be done in parallel by, for
instance, powerful graphic processing units (GPUS).
That way, scalable distributed models are easier to
be built and they provide better accuracy at a much
higher speed. Higher depth allows for more complex
non-linear functions but, in turn, with higher compu-
tational costs.”

Deep learning can be applied to numerous research
fields. Applications to both supervised and unsuper-
vised problems can be abundantly found in the litera-
ture® Pattern recognition and classification were the
first and most relevant uses of deep learning, achieving
great success in speech recognition, text mining, or
image analysis. Nevertheless, the application to regres-
sion problems is becoming quite popular nowadays
‘mainly due to the development of deep-learning archi-
tectures particularly conceived to deal with dataindexed
over time. Such is the case of time series and, more spe-
cifically, time series forecasting”

"Dota’s Sevil,
Beiolo, Aerio. .
*qually contributing authors
“ Aicia Tr Sevile ES-41013, Spoin,
3

subito e V. licensed customer copy supplied and printed for Universidad Pablo de Olavide (SLIO7X00115E)

Downloaded by

A time series is a set of measures collected at even in-
tervals of time and ordered chronologically.'” Given
this definition, it is hard to find physical or chemical
phenomena without variables that evolve over time.
For this reason, the proposal of time series forecasting
approaches is fruitful and can be found in.almost all
scientific disciplines. :

Statistical approaches have been used from the 1970s
onward, especially those based on the Box-Jenkins
‘methodology.'! With the appearance of machine learn-
ing and its powerful regression methods,'” many mod-
els were proposed as outperforming the former, which
have remained as baseline methods in most research
works. However, methods based on deep learning are

currently achieving superior results and much effort *

is being put into developing new architecture.

For all that has been mentioned earlier, the primary
motivation behind this survey is to pronde a compre-
hensive ing of deep-I
for researchers interested in the field o! time series fore-
casting. Further, it overviews several applications in
which these techniques have been proven successful
and, as a result, research gaps have been identified in
the literature and are expected to inspire new and bet-
ter forms of knowledge.

Although other surveys discussing deep-learning
properties have been published during the past years, the
‘majority of them provided a general overview of both the-
ory and npphcanons to time series forecasting. Thus,
Zhang et al® reviewed emerging researches of deep-
learning models, including their mathematical formula-
tion, for big data feature learning. Another remarkable
work can be found in Ref,'* in which the authors intro-
duced the time series classification problem and provided
an open-source framework with implemented algorithms
and the University of East Anglia/University of California
in Riverside repository.'® Recently, Mayer and Jacobsen
published a survey about scalable deep learning on dis-
tributed infrastructures, in which the focus was placed
on techniques and tools, along with a smart discussion
about the existing challenges in this field.'®

The rest of the article is structured as follows. The
forecasting problem and mathematical formulation for
time series can be found in the Problem Definition sec-
tion. Deep-Learning Architectures section introduces
the deep-learning architectures typically used in the con-
text of time series forecasting. Practical Aspects section
provides information about several practical aspects (in-
cluding implementation, hyper-parameter tuning, or
hardware resources) that must be considered when ap-

TORRES ET AL

plying deep learning to forecast time series. Applications
section overviews the most relevant papers, sorted by
fields, in which deep learning has been applied to fore-
cast time series. Finally, the lessons learned and the con-
clusions drawn are discussed in the Conclusions section.

Problem Definition

This section provides the time series definition (Time
Series Definition section), along with a description of
the main time series components (Time Series Compo-
nents section). The mathematical formulation for the
time series forecasting problem is introduced in the
Mathematical Formulation section. Final remarks about
the length of the time series can be found in Short-
and Long-Time Series Forecasting section.

Time series definition
A time series is defined as a sequence of values, chrono-
logically ordered, and observed over time. Although the
time is a variable measured on a continuous basis, the
values in a time series are sampled at constant intervals
(fixed sampling frequency).

This definition holds true for many applications, but
not every time series can be modeled in this way, due to
some of the following reasons:

1. Missing data in time series is a very common
problem due to the reliability of data collection.
To deal with these values, there are a lot of strat-
egies but those based on imputing the missing in-
formation and on omitting the entire record are
the most widely used."”

Outlying dnmi is also. an issue that appears very
frequently in time series. Methods based on robust
statistics must be chosen to remove these values
or, simply, to incorporate them into the model."®
When data are collected at irregular time periods,
they can be called either unevealy spaced time se-
ries or, if big enough, data streams.”

~

b

Some of these issues can be handled natively by the
used model, but if the data are collected irregularly, this
should be accounted for in the model. In this survey,
the time series preprocessing is out of scope, but please
refer to this work for detailed information.

Time series components

Time series are usually characterized by three compo-
nents: trend, seasonality, and irregular components,
also known as residuals.® Such components are de-
scribed later:

subito e.V. licensed customer copy supplied and printed for Universidad Pablo de Olavide (SLIOTX00115E)

Downloeded by THVUB.

DEEP LEARNING FOR TIME SERIES FORECASTING

1. Trend. It is the general movement that the time
series exhibits during the observation period,
without considering scasonality and irregularitics.
In some texts, this component is also known as
long-term variation. Although there are different
kinds of trends in time scries, the most popular
are linear, exponential, or parabolic ones.
Seasonality. This component identifies variations
that occur at specific regular intervals and may
provide useful information when time periods ex-
hibit similar patterns. It integrates the effects rea-
sonably stable along with the time, magnitude,
and direction. Seasonality can be caused by several
factors such as climate or economical cycles, or
even festivities.

. Residuals. Once the trend and cyclic oscillations
have been calculated and removed, some residual
values remain. These values can be, sometimes,
high enough to mask the trend and the scasonality.
In this case, the term outlier is used to refer these

residuals, and robust statistics are usually applied
to cope with them.?® These fluctuations can be of
diverse origin, which makes the prediction almost
impossible. However, if by any chance, this origin
can be detected or modeled, they can be thought
of precursors in trend changes.

»

w

A timie series is an aggregate of these three compo-
nents. Real-world time series present a meaningful ir-
regular component and are not stationary (mean and
variance are not constant over time), turning this com-
ponent into the most challenging one to model. For this
reason, to make accurate predictions for them is ex-
tremely difficult, and many forecasting classical meth-
ods try to decompose the target time series into these
three components and make predictions for all of
them separately.

The effectiveness of one technique or another is
assessed according to its capability of forecasting this

n -1y
» ylt=1)
yo| | =D
T,

particular component. It is for the analysis of this com-

»nt=1 y® »nt+d
»nt=1 p0 pt+

JE=1) 7yt +D

Time series can be graphically represented. In particu-
lar, the x-axis identifies the time, whereas the y-axis iden-
tifics the valucs recorded at punctual time stamps (x,).
This representation allows the visual detection of the
most highlighting features of a series, such as oscilla-
tions amplitude, existing scasons, and cycles or the ex-
istence of anomalous data or outliers. Figure 1 depicts
an time series, X, using an additive model with linear
seasonality with constant frequency and amplitude
over time, represented by the function sin(x); linear
trend where changes over time are consistently made
by the same amount, represented by the function
0.0213x; and residuals, represented by random num-
bers in the interval [0,0.1].

Mathematical formulation

Time series models can be either univariate (one time-
dependent variable) or multivariate (more than one
time-dependent variables). Although models may dra-
matically differ between a univariate and a multivariate
system, the majority of the deep-learning models can
handle indistinctly with both of them.

On the one hand, let y=y(t—L).....y(t=1),
YOyt +1).y(t+h) be a given univariate time
series with L values in the historical data, where each
Ht—i), for i=0, ..., L, represents the recorded value
of the variable y at time £ — i. The forecasting process
consists of estimating the value of y(t+ 1), denoted
by j(+1), with the aim of minimizing the error,
which is typically represented as a function of
H(t+1) = j(t+1). This prediction can be made also
Wwhen the horizon of prediction, h, is greater than one,
that is, when the objective is to predict the h next values
after y(t), that is, y(t + 1), with i=1, ..., h. In this situ-
ation, the best prediction is reached when the function
St +i)— (¢ +1) is minimized.

On the other hand, multivariate time series can be
expressed as follows, in the matrix form:

nit+h)
yat+h)

yalt+h)

where y,(t —m) identifies the set of time series, with

ponent where data mining-based techniques have been i={1,2,,n}, being m={0,1,, L} the historical
h}

shown to be particularly powerful.

data and current sample and m={~1, -2,

sublto e V. licensed customer copy supplied and printed for Universicad Pablo de Olavide (SLIO7X00115E)

I

Dowalosded by

2 g 2
o €
2]
[P}
= o
E
2 F 2
3
g
2 -
2 s B
5
g
H
g
. z
° 3
T s % T & o 2
Pz 5 3 3 3 28 3 3 2 3 2
x b
x g
2
M
< E
¢ =
2
g
E]
2 R o_
= @ 2
g] 5
§ v 3 2
a3 @
b g
0 z <]
e ———
s N
=§i
853287&318 3 3 3 3 32
TI T St c
x x
6

subilo e.V. licensed customer copy supplied and printed for Universidad Pablo de Olavide (SLIOTX00115E)

Duwalused by

DEEP LEARNING FOR TIME SERIES FORECASTING

the future h values. Usually, there is one target time series
(the one to be predicted) and the remaining ones are
denoted as independent time serics.

Short- and long time series forecasting

Another key issue is the length of the time series.
Depending on the number of samples, long- or short
time series can be defined. It is well known that the
Box-Jenkins' models do not work well for long time se-
ies mainly due to the time-consuming pracess. of param-

been published in recent years.* These models make
use of clusters of machines or GPUs to overcome the
limitations described in the previous paragraphs.

Deep-learning models can deal with time series in a
scalable way and provide accurate forecasts.*' Ensem-
ble learning can also be uscful to forecast big data
time series” or even methods based on well-established
methods such as nearest neighbours®2” or pattern se-
quence similarity.”®

Deep-Learning

eters optimization and to the inclusion of i
which is no longer useful to model the current samples.”
How to deal with these issues is highly related to the

‘This gection provides a theoretical tour of deep learn-
ing for time series prediction in big data environments.
First, a iption of the most used i in

purpose of the model. Flexible ic models
could be used, but this still assumes that the model struc-
ture will work over the whole period of the data, which is
not always true. A better approach consists of allowing
the model to vary over time. This can be done by ei-
ther adjusting a parametric model with time-varying
parameters or adjusting a nonparametric model with
a time-based kernel. But if the goal is only to forecast
afew observations, it is simpler to fit a model with the
most recent samples and transforming the long time
series into a short one.’ :

Although a preliminary approach to use a distrib-
uted ARIMA madel has been recently published,”
it remains challenging to deal with such time series
with classical forecasting methods. However, a number
of machine-learning algorithms adapted to deal with
ultra-long time series, or big data time series, have

the literature to predict time series is made. Then, a
state-of-the-art analysis is carried out, where the
deep-learning works and frameworks to deal with
big data are described. :

Deep feed forward neural network
Deep feed forward neural networks (DFFNN), also
called multi-layer perceptron, arose due to the inability
of single-layer neural networks to learn certain func-
tions. The architecture of a DFFNN is composed of an
input layer, an output layer, and different hidden layers,
as shown in Figure 2. Tn addition, each hidden layer has
a certain number of neurons to be determined.

The relationships between the neurons of two con-
secutive layers are modeled by weights, which are calcu-
lated during the training phase of the network. In

FIG. 2. Basic architecture of a DFFNN for time series forecasting. DFFNN, deep feed-forward neural network.

Output

_J

subio e V. licensed customer copy supplied and printed for Universidad Pablo de Olavide (SLIO7X00115E)

Downloaded by

particular, the weights are computed by minimizing a
cost function by means of gradient descent optimization
methods. Then, the back-propagation algorithm is used
to calculate the gradient of the cost function. Once the
weights are computed, the values of the output neurons
of the network are obtained by using a feed-forward
process defined by the following equation:

d=g(Wa'" " 45l @

where a'are the activation values in the I-th layer, thatis, a
vector composed of the values of the neurons of the I-th
Tayer, W} and b, are the weights and bias corresponding
to the I-th layer, and g is the activation function. There-
fore, the a' values are computed by using the activation
values of the I — 1 layer, =, as input. In time series fore-
casting, the rectified linear unit function is commonly
used as activation function for all layers, except for the
output layer to obtain the predicted values, which gener-
ally uses the hyperbolic tangent function (tanh).

For all network architectures, the values of some
hyper-parameters have to be chosen in advance. These
hyper-parameters, such as the number of layers and
the number of neurons, define the network architecture,
and other hyper-parameters, such as the learning rate,
the momentum, and number of iterations or mini-
batch size, among others, have a great influence on
the convergence of the gradient descend methods.
The optimal choice of these hyper-parameters is impor-
tant, as these values greatly influence the prediction re-
sults obtained by the network. The hyper-parameters
will be discussed in more detail in the Hyper-Parameter
‘Optimization section.

Recurrent neural network

Recurrent neural networks (RNNs) are specifically
designed to deal with sequential data such as sequences
of words in problems related to machine translation,
audio data in speech recognition, or time series in fore-
casting problems. All these problems present a common
characteristic, which is that the data have a temporal de-
pendency between them. Traditional feed-forward neural
networks cannot take into account these dependencies,
and RNNs arise precisely to address this problem.”
Therefore, the input data in the architecture of a RNN
are both past and current data. There are different
types of architectures, depending on the number of
data inputs and outputs in the network, such as one to
one (one input and one output), one to many (one
input and many outputs), many to one (many inputs

TORRES ET AL

Many to many

FIG. 3. Basic architecture of an RNN for time
series forecasting. RNN, recurrent neural network.

and one output), and many to many (many inputs and
outputs). The most common RNNs are many to one
for classification problems or many to many for machine
translation or time series forecasting for instance. In ad-
dition, for the case of a time series, the length of the input
data sequence is usually different from the size of the out-
put data sequence that usually is the number of samples
to be predicted. A basic RNN architecture to address the
forecasting of time series is shown in Figure 3. x; and %
are the actual and predicted values of the time series at
time i, and A is the number of samples to be predicted,
called prediction horizon.

The most widely used RNNs for time series forecast-
ing are briefly described later.

Elman RNN. The Elman network (ENN) was the first
RNN and it incorporated the ¢ state of a hidden unit to
make predictions in data sequences.* The ENN con-
sists of a classical one-layer feed-forward network but
the hidden layer is connected to a new layer, called con-
text layer, using fixed weights equal to one, as shown in
Figure 4. The main function of the neurons of this

FIG. 4. Architecture of an ENN for time series
forecasting. ENN, Elman network.

subito e.V. licensed customer copy supplied and printed for Universidad Pablo de Olavide (SLIO7X00115E)

[ressm—r

DEEP LEARNING FOR TIME SERIES FORECASTING

context layer is to save a copy of the values of activation
of the neurons of the hidden layer. Then, the model is
defined by:

a=g(Woxi + Usate -1 + ba). .3

where a, are the values of the neurons in the ¢ state in
the hidden layer, x, is the current input, a, -, is the in-
formation saved in the context hidden units, Wa, U
and b, are the weights and the bias, and g is the activa-
tion function.

Long short-term memory. Standard basic RNNs suf-
fer the vanishing gradient problem, which consists of
the gradient decreasing as the number of layers in-
creases. Indeed, for deep RNNs with a high number
of layers, the gradient practically becomes null, prevent-
ing the learning of the network. For this reason, these
networks have a short-term memory and do not obtain
good results when dealing with long sequences that re-
quire memorizing all the information contained in the
complete sequence. Long short-term memory (LSTM)
recurrent networks emerge to solve the vanishing gradi-
ent problem.*! For this purpose, LSTM uses three gates
to keep longstanding relevant information and discard
irrelevant information. These gates are I/ forget gate,
I update gate, and I'® output gate. I decides what in-
formation should be thrown away or saved. A value
close to 0 means that the past information is forgotten
whereas a value close to 1 means that it remains. ™ de-
cides what new information & to use to update the ¢,
memory state. Thus, ¢ is updated by using both I
and I, Finally, I decides which is the output value
that will be the input of the next hidden unit.

The information of the a, _; previous hidden unitand
the information of the x, current input is passed through
the ¢ sigmoid activation function to compute all the gate
values and through the tanh activation function to com-
pute the & new information, which will be used to up-
date. The equations defining an LSTM unit are:

Tr=tanh (Wla, -y, 1) +bo).)
=0 (Walai-1, %] +b), 5)
I =0 (Wylai-1, %] +by) ©)
Io=0(Wla-1,x1+bo) @)

G=r"xg+ 1 e, ®)
" a=17x tnh (c), o)

where W,, Wy and Wi, and by, by and b, are the
weights and biases that govern the behavior of the
% I/, and I gates, respectively, and W, and b, are
the weights and bias of the & memory cell candidate.
Figure 5 shows a picture of how a hidden unit works
in an LSTM recurrent network. Thexand + operators
mean an element-wise vectors multiplication and sum.

Gated recurrent units. Recurrent networks with gated
recurrent units (GRU) are long-term memory net-
works such as LSTMs but they emerged in 2014°***
as a simplification of LSTMs due to the high computa-
tional cost of the LSTM networks. GRU is one of the
most commonly used versions that researchers have
converged on and found to be robust and useful for
many different problems, The use of gates in RNNs
has made it possible to improve capturing of very
long-range dependencies, making RNNs much more
effective. The LSTM is more powerful and more effec-
tive since it has three gates instead of two, but the GRU
is a simpler model and it is computationally faster as it
only has two gates, I update gate and I'" relevance
gate as shown in Figure 6. The I™* gate will decide
whether the ¢, memory state is or is not updated by
using the &, memory state candidate. The I”" gate deter-
mines how relevant ¢, - is to compute the next candi-
date for ¢, that is, &. A GRU is defined by the following
equations:

T=a(Wule-1.x]+bu a0
I"=a (Wile-1,x]+b)s an
S .
Ce-1 ¢ s
o)
L% o P & peQ—|—>ar
—l [oteond o zre]
Xt

FIG. 5. Hidden unit in an LSTM. LSTM, long
short-term memory.

subifo e V. licensed customer copy supplied and printed for Universidad Pablo de Olavide (SLIOTX00115E)

‘Downloaded by

TORRES ET AL

10
i
Ce-1 Ce
r
E=]
f
x
FIG. 6. Hidden unit in a GRU. GRU, gated
recurrent units.
&= tanh (Wl X 6= 1, %)+ b, (2
G=IXE+(L=T")x6, a3)
a=c, (14)

where W, and W,, and b, and b, are the weights and
the bias that govern the behavior of the I, and I',
gates, respectively, and W, and b, are the weights and
bias of the & memory cell candidate.

Bidirectional RNN. There are some problems, in the
field of natural language processing (NLP) for instance,
where to predict a value of a data sequence in a given
instant of time, information from the sequence both
before and after that instant is needed. Bidirectional re-
current neural networks (BRNN) address this issue to
solve this kind of problems. The main disadvantage of
the BRNNSs is that the entire data sequence is needed
before the prediction can be made.

Standard networks compute the activation values for
hidden units by using a unidirectional feed-forward
process. However, in a BRNN, the prediction uses in-
formation from the past as well as information from
the present and the future as input, using both forward
and backward processing.

Thus, the prediction at time t, %, is obtained by using
a g activation function applied to the corresponding
weights with both the forward and backward activation
at time ¢, That is:

E=g(W,ld],al] + by, sy

where W, arid b, are the weights and bias and] and a?
are the activation values of the hidden units computed
by forward and backward processing, respectively, and
£ is an activation function.

FIG. 7. Basic architecture of a BRNN. BRNN,
bidirectional recurrent neural network,

Figure 7 presents the basic architecture of a BRNN.
A BRNN can be seen as two RNNS together, where
the different hidden units have two values, one com-
puted by forward and another one by backward. In ad-
dition, the BRNN units can be standard RNN units or
GRU or LSTM units. In fact, a BRNN with LSTM units
is commonly used for a lot of NLP problems.

Deep recurrent neural network. A deep recurrent neu-
ral network (DRNN) can be considered as an RNN with
more than one layer, also called stacked RNN. The hid-
den units can be standard RNN, GRU or LSTM units,
and it can be unidirectional or bidirectional as described
in previous sections. Figure 8 illustrates the architecture
of a DRNN with three layers.
In general, a DRNN works quite well for time series
ing, but its i when
using very long data sequences as input. To address
this issue, attention mechanisms can be incorporated
into the model, being one of the most powerful ideas
in deep learning* An attention model allows a neural

e

x xe

FIG. 8. Basic architecture of a DRNN. DRNN,
deep recurrent neural network.

subilo e.V. licensed customer copy supplied and printed for Universidad Pablo de Olavide (SLIO7X00115E)

Downlaaded by

DEEP LEARNING FOR TIME SERIES FORECASTING

oot Conaluton

FIG. 9. Architecture of a CNN. CNN, convolutional neural networks.

network to pay attention to only part of an input data
sequence while it is generating the output. This atten-
tion is modeled by using weights, which are computed
by a single-layer feed-forward neural network>®

Convolutional neural networks

Convolutional neural networks (CNN) were presented
in Ref.*® by Fukushima and are one of the most com-
mon architectures in image processing and computer
vision.*” The CNN have three kinds of layers: convolu-
tion, pooling, and fully connected. The main task of the
convolution layers is the learning of the features from
data input. For that, filters of a predefined size are ap-
plied to the data by using the convolution operation be-
tween matrices. The convolution is the sum of all
element-wise products. The pooling reduces the size
of input, speeding up the computing and preventing
overfitting. The most popular pooling methods are av-
erage and max pooling, which summarize the values
by using the mean or maximum value, respectively.
Once the features have been extracted by the convolu-
tional layers, the forecasting is carried out by using
fully connected layers, also called dense layers, as in
DFFNN. The input data for these last fully connected
layers are the flattened features resulting of the convolu-
tional and pooling layers. Figure 9 depicts the overall ar-
chitecture of a CNN.

Recently, a variant of CNN, called temporal convo-
lutional networks (TCNs),*® has emerged for data se-
quence, competing directly with DRNNs in terms of
execution times and memory requirements.

The TCNs have the same architecture as a DFFNN
but the values of activations for each layer are com-
puted by using earlier values from the previous layer.
Dilated convolution is used to select which values of
the neurons from the previous layer will contribute to

the values of the neurons in the next layer. Thus, this
dilated convolution operation captures both local and
temporal information.

The dilated convolution, F, is a function defined as
follows:

- dis a6)

where d is the dilation factor parameter, and f is a filter
of size K.

Figure 10 shows the architecture of a TCNN when
applying a dilated convolution by using a filter of size
3 and dilation factors of 1, 2, and 4 for each layer,
respectively.

Moreover, it is necessary to use generic residual
modules in addition to convolutional layers when
deeper and larger TCN are used to achieve further sta-
bilization. These generic residual blocks consist of add-
ing the input of data to the output before applying the
activation function. Then, the TCN model can be de-
fined s follows:

FIG. 10. Architecture of a TCN using a filter of
size 3. TCN, temporal convolutional network.

Subilo e.V. licensed customer copy supplied and printed for Universidad Pablo de Olavide (SLIO7X00115E)

Downlaaded by

where Fy(-) is the dilated convolution of d factor de-
fined in Equation (16),) is the value of the neuron
of the I-th layer at time t, W/ and b, are the weights
and bias corresponding to the I-th layer, and gis the ac-
tivation function.

Practical aspects
Implementation
The implementation of a multilayer perceptron is rela-
tively simple. However, decp-learning models are more
complex, and their implementation requires a high
level of technical expertise and a considerable time in-
vestment to implement. For this reason, the profile of
the decp-learning expert has become one of the most
demanded nowadays. To make easier implementations
and reduce the time nceded to design and train a
‘model, some companies have focused their work on de-
veloping frameworks that allow for the implementa-
tion, training and use of deep learning models.

The main idca of the decp-learni ks is t

S(WIFi@] ™)+, +d™"), a7 -

TORRES ET AL

Table 1 shows that the predominant programming
language for developing deep-learning models is
Python. In addition, most of the frameworks support
distributed execution and the use of GPU’s. Although
the described frameworks facilitate the development
of the models, some of them require too many lines
of code to obtain a complete implementation. For
this reason, high-level libraries based on the core of
the frameworks have been developed, making pro-
gramming even easier, Some examples of high-level
libraries can be Keras,” Sonnet,*" Swift, or Gluon,*
among others. The main advantage of using a high-
level-library is that the syntax can be reused for another
base framework, in addition to facilitating its imple-
‘mentation. However, the lack of flexibility is the main
disadvantage.

Hyper-parameter optimization

The combination of frameworks and high-level-
libraries greatly facilitates the implementation of mod-
els. However, there is an important study gap: the

3

g
provide an interface that allows for the implementation
of modcls without having to pay too much attention to
the mathematical complexity behind them. There are
several frameworks available in the literature. The
choice of one or another will depend on several impor-
tant factors, such as the type of architecture that can be
i support for distrib i

‘model optimization. This will determine
the quality of the model, and it must be performed
based on the adjustment of its hyper-parameters. In
deep learning, there are two types of hyper-parameters:
model parameters and optimization parameters. The
model parameters must be adjusted in the model defi-
nition to obtain optimal performance. The optimiza-

cenvironments, or whether it can run on GPUs. In
this sense, Table 1 summarizes the most widely used
frameworks in the literature, where the term all
includes the DFFNN, CNN, TCN, RNN," LSTM,
GRU, or BRNN architectures, and CPU is a central
processing unit.

Table 1. Deep-learning frameworks

tion are adjusted during the training
phase of the model by using the datasct. Some of the
‘most relevant hyper-parameters are described and cat-
cgorized by network architccture in Table 2.

‘The number of hyper-parameters will depend on the
network architecture to be used. In addition, the value
of each one will be influenced by the characteristics of

Framework Core language Available interfaces Architecture Distributed CPU | GPU
TensorFlow®” [Python, JavaScript, C+ Java, Go, C#, Julia Al v W
H20% Java Python, R, Scala, REST +/ i DFFNN v i
oigj*" Java Python, Scala, Clojure, Kotiin, €, G+ | Al v W
PyTorch** Lua Python, C, G+ Al v v\
Caffe® Cr Python, MATLAB o x i
Neon** Python ython’ Al x i
Chainer’® Python Python Al v v\
ano® Python Python Al x W
MXNet"” Python Python, Scala, Jlia, Clojure, Java, Ci+, R, Ped Al v s
ONNX'® Python Python CNN, DFFNN x /i
Paddieaddle Python Python . v MY
oNTK® Cov Python, G-+, Ci OFFAN, CNN, NN 7 e

N pu,

N,
recurrent neural network.

subito e.V. licensed customer copy supplied and printed for Universidad Pablo de Olavide (SLIO7X00115E)

[am——

subito e V.

DEEP LEARNING FOR TIME SERIES FORECASTING

Table 2. Relevant hyper-parameters

Hyperparameter Architectures Descrption
Optimizer Al Agorithm used to update the weights of each ayer ater ad ion.
Learning rate Al It Getermines th size of th step o each teraton o the optmization method
Number of epochs All Number of passes made in the whole training sct>>
Batch size All Nurer o sub-samplesthatth network uses 1o update the welghts**
Hidden layers Al It determines the depth of the neural networ
Activation function Al Inroduces nontocary i the modes which s the extracton of more complex knowledge™
Momentum Al I prevents oscillations in the cons the method.*
Weightinitialzation Al I prevents the explosion or vanishing of the activation in the lay
t Al - It ciminaes e connections between neurons in sachteravon. s used to prevent over fiting "

Dropout
LI/2 Regularization All
on a single feature.*?

It prevents overfitting. stopping weights that are too high o that the model does not d

Units RNN, DFFNN. i determines the level of knowledge that is extracted by each lar. I is highly dependent on the size
of the data used”

Kemeliter o Matix that moves over the input data It allows the extaction of characterisics*

Stide NN The number of pixels that move over the input matrix for each filer.**

Padding NN Number of null samples added to a dataset when its processed by the kemel®*

Number of channels CNN Depth of the matrices involved in the convolutions

Pooli NN I allows to reduce the number of parameters and calculations in the network®”

nb_stacks T Number of stacks of residual blocks.

Dilations TN A deep stack of dilated convolutions to capture long-range temporal pattems.

TCN, temporal convolutional network.

the problem and the data. This makes the task of opti-
‘mizing a model a challenge for the research community.
Moreover, and taking into account the parameters de-
scribed in Table 2, an immense number of possible com-
binations can be deduced. For this reason, various
metaheuristics and optimization strategies are used.

parameters. This method covers a high search
space, although it has a high computational cost
associated with it, which makes this method unvi-
able to apply in deep learning, let alone in big data
environments.

. Random: Random search allows to cover a high
search space, because infinite combinations of

w

According to the literature, there are several strategies
ptimize a sct of hype for decp-learning
models, as shown in Table 3.
Thus, the hyper-parameter optimization methods
can be classified into four major blocks:

1. Trial-error: This optimization method is based on
varying each of the hyper-parameters manually.
Therefore, this method implies a high time in-
vestment, having a relatively low computational
cost and a low search space, because it requires
the action of a user to modify the values manually
each time a run is finished. Since in deep learning

can be generated. Within this
_gmup we can differentiate between totally ran-
dom or guided search strategies, such as those
based on metaheuristics. Examples of this type
“of searches are the genetic algorithms,***° parti-
cle swarm optimization,” or neuroevolution of
augmenting topologies” algorithms, among oth-
ers. The wide search range, added to the medium
cost involved in this search strategy, makes it one
of the best methods for optimizing deep-learning
models. In .ddmun. new hyper-parameters opti-
mization ics are being published, such

there are a large number of hyp and
the values they can set are infinite, it is not advis-
able to use this optimization method.

Grid: The grid method explores the different pos-
sible combinations for a set of established hyper-

»

Table 3. Search strategies

as the bioinspired model in the pmpagmon of
COVID-19 presented by the authors in Ref.”>

Probabilistic: This optimization method tracks
each of the evaluations. These evaluations are

-

used to generate a probabilistic model that assigns .

values to the different hyper-parameters. The
most common algorithms to optimize hyper-
by using i methods are

Strategy Deep learning Cost Search space
Triakerror x Low Low
Gid x Figh High
Random v Medum Hgh
Probabllstic v Medium Medium-driven

those based on Bayesian approaches.”*
There are many libraries for the optimization of

hyp in an automated way. However, very

sed customer copy supplied and printed for Universidad Pablo de Olavide (SLIOTX00115E)

Dowaloaded by

Table 4. Hyper-parameters optimization librarles ~ +

TORRES ET AL

Library Search strategy Distrbuted Language Framework
Elephas Random, Probabilstic Yes Python Keras
Hypenas Random, Probabiltic Yes Python Keras
Hyperopt™* fandom, Probablsic Yes Python —
Dlopt”™ Randor No Python Keras
Talos™ Grid, Random Yes Python heras
Keras.tuner Random Yes n Keras
H,0% rid, Random Yes Python, R HO
BoTorch” Probabilstic Yes Python PyTorch
HPOLID™ Probabilstic — Python =

few are designed specifically for the dptimization of
deep-learning model hyper-parameters, being also
compatible with the frameworks and high-level libraries
described in Table 1. Table 4 summarizes a set of librar-
ies for the optimization of hyper-parameters in deep-
learning models, classifying them by search strategies,
support to distributed computing, programming lan-
guage, and compatible framework from Table 1. Note
that it is not known whether HPOLib supports distrib-
uted computing or in which frameworks it works.

Hardware performance
One of the most important decisions a researcher must
make is to determine the physical resources needed to
ensure that deep-learning algorithms will find accurate
models. Hence, this section overviews different hard-
ware infrastructures typically used for deep-learning
contexts, given its increasing demand for better and
more sophisticated hardware. .

 Although a CPU can be used to execute decp-learning

ithms, the intensive
usnnl]y make the CPU physical resources insufficient
(scalar architecture). For this reason, three different
hardware architectures axe rypn:ally used for mining
ion with d GPU,

tensor processing unit (TPU), and intelligence pro-
cessing unit (IPU).

A GPU is a co-processor allocated in a CPU that is -

specifically designed to handle graphics in computing
environments. The GPUs can have hundreds or even
thousands of more cores than a CPU, but running at
lower speeds. The GPUs achieve high data parallelism
with single instructions, multiple data architecture
and play an important role in the current artificial in-
telligence domain, with a wide variety of applications.

cuits built specifically for machine learning, Compared
with GPUs (frequently used for the same tasks since
2016), TPUs are implicitly designed for a larger volume
of reduced precision calculation (e.g, from 8 bits of
precision) and lack of hardware for rasterization/
texture mapping. The term was coined for a specific
chip designed for Google's TensorFlow framework.
Generally speaking, TPUs have less accuracy compared
with the computations performed on a normal CPU or
GPU, butit is sufficient for the calculations they have to
perform (an individual TPU can process more than 100
millions of pictures per day). Moreover, TPUs are
highly optimized for large batches and CNNs and
have the highest training throughput.”

‘The IPU is completely different from today’s CPU and
GPU processors. It s a highly flexible, easy-to-use, parallel
processor that has been designed from the ground up to
deliver state-of-the-art performance on current machine-
learning models. But more importantly, the IPU has been
designed to allow new and emerging machine intelligence
workloads to be realized. The IPU delivers much better
arithmetic efficiency on small batch sizes for both training
and inference, which results in faster model convergence
in training, models that generalize better, the ability to
parallelize over many more IPU processors to reduce
training time for a given batch size, and also delivers
‘much higher throughput at lower latencies for inference.
Another interesting feature is its lower power consum
tion compared with GPUs or TPUs (up to 20% less).

Table 5 summarizes the properties of the processing
units explored in this section. Note that the perfor-
mance is measured in flops and the cost in USD.

Table 5. Processing units properties

‘The first generation of TPUs was i in2016,
at the Google I/O Conference and they were specifically
designed to run already trained neural networks. The
TPUs are custom application-specific integrated cir-

o

Units Architecture Batchsize Performance
Py salar small 100 -10t
Py Vecor \ Lage 107 -10t
Ty AsiC Large 102 -

I Graph small -101% -10°

subilo e.V. licensed customer copy supplied and printed for Universidad Pablo de Olavide (SLIO7X00115€)

Downlooded by

DEEP LEARNING FOR TIME SERIES FORECASTING

Note that for TPUs cloud services are available for a
price starting at 4.50 USD per hour (retrieved in
March 2020).

Applications
To motivate the relevance of the time series prediction
problem, an analysis of the state of the art has been
carried out by classifying the deep-learning research
works by application domain (such as energy and
fucls, image and video, finance, indus-

»

tion of LSTM to forecast oil production. Hybrid
architectures have been also used in this research

field, for éxample, to forecast the price of car-
03

bon,'®* the price of energy in electricity mar-
Kets,'®! energy consumption,'® or solar power
gencration.'®®

Image and video: Image and video analysis is a
very broad area of research, and it works related
to any application domain. For example, Hu
et al ccnducled a wide study of deep learning

try, or health) and the most widespread network archi-
tectures used (ENN, LSTM, GRU, BRNN, DFENN,
CNN, or TCN). A summary on the works reviewed
can be found in Table 6.

An overview of the items for each application do-
main is made in the following paragraphs, to highlight
the goals reached for each method and field:

1. Energy and fuels: With the increasing use of re-
newable energies, accurate estimates are needed
to improve power system planning and operat-
ing. Many techniques have been used to make
predictions, including deep learning"** Reviewing
the literature in the past few years, it can be con-
cluded that the vast majority of deep-learning ar-
chitectures are suitable to this application area.
For example, architectures based on LSTM,”
ENN* GRU,” BRNN,” and TCN'® have
‘been used to predict electricity demand consump-
tion. LSTM® and CNN®® have also been used to
forecast photo-voltaic energy load. A GRU has
been used to forecast soot emission in diesel en-
gines in Ref.** An ensemble of DFFNN was devel-
oped by the authors in Ref” to forecast time
series of general purpose. After that, this strategy
has been also used to forecast load demand time
series.®” In Ref! the authors proposed an applica-

ed cancer detection and diagno-
‘“ In Ref"’ the authors summarized some
lechmques and studies used to recognize video se-
quence actions from timed images. The authors
presented in Ref'” an application of an ENN
to forecast and monitor the slopes displacement
over performed by
acrial vehicles. In Ref” the authors combined
GRU, RNN, and CNN to classify satellite image
time seris. Although al these worls offr highly
p results, the use of
networks predominates in the literature to solve
forecasting problems using image or video time
series data. On the one hand, CNNs have been
tised to forecast the combustion instability,'*®
temporal dependencies in satellite images,'"" the
speed of large-scale traffic'® or to detect coronary
artery stenosis,''> among others. On the other
hand, TCN are booming when it comes to analyz-
ing images and videos. For example, Miao et al.
used a TCN to estimate density maps from vid-
e0s.'" The authors in Ref."'® also applied a TCN
to summarize generic videos. Another interest-
ing work in which images were used can be
found in Ref."’® In this work, they used a TCN
‘model to dynamically detect stress through facial
photographs.

Table 6. Summary of the works reviewed and classified into network architecture and application domain

RNN DFFNN N Hybrid/others
N LM GRU BRNN N TN

Encrgy and fusls 3 v o B3 o B o) o110
Image and video 107 _ o nene w
Fnncial _ Ten V - 020128 _ 0113
Emironmental - Sem e 150 w1 w2 = 1s0asa1ss
industry rsars 58160 163160 16065 16 Terae 16169170
Feaith — m _ m ” namas _ V6181
Misc s - " s s res-187 T2 o154

BRAN, bidrectonal recurrent neurl network; CN, convoltional neual nesworks; EN, Elman necwork LSTW,long shortterm memory; GRU,

gated recurrent units.

subito e.V. licensed customer copy supplied and printed for Universidad Pablo de Olavide (SLIO7X0011SE)

Downloaded by

-

o

Financial: Financial analysis has been a challeng:
ing issue for decades. Therefore, there are many
research works related to this application area,
as described in Ref.'*® In addition, various archi-
tectures such as CNN,'**"'* DNN,' GRU,'* or
LSTM"'®!"? have been used. Some authors make
a comparison between some of these architec-
tures, analyzing which one offers better results.'?"
Although these studies are widespread, the com-
plexity of the problem requires. the search for
new methodologies and architectures.'212%-13

. Environmental: Environmental data analysis is

one of the most popular areas for the scientific
community. Many of these works are also based
on the application of deep-learning techniques
to forecast time series. The authors in Ref."* ap-
plied CNN and LSTM to forecast wind speed or
temperature by using meteorological data from
Beijing, China. Other authors focused on a single
specific variable. For instance, the authors used
TCN, GRU, ENN, BRNN, and LSTM architec-
tures to forecast mfonnauon related to wind
in,14RGITMGLTIIS Water quality and de-
mand were also predicted by using TCN and
ENN in Refs."**'** An_ application of LSTM-
based neural networks for correlated time series
prediction was also proposed by Wan et al'*®
Further, carbon dioxide emissions, ﬂood i
or NHj concentration for swine house!™ ivere
also predicted by using deep-learning techniques,
in particular ENN.
Industry: In the industry sector, deep-learning
techniques are also being used to carry out
tasks of different kinds.** For instance, TCN
and BRNN can be used to traffic flow forecast-
ing.'**'” The LSTM can be used for multiple
purposes, such as process planniing,'* construc-
tion equipment recognition'** or to imprové the
performance of organizations."™'" The au-
thors in Ref.'** used a DFFNN to fore: ast bath

TORRES ET AL

6. Health: The use of deep-learning architectures

in the area of health.is common in the past

196202

years. However, time series prediction
using deep-learning models is not very widespread
as time series are generally short in this field, along
with the high computational cost involved in re-
current network training. The authors of Ref.'”
conducted a comprehensive study of time series
prediction models in health care diagnosis and
progaosis with a focus on cardiovascular disease.
Instead, it is usual to apply convolution-based ar-
chitectures or implement hybrid models. For ex-
ample, the authors used CNN to accelerate the
computation for magnetic resonance fingerprint-
ing in Ref”> CNN was also used to monitoring
the sleep stage in Ref.'”® for deteclmg premature
problems as ventricular contractions'”* or to fore-
cast the Sepsis.'™ In Ref” the authors used a
backpropagation network to forecast the incidence
rate of pneumonia. Other network architecture
such as LSTM can be used to forecast the status
of critical patients according to their vital func-
tions.'”" A recent study conducted by the authors
in Ref'® uses some deep-learning architectures
to forecast COVID-19 cases.

. Miscellaneous: In recent years, the TCN has been
one of the most widely checked general purpose ar-
chitectures for time series forecasting, 218190152
However, any of the other network architectures
canbe: apvpl.\ed to time series of miscellaneous appli-
cation domait}s not classified in Table 6. For exam-
ple, CNN and RNN can be used to detect human
activity'® or hybrid models to detect anomalies.'*
Namely, readers interested in cybersecurity can
find a detailed description in Refs."*42%°

~

From the previous analysis of Table 6, two main con-
clusions can be drawn. First, there exist several meth-
ods' that have not been applied yet to particular
application ﬁz]ds Second, the existence of these gaps
ion of research in such lines.

and metal height features in the pro-
cess. The ENN and GRU networks have been
also used, for example, to forecast the useful
life or degradation of the materials.'>1%71%%
Deep-learning techniques are also widely ap-
plied to architecture, as can be seen in the in-
depth study conducted by the authors in
Ref2°! It can be concluded that almost all net-
work architectures have been used, given the
wide variety of problems existing in this area.

Conclusions

Deep learning has proven to be one of the most power-
ful machine-learning techniques for solving complex
problems dealing with big data. Most of the data
mainly generated through smart devices are time series
‘nowadays, and their prediction is one of the most fre-
quent and current problems in almost all research
areas. Thus, these two topics have been jointly analyzed

subito e.V. licensed customer copy supplied and printed for Universidad Pablo de Olavide (SLIO7X00115€)

Downloded by

DEEP LEARNING FOR TIME SERIES FORECASTING

in this survey to provide an overview of deep learning
techniques applied to time series forecasting. First, the
most used decp-learning architectures for time series
data in the past years have been described, with special
emphasis on important practical aspects that can have
a great influence on the reported results. In particular,
it has placed focus on the search for hyper-parameters,
the frameworks for deployment of the different archi-
tectures, and the existing hardware to lighten the
hard training of the proposed network architectures.
Second, a study of the deep neural networks used to
predict time series in different application domains
has been carried out in this survey, with the aim of pro-
vidinga good comparative framework to be used in fu-

13, Z0ang @ Yong LT, Chen Z et A sy on deep learning for big data.
Inf Fusion 201842:146-1

o et & Waber €l eep eaming or e setes
clasfcation. A review. Data Min Knowl Discov 2019:33917-963.

15. Bognal A Lines). Vickers W, etal, 2017. The Uins Uehime sees

com. (last accessed on April 0, 2020)
Mayer R, Jacobsen HA. Scalable deep learning on distributed infra-
sllw.mm challenges, techniques, and tools. ACM Comput Surv 2020;

e I/CRC,

18, Maronna RA, Martin RD, Yohai V. Robust statistics: theory and methods.
USA: Wiley, 2006,

19, FUuTCA ifntell. 2011:24:

164181
20 Shumay B Stffer 0. T s sy and s applications (with R
). Usk: Springer, 201
2 Nyndman RJ, Athanas pwh:) "G Forecating:principles and pracice
Australia: Otexts, 2018,
22 Wong X Kang Y, Hyndman)t . Distibuted ARMA model for i

ture works and to show which a c! have not

8 Mucen A, et al time

been ly tested in some appl

Author Disclosure Statement
No competing financial interests exist.

Funding Information

This work was supported by the Spanish Ministry of

Science, Innovation and Universities under project

TIN2017-88209-C2-1-R. Also, this work has been

partially supported by lhe General Dlrectorale of Sci-
logical D

3. T
series Mining tlons o tne seris subequerces e dynic
time warping. ACM Trans Know Discov Data 2013:7:
24, Torres JF, Galcia A, oo et Ascadble ipp«m(h basedon deep

2018:25:335-346.
25. Galcia A, Talavera-Llames AL, Troncoso A, et al. Multistep forecasting

2019163830-841.
26. Tolavera-Llames R, Pérez Chacdn R Troncoso A, et al. Big data time se-
e frcstng basedannesest neigbors distibuted computing

vith spark Knowl Based Syst 2018:161:12-25.
2. Taerd Lhmex R, Pérez:Chacon R, Troncoso A, Martinez-Aarez F.
NHKWNN: A novel mukivarite and mul-output weighied narest

entific Research and i
(DGRSDT, Algeria), under the PRFU project (r
LO7UN060120200003).

: C00

References
1. lageros A, P K, tegio . e a Efcent oTbasedsenor big
P Fu

puting 2019.353:56-7:
28, Pérez-Chacén R, encio Corts G, Martinez Aarez . et o, Big.

‘and its application o the electricity demand. Inf Sci 2020;540:

160-174.

26, Rumelhart D, Hirton G, Wiliams R. Long shortterm memory. Nature
1986,323:533-536.

Gener Comput St 201682 iy

30. L in time. Energy Rep . 5
31, Hochreiter S, Schmidhuber J Long shortterm memory. Neural Comput

2. Patl WP, Atique M.
boysfor e senumentad afect ‘analysis in social medi

2 mug: ‘Gulcehve C, ChoK, etal. Empirical evaluation of goted recurrent
ks onsequence modelng i Proceedings ofthe Newrl
eformation Procesing Systems, Canada, 2014 pp. 1-
33, Cho K, Merrenboer BV, Bahdanau D, et ol. On (he plupemes ofnewrl

20208107
3. Goma J. Krwwledge discovery from data streams. UK: Chapman &
HallCRE,
a, AHilrahOV. PD, Muhaids I
data: A review. BIg Data Res. 2015:287-93.
5 Dhar¥. SonC. Bt P. Transorming inance ino vison:
Big Data. 2019;
Sareans.

6 Nawren G Dugoley S Bobdk W, ot Machine, Ieaming and deep
learning frameworks and fibraries for large-scale data mining: A sur-
vey. Anif Intell a2t

SSST-8. Qatar, 2014. pp. 103-1

34, Bahdanau D, Cho K. Bengio Y. Newral machine warsiation by oty
learning to align and transiate. In: Proceedings of the International
Conference on Learning Representations, 2015, pp. 149-155.

135. Xu K, B2 J Kiros R, et al. Show, attend and tell: Neuralimage caption
generation with isa tntio, I Proceecings o the International
Conference on Machine Learning, 2015, pp- 2048-20

36. Fuk

7. MajiP, Mullns R
convolutional neural networks. Entropy. 2018:20305.

8. Schmidhuber J. Deep learning in neural networks: An overview. Nevral
Netw. 20156185-117.

9. Makidaki 5, Wheebwight SC. Hyndiman R Foreasing methods and
applcations, USA: John Wiley and Sons, 2008

m of patter recognition unaffected by shift in posiion.
501 Cybarn 198036:193- 202,
37. Zhang W, Hasegawa A, Matoba O, etal. shifinarant neusl nevork
aming and f Neural
Netw I 19921709257.268
38

10, Chathed C Uk Cha
HaIlCRE, |
1. ok GES s G T sres analyss foreca
john Wiley and Sons, 2008.

o \ 3 sk Apre, 201
39, pbadi "k Rgaril & Barhar P, et o, 2015, Tensorflow: arge-scale
‘machine learing on heterogeneous systems. Available oniine at
Apiil 30, 2020

2 3G, Riquelme X

40, Candel A LeDellE, \g with h2o. Available.

on data mining appled series
forecasting. Energies 20158:13162-13193.

online at hutp/h2o.fresources. (ast accessed on Apil 30, 20201

subito 8 V. licensed customer copy supplied and printed for Universidad Pablo de Olavide (SLIO7X0011E)

Dowalosded by

1. Eclipse Deeplearningd) development team. 2016, DL4J: deep learning
for Java,

TORRES ET AL

68. Ma B, Li X, Xia ¥, et al. Autonomous deep learning: A genetic DCNN

deeplearning. (st accessed on Api 30, 2020).
42, Pastke A, Gross 5, Massa F, et al. Pytorch: an imperative style, highper-
fomancedeepesing oo i Proceedingsof the duarces n
1.32, 2019. pp. 8026-6037.
13,30 Shehamer & Domshet et o Convlutond crecure for
fam e embaddng. s e,

as

it hitpsygithub.comiNervanaSystems/neon, 2017. o
+ accessed on April 30, 2020).
45. Tokui 5, Okuta R, Akba T, et al. for

65, hanof,
ANN hyper-parameters optimization by using genetic algorithm. in:
Proceedings of the IEEE International Joint Conference on Neura]

tworks. USA, 2018, pp. 1-8.

70.ternedy K Ehethan L paile swam optimiztion, b rcesdingsof
IneronalConertce on Wl Networks Vol 4, USA. 1
Pp. 1942-1948.

71. Stanley KO, Mikkulainen R. Evolving neural networks thiough aug-
menting topologies. Evol Comput. 20021099- 127,

n

Torres JF, et . ¢

scelrating he esearch cyce i Procedings o
fernce onKnowdedge Dicavery nd Oura
on.

9 2019, 99,2002~

48 Toewo Development Team, Theano: A Python framework for fast
computation of mathematical expressions. arXiv e-prints, arXiv:
1605.02688, 2016.

a7, m»q. UMY,k Merwcs A e sod et macineleaing
libra gencous distributed systems. arXiv e-prints
191201276, 2015

48801 Lo, Zhang K.t . 2019, 0 Opens nurlnetwork exchange.

19 Propagation Model Big Data 2020,8308-322

73, Ranjit MP, Ganapathy G, Sridhar K. et al Efficient deep learning hyper-
parameter tuning using cloud infrastructue: ntelligent distributed

oing with n:

proceedings of Intemational Conference on Cloud Computing. USA,
2019,

74, Bargstra J, Yamins D, Cox DD, Making a scence of model search
hyperparameter optimization in hundreds of dimensions for vision
architectures. In: Proceedings of the Interational Conference on

o
o Jne 15,2000
IA

2013, pp.
75. Camero A, Toutouh J, Alba E. Diopt: Deep learning optimization ibrary.

i Ptmeedmgsdlht ACM SIGKDD International Conference on
\owledige Discovery and Data Mining. USA, 2016, pp. 2135-2135.
50, Chollr 7 2015 Ker Mulable crine st hrpsikeasio
1. Duepind rviin. Somoe. 2
52 Guo J, He H, H and gluonnip: Deep learning in com-
e ion st e onguage procesng.) Mach Learn s 2020

53, et Shalle 1 Naco Z el
for deep learning, arkiv e prints, arXiv1910.05446, 2019,
54. You K, Long M, Wang J,Jodan M. How does learning rte decay help
‘modem neural networks? In Proceedings of the Intemational Con
ference on Learning Representations, 2019, pp. 1~14.
55 Snh 5, Sogh T, Snh ¥, Vrma A, Epoch uial

ankiv e-pint
76. Autonomio, Talos. Avalable online at hitp:/github com/autonomiol
wlos, 2019,
77. Balandat M, Karrer B, Jiang DR, et al. BoTorch: Programmable Bayesian
kv e 019,

78. Eggensperger K, Feurer M, Hutter , et al. Towards an empirical foun-
dation for assessing bayesian optimization of hyperparameters, In:
USA, 201

7. Wnng e WelGY, Broks . Berchmonking TP, GPU,and CPU ltfrms
fordeso lewio a0 i, Skh9O7 07D, 2019
80. YuD, Wang Y, LiuH, et al. Systes fon of PEM fuel cell using an
mproved inan ncurs ok nd 8 new e optimizaion o
ithm. Eneray R

by St rgansed map (SOM). Comput Geosel 2010 14199

s6. Mi;mx D, Luschi C. Revisiting small batch raining for deep neural
tworks. aXiv e-print, arkiv:1804.07612, 2018.
57, Sha 1, Abmad), Shah 1, et a. Ipoct of varying newrons and hidden

81, Zheng Y. Yao Z, Zhou H, et al. Power generation forecast of top gas
recovery turbine unit based on Elman model. I: Proceedings of the
IEEE Chinese Control Conference. USA, 2018. pp. 7498-7501.

82, Ruiz LGB, Rueda R, Cuéllar MP, et al. Energy consumption forecasting

i Expert

In: Procee

1gs of the IEEE International Multitopic Confrence. USA,

85-193.

58 Oing 8, Qi 4 Zow . Ao functions and their characteistics in
of the C

5t Appl.]

83. Wang), Lv Z,Liang Y, et al. Fouling resistance prediction based on GA-
Elman neural network for dirculating cooling water with electromag-
netic anti-fouling teatment. J Energy Inst. 2019,92:1519-1526.

s U DuL_ etal. Anindirect RUL

Decsion Conference, USA 2018, p. 18361641

under vibration stress using Elman newral network.Int J Hydrog

59, Sutskever |, Martens J, Dahl G, et al. On the

Energy. 2019:44:
85. Yu Y, Wang X, Brindi

Conference on Machine Learning, 2013. pp. 1139-114;

60. Kumar SK. On weight iniilization in deep neural networks. arXiv
eprints, arXiv:1704.08863, 2

61, Srivastava N, Hinton G, Krizhev:

residents load forecasting considering human comfort inde. J Elecs
Eng Technol. 2019;14:2315-2322.
86. LI D, Wang H, Zhang Y, et l. Power grid load state Information per-

v el mem o oveiung. o Lo R V015
1029-1958.

62. Ng AY. Feature selection, 1 vs. I2 regularization, and rotational invari-
ance.n:Procedings o the AGW nsratons| Conernce on
Machine Learning. USA, 20(

65 Morol bonk Vinout 2 sehoid . Convoluons ermel et

E

ey pp. 1-9.
Zaniolo L, Marques O. On the use of variable

nology
based on Elman neursl network.In: Proceecings of information
Technalogy, Networking, Electronic and Automation Control Confer-
ence. USA, 2019, pp. 914-917.
87, AbdelNsser M, Mahmoud K. Accurate photoveltaic powes forecasting
models using deep LSTM-RNN. Neural Comput Appl. 2019312727
o

2740,
8. Widabath A AL tur et Forscaing ot dmesres
ing LSTM and mii-batches. In: Proceed ta i

neural networks. Multimed Tools Appl. 2020,79:13581-13598.

65, Ounampud b ey Vs Efectsof nackng n LT nd Ok,
00 o, 470010017208, 20

66. ZhuH, An Z Yang C. et al. mmnunq the number o channes forthe
cony

echnologes, 020, p. 121-125.

59, Goo M. L1) Hon F, o Day-ahead power frecasing i a arge-scale
Shetovokak pont based o weathr cosiaton g L5TH.
Energy. 2019:187:115838.

90. Muzaffar 5. Afshari A. Shortterm load forecasts using LSTM networks.

67, Sheree . Wil &, Sabrn s Euaaton of pooling npev.\bons in con-
volutional architecture o

91 Song X, Liu Y, Xue L et al Time-series well performance prediction
e Jpe

il Neursl Ntwrks. USA, 201, pp. 93101

i Eng. 2020,186:106682.

Subilo €. V. licensed customer copy supplied and printed for Universidad Pablo de Olavide (SLIO7X00115E)

Dowaladed by

DEEP LEARNING FOR TIME SERIES FORECASTING

92. Wang Q. Du Y, Wang J LSTM based long-term energy consumpiion

precicuon wih periodiciy. Energy. 2020:197:117197.

115, Feng 5. Dynamic facial sress recognition In temporal convolutional
nework. I Proceedings of e Communiatons i Compes and

95, Gokhan A, Yimaz E. Unel M, et a.
engines using gated recurrent unit networks. IFAC Papers Online.
2019:52:544-549.

Vau W, Liao W, Mizo J, et al. network o

forecast shortterm load considering impact y price. Proc
Energy Proc. 2019,158:3369-3374.

2019, pp. o8-
116, Zhang Y, Complmerer . Liang X etal Dlaled temponal rdam:ul
ools
ol 35261,
117, Interdonato R, R.etal. DuPLO:

Learning architecture i ume suies anvterion 5785) Pt

95 Tng X OuY Wang
layer jonal recurrent neural network. IET Gener Transm
Dt 201913.3647-3854

e Yink O . Financal time series prediction based on deep
ng. Wireless Pers Commun 2018102683-700

9. Shao Z. Zheng Q, Yang S,

Jytics. In: Proceedings of the IEEE Sci-

a
ovel BELM bas
anda comparatveanac snm ‘on multi-ayer BELM and LST.
Energy Econ. 20208610464
97. Qiu X, Ren Y. Suganthan PN " L Empiical moce decomposion baied

Soft Comput J. 2017:54.246-255.
98, Qiu X, Zhang L, Ren Y, e al. Ensemble deep learning for regression and
i ie the IEEE i

Stock

antlic eeig on Ecvicat Electronics and Biomedical Engineering
“amputer Science. USA, 2019. pp. 10057-10059.

10 uy.mm 84, Havish RDS, Nair B. Applicability of deep leaming madels
for stock price forecasting an empircal study on bankex data. Proc
Comput Sci. 2018143:947-953.

121, fang M, Uu J, Zhang L, etal

USA, 2014,

algorithms. Physica A
122, Wu W, Weng Y, FuJ et L Preliminary study on interpreting stock price

. M.mmmxmnsmnsml

Scence. Vo, 1053

imemnitency unp tiona! newral network. lnt J Elects
Fownt Energy Sy 2020716105576,

USA, 2019. pp. 476-487.
23. Ormoloye (0, Sung MC, Ma . et

ta Compuing the effcvenes o

100, Mishra K, Basu S, Maulik U.
1.2019;

ice Indi zonlxyl\zna

11941234-241.
101. Qlao W, Yang Z Forecast the electiciy price of US. using a wavelet
transform-based hybid model. Energy 2020193116704,

ARl 116233-38
103, K. Cho 8 predcog residential energy (oﬂwmpmn using CNN-
ol networks Energy. 01516272-81

104, Shem Yo, Wang K. o bus load forecasting method
based on can-gru neural network. Lot Notes tec Eng 20205851
.

105. AKandari M, Ahmad L Solar power generation forecasting using en-
Semble approach based on deep learning and statstical methods.
‘Appl Comput Inf, 2020%:1-20.

106, Kong 2. Tang 8. eng L. t al. Condition moritoring of wind turbines

124 Mawevllm AV.Deepeaming aigorhms forestmating Lyspunoy ex-

Proceedings o ntemational Conference Siabty and netons of
Noriinear Control Systems. USA, 2018. pp.

125, g P Pl e series Inl«isl\nga deeplearing

rosch.Int) Mach Learn Comput. 2017711

126, Kera . Padey . Stock mrket pm:. o vsing Optimized e
‘ConvL.STM Model. 8g Data 20208:5-

12, WL LY Wang X et Freang @ Fores ime seies da usedon
deep leaming. Proc Comput Sci 201914764765

125, e Yo a0 YA deep e ﬁwmﬁmmaumwn
using stacked autoéncoders and long:short term memory. PLos One.

neural networks and gated recurrent units. Renew Energy 2020,146:
68.

2017:12:0180944.
129, Munkndais L M, Theera-Umpon . s VAR.GRU A ybrid modelfox
Notes Artif Intel
2020:12034322-332.

130, Chen CT, Chiang LK Huang YC. et al. Foecasting inteaction of ex-

760-7¢
107. Wang 5, Zhang Z, Ren ¥, e al. UAV AFsAEiman

i e International
KSCE J Civil Eng. 2020,24:19-29. Conference on Agents. USA, 2019. pp. 69-72.
Sarkar . Lore KG, Sarkar S, et . 19, Gerad 2, Lozaar M. ntegration of princiol componentsmlyss and
P sablanca

g Healh Manugerent Soc-ﬂy USA 2015. pp. ghot¥is

Proc C i 3
132.Wong Q.o W, Huang .t a Enhancing intadey stock pice manip-

109. Ma X, Dal.

133. Long W, Ly LC\AL -Deep lemingbied fesure engieeringfor sock
iction. Know! Based Syst. 2019,164:163-173.

peed predic-
tlon.Sensos 2017 17818,
110. Chen W,
un Vet postion ot and convlutona et etwork

(ocomputing 2019359384-394.
1.l &, erdpato .G aar el Comding Sentinel-1 and

Sens. 2019;15811-22.
na Temazas G, Ratchs

138D T e o . € Wind s s soptoach ing

Energy. 2015157:183-194.

135, YU Y. Xung .t L Dot gt e erm wid oeed
forecasting by wavelet packet decomposition and Elman newra! net-
o3 ng Eny ndus herodyn, J0TB7S136-143-

136, L H, Wei MX,Fei LY. Wind speed forecasting method based on deep.

nt L2019;

‘wavelet ansform, long short term

memory el network and Eiman vl renwak. Energy Conv

-3662.
113, Wo W, Zhang J, Xie H. et al. anery

Comput Biol Med 2020:118:103657.
114, Miao Y, Han J, Gao Y, Zhang 8. ST-CNN:Spatiak Temporal Convolutional
in videos.

1. g

s oo S Pl R 20702719428-19446.

138. Zhang L. Xie Y, Chen A. et a. A forecasting model based on enhanced
Lect Notes Eledtr £

2019125113118

201951865-74.

subiio e V. licensed customer copy supplied and printed for Universidad Pablo de Olavide (SLIO7X00115E)

Downloaded by

20

139. Huang ¥, Shen L. Eiman

TORRES ET AL

163. BohanH, Yun 8. s

H

Xao D, Hou's, L W2, et al. Hourly campus water demand forecasting
using hybrid EEMD-Eman neural network model In: Sustainable

Environmental Earth Sciences. USA, 2019. pp. 71-80.
141, Shen W, Fu X, Wang R, et aL. A prediction model of NH3 concentration

sition and Eiman

ey Commicadon USA 2015 o5 20,323
164, Fasas o Vleads T oo b, . Frecstg bt and metal
height features in electrolyss process. n: roceedings of the Inter-
national Conference on Distibuted Computing i Sensor Systems.
2019. pp. 312
165, Jang P, Chen C, i X.Time seies predicion fx evhsins o omplex
systems: A deep learning approach. In: Poceedings of the

142, Wan X, Yang Q. ang P, et al. A nvom o ot e e ol
flood network

ontrol and fobotics Engmtetmg. 206,

error distibutions. Water Resour

p.1-6.
166. Canizo M, Triguero | A Conde, et al. Mult muki-ime

Wan 1 Gu 5.1 K et o CTSLSTM. L3TM based neurd ntwrks fr
corelatedtime series prediction. Know Based Syst. 2019:191:105239.
Freeman 85, Taylor G, Gharabaghi B, et a. Forecasting air quality time.
series using deep learning. J Ar Waste Manage Assoc. 2018:63856-

B

145. De-Melo GA, Sugimoto ON, T

2019.363246-260.
167, HuangL.Hun C W e o Tl v pedcion based on k-
s GS sy dc by smponlcovel work.
ile Netw Appl. 2020;
168, W P, Sun J,Chang X, et o Oodiven reduced e modl with

flow forecasting: LSTM and GRU ks ocu. 1€ o
Trans. 201917:1978-1986.

Mech
Eng. 2020360:112766.

146. Chen), Zeng GQ, Zhou W, et
deep learing time d

169. Varona 8, Monteserin A, Teyseyre A. A deep learning approach 10 au-
Pers Utiqui-
554

17, NuZ Yu L‘hng W e Wind gt forecastiog uig Wiknion bed
gatedtecurnd et network. Enegy. 070,196
148, UW,

man 5. Oay-ahead buiding level load

vt g dewy g v e vadares imescres techniques.
oy 20152961078.1085

. aa slm 08, Schmidt 0, da Costa CA, da Rosa Righ R, Eskofier 8. Deep-

149, Peng Z, Peng s, Fu L etal.

for the eary de-
o o s &

Manage. 2020207:112524.
0 X, Yu X, Wang X, et al. Prediction for time series with CNN and LSTM.
Lect Notes Electr Eng 2020;582631-641.
151. Magsood H, Mehmood I, Magsood M, et al. A local and global event
¢ g deeq

g

lesring bt f Marage. HZ0S0432451,
O'Shea T), Roy T, Clancy TC. Over-the-air deep leaming based radio
Sl cossicaton IEEE) Selet Topis Sianal roces, 21812.166-
75

©

Syst Appl. 2021:165:

113905,

172. Yu W, Kim Y, Mechefske C. Remaining useful lfe estimation using a bi-
directiona recurrent neural network based autoencoder scheme.
Mech Syst Signal Process 2019,129:764-780.

173. 841 C, Pham N, Vo A, Tran A, Nguyen A, Le T. Time series forecasting for

diseases. In: Proceedings of the Intemational Conference on the
Development of Biomedical Engineering in Vietnam. USA, 2018.

Pp. 809-818.
174. Liu Y, Huang Y, Wang J, et al. Cetecting premature ventricular contrac-
01823

153. Zhang Y, Thorbum PJ, Fitch P. Multi-task
work for predicting water quality sensor data. In: Proceedings of

Information Science. USA, 2019. pp. 122-130.
154 Sun Y. ZhaoZ Ma .t o Shorttmescale gravitatons micrensng
events model,

66-73.

175. Hoppe E, Korzdorfer G, Warf T, et al Deep learning for magnetic reso-
nance fingerprinting: A new approach for predicting quanitativa
parameter values from time series. n: Studies in Health Technology

e Compn S 20V B30
. LiuH, MiX LY, etal.

Vol. 243, Netherlands: 105 Pres, 2017. pp- 202-206.
176, Chambon 5 Gaier M, Amal . ot A dsp laring ciecure

forcatiog el ing sinular secim sols cltons
‘and support vector regression. Rergw

ing multivariate and multi-
ol sees EEE Trans Newtl Syt 3nd ot Eng. 201626

d EL e al. Ealy detection of sepsis

56. LiX, Zhang L Wang 2, et o, o

d event sequences.

memory and Elman neural networks. J Energy Storage. 201921510~

157. Yang L, Wang F, Zhang J, et al. Remaining useful Ife prediction of ul-

178 ChenX He . Wu X etal Sleepstagng by idectonal long sharterm
convoluton neuta network.Fut Gen Compu yst. 2020105
Tooh
175, Liang liarg M,

swarm optimization. Measurement. 2019;143.27-38.
8. Rashic KM, Louis J. Times seres data augmentation and deep learning
for construction equipment activity recogrition. Adv Eng Inform.
19;
159. Huang X, Zanni- Metk . Gémileus & Exhancing dsp laring ity
n to manufactuing tme series analysis.

ppl
ot 56, 201915943744
160, eniyer N Lahann J, Emich A, et al. Time seres clasifiation (sing

roninea time series i on e loriog e 8 nee et
usa,

160, S5, oaobar 5, e .t Cracin the s’ code:
Assessing time seres nture of ehv dats, nd using deep learning or

Proc Comput Sci 2017:114:242-
161. Wang , Chen J Wang H.et al. Degradation evalution of lewing
19:146385 -

162, w.r}g J,Yan Ui C, et al. Deep heterogensous GRU model for predictive
prediction.

Comput Indus. 2019,111:1-14.

2019.pp. 1-4.
181 Z:lmnl A.Hamou, Dl A Sun . Desp leaming mthods o -
tudy. Chaos Salit

Fract 2020140110121,

182. Zhang X. Shen F. Zhao J, et l Time series forecasting using GAU nevral
network with mult-ag after decomposition. Lect Notes Comput Sci.
2017:10638:523-¢ sx:

183, Zhao X, Xia L. Zhang J, et al. Artifcil neural network based modeing on

nieciond and Ndlr«lmal pedestian flow at staight comidors.
Physica A, 20205

Subilo V. licensed customer copy supplied and printed for Universidad Pablo de Olavide (SLIO7X00115E)

Dawnlucded by

DEEP LEARNING FOR TIME SERIES FORECASTING

184, Imamverdiyev Y, Abdullayeva F. Deep learning method for denlal m
service attack detection based on restrcted boltzmann machi
Data. 20186:159-169.

185. Munic M, SiGdqui SA, Dengel A et al DeepAnts A deep leaing ap-
roch

198 Sz OB Gl M, Ozayogs A Fnancil e sees forecsing
with deep learing: A systematic erature review: 2005-2019. App
So Comput. 202090-00181
195 Shen Z Zhang Y, Lu et A nove me s orecasting el with
e

186. Zehm v. s:uny o Ozanyan K8

20. Wang Y. Zang O LY et . Enhincig tarsporaton sptens i

93 desplearing ippvoa(h n: Procecdings of EEE
Sensors. usx 2017. pp. 1-
187, bendong 2 Hoondhang L. Shaaneng €. etal. Convolutional neural
networks for time seris classifcation. J Syst Eng Electr, 2017,28:
162-169.
188. Jiang W, Wang Y, Tang Y. A sequence-to-sequence transformer pre-
‘mised temporal convolutional network for chinese word segmenta-
fon. In: Proceedings of Paralll Architectures, Algorithms and
Programming. USA, 2020, pp. 541-552.
189, Shao J, Shen H, Cao Q. et a. Temporal convolutional networks for
populaity prediction of messages on social medias. Lect Notes.
15 015138147,

Transp Res Part C Emerg Technol. 2019.99:

vy

201, Karmilaris A, Prenafeta-Bol i FX. Deep learning in agriculture: A survey.
Comput Elect Agric. 2018,147:70-90.

202, Rui Z, Rugiang Y, Zhenghua C, et al. Deep learning and its applications to
machine health monitoring. Mech Syst Signal Process. 2019;115:

13-237,

203. Mahdavifar 5, Ghorbani AA. Application of deep learning to cyberse-

curity: A survey. Neurocomputing 2019:347:149-176.

Torres JF, Hadjout D, Sebaa A,

190, Chen ¥, Kan ¥, Chen Y, et al. g with temporal o
comvoluional neursl nﬂwovl, Neurocomputing. 1020;9-)49\ 501 Big Data 9:1, 3-21, DO 10.1089/bi9.2020.0159.
191, XiR, K

seres for humm bﬂw\ly reogrton. b Prceedngs oime e

pp. 53381 -53396

192, We)
o for step prediction of chaotic time serles. Comput AppI
Math. 2020:39:

193, Rodrigues F, Markou , Pemva FC. Combining time-series and textual
data for taxi demand prediction in event areas: A deep leaming ap-
proach. Il Fuson.201645.120-129.

194, Kalinin MO, Lavrova DS, Yarmak AV. Detection of threats in cyoerphys-
fal "

time series. Autom Control Comput Sci. 201852:912-917.
195. Wang H, Lei Z. Zhang X. et al. A review of deep learning for renewable

196, W2 Tang) Wang Z et . Deep ks for image-based e de
nd diagnosis—A survey. Pattem Recogn. ;1
197, Ao AW Benoh A Lambert . Tmed g skl dee evming or
action recognition n video sequences. Pattern Recogn. 2020;104:
107383,

Abbreviations Used
‘bidirectional recurrent neural network
convolutional neural networks

0= ol procesing urit
DFFNN = deep feed forward neural networks
deep recurrent newral network
Elman network
GPU = graphic processing unit
GRU = gated recurrent units

= intelligence processing unit
m

M = long-short term
NLP = natural language processing
RNN = recurrent neural network
TCN = temporal convelutional network
TPU ~ tensor processing unit

subllo e.V. icensed customer copy supplied and printed for Universidad Pablo de Olavide (SLIO7X00115E)

128

Informe sobre las publicaciones

4.2. Congresos internacionales

4.2.1. Deep Learning-Based Approach for Time Series Fo-

recasting with Application to Electricity Load

Tabla 4.7 Datos del articulo: Deep Learning-Based Approach for Time Series
Forecasting with Application to Electricity Load

Autores
Congreso
Publicacion

Ao
Paginas
Volumen
DOI
ISBN
Ranking
Citas

Torres, J. F., Fernandez, A. M., Troncoso, A., and Martinez-
Alvarez, F.

International Work-Conference on the Interplay Between
Natural and Artificial Computation

Lecture Notes in Computer Science book series. Springer
International Publishing.

2017

203-212

10338

10.1007/978-3-319-59773-7_21

978-3-319-59773-7

Nacional

39 (Google Scholar)

Deep Learning-Based Approach for Time Series
Forecasting with Application to Electricity Load

J.F. Torres, A.M. Fernandez, A. Troncoso, and F. Martinez-Alvarez()

Division of Computer Science, Universidad Pablo de Olavide, 41013 Seville, Spain
{jftormal,amfergom}@alu.upo.es, {ali,fmaralv}@upo.es

Abstract. This paper presents a novel method to predict times series
using deep learning. In particular, the method can be used for arbitrary
time horizons, dividing each predicted sample into a single problem. This
fact allows easy parallelization and adaptation to the big data context.
Deep learning implementation in H20 library is used for each subprob-
lem. However, H20 does not permit multi-step regression, therefore the
solution proposed consists in splitting into h forecasting subproblems,
being h the number of samples to be predicted, and, each of one has
been separately studied, getting the best prediction model for each sub-
problem. Additionally, Apache Spark is used to load in memory large
datasets and speed up the execution time. This methodology has been
tested on a real-world dataset composed of electricity consumption in
Spain, with a ten minute frequency sampling rate, from 2007 to 2016.
Reported results exhibit errors less than 2%.

Keywords: Deep learning -+ Time series - Forecasting - Apache spark

1 Introduction

Time series forecasting is a task of utmost relevance that can be found in almost
any scientific discipline. Electricity is not an exception, and much work is devoted
to predict both demand and prices [10]. Achieving accurate demand forecasts is
critical since it can be used in production planning, inventory management, or
even in evaluating capacity needs. In other words, it may lead to insufficient or
excessive energy production, thus reducing profits.

A novel approach based on deep learning [5,12] is proposed in this article to
forecast time series, with application to electricity demand. Deep learning is an
emerging branch of machine learning that extends artificial neural networks. One
of the main drawbacks that classical artificial neural networks exhibit is that,
with many layers, its training typically becomes too complex [9]. In this sense,
deep learning consists of a set of learning algorithms to train artificial neural
networks with a large number of hidden layers. Deep learning models are also
sensitive to initialization and much attention must be paid at this stage [13].

The main idea underlying the method is dividing the number of samples to
be simultaneously predicted (horizon of prediction) into different subproblems.

© Springer International Publishing AG 2017
J.M. Ferrandez Vicente et al. (Eds.): IWINAC 2017, Part II, LNCS 10338, pp. 203-212, 2017.
DOI: 10.1007/978-3-319-59773-7_21

204 J.F. Torres et al.

Every subproblem is independently solved making use of different pieces of the
historical data. The implementation of the deep learning method used is that of
the well-known H20 library, which is open source and designed for a distributed
environment [2].

It is worth noting that this strategy is particularly suitable for parallel imple-
mentations and it is ready to be used for big data environments. Furthermore,
in order to speed up the whole process, Apache Spark is used to load the data
in memory.

The performance of the approach has been assessed in real-world datasets.
Electricity consumption in Spain has been used as case study, by analyzing data
from 2007 to 2016 in the usual 70-30% training-test sets structure.

The rest of the paper is structured as follows. Relevant related works are
discussed in Sect. 2. The methodology proposed in this paper is introduced and
described in Sect. 3. The results of applying the approach to Spanish electricity
data are reported and discussed in Sect. 4. Finally, the conclusions drawn are
summarized in Sect. 5.

2 Related Works

This section reviews relevant works in the context of time series forecasting and
deep learning.

Some studies are currently applying deep learning to prediction problems.
Ding et al. [4] proposed a method for event driven stock market prediction.
They used a deep convolutional neural network, at a second stage, to model
both short-term and long-term stock price fluctuations. Results were assessed
on S&P 500 stock historical data.

A novel deep learning architecture for air quality prediction was first intro-
duce in [8]. The authors evaluated spatio-temporal correlations by first applying
a stacked autoencoder model for feature extraction. Comparisons to other mod-
els confirmed that the method achieved promising results.

A meaningful attempt to apply a data-driven approach to forecasting trans-
portation demand can be found in [1]. In particular, a deep learning model to
forecast bus ridership at the stop and stop-to-stop levels was there adopted. As
main novelty, the authors claim that, for the first time, the method is only based
on feature data.

Deep learning based studies can be found for classification as well. Image
processing has been shown to be one of the most fruitful fields of deep learning
application. A successful approach for image classification with deep convolu-
tional neural networks was introduced in [7]. They classified 1.2million high-
resolution images achieving top errors in the ImageNet LSVRC-2010 contest.

The authors in [3] proposed a deep learning-based classifier for hyperspectral
data. The hybrid method (it is also combined with principal component analysis
and logistic regression) was applied to extract deep features for such kind of
data, achieving competitive results.

Deep Learning-Based Approach for Time Series Forecasting 205

Tabar and Halici [14] introduced an approach based on deep learning for clas-
sification of electroencephalography (EEG) motor imagery signals. In particular,
the method combined convolutional neural networks and stacked autoencoders
and showed to be competitive when compared to other existing techniques.

Finally, some works relating to electricity demand forecasting are also dis-
cussed. Talavera et al. [15] proposed a forecasting algorithm to deal with Spanish
electricity data. The algorithm was developed under the Apache Spark which is
an engine for large-scale data processing framework [16], and was applied to big
data time series. Satisfactory results were reported.

Electricity demand profiles were discovered as initial step for forecasting pur-
poses in [11]. Spanish data were also analyzed and, as happened in the afore
discussed study, the method was designed to be able to evaluate big time series
data. Relevant patterns were discovered, distinguishing between different seasons
and days of the week.

Grolinger et at. [6] explored sensor-based forecasting in event venues, a sce-
nario with typically large variations in consumption. They authors paid par-
ticular attention to the relevance of the size of the data and on the temporal
granularity impact. Neural networks and support vector regression were applied
to 15-minute frequency data for Ontario, Canada.

As it can been seen after the analysis of updated state-of-the-art, deep learn-
ing is being currently applied into a variety of problems. However, to the authors’
knowledge, no method has been developed to forecast electricity-related time
series and has been conceived for big data time series forecasting. Therefore, the
conduction of this research is justified.

3 Methodology

This section describes the methodology proposed in order to forecast time series.
Apache Spark has been used to load data in memory and a deep learning imple-
mentation in R language, within the H20 package, has been applied to forecast
time series.

The objective of this study consists in predicting h next values for a time
series, expressed as [z1,...,x¢], being h the horizon of prediction, depending on
a historical window composed of w values. This can be formulated as:

[Ter1, g, Tegn] = (6, 001,00 Tpw1) (1)

where f is the model to be found in the training phase by the deep learning algo-
rithm. However, the package chosen does not support the multivariate regression,
therefore, multi-step forecasting is not supported either.

The solution for this is splitting the problem into h forecast subproblems,
which can formulated as:

206 J.F. Torres et al.

o1 = fi(Te, 21, Teowo1) (2)
Tipo = foTe, Tpo1, oo Tp—wo1) (3)

(4)
Topn = fr(®e, e 1, 1) (5)

That is, given w samples used as input for the deep learning algorithm, h
values are simultaneously forecasted. Based on this formulation, each estimation
is made separately, thus avoiding the consideration of previously predicted sam-
ples and, consequently, removing the error propagation. In other words, if the
prediction of previous values would be used to predict the next value, the error
would be higher because the error would be accumulated in each iteration of
the prediction horizon. Also, to create a model for each h value could involve a
higher computational cost than building just a model to predict all values.

The last step consists in obtaining the best model for each subproblem by
applying deep learning and varying the number of hidden layers and neurons
per layer. Once the training for each subproblem is complete, the test set is
predicted.

 — |
PREPROCESS Training - PREDICTION
.. —> i=1
Original dataset : . Xtai
Test
Split T
PREPROCESS
.~ Filter s

Original dataset comsumption Build dataset

' \
! 1
: Spark 1
: - DataFrame H20 frame :
1 o 1
1 = !
: § w h > :
1 g 1
1 S 1
1 o 1
! 1
' 1
\\ ',
PREDICTION Xq,;

.~ Deep N

Subproblem i Learning

 —

Output

Predictions —>;

—> Best Model —,

Y

-

— - ——————

1

1

1

1

1 .

' Training
1

1

1

1

Test

Fig. 1. Tllustration of the proposed methodology.

Deep Learning-Based Approach for Time Series Forecasting 207

Figure 1 shows the full study’s flow, starting with input dataset and ending
with aggregated output. It can be seen that, in its current implementation, an
iterative strategy has been followed since each subproblem is solved after the
previous one is done. However, it is easy to figure out that this strategy can be
easily parallelized and adapted to a big data environment.

It is important to highlight that H20 frame can be created without Spark
dataframe conversion, but this step allocates data in memory and makes the
access more quickly. Also it is important to note that deep learning algorithm
on H20 library has a lot of parameters to adjust the execution. In this study,
some of this parameters have been used. They will be thoroughly discussed in
Sect. 4.2

4 Results

As previously mentioned, a study to forecast a time series of electricity con-
sumption has been conducted. This section presents the results obtained. First,
Sect. 4.1 describes the dataset used for the study. Second, Sect. 4.2 provides the
experimental setup carried out and, finally, Sect. 4.3 discusses results obtained.

4.1 Dataset Description

The dataset considered in this study provides electricity consumptions readings
in Spain from January 2007 to June 2016 with a measure every 10 min, i.e., the
time series is composed of 497832 measurements.

In study, the dataset was only filtered by consumption and redistributed in
a matrix depending of the window size and prediction horizon. The values of
these parameters were set to 168 and 24, respectively. After this preprocessing,
the final dataset has 20736 rows and 192 columns into a 23.9 MB file which was
recorded for further studies.

To perform the entire experimentation, the dataset has been split into 14515
instances for training (70%) and 6221 for test (30%).

4.2 Design of Experiments

In order to assess the performance of the algorithm, the well-known mean relative
error (MRE) measure has been selected. For a matrix of data, the formula is:

Z Z |Upred - Uactuall (6)
r*c

v,
i=1 j=1 actual

MRE =

where 7 and c represents the number of rows and columns on the test set, vpreq
stands for the predicted values and vgcetnq; for the actual values.

As discussed in previous sections, it is necessary to define and initialize several
variables. Variable values have been set to:

208 J.F. Torres et al.

. The size of the window (w) represents the length of the historical data consid-
ered to predict the target subsequence. It has been set to 168, which represents
7 blocks of 4h (1day and 4h, in total). This parameter was set during the
training phase with values 24, 48, 72, 96, 120, 144 and 168, and was found to
be the one with minimum error.

. As for the prediction horizon (h), it was set to h = 24 (4h). Considering a
higher A would turn the problem into a long-term forecasting one, and some
others consideration should then be taken into consideration.

. To apply deep learning, it is necessary to set the number of hidden layers and
number of neurons. The number of hidden layer was set to 3 and the number
of neurons for each one was set to an interval ranging from 10 to 100 with
a step of 10, using a validation set composed of the 30% of the training set.
Then, only the best value was chosen for the analysis.

. A was set to 0.001. This parameter is used for regularization of the dataset.
. Also, two different parameters were set to describe the adaptive rate. These
were p and €, which were set to 0.99 and 1.0E — 9, which are default values
for those parameters, respectively.

. The activation function chosen was the hyperbolic tangent function.

. As for the distribution function, Poisson distribution was the one chosen.

These parameters were chosen based on several tests varying values. Some rel-

evant results are shown in Table 1, in which it can be seen MRE values obtained
for some parameters. For instance, Poisson distribution offers better results than
other options.

Table 1. Errors varying deep learning parameters.

Lambda | Rho | Epsilon | Activation | Distribution | MRE (%)
1 0.9 1.0E-9 | Tanh Poisson 2.56
1 0.99 |1.0E-9 | Tanh Poisson 2.43
1 0.999 | 1.0E-9 | Tanh Poisson 2.49
1 0.9 1.0E-9 | Tanh Gaussian 15.61
1 0.99 |1.0E-9 |Tanh Gaussian 15.61
1 0.999 | 1.0E-9 | Tanh Gaussian 15.57
0.001 |0.99 1.0E-9 | Tanh Poisson 1.84
1 0.99 |1.0E-9 | Tanh Tweedie 4.21
10 0.99 |1.0E-9 | Tanh Poisson 2.69
0.99 |1.0E-9 |Tanh Huber 15.63
1 0.99 |1.0E-9 |Tanh Laplace 15.63

The algorithm has been executed using the dataset described in Sect.4.1.

The computer used to complete this execution has been an Intel Core i7-5820K

Deep Learning-Based Approach for Time Series Forecasting 209

at 3.30 GHz, 15 MB cache, 12 cores and 16 GB of RAM memory working, under
Ubuntu 16.04.

Finally, the dataset was loaded from Apache Spark to allocate it in memory
instead of in disk, thus accessing to the data more efficiently and quickly.

4.3 Electricity Consumption Time Series Forecasting

This section describes the results obtained after applying the algorithm proposed
to the dataset, which were described in Sect.4.1 over the machine described
in Sect.4.2. This test provides a total of 20736 instances and 192 attributes,
resulting in 149305 forecast values.

As forecasting are divided in h subproblems (in this case, h is 24), it is possible
to use different neuron values in each subproblem to obtain smaller errors. In
this study, it was decided to set the possible neurons combinations to 3 hidden
layers, each one with a interval of neurons (10 to 100 with a step of 10), as
discussed in the previous section. Table 2 shows the neuron configurations that
are optimum for each subproblem:

Table 2. Optimum neurons configuration for each subproblem.

Subproblem | Hidden layers | Neurons | Error | Subproblem | Hidden layers | Neurons | Error
1 3 30 0.77 |13 3 40 1.83
2 3 80 1.13 |14 3 80 1.81
3 3 90 1.15 |15 3 90 2.11
4 3 60 1.18 |16 3 40 1.93
5 3 60 1.35 |17 3 70 2.50
6 3 100 1.36 |18 3 70 2.09
7 3 40 1.50 |19 3 70 2.17
8 3 80 1.71 | 20 3 60 2.14
9 3 30 1.88 |21 3 90 2.43

10 3 80 1.76 |22 3 70 2.56

11 3 50 1.66 |23 3 100 2.42

12 3 100 2.07 |24 3 100 2.77

Table 2 summarizes the errors for each subproblem depending of the optimum
number of neurons per layer. This error tends to increase as the subproblem
increases because there exists a gap between the first sample in the historical
data and the sample to be predicted, that is, there immediately after values of
the target sample are missing and omitted during the forecasting process.

Using this configuration of neurons and the other deep learning parameter
values mentioned in Sect. 4.2 the final value of MRE to predict the full data test
has been 1.84%.

Figures2 and 3 are depicted for illustrative purposes. They represent the
best and the worst comparison between actual and predicted consumption on a

210 J.F. Torres et al.

34000

32000 A

30000 ~

28000

Electricity consumption

26000

—— Actual data
24000

—— Predicted data

T T T
0 20 40 60 80 100 120 140
Time (10 min.)

Fig. 2. The best forecast achieved for a full day.

28000 ~

26000

24000

22000 ~

Electricity consumption

20000 ~

Actual data

18000 —— Predicted data

T T T
0 20 40 60 80 100 120 140
Time (10 min.)

Fig. 3. The worst forecast achieved for a full day.

full day (144 measures) in the test set, respectively. It must be noted that some
ripple in predicted data that is present not only in days depicted in the figures,
but in almost the entire test set. This fact is justified because every sample is
independently estimated. A feasible and successful post-processing could consist
in the automatic application of any filter. In short, such a shape for the output
must be further studied in future works.

Deep Learning-Based Approach for Time Series Forecasting 211

5 Conclusions

This work describes a new approach to use deep learning methods as regres-
sors and forecast the electricity consumption for the next twenty four values. It
uses Apache Spark framework to load data in memory and the H20 library to
apply the algorithm developed in R language. On this preliminary study, the
results obtained can be considered satisfactory since errors are smaller than 2%.
However, future works will be directed towards the improvement of the selection
of the best parameters to forecast time series and to scale it to be applied to
big data using a cluster of machines. Also, some post-processing seems to be
necessary to reduce the ripple in forecasted values.

Acknowledgments. The authors would like to thank the Spanish Ministry of Econ-
omy and competitiveness and Junta de Andalucia for the support under projects
TIN2014-55894-C2-R and P12-TIC-1728, respectively.

References

1. Baek, J., Sohn, K.: Deep-learning architectures to forecast bus ridership at the
stop and stop-to-stop levels for dense and crowded bus networks. Appl. Artif.
Intell. 30(9), 861-885 (2016)

2. Candel, A., LeDell, E., Parmar, V., Arora, A.: Deep Learning with H20. H20.ai
Inc., California (2017)

3. Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification
of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(6),
2094-2107 (2014)

4. Ding, X., Zhang, Y., Liu, T., Duan, J.: Deep learning for event-driven stock predic-
tion. In: Proceedings of the International Joint Conference on Artificial Intelligence,
pp. 2327-2334 (2015)

5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

6. Grolinger, K., L’Heureux, A., Capretz, M.A.M., Seewald, L.: Energy forecasting
for event venues: big data and prediction accuracy. Energy Buildings 112, 222-233
(2016)

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097-1105 (2012)

8. Li, X., Peng, L., Hu, Y., Shao, J., Chi, T.: Deep learning architecture for air quality
predictions. Environ. Sci. Pollut. Res. Int. 23, 22408-22417 (2016)

9. Livingstone, D.J., Manallack, D.T., Tetko, I.V.: Data modelling with neural net-
works: advantages and limitations. J. Comput.-Aided Mol. Des. 11, 135-142 (1997)

10. Martinez-Alvarez, F., Troncoso, A., Asencio-Cortés, G., Riquelme, J.C.: A survey
on data mining techniques applied to energy time series forecasting. Energies 8,
1-32 (2015)

11. Pérez-Chacén, R., Talavera-Llames, R.L., Troncoso, A., 1\/Ia1ftl'nez—Alv.’:urez7 F.
Finding electric energy consumption patterns in big time series data. In: Omatu,
S., et al. (eds.) Proceedings of the International Conference on Distributed Com-
puting and Artificial Intelligence. AISC, vol. 474, pp. 231-238. Springer, Cham
(2016)

212

12.

13.

14.

15.

16.

J.F. Torres et al.

Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85-117 (2015)

Sutskever, 1., Martens, J., Dahl, G.E., Hinton, G.E.: On the importance of ini-
tialization and momentum in deep learning. In: Proceedings of the International
Conference on Machine Learning, pp. 1139-1147 (2013)

Tabar, Y.R., Halici, U.: Deep learning-based classification of hyperspectral data.
J. Neural Eng. 14(1), 016003 (2016)

Talavera-Llames, R.L., Pérez-Chacén, R., Martinez-Ballesteros, M., Troncoso, A.,
Martinez—Alvarez, F.: A nearest neighbours-based algorithm for big time series
data forecasting. In: Martl'nez—Alvarez, F., Troncoso, A., Quintian, H., Corchado,
E. (eds.) HAIS 2016. LNCS, vol. 9648, pp. 174-185. Springer, Cham (2016). doi:10.
1007/978-3-319-32034-2_15

Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of the International Conference on
Hot Topics in Cloud Computing, pp. 1-10 (2010)

4.2 Congresos internacionales 139

4.2.2. Scalable Forecasting Techniques Applied to Big Elec-

tricity Time Series

Tabla 4.8 Datos del articulo: Scalable Forecasting Techniques Applied to Big
Electricity Time Series

Autores Galicia, A., Torres, J. F., Martinez-Alvarez, F., and Tronco-
so, A.
Congreso Advances in Computational Intelligence. International
Work-Conference on Artificial Neural Networks
Publicacion Lecture Notes in Computer Science book series. Springer
International Publishing.
Ano 2017
Paginas 165-175
Volumen 10306
DOI 10.1007/978-3-319-59147-6_15
ISBN 978-3-319-59147-6
Ranking CORE B
Citas 19 (Google Scholar)

Scalable Forecasting Techniques Applied to Big
Electricity Time Series

Antonio Galicia, José F. Torres, Francisco Martinez-Alvarez,
and Alicia Troncoso()

Division of Computer Science, Universidad Pablo de Olavide, 41013 Seville, Spain
{agalde, jftormal}@alu.upo.es, {fmaralv,ali}@upo.es

Abstract. This paper presents different scalable methods to predict
time series of very long length such as time series with a high sampling
frequency. The Apache Spark framework for distributed computing is
proposed in order to achieve the scalability of the methods. Namely, the
existing MLIib machine learning library from Spark has been used. Since
MLIib does not support multivariate regression, the forecasting problem
has been split into h forecasting subproblems, where h is the number
of future values to predict. Then, representative forecasting methods of
different nature have been chosen such as models based on trees, two
ensembles techniques (gradient-boosted trees and random forests), and
a linear regression as a reference method. Finally, the methodology has
been tested on a real-world dataset from the Spanish electricity load data
with a ten-minute frequency.

Keywords: Big data - Scalable - Electricity time series - Forecasting

1 Introduction

It is known that advances in technology have meant that the amount of data
being generated and stored is increasing to the point that 90% of the data in
the world have been generated in the last years. The need to process this huge
amount of data has become essential for the evolution of the data mining tools
giving rise to the term big data. On the other hand, an essential component in
the nature of the big data is that they are commonly indexed over time, called
here big time series, and its prediction in future time periods can be extremely
important in diverse areas such as energy, traffic, pollution and so forth.
Nowadays, the main existing frameworks for processing big time series have
been developed by over the top tech companies like Google or Yahoo. Google devel-
oped the MapReduce technology [5], which divides input data for processing in
blocks and then integrates the output information of each block in a single solution.
Later, Yahoo developed Hadoop technology [22], an open code implementation
of the MapReduce paradigm, currently integrated with the Apache foundation.
The limitations of MapReduce in the implementation of algorithms, which iterate

© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part II, LNCS 10306, pp. 165-175, 2017.
DOI: 10.1007/978-3-319-59147-6_15

166 A. Galicia et al.

over the data, have required the creation of new tools, such as Spark [9], devel-
oped by the University of Berkeley and also today in the Apache Foundation.
Spark installed on a Hadoop distributed file system (HDFS) allows in-memory
parallel data processing, achieving a much higher processing speed than Hadoop.
Apache Spark is also an open source software project that allows the multi-
pass computations, provides high-level operators, uses diverse languages (Java,
Python, R) in addition to its own language called Scala, and finally, offers the
machine learning library MLIib [8].

In this work, a collection of scalable algorithms are proposed in order to
forecast big data time series. In particular, representative prediction methods of
different nature have been chosen such as models based on trees, linear regression
and two ensembles techniques (gradient-boosted trees and random forests). The
algorithms have been developed in the framework Apache Spark under the Scala
programming language by using the library MLIib. All the methods have been
tested on a real-world big time series related to energy consumption.

The rest of the paper is structured as follows. Section 2 reviews of the existing
literature related to the machine learning algorithms for big data. In Sect. 3 the
proposed methodology to forecast big data time series is introduced. Section 4
presents the experimental results corresponding to the prediction of the energy
consumption. Finally, Sect. 5 closes the paper giving some final conclusions.

2 Related Work

The prediction of future events has always fascinated humankind. Not in vain,
many of these efforts can be seen in everyday activities, such as weather fore-
casting, the prediction of exchange rate fluctuations or of pollution.

The methods for time series forecasting can be roughly classified as follows:
classical Box and Jenkins-based methods such as ARMA, ARIMA, ARCH or
GARCH [1] and data mining techniques (the reader is referred to [12] for a
taxonomy of these techniques applied to energy time series forecasting). However,
the majority of the data mining techniques cannot be applied when big data have
to be processed due to the high computational cost. Therefore, big data mining
techniques [21,24] are being developed for distributed computing in order to
solve typical tasks as clustering, classification or regression. A brief description
of the main advances is made below.

Increased attention has been paid to big data clustering in recent years
[11,15]. A survey on this topic can be found in [7]. Specifically, several approaches
have been recently proposed to apply clustering to big data time series. Namely,
in [6] the authors propose a new clustering algorithm based on a previous clus-
tering of a sample of the input data. The dynamic time warping was tested to
measure the similarity between big time series in [16]. In [23] a data processing
based on MapReduce was used to obtain clusters. A distributed method for the
initialization of the k-means is proposed in [3].

Regarding classification tasks, several MapReduce-based approaches in big
data scenarios have been recently provided. A MapReduce-based framework

Scalable Forecasting Techniques Applied to Big Electricity Time Series 167

focused on several instance reduction methods is proposed in [20] to reduce the
computational cost and storage requirements of the k Nearest Neighbors (kNN)
classification algorithm. Also, several parallel implementations of the kNN algo-
rithm based on Spark have been proposed in the literature [17,19]. Support
vector machines (SVM) were recently adapted to the field of high performance
computing giving rise to parallel SVMs [4].

In the regression field, there is still much research to be conducted, especially
considering that very few works have been published. For instance, the ensemble
techniques based on trees have been the most studied topic in the literature due
to its easy adaptation to a distributed computing framework. Random forests
have been applied to some particular problems showing a good performance for
high-dimensional data [10]. On the other hand, regression trees have been built
by parallel learning based on MapReduce on computer clusters in [14]. However,
these methods based on a distributed computing have not used for big time
series forecasting in to the best of authors’ knowledge, and therefore, this work
aims at filling this gap.

3 Methodology

This section describes the methodology proposed in order to forecast big data
time series by using the MLIib library.

Given a time series recorded in the past up to the time ¢, [x1,...,2¢], the prob-
lem consists in predicting the h next values for the time series from a historical
windows composed of w-values (h is known as the prediction horizon). This can
be formulated as:

[$t+17$t+27 .. ~,$t+h] = f(mt’xtfla ‘e 7-’75t—(w—1)) (1)

where f is the model to be found by the forecasting method in the training
phase.

Nevertheless, the existing regression techniques in MLlib do not support the
multivariate regression, that is, the multi-step forecasting. Therefore, the first
stage splits the problem into h forecasting subproblems as follows:

i1 = f1(Te, o1, T (w-1))
Tipo = fo(Te, Te1, oo Tp—(w—1))
Tipn = fo(Te, T 1,00 T (w—1)) (2)

The existing possible relations between the h consecutive values x441, ..., Tt yn
are missed with this formulation. However, if the prediction of previous values
is used to predict the next values a greater error is obtained, as the errors are
accumulated in the last time stamps of the prediction horizon. Additionally, to
obtain h models fi, ..., fn to predict h values has a greater computational cost
than the building of a just model f to predict all the values.

168 A. Galicia et al.

The next stage consists in solving each forecasting subproblem in the Spark
distributed computing framework by using the regression methods of the MLIib
library. The main variable in Apache Spark is the Resilient Distributed Dataset
(RDD), which is an immutable and partitioned collection of elements that can
be operated in a distributed way. Thus, every RDD created is split in blocks of
the same size approximately across the nodes that integrate the cluster, as it is
shown in Fig. 1.

CLUSTER
(Executor1

dataSetFile RDD: dataSet L rdd_1

[\ (Executor2
—

rdd_2

.

(Executors

\\ L rdd_3 /

Fig.1. A RDD variable in a spark cluster.

ENEN e

Once the dataset has been distributed, the MLIlib algorithms firstly obtain a
model from each worker node, and later, aggregate the predictions obtained for
each model in a stage called reducer. It is important to highlight that RDD vari-
ables do not preserve the order, and therefore, all instances have to be indexed
to deal with time series by using MLIib. An illustration of the methodology is
presented in Fig. 2.

Split into h : - .
subproblems i=1 PREDICTION i—it1
R N oL EnD |
Yes
SPARK PREDICTION x,,;
A CLUSTER .
7 MLlib

Executorl
i I Predictions
Training set _

Test Set

Executor2

RDD, Training set

Test Set

Executor3

rdd 3

Training set [

Test Set

Fig. 2. Ilustration of the proposed methodology.

Scalable Forecasting Techniques Applied to Big Electricity Time Series 169

Regression methods from MLIlib have been selected according to cover dif-
ferent paradigms such as linear models, models based on trees and, finally, tech-
niques ensembles.

The models based on trees have been mainly proposed because interpretable
results are always desirable for the end-user. Furthermore, the ensemble tech-
niques usually improve the results obtained by a single regressor in addition to
obtain very good results for many real applications. Finally, a linear model has
been selected as a state-of-the-art reference method. A brief description of the
methods used for each paradigm is made below.

Within the models based on trees, a greedy algorithm [18] that performs a
recursive binary partitioning of the feature space in order to build a decision tree
has been used. The tree predicts the same value for all instances that reach the
same leaf node. The root nodes are selected from a set of possible splits, but no
from all attributes, by maximizing the information gain. In this approach, the
possible split candidates are a quantile over the block of the data, which is being
processed by a certain worker machine in the cluster. Moreover, once the splits
are ordered, a maximum number of bins is allowed.

Two ensemble of decision trees have been considered: random forests [2] and
the gradient-boosted trees (GBTs) [13]. Both algorithms learn ensembles of trees,
but the training processes are very different. GBTs train one tree at a time,
being the longer training than random forests, which can train multiple trees in
parallel. Random forests improves the performance when the number of trees
increases, however, GBTs can present overfitting if the number of trees grows
too large.

Random forests is an ensemble of decision trees trained separately in the
same way as detailed above for individual decision trees. The trees generated
are different because of different training sets from a bootstrap subsampling and
different random subsets of features to split on at each tree node are used. To
make a prediction on a new instance, a random forest makes the average of the
predictions from its set of decision trees.

GBTs iteratively train a sequence of decision trees. On each iteration, the
algorithm uses the current ensemble to predict the label of each training instance
and then compares the prediction with the true label by computing the mean
square error. The training instances with poor predictions are re-labeled, and
therefore, in the next iteration, the decision tree will help correct for previous
mistakes.

Finally, a linear regression has been selected as linear model. The well-known
stochastic gradient descent method has been used to minimize the mean square
error for the training set in order to obtain the model.

4 Results

This section presents the results obtained from the application of the proposed
methodology to electricity consumption big data time series to predict the 24
next values, that is, the forecast horizon set to h = 24 (4h). Hence, Sect. 4.1

170 A. Galicia et al.

describes the used dataset. The experimental setup carried out is detailed in
Sect. 4.2. Finally, the results are discussed in Sect. 4.3.

4.1 Datasets Description

The time series used is related to the electrical energy consumption, which ranges
from January 1st 2007 at 00:00 am to June 21st 2016 at 23:40 am. The consump-
tion is measured every ten minutes during this period. This makes a time series
with a total length of 497832 measurements, which have been split into 298608
samples for the training set corresponding to the period from January 1st, 2007
at 00:00 am to September 8th 2012 at 10:30 am and 199080 samples for the test
set corresponding to the period from September 8th 2012 at 10:40 am to June
21st 2016 at 11:40 pm.

4.2 Design of Experiments
The experimental setting of the algorithms is as follows:

1. The number of past values used to predict the 24 next values has been set to
144 (window w = 144), which represents all the values for a whole day.

2. In the linear regression, the stochastic gradient descent method requires an
adequate number of iterations and rate of learning in order to guarantee the
convergence of the optimization technique. In this work, values of 1.0F — 10
for the rate and 100 for the iterations have shown to be suitable.

3. The number of trees and the maximum depth are the main inputs for random
forests and GBTs. Different depth levels have been tested for both ensembles,
namely, four and eight. A number of five trees has been set for GBTs and
values of 50, 75, 100, 125 and 150 trees for random forests.

The experimentation has been launched on a cluster, which is composed of
three nodes: the master and two slaves nodes. Each node has two Intel Xeon
E7-5820K processors at 3.3 GHz, 15 MB cache, 6 cores per processor and 16 GB
of main memory working under Linux Ubuntu. The cluster works with Apache
Spark 2.0.2 and Hadoop 2.6.

Finally, the well-known mean relative error (MRE) measure has been selected
to assess the accuracy of the predictions. Its formula is:

N |~
1 |£L’Z—$Z|
MRE = —Y = _~4

where T; stands for the predicted values and z; for the actual consumption
values.

Scalable Forecasting Techniques Applied to Big Electricity Time Series 171

4.3 Electricity Consumption Big Data Time Series Forecasting

Table1 summarizes the MRE obtained by all methods based on trees when
predicting the test set. A study of how the number of trees has an influence
on the error is made for the random forests ensemble. In addition, the depth of
the trees used for all methods has been analyzed. It can be seen that a greater
accuracy is provided when the depth of the trees increases due to trees more
specific are obtained. By contrast, it seems that the number of trees to be used
by the random forest has not a high impact over the error, and therefore, fifty
trees was a sufficient number to obtain a good performance of the method.

Table 1. MRE for different depth levels and number of trees.

Decision tree | Random forests GBTs
Number of trees | 1 50 75 100 125 150 5
Depth 4 5.1516 4.2823 | 4.2583 | 4.2415 | 4.2415 | 4.2427 | 4.3402
Depth 8 2.8783 2.2005 | 2.1853 | 2.1842 | 2.1810 | 2.1773 | 2.7190

Table 2 shows the MRE for the methods based on trees when a depth of 8 and
a number of 50 trees for random forests has been used. Additionally, it shows the
MRE obtained by means of a linear regression as baseline method to establish
a benchmarking. All non linear methods based on trees achieved better errors
than the linear regression, namely a difference of 5% approximately. Although
the best results are obtained by the random forests ensemble technique, it can
be concluded that the decision tree is the more adequate method in terms of
accuracy and CPU time to predict big data time series.

Table 2. MRE for the test set and CPU time for training.

MRE (%) | Time (seconds)
Linear regression | 7.3395 553

Decision tree 2.8783 81
Random forests | 2.2005 277
GBTs 2.7190 417

Figures 3 and 4 present the predicted values along with the actual values for
the random forest algorithm for the two days from the test set leading to the
largest and smallest errors, respectively. The worst prediction corresponds to an
error of 9.12% associated to the period from December 24th 2013 at 10:50 am to
December 25th 2013 at 10:40 am and the error of the best prediction is 0.67%
corresponding to the day from September 20th 2012 at 10:40 am to September
21st 2012 at 10:30 am. It can be noted that the worst day is a special day,
namely, Christmas Eve.

172 A. Galicia et al.

32 ’J"/V\M — Actual values .

3l - — Predicted values

Energy consumption

16 \ \ \ \ \ \ \ \ \ \ \ \ \ \
0 10 20 30 40 5 60 70 8 90 100 110 120 130 140 150

Time (10 min)

Fig. 3. The day corresponding to the worst prediction when using random forests.

36 :

—— Actual values
- - Predicted values
32+ -

341

3L i

28 B

Energy consumption

26 B

241 .

22 ! ! ! ! ! ! ! ! ! ! ! ! ! !
0 10 20 3 40 5 60 70 8 9 100 110 120 130 140 150

Time (10 min)

Fig. 4. The day corresponding to the best prediction when using random forests.

Finally, the training time versus the length of the time series for all algorithms
proposed here are shown in the Fig.5. The execution time has been obtained
with time series of two, four, eight, sixteen and thirty and two times the length
of the original time series. It is necessary to highlight the building of the dataset
from the time series for each subproblem is not included in the training time as
that is not made in a distributed way, but in an iterative way. From this figure,
it can be observed that the most scalable method is the decision tree.

Scalable Forecasting Techniques Applied to Big Electricity Time Series 173

12000
—a—Linear regression
10000 —=— Decision tree o
——Random forests
%‘ GBTs
S 8000 |-
O
Q
2
-]
2 6000
<
k]
3 4000 |-
Q
x
w
2000
B ——
0! bl |
1 x2 x4 x8 x16 x32

Length of the time series

Fig. 5. Runtime and scalability for all algorithms.

5 Conclusions

In this work, a new formulation has been proposed for multi-step forecasting
problems in order to be able to use the MLIib library from Apache Spark frame-
work. The use of this library guarantees that the methods applied to predict
the energy consumption for the next twenty four values are scalable, and there-
fore, they can be used for big data time series. A pool of linear and non linear
methods have been selected, e.g., methods based on trees, ensemble techniques
based on trees and a linear regression. Results for the Spanish electricity demand
time series have been reported, showing the good performance of the methods
proposed here and the grade of scalability for each of them.

Future work is directed towards solving the forecasting subproblems in a
distributed way by using technology based on multithreads.

Acknowledgments. The authors would like to thank the Spanish Ministry of Econ-
omy and Competitiveness and Junta de Andalucia for the support under projects
TIN2014-55894-C2-R and P12-TIC-1728, respectively.

References

1. Box, G., Jenkins, G.: Time Series Analysis: Forecasting and Control. Wiley,
New York (2008)

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)

3. Capé, M., Pérez, A., Lozano, J.A.: A Recursive k-means initialization algorithm for
massive data. In: Proceedings of the Spanish Association for Artificial Intelligence,
pp. 929-938 (2015)

174

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A. Galicia et al.

Cavallaro, G., Riedel, M., Richerzhagen, M., Benediktsson, J.A.: On understand-
ing big data impacts in remotely sensed image classification using support vector
machine methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 4634—4646
(2015)

. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.

Commun. ACM 51(1), 107-113 (2008)

Ding, R., Wang, Q., Dan, Y., Fu, Q., Zhang, H., Zhang, D.: Yading: fast clustering
of large-scale time series data. Proc. VLDB Endow. 8(5), 473-484 (2015)

Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Zomaya, A.Y., Khalil, 1., Sebti, F.,
Bouras, A.: A survey of clustering algorithms for big data: taxonomy & empirical
analysis. IEEE Trans. Emerg. Top. Comput. 5, 267-279 (2014)

Machine Learning Library (MLIlib) for Spark. On-line (2016). http://spark.apache.
org/docs/latest/mllib-guide.html

Hamstra, M., Karau, H., Zaharia, M., Knwinski, A., Wendell, P., Spark, L.:
Lightning-Fast Big Analytics. O’ Really Media, USA (2015)

Li, L., Bagheri, S., Goote, H., Hassan, A., Hazard, G., Risk adjustment of patient
expenditures: a big data analytics approach. In: Proceedings of the IEEE Interna-
tional Conference on Big Data, pp. 12-14 (2013)

Luna-Romera, J.M., Martinez-Ballesteros, M., Garcia-Gutiérrez, J., Riquelme-
Santos, J.C.: An approach to Silhouette and Dunn clustering indices applied to
big data in spark. In: Luaces, O., Gdmez, J.A., Barrenechea, E., Troncoso, A.,
Galar, M., Quintidn, H., Corchado, E. (eds.) CAEPIA 2016. LNCS, vol. 9868, pp.
160-169. Springer, Cham (2016). doi:10.1007/978-3-319-44636-3_15
Maurtl’nez—Alvaurez7 F., Troncoso, A., Asencio-Cortés, G., Riquelme, J.C.: A survey
on data mining techniques applied to electricity-related time series forecasting.
Energies 8(11), 13162-13193 (2015)

Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient
descent. In: Proceedings of the Neural Information Processing Systems Conference,
NIPS, pp. 512-518 (1999)

Panda, B., Herbach, J.S., Basu, S., Bayardo, R.J.: PLANET: massively parallel
learning of tree ensembles with mapreduce. In: Proceedings of the Very Large
Databases, pp. 1426-1437 (2009)

Perez-Chacon, R., Talavera-Llames, R.L., Martinez-Alvarez, F., Troncoso, A.:
Finding electric energy consumption patterns in big time series data. In: Omatu, S.
(ed.) Proceedings of the International Conference on Distributed Computing and
Artificial Intelligence. Advances in Intelligent Systems and Computing, vol. 474.
Springer, Cham (1991)

Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q.,
Zakaria, J., Keogh, E.: Addressing big data time series: mining trillions of time
series subsequences under dynamic time warping. ACM Trans. Knowl. Discov.
Data 7(3), 267-279 (2014)

Reyes-Ortiz, J.L., Oneto, L., Anguita, D.: Big data analytics in the cloud: spark on
Hadoop vs MPI/OpenMP on Beowulf. Procedia Comput. Sci. 53, 121-130 (2015)
Rokach, L., Maimon, O.: Top-down induction of decision trees classifiers - a survey.
IEEE Trans. Syst. Man Cybern. Part C 35(4), 476487 (2005)

Talavera-Llames, R.L., Pérez-Chacén, R., Martinez-Ballesteros, M., Troncoso, A.,
Martinez-Alvarez, F.: A nearest neighbours-based algorithm for big time series
data forecasting. In: Martl’nez—Alvarez, F., Troncoso, A., Quintidn, H., Corchado,
E. (eds.) HAIS 2016. LNCS, vol. 9648, pp. 174-185. Springer, Cham (2016). doi:10.
1007/978-3-319-32034-2_15

20.

21.

22.

23.

24.

Scalable Forecasting Techniques Applied to Big Electricity Time Series 175

Triguero, 1., Peralta, D., Bacardit, J., Garcia, S., Herrera, F.: MRPR: a mapreduce
solution for prototype reduction in big data classification. Neurocomputing 150,
331-345 (2015)

Tsai, C.-W., Lai, C.-F., Chao, H.-C., Vasilakos, A.: Big data analytics: a survey.
J. Big Data 2(1), 21 (2015)

White, T.: Hadoop, The Definitive Guide. O’ Really Media, USA (2012)

Zhao, W., Ma, H., He, Q.: Parallel k-means clustering based on mapreduce. In:
Jaatun, M.G., Zhao, G., Rong, C. (eds.) Cloud Computing. LNCS, vol. 5391, pp.
674-679. Springer, Heidelberg (2009). doi:10.1007/978-3-540-95885-7_24

Zhou, L., Pan, S., Wang, J.,